1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines analysis_warnings::[Policy,Executor]. 10 // Together they are used by Sema to issue warnings based on inexpensive 11 // static analysis algorithms in libAnalysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/Sema/AnalysisBasedWarnings.h" 16 #include "clang/AST/DeclCXX.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/EvaluatedExprVisitor.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/ExprObjC.h" 21 #include "clang/AST/ParentMap.h" 22 #include "clang/AST/RecursiveASTVisitor.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/AST/StmtObjC.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h" 27 #include "clang/Analysis/Analyses/CalledOnceCheck.h" 28 #include "clang/Analysis/Analyses/Consumed.h" 29 #include "clang/Analysis/Analyses/ReachableCode.h" 30 #include "clang/Analysis/Analyses/ThreadSafety.h" 31 #include "clang/Analysis/Analyses/UninitializedValues.h" 32 #include "clang/Analysis/AnalysisDeclContext.h" 33 #include "clang/Analysis/CFG.h" 34 #include "clang/Analysis/CFGStmtMap.h" 35 #include "clang/Basic/SourceLocation.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Lex/Preprocessor.h" 38 #include "clang/Sema/ScopeInfo.h" 39 #include "clang/Sema/SemaInternal.h" 40 #include "llvm/ADT/ArrayRef.h" 41 #include "llvm/ADT/BitVector.h" 42 #include "llvm/ADT/MapVector.h" 43 #include "llvm/ADT/SmallString.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/StringRef.h" 46 #include "llvm/Support/Casting.h" 47 #include <algorithm> 48 #include <deque> 49 #include <iterator> 50 51 using namespace clang; 52 53 //===----------------------------------------------------------------------===// 54 // Unreachable code analysis. 55 //===----------------------------------------------------------------------===// 56 57 namespace { 58 class UnreachableCodeHandler : public reachable_code::Callback { 59 Sema &S; 60 SourceRange PreviousSilenceableCondVal; 61 62 public: 63 UnreachableCodeHandler(Sema &s) : S(s) {} 64 65 void HandleUnreachable(reachable_code::UnreachableKind UK, 66 SourceLocation L, 67 SourceRange SilenceableCondVal, 68 SourceRange R1, 69 SourceRange R2) override { 70 // Avoid reporting multiple unreachable code diagnostics that are 71 // triggered by the same conditional value. 72 if (PreviousSilenceableCondVal.isValid() && 73 SilenceableCondVal.isValid() && 74 PreviousSilenceableCondVal == SilenceableCondVal) 75 return; 76 PreviousSilenceableCondVal = SilenceableCondVal; 77 78 unsigned diag = diag::warn_unreachable; 79 switch (UK) { 80 case reachable_code::UK_Break: 81 diag = diag::warn_unreachable_break; 82 break; 83 case reachable_code::UK_Return: 84 diag = diag::warn_unreachable_return; 85 break; 86 case reachable_code::UK_Loop_Increment: 87 diag = diag::warn_unreachable_loop_increment; 88 break; 89 case reachable_code::UK_Other: 90 break; 91 } 92 93 S.Diag(L, diag) << R1 << R2; 94 95 SourceLocation Open = SilenceableCondVal.getBegin(); 96 if (Open.isValid()) { 97 SourceLocation Close = SilenceableCondVal.getEnd(); 98 Close = S.getLocForEndOfToken(Close); 99 if (Close.isValid()) { 100 S.Diag(Open, diag::note_unreachable_silence) 101 << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (") 102 << FixItHint::CreateInsertion(Close, ")"); 103 } 104 } 105 } 106 }; 107 } // anonymous namespace 108 109 /// CheckUnreachable - Check for unreachable code. 110 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) { 111 // As a heuristic prune all diagnostics not in the main file. Currently 112 // the majority of warnings in headers are false positives. These 113 // are largely caused by configuration state, e.g. preprocessor 114 // defined code, etc. 115 // 116 // Note that this is also a performance optimization. Analyzing 117 // headers many times can be expensive. 118 if (!S.getSourceManager().isInMainFile(AC.getDecl()->getBeginLoc())) 119 return; 120 121 UnreachableCodeHandler UC(S); 122 reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC); 123 } 124 125 namespace { 126 /// Warn on logical operator errors in CFGBuilder 127 class LogicalErrorHandler : public CFGCallback { 128 Sema &S; 129 130 public: 131 LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {} 132 133 static bool HasMacroID(const Expr *E) { 134 if (E->getExprLoc().isMacroID()) 135 return true; 136 137 // Recurse to children. 138 for (const Stmt *SubStmt : E->children()) 139 if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt)) 140 if (HasMacroID(SubExpr)) 141 return true; 142 143 return false; 144 } 145 146 void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override { 147 if (HasMacroID(B)) 148 return; 149 150 SourceRange DiagRange = B->getSourceRange(); 151 S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison) 152 << DiagRange << isAlwaysTrue; 153 } 154 155 void compareBitwiseEquality(const BinaryOperator *B, 156 bool isAlwaysTrue) override { 157 if (HasMacroID(B)) 158 return; 159 160 SourceRange DiagRange = B->getSourceRange(); 161 S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always) 162 << DiagRange << isAlwaysTrue; 163 } 164 165 void compareBitwiseOr(const BinaryOperator *B) override { 166 if (HasMacroID(B)) 167 return; 168 169 SourceRange DiagRange = B->getSourceRange(); 170 S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_or) << DiagRange; 171 } 172 173 static bool hasActiveDiagnostics(DiagnosticsEngine &Diags, 174 SourceLocation Loc) { 175 return !Diags.isIgnored(diag::warn_tautological_overlap_comparison, Loc) || 176 !Diags.isIgnored(diag::warn_comparison_bitwise_or, Loc); 177 } 178 }; 179 } // anonymous namespace 180 181 //===----------------------------------------------------------------------===// 182 // Check for infinite self-recursion in functions 183 //===----------------------------------------------------------------------===// 184 185 // Returns true if the function is called anywhere within the CFGBlock. 186 // For member functions, the additional condition of being call from the 187 // this pointer is required. 188 static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) { 189 // Process all the Stmt's in this block to find any calls to FD. 190 for (const auto &B : Block) { 191 if (B.getKind() != CFGElement::Statement) 192 continue; 193 194 const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt()); 195 if (!CE || !CE->getCalleeDecl() || 196 CE->getCalleeDecl()->getCanonicalDecl() != FD) 197 continue; 198 199 // Skip function calls which are qualified with a templated class. 200 if (const DeclRefExpr *DRE = 201 dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) { 202 if (NestedNameSpecifier *NNS = DRE->getQualifier()) { 203 if (NNS->getKind() == NestedNameSpecifier::TypeSpec && 204 isa<TemplateSpecializationType>(NNS->getAsType())) { 205 continue; 206 } 207 } 208 } 209 210 const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE); 211 if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) || 212 !MCE->getMethodDecl()->isVirtual()) 213 return true; 214 } 215 return false; 216 } 217 218 // Returns true if every path from the entry block passes through a call to FD. 219 static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) { 220 llvm::SmallPtrSet<CFGBlock *, 16> Visited; 221 llvm::SmallVector<CFGBlock *, 16> WorkList; 222 // Keep track of whether we found at least one recursive path. 223 bool foundRecursion = false; 224 225 const unsigned ExitID = cfg->getExit().getBlockID(); 226 227 // Seed the work list with the entry block. 228 WorkList.push_back(&cfg->getEntry()); 229 230 while (!WorkList.empty()) { 231 CFGBlock *Block = WorkList.pop_back_val(); 232 233 for (auto I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) { 234 if (CFGBlock *SuccBlock = *I) { 235 if (!Visited.insert(SuccBlock).second) 236 continue; 237 238 // Found a path to the exit node without a recursive call. 239 if (ExitID == SuccBlock->getBlockID()) 240 return false; 241 242 // If the successor block contains a recursive call, end analysis there. 243 if (hasRecursiveCallInPath(FD, *SuccBlock)) { 244 foundRecursion = true; 245 continue; 246 } 247 248 WorkList.push_back(SuccBlock); 249 } 250 } 251 } 252 return foundRecursion; 253 } 254 255 static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD, 256 const Stmt *Body, AnalysisDeclContext &AC) { 257 FD = FD->getCanonicalDecl(); 258 259 // Only run on non-templated functions and non-templated members of 260 // templated classes. 261 if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate && 262 FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization) 263 return; 264 265 CFG *cfg = AC.getCFG(); 266 if (!cfg) return; 267 268 // If the exit block is unreachable, skip processing the function. 269 if (cfg->getExit().pred_empty()) 270 return; 271 272 // Emit diagnostic if a recursive function call is detected for all paths. 273 if (checkForRecursiveFunctionCall(FD, cfg)) 274 S.Diag(Body->getBeginLoc(), diag::warn_infinite_recursive_function); 275 } 276 277 //===----------------------------------------------------------------------===// 278 // Check for throw in a non-throwing function. 279 //===----------------------------------------------------------------------===// 280 281 /// Determine whether an exception thrown by E, unwinding from ThrowBlock, 282 /// can reach ExitBlock. 283 static bool throwEscapes(Sema &S, const CXXThrowExpr *E, CFGBlock &ThrowBlock, 284 CFG *Body) { 285 SmallVector<CFGBlock *, 16> Stack; 286 llvm::BitVector Queued(Body->getNumBlockIDs()); 287 288 Stack.push_back(&ThrowBlock); 289 Queued[ThrowBlock.getBlockID()] = true; 290 291 while (!Stack.empty()) { 292 CFGBlock &UnwindBlock = *Stack.back(); 293 Stack.pop_back(); 294 295 for (auto &Succ : UnwindBlock.succs()) { 296 if (!Succ.isReachable() || Queued[Succ->getBlockID()]) 297 continue; 298 299 if (Succ->getBlockID() == Body->getExit().getBlockID()) 300 return true; 301 302 if (auto *Catch = 303 dyn_cast_or_null<CXXCatchStmt>(Succ->getLabel())) { 304 QualType Caught = Catch->getCaughtType(); 305 if (Caught.isNull() || // catch (...) catches everything 306 !E->getSubExpr() || // throw; is considered cuaght by any handler 307 S.handlerCanCatch(Caught, E->getSubExpr()->getType())) 308 // Exception doesn't escape via this path. 309 break; 310 } else { 311 Stack.push_back(Succ); 312 Queued[Succ->getBlockID()] = true; 313 } 314 } 315 } 316 317 return false; 318 } 319 320 static void visitReachableThrows( 321 CFG *BodyCFG, 322 llvm::function_ref<void(const CXXThrowExpr *, CFGBlock &)> Visit) { 323 llvm::BitVector Reachable(BodyCFG->getNumBlockIDs()); 324 clang::reachable_code::ScanReachableFromBlock(&BodyCFG->getEntry(), Reachable); 325 for (CFGBlock *B : *BodyCFG) { 326 if (!Reachable[B->getBlockID()]) 327 continue; 328 for (CFGElement &E : *B) { 329 Optional<CFGStmt> S = E.getAs<CFGStmt>(); 330 if (!S) 331 continue; 332 if (auto *Throw = dyn_cast<CXXThrowExpr>(S->getStmt())) 333 Visit(Throw, *B); 334 } 335 } 336 } 337 338 static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &S, SourceLocation OpLoc, 339 const FunctionDecl *FD) { 340 if (!S.getSourceManager().isInSystemHeader(OpLoc) && 341 FD->getTypeSourceInfo()) { 342 S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD; 343 if (S.getLangOpts().CPlusPlus11 && 344 (isa<CXXDestructorDecl>(FD) || 345 FD->getDeclName().getCXXOverloadedOperator() == OO_Delete || 346 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) { 347 if (const auto *Ty = FD->getTypeSourceInfo()->getType()-> 348 getAs<FunctionProtoType>()) 349 S.Diag(FD->getLocation(), diag::note_throw_in_dtor) 350 << !isa<CXXDestructorDecl>(FD) << !Ty->hasExceptionSpec() 351 << FD->getExceptionSpecSourceRange(); 352 } else 353 S.Diag(FD->getLocation(), diag::note_throw_in_function) 354 << FD->getExceptionSpecSourceRange(); 355 } 356 } 357 358 static void checkThrowInNonThrowingFunc(Sema &S, const FunctionDecl *FD, 359 AnalysisDeclContext &AC) { 360 CFG *BodyCFG = AC.getCFG(); 361 if (!BodyCFG) 362 return; 363 if (BodyCFG->getExit().pred_empty()) 364 return; 365 visitReachableThrows(BodyCFG, [&](const CXXThrowExpr *Throw, CFGBlock &Block) { 366 if (throwEscapes(S, Throw, Block, BodyCFG)) 367 EmitDiagForCXXThrowInNonThrowingFunc(S, Throw->getThrowLoc(), FD); 368 }); 369 } 370 371 static bool isNoexcept(const FunctionDecl *FD) { 372 const auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 373 if (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>()) 374 return true; 375 return false; 376 } 377 378 //===----------------------------------------------------------------------===// 379 // Check for missing return value. 380 //===----------------------------------------------------------------------===// 381 382 enum ControlFlowKind { 383 UnknownFallThrough, 384 NeverFallThrough, 385 MaybeFallThrough, 386 AlwaysFallThrough, 387 NeverFallThroughOrReturn 388 }; 389 390 /// CheckFallThrough - Check that we don't fall off the end of a 391 /// Statement that should return a value. 392 /// 393 /// \returns AlwaysFallThrough iff we always fall off the end of the statement, 394 /// MaybeFallThrough iff we might or might not fall off the end, 395 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or 396 /// return. We assume NeverFallThrough iff we never fall off the end of the 397 /// statement but we may return. We assume that functions not marked noreturn 398 /// will return. 399 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) { 400 CFG *cfg = AC.getCFG(); 401 if (!cfg) return UnknownFallThrough; 402 403 // The CFG leaves in dead things, and we don't want the dead code paths to 404 // confuse us, so we mark all live things first. 405 llvm::BitVector live(cfg->getNumBlockIDs()); 406 unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(), 407 live); 408 409 bool AddEHEdges = AC.getAddEHEdges(); 410 if (!AddEHEdges && count != cfg->getNumBlockIDs()) 411 // When there are things remaining dead, and we didn't add EH edges 412 // from CallExprs to the catch clauses, we have to go back and 413 // mark them as live. 414 for (const auto *B : *cfg) { 415 if (!live[B->getBlockID()]) { 416 if (B->pred_begin() == B->pred_end()) { 417 const Stmt *Term = B->getTerminatorStmt(); 418 if (Term && isa<CXXTryStmt>(Term)) 419 // When not adding EH edges from calls, catch clauses 420 // can otherwise seem dead. Avoid noting them as dead. 421 count += reachable_code::ScanReachableFromBlock(B, live); 422 continue; 423 } 424 } 425 } 426 427 // Now we know what is live, we check the live precessors of the exit block 428 // and look for fall through paths, being careful to ignore normal returns, 429 // and exceptional paths. 430 bool HasLiveReturn = false; 431 bool HasFakeEdge = false; 432 bool HasPlainEdge = false; 433 bool HasAbnormalEdge = false; 434 435 // Ignore default cases that aren't likely to be reachable because all 436 // enums in a switch(X) have explicit case statements. 437 CFGBlock::FilterOptions FO; 438 FO.IgnoreDefaultsWithCoveredEnums = 1; 439 440 for (CFGBlock::filtered_pred_iterator I = 441 cfg->getExit().filtered_pred_start_end(FO); 442 I.hasMore(); ++I) { 443 const CFGBlock &B = **I; 444 if (!live[B.getBlockID()]) 445 continue; 446 447 // Skip blocks which contain an element marked as no-return. They don't 448 // represent actually viable edges into the exit block, so mark them as 449 // abnormal. 450 if (B.hasNoReturnElement()) { 451 HasAbnormalEdge = true; 452 continue; 453 } 454 455 // Destructors can appear after the 'return' in the CFG. This is 456 // normal. We need to look pass the destructors for the return 457 // statement (if it exists). 458 CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend(); 459 460 for ( ; ri != re ; ++ri) 461 if (ri->getAs<CFGStmt>()) 462 break; 463 464 // No more CFGElements in the block? 465 if (ri == re) { 466 const Stmt *Term = B.getTerminatorStmt(); 467 if (Term && isa<CXXTryStmt>(Term)) { 468 HasAbnormalEdge = true; 469 continue; 470 } 471 // A labeled empty statement, or the entry block... 472 HasPlainEdge = true; 473 continue; 474 } 475 476 CFGStmt CS = ri->castAs<CFGStmt>(); 477 const Stmt *S = CS.getStmt(); 478 if (isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)) { 479 HasLiveReturn = true; 480 continue; 481 } 482 if (isa<ObjCAtThrowStmt>(S)) { 483 HasFakeEdge = true; 484 continue; 485 } 486 if (isa<CXXThrowExpr>(S)) { 487 HasFakeEdge = true; 488 continue; 489 } 490 if (isa<MSAsmStmt>(S)) { 491 // TODO: Verify this is correct. 492 HasFakeEdge = true; 493 HasLiveReturn = true; 494 continue; 495 } 496 if (isa<CXXTryStmt>(S)) { 497 HasAbnormalEdge = true; 498 continue; 499 } 500 if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit()) 501 == B.succ_end()) { 502 HasAbnormalEdge = true; 503 continue; 504 } 505 506 HasPlainEdge = true; 507 } 508 if (!HasPlainEdge) { 509 if (HasLiveReturn) 510 return NeverFallThrough; 511 return NeverFallThroughOrReturn; 512 } 513 if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn) 514 return MaybeFallThrough; 515 // This says AlwaysFallThrough for calls to functions that are not marked 516 // noreturn, that don't return. If people would like this warning to be more 517 // accurate, such functions should be marked as noreturn. 518 return AlwaysFallThrough; 519 } 520 521 namespace { 522 523 struct CheckFallThroughDiagnostics { 524 unsigned diag_MaybeFallThrough_HasNoReturn; 525 unsigned diag_MaybeFallThrough_ReturnsNonVoid; 526 unsigned diag_AlwaysFallThrough_HasNoReturn; 527 unsigned diag_AlwaysFallThrough_ReturnsNonVoid; 528 unsigned diag_NeverFallThroughOrReturn; 529 enum { Function, Block, Lambda, Coroutine } funMode; 530 SourceLocation FuncLoc; 531 532 static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) { 533 CheckFallThroughDiagnostics D; 534 D.FuncLoc = Func->getLocation(); 535 D.diag_MaybeFallThrough_HasNoReturn = 536 diag::warn_falloff_noreturn_function; 537 D.diag_MaybeFallThrough_ReturnsNonVoid = 538 diag::warn_maybe_falloff_nonvoid_function; 539 D.diag_AlwaysFallThrough_HasNoReturn = 540 diag::warn_falloff_noreturn_function; 541 D.diag_AlwaysFallThrough_ReturnsNonVoid = 542 diag::warn_falloff_nonvoid_function; 543 544 // Don't suggest that virtual functions be marked "noreturn", since they 545 // might be overridden by non-noreturn functions. 546 bool isVirtualMethod = false; 547 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func)) 548 isVirtualMethod = Method->isVirtual(); 549 550 // Don't suggest that template instantiations be marked "noreturn" 551 bool isTemplateInstantiation = false; 552 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func)) 553 isTemplateInstantiation = Function->isTemplateInstantiation(); 554 555 if (!isVirtualMethod && !isTemplateInstantiation) 556 D.diag_NeverFallThroughOrReturn = 557 diag::warn_suggest_noreturn_function; 558 else 559 D.diag_NeverFallThroughOrReturn = 0; 560 561 D.funMode = Function; 562 return D; 563 } 564 565 static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) { 566 CheckFallThroughDiagnostics D; 567 D.FuncLoc = Func->getLocation(); 568 D.diag_MaybeFallThrough_HasNoReturn = 0; 569 D.diag_MaybeFallThrough_ReturnsNonVoid = 570 diag::warn_maybe_falloff_nonvoid_coroutine; 571 D.diag_AlwaysFallThrough_HasNoReturn = 0; 572 D.diag_AlwaysFallThrough_ReturnsNonVoid = 573 diag::warn_falloff_nonvoid_coroutine; 574 D.funMode = Coroutine; 575 return D; 576 } 577 578 static CheckFallThroughDiagnostics MakeForBlock() { 579 CheckFallThroughDiagnostics D; 580 D.diag_MaybeFallThrough_HasNoReturn = 581 diag::err_noreturn_block_has_return_expr; 582 D.diag_MaybeFallThrough_ReturnsNonVoid = 583 diag::err_maybe_falloff_nonvoid_block; 584 D.diag_AlwaysFallThrough_HasNoReturn = 585 diag::err_noreturn_block_has_return_expr; 586 D.diag_AlwaysFallThrough_ReturnsNonVoid = 587 diag::err_falloff_nonvoid_block; 588 D.diag_NeverFallThroughOrReturn = 0; 589 D.funMode = Block; 590 return D; 591 } 592 593 static CheckFallThroughDiagnostics MakeForLambda() { 594 CheckFallThroughDiagnostics D; 595 D.diag_MaybeFallThrough_HasNoReturn = 596 diag::err_noreturn_lambda_has_return_expr; 597 D.diag_MaybeFallThrough_ReturnsNonVoid = 598 diag::warn_maybe_falloff_nonvoid_lambda; 599 D.diag_AlwaysFallThrough_HasNoReturn = 600 diag::err_noreturn_lambda_has_return_expr; 601 D.diag_AlwaysFallThrough_ReturnsNonVoid = 602 diag::warn_falloff_nonvoid_lambda; 603 D.diag_NeverFallThroughOrReturn = 0; 604 D.funMode = Lambda; 605 return D; 606 } 607 608 bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid, 609 bool HasNoReturn) const { 610 if (funMode == Function) { 611 return (ReturnsVoid || 612 D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, 613 FuncLoc)) && 614 (!HasNoReturn || 615 D.isIgnored(diag::warn_noreturn_function_has_return_expr, 616 FuncLoc)) && 617 (!ReturnsVoid || 618 D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc)); 619 } 620 if (funMode == Coroutine) { 621 return (ReturnsVoid || 622 D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) || 623 D.isIgnored(diag::warn_maybe_falloff_nonvoid_coroutine, 624 FuncLoc)) && 625 (!HasNoReturn); 626 } 627 // For blocks / lambdas. 628 return ReturnsVoid && !HasNoReturn; 629 } 630 }; 631 632 } // anonymous namespace 633 634 /// CheckFallThroughForBody - Check that we don't fall off the end of a 635 /// function that should return a value. Check that we don't fall off the end 636 /// of a noreturn function. We assume that functions and blocks not marked 637 /// noreturn will return. 638 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body, 639 QualType BlockType, 640 const CheckFallThroughDiagnostics &CD, 641 AnalysisDeclContext &AC, 642 sema::FunctionScopeInfo *FSI) { 643 644 bool ReturnsVoid = false; 645 bool HasNoReturn = false; 646 bool IsCoroutine = FSI->isCoroutine(); 647 648 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 649 if (const auto *CBody = dyn_cast<CoroutineBodyStmt>(Body)) 650 ReturnsVoid = CBody->getFallthroughHandler() != nullptr; 651 else 652 ReturnsVoid = FD->getReturnType()->isVoidType(); 653 HasNoReturn = FD->isNoReturn(); 654 } 655 else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { 656 ReturnsVoid = MD->getReturnType()->isVoidType(); 657 HasNoReturn = MD->hasAttr<NoReturnAttr>(); 658 } 659 else if (isa<BlockDecl>(D)) { 660 if (const FunctionType *FT = 661 BlockType->getPointeeType()->getAs<FunctionType>()) { 662 if (FT->getReturnType()->isVoidType()) 663 ReturnsVoid = true; 664 if (FT->getNoReturnAttr()) 665 HasNoReturn = true; 666 } 667 } 668 669 DiagnosticsEngine &Diags = S.getDiagnostics(); 670 671 // Short circuit for compilation speed. 672 if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn)) 673 return; 674 SourceLocation LBrace = Body->getBeginLoc(), RBrace = Body->getEndLoc(); 675 auto EmitDiag = [&](SourceLocation Loc, unsigned DiagID) { 676 if (IsCoroutine) 677 S.Diag(Loc, DiagID) << FSI->CoroutinePromise->getType(); 678 else 679 S.Diag(Loc, DiagID); 680 }; 681 682 // cpu_dispatch functions permit empty function bodies for ICC compatibility. 683 if (D->getAsFunction() && D->getAsFunction()->isCPUDispatchMultiVersion()) 684 return; 685 686 // Either in a function body compound statement, or a function-try-block. 687 switch (CheckFallThrough(AC)) { 688 case UnknownFallThrough: 689 break; 690 691 case MaybeFallThrough: 692 if (HasNoReturn) 693 EmitDiag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn); 694 else if (!ReturnsVoid) 695 EmitDiag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid); 696 break; 697 case AlwaysFallThrough: 698 if (HasNoReturn) 699 EmitDiag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn); 700 else if (!ReturnsVoid) 701 EmitDiag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid); 702 break; 703 case NeverFallThroughOrReturn: 704 if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) { 705 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 706 S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD; 707 } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { 708 S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD; 709 } else { 710 S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn); 711 } 712 } 713 break; 714 case NeverFallThrough: 715 break; 716 } 717 } 718 719 //===----------------------------------------------------------------------===// 720 // -Wuninitialized 721 //===----------------------------------------------------------------------===// 722 723 namespace { 724 /// ContainsReference - A visitor class to search for references to 725 /// a particular declaration (the needle) within any evaluated component of an 726 /// expression (recursively). 727 class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> { 728 bool FoundReference; 729 const DeclRefExpr *Needle; 730 731 public: 732 typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited; 733 734 ContainsReference(ASTContext &Context, const DeclRefExpr *Needle) 735 : Inherited(Context), FoundReference(false), Needle(Needle) {} 736 737 void VisitExpr(const Expr *E) { 738 // Stop evaluating if we already have a reference. 739 if (FoundReference) 740 return; 741 742 Inherited::VisitExpr(E); 743 } 744 745 void VisitDeclRefExpr(const DeclRefExpr *E) { 746 if (E == Needle) 747 FoundReference = true; 748 else 749 Inherited::VisitDeclRefExpr(E); 750 } 751 752 bool doesContainReference() const { return FoundReference; } 753 }; 754 } // anonymous namespace 755 756 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) { 757 QualType VariableTy = VD->getType().getCanonicalType(); 758 if (VariableTy->isBlockPointerType() && 759 !VD->hasAttr<BlocksAttr>()) { 760 S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization) 761 << VD->getDeclName() 762 << FixItHint::CreateInsertion(VD->getLocation(), "__block "); 763 return true; 764 } 765 766 // Don't issue a fixit if there is already an initializer. 767 if (VD->getInit()) 768 return false; 769 770 // Don't suggest a fixit inside macros. 771 if (VD->getEndLoc().isMacroID()) 772 return false; 773 774 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 775 776 // Suggest possible initialization (if any). 777 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 778 if (Init.empty()) 779 return false; 780 781 S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName() 782 << FixItHint::CreateInsertion(Loc, Init); 783 return true; 784 } 785 786 /// Create a fixit to remove an if-like statement, on the assumption that its 787 /// condition is CondVal. 788 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then, 789 const Stmt *Else, bool CondVal, 790 FixItHint &Fixit1, FixItHint &Fixit2) { 791 if (CondVal) { 792 // If condition is always true, remove all but the 'then'. 793 Fixit1 = FixItHint::CreateRemoval( 794 CharSourceRange::getCharRange(If->getBeginLoc(), Then->getBeginLoc())); 795 if (Else) { 796 SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getEndLoc()); 797 Fixit2 = 798 FixItHint::CreateRemoval(SourceRange(ElseKwLoc, Else->getEndLoc())); 799 } 800 } else { 801 // If condition is always false, remove all but the 'else'. 802 if (Else) 803 Fixit1 = FixItHint::CreateRemoval(CharSourceRange::getCharRange( 804 If->getBeginLoc(), Else->getBeginLoc())); 805 else 806 Fixit1 = FixItHint::CreateRemoval(If->getSourceRange()); 807 } 808 } 809 810 /// DiagUninitUse -- Helper function to produce a diagnostic for an 811 /// uninitialized use of a variable. 812 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use, 813 bool IsCapturedByBlock) { 814 bool Diagnosed = false; 815 816 switch (Use.getKind()) { 817 case UninitUse::Always: 818 S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_var) 819 << VD->getDeclName() << IsCapturedByBlock 820 << Use.getUser()->getSourceRange(); 821 return; 822 823 case UninitUse::AfterDecl: 824 case UninitUse::AfterCall: 825 S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var) 826 << VD->getDeclName() << IsCapturedByBlock 827 << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5) 828 << const_cast<DeclContext*>(VD->getLexicalDeclContext()) 829 << VD->getSourceRange(); 830 S.Diag(Use.getUser()->getBeginLoc(), diag::note_uninit_var_use) 831 << IsCapturedByBlock << Use.getUser()->getSourceRange(); 832 return; 833 834 case UninitUse::Maybe: 835 case UninitUse::Sometimes: 836 // Carry on to report sometimes-uninitialized branches, if possible, 837 // or a 'may be used uninitialized' diagnostic otherwise. 838 break; 839 } 840 841 // Diagnose each branch which leads to a sometimes-uninitialized use. 842 for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end(); 843 I != E; ++I) { 844 assert(Use.getKind() == UninitUse::Sometimes); 845 846 const Expr *User = Use.getUser(); 847 const Stmt *Term = I->Terminator; 848 849 // Information used when building the diagnostic. 850 unsigned DiagKind; 851 StringRef Str; 852 SourceRange Range; 853 854 // FixIts to suppress the diagnostic by removing the dead condition. 855 // For all binary terminators, branch 0 is taken if the condition is true, 856 // and branch 1 is taken if the condition is false. 857 int RemoveDiagKind = -1; 858 const char *FixitStr = 859 S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false") 860 : (I->Output ? "1" : "0"); 861 FixItHint Fixit1, Fixit2; 862 863 switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) { 864 default: 865 // Don't know how to report this. Just fall back to 'may be used 866 // uninitialized'. FIXME: Can this happen? 867 continue; 868 869 // "condition is true / condition is false". 870 case Stmt::IfStmtClass: { 871 const IfStmt *IS = cast<IfStmt>(Term); 872 DiagKind = 0; 873 Str = "if"; 874 Range = IS->getCond()->getSourceRange(); 875 RemoveDiagKind = 0; 876 CreateIfFixit(S, IS, IS->getThen(), IS->getElse(), 877 I->Output, Fixit1, Fixit2); 878 break; 879 } 880 case Stmt::ConditionalOperatorClass: { 881 const ConditionalOperator *CO = cast<ConditionalOperator>(Term); 882 DiagKind = 0; 883 Str = "?:"; 884 Range = CO->getCond()->getSourceRange(); 885 RemoveDiagKind = 0; 886 CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(), 887 I->Output, Fixit1, Fixit2); 888 break; 889 } 890 case Stmt::BinaryOperatorClass: { 891 const BinaryOperator *BO = cast<BinaryOperator>(Term); 892 if (!BO->isLogicalOp()) 893 continue; 894 DiagKind = 0; 895 Str = BO->getOpcodeStr(); 896 Range = BO->getLHS()->getSourceRange(); 897 RemoveDiagKind = 0; 898 if ((BO->getOpcode() == BO_LAnd && I->Output) || 899 (BO->getOpcode() == BO_LOr && !I->Output)) 900 // true && y -> y, false || y -> y. 901 Fixit1 = FixItHint::CreateRemoval( 902 SourceRange(BO->getBeginLoc(), BO->getOperatorLoc())); 903 else 904 // false && y -> false, true || y -> true. 905 Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr); 906 break; 907 } 908 909 // "loop is entered / loop is exited". 910 case Stmt::WhileStmtClass: 911 DiagKind = 1; 912 Str = "while"; 913 Range = cast<WhileStmt>(Term)->getCond()->getSourceRange(); 914 RemoveDiagKind = 1; 915 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr); 916 break; 917 case Stmt::ForStmtClass: 918 DiagKind = 1; 919 Str = "for"; 920 Range = cast<ForStmt>(Term)->getCond()->getSourceRange(); 921 RemoveDiagKind = 1; 922 if (I->Output) 923 Fixit1 = FixItHint::CreateRemoval(Range); 924 else 925 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr); 926 break; 927 case Stmt::CXXForRangeStmtClass: 928 if (I->Output == 1) { 929 // The use occurs if a range-based for loop's body never executes. 930 // That may be impossible, and there's no syntactic fix for this, 931 // so treat it as a 'may be uninitialized' case. 932 continue; 933 } 934 DiagKind = 1; 935 Str = "for"; 936 Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange(); 937 break; 938 939 // "condition is true / loop is exited". 940 case Stmt::DoStmtClass: 941 DiagKind = 2; 942 Str = "do"; 943 Range = cast<DoStmt>(Term)->getCond()->getSourceRange(); 944 RemoveDiagKind = 1; 945 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr); 946 break; 947 948 // "switch case is taken". 949 case Stmt::CaseStmtClass: 950 DiagKind = 3; 951 Str = "case"; 952 Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange(); 953 break; 954 case Stmt::DefaultStmtClass: 955 DiagKind = 3; 956 Str = "default"; 957 Range = cast<DefaultStmt>(Term)->getDefaultLoc(); 958 break; 959 } 960 961 S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var) 962 << VD->getDeclName() << IsCapturedByBlock << DiagKind 963 << Str << I->Output << Range; 964 S.Diag(User->getBeginLoc(), diag::note_uninit_var_use) 965 << IsCapturedByBlock << User->getSourceRange(); 966 if (RemoveDiagKind != -1) 967 S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond) 968 << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2; 969 970 Diagnosed = true; 971 } 972 973 if (!Diagnosed) 974 S.Diag(Use.getUser()->getBeginLoc(), diag::warn_maybe_uninit_var) 975 << VD->getDeclName() << IsCapturedByBlock 976 << Use.getUser()->getSourceRange(); 977 } 978 979 /// Diagnose uninitialized const reference usages. 980 static bool DiagnoseUninitializedConstRefUse(Sema &S, const VarDecl *VD, 981 const UninitUse &Use) { 982 S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_const_reference) 983 << VD->getDeclName() << Use.getUser()->getSourceRange(); 984 return true; 985 } 986 987 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an 988 /// uninitialized variable. This manages the different forms of diagnostic 989 /// emitted for particular types of uses. Returns true if the use was diagnosed 990 /// as a warning. If a particular use is one we omit warnings for, returns 991 /// false. 992 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD, 993 const UninitUse &Use, 994 bool alwaysReportSelfInit = false) { 995 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) { 996 // Inspect the initializer of the variable declaration which is 997 // being referenced prior to its initialization. We emit 998 // specialized diagnostics for self-initialization, and we 999 // specifically avoid warning about self references which take the 1000 // form of: 1001 // 1002 // int x = x; 1003 // 1004 // This is used to indicate to GCC that 'x' is intentionally left 1005 // uninitialized. Proven code paths which access 'x' in 1006 // an uninitialized state after this will still warn. 1007 if (const Expr *Initializer = VD->getInit()) { 1008 if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts()) 1009 return false; 1010 1011 ContainsReference CR(S.Context, DRE); 1012 CR.Visit(Initializer); 1013 if (CR.doesContainReference()) { 1014 S.Diag(DRE->getBeginLoc(), diag::warn_uninit_self_reference_in_init) 1015 << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange(); 1016 return true; 1017 } 1018 } 1019 1020 DiagUninitUse(S, VD, Use, false); 1021 } else { 1022 const BlockExpr *BE = cast<BlockExpr>(Use.getUser()); 1023 if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>()) 1024 S.Diag(BE->getBeginLoc(), 1025 diag::warn_uninit_byref_blockvar_captured_by_block) 1026 << VD->getDeclName() 1027 << VD->getType().getQualifiers().hasObjCLifetime(); 1028 else 1029 DiagUninitUse(S, VD, Use, true); 1030 } 1031 1032 // Report where the variable was declared when the use wasn't within 1033 // the initializer of that declaration & we didn't already suggest 1034 // an initialization fixit. 1035 if (!SuggestInitializationFixit(S, VD)) 1036 S.Diag(VD->getBeginLoc(), diag::note_var_declared_here) 1037 << VD->getDeclName(); 1038 1039 return true; 1040 } 1041 1042 namespace { 1043 class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> { 1044 public: 1045 FallthroughMapper(Sema &S) 1046 : FoundSwitchStatements(false), 1047 S(S) { 1048 } 1049 1050 bool foundSwitchStatements() const { return FoundSwitchStatements; } 1051 1052 void markFallthroughVisited(const AttributedStmt *Stmt) { 1053 bool Found = FallthroughStmts.erase(Stmt); 1054 assert(Found); 1055 (void)Found; 1056 } 1057 1058 typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts; 1059 1060 const AttrStmts &getFallthroughStmts() const { 1061 return FallthroughStmts; 1062 } 1063 1064 void fillReachableBlocks(CFG *Cfg) { 1065 assert(ReachableBlocks.empty() && "ReachableBlocks already filled"); 1066 std::deque<const CFGBlock *> BlockQueue; 1067 1068 ReachableBlocks.insert(&Cfg->getEntry()); 1069 BlockQueue.push_back(&Cfg->getEntry()); 1070 // Mark all case blocks reachable to avoid problems with switching on 1071 // constants, covered enums, etc. 1072 // These blocks can contain fall-through annotations, and we don't want to 1073 // issue a warn_fallthrough_attr_unreachable for them. 1074 for (const auto *B : *Cfg) { 1075 const Stmt *L = B->getLabel(); 1076 if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second) 1077 BlockQueue.push_back(B); 1078 } 1079 1080 while (!BlockQueue.empty()) { 1081 const CFGBlock *P = BlockQueue.front(); 1082 BlockQueue.pop_front(); 1083 for (CFGBlock::const_succ_iterator I = P->succ_begin(), 1084 E = P->succ_end(); 1085 I != E; ++I) { 1086 if (*I && ReachableBlocks.insert(*I).second) 1087 BlockQueue.push_back(*I); 1088 } 1089 } 1090 } 1091 1092 bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt, 1093 bool IsTemplateInstantiation) { 1094 assert(!ReachableBlocks.empty() && "ReachableBlocks empty"); 1095 1096 int UnannotatedCnt = 0; 1097 AnnotatedCnt = 0; 1098 1099 std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end()); 1100 while (!BlockQueue.empty()) { 1101 const CFGBlock *P = BlockQueue.front(); 1102 BlockQueue.pop_front(); 1103 if (!P) continue; 1104 1105 const Stmt *Term = P->getTerminatorStmt(); 1106 if (Term && isa<SwitchStmt>(Term)) 1107 continue; // Switch statement, good. 1108 1109 const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel()); 1110 if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end()) 1111 continue; // Previous case label has no statements, good. 1112 1113 const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel()); 1114 if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end()) 1115 continue; // Case label is preceded with a normal label, good. 1116 1117 if (!ReachableBlocks.count(P)) { 1118 for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(), 1119 ElemEnd = P->rend(); 1120 ElemIt != ElemEnd; ++ElemIt) { 1121 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) { 1122 if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) { 1123 // Don't issue a warning for an unreachable fallthrough 1124 // attribute in template instantiations as it may not be 1125 // unreachable in all instantiations of the template. 1126 if (!IsTemplateInstantiation) 1127 S.Diag(AS->getBeginLoc(), 1128 diag::warn_fallthrough_attr_unreachable); 1129 markFallthroughVisited(AS); 1130 ++AnnotatedCnt; 1131 break; 1132 } 1133 // Don't care about other unreachable statements. 1134 } 1135 } 1136 // If there are no unreachable statements, this may be a special 1137 // case in CFG: 1138 // case X: { 1139 // A a; // A has a destructor. 1140 // break; 1141 // } 1142 // // <<<< This place is represented by a 'hanging' CFG block. 1143 // case Y: 1144 continue; 1145 } 1146 1147 const Stmt *LastStmt = getLastStmt(*P); 1148 if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) { 1149 markFallthroughVisited(AS); 1150 ++AnnotatedCnt; 1151 continue; // Fallthrough annotation, good. 1152 } 1153 1154 if (!LastStmt) { // This block contains no executable statements. 1155 // Traverse its predecessors. 1156 std::copy(P->pred_begin(), P->pred_end(), 1157 std::back_inserter(BlockQueue)); 1158 continue; 1159 } 1160 1161 ++UnannotatedCnt; 1162 } 1163 return !!UnannotatedCnt; 1164 } 1165 1166 // RecursiveASTVisitor setup. 1167 bool shouldWalkTypesOfTypeLocs() const { return false; } 1168 1169 bool VisitAttributedStmt(AttributedStmt *S) { 1170 if (asFallThroughAttr(S)) 1171 FallthroughStmts.insert(S); 1172 return true; 1173 } 1174 1175 bool VisitSwitchStmt(SwitchStmt *S) { 1176 FoundSwitchStatements = true; 1177 return true; 1178 } 1179 1180 // We don't want to traverse local type declarations. We analyze their 1181 // methods separately. 1182 bool TraverseDecl(Decl *D) { return true; } 1183 1184 // We analyze lambda bodies separately. Skip them here. 1185 bool TraverseLambdaExpr(LambdaExpr *LE) { 1186 // Traverse the captures, but not the body. 1187 for (const auto C : zip(LE->captures(), LE->capture_inits())) 1188 TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C)); 1189 return true; 1190 } 1191 1192 private: 1193 1194 static const AttributedStmt *asFallThroughAttr(const Stmt *S) { 1195 if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) { 1196 if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs())) 1197 return AS; 1198 } 1199 return nullptr; 1200 } 1201 1202 static const Stmt *getLastStmt(const CFGBlock &B) { 1203 if (const Stmt *Term = B.getTerminatorStmt()) 1204 return Term; 1205 for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(), 1206 ElemEnd = B.rend(); 1207 ElemIt != ElemEnd; ++ElemIt) { 1208 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) 1209 return CS->getStmt(); 1210 } 1211 // Workaround to detect a statement thrown out by CFGBuilder: 1212 // case X: {} case Y: 1213 // case X: ; case Y: 1214 if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel())) 1215 if (!isa<SwitchCase>(SW->getSubStmt())) 1216 return SW->getSubStmt(); 1217 1218 return nullptr; 1219 } 1220 1221 bool FoundSwitchStatements; 1222 AttrStmts FallthroughStmts; 1223 Sema &S; 1224 llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks; 1225 }; 1226 } // anonymous namespace 1227 1228 static StringRef getFallthroughAttrSpelling(Preprocessor &PP, 1229 SourceLocation Loc) { 1230 TokenValue FallthroughTokens[] = { 1231 tok::l_square, tok::l_square, 1232 PP.getIdentifierInfo("fallthrough"), 1233 tok::r_square, tok::r_square 1234 }; 1235 1236 TokenValue ClangFallthroughTokens[] = { 1237 tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"), 1238 tok::coloncolon, PP.getIdentifierInfo("fallthrough"), 1239 tok::r_square, tok::r_square 1240 }; 1241 1242 bool PreferClangAttr = !PP.getLangOpts().CPlusPlus17 && !PP.getLangOpts().C2x; 1243 1244 StringRef MacroName; 1245 if (PreferClangAttr) 1246 MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens); 1247 if (MacroName.empty()) 1248 MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens); 1249 if (MacroName.empty() && !PreferClangAttr) 1250 MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens); 1251 if (MacroName.empty()) { 1252 if (!PreferClangAttr) 1253 MacroName = "[[fallthrough]]"; 1254 else if (PP.getLangOpts().CPlusPlus) 1255 MacroName = "[[clang::fallthrough]]"; 1256 else 1257 MacroName = "__attribute__((fallthrough))"; 1258 } 1259 return MacroName; 1260 } 1261 1262 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC, 1263 bool PerFunction) { 1264 FallthroughMapper FM(S); 1265 FM.TraverseStmt(AC.getBody()); 1266 1267 if (!FM.foundSwitchStatements()) 1268 return; 1269 1270 if (PerFunction && FM.getFallthroughStmts().empty()) 1271 return; 1272 1273 CFG *Cfg = AC.getCFG(); 1274 1275 if (!Cfg) 1276 return; 1277 1278 FM.fillReachableBlocks(Cfg); 1279 1280 for (const CFGBlock *B : llvm::reverse(*Cfg)) { 1281 const Stmt *Label = B->getLabel(); 1282 1283 if (!Label || !isa<SwitchCase>(Label)) 1284 continue; 1285 1286 int AnnotatedCnt; 1287 1288 bool IsTemplateInstantiation = false; 1289 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(AC.getDecl())) 1290 IsTemplateInstantiation = Function->isTemplateInstantiation(); 1291 if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt, 1292 IsTemplateInstantiation)) 1293 continue; 1294 1295 S.Diag(Label->getBeginLoc(), 1296 PerFunction ? diag::warn_unannotated_fallthrough_per_function 1297 : diag::warn_unannotated_fallthrough); 1298 1299 if (!AnnotatedCnt) { 1300 SourceLocation L = Label->getBeginLoc(); 1301 if (L.isMacroID()) 1302 continue; 1303 1304 const Stmt *Term = B->getTerminatorStmt(); 1305 // Skip empty cases. 1306 while (B->empty() && !Term && B->succ_size() == 1) { 1307 B = *B->succ_begin(); 1308 Term = B->getTerminatorStmt(); 1309 } 1310 if (!(B->empty() && Term && isa<BreakStmt>(Term))) { 1311 Preprocessor &PP = S.getPreprocessor(); 1312 StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L); 1313 SmallString<64> TextToInsert(AnnotationSpelling); 1314 TextToInsert += "; "; 1315 S.Diag(L, diag::note_insert_fallthrough_fixit) 1316 << AnnotationSpelling 1317 << FixItHint::CreateInsertion(L, TextToInsert); 1318 } 1319 S.Diag(L, diag::note_insert_break_fixit) 1320 << FixItHint::CreateInsertion(L, "break; "); 1321 } 1322 } 1323 1324 for (const auto *F : FM.getFallthroughStmts()) 1325 S.Diag(F->getBeginLoc(), diag::err_fallthrough_attr_invalid_placement); 1326 } 1327 1328 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM, 1329 const Stmt *S) { 1330 assert(S); 1331 1332 do { 1333 switch (S->getStmtClass()) { 1334 case Stmt::ForStmtClass: 1335 case Stmt::WhileStmtClass: 1336 case Stmt::CXXForRangeStmtClass: 1337 case Stmt::ObjCForCollectionStmtClass: 1338 return true; 1339 case Stmt::DoStmtClass: { 1340 Expr::EvalResult Result; 1341 if (!cast<DoStmt>(S)->getCond()->EvaluateAsInt(Result, Ctx)) 1342 return true; 1343 return Result.Val.getInt().getBoolValue(); 1344 } 1345 default: 1346 break; 1347 } 1348 } while ((S = PM.getParent(S))); 1349 1350 return false; 1351 } 1352 1353 static void diagnoseRepeatedUseOfWeak(Sema &S, 1354 const sema::FunctionScopeInfo *CurFn, 1355 const Decl *D, 1356 const ParentMap &PM) { 1357 typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy; 1358 typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap; 1359 typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector; 1360 typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator> 1361 StmtUsesPair; 1362 1363 ASTContext &Ctx = S.getASTContext(); 1364 1365 const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses(); 1366 1367 // Extract all weak objects that are referenced more than once. 1368 SmallVector<StmtUsesPair, 8> UsesByStmt; 1369 for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end(); 1370 I != E; ++I) { 1371 const WeakUseVector &Uses = I->second; 1372 1373 // Find the first read of the weak object. 1374 WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end(); 1375 for ( ; UI != UE; ++UI) { 1376 if (UI->isUnsafe()) 1377 break; 1378 } 1379 1380 // If there were only writes to this object, don't warn. 1381 if (UI == UE) 1382 continue; 1383 1384 // If there was only one read, followed by any number of writes, and the 1385 // read is not within a loop, don't warn. Additionally, don't warn in a 1386 // loop if the base object is a local variable -- local variables are often 1387 // changed in loops. 1388 if (UI == Uses.begin()) { 1389 WeakUseVector::const_iterator UI2 = UI; 1390 for (++UI2; UI2 != UE; ++UI2) 1391 if (UI2->isUnsafe()) 1392 break; 1393 1394 if (UI2 == UE) { 1395 if (!isInLoop(Ctx, PM, UI->getUseExpr())) 1396 continue; 1397 1398 const WeakObjectProfileTy &Profile = I->first; 1399 if (!Profile.isExactProfile()) 1400 continue; 1401 1402 const NamedDecl *Base = Profile.getBase(); 1403 if (!Base) 1404 Base = Profile.getProperty(); 1405 assert(Base && "A profile always has a base or property."); 1406 1407 if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base)) 1408 if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base)) 1409 continue; 1410 } 1411 } 1412 1413 UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I)); 1414 } 1415 1416 if (UsesByStmt.empty()) 1417 return; 1418 1419 // Sort by first use so that we emit the warnings in a deterministic order. 1420 SourceManager &SM = S.getSourceManager(); 1421 llvm::sort(UsesByStmt, 1422 [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) { 1423 return SM.isBeforeInTranslationUnit(LHS.first->getBeginLoc(), 1424 RHS.first->getBeginLoc()); 1425 }); 1426 1427 // Classify the current code body for better warning text. 1428 // This enum should stay in sync with the cases in 1429 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak. 1430 // FIXME: Should we use a common classification enum and the same set of 1431 // possibilities all throughout Sema? 1432 enum { 1433 Function, 1434 Method, 1435 Block, 1436 Lambda 1437 } FunctionKind; 1438 1439 if (isa<sema::BlockScopeInfo>(CurFn)) 1440 FunctionKind = Block; 1441 else if (isa<sema::LambdaScopeInfo>(CurFn)) 1442 FunctionKind = Lambda; 1443 else if (isa<ObjCMethodDecl>(D)) 1444 FunctionKind = Method; 1445 else 1446 FunctionKind = Function; 1447 1448 // Iterate through the sorted problems and emit warnings for each. 1449 for (const auto &P : UsesByStmt) { 1450 const Stmt *FirstRead = P.first; 1451 const WeakObjectProfileTy &Key = P.second->first; 1452 const WeakUseVector &Uses = P.second->second; 1453 1454 // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy 1455 // may not contain enough information to determine that these are different 1456 // properties. We can only be 100% sure of a repeated use in certain cases, 1457 // and we adjust the diagnostic kind accordingly so that the less certain 1458 // case can be turned off if it is too noisy. 1459 unsigned DiagKind; 1460 if (Key.isExactProfile()) 1461 DiagKind = diag::warn_arc_repeated_use_of_weak; 1462 else 1463 DiagKind = diag::warn_arc_possible_repeated_use_of_weak; 1464 1465 // Classify the weak object being accessed for better warning text. 1466 // This enum should stay in sync with the cases in 1467 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak. 1468 enum { 1469 Variable, 1470 Property, 1471 ImplicitProperty, 1472 Ivar 1473 } ObjectKind; 1474 1475 const NamedDecl *KeyProp = Key.getProperty(); 1476 if (isa<VarDecl>(KeyProp)) 1477 ObjectKind = Variable; 1478 else if (isa<ObjCPropertyDecl>(KeyProp)) 1479 ObjectKind = Property; 1480 else if (isa<ObjCMethodDecl>(KeyProp)) 1481 ObjectKind = ImplicitProperty; 1482 else if (isa<ObjCIvarDecl>(KeyProp)) 1483 ObjectKind = Ivar; 1484 else 1485 llvm_unreachable("Unexpected weak object kind!"); 1486 1487 // Do not warn about IBOutlet weak property receivers being set to null 1488 // since they are typically only used from the main thread. 1489 if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp)) 1490 if (Prop->hasAttr<IBOutletAttr>()) 1491 continue; 1492 1493 // Show the first time the object was read. 1494 S.Diag(FirstRead->getBeginLoc(), DiagKind) 1495 << int(ObjectKind) << KeyProp << int(FunctionKind) 1496 << FirstRead->getSourceRange(); 1497 1498 // Print all the other accesses as notes. 1499 for (const auto &Use : Uses) { 1500 if (Use.getUseExpr() == FirstRead) 1501 continue; 1502 S.Diag(Use.getUseExpr()->getBeginLoc(), 1503 diag::note_arc_weak_also_accessed_here) 1504 << Use.getUseExpr()->getSourceRange(); 1505 } 1506 } 1507 } 1508 1509 namespace { 1510 class UninitValsDiagReporter : public UninitVariablesHandler { 1511 Sema &S; 1512 typedef SmallVector<UninitUse, 2> UsesVec; 1513 typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType; 1514 // Prefer using MapVector to DenseMap, so that iteration order will be 1515 // the same as insertion order. This is needed to obtain a deterministic 1516 // order of diagnostics when calling flushDiagnostics(). 1517 typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap; 1518 UsesMap uses; 1519 UsesMap constRefUses; 1520 1521 public: 1522 UninitValsDiagReporter(Sema &S) : S(S) {} 1523 ~UninitValsDiagReporter() override { flushDiagnostics(); } 1524 1525 MappedType &getUses(UsesMap &um, const VarDecl *vd) { 1526 MappedType &V = um[vd]; 1527 if (!V.getPointer()) 1528 V.setPointer(new UsesVec()); 1529 return V; 1530 } 1531 1532 void handleUseOfUninitVariable(const VarDecl *vd, 1533 const UninitUse &use) override { 1534 getUses(uses, vd).getPointer()->push_back(use); 1535 } 1536 1537 void handleConstRefUseOfUninitVariable(const VarDecl *vd, 1538 const UninitUse &use) override { 1539 getUses(constRefUses, vd).getPointer()->push_back(use); 1540 } 1541 1542 void handleSelfInit(const VarDecl *vd) override { 1543 getUses(uses, vd).setInt(true); 1544 getUses(constRefUses, vd).setInt(true); 1545 } 1546 1547 void flushDiagnostics() { 1548 for (const auto &P : uses) { 1549 const VarDecl *vd = P.first; 1550 const MappedType &V = P.second; 1551 1552 UsesVec *vec = V.getPointer(); 1553 bool hasSelfInit = V.getInt(); 1554 1555 // Specially handle the case where we have uses of an uninitialized 1556 // variable, but the root cause is an idiomatic self-init. We want 1557 // to report the diagnostic at the self-init since that is the root cause. 1558 if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec)) 1559 DiagnoseUninitializedUse(S, vd, 1560 UninitUse(vd->getInit()->IgnoreParenCasts(), 1561 /* isAlwaysUninit */ true), 1562 /* alwaysReportSelfInit */ true); 1563 else { 1564 // Sort the uses by their SourceLocations. While not strictly 1565 // guaranteed to produce them in line/column order, this will provide 1566 // a stable ordering. 1567 llvm::sort(vec->begin(), vec->end(), 1568 [](const UninitUse &a, const UninitUse &b) { 1569 // Prefer a more confident report over a less confident one. 1570 if (a.getKind() != b.getKind()) 1571 return a.getKind() > b.getKind(); 1572 return a.getUser()->getBeginLoc() < b.getUser()->getBeginLoc(); 1573 }); 1574 1575 for (const auto &U : *vec) { 1576 // If we have self-init, downgrade all uses to 'may be uninitialized'. 1577 UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U; 1578 1579 if (DiagnoseUninitializedUse(S, vd, Use)) 1580 // Skip further diagnostics for this variable. We try to warn only 1581 // on the first point at which a variable is used uninitialized. 1582 break; 1583 } 1584 } 1585 1586 // Release the uses vector. 1587 delete vec; 1588 } 1589 1590 uses.clear(); 1591 1592 // Flush all const reference uses diags. 1593 for (const auto &P : constRefUses) { 1594 const VarDecl *vd = P.first; 1595 const MappedType &V = P.second; 1596 1597 UsesVec *vec = V.getPointer(); 1598 bool hasSelfInit = V.getInt(); 1599 1600 if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec)) 1601 DiagnoseUninitializedUse(S, vd, 1602 UninitUse(vd->getInit()->IgnoreParenCasts(), 1603 /* isAlwaysUninit */ true), 1604 /* alwaysReportSelfInit */ true); 1605 else { 1606 for (const auto &U : *vec) { 1607 if (DiagnoseUninitializedConstRefUse(S, vd, U)) 1608 break; 1609 } 1610 } 1611 1612 // Release the uses vector. 1613 delete vec; 1614 } 1615 1616 constRefUses.clear(); 1617 } 1618 1619 private: 1620 static bool hasAlwaysUninitializedUse(const UsesVec* vec) { 1621 return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) { 1622 return U.getKind() == UninitUse::Always || 1623 U.getKind() == UninitUse::AfterCall || 1624 U.getKind() == UninitUse::AfterDecl; 1625 }); 1626 } 1627 }; 1628 1629 class CalledOnceCheckReporter : public CalledOnceCheckHandler { 1630 public: 1631 CalledOnceCheckReporter(Sema &S) : S(S) {} 1632 void handleDoubleCall(const ParmVarDecl *Parameter, const Expr *Call, 1633 const Expr *PrevCall, bool IsCompletionHandler, 1634 bool Poised) override { 1635 auto DiagToReport = IsCompletionHandler 1636 ? diag::warn_completion_handler_called_twice 1637 : diag::warn_called_once_gets_called_twice; 1638 S.Diag(Call->getBeginLoc(), DiagToReport) << Parameter; 1639 S.Diag(PrevCall->getBeginLoc(), diag::note_called_once_gets_called_twice) 1640 << Poised; 1641 } 1642 1643 void handleNeverCalled(const ParmVarDecl *Parameter, 1644 bool IsCompletionHandler) override { 1645 auto DiagToReport = IsCompletionHandler 1646 ? diag::warn_completion_handler_never_called 1647 : diag::warn_called_once_never_called; 1648 S.Diag(Parameter->getBeginLoc(), DiagToReport) 1649 << Parameter << /* Captured */ false; 1650 } 1651 1652 void handleNeverCalled(const ParmVarDecl *Parameter, const Stmt *Where, 1653 NeverCalledReason Reason, bool IsCalledDirectly, 1654 bool IsCompletionHandler) override { 1655 auto DiagToReport = IsCompletionHandler 1656 ? diag::warn_completion_handler_never_called_when 1657 : diag::warn_called_once_never_called_when; 1658 S.Diag(Where->getBeginLoc(), DiagToReport) 1659 << Parameter << IsCalledDirectly << (unsigned)Reason; 1660 } 1661 1662 void handleCapturedNeverCalled(const ParmVarDecl *Parameter, 1663 const Decl *Where, 1664 bool IsCompletionHandler) override { 1665 auto DiagToReport = IsCompletionHandler 1666 ? diag::warn_completion_handler_never_called 1667 : diag::warn_called_once_never_called; 1668 S.Diag(Where->getBeginLoc(), DiagToReport) 1669 << Parameter << /* Captured */ true; 1670 } 1671 1672 private: 1673 Sema &S; 1674 }; 1675 1676 constexpr unsigned CalledOnceWarnings[] = { 1677 diag::warn_called_once_never_called, 1678 diag::warn_called_once_never_called_when, 1679 diag::warn_called_once_gets_called_twice}; 1680 1681 constexpr unsigned CompletionHandlerWarnings[]{ 1682 diag::warn_completion_handler_never_called, 1683 diag::warn_completion_handler_never_called_when, 1684 diag::warn_completion_handler_called_twice}; 1685 1686 bool shouldAnalyzeCalledOnceImpl(llvm::ArrayRef<unsigned> DiagIDs, 1687 const DiagnosticsEngine &Diags, 1688 SourceLocation At) { 1689 return llvm::any_of(DiagIDs, [&Diags, At](unsigned DiagID) { 1690 return !Diags.isIgnored(DiagID, At); 1691 }); 1692 } 1693 1694 bool shouldAnalyzeCalledOnceConventions(const DiagnosticsEngine &Diags, 1695 SourceLocation At) { 1696 return shouldAnalyzeCalledOnceImpl(CompletionHandlerWarnings, Diags, At); 1697 } 1698 1699 bool shouldAnalyzeCalledOnceParameters(const DiagnosticsEngine &Diags, 1700 SourceLocation At) { 1701 return shouldAnalyzeCalledOnceImpl(CalledOnceWarnings, Diags, At) || 1702 shouldAnalyzeCalledOnceConventions(Diags, At); 1703 } 1704 } // anonymous namespace 1705 1706 namespace clang { 1707 namespace { 1708 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes; 1709 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag; 1710 typedef std::list<DelayedDiag> DiagList; 1711 1712 struct SortDiagBySourceLocation { 1713 SourceManager &SM; 1714 SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {} 1715 1716 bool operator()(const DelayedDiag &left, const DelayedDiag &right) { 1717 // Although this call will be slow, this is only called when outputting 1718 // multiple warnings. 1719 return SM.isBeforeInTranslationUnit(left.first.first, right.first.first); 1720 } 1721 }; 1722 } // anonymous namespace 1723 } // namespace clang 1724 1725 //===----------------------------------------------------------------------===// 1726 // -Wthread-safety 1727 //===----------------------------------------------------------------------===// 1728 namespace clang { 1729 namespace threadSafety { 1730 namespace { 1731 class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler { 1732 Sema &S; 1733 DiagList Warnings; 1734 SourceLocation FunLocation, FunEndLocation; 1735 1736 const FunctionDecl *CurrentFunction; 1737 bool Verbose; 1738 1739 OptionalNotes getNotes() const { 1740 if (Verbose && CurrentFunction) { 1741 PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(), 1742 S.PDiag(diag::note_thread_warning_in_fun) 1743 << CurrentFunction); 1744 return OptionalNotes(1, FNote); 1745 } 1746 return OptionalNotes(); 1747 } 1748 1749 OptionalNotes getNotes(const PartialDiagnosticAt &Note) const { 1750 OptionalNotes ONS(1, Note); 1751 if (Verbose && CurrentFunction) { 1752 PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(), 1753 S.PDiag(diag::note_thread_warning_in_fun) 1754 << CurrentFunction); 1755 ONS.push_back(std::move(FNote)); 1756 } 1757 return ONS; 1758 } 1759 1760 OptionalNotes getNotes(const PartialDiagnosticAt &Note1, 1761 const PartialDiagnosticAt &Note2) const { 1762 OptionalNotes ONS; 1763 ONS.push_back(Note1); 1764 ONS.push_back(Note2); 1765 if (Verbose && CurrentFunction) { 1766 PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(), 1767 S.PDiag(diag::note_thread_warning_in_fun) 1768 << CurrentFunction); 1769 ONS.push_back(std::move(FNote)); 1770 } 1771 return ONS; 1772 } 1773 1774 OptionalNotes makeLockedHereNote(SourceLocation LocLocked, StringRef Kind) { 1775 return LocLocked.isValid() 1776 ? getNotes(PartialDiagnosticAt( 1777 LocLocked, S.PDiag(diag::note_locked_here) << Kind)) 1778 : getNotes(); 1779 } 1780 1781 OptionalNotes makeUnlockedHereNote(SourceLocation LocUnlocked, 1782 StringRef Kind) { 1783 return LocUnlocked.isValid() 1784 ? getNotes(PartialDiagnosticAt( 1785 LocUnlocked, S.PDiag(diag::note_unlocked_here) << Kind)) 1786 : getNotes(); 1787 } 1788 1789 public: 1790 ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL) 1791 : S(S), FunLocation(FL), FunEndLocation(FEL), 1792 CurrentFunction(nullptr), Verbose(false) {} 1793 1794 void setVerbose(bool b) { Verbose = b; } 1795 1796 /// Emit all buffered diagnostics in order of sourcelocation. 1797 /// We need to output diagnostics produced while iterating through 1798 /// the lockset in deterministic order, so this function orders diagnostics 1799 /// and outputs them. 1800 void emitDiagnostics() { 1801 Warnings.sort(SortDiagBySourceLocation(S.getSourceManager())); 1802 for (const auto &Diag : Warnings) { 1803 S.Diag(Diag.first.first, Diag.first.second); 1804 for (const auto &Note : Diag.second) 1805 S.Diag(Note.first, Note.second); 1806 } 1807 } 1808 1809 void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override { 1810 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock) 1811 << Loc); 1812 Warnings.emplace_back(std::move(Warning), getNotes()); 1813 } 1814 1815 void handleUnmatchedUnlock(StringRef Kind, Name LockName, SourceLocation Loc, 1816 SourceLocation LocPreviousUnlock) override { 1817 if (Loc.isInvalid()) 1818 Loc = FunLocation; 1819 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_but_no_lock) 1820 << Kind << LockName); 1821 Warnings.emplace_back(std::move(Warning), 1822 makeUnlockedHereNote(LocPreviousUnlock, Kind)); 1823 } 1824 1825 void handleIncorrectUnlockKind(StringRef Kind, Name LockName, 1826 LockKind Expected, LockKind Received, 1827 SourceLocation LocLocked, 1828 SourceLocation LocUnlock) override { 1829 if (LocUnlock.isInvalid()) 1830 LocUnlock = FunLocation; 1831 PartialDiagnosticAt Warning( 1832 LocUnlock, S.PDiag(diag::warn_unlock_kind_mismatch) 1833 << Kind << LockName << Received << Expected); 1834 Warnings.emplace_back(std::move(Warning), 1835 makeLockedHereNote(LocLocked, Kind)); 1836 } 1837 1838 void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation LocLocked, 1839 SourceLocation LocDoubleLock) override { 1840 if (LocDoubleLock.isInvalid()) 1841 LocDoubleLock = FunLocation; 1842 PartialDiagnosticAt Warning(LocDoubleLock, S.PDiag(diag::warn_double_lock) 1843 << Kind << LockName); 1844 Warnings.emplace_back(std::move(Warning), 1845 makeLockedHereNote(LocLocked, Kind)); 1846 } 1847 1848 void handleMutexHeldEndOfScope(StringRef Kind, Name LockName, 1849 SourceLocation LocLocked, 1850 SourceLocation LocEndOfScope, 1851 LockErrorKind LEK) override { 1852 unsigned DiagID = 0; 1853 switch (LEK) { 1854 case LEK_LockedSomePredecessors: 1855 DiagID = diag::warn_lock_some_predecessors; 1856 break; 1857 case LEK_LockedSomeLoopIterations: 1858 DiagID = diag::warn_expecting_lock_held_on_loop; 1859 break; 1860 case LEK_LockedAtEndOfFunction: 1861 DiagID = diag::warn_no_unlock; 1862 break; 1863 case LEK_NotLockedAtEndOfFunction: 1864 DiagID = diag::warn_expecting_locked; 1865 break; 1866 } 1867 if (LocEndOfScope.isInvalid()) 1868 LocEndOfScope = FunEndLocation; 1869 1870 PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind 1871 << LockName); 1872 Warnings.emplace_back(std::move(Warning), 1873 makeLockedHereNote(LocLocked, Kind)); 1874 } 1875 1876 void handleExclusiveAndShared(StringRef Kind, Name LockName, 1877 SourceLocation Loc1, 1878 SourceLocation Loc2) override { 1879 PartialDiagnosticAt Warning(Loc1, 1880 S.PDiag(diag::warn_lock_exclusive_and_shared) 1881 << Kind << LockName); 1882 PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared) 1883 << Kind << LockName); 1884 Warnings.emplace_back(std::move(Warning), getNotes(Note)); 1885 } 1886 1887 void handleNoMutexHeld(StringRef Kind, const NamedDecl *D, 1888 ProtectedOperationKind POK, AccessKind AK, 1889 SourceLocation Loc) override { 1890 assert((POK == POK_VarAccess || POK == POK_VarDereference) && 1891 "Only works for variables"); 1892 unsigned DiagID = POK == POK_VarAccess? 1893 diag::warn_variable_requires_any_lock: 1894 diag::warn_var_deref_requires_any_lock; 1895 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) 1896 << D << getLockKindFromAccessKind(AK)); 1897 Warnings.emplace_back(std::move(Warning), getNotes()); 1898 } 1899 1900 void handleMutexNotHeld(StringRef Kind, const NamedDecl *D, 1901 ProtectedOperationKind POK, Name LockName, 1902 LockKind LK, SourceLocation Loc, 1903 Name *PossibleMatch) override { 1904 unsigned DiagID = 0; 1905 if (PossibleMatch) { 1906 switch (POK) { 1907 case POK_VarAccess: 1908 DiagID = diag::warn_variable_requires_lock_precise; 1909 break; 1910 case POK_VarDereference: 1911 DiagID = diag::warn_var_deref_requires_lock_precise; 1912 break; 1913 case POK_FunctionCall: 1914 DiagID = diag::warn_fun_requires_lock_precise; 1915 break; 1916 case POK_PassByRef: 1917 DiagID = diag::warn_guarded_pass_by_reference; 1918 break; 1919 case POK_PtPassByRef: 1920 DiagID = diag::warn_pt_guarded_pass_by_reference; 1921 break; 1922 } 1923 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind 1924 << D 1925 << LockName << LK); 1926 PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match) 1927 << *PossibleMatch); 1928 if (Verbose && POK == POK_VarAccess) { 1929 PartialDiagnosticAt VNote(D->getLocation(), 1930 S.PDiag(diag::note_guarded_by_declared_here) 1931 << D->getDeclName()); 1932 Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote)); 1933 } else 1934 Warnings.emplace_back(std::move(Warning), getNotes(Note)); 1935 } else { 1936 switch (POK) { 1937 case POK_VarAccess: 1938 DiagID = diag::warn_variable_requires_lock; 1939 break; 1940 case POK_VarDereference: 1941 DiagID = diag::warn_var_deref_requires_lock; 1942 break; 1943 case POK_FunctionCall: 1944 DiagID = diag::warn_fun_requires_lock; 1945 break; 1946 case POK_PassByRef: 1947 DiagID = diag::warn_guarded_pass_by_reference; 1948 break; 1949 case POK_PtPassByRef: 1950 DiagID = diag::warn_pt_guarded_pass_by_reference; 1951 break; 1952 } 1953 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind 1954 << D 1955 << LockName << LK); 1956 if (Verbose && POK == POK_VarAccess) { 1957 PartialDiagnosticAt Note(D->getLocation(), 1958 S.PDiag(diag::note_guarded_by_declared_here)); 1959 Warnings.emplace_back(std::move(Warning), getNotes(Note)); 1960 } else 1961 Warnings.emplace_back(std::move(Warning), getNotes()); 1962 } 1963 } 1964 1965 void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg, 1966 SourceLocation Loc) override { 1967 PartialDiagnosticAt Warning(Loc, 1968 S.PDiag(diag::warn_acquire_requires_negative_cap) 1969 << Kind << LockName << Neg); 1970 Warnings.emplace_back(std::move(Warning), getNotes()); 1971 } 1972 1973 void handleNegativeNotHeld(const NamedDecl *D, Name LockName, 1974 SourceLocation Loc) override { 1975 PartialDiagnosticAt Warning( 1976 Loc, S.PDiag(diag::warn_fun_requires_negative_cap) << D << LockName); 1977 Warnings.emplace_back(std::move(Warning), getNotes()); 1978 } 1979 1980 void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName, 1981 SourceLocation Loc) override { 1982 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex) 1983 << Kind << FunName << LockName); 1984 Warnings.emplace_back(std::move(Warning), getNotes()); 1985 } 1986 1987 void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name, 1988 SourceLocation Loc) override { 1989 PartialDiagnosticAt Warning(Loc, 1990 S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name); 1991 Warnings.emplace_back(std::move(Warning), getNotes()); 1992 } 1993 1994 void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override { 1995 PartialDiagnosticAt Warning(Loc, 1996 S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name); 1997 Warnings.emplace_back(std::move(Warning), getNotes()); 1998 } 1999 2000 void enterFunction(const FunctionDecl* FD) override { 2001 CurrentFunction = FD; 2002 } 2003 2004 void leaveFunction(const FunctionDecl* FD) override { 2005 CurrentFunction = nullptr; 2006 } 2007 }; 2008 } // anonymous namespace 2009 } // namespace threadSafety 2010 } // namespace clang 2011 2012 //===----------------------------------------------------------------------===// 2013 // -Wconsumed 2014 //===----------------------------------------------------------------------===// 2015 2016 namespace clang { 2017 namespace consumed { 2018 namespace { 2019 class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase { 2020 2021 Sema &S; 2022 DiagList Warnings; 2023 2024 public: 2025 2026 ConsumedWarningsHandler(Sema &S) : S(S) {} 2027 2028 void emitDiagnostics() override { 2029 Warnings.sort(SortDiagBySourceLocation(S.getSourceManager())); 2030 for (const auto &Diag : Warnings) { 2031 S.Diag(Diag.first.first, Diag.first.second); 2032 for (const auto &Note : Diag.second) 2033 S.Diag(Note.first, Note.second); 2034 } 2035 } 2036 2037 void warnLoopStateMismatch(SourceLocation Loc, 2038 StringRef VariableName) override { 2039 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) << 2040 VariableName); 2041 2042 Warnings.emplace_back(std::move(Warning), OptionalNotes()); 2043 } 2044 2045 void warnParamReturnTypestateMismatch(SourceLocation Loc, 2046 StringRef VariableName, 2047 StringRef ExpectedState, 2048 StringRef ObservedState) override { 2049 2050 PartialDiagnosticAt Warning(Loc, S.PDiag( 2051 diag::warn_param_return_typestate_mismatch) << VariableName << 2052 ExpectedState << ObservedState); 2053 2054 Warnings.emplace_back(std::move(Warning), OptionalNotes()); 2055 } 2056 2057 void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState, 2058 StringRef ObservedState) override { 2059 2060 PartialDiagnosticAt Warning(Loc, S.PDiag( 2061 diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState); 2062 2063 Warnings.emplace_back(std::move(Warning), OptionalNotes()); 2064 } 2065 2066 void warnReturnTypestateForUnconsumableType(SourceLocation Loc, 2067 StringRef TypeName) override { 2068 PartialDiagnosticAt Warning(Loc, S.PDiag( 2069 diag::warn_return_typestate_for_unconsumable_type) << TypeName); 2070 2071 Warnings.emplace_back(std::move(Warning), OptionalNotes()); 2072 } 2073 2074 void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState, 2075 StringRef ObservedState) override { 2076 2077 PartialDiagnosticAt Warning(Loc, S.PDiag( 2078 diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState); 2079 2080 Warnings.emplace_back(std::move(Warning), OptionalNotes()); 2081 } 2082 2083 void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State, 2084 SourceLocation Loc) override { 2085 2086 PartialDiagnosticAt Warning(Loc, S.PDiag( 2087 diag::warn_use_of_temp_in_invalid_state) << MethodName << State); 2088 2089 Warnings.emplace_back(std::move(Warning), OptionalNotes()); 2090 } 2091 2092 void warnUseInInvalidState(StringRef MethodName, StringRef VariableName, 2093 StringRef State, SourceLocation Loc) override { 2094 2095 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) << 2096 MethodName << VariableName << State); 2097 2098 Warnings.emplace_back(std::move(Warning), OptionalNotes()); 2099 } 2100 }; 2101 } // anonymous namespace 2102 } // namespace consumed 2103 } // namespace clang 2104 2105 //===----------------------------------------------------------------------===// 2106 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based 2107 // warnings on a function, method, or block. 2108 //===----------------------------------------------------------------------===// 2109 2110 clang::sema::AnalysisBasedWarnings::Policy::Policy() { 2111 enableCheckFallThrough = 1; 2112 enableCheckUnreachable = 0; 2113 enableThreadSafetyAnalysis = 0; 2114 enableConsumedAnalysis = 0; 2115 } 2116 2117 static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) { 2118 return (unsigned)!D.isIgnored(diag, SourceLocation()); 2119 } 2120 2121 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s) 2122 : S(s), 2123 NumFunctionsAnalyzed(0), 2124 NumFunctionsWithBadCFGs(0), 2125 NumCFGBlocks(0), 2126 MaxCFGBlocksPerFunction(0), 2127 NumUninitAnalysisFunctions(0), 2128 NumUninitAnalysisVariables(0), 2129 MaxUninitAnalysisVariablesPerFunction(0), 2130 NumUninitAnalysisBlockVisits(0), 2131 MaxUninitAnalysisBlockVisitsPerFunction(0) { 2132 2133 using namespace diag; 2134 DiagnosticsEngine &D = S.getDiagnostics(); 2135 2136 DefaultPolicy.enableCheckUnreachable = 2137 isEnabled(D, warn_unreachable) || 2138 isEnabled(D, warn_unreachable_break) || 2139 isEnabled(D, warn_unreachable_return) || 2140 isEnabled(D, warn_unreachable_loop_increment); 2141 2142 DefaultPolicy.enableThreadSafetyAnalysis = 2143 isEnabled(D, warn_double_lock); 2144 2145 DefaultPolicy.enableConsumedAnalysis = 2146 isEnabled(D, warn_use_in_invalid_state); 2147 } 2148 2149 static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) { 2150 for (const auto &D : fscope->PossiblyUnreachableDiags) 2151 S.Diag(D.Loc, D.PD); 2152 } 2153 2154 void clang::sema:: 2155 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P, 2156 sema::FunctionScopeInfo *fscope, 2157 const Decl *D, QualType BlockType) { 2158 2159 // We avoid doing analysis-based warnings when there are errors for 2160 // two reasons: 2161 // (1) The CFGs often can't be constructed (if the body is invalid), so 2162 // don't bother trying. 2163 // (2) The code already has problems; running the analysis just takes more 2164 // time. 2165 DiagnosticsEngine &Diags = S.getDiagnostics(); 2166 2167 // Do not do any analysis if we are going to just ignore them. 2168 if (Diags.getIgnoreAllWarnings() || 2169 (Diags.getSuppressSystemWarnings() && 2170 S.SourceMgr.isInSystemHeader(D->getLocation()))) 2171 return; 2172 2173 // For code in dependent contexts, we'll do this at instantiation time. 2174 if (cast<DeclContext>(D)->isDependentContext()) 2175 return; 2176 2177 if (S.hasUncompilableErrorOccurred()) { 2178 // Flush out any possibly unreachable diagnostics. 2179 flushDiagnostics(S, fscope); 2180 return; 2181 } 2182 2183 const Stmt *Body = D->getBody(); 2184 assert(Body); 2185 2186 // Construct the analysis context with the specified CFG build options. 2187 AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D); 2188 2189 // Don't generate EH edges for CallExprs as we'd like to avoid the n^2 2190 // explosion for destructors that can result and the compile time hit. 2191 AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true; 2192 AC.getCFGBuildOptions().AddEHEdges = false; 2193 AC.getCFGBuildOptions().AddInitializers = true; 2194 AC.getCFGBuildOptions().AddImplicitDtors = true; 2195 AC.getCFGBuildOptions().AddTemporaryDtors = true; 2196 AC.getCFGBuildOptions().AddCXXNewAllocator = false; 2197 AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true; 2198 2199 // Force that certain expressions appear as CFGElements in the CFG. This 2200 // is used to speed up various analyses. 2201 // FIXME: This isn't the right factoring. This is here for initial 2202 // prototyping, but we need a way for analyses to say what expressions they 2203 // expect to always be CFGElements and then fill in the BuildOptions 2204 // appropriately. This is essentially a layering violation. 2205 if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis || 2206 P.enableConsumedAnalysis) { 2207 // Unreachable code analysis and thread safety require a linearized CFG. 2208 AC.getCFGBuildOptions().setAllAlwaysAdd(); 2209 } 2210 else { 2211 AC.getCFGBuildOptions() 2212 .setAlwaysAdd(Stmt::BinaryOperatorClass) 2213 .setAlwaysAdd(Stmt::CompoundAssignOperatorClass) 2214 .setAlwaysAdd(Stmt::BlockExprClass) 2215 .setAlwaysAdd(Stmt::CStyleCastExprClass) 2216 .setAlwaysAdd(Stmt::DeclRefExprClass) 2217 .setAlwaysAdd(Stmt::ImplicitCastExprClass) 2218 .setAlwaysAdd(Stmt::UnaryOperatorClass) 2219 .setAlwaysAdd(Stmt::AttributedStmtClass); 2220 } 2221 2222 // Install the logical handler. 2223 llvm::Optional<LogicalErrorHandler> LEH; 2224 if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) { 2225 LEH.emplace(S); 2226 AC.getCFGBuildOptions().Observer = &*LEH; 2227 } 2228 2229 // Emit delayed diagnostics. 2230 if (!fscope->PossiblyUnreachableDiags.empty()) { 2231 bool analyzed = false; 2232 2233 // Register the expressions with the CFGBuilder. 2234 for (const auto &D : fscope->PossiblyUnreachableDiags) { 2235 for (const Stmt *S : D.Stmts) 2236 AC.registerForcedBlockExpression(S); 2237 } 2238 2239 if (AC.getCFG()) { 2240 analyzed = true; 2241 for (const auto &D : fscope->PossiblyUnreachableDiags) { 2242 bool AllReachable = true; 2243 for (const Stmt *S : D.Stmts) { 2244 const CFGBlock *block = AC.getBlockForRegisteredExpression(S); 2245 CFGReverseBlockReachabilityAnalysis *cra = 2246 AC.getCFGReachablityAnalysis(); 2247 // FIXME: We should be able to assert that block is non-null, but 2248 // the CFG analysis can skip potentially-evaluated expressions in 2249 // edge cases; see test/Sema/vla-2.c. 2250 if (block && cra) { 2251 // Can this block be reached from the entrance? 2252 if (!cra->isReachable(&AC.getCFG()->getEntry(), block)) { 2253 AllReachable = false; 2254 break; 2255 } 2256 } 2257 // If we cannot map to a basic block, assume the statement is 2258 // reachable. 2259 } 2260 2261 if (AllReachable) 2262 S.Diag(D.Loc, D.PD); 2263 } 2264 } 2265 2266 if (!analyzed) 2267 flushDiagnostics(S, fscope); 2268 } 2269 2270 // Warning: check missing 'return' 2271 if (P.enableCheckFallThrough) { 2272 const CheckFallThroughDiagnostics &CD = 2273 (isa<BlockDecl>(D) 2274 ? CheckFallThroughDiagnostics::MakeForBlock() 2275 : (isa<CXXMethodDecl>(D) && 2276 cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call && 2277 cast<CXXMethodDecl>(D)->getParent()->isLambda()) 2278 ? CheckFallThroughDiagnostics::MakeForLambda() 2279 : (fscope->isCoroutine() 2280 ? CheckFallThroughDiagnostics::MakeForCoroutine(D) 2281 : CheckFallThroughDiagnostics::MakeForFunction(D))); 2282 CheckFallThroughForBody(S, D, Body, BlockType, CD, AC, fscope); 2283 } 2284 2285 // Warning: check for unreachable code 2286 if (P.enableCheckUnreachable) { 2287 // Only check for unreachable code on non-template instantiations. 2288 // Different template instantiations can effectively change the control-flow 2289 // and it is very difficult to prove that a snippet of code in a template 2290 // is unreachable for all instantiations. 2291 bool isTemplateInstantiation = false; 2292 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) 2293 isTemplateInstantiation = Function->isTemplateInstantiation(); 2294 if (!isTemplateInstantiation) 2295 CheckUnreachable(S, AC); 2296 } 2297 2298 // Check for thread safety violations 2299 if (P.enableThreadSafetyAnalysis) { 2300 SourceLocation FL = AC.getDecl()->getLocation(); 2301 SourceLocation FEL = AC.getDecl()->getEndLoc(); 2302 threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL); 2303 if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getBeginLoc())) 2304 Reporter.setIssueBetaWarnings(true); 2305 if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getBeginLoc())) 2306 Reporter.setVerbose(true); 2307 2308 threadSafety::runThreadSafetyAnalysis(AC, Reporter, 2309 &S.ThreadSafetyDeclCache); 2310 Reporter.emitDiagnostics(); 2311 } 2312 2313 // Check for violations of consumed properties. 2314 if (P.enableConsumedAnalysis) { 2315 consumed::ConsumedWarningsHandler WarningHandler(S); 2316 consumed::ConsumedAnalyzer Analyzer(WarningHandler); 2317 Analyzer.run(AC); 2318 } 2319 2320 if (!Diags.isIgnored(diag::warn_uninit_var, D->getBeginLoc()) || 2321 !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getBeginLoc()) || 2322 !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getBeginLoc()) || 2323 !Diags.isIgnored(diag::warn_uninit_const_reference, D->getBeginLoc())) { 2324 if (CFG *cfg = AC.getCFG()) { 2325 UninitValsDiagReporter reporter(S); 2326 UninitVariablesAnalysisStats stats; 2327 std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats)); 2328 runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC, 2329 reporter, stats); 2330 2331 if (S.CollectStats && stats.NumVariablesAnalyzed > 0) { 2332 ++NumUninitAnalysisFunctions; 2333 NumUninitAnalysisVariables += stats.NumVariablesAnalyzed; 2334 NumUninitAnalysisBlockVisits += stats.NumBlockVisits; 2335 MaxUninitAnalysisVariablesPerFunction = 2336 std::max(MaxUninitAnalysisVariablesPerFunction, 2337 stats.NumVariablesAnalyzed); 2338 MaxUninitAnalysisBlockVisitsPerFunction = 2339 std::max(MaxUninitAnalysisBlockVisitsPerFunction, 2340 stats.NumBlockVisits); 2341 } 2342 } 2343 } 2344 2345 // Check for violations of "called once" parameter properties. 2346 if (S.getLangOpts().ObjC && 2347 shouldAnalyzeCalledOnceParameters(Diags, D->getBeginLoc())) { 2348 if (AC.getCFG()) { 2349 CalledOnceCheckReporter Reporter(S); 2350 checkCalledOnceParameters( 2351 AC, Reporter, 2352 shouldAnalyzeCalledOnceConventions(Diags, D->getBeginLoc())); 2353 } 2354 } 2355 2356 bool FallThroughDiagFull = 2357 !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getBeginLoc()); 2358 bool FallThroughDiagPerFunction = !Diags.isIgnored( 2359 diag::warn_unannotated_fallthrough_per_function, D->getBeginLoc()); 2360 if (FallThroughDiagFull || FallThroughDiagPerFunction || 2361 fscope->HasFallthroughStmt) { 2362 DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull); 2363 } 2364 2365 if (S.getLangOpts().ObjCWeak && 2366 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getBeginLoc())) 2367 diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap()); 2368 2369 2370 // Check for infinite self-recursion in functions 2371 if (!Diags.isIgnored(diag::warn_infinite_recursive_function, 2372 D->getBeginLoc())) { 2373 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2374 checkRecursiveFunction(S, FD, Body, AC); 2375 } 2376 } 2377 2378 // Check for throw out of non-throwing function. 2379 if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getBeginLoc())) 2380 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 2381 if (S.getLangOpts().CPlusPlus && isNoexcept(FD)) 2382 checkThrowInNonThrowingFunc(S, FD, AC); 2383 2384 // If none of the previous checks caused a CFG build, trigger one here 2385 // for the logical error handler. 2386 if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) { 2387 AC.getCFG(); 2388 } 2389 2390 // Collect statistics about the CFG if it was built. 2391 if (S.CollectStats && AC.isCFGBuilt()) { 2392 ++NumFunctionsAnalyzed; 2393 if (CFG *cfg = AC.getCFG()) { 2394 // If we successfully built a CFG for this context, record some more 2395 // detail information about it. 2396 NumCFGBlocks += cfg->getNumBlockIDs(); 2397 MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction, 2398 cfg->getNumBlockIDs()); 2399 } else { 2400 ++NumFunctionsWithBadCFGs; 2401 } 2402 } 2403 } 2404 2405 void clang::sema::AnalysisBasedWarnings::PrintStats() const { 2406 llvm::errs() << "\n*** Analysis Based Warnings Stats:\n"; 2407 2408 unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs; 2409 unsigned AvgCFGBlocksPerFunction = 2410 !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt; 2411 llvm::errs() << NumFunctionsAnalyzed << " functions analyzed (" 2412 << NumFunctionsWithBadCFGs << " w/o CFGs).\n" 2413 << " " << NumCFGBlocks << " CFG blocks built.\n" 2414 << " " << AvgCFGBlocksPerFunction 2415 << " average CFG blocks per function.\n" 2416 << " " << MaxCFGBlocksPerFunction 2417 << " max CFG blocks per function.\n"; 2418 2419 unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0 2420 : NumUninitAnalysisVariables/NumUninitAnalysisFunctions; 2421 unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0 2422 : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions; 2423 llvm::errs() << NumUninitAnalysisFunctions 2424 << " functions analyzed for uninitialiazed variables\n" 2425 << " " << NumUninitAnalysisVariables << " variables analyzed.\n" 2426 << " " << AvgUninitVariablesPerFunction 2427 << " average variables per function.\n" 2428 << " " << MaxUninitAnalysisVariablesPerFunction 2429 << " max variables per function.\n" 2430 << " " << NumUninitAnalysisBlockVisits << " block visits.\n" 2431 << " " << AvgUninitBlockVisitsPerFunction 2432 << " average block visits per function.\n" 2433 << " " << MaxUninitAnalysisBlockVisitsPerFunction 2434 << " max block visits per function.\n"; 2435 } 2436