xref: /freebsd/contrib/llvm-project/clang/lib/Headers/smmintrin.h (revision 8ddb146abcdf061be9f2c0db7e391697dafad85c)
1 /*===---- smmintrin.h - SSE4 intrinsics ------------------------------------===
2  *
3  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  * See https://llvm.org/LICENSE.txt for license information.
5  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  *
7  *===-----------------------------------------------------------------------===
8  */
9 
10 #ifndef __SMMINTRIN_H
11 #define __SMMINTRIN_H
12 
13 #if !defined(__i386__) && !defined(__x86_64__)
14 #error "This header is only meant to be used on x86 and x64 architecture"
15 #endif
16 
17 #include <tmmintrin.h>
18 
19 /* Define the default attributes for the functions in this file. */
20 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse4.1"), __min_vector_width__(128)))
21 
22 /* SSE4 Rounding macros. */
23 #define _MM_FROUND_TO_NEAREST_INT    0x00
24 #define _MM_FROUND_TO_NEG_INF        0x01
25 #define _MM_FROUND_TO_POS_INF        0x02
26 #define _MM_FROUND_TO_ZERO           0x03
27 #define _MM_FROUND_CUR_DIRECTION     0x04
28 
29 #define _MM_FROUND_RAISE_EXC         0x00
30 #define _MM_FROUND_NO_EXC            0x08
31 
32 #define _MM_FROUND_NINT      (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEAREST_INT)
33 #define _MM_FROUND_FLOOR     (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEG_INF)
34 #define _MM_FROUND_CEIL      (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_POS_INF)
35 #define _MM_FROUND_TRUNC     (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_ZERO)
36 #define _MM_FROUND_RINT      (_MM_FROUND_RAISE_EXC | _MM_FROUND_CUR_DIRECTION)
37 #define _MM_FROUND_NEARBYINT (_MM_FROUND_NO_EXC | _MM_FROUND_CUR_DIRECTION)
38 
39 /// Rounds up each element of the 128-bit vector of [4 x float] to an
40 ///    integer and returns the rounded values in a 128-bit vector of
41 ///    [4 x float].
42 ///
43 /// \headerfile <x86intrin.h>
44 ///
45 /// \code
46 /// __m128 _mm_ceil_ps(__m128 X);
47 /// \endcode
48 ///
49 /// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
50 ///
51 /// \param X
52 ///    A 128-bit vector of [4 x float] values to be rounded up.
53 /// \returns A 128-bit vector of [4 x float] containing the rounded values.
54 #define _mm_ceil_ps(X)       _mm_round_ps((X), _MM_FROUND_CEIL)
55 
56 /// Rounds up each element of the 128-bit vector of [2 x double] to an
57 ///    integer and returns the rounded values in a 128-bit vector of
58 ///    [2 x double].
59 ///
60 /// \headerfile <x86intrin.h>
61 ///
62 /// \code
63 /// __m128d _mm_ceil_pd(__m128d X);
64 /// \endcode
65 ///
66 /// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
67 ///
68 /// \param X
69 ///    A 128-bit vector of [2 x double] values to be rounded up.
70 /// \returns A 128-bit vector of [2 x double] containing the rounded values.
71 #define _mm_ceil_pd(X)       _mm_round_pd((X), _MM_FROUND_CEIL)
72 
73 /// Copies three upper elements of the first 128-bit vector operand to
74 ///    the corresponding three upper elements of the 128-bit result vector of
75 ///    [4 x float]. Rounds up the lowest element of the second 128-bit vector
76 ///    operand to an integer and copies it to the lowest element of the 128-bit
77 ///    result vector of [4 x float].
78 ///
79 /// \headerfile <x86intrin.h>
80 ///
81 /// \code
82 /// __m128 _mm_ceil_ss(__m128 X, __m128 Y);
83 /// \endcode
84 ///
85 /// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
86 ///
87 /// \param X
88 ///    A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
89 ///    copied to the corresponding bits of the result.
90 /// \param Y
91 ///    A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
92 ///    rounded up to the nearest integer and copied to the corresponding bits
93 ///    of the result.
94 /// \returns A 128-bit vector of [4 x float] containing the copied and rounded
95 ///    values.
96 #define _mm_ceil_ss(X, Y)    _mm_round_ss((X), (Y), _MM_FROUND_CEIL)
97 
98 /// Copies the upper element of the first 128-bit vector operand to the
99 ///    corresponding upper element of the 128-bit result vector of [2 x double].
100 ///    Rounds up the lower element of the second 128-bit vector operand to an
101 ///    integer and copies it to the lower element of the 128-bit result vector
102 ///    of [2 x double].
103 ///
104 /// \headerfile <x86intrin.h>
105 ///
106 /// \code
107 /// __m128d _mm_ceil_sd(__m128d X, __m128d Y);
108 /// \endcode
109 ///
110 /// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
111 ///
112 /// \param X
113 ///    A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
114 ///    copied to the corresponding bits of the result.
115 /// \param Y
116 ///    A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
117 ///    rounded up to the nearest integer and copied to the corresponding bits
118 ///    of the result.
119 /// \returns A 128-bit vector of [2 x double] containing the copied and rounded
120 ///    values.
121 #define _mm_ceil_sd(X, Y)    _mm_round_sd((X), (Y), _MM_FROUND_CEIL)
122 
123 /// Rounds down each element of the 128-bit vector of [4 x float] to an
124 ///    an integer and returns the rounded values in a 128-bit vector of
125 ///    [4 x float].
126 ///
127 /// \headerfile <x86intrin.h>
128 ///
129 /// \code
130 /// __m128 _mm_floor_ps(__m128 X);
131 /// \endcode
132 ///
133 /// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
134 ///
135 /// \param X
136 ///    A 128-bit vector of [4 x float] values to be rounded down.
137 /// \returns A 128-bit vector of [4 x float] containing the rounded values.
138 #define _mm_floor_ps(X)      _mm_round_ps((X), _MM_FROUND_FLOOR)
139 
140 /// Rounds down each element of the 128-bit vector of [2 x double] to an
141 ///    integer and returns the rounded values in a 128-bit vector of
142 ///    [2 x double].
143 ///
144 /// \headerfile <x86intrin.h>
145 ///
146 /// \code
147 /// __m128d _mm_floor_pd(__m128d X);
148 /// \endcode
149 ///
150 /// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
151 ///
152 /// \param X
153 ///    A 128-bit vector of [2 x double].
154 /// \returns A 128-bit vector of [2 x double] containing the rounded values.
155 #define _mm_floor_pd(X)      _mm_round_pd((X), _MM_FROUND_FLOOR)
156 
157 /// Copies three upper elements of the first 128-bit vector operand to
158 ///    the corresponding three upper elements of the 128-bit result vector of
159 ///    [4 x float]. Rounds down the lowest element of the second 128-bit vector
160 ///    operand to an integer and copies it to the lowest element of the 128-bit
161 ///    result vector of [4 x float].
162 ///
163 /// \headerfile <x86intrin.h>
164 ///
165 /// \code
166 /// __m128 _mm_floor_ss(__m128 X, __m128 Y);
167 /// \endcode
168 ///
169 /// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
170 ///
171 /// \param X
172 ///    A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
173 ///    copied to the corresponding bits of the result.
174 /// \param Y
175 ///    A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
176 ///    rounded down to the nearest integer and copied to the corresponding bits
177 ///    of the result.
178 /// \returns A 128-bit vector of [4 x float] containing the copied and rounded
179 ///    values.
180 #define _mm_floor_ss(X, Y)   _mm_round_ss((X), (Y), _MM_FROUND_FLOOR)
181 
182 /// Copies the upper element of the first 128-bit vector operand to the
183 ///    corresponding upper element of the 128-bit result vector of [2 x double].
184 ///    Rounds down the lower element of the second 128-bit vector operand to an
185 ///    integer and copies it to the lower element of the 128-bit result vector
186 ///    of [2 x double].
187 ///
188 /// \headerfile <x86intrin.h>
189 ///
190 /// \code
191 /// __m128d _mm_floor_sd(__m128d X, __m128d Y);
192 /// \endcode
193 ///
194 /// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
195 ///
196 /// \param X
197 ///    A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
198 ///    copied to the corresponding bits of the result.
199 /// \param Y
200 ///    A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
201 ///    rounded down to the nearest integer and copied to the corresponding bits
202 ///    of the result.
203 /// \returns A 128-bit vector of [2 x double] containing the copied and rounded
204 ///    values.
205 #define _mm_floor_sd(X, Y)   _mm_round_sd((X), (Y), _MM_FROUND_FLOOR)
206 
207 /// Rounds each element of the 128-bit vector of [4 x float] to an
208 ///    integer value according to the rounding control specified by the second
209 ///    argument and returns the rounded values in a 128-bit vector of
210 ///    [4 x float].
211 ///
212 /// \headerfile <x86intrin.h>
213 ///
214 /// \code
215 /// __m128 _mm_round_ps(__m128 X, const int M);
216 /// \endcode
217 ///
218 /// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
219 ///
220 /// \param X
221 ///    A 128-bit vector of [4 x float].
222 /// \param M
223 ///    An integer value that specifies the rounding operation. \n
224 ///    Bits [7:4] are reserved. \n
225 ///    Bit [3] is a precision exception value: \n
226 ///      0: A normal PE exception is used \n
227 ///      1: The PE field is not updated \n
228 ///    Bit [2] is the rounding control source: \n
229 ///      0: Use bits [1:0] of \a M \n
230 ///      1: Use the current MXCSR setting \n
231 ///    Bits [1:0] contain the rounding control definition: \n
232 ///      00: Nearest \n
233 ///      01: Downward (toward negative infinity) \n
234 ///      10: Upward (toward positive infinity) \n
235 ///      11: Truncated
236 /// \returns A 128-bit vector of [4 x float] containing the rounded values.
237 #define _mm_round_ps(X, M) \
238   ((__m128)__builtin_ia32_roundps((__v4sf)(__m128)(X), (M)))
239 
240 /// Copies three upper elements of the first 128-bit vector operand to
241 ///    the corresponding three upper elements of the 128-bit result vector of
242 ///    [4 x float]. Rounds the lowest element of the second 128-bit vector
243 ///    operand to an integer value according to the rounding control specified
244 ///    by the third argument and copies it to the lowest element of the 128-bit
245 ///    result vector of [4 x float].
246 ///
247 /// \headerfile <x86intrin.h>
248 ///
249 /// \code
250 /// __m128 _mm_round_ss(__m128 X, __m128 Y, const int M);
251 /// \endcode
252 ///
253 /// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
254 ///
255 /// \param X
256 ///    A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
257 ///    copied to the corresponding bits of the result.
258 /// \param Y
259 ///    A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
260 ///    rounded to the nearest integer using the specified rounding control and
261 ///    copied to the corresponding bits of the result.
262 /// \param M
263 ///    An integer value that specifies the rounding operation. \n
264 ///    Bits [7:4] are reserved. \n
265 ///    Bit [3] is a precision exception value: \n
266 ///      0: A normal PE exception is used \n
267 ///      1: The PE field is not updated \n
268 ///    Bit [2] is the rounding control source: \n
269 ///      0: Use bits [1:0] of \a M \n
270 ///      1: Use the current MXCSR setting \n
271 ///    Bits [1:0] contain the rounding control definition: \n
272 ///      00: Nearest \n
273 ///      01: Downward (toward negative infinity) \n
274 ///      10: Upward (toward positive infinity) \n
275 ///      11: Truncated
276 /// \returns A 128-bit vector of [4 x float] containing the copied and rounded
277 ///    values.
278 #define _mm_round_ss(X, Y, M) \
279   ((__m128)__builtin_ia32_roundss((__v4sf)(__m128)(X), \
280                                   (__v4sf)(__m128)(Y), (M)))
281 
282 /// Rounds each element of the 128-bit vector of [2 x double] to an
283 ///    integer value according to the rounding control specified by the second
284 ///    argument and returns the rounded values in a 128-bit vector of
285 ///    [2 x double].
286 ///
287 /// \headerfile <x86intrin.h>
288 ///
289 /// \code
290 /// __m128d _mm_round_pd(__m128d X, const int M);
291 /// \endcode
292 ///
293 /// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
294 ///
295 /// \param X
296 ///    A 128-bit vector of [2 x double].
297 /// \param M
298 ///    An integer value that specifies the rounding operation. \n
299 ///    Bits [7:4] are reserved. \n
300 ///    Bit [3] is a precision exception value: \n
301 ///      0: A normal PE exception is used \n
302 ///      1: The PE field is not updated \n
303 ///    Bit [2] is the rounding control source: \n
304 ///      0: Use bits [1:0] of \a M \n
305 ///      1: Use the current MXCSR setting \n
306 ///    Bits [1:0] contain the rounding control definition: \n
307 ///      00: Nearest \n
308 ///      01: Downward (toward negative infinity) \n
309 ///      10: Upward (toward positive infinity) \n
310 ///      11: Truncated
311 /// \returns A 128-bit vector of [2 x double] containing the rounded values.
312 #define _mm_round_pd(X, M) \
313   ((__m128d)__builtin_ia32_roundpd((__v2df)(__m128d)(X), (M)))
314 
315 /// Copies the upper element of the first 128-bit vector operand to the
316 ///    corresponding upper element of the 128-bit result vector of [2 x double].
317 ///    Rounds the lower element of the second 128-bit vector operand to an
318 ///    integer value according to the rounding control specified by the third
319 ///    argument and copies it to the lower element of the 128-bit result vector
320 ///    of [2 x double].
321 ///
322 /// \headerfile <x86intrin.h>
323 ///
324 /// \code
325 /// __m128d _mm_round_sd(__m128d X, __m128d Y, const int M);
326 /// \endcode
327 ///
328 /// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
329 ///
330 /// \param X
331 ///    A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
332 ///    copied to the corresponding bits of the result.
333 /// \param Y
334 ///    A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
335 ///    rounded to the nearest integer using the specified rounding control and
336 ///    copied to the corresponding bits of the result.
337 /// \param M
338 ///    An integer value that specifies the rounding operation. \n
339 ///    Bits [7:4] are reserved. \n
340 ///    Bit [3] is a precision exception value: \n
341 ///      0: A normal PE exception is used \n
342 ///      1: The PE field is not updated \n
343 ///    Bit [2] is the rounding control source: \n
344 ///      0: Use bits [1:0] of \a M \n
345 ///      1: Use the current MXCSR setting \n
346 ///    Bits [1:0] contain the rounding control definition: \n
347 ///      00: Nearest \n
348 ///      01: Downward (toward negative infinity) \n
349 ///      10: Upward (toward positive infinity) \n
350 ///      11: Truncated
351 /// \returns A 128-bit vector of [2 x double] containing the copied and rounded
352 ///    values.
353 #define _mm_round_sd(X, Y, M) \
354   ((__m128d)__builtin_ia32_roundsd((__v2df)(__m128d)(X), \
355                                    (__v2df)(__m128d)(Y), (M)))
356 
357 /* SSE4 Packed Blending Intrinsics.  */
358 /// Returns a 128-bit vector of [2 x double] where the values are
359 ///    selected from either the first or second operand as specified by the
360 ///    third operand, the control mask.
361 ///
362 /// \headerfile <x86intrin.h>
363 ///
364 /// \code
365 /// __m128d _mm_blend_pd(__m128d V1, __m128d V2, const int M);
366 /// \endcode
367 ///
368 /// This intrinsic corresponds to the <c> VBLENDPD / BLENDPD </c> instruction.
369 ///
370 /// \param V1
371 ///    A 128-bit vector of [2 x double].
372 /// \param V2
373 ///    A 128-bit vector of [2 x double].
374 /// \param M
375 ///    An immediate integer operand, with mask bits [1:0] specifying how the
376 ///    values are to be copied. The position of the mask bit corresponds to the
377 ///    index of a copied value. When a mask bit is 0, the corresponding 64-bit
378 ///    element in operand \a V1 is copied to the same position in the result.
379 ///    When a mask bit is 1, the corresponding 64-bit element in operand \a V2
380 ///    is copied to the same position in the result.
381 /// \returns A 128-bit vector of [2 x double] containing the copied values.
382 #define _mm_blend_pd(V1, V2, M) \
383   ((__m128d) __builtin_ia32_blendpd ((__v2df)(__m128d)(V1), \
384                                      (__v2df)(__m128d)(V2), (int)(M)))
385 
386 /// Returns a 128-bit vector of [4 x float] where the values are selected
387 ///    from either the first or second operand as specified by the third
388 ///    operand, the control mask.
389 ///
390 /// \headerfile <x86intrin.h>
391 ///
392 /// \code
393 /// __m128 _mm_blend_ps(__m128 V1, __m128 V2, const int M);
394 /// \endcode
395 ///
396 /// This intrinsic corresponds to the <c> VBLENDPS / BLENDPS </c> instruction.
397 ///
398 /// \param V1
399 ///    A 128-bit vector of [4 x float].
400 /// \param V2
401 ///    A 128-bit vector of [4 x float].
402 /// \param M
403 ///    An immediate integer operand, with mask bits [3:0] specifying how the
404 ///    values are to be copied. The position of the mask bit corresponds to the
405 ///    index of a copied value. When a mask bit is 0, the corresponding 32-bit
406 ///    element in operand \a V1 is copied to the same position in the result.
407 ///    When a mask bit is 1, the corresponding 32-bit element in operand \a V2
408 ///    is copied to the same position in the result.
409 /// \returns A 128-bit vector of [4 x float] containing the copied values.
410 #define _mm_blend_ps(V1, V2, M) \
411   ((__m128) __builtin_ia32_blendps ((__v4sf)(__m128)(V1), \
412                                     (__v4sf)(__m128)(V2), (int)(M)))
413 
414 /// Returns a 128-bit vector of [2 x double] where the values are
415 ///    selected from either the first or second operand as specified by the
416 ///    third operand, the control mask.
417 ///
418 /// \headerfile <x86intrin.h>
419 ///
420 /// This intrinsic corresponds to the <c> VBLENDVPD / BLENDVPD </c> instruction.
421 ///
422 /// \param __V1
423 ///    A 128-bit vector of [2 x double].
424 /// \param __V2
425 ///    A 128-bit vector of [2 x double].
426 /// \param __M
427 ///    A 128-bit vector operand, with mask bits 127 and 63 specifying how the
428 ///    values are to be copied. The position of the mask bit corresponds to the
429 ///    most significant bit of a copied value. When a mask bit is 0, the
430 ///    corresponding 64-bit element in operand \a __V1 is copied to the same
431 ///    position in the result. When a mask bit is 1, the corresponding 64-bit
432 ///    element in operand \a __V2 is copied to the same position in the result.
433 /// \returns A 128-bit vector of [2 x double] containing the copied values.
434 static __inline__ __m128d __DEFAULT_FN_ATTRS
435 _mm_blendv_pd (__m128d __V1, __m128d __V2, __m128d __M)
436 {
437   return (__m128d) __builtin_ia32_blendvpd ((__v2df)__V1, (__v2df)__V2,
438                                             (__v2df)__M);
439 }
440 
441 /// Returns a 128-bit vector of [4 x float] where the values are
442 ///    selected from either the first or second operand as specified by the
443 ///    third operand, the control mask.
444 ///
445 /// \headerfile <x86intrin.h>
446 ///
447 /// This intrinsic corresponds to the <c> VBLENDVPS / BLENDVPS </c> instruction.
448 ///
449 /// \param __V1
450 ///    A 128-bit vector of [4 x float].
451 /// \param __V2
452 ///    A 128-bit vector of [4 x float].
453 /// \param __M
454 ///    A 128-bit vector operand, with mask bits 127, 95, 63, and 31 specifying
455 ///    how the values are to be copied. The position of the mask bit corresponds
456 ///    to the most significant bit of a copied value. When a mask bit is 0, the
457 ///    corresponding 32-bit element in operand \a __V1 is copied to the same
458 ///    position in the result. When a mask bit is 1, the corresponding 32-bit
459 ///    element in operand \a __V2 is copied to the same position in the result.
460 /// \returns A 128-bit vector of [4 x float] containing the copied values.
461 static __inline__ __m128 __DEFAULT_FN_ATTRS
462 _mm_blendv_ps (__m128 __V1, __m128 __V2, __m128 __M)
463 {
464   return (__m128) __builtin_ia32_blendvps ((__v4sf)__V1, (__v4sf)__V2,
465                                            (__v4sf)__M);
466 }
467 
468 /// Returns a 128-bit vector of [16 x i8] where the values are selected
469 ///    from either of the first or second operand as specified by the third
470 ///    operand, the control mask.
471 ///
472 /// \headerfile <x86intrin.h>
473 ///
474 /// This intrinsic corresponds to the <c> VPBLENDVB / PBLENDVB </c> instruction.
475 ///
476 /// \param __V1
477 ///    A 128-bit vector of [16 x i8].
478 /// \param __V2
479 ///    A 128-bit vector of [16 x i8].
480 /// \param __M
481 ///    A 128-bit vector operand, with mask bits 127, 119, 111...7 specifying
482 ///    how the values are to be copied. The position of the mask bit corresponds
483 ///    to the most significant bit of a copied value. When a mask bit is 0, the
484 ///    corresponding 8-bit element in operand \a __V1 is copied to the same
485 ///    position in the result. When a mask bit is 1, the corresponding 8-bit
486 ///    element in operand \a __V2 is copied to the same position in the result.
487 /// \returns A 128-bit vector of [16 x i8] containing the copied values.
488 static __inline__ __m128i __DEFAULT_FN_ATTRS
489 _mm_blendv_epi8 (__m128i __V1, __m128i __V2, __m128i __M)
490 {
491   return (__m128i) __builtin_ia32_pblendvb128 ((__v16qi)__V1, (__v16qi)__V2,
492                                                (__v16qi)__M);
493 }
494 
495 /// Returns a 128-bit vector of [8 x i16] where the values are selected
496 ///    from either of the first or second operand as specified by the third
497 ///    operand, the control mask.
498 ///
499 /// \headerfile <x86intrin.h>
500 ///
501 /// \code
502 /// __m128i _mm_blend_epi16(__m128i V1, __m128i V2, const int M);
503 /// \endcode
504 ///
505 /// This intrinsic corresponds to the <c> VPBLENDW / PBLENDW </c> instruction.
506 ///
507 /// \param V1
508 ///    A 128-bit vector of [8 x i16].
509 /// \param V2
510 ///    A 128-bit vector of [8 x i16].
511 /// \param M
512 ///    An immediate integer operand, with mask bits [7:0] specifying how the
513 ///    values are to be copied. The position of the mask bit corresponds to the
514 ///    index of a copied value. When a mask bit is 0, the corresponding 16-bit
515 ///    element in operand \a V1 is copied to the same position in the result.
516 ///    When a mask bit is 1, the corresponding 16-bit element in operand \a V2
517 ///    is copied to the same position in the result.
518 /// \returns A 128-bit vector of [8 x i16] containing the copied values.
519 #define _mm_blend_epi16(V1, V2, M) \
520   ((__m128i) __builtin_ia32_pblendw128 ((__v8hi)(__m128i)(V1), \
521                                         (__v8hi)(__m128i)(V2), (int)(M)))
522 
523 /* SSE4 Dword Multiply Instructions.  */
524 /// Multiples corresponding elements of two 128-bit vectors of [4 x i32]
525 ///    and returns the lower 32 bits of the each product in a 128-bit vector of
526 ///    [4 x i32].
527 ///
528 /// \headerfile <x86intrin.h>
529 ///
530 /// This intrinsic corresponds to the <c> VPMULLD / PMULLD </c> instruction.
531 ///
532 /// \param __V1
533 ///    A 128-bit integer vector.
534 /// \param __V2
535 ///    A 128-bit integer vector.
536 /// \returns A 128-bit integer vector containing the products of both operands.
537 static __inline__  __m128i __DEFAULT_FN_ATTRS
538 _mm_mullo_epi32 (__m128i __V1, __m128i __V2)
539 {
540   return (__m128i) ((__v4su)__V1 * (__v4su)__V2);
541 }
542 
543 /// Multiplies corresponding even-indexed elements of two 128-bit
544 ///    vectors of [4 x i32] and returns a 128-bit vector of [2 x i64]
545 ///    containing the products.
546 ///
547 /// \headerfile <x86intrin.h>
548 ///
549 /// This intrinsic corresponds to the <c> VPMULDQ / PMULDQ </c> instruction.
550 ///
551 /// \param __V1
552 ///    A 128-bit vector of [4 x i32].
553 /// \param __V2
554 ///    A 128-bit vector of [4 x i32].
555 /// \returns A 128-bit vector of [2 x i64] containing the products of both
556 ///    operands.
557 static __inline__  __m128i __DEFAULT_FN_ATTRS
558 _mm_mul_epi32 (__m128i __V1, __m128i __V2)
559 {
560   return (__m128i) __builtin_ia32_pmuldq128 ((__v4si)__V1, (__v4si)__V2);
561 }
562 
563 /* SSE4 Floating Point Dot Product Instructions.  */
564 /// Computes the dot product of the two 128-bit vectors of [4 x float]
565 ///    and returns it in the elements of the 128-bit result vector of
566 ///    [4 x float].
567 ///
568 ///    The immediate integer operand controls which input elements
569 ///    will contribute to the dot product, and where the final results are
570 ///    returned.
571 ///
572 /// \headerfile <x86intrin.h>
573 ///
574 /// \code
575 /// __m128 _mm_dp_ps(__m128 X, __m128 Y, const int M);
576 /// \endcode
577 ///
578 /// This intrinsic corresponds to the <c> VDPPS / DPPS </c> instruction.
579 ///
580 /// \param X
581 ///    A 128-bit vector of [4 x float].
582 /// \param Y
583 ///    A 128-bit vector of [4 x float].
584 /// \param M
585 ///    An immediate integer operand. Mask bits [7:4] determine which elements
586 ///    of the input vectors are used, with bit [4] corresponding to the lowest
587 ///    element and bit [7] corresponding to the highest element of each [4 x
588 ///    float] vector. If a bit is set, the corresponding elements from the two
589 ///    input vectors are used as an input for dot product; otherwise that input
590 ///    is treated as zero. Bits [3:0] determine which elements of the result
591 ///    will receive a copy of the final dot product, with bit [0] corresponding
592 ///    to the lowest element and bit [3] corresponding to the highest element of
593 ///    each [4 x float] subvector. If a bit is set, the dot product is returned
594 ///    in the corresponding element; otherwise that element is set to zero.
595 /// \returns A 128-bit vector of [4 x float] containing the dot product.
596 #define _mm_dp_ps(X, Y, M) \
597   ((__m128) __builtin_ia32_dpps((__v4sf)(__m128)(X), \
598                                 (__v4sf)(__m128)(Y), (M)))
599 
600 /// Computes the dot product of the two 128-bit vectors of [2 x double]
601 ///    and returns it in the elements of the 128-bit result vector of
602 ///    [2 x double].
603 ///
604 ///    The immediate integer operand controls which input
605 ///    elements will contribute to the dot product, and where the final results
606 ///    are returned.
607 ///
608 /// \headerfile <x86intrin.h>
609 ///
610 /// \code
611 /// __m128d _mm_dp_pd(__m128d X, __m128d Y, const int M);
612 /// \endcode
613 ///
614 /// This intrinsic corresponds to the <c> VDPPD / DPPD </c> instruction.
615 ///
616 /// \param X
617 ///    A 128-bit vector of [2 x double].
618 /// \param Y
619 ///    A 128-bit vector of [2 x double].
620 /// \param M
621 ///    An immediate integer operand. Mask bits [5:4] determine which elements
622 ///    of the input vectors are used, with bit [4] corresponding to the lowest
623 ///    element and bit [5] corresponding to the highest element of each of [2 x
624 ///    double] vector. If a bit is set, the corresponding elements from the two
625 ///    input vectors are used as an input for dot product; otherwise that input
626 ///    is treated as zero. Bits [1:0] determine which elements of the result
627 ///    will receive a copy of the final dot product, with bit [0] corresponding
628 ///    to the lowest element and bit [1] corresponding to the highest element of
629 ///    each [2 x double] vector. If a bit is set, the dot product is returned in
630 ///    the corresponding element; otherwise that element is set to zero.
631 #define _mm_dp_pd(X, Y, M) \
632   ((__m128d) __builtin_ia32_dppd((__v2df)(__m128d)(X), \
633                                  (__v2df)(__m128d)(Y), (M)))
634 
635 /* SSE4 Streaming Load Hint Instruction.  */
636 /// Loads integer values from a 128-bit aligned memory location to a
637 ///    128-bit integer vector.
638 ///
639 /// \headerfile <x86intrin.h>
640 ///
641 /// This intrinsic corresponds to the <c> VMOVNTDQA / MOVNTDQA </c> instruction.
642 ///
643 /// \param __V
644 ///    A pointer to a 128-bit aligned memory location that contains the integer
645 ///    values.
646 /// \returns A 128-bit integer vector containing the data stored at the
647 ///    specified memory location.
648 static __inline__  __m128i __DEFAULT_FN_ATTRS
649 _mm_stream_load_si128 (__m128i const *__V)
650 {
651   return (__m128i) __builtin_nontemporal_load ((const __v2di *) __V);
652 }
653 
654 /* SSE4 Packed Integer Min/Max Instructions.  */
655 /// Compares the corresponding elements of two 128-bit vectors of
656 ///    [16 x i8] and returns a 128-bit vector of [16 x i8] containing the lesser
657 ///    of the two values.
658 ///
659 /// \headerfile <x86intrin.h>
660 ///
661 /// This intrinsic corresponds to the <c> VPMINSB / PMINSB </c> instruction.
662 ///
663 /// \param __V1
664 ///    A 128-bit vector of [16 x i8].
665 /// \param __V2
666 ///    A 128-bit vector of [16 x i8]
667 /// \returns A 128-bit vector of [16 x i8] containing the lesser values.
668 static __inline__  __m128i __DEFAULT_FN_ATTRS
669 _mm_min_epi8 (__m128i __V1, __m128i __V2)
670 {
671   return (__m128i) __builtin_elementwise_min((__v16qs) __V1, (__v16qs) __V2);
672 }
673 
674 /// Compares the corresponding elements of two 128-bit vectors of
675 ///    [16 x i8] and returns a 128-bit vector of [16 x i8] containing the
676 ///    greater value of the two.
677 ///
678 /// \headerfile <x86intrin.h>
679 ///
680 /// This intrinsic corresponds to the <c> VPMAXSB / PMAXSB </c> instruction.
681 ///
682 /// \param __V1
683 ///    A 128-bit vector of [16 x i8].
684 /// \param __V2
685 ///    A 128-bit vector of [16 x i8].
686 /// \returns A 128-bit vector of [16 x i8] containing the greater values.
687 static __inline__  __m128i __DEFAULT_FN_ATTRS
688 _mm_max_epi8 (__m128i __V1, __m128i __V2)
689 {
690   return (__m128i) __builtin_elementwise_max((__v16qs) __V1, (__v16qs) __V2);
691 }
692 
693 /// Compares the corresponding elements of two 128-bit vectors of
694 ///    [8 x u16] and returns a 128-bit vector of [8 x u16] containing the lesser
695 ///    value of the two.
696 ///
697 /// \headerfile <x86intrin.h>
698 ///
699 /// This intrinsic corresponds to the <c> VPMINUW / PMINUW </c> instruction.
700 ///
701 /// \param __V1
702 ///    A 128-bit vector of [8 x u16].
703 /// \param __V2
704 ///    A 128-bit vector of [8 x u16].
705 /// \returns A 128-bit vector of [8 x u16] containing the lesser values.
706 static __inline__  __m128i __DEFAULT_FN_ATTRS
707 _mm_min_epu16 (__m128i __V1, __m128i __V2)
708 {
709   return (__m128i) __builtin_elementwise_min((__v8hu) __V1, (__v8hu) __V2);
710 }
711 
712 /// Compares the corresponding elements of two 128-bit vectors of
713 ///    [8 x u16] and returns a 128-bit vector of [8 x u16] containing the
714 ///    greater value of the two.
715 ///
716 /// \headerfile <x86intrin.h>
717 ///
718 /// This intrinsic corresponds to the <c> VPMAXUW / PMAXUW </c> instruction.
719 ///
720 /// \param __V1
721 ///    A 128-bit vector of [8 x u16].
722 /// \param __V2
723 ///    A 128-bit vector of [8 x u16].
724 /// \returns A 128-bit vector of [8 x u16] containing the greater values.
725 static __inline__  __m128i __DEFAULT_FN_ATTRS
726 _mm_max_epu16 (__m128i __V1, __m128i __V2)
727 {
728   return (__m128i) __builtin_elementwise_max((__v8hu) __V1, (__v8hu) __V2);
729 }
730 
731 /// Compares the corresponding elements of two 128-bit vectors of
732 ///    [4 x i32] and returns a 128-bit vector of [4 x i32] containing the lesser
733 ///    value of the two.
734 ///
735 /// \headerfile <x86intrin.h>
736 ///
737 /// This intrinsic corresponds to the <c> VPMINSD / PMINSD </c> instruction.
738 ///
739 /// \param __V1
740 ///    A 128-bit vector of [4 x i32].
741 /// \param __V2
742 ///    A 128-bit vector of [4 x i32].
743 /// \returns A 128-bit vector of [4 x i32] containing the lesser values.
744 static __inline__  __m128i __DEFAULT_FN_ATTRS
745 _mm_min_epi32 (__m128i __V1, __m128i __V2)
746 {
747   return (__m128i) __builtin_elementwise_min((__v4si) __V1, (__v4si) __V2);
748 }
749 
750 /// Compares the corresponding elements of two 128-bit vectors of
751 ///    [4 x i32] and returns a 128-bit vector of [4 x i32] containing the
752 ///    greater value of the two.
753 ///
754 /// \headerfile <x86intrin.h>
755 ///
756 /// This intrinsic corresponds to the <c> VPMAXSD / PMAXSD </c> instruction.
757 ///
758 /// \param __V1
759 ///    A 128-bit vector of [4 x i32].
760 /// \param __V2
761 ///    A 128-bit vector of [4 x i32].
762 /// \returns A 128-bit vector of [4 x i32] containing the greater values.
763 static __inline__  __m128i __DEFAULT_FN_ATTRS
764 _mm_max_epi32 (__m128i __V1, __m128i __V2)
765 {
766   return (__m128i) __builtin_elementwise_max((__v4si) __V1, (__v4si) __V2);
767 }
768 
769 /// Compares the corresponding elements of two 128-bit vectors of
770 ///    [4 x u32] and returns a 128-bit vector of [4 x u32] containing the lesser
771 ///    value of the two.
772 ///
773 /// \headerfile <x86intrin.h>
774 ///
775 /// This intrinsic corresponds to the <c> VPMINUD / PMINUD </c>  instruction.
776 ///
777 /// \param __V1
778 ///    A 128-bit vector of [4 x u32].
779 /// \param __V2
780 ///    A 128-bit vector of [4 x u32].
781 /// \returns A 128-bit vector of [4 x u32] containing the lesser values.
782 static __inline__  __m128i __DEFAULT_FN_ATTRS
783 _mm_min_epu32 (__m128i __V1, __m128i __V2)
784 {
785   return (__m128i) __builtin_elementwise_min((__v4su) __V1, (__v4su) __V2);
786 }
787 
788 /// Compares the corresponding elements of two 128-bit vectors of
789 ///    [4 x u32] and returns a 128-bit vector of [4 x u32] containing the
790 ///    greater value of the two.
791 ///
792 /// \headerfile <x86intrin.h>
793 ///
794 /// This intrinsic corresponds to the <c> VPMAXUD / PMAXUD </c> instruction.
795 ///
796 /// \param __V1
797 ///    A 128-bit vector of [4 x u32].
798 /// \param __V2
799 ///    A 128-bit vector of [4 x u32].
800 /// \returns A 128-bit vector of [4 x u32] containing the greater values.
801 static __inline__  __m128i __DEFAULT_FN_ATTRS
802 _mm_max_epu32 (__m128i __V1, __m128i __V2)
803 {
804   return (__m128i) __builtin_elementwise_max((__v4su) __V1, (__v4su) __V2);
805 }
806 
807 /* SSE4 Insertion and Extraction from XMM Register Instructions.  */
808 /// Takes the first argument \a X and inserts an element from the second
809 ///    argument \a Y as selected by the third argument \a N. That result then
810 ///    has elements zeroed out also as selected by the third argument \a N. The
811 ///    resulting 128-bit vector of [4 x float] is then returned.
812 ///
813 /// \headerfile <x86intrin.h>
814 ///
815 /// \code
816 /// __m128 _mm_insert_ps(__m128 X, __m128 Y, const int N);
817 /// \endcode
818 ///
819 /// This intrinsic corresponds to the <c> VINSERTPS </c> instruction.
820 ///
821 /// \param X
822 ///    A 128-bit vector source operand of [4 x float]. With the exception of
823 ///    those bits in the result copied from parameter \a Y and zeroed by bits
824 ///    [3:0] of \a N, all bits from this parameter are copied to the result.
825 /// \param Y
826 ///    A 128-bit vector source operand of [4 x float]. One single-precision
827 ///    floating-point element from this source, as determined by the immediate
828 ///    parameter, is copied to the result.
829 /// \param N
830 ///    Specifies which bits from operand \a Y will be copied, which bits in the
831 ///    result they will be be copied to, and which bits in the result will be
832 ///    cleared. The following assignments are made: \n
833 ///    Bits [7:6] specify the bits to copy from operand \a Y: \n
834 ///      00: Selects bits [31:0] from operand \a Y. \n
835 ///      01: Selects bits [63:32] from operand \a Y. \n
836 ///      10: Selects bits [95:64] from operand \a Y. \n
837 ///      11: Selects bits [127:96] from operand \a Y. \n
838 ///    Bits [5:4] specify the bits in the result to which the selected bits
839 ///    from operand \a Y are copied: \n
840 ///      00: Copies the selected bits from \a Y to result bits [31:0]. \n
841 ///      01: Copies the selected bits from \a Y to result bits [63:32]. \n
842 ///      10: Copies the selected bits from \a Y to result bits [95:64]. \n
843 ///      11: Copies the selected bits from \a Y to result bits [127:96]. \n
844 ///    Bits[3:0]: If any of these bits are set, the corresponding result
845 ///    element is cleared.
846 /// \returns A 128-bit vector of [4 x float] containing the copied
847 ///    single-precision floating point elements from the operands.
848 #define _mm_insert_ps(X, Y, N) __builtin_ia32_insertps128((X), (Y), (N))
849 
850 /// Extracts a 32-bit integer from a 128-bit vector of [4 x float] and
851 ///    returns it, using the immediate value parameter \a N as a selector.
852 ///
853 /// \headerfile <x86intrin.h>
854 ///
855 /// \code
856 /// int _mm_extract_ps(__m128 X, const int N);
857 /// \endcode
858 ///
859 /// This intrinsic corresponds to the <c> VEXTRACTPS / EXTRACTPS </c>
860 /// instruction.
861 ///
862 /// \param X
863 ///    A 128-bit vector of [4 x float].
864 /// \param N
865 ///    An immediate value. Bits [1:0] determines which bits from the argument
866 ///    \a X are extracted and returned: \n
867 ///    00: Bits [31:0] of parameter \a X are returned. \n
868 ///    01: Bits [63:32] of parameter \a X are returned. \n
869 ///    10: Bits [95:64] of parameter \a X are returned. \n
870 ///    11: Bits [127:96] of parameter \a X are returned.
871 /// \returns A 32-bit integer containing the extracted 32 bits of float data.
872 #define _mm_extract_ps(X, N) \
873   __builtin_bit_cast(int, __builtin_ia32_vec_ext_v4sf((__v4sf)(__m128)(X), (int)(N)))
874 
875 /* Miscellaneous insert and extract macros.  */
876 /* Extract a single-precision float from X at index N into D.  */
877 #define _MM_EXTRACT_FLOAT(D, X, N) \
878   do { (D) = __builtin_ia32_vec_ext_v4sf((__v4sf)(__m128)(X), (int)(N)); } while (0)
879 
880 /* Or together 2 sets of indexes (X and Y) with the zeroing bits (Z) to create
881    an index suitable for _mm_insert_ps.  */
882 #define _MM_MK_INSERTPS_NDX(X, Y, Z) (((X) << 6) | ((Y) << 4) | (Z))
883 
884 /* Extract a float from X at index N into the first index of the return.  */
885 #define _MM_PICK_OUT_PS(X, N) _mm_insert_ps (_mm_setzero_ps(), (X),   \
886                                              _MM_MK_INSERTPS_NDX((N), 0, 0x0e))
887 
888 /* Insert int into packed integer array at index.  */
889 /// Constructs a 128-bit vector of [16 x i8] by first making a copy of
890 ///    the 128-bit integer vector parameter, and then inserting the lower 8 bits
891 ///    of an integer parameter \a I into an offset specified by the immediate
892 ///    value parameter \a N.
893 ///
894 /// \headerfile <x86intrin.h>
895 ///
896 /// \code
897 /// __m128i _mm_insert_epi8(__m128i X, int I, const int N);
898 /// \endcode
899 ///
900 /// This intrinsic corresponds to the <c> VPINSRB / PINSRB </c> instruction.
901 ///
902 /// \param X
903 ///    A 128-bit integer vector of [16 x i8]. This vector is copied to the
904 ///    result and then one of the sixteen elements in the result vector is
905 ///    replaced by the lower 8 bits of \a I.
906 /// \param I
907 ///    An integer. The lower 8 bits of this operand are written to the result
908 ///    beginning at the offset specified by \a N.
909 /// \param N
910 ///    An immediate value. Bits [3:0] specify the bit offset in the result at
911 ///    which the lower 8 bits of \a I are written. \n
912 ///    0000: Bits [7:0] of the result are used for insertion. \n
913 ///    0001: Bits [15:8] of the result are used for insertion. \n
914 ///    0010: Bits [23:16] of the result are used for insertion. \n
915 ///    0011: Bits [31:24] of the result are used for insertion. \n
916 ///    0100: Bits [39:32] of the result are used for insertion. \n
917 ///    0101: Bits [47:40] of the result are used for insertion. \n
918 ///    0110: Bits [55:48] of the result are used for insertion. \n
919 ///    0111: Bits [63:56] of the result are used for insertion. \n
920 ///    1000: Bits [71:64] of the result are used for insertion. \n
921 ///    1001: Bits [79:72] of the result are used for insertion. \n
922 ///    1010: Bits [87:80] of the result are used for insertion. \n
923 ///    1011: Bits [95:88] of the result are used for insertion. \n
924 ///    1100: Bits [103:96] of the result are used for insertion. \n
925 ///    1101: Bits [111:104] of the result are used for insertion. \n
926 ///    1110: Bits [119:112] of the result are used for insertion. \n
927 ///    1111: Bits [127:120] of the result are used for insertion.
928 /// \returns A 128-bit integer vector containing the constructed values.
929 #define _mm_insert_epi8(X, I, N) \
930   ((__m128i)__builtin_ia32_vec_set_v16qi((__v16qi)(__m128i)(X), \
931                                          (int)(I), (int)(N)))
932 
933 /// Constructs a 128-bit vector of [4 x i32] by first making a copy of
934 ///    the 128-bit integer vector parameter, and then inserting the 32-bit
935 ///    integer parameter \a I at the offset specified by the immediate value
936 ///    parameter \a N.
937 ///
938 /// \headerfile <x86intrin.h>
939 ///
940 /// \code
941 /// __m128i _mm_insert_epi32(__m128i X, int I, const int N);
942 /// \endcode
943 ///
944 /// This intrinsic corresponds to the <c> VPINSRD / PINSRD </c> instruction.
945 ///
946 /// \param X
947 ///    A 128-bit integer vector of [4 x i32]. This vector is copied to the
948 ///    result and then one of the four elements in the result vector is
949 ///    replaced by \a I.
950 /// \param I
951 ///    A 32-bit integer that is written to the result beginning at the offset
952 ///    specified by \a N.
953 /// \param N
954 ///    An immediate value. Bits [1:0] specify the bit offset in the result at
955 ///    which the integer \a I is written. \n
956 ///    00: Bits [31:0] of the result are used for insertion. \n
957 ///    01: Bits [63:32] of the result are used for insertion. \n
958 ///    10: Bits [95:64] of the result are used for insertion. \n
959 ///    11: Bits [127:96] of the result are used for insertion.
960 /// \returns A 128-bit integer vector containing the constructed values.
961 #define _mm_insert_epi32(X, I, N) \
962   ((__m128i)__builtin_ia32_vec_set_v4si((__v4si)(__m128i)(X), \
963                                         (int)(I), (int)(N)))
964 
965 #ifdef __x86_64__
966 /// Constructs a 128-bit vector of [2 x i64] by first making a copy of
967 ///    the 128-bit integer vector parameter, and then inserting the 64-bit
968 ///    integer parameter \a I, using the immediate value parameter \a N as an
969 ///    insertion location selector.
970 ///
971 /// \headerfile <x86intrin.h>
972 ///
973 /// \code
974 /// __m128i _mm_insert_epi64(__m128i X, long long I, const int N);
975 /// \endcode
976 ///
977 /// This intrinsic corresponds to the <c> VPINSRQ / PINSRQ </c> instruction.
978 ///
979 /// \param X
980 ///    A 128-bit integer vector of [2 x i64]. This vector is copied to the
981 ///    result and then one of the two elements in the result vector is replaced
982 ///    by \a I.
983 /// \param I
984 ///    A 64-bit integer that is written to the result beginning at the offset
985 ///    specified by \a N.
986 /// \param N
987 ///    An immediate value. Bit [0] specifies the bit offset in the result at
988 ///    which the integer \a I is written. \n
989 ///    0: Bits [63:0] of the result are used for insertion. \n
990 ///    1: Bits [127:64] of the result are used for insertion. \n
991 /// \returns A 128-bit integer vector containing the constructed values.
992 #define _mm_insert_epi64(X, I, N) \
993   ((__m128i)__builtin_ia32_vec_set_v2di((__v2di)(__m128i)(X), \
994                                         (long long)(I), (int)(N)))
995 #endif /* __x86_64__ */
996 
997 /* Extract int from packed integer array at index.  This returns the element
998  * as a zero extended value, so it is unsigned.
999  */
1000 /// Extracts an 8-bit element from the 128-bit integer vector of
1001 ///    [16 x i8], using the immediate value parameter \a N as a selector.
1002 ///
1003 /// \headerfile <x86intrin.h>
1004 ///
1005 /// \code
1006 /// int _mm_extract_epi8(__m128i X, const int N);
1007 /// \endcode
1008 ///
1009 /// This intrinsic corresponds to the <c> VPEXTRB / PEXTRB </c> instruction.
1010 ///
1011 /// \param X
1012 ///    A 128-bit integer vector.
1013 /// \param N
1014 ///    An immediate value. Bits [3:0] specify which 8-bit vector element from
1015 ///    the argument \a X to extract and copy to the result. \n
1016 ///    0000: Bits [7:0] of parameter \a X are extracted. \n
1017 ///    0001: Bits [15:8] of the parameter \a X are extracted. \n
1018 ///    0010: Bits [23:16] of the parameter \a X are extracted. \n
1019 ///    0011: Bits [31:24] of the parameter \a X are extracted. \n
1020 ///    0100: Bits [39:32] of the parameter \a X are extracted. \n
1021 ///    0101: Bits [47:40] of the parameter \a X are extracted. \n
1022 ///    0110: Bits [55:48] of the parameter \a X are extracted. \n
1023 ///    0111: Bits [63:56] of the parameter \a X are extracted. \n
1024 ///    1000: Bits [71:64] of the parameter \a X are extracted. \n
1025 ///    1001: Bits [79:72] of the parameter \a X are extracted. \n
1026 ///    1010: Bits [87:80] of the parameter \a X are extracted. \n
1027 ///    1011: Bits [95:88] of the parameter \a X are extracted. \n
1028 ///    1100: Bits [103:96] of the parameter \a X are extracted. \n
1029 ///    1101: Bits [111:104] of the parameter \a X are extracted. \n
1030 ///    1110: Bits [119:112] of the parameter \a X are extracted. \n
1031 ///    1111: Bits [127:120] of the parameter \a X are extracted.
1032 /// \returns  An unsigned integer, whose lower 8 bits are selected from the
1033 ///    128-bit integer vector parameter and the remaining bits are assigned
1034 ///    zeros.
1035 #define _mm_extract_epi8(X, N) \
1036   ((int)(unsigned char)__builtin_ia32_vec_ext_v16qi((__v16qi)(__m128i)(X), \
1037                                                     (int)(N)))
1038 
1039 /// Extracts a 32-bit element from the 128-bit integer vector of
1040 ///    [4 x i32], using the immediate value parameter \a N as a selector.
1041 ///
1042 /// \headerfile <x86intrin.h>
1043 ///
1044 /// \code
1045 /// int _mm_extract_epi32(__m128i X, const int N);
1046 /// \endcode
1047 ///
1048 /// This intrinsic corresponds to the <c> VPEXTRD / PEXTRD </c> instruction.
1049 ///
1050 /// \param X
1051 ///    A 128-bit integer vector.
1052 /// \param N
1053 ///    An immediate value. Bits [1:0] specify which 32-bit vector element from
1054 ///    the argument \a X to extract and copy to the result. \n
1055 ///    00: Bits [31:0] of the parameter \a X are extracted. \n
1056 ///    01: Bits [63:32] of the parameter \a X are extracted. \n
1057 ///    10: Bits [95:64] of the parameter \a X are extracted. \n
1058 ///    11: Bits [127:96] of the parameter \a X are exracted.
1059 /// \returns  An integer, whose lower 32 bits are selected from the 128-bit
1060 ///    integer vector parameter and the remaining bits are assigned zeros.
1061 #define _mm_extract_epi32(X, N) \
1062   ((int)__builtin_ia32_vec_ext_v4si((__v4si)(__m128i)(X), (int)(N)))
1063 
1064 #ifdef __x86_64__
1065 /// Extracts a 64-bit element from the 128-bit integer vector of
1066 ///    [2 x i64], using the immediate value parameter \a N as a selector.
1067 ///
1068 /// \headerfile <x86intrin.h>
1069 ///
1070 /// \code
1071 /// long long _mm_extract_epi64(__m128i X, const int N);
1072 /// \endcode
1073 ///
1074 /// This intrinsic corresponds to the <c> VPEXTRQ / PEXTRQ </c> instruction.
1075 ///
1076 /// \param X
1077 ///    A 128-bit integer vector.
1078 /// \param N
1079 ///    An immediate value. Bit [0] specifies which 64-bit vector element from
1080 ///    the argument \a X to return. \n
1081 ///    0: Bits [63:0] are returned. \n
1082 ///    1: Bits [127:64] are returned. \n
1083 /// \returns  A 64-bit integer.
1084 #define _mm_extract_epi64(X, N) \
1085   ((long long)__builtin_ia32_vec_ext_v2di((__v2di)(__m128i)(X), (int)(N)))
1086 #endif /* __x86_64 */
1087 
1088 /* SSE4 128-bit Packed Integer Comparisons.  */
1089 /// Tests whether the specified bits in a 128-bit integer vector are all
1090 ///    zeros.
1091 ///
1092 /// \headerfile <x86intrin.h>
1093 ///
1094 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1095 ///
1096 /// \param __M
1097 ///    A 128-bit integer vector containing the bits to be tested.
1098 /// \param __V
1099 ///    A 128-bit integer vector selecting which bits to test in operand \a __M.
1100 /// \returns TRUE if the specified bits are all zeros; FALSE otherwise.
1101 static __inline__ int __DEFAULT_FN_ATTRS
1102 _mm_testz_si128(__m128i __M, __m128i __V)
1103 {
1104   return __builtin_ia32_ptestz128((__v2di)__M, (__v2di)__V);
1105 }
1106 
1107 /// Tests whether the specified bits in a 128-bit integer vector are all
1108 ///    ones.
1109 ///
1110 /// \headerfile <x86intrin.h>
1111 ///
1112 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1113 ///
1114 /// \param __M
1115 ///    A 128-bit integer vector containing the bits to be tested.
1116 /// \param __V
1117 ///    A 128-bit integer vector selecting which bits to test in operand \a __M.
1118 /// \returns TRUE if the specified bits are all ones; FALSE otherwise.
1119 static __inline__ int __DEFAULT_FN_ATTRS
1120 _mm_testc_si128(__m128i __M, __m128i __V)
1121 {
1122   return __builtin_ia32_ptestc128((__v2di)__M, (__v2di)__V);
1123 }
1124 
1125 /// Tests whether the specified bits in a 128-bit integer vector are
1126 ///    neither all zeros nor all ones.
1127 ///
1128 /// \headerfile <x86intrin.h>
1129 ///
1130 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1131 ///
1132 /// \param __M
1133 ///    A 128-bit integer vector containing the bits to be tested.
1134 /// \param __V
1135 ///    A 128-bit integer vector selecting which bits to test in operand \a __M.
1136 /// \returns TRUE if the specified bits are neither all zeros nor all ones;
1137 ///    FALSE otherwise.
1138 static __inline__ int __DEFAULT_FN_ATTRS
1139 _mm_testnzc_si128(__m128i __M, __m128i __V)
1140 {
1141   return __builtin_ia32_ptestnzc128((__v2di)__M, (__v2di)__V);
1142 }
1143 
1144 /// Tests whether the specified bits in a 128-bit integer vector are all
1145 ///    ones.
1146 ///
1147 /// \headerfile <x86intrin.h>
1148 ///
1149 /// \code
1150 /// int _mm_test_all_ones(__m128i V);
1151 /// \endcode
1152 ///
1153 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1154 ///
1155 /// \param V
1156 ///    A 128-bit integer vector containing the bits to be tested.
1157 /// \returns TRUE if the bits specified in the operand are all set to 1; FALSE
1158 ///    otherwise.
1159 #define _mm_test_all_ones(V) _mm_testc_si128((V), _mm_cmpeq_epi32((V), (V)))
1160 
1161 /// Tests whether the specified bits in a 128-bit integer vector are
1162 ///    neither all zeros nor all ones.
1163 ///
1164 /// \headerfile <x86intrin.h>
1165 ///
1166 /// \code
1167 /// int _mm_test_mix_ones_zeros(__m128i M, __m128i V);
1168 /// \endcode
1169 ///
1170 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1171 ///
1172 /// \param M
1173 ///    A 128-bit integer vector containing the bits to be tested.
1174 /// \param V
1175 ///    A 128-bit integer vector selecting which bits to test in operand \a M.
1176 /// \returns TRUE if the specified bits are neither all zeros nor all ones;
1177 ///    FALSE otherwise.
1178 #define _mm_test_mix_ones_zeros(M, V) _mm_testnzc_si128((M), (V))
1179 
1180 /// Tests whether the specified bits in a 128-bit integer vector are all
1181 ///    zeros.
1182 ///
1183 /// \headerfile <x86intrin.h>
1184 ///
1185 /// \code
1186 /// int _mm_test_all_zeros(__m128i M, __m128i V);
1187 /// \endcode
1188 ///
1189 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1190 ///
1191 /// \param M
1192 ///    A 128-bit integer vector containing the bits to be tested.
1193 /// \param V
1194 ///    A 128-bit integer vector selecting which bits to test in operand \a M.
1195 /// \returns TRUE if the specified bits are all zeros; FALSE otherwise.
1196 #define _mm_test_all_zeros(M, V) _mm_testz_si128 ((M), (V))
1197 
1198 /* SSE4 64-bit Packed Integer Comparisons.  */
1199 /// Compares each of the corresponding 64-bit values of the 128-bit
1200 ///    integer vectors for equality.
1201 ///
1202 /// \headerfile <x86intrin.h>
1203 ///
1204 /// This intrinsic corresponds to the <c> VPCMPEQQ / PCMPEQQ </c> instruction.
1205 ///
1206 /// \param __V1
1207 ///    A 128-bit integer vector.
1208 /// \param __V2
1209 ///    A 128-bit integer vector.
1210 /// \returns A 128-bit integer vector containing the comparison results.
1211 static __inline__ __m128i __DEFAULT_FN_ATTRS
1212 _mm_cmpeq_epi64(__m128i __V1, __m128i __V2)
1213 {
1214   return (__m128i)((__v2di)__V1 == (__v2di)__V2);
1215 }
1216 
1217 /* SSE4 Packed Integer Sign-Extension.  */
1218 /// Sign-extends each of the lower eight 8-bit integer elements of a
1219 ///    128-bit vector of [16 x i8] to 16-bit values and returns them in a
1220 ///    128-bit vector of [8 x i16]. The upper eight elements of the input vector
1221 ///    are unused.
1222 ///
1223 /// \headerfile <x86intrin.h>
1224 ///
1225 /// This intrinsic corresponds to the <c> VPMOVSXBW / PMOVSXBW </c> instruction.
1226 ///
1227 /// \param __V
1228 ///    A 128-bit vector of [16 x i8]. The lower eight 8-bit elements are sign-
1229 ///    extended to 16-bit values.
1230 /// \returns A 128-bit vector of [8 x i16] containing the sign-extended values.
1231 static __inline__ __m128i __DEFAULT_FN_ATTRS
1232 _mm_cvtepi8_epi16(__m128i __V)
1233 {
1234   /* This function always performs a signed extension, but __v16qi is a char
1235      which may be signed or unsigned, so use __v16qs. */
1236   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3, 4, 5, 6, 7), __v8hi);
1237 }
1238 
1239 /// Sign-extends each of the lower four 8-bit integer elements of a
1240 ///    128-bit vector of [16 x i8] to 32-bit values and returns them in a
1241 ///    128-bit vector of [4 x i32]. The upper twelve elements of the input
1242 ///    vector are unused.
1243 ///
1244 /// \headerfile <x86intrin.h>
1245 ///
1246 /// This intrinsic corresponds to the <c> VPMOVSXBD / PMOVSXBD </c> instruction.
1247 ///
1248 /// \param __V
1249 ///    A 128-bit vector of [16 x i8]. The lower four 8-bit elements are
1250 ///    sign-extended to 32-bit values.
1251 /// \returns A 128-bit vector of [4 x i32] containing the sign-extended values.
1252 static __inline__ __m128i __DEFAULT_FN_ATTRS
1253 _mm_cvtepi8_epi32(__m128i __V)
1254 {
1255   /* This function always performs a signed extension, but __v16qi is a char
1256      which may be signed or unsigned, so use __v16qs. */
1257   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3), __v4si);
1258 }
1259 
1260 /// Sign-extends each of the lower two 8-bit integer elements of a
1261 ///    128-bit integer vector of [16 x i8] to 64-bit values and returns them in
1262 ///    a 128-bit vector of [2 x i64]. The upper fourteen elements of the input
1263 ///    vector are unused.
1264 ///
1265 /// \headerfile <x86intrin.h>
1266 ///
1267 /// This intrinsic corresponds to the <c> VPMOVSXBQ / PMOVSXBQ </c> instruction.
1268 ///
1269 /// \param __V
1270 ///    A 128-bit vector of [16 x i8]. The lower two 8-bit elements are
1271 ///    sign-extended to 64-bit values.
1272 /// \returns A 128-bit vector of [2 x i64] containing the sign-extended values.
1273 static __inline__ __m128i __DEFAULT_FN_ATTRS
1274 _mm_cvtepi8_epi64(__m128i __V)
1275 {
1276   /* This function always performs a signed extension, but __v16qi is a char
1277      which may be signed or unsigned, so use __v16qs. */
1278   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1), __v2di);
1279 }
1280 
1281 /// Sign-extends each of the lower four 16-bit integer elements of a
1282 ///    128-bit integer vector of [8 x i16] to 32-bit values and returns them in
1283 ///    a 128-bit vector of [4 x i32]. The upper four elements of the input
1284 ///    vector are unused.
1285 ///
1286 /// \headerfile <x86intrin.h>
1287 ///
1288 /// This intrinsic corresponds to the <c> VPMOVSXWD / PMOVSXWD </c> instruction.
1289 ///
1290 /// \param __V
1291 ///    A 128-bit vector of [8 x i16]. The lower four 16-bit elements are
1292 ///    sign-extended to 32-bit values.
1293 /// \returns A 128-bit vector of [4 x i32] containing the sign-extended values.
1294 static __inline__ __m128i __DEFAULT_FN_ATTRS
1295 _mm_cvtepi16_epi32(__m128i __V)
1296 {
1297   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1, 2, 3), __v4si);
1298 }
1299 
1300 /// Sign-extends each of the lower two 16-bit integer elements of a
1301 ///    128-bit integer vector of [8 x i16] to 64-bit values and returns them in
1302 ///    a 128-bit vector of [2 x i64]. The upper six elements of the input
1303 ///    vector are unused.
1304 ///
1305 /// \headerfile <x86intrin.h>
1306 ///
1307 /// This intrinsic corresponds to the <c> VPMOVSXWQ / PMOVSXWQ </c> instruction.
1308 ///
1309 /// \param __V
1310 ///    A 128-bit vector of [8 x i16]. The lower two 16-bit elements are
1311 ///     sign-extended to 64-bit values.
1312 /// \returns A 128-bit vector of [2 x i64] containing the sign-extended values.
1313 static __inline__ __m128i __DEFAULT_FN_ATTRS
1314 _mm_cvtepi16_epi64(__m128i __V)
1315 {
1316   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1), __v2di);
1317 }
1318 
1319 /// Sign-extends each of the lower two 32-bit integer elements of a
1320 ///    128-bit integer vector of [4 x i32] to 64-bit values and returns them in
1321 ///    a 128-bit vector of [2 x i64]. The upper two elements of the input vector
1322 ///    are unused.
1323 ///
1324 /// \headerfile <x86intrin.h>
1325 ///
1326 /// This intrinsic corresponds to the <c> VPMOVSXDQ / PMOVSXDQ </c> instruction.
1327 ///
1328 /// \param __V
1329 ///    A 128-bit vector of [4 x i32]. The lower two 32-bit elements are
1330 ///    sign-extended to 64-bit values.
1331 /// \returns A 128-bit vector of [2 x i64] containing the sign-extended values.
1332 static __inline__ __m128i __DEFAULT_FN_ATTRS
1333 _mm_cvtepi32_epi64(__m128i __V)
1334 {
1335   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v4si)__V, (__v4si)__V, 0, 1), __v2di);
1336 }
1337 
1338 /* SSE4 Packed Integer Zero-Extension.  */
1339 /// Zero-extends each of the lower eight 8-bit integer elements of a
1340 ///    128-bit vector of [16 x i8] to 16-bit values and returns them in a
1341 ///    128-bit vector of [8 x i16]. The upper eight elements of the input vector
1342 ///    are unused.
1343 ///
1344 /// \headerfile <x86intrin.h>
1345 ///
1346 /// This intrinsic corresponds to the <c> VPMOVZXBW / PMOVZXBW </c> instruction.
1347 ///
1348 /// \param __V
1349 ///    A 128-bit vector of [16 x i8]. The lower eight 8-bit elements are
1350 ///    zero-extended to 16-bit values.
1351 /// \returns A 128-bit vector of [8 x i16] containing the zero-extended values.
1352 static __inline__ __m128i __DEFAULT_FN_ATTRS
1353 _mm_cvtepu8_epi16(__m128i __V)
1354 {
1355   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1, 2, 3, 4, 5, 6, 7), __v8hi);
1356 }
1357 
1358 /// Zero-extends each of the lower four 8-bit integer elements of a
1359 ///    128-bit vector of [16 x i8] to 32-bit values and returns them in a
1360 ///    128-bit vector of [4 x i32]. The upper twelve elements of the input
1361 ///    vector are unused.
1362 ///
1363 /// \headerfile <x86intrin.h>
1364 ///
1365 /// This intrinsic corresponds to the <c> VPMOVZXBD / PMOVZXBD </c> instruction.
1366 ///
1367 /// \param __V
1368 ///    A 128-bit vector of [16 x i8]. The lower four 8-bit elements are
1369 ///    zero-extended to 32-bit values.
1370 /// \returns A 128-bit vector of [4 x i32] containing the zero-extended values.
1371 static __inline__ __m128i __DEFAULT_FN_ATTRS
1372 _mm_cvtepu8_epi32(__m128i __V)
1373 {
1374   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1, 2, 3), __v4si);
1375 }
1376 
1377 /// Zero-extends each of the lower two 8-bit integer elements of a
1378 ///    128-bit integer vector of [16 x i8] to 64-bit values and returns them in
1379 ///    a 128-bit vector of [2 x i64]. The upper fourteen elements of the input
1380 ///    vector are unused.
1381 ///
1382 /// \headerfile <x86intrin.h>
1383 ///
1384 /// This intrinsic corresponds to the <c> VPMOVZXBQ / PMOVZXBQ </c> instruction.
1385 ///
1386 /// \param __V
1387 ///    A 128-bit vector of [16 x i8]. The lower two 8-bit elements are
1388 ///    zero-extended to 64-bit values.
1389 /// \returns A 128-bit vector of [2 x i64] containing the zero-extended values.
1390 static __inline__ __m128i __DEFAULT_FN_ATTRS
1391 _mm_cvtepu8_epi64(__m128i __V)
1392 {
1393   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1), __v2di);
1394 }
1395 
1396 /// Zero-extends each of the lower four 16-bit integer elements of a
1397 ///    128-bit integer vector of [8 x i16] to 32-bit values and returns them in
1398 ///    a 128-bit vector of [4 x i32]. The upper four elements of the input
1399 ///    vector are unused.
1400 ///
1401 /// \headerfile <x86intrin.h>
1402 ///
1403 /// This intrinsic corresponds to the <c> VPMOVZXWD / PMOVZXWD </c> instruction.
1404 ///
1405 /// \param __V
1406 ///    A 128-bit vector of [8 x i16]. The lower four 16-bit elements are
1407 ///    zero-extended to 32-bit values.
1408 /// \returns A 128-bit vector of [4 x i32] containing the zero-extended values.
1409 static __inline__ __m128i __DEFAULT_FN_ATTRS
1410 _mm_cvtepu16_epi32(__m128i __V)
1411 {
1412   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hu)__V, (__v8hu)__V, 0, 1, 2, 3), __v4si);
1413 }
1414 
1415 /// Zero-extends each of the lower two 16-bit integer elements of a
1416 ///    128-bit integer vector of [8 x i16] to 64-bit values and returns them in
1417 ///    a 128-bit vector of [2 x i64]. The upper six elements of the input vector
1418 ///    are unused.
1419 ///
1420 /// \headerfile <x86intrin.h>
1421 ///
1422 /// This intrinsic corresponds to the <c> VPMOVZXWQ / PMOVZXWQ </c> instruction.
1423 ///
1424 /// \param __V
1425 ///    A 128-bit vector of [8 x i16]. The lower two 16-bit elements are
1426 ///    zero-extended to 64-bit values.
1427 /// \returns A 128-bit vector of [2 x i64] containing the zero-extended values.
1428 static __inline__ __m128i __DEFAULT_FN_ATTRS
1429 _mm_cvtepu16_epi64(__m128i __V)
1430 {
1431   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v8hu)__V, (__v8hu)__V, 0, 1), __v2di);
1432 }
1433 
1434 /// Zero-extends each of the lower two 32-bit integer elements of a
1435 ///    128-bit integer vector of [4 x i32] to 64-bit values and returns them in
1436 ///    a 128-bit vector of [2 x i64]. The upper two elements of the input vector
1437 ///    are unused.
1438 ///
1439 /// \headerfile <x86intrin.h>
1440 ///
1441 /// This intrinsic corresponds to the <c> VPMOVZXDQ / PMOVZXDQ </c> instruction.
1442 ///
1443 /// \param __V
1444 ///    A 128-bit vector of [4 x i32]. The lower two 32-bit elements are
1445 ///    zero-extended to 64-bit values.
1446 /// \returns A 128-bit vector of [2 x i64] containing the zero-extended values.
1447 static __inline__ __m128i __DEFAULT_FN_ATTRS
1448 _mm_cvtepu32_epi64(__m128i __V)
1449 {
1450   return (__m128i)__builtin_convertvector(__builtin_shufflevector((__v4su)__V, (__v4su)__V, 0, 1), __v2di);
1451 }
1452 
1453 /* SSE4 Pack with Unsigned Saturation.  */
1454 /// Converts 32-bit signed integers from both 128-bit integer vector
1455 ///    operands into 16-bit unsigned integers, and returns the packed result.
1456 ///    Values greater than 0xFFFF are saturated to 0xFFFF. Values less than
1457 ///    0x0000 are saturated to 0x0000.
1458 ///
1459 /// \headerfile <x86intrin.h>
1460 ///
1461 /// This intrinsic corresponds to the <c> VPACKUSDW / PACKUSDW </c> instruction.
1462 ///
1463 /// \param __V1
1464 ///    A 128-bit vector of [4 x i32]. Each 32-bit element is treated as a
1465 ///    signed integer and is converted to a 16-bit unsigned integer with
1466 ///    saturation. Values greater than 0xFFFF are saturated to 0xFFFF. Values
1467 ///    less than 0x0000 are saturated to 0x0000. The converted [4 x i16] values
1468 ///    are written to the lower 64 bits of the result.
1469 /// \param __V2
1470 ///    A 128-bit vector of [4 x i32]. Each 32-bit element is treated as a
1471 ///    signed integer and is converted to a 16-bit unsigned integer with
1472 ///    saturation. Values greater than 0xFFFF are saturated to 0xFFFF. Values
1473 ///    less than 0x0000 are saturated to 0x0000. The converted [4 x i16] values
1474 ///    are written to the higher 64 bits of the result.
1475 /// \returns A 128-bit vector of [8 x i16] containing the converted values.
1476 static __inline__ __m128i __DEFAULT_FN_ATTRS
1477 _mm_packus_epi32(__m128i __V1, __m128i __V2)
1478 {
1479   return (__m128i) __builtin_ia32_packusdw128((__v4si)__V1, (__v4si)__V2);
1480 }
1481 
1482 /* SSE4 Multiple Packed Sums of Absolute Difference.  */
1483 /// Subtracts 8-bit unsigned integer values and computes the absolute
1484 ///    values of the differences to the corresponding bits in the destination.
1485 ///    Then sums of the absolute differences are returned according to the bit
1486 ///    fields in the immediate operand.
1487 ///
1488 /// \headerfile <x86intrin.h>
1489 ///
1490 /// \code
1491 /// __m128i _mm_mpsadbw_epu8(__m128i X, __m128i Y, const int M);
1492 /// \endcode
1493 ///
1494 /// This intrinsic corresponds to the <c> VMPSADBW / MPSADBW </c> instruction.
1495 ///
1496 /// \param X
1497 ///    A 128-bit vector of [16 x i8].
1498 /// \param Y
1499 ///    A 128-bit vector of [16 x i8].
1500 /// \param M
1501 ///    An 8-bit immediate operand specifying how the absolute differences are to
1502 ///    be calculated, according to the following algorithm:
1503 ///    \code
1504 ///    // M2 represents bit 2 of the immediate operand
1505 ///    // M10 represents bits [1:0] of the immediate operand
1506 ///    i = M2 * 4;
1507 ///    j = M10 * 4;
1508 ///    for (k = 0; k < 8; k = k + 1) {
1509 ///      d0 = abs(X[i + k + 0] - Y[j + 0]);
1510 ///      d1 = abs(X[i + k + 1] - Y[j + 1]);
1511 ///      d2 = abs(X[i + k + 2] - Y[j + 2]);
1512 ///      d3 = abs(X[i + k + 3] - Y[j + 3]);
1513 ///      r[k] = d0 + d1 + d2 + d3;
1514 ///    }
1515 ///    \endcode
1516 /// \returns A 128-bit integer vector containing the sums of the sets of
1517 ///    absolute differences between both operands.
1518 #define _mm_mpsadbw_epu8(X, Y, M) \
1519   ((__m128i) __builtin_ia32_mpsadbw128((__v16qi)(__m128i)(X), \
1520                                        (__v16qi)(__m128i)(Y), (M)))
1521 
1522 /// Finds the minimum unsigned 16-bit element in the input 128-bit
1523 ///    vector of [8 x u16] and returns it and along with its index.
1524 ///
1525 /// \headerfile <x86intrin.h>
1526 ///
1527 /// This intrinsic corresponds to the <c> VPHMINPOSUW / PHMINPOSUW </c>
1528 /// instruction.
1529 ///
1530 /// \param __V
1531 ///    A 128-bit vector of [8 x u16].
1532 /// \returns A 128-bit value where bits [15:0] contain the minimum value found
1533 ///    in parameter \a __V, bits [18:16] contain the index of the minimum value
1534 ///    and the remaining bits are set to 0.
1535 static __inline__ __m128i __DEFAULT_FN_ATTRS
1536 _mm_minpos_epu16(__m128i __V)
1537 {
1538   return (__m128i) __builtin_ia32_phminposuw128((__v8hi)__V);
1539 }
1540 
1541 /* Handle the sse4.2 definitions here. */
1542 
1543 /* These definitions are normally in nmmintrin.h, but gcc puts them in here
1544    so we'll do the same.  */
1545 
1546 #undef __DEFAULT_FN_ATTRS
1547 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse4.2")))
1548 
1549 /* These specify the type of data that we're comparing.  */
1550 #define _SIDD_UBYTE_OPS                 0x00
1551 #define _SIDD_UWORD_OPS                 0x01
1552 #define _SIDD_SBYTE_OPS                 0x02
1553 #define _SIDD_SWORD_OPS                 0x03
1554 
1555 /* These specify the type of comparison operation.  */
1556 #define _SIDD_CMP_EQUAL_ANY             0x00
1557 #define _SIDD_CMP_RANGES                0x04
1558 #define _SIDD_CMP_EQUAL_EACH            0x08
1559 #define _SIDD_CMP_EQUAL_ORDERED         0x0c
1560 
1561 /* These macros specify the polarity of the operation.  */
1562 #define _SIDD_POSITIVE_POLARITY         0x00
1563 #define _SIDD_NEGATIVE_POLARITY         0x10
1564 #define _SIDD_MASKED_POSITIVE_POLARITY  0x20
1565 #define _SIDD_MASKED_NEGATIVE_POLARITY  0x30
1566 
1567 /* These macros are used in _mm_cmpXstri() to specify the return.  */
1568 #define _SIDD_LEAST_SIGNIFICANT         0x00
1569 #define _SIDD_MOST_SIGNIFICANT          0x40
1570 
1571 /* These macros are used in _mm_cmpXstri() to specify the return.  */
1572 #define _SIDD_BIT_MASK                  0x00
1573 #define _SIDD_UNIT_MASK                 0x40
1574 
1575 /* SSE4.2 Packed Comparison Intrinsics.  */
1576 /// Uses the immediate operand \a M to perform a comparison of string
1577 ///    data with implicitly defined lengths that is contained in source operands
1578 ///    \a A and \a B. Returns a 128-bit integer vector representing the result
1579 ///    mask of the comparison.
1580 ///
1581 /// \headerfile <x86intrin.h>
1582 ///
1583 /// \code
1584 /// __m128i _mm_cmpistrm(__m128i A, __m128i B, const int M);
1585 /// \endcode
1586 ///
1587 /// This intrinsic corresponds to the <c> VPCMPISTRM / PCMPISTRM </c>
1588 /// instruction.
1589 ///
1590 /// \param A
1591 ///    A 128-bit integer vector containing one of the source operands to be
1592 ///    compared.
1593 /// \param B
1594 ///    A 128-bit integer vector containing one of the source operands to be
1595 ///    compared.
1596 /// \param M
1597 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1598 ///    words, the type of comparison to perform, and the format of the return
1599 ///    value. \n
1600 ///    Bits [1:0]: Determine source data format. \n
1601 ///      00: 16 unsigned bytes \n
1602 ///      01: 8 unsigned words \n
1603 ///      10: 16 signed bytes \n
1604 ///      11: 8 signed words \n
1605 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1606 ///      00: Subset: Each character in \a B is compared for equality with all
1607 ///          the characters in \a A. \n
1608 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1609 ///          basis is greater than or equal for even-indexed elements in \a A,
1610 ///          and less than or equal for odd-indexed elements in \a A. \n
1611 ///      10: Match: Compare each pair of corresponding characters in \a A and
1612 ///          \a B for equality. \n
1613 ///      11: Substring: Search \a B for substring matches of \a A. \n
1614 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1615 ///                mask of the comparison results. \n
1616 ///      00: No effect. \n
1617 ///      01: Negate the bit mask. \n
1618 ///      10: No effect. \n
1619 ///      11: Negate the bit mask only for bits with an index less than or equal
1620 ///          to the size of \a A or \a B. \n
1621 ///    Bit [6]: Determines whether the result is zero-extended or expanded to 16
1622 ///             bytes. \n
1623 ///      0: The result is zero-extended to 16 bytes. \n
1624 ///      1: The result is expanded to 16 bytes (this expansion is performed by
1625 ///         repeating each bit 8 or 16 times).
1626 /// \returns Returns a 128-bit integer vector representing the result mask of
1627 ///    the comparison.
1628 #define _mm_cmpistrm(A, B, M) \
1629   ((__m128i)__builtin_ia32_pcmpistrm128((__v16qi)(__m128i)(A), \
1630                                         (__v16qi)(__m128i)(B), (int)(M)))
1631 
1632 /// Uses the immediate operand \a M to perform a comparison of string
1633 ///    data with implicitly defined lengths that is contained in source operands
1634 ///    \a A and \a B. Returns an integer representing the result index of the
1635 ///    comparison.
1636 ///
1637 /// \headerfile <x86intrin.h>
1638 ///
1639 /// \code
1640 /// int _mm_cmpistri(__m128i A, __m128i B, const int M);
1641 /// \endcode
1642 ///
1643 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1644 /// instruction.
1645 ///
1646 /// \param A
1647 ///    A 128-bit integer vector containing one of the source operands to be
1648 ///    compared.
1649 /// \param B
1650 ///    A 128-bit integer vector containing one of the source operands to be
1651 ///    compared.
1652 /// \param M
1653 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1654 ///    words, the type of comparison to perform, and the format of the return
1655 ///    value. \n
1656 ///    Bits [1:0]: Determine source data format. \n
1657 ///      00: 16 unsigned bytes \n
1658 ///      01: 8 unsigned words \n
1659 ///      10: 16 signed bytes \n
1660 ///      11: 8 signed words \n
1661 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1662 ///      00: Subset: Each character in \a B is compared for equality with all
1663 ///          the characters in \a A. \n
1664 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1665 ///          basis is greater than or equal for even-indexed elements in \a A,
1666 ///          and less than or equal for odd-indexed elements in \a A. \n
1667 ///      10: Match: Compare each pair of corresponding characters in \a A and
1668 ///          \a B for equality. \n
1669 ///      11: Substring: Search B for substring matches of \a A. \n
1670 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1671 ///                mask of the comparison results. \n
1672 ///      00: No effect. \n
1673 ///      01: Negate the bit mask. \n
1674 ///      10: No effect. \n
1675 ///      11: Negate the bit mask only for bits with an index less than or equal
1676 ///          to the size of \a A or \a B. \n
1677 ///    Bit [6]: Determines whether the index of the lowest set bit or the
1678 ///             highest set bit is returned. \n
1679 ///      0: The index of the least significant set bit. \n
1680 ///      1: The index of the most significant set bit. \n
1681 /// \returns Returns an integer representing the result index of the comparison.
1682 #define _mm_cmpistri(A, B, M) \
1683   ((int)__builtin_ia32_pcmpistri128((__v16qi)(__m128i)(A), \
1684                                    (__v16qi)(__m128i)(B), (int)(M)))
1685 
1686 /// Uses the immediate operand \a M to perform a comparison of string
1687 ///    data with explicitly defined lengths that is contained in source operands
1688 ///    \a A and \a B. Returns a 128-bit integer vector representing the result
1689 ///    mask of the comparison.
1690 ///
1691 /// \headerfile <x86intrin.h>
1692 ///
1693 /// \code
1694 /// __m128i _mm_cmpestrm(__m128i A, int LA, __m128i B, int LB, const int M);
1695 /// \endcode
1696 ///
1697 /// This intrinsic corresponds to the <c> VPCMPESTRM / PCMPESTRM </c>
1698 /// instruction.
1699 ///
1700 /// \param A
1701 ///    A 128-bit integer vector containing one of the source operands to be
1702 ///    compared.
1703 /// \param LA
1704 ///    An integer that specifies the length of the string in \a A.
1705 /// \param B
1706 ///    A 128-bit integer vector containing one of the source operands to be
1707 ///    compared.
1708 /// \param LB
1709 ///    An integer that specifies the length of the string in \a B.
1710 /// \param M
1711 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1712 ///    words, the type of comparison to perform, and the format of the return
1713 ///    value. \n
1714 ///    Bits [1:0]: Determine source data format. \n
1715 ///      00: 16 unsigned bytes \n
1716 ///      01: 8 unsigned words \n
1717 ///      10: 16 signed bytes \n
1718 ///      11: 8 signed words \n
1719 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1720 ///      00: Subset: Each character in \a B is compared for equality with all
1721 ///          the characters in \a A. \n
1722 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1723 ///          basis is greater than or equal for even-indexed elements in \a A,
1724 ///          and less than or equal for odd-indexed elements in \a A. \n
1725 ///      10: Match: Compare each pair of corresponding characters in \a A and
1726 ///          \a B for equality. \n
1727 ///      11: Substring: Search \a B for substring matches of \a A. \n
1728 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1729 ///                mask of the comparison results. \n
1730 ///      00: No effect. \n
1731 ///      01: Negate the bit mask. \n
1732 ///      10: No effect. \n
1733 ///      11: Negate the bit mask only for bits with an index less than or equal
1734 ///          to the size of \a A or \a B. \n
1735 ///    Bit [6]: Determines whether the result is zero-extended or expanded to 16
1736 ///             bytes. \n
1737 ///      0: The result is zero-extended to 16 bytes. \n
1738 ///      1: The result is expanded to 16 bytes (this expansion is performed by
1739 ///         repeating each bit 8 or 16 times). \n
1740 /// \returns Returns a 128-bit integer vector representing the result mask of
1741 ///    the comparison.
1742 #define _mm_cmpestrm(A, LA, B, LB, M) \
1743   ((__m128i)__builtin_ia32_pcmpestrm128((__v16qi)(__m128i)(A), (int)(LA), \
1744                                         (__v16qi)(__m128i)(B), (int)(LB), \
1745                                         (int)(M)))
1746 
1747 /// Uses the immediate operand \a M to perform a comparison of string
1748 ///    data with explicitly defined lengths that is contained in source operands
1749 ///    \a A and \a B. Returns an integer representing the result index of the
1750 ///    comparison.
1751 ///
1752 /// \headerfile <x86intrin.h>
1753 ///
1754 /// \code
1755 /// int _mm_cmpestri(__m128i A, int LA, __m128i B, int LB, const int M);
1756 /// \endcode
1757 ///
1758 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
1759 /// instruction.
1760 ///
1761 /// \param A
1762 ///    A 128-bit integer vector containing one of the source operands to be
1763 ///    compared.
1764 /// \param LA
1765 ///    An integer that specifies the length of the string in \a A.
1766 /// \param B
1767 ///    A 128-bit integer vector containing one of the source operands to be
1768 ///    compared.
1769 /// \param LB
1770 ///    An integer that specifies the length of the string in \a B.
1771 /// \param M
1772 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1773 ///    words, the type of comparison to perform, and the format of the return
1774 ///    value. \n
1775 ///    Bits [1:0]: Determine source data format. \n
1776 ///      00: 16 unsigned bytes \n
1777 ///      01: 8 unsigned words \n
1778 ///      10: 16 signed bytes \n
1779 ///      11: 8 signed words \n
1780 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1781 ///      00: Subset: Each character in \a B is compared for equality with all
1782 ///          the characters in \a A. \n
1783 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1784 ///          basis is greater than or equal for even-indexed elements in \a A,
1785 ///          and less than or equal for odd-indexed elements in \a A. \n
1786 ///      10: Match: Compare each pair of corresponding characters in \a A and
1787 ///          \a B for equality. \n
1788 ///      11: Substring: Search B for substring matches of \a A. \n
1789 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1790 ///                mask of the comparison results. \n
1791 ///      00: No effect. \n
1792 ///      01: Negate the bit mask. \n
1793 ///      10: No effect. \n
1794 ///      11: Negate the bit mask only for bits with an index less than or equal
1795 ///          to the size of \a A or \a B. \n
1796 ///    Bit [6]: Determines whether the index of the lowest set bit or the
1797 ///             highest set bit is returned. \n
1798 ///      0: The index of the least significant set bit. \n
1799 ///      1: The index of the most significant set bit. \n
1800 /// \returns Returns an integer representing the result index of the comparison.
1801 #define _mm_cmpestri(A, LA, B, LB, M) \
1802   ((int)__builtin_ia32_pcmpestri128((__v16qi)(__m128i)(A), (int)(LA), \
1803                                     (__v16qi)(__m128i)(B), (int)(LB), \
1804                                     (int)(M)))
1805 
1806 /* SSE4.2 Packed Comparison Intrinsics and EFlag Reading.  */
1807 /// Uses the immediate operand \a M to perform a comparison of string
1808 ///    data with implicitly defined lengths that is contained in source operands
1809 ///    \a A and \a B. Returns 1 if the bit mask is zero and the length of the
1810 ///    string in \a B is the maximum, otherwise, returns 0.
1811 ///
1812 /// \headerfile <x86intrin.h>
1813 ///
1814 /// \code
1815 /// int _mm_cmpistra(__m128i A, __m128i B, const int M);
1816 /// \endcode
1817 ///
1818 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1819 /// instruction.
1820 ///
1821 /// \param A
1822 ///    A 128-bit integer vector containing one of the source operands to be
1823 ///    compared.
1824 /// \param B
1825 ///    A 128-bit integer vector containing one of the source operands to be
1826 ///    compared.
1827 /// \param M
1828 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1829 ///    words and the type of comparison to perform. \n
1830 ///    Bits [1:0]: Determine source data format. \n
1831 ///      00: 16 unsigned bytes \n
1832 ///      01: 8 unsigned words \n
1833 ///      10: 16 signed bytes \n
1834 ///      11: 8 signed words \n
1835 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1836 ///      00: Subset: Each character in \a B is compared for equality with all
1837 ///          the characters in \a A. \n
1838 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1839 ///          basis is greater than or equal for even-indexed elements in \a A,
1840 ///          and less than or equal for odd-indexed elements in \a A. \n
1841 ///      10: Match: Compare each pair of corresponding characters in \a A and
1842 ///          \a B for equality. \n
1843 ///      11: Substring: Search \a B for substring matches of \a A. \n
1844 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1845 ///                mask of the comparison results. \n
1846 ///      00: No effect. \n
1847 ///      01: Negate the bit mask. \n
1848 ///      10: No effect. \n
1849 ///      11: Negate the bit mask only for bits with an index less than or equal
1850 ///          to the size of \a A or \a B. \n
1851 /// \returns Returns 1 if the bit mask is zero and the length of the string in
1852 ///    \a B is the maximum; otherwise, returns 0.
1853 #define _mm_cmpistra(A, B, M) \
1854   ((int)__builtin_ia32_pcmpistria128((__v16qi)(__m128i)(A), \
1855                                      (__v16qi)(__m128i)(B), (int)(M)))
1856 
1857 /// Uses the immediate operand \a M to perform a comparison of string
1858 ///    data with implicitly defined lengths that is contained in source operands
1859 ///    \a A and \a B. Returns 1 if the bit mask is non-zero, otherwise, returns
1860 ///    0.
1861 ///
1862 /// \headerfile <x86intrin.h>
1863 ///
1864 /// \code
1865 /// int _mm_cmpistrc(__m128i A, __m128i B, const int M);
1866 /// \endcode
1867 ///
1868 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1869 /// instruction.
1870 ///
1871 /// \param A
1872 ///    A 128-bit integer vector containing one of the source operands to be
1873 ///    compared.
1874 /// \param B
1875 ///    A 128-bit integer vector containing one of the source operands to be
1876 ///    compared.
1877 /// \param M
1878 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1879 ///    words and the type of comparison to perform. \n
1880 ///    Bits [1:0]: Determine source data format. \n
1881 ///      00: 16 unsigned bytes \n
1882 ///      01: 8 unsigned words \n
1883 ///      10: 16 signed bytes \n
1884 ///      11: 8 signed words \n
1885 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1886 ///      00: Subset: Each character in \a B is compared for equality with all
1887 ///          the characters in \a A. \n
1888 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1889 ///          basis is greater than or equal for even-indexed elements in \a A,
1890 ///          and less than or equal for odd-indexed elements in \a A. \n
1891 ///      10: Match: Compare each pair of corresponding characters in \a A and
1892 ///          \a B for equality. \n
1893 ///      11: Substring: Search B for substring matches of \a A. \n
1894 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1895 ///                mask of the comparison results. \n
1896 ///      00: No effect. \n
1897 ///      01: Negate the bit mask. \n
1898 ///      10: No effect. \n
1899 ///      11: Negate the bit mask only for bits with an index less than or equal
1900 ///          to the size of \a A or \a B.
1901 /// \returns Returns 1 if the bit mask is non-zero, otherwise, returns 0.
1902 #define _mm_cmpistrc(A, B, M) \
1903   ((int)__builtin_ia32_pcmpistric128((__v16qi)(__m128i)(A), \
1904                                      (__v16qi)(__m128i)(B), (int)(M)))
1905 
1906 /// Uses the immediate operand \a M to perform a comparison of string
1907 ///    data with implicitly defined lengths that is contained in source operands
1908 ///    \a A and \a B. Returns bit 0 of the resulting bit mask.
1909 ///
1910 /// \headerfile <x86intrin.h>
1911 ///
1912 /// \code
1913 /// int _mm_cmpistro(__m128i A, __m128i B, const int M);
1914 /// \endcode
1915 ///
1916 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1917 /// instruction.
1918 ///
1919 /// \param A
1920 ///    A 128-bit integer vector containing one of the source operands to be
1921 ///    compared.
1922 /// \param B
1923 ///    A 128-bit integer vector containing one of the source operands to be
1924 ///    compared.
1925 /// \param M
1926 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1927 ///    words and the type of comparison to perform. \n
1928 ///    Bits [1:0]: Determine source data format. \n
1929 ///      00: 16 unsigned bytes \n
1930 ///      01: 8 unsigned words \n
1931 ///      10: 16 signed bytes \n
1932 ///      11: 8 signed words \n
1933 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1934 ///      00: Subset: Each character in \a B is compared for equality with all
1935 ///          the characters in \a A. \n
1936 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1937 ///          basis is greater than or equal for even-indexed elements in \a A,
1938 ///          and less than or equal for odd-indexed elements in \a A. \n
1939 ///      10: Match: Compare each pair of corresponding characters in \a A and
1940 ///          \a B for equality. \n
1941 ///      11: Substring: Search B for substring matches of \a A. \n
1942 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1943 ///                mask of the comparison results. \n
1944 ///      00: No effect. \n
1945 ///      01: Negate the bit mask. \n
1946 ///      10: No effect. \n
1947 ///      11: Negate the bit mask only for bits with an index less than or equal
1948 ///          to the size of \a A or \a B. \n
1949 /// \returns Returns bit 0 of the resulting bit mask.
1950 #define _mm_cmpistro(A, B, M) \
1951   ((int)__builtin_ia32_pcmpistrio128((__v16qi)(__m128i)(A), \
1952                                      (__v16qi)(__m128i)(B), (int)(M)))
1953 
1954 /// Uses the immediate operand \a M to perform a comparison of string
1955 ///    data with implicitly defined lengths that is contained in source operands
1956 ///    \a A and \a B. Returns 1 if the length of the string in \a A is less than
1957 ///    the maximum, otherwise, returns 0.
1958 ///
1959 /// \headerfile <x86intrin.h>
1960 ///
1961 /// \code
1962 /// int _mm_cmpistrs(__m128i A, __m128i B, const int M);
1963 /// \endcode
1964 ///
1965 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1966 /// instruction.
1967 ///
1968 /// \param A
1969 ///    A 128-bit integer vector containing one of the source operands to be
1970 ///    compared.
1971 /// \param B
1972 ///    A 128-bit integer vector containing one of the source operands to be
1973 ///    compared.
1974 /// \param M
1975 ///    An 8-bit immediate operand specifying whether the characters are bytes or
1976 ///    words and the type of comparison to perform. \n
1977 ///    Bits [1:0]: Determine source data format. \n
1978 ///      00: 16 unsigned bytes \n
1979 ///      01: 8 unsigned words \n
1980 ///      10: 16 signed bytes \n
1981 ///      11: 8 signed words \n
1982 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
1983 ///      00: Subset: Each character in \a B is compared for equality with all
1984 ///          the characters in \a A. \n
1985 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
1986 ///          basis is greater than or equal for even-indexed elements in \a A,
1987 ///          and less than or equal for odd-indexed elements in \a A. \n
1988 ///      10: Match: Compare each pair of corresponding characters in \a A and
1989 ///          \a B for equality. \n
1990 ///      11: Substring: Search \a B for substring matches of \a A. \n
1991 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
1992 ///                mask of the comparison results. \n
1993 ///      00: No effect. \n
1994 ///      01: Negate the bit mask. \n
1995 ///      10: No effect. \n
1996 ///      11: Negate the bit mask only for bits with an index less than or equal
1997 ///          to the size of \a A or \a B. \n
1998 /// \returns Returns 1 if the length of the string in \a A is less than the
1999 ///    maximum, otherwise, returns 0.
2000 #define _mm_cmpistrs(A, B, M) \
2001   ((int)__builtin_ia32_pcmpistris128((__v16qi)(__m128i)(A), \
2002                                      (__v16qi)(__m128i)(B), (int)(M)))
2003 
2004 /// Uses the immediate operand \a M to perform a comparison of string
2005 ///    data with implicitly defined lengths that is contained in source operands
2006 ///    \a A and \a B. Returns 1 if the length of the string in \a B is less than
2007 ///    the maximum, otherwise, returns 0.
2008 ///
2009 /// \headerfile <x86intrin.h>
2010 ///
2011 /// \code
2012 /// int _mm_cmpistrz(__m128i A, __m128i B, const int M);
2013 /// \endcode
2014 ///
2015 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
2016 /// instruction.
2017 ///
2018 /// \param A
2019 ///    A 128-bit integer vector containing one of the source operands to be
2020 ///    compared.
2021 /// \param B
2022 ///    A 128-bit integer vector containing one of the source operands to be
2023 ///    compared.
2024 /// \param M
2025 ///    An 8-bit immediate operand specifying whether the characters are bytes or
2026 ///    words and the type of comparison to perform. \n
2027 ///    Bits [1:0]: Determine source data format. \n
2028 ///      00: 16 unsigned bytes \n
2029 ///      01: 8 unsigned words \n
2030 ///      10: 16 signed bytes \n
2031 ///      11: 8 signed words \n
2032 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
2033 ///      00: Subset: Each character in \a B is compared for equality with all
2034 ///          the characters in \a A. \n
2035 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
2036 ///          basis is greater than or equal for even-indexed elements in \a A,
2037 ///          and less than or equal for odd-indexed elements in \a A. \n
2038 ///      10: Match: Compare each pair of corresponding characters in \a A and
2039 ///          \a B for equality. \n
2040 ///      11: Substring: Search \a B for substring matches of \a A. \n
2041 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
2042 ///                mask of the comparison results. \n
2043 ///      00: No effect. \n
2044 ///      01: Negate the bit mask. \n
2045 ///      10: No effect. \n
2046 ///      11: Negate the bit mask only for bits with an index less than or equal
2047 ///          to the size of \a A or \a B.
2048 /// \returns Returns 1 if the length of the string in \a B is less than the
2049 ///    maximum, otherwise, returns 0.
2050 #define _mm_cmpistrz(A, B, M) \
2051   ((int)__builtin_ia32_pcmpistriz128((__v16qi)(__m128i)(A), \
2052                                      (__v16qi)(__m128i)(B), (int)(M)))
2053 
2054 /// Uses the immediate operand \a M to perform a comparison of string
2055 ///    data with explicitly defined lengths that is contained in source operands
2056 ///    \a A and \a B. Returns 1 if the bit mask is zero and the length of the
2057 ///    string in \a B is the maximum, otherwise, returns 0.
2058 ///
2059 /// \headerfile <x86intrin.h>
2060 ///
2061 /// \code
2062 /// int _mm_cmpestra(__m128i A, int LA, __m128i B, int LB, const int M);
2063 /// \endcode
2064 ///
2065 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2066 /// instruction.
2067 ///
2068 /// \param A
2069 ///    A 128-bit integer vector containing one of the source operands to be
2070 ///    compared.
2071 /// \param LA
2072 ///    An integer that specifies the length of the string in \a A.
2073 /// \param B
2074 ///    A 128-bit integer vector containing one of the source operands to be
2075 ///    compared.
2076 /// \param LB
2077 ///    An integer that specifies the length of the string in \a B.
2078 /// \param M
2079 ///    An 8-bit immediate operand specifying whether the characters are bytes or
2080 ///    words and the type of comparison to perform. \n
2081 ///    Bits [1:0]: Determine source data format. \n
2082 ///      00: 16 unsigned bytes \n
2083 ///      01: 8 unsigned words \n
2084 ///      10: 16 signed bytes \n
2085 ///      11: 8 signed words \n
2086 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
2087 ///      00: Subset: Each character in \a B is compared for equality with all
2088 ///          the characters in \a A. \n
2089 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
2090 ///          basis is greater than or equal for even-indexed elements in \a A,
2091 ///          and less than or equal for odd-indexed elements in \a A. \n
2092 ///      10: Match: Compare each pair of corresponding characters in \a A and
2093 ///          \a B for equality. \n
2094 ///      11: Substring: Search \a B for substring matches of \a A. \n
2095 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
2096 ///                mask of the comparison results. \n
2097 ///      00: No effect. \n
2098 ///      01: Negate the bit mask. \n
2099 ///      10: No effect. \n
2100 ///      11: Negate the bit mask only for bits with an index less than or equal
2101 ///          to the size of \a A or \a B.
2102 /// \returns Returns 1 if the bit mask is zero and the length of the string in
2103 ///    \a B is the maximum, otherwise, returns 0.
2104 #define _mm_cmpestra(A, LA, B, LB, M) \
2105   ((int)__builtin_ia32_pcmpestria128((__v16qi)(__m128i)(A), (int)(LA), \
2106                                      (__v16qi)(__m128i)(B), (int)(LB), \
2107                                      (int)(M)))
2108 
2109 /// Uses the immediate operand \a M to perform a comparison of string
2110 ///    data with explicitly defined lengths that is contained in source operands
2111 ///    \a A and \a B. Returns 1 if the resulting mask is non-zero, otherwise,
2112 ///    returns 0.
2113 ///
2114 /// \headerfile <x86intrin.h>
2115 ///
2116 /// \code
2117 /// int _mm_cmpestrc(__m128i A, int LA, __m128i B, int LB, const int M);
2118 /// \endcode
2119 ///
2120 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2121 /// instruction.
2122 ///
2123 /// \param A
2124 ///    A 128-bit integer vector containing one of the source operands to be
2125 ///    compared.
2126 /// \param LA
2127 ///    An integer that specifies the length of the string in \a A.
2128 /// \param B
2129 ///    A 128-bit integer vector containing one of the source operands to be
2130 ///    compared.
2131 /// \param LB
2132 ///    An integer that specifies the length of the string in \a B.
2133 /// \param M
2134 ///    An 8-bit immediate operand specifying whether the characters are bytes or
2135 ///    words and the type of comparison to perform. \n
2136 ///    Bits [1:0]: Determine source data format. \n
2137 ///      00: 16 unsigned bytes \n
2138 ///      01: 8 unsigned words \n
2139 ///      10: 16 signed bytes \n
2140 ///      11: 8 signed words \n
2141 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
2142 ///      00: Subset: Each character in \a B is compared for equality with all
2143 ///          the characters in \a A. \n
2144 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
2145 ///          basis is greater than or equal for even-indexed elements in \a A,
2146 ///          and less than or equal for odd-indexed elements in \a A. \n
2147 ///      10: Match: Compare each pair of corresponding characters in \a A and
2148 ///          \a B for equality. \n
2149 ///      11: Substring: Search \a B for substring matches of \a A. \n
2150 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
2151 ///                mask of the comparison results. \n
2152 ///      00: No effect. \n
2153 ///      01: Negate the bit mask. \n
2154 ///      10: No effect. \n
2155 ///      11: Negate the bit mask only for bits with an index less than or equal
2156 ///          to the size of \a A or \a B. \n
2157 /// \returns Returns 1 if the resulting mask is non-zero, otherwise, returns 0.
2158 #define _mm_cmpestrc(A, LA, B, LB, M) \
2159   ((int)__builtin_ia32_pcmpestric128((__v16qi)(__m128i)(A), (int)(LA), \
2160                                      (__v16qi)(__m128i)(B), (int)(LB), \
2161                                      (int)(M)))
2162 
2163 /// Uses the immediate operand \a M to perform a comparison of string
2164 ///    data with explicitly defined lengths that is contained in source operands
2165 ///    \a A and \a B. Returns bit 0 of the resulting bit mask.
2166 ///
2167 /// \headerfile <x86intrin.h>
2168 ///
2169 /// \code
2170 /// int _mm_cmpestro(__m128i A, int LA, __m128i B, int LB, const int M);
2171 /// \endcode
2172 ///
2173 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2174 /// instruction.
2175 ///
2176 /// \param A
2177 ///    A 128-bit integer vector containing one of the source operands to be
2178 ///    compared.
2179 /// \param LA
2180 ///    An integer that specifies the length of the string in \a A.
2181 /// \param B
2182 ///    A 128-bit integer vector containing one of the source operands to be
2183 ///    compared.
2184 /// \param LB
2185 ///    An integer that specifies the length of the string in \a B.
2186 /// \param M
2187 ///    An 8-bit immediate operand specifying whether the characters are bytes or
2188 ///    words and the type of comparison to perform. \n
2189 ///    Bits [1:0]: Determine source data format. \n
2190 ///      00: 16 unsigned bytes \n
2191 ///      01: 8 unsigned words \n
2192 ///      10: 16 signed bytes \n
2193 ///      11: 8 signed words \n
2194 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
2195 ///      00: Subset: Each character in \a B is compared for equality with all
2196 ///          the characters in \a A. \n
2197 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
2198 ///          basis is greater than or equal for even-indexed elements in \a A,
2199 ///          and less than or equal for odd-indexed elements in \a A. \n
2200 ///      10: Match: Compare each pair of corresponding characters in \a A and
2201 ///          \a B for equality. \n
2202 ///      11: Substring: Search \a B for substring matches of \a A. \n
2203 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
2204 ///                mask of the comparison results. \n
2205 ///      00: No effect. \n
2206 ///      01: Negate the bit mask. \n
2207 ///      10: No effect. \n
2208 ///      11: Negate the bit mask only for bits with an index less than or equal
2209 ///          to the size of \a A or \a B.
2210 /// \returns Returns bit 0 of the resulting bit mask.
2211 #define _mm_cmpestro(A, LA, B, LB, M) \
2212   ((int)__builtin_ia32_pcmpestrio128((__v16qi)(__m128i)(A), (int)(LA), \
2213                                      (__v16qi)(__m128i)(B), (int)(LB), \
2214                                      (int)(M)))
2215 
2216 /// Uses the immediate operand \a M to perform a comparison of string
2217 ///    data with explicitly defined lengths that is contained in source operands
2218 ///    \a A and \a B. Returns 1 if the length of the string in \a A is less than
2219 ///    the maximum, otherwise, returns 0.
2220 ///
2221 /// \headerfile <x86intrin.h>
2222 ///
2223 /// \code
2224 /// int _mm_cmpestrs(__m128i A, int LA, __m128i B, int LB, const int M);
2225 /// \endcode
2226 ///
2227 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2228 /// instruction.
2229 ///
2230 /// \param A
2231 ///    A 128-bit integer vector containing one of the source operands to be
2232 ///    compared.
2233 /// \param LA
2234 ///    An integer that specifies the length of the string in \a A.
2235 /// \param B
2236 ///    A 128-bit integer vector containing one of the source operands to be
2237 ///    compared.
2238 /// \param LB
2239 ///    An integer that specifies the length of the string in \a B.
2240 /// \param M
2241 ///    An 8-bit immediate operand specifying whether the characters are bytes or
2242 ///    words and the type of comparison to perform. \n
2243 ///    Bits [1:0]: Determine source data format. \n
2244 ///      00: 16 unsigned bytes \n
2245 ///      01: 8 unsigned words \n
2246 ///      10: 16 signed bytes \n
2247 ///      11: 8 signed words \n
2248 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
2249 ///      00: Subset: Each character in \a B is compared for equality with all
2250 ///          the characters in \a A. \n
2251 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
2252 ///          basis is greater than or equal for even-indexed elements in \a A,
2253 ///          and less than or equal for odd-indexed elements in \a A. \n
2254 ///      10: Match: Compare each pair of corresponding characters in \a A and
2255 ///          \a B for equality. \n
2256 ///      11: Substring: Search \a B for substring matches of \a A. \n
2257 ///    Bits [5:4]: Determine whether to perform a one's complement in the bit
2258 ///                mask of the comparison results. \n
2259 ///      00: No effect. \n
2260 ///      01: Negate the bit mask. \n
2261 ///      10: No effect. \n
2262 ///      11: Negate the bit mask only for bits with an index less than or equal
2263 ///          to the size of \a A or \a B. \n
2264 /// \returns Returns 1 if the length of the string in \a A is less than the
2265 ///    maximum, otherwise, returns 0.
2266 #define _mm_cmpestrs(A, LA, B, LB, M) \
2267   ((int)__builtin_ia32_pcmpestris128((__v16qi)(__m128i)(A), (int)(LA), \
2268                                      (__v16qi)(__m128i)(B), (int)(LB), \
2269                                      (int)(M)))
2270 
2271 /// Uses the immediate operand \a M to perform a comparison of string
2272 ///    data with explicitly defined lengths that is contained in source operands
2273 ///    \a A and \a B. Returns 1 if the length of the string in \a B is less than
2274 ///    the maximum, otherwise, returns 0.
2275 ///
2276 /// \headerfile <x86intrin.h>
2277 ///
2278 /// \code
2279 /// int _mm_cmpestrz(__m128i A, int LA, __m128i B, int LB, const int M);
2280 /// \endcode
2281 ///
2282 /// This intrinsic corresponds to the <c> VPCMPESTRI </c> instruction.
2283 ///
2284 /// \param A
2285 ///    A 128-bit integer vector containing one of the source operands to be
2286 ///    compared.
2287 /// \param LA
2288 ///    An integer that specifies the length of the string in \a A.
2289 /// \param B
2290 ///    A 128-bit integer vector containing one of the source operands to be
2291 ///    compared.
2292 /// \param LB
2293 ///    An integer that specifies the length of the string in \a B.
2294 /// \param M
2295 ///    An 8-bit immediate operand specifying whether the characters are bytes or
2296 ///    words and the type of comparison to perform. \n
2297 ///    Bits [1:0]: Determine source data format. \n
2298 ///      00: 16 unsigned bytes  \n
2299 ///      01: 8 unsigned words \n
2300 ///      10: 16 signed bytes \n
2301 ///      11: 8 signed words \n
2302 ///    Bits [3:2]: Determine comparison type and aggregation method. \n
2303 ///      00: Subset: Each character in \a B is compared for equality with all
2304 ///          the characters in \a A. \n
2305 ///      01: Ranges: Each character in \a B is compared to \a A. The comparison
2306 ///          basis is greater than or equal for even-indexed elements in \a A,
2307 ///          and less than or equal for odd-indexed elements in \a A. \n
2308 ///      10: Match: Compare each pair of corresponding characters in \a A and
2309 ///          \a B for equality. \n
2310 ///      11: Substring: Search \a B for substring matches of \a A. \n
2311 ///    Bits [5:4]: Determine whether to perform a one's complement on the bit
2312 ///                mask of the comparison results. \n
2313 ///      00: No effect. \n
2314 ///      01: Negate the bit mask. \n
2315 ///      10: No effect. \n
2316 ///      11: Negate the bit mask only for bits with an index less than or equal
2317 ///          to the size of \a A or \a B.
2318 /// \returns Returns 1 if the length of the string in \a B is less than the
2319 ///    maximum, otherwise, returns 0.
2320 #define _mm_cmpestrz(A, LA, B, LB, M) \
2321   ((int)__builtin_ia32_pcmpestriz128((__v16qi)(__m128i)(A), (int)(LA), \
2322                                      (__v16qi)(__m128i)(B), (int)(LB), \
2323                                      (int)(M)))
2324 
2325 /* SSE4.2 Compare Packed Data -- Greater Than.  */
2326 /// Compares each of the corresponding 64-bit values of the 128-bit
2327 ///    integer vectors to determine if the values in the first operand are
2328 ///    greater than those in the second operand.
2329 ///
2330 /// \headerfile <x86intrin.h>
2331 ///
2332 /// This intrinsic corresponds to the <c> VPCMPGTQ / PCMPGTQ </c> instruction.
2333 ///
2334 /// \param __V1
2335 ///    A 128-bit integer vector.
2336 /// \param __V2
2337 ///    A 128-bit integer vector.
2338 /// \returns A 128-bit integer vector containing the comparison results.
2339 static __inline__ __m128i __DEFAULT_FN_ATTRS
2340 _mm_cmpgt_epi64(__m128i __V1, __m128i __V2)
2341 {
2342   return (__m128i)((__v2di)__V1 > (__v2di)__V2);
2343 }
2344 
2345 #undef __DEFAULT_FN_ATTRS
2346 
2347 #include <popcntintrin.h>
2348 
2349 #include <crc32intrin.h>
2350 
2351 #endif /* __SMMINTRIN_H */
2352