1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides C++ code generation targeting the Microsoft Visual C++ ABI. 10 // The class in this file generates structures that follow the Microsoft 11 // Visual C++ ABI, which is actually not very well documented at all outside 12 // of Microsoft. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGVTables.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenTypes.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/CXXInheritance.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/StmtCXX.h" 27 #include "clang/AST/VTableBuilder.h" 28 #include "clang/CodeGen/ConstantInitBuilder.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringSet.h" 31 #include "llvm/IR/Intrinsics.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 namespace { 37 38 /// Holds all the vbtable globals for a given class. 39 struct VBTableGlobals { 40 const VPtrInfoVector *VBTables; 41 SmallVector<llvm::GlobalVariable *, 2> Globals; 42 }; 43 44 class MicrosoftCXXABI : public CGCXXABI { 45 public: 46 MicrosoftCXXABI(CodeGenModule &CGM) 47 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), 48 ClassHierarchyDescriptorType(nullptr), 49 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), 50 ThrowInfoType(nullptr) { 51 assert(!(CGM.getLangOpts().isExplicitDefaultVisibilityExportMapping() || 52 CGM.getLangOpts().isAllDefaultVisibilityExportMapping()) && 53 "visibility export mapping option unimplemented in this ABI"); 54 } 55 56 bool HasThisReturn(GlobalDecl GD) const override; 57 bool hasMostDerivedReturn(GlobalDecl GD) const override; 58 59 bool classifyReturnType(CGFunctionInfo &FI) const override; 60 61 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; 62 63 bool isSRetParameterAfterThis() const override { return true; } 64 65 bool isThisCompleteObject(GlobalDecl GD) const override { 66 // The Microsoft ABI doesn't use separate complete-object vs. 67 // base-object variants of constructors, but it does of destructors. 68 if (isa<CXXDestructorDecl>(GD.getDecl())) { 69 switch (GD.getDtorType()) { 70 case Dtor_Complete: 71 case Dtor_Deleting: 72 return true; 73 74 case Dtor_Base: 75 return false; 76 77 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); 78 } 79 llvm_unreachable("bad dtor kind"); 80 } 81 82 // No other kinds. 83 return false; 84 } 85 86 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, 87 FunctionArgList &Args) const override { 88 assert(Args.size() >= 2 && 89 "expected the arglist to have at least two args!"); 90 // The 'most_derived' parameter goes second if the ctor is variadic and 91 // has v-bases. 92 if (CD->getParent()->getNumVBases() > 0 && 93 CD->getType()->castAs<FunctionProtoType>()->isVariadic()) 94 return 2; 95 return 1; 96 } 97 98 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { 99 std::vector<CharUnits> VBPtrOffsets; 100 const ASTContext &Context = getContext(); 101 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 102 103 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 104 for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) { 105 const ASTRecordLayout &SubobjectLayout = 106 Context.getASTRecordLayout(VBT->IntroducingObject); 107 CharUnits Offs = VBT->NonVirtualOffset; 108 Offs += SubobjectLayout.getVBPtrOffset(); 109 if (VBT->getVBaseWithVPtr()) 110 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 111 VBPtrOffsets.push_back(Offs); 112 } 113 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end()); 114 return VBPtrOffsets; 115 } 116 117 StringRef GetPureVirtualCallName() override { return "_purecall"; } 118 StringRef GetDeletedVirtualCallName() override { return "_purecall"; } 119 120 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, 121 Address Ptr, QualType ElementType, 122 const CXXDestructorDecl *Dtor) override; 123 124 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; 125 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; 126 127 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; 128 129 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, 130 const VPtrInfo &Info); 131 132 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; 133 CatchTypeInfo 134 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; 135 136 /// MSVC needs an extra flag to indicate a catchall. 137 CatchTypeInfo getCatchAllTypeInfo() override { 138 // For -EHa catch(...) must handle HW exception 139 // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions 140 if (getContext().getLangOpts().EHAsynch) 141 return CatchTypeInfo{nullptr, 0}; 142 else 143 return CatchTypeInfo{nullptr, 0x40}; 144 } 145 146 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; 147 void EmitBadTypeidCall(CodeGenFunction &CGF) override; 148 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, 149 Address ThisPtr, 150 llvm::Type *StdTypeInfoPtrTy) override; 151 152 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 153 QualType SrcRecordTy) override; 154 155 llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value, 156 QualType SrcRecordTy, QualType DestTy, 157 QualType DestRecordTy, 158 llvm::BasicBlock *CastEnd) override; 159 160 llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 161 QualType SrcRecordTy, 162 QualType DestTy) override; 163 164 bool EmitBadCastCall(CodeGenFunction &CGF) override; 165 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { 166 return false; 167 } 168 169 llvm::Value * 170 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, 171 const CXXRecordDecl *ClassDecl, 172 const CXXRecordDecl *BaseClassDecl) override; 173 174 llvm::BasicBlock * 175 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 176 const CXXRecordDecl *RD) override; 177 178 llvm::BasicBlock * 179 EmitDtorCompleteObjectHandler(CodeGenFunction &CGF); 180 181 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, 182 const CXXRecordDecl *RD) override; 183 184 void EmitCXXConstructors(const CXXConstructorDecl *D) override; 185 186 // Background on MSVC destructors 187 // ============================== 188 // 189 // Both Itanium and MSVC ABIs have destructor variants. The variant names 190 // roughly correspond in the following way: 191 // Itanium Microsoft 192 // Base -> no name, just ~Class 193 // Complete -> vbase destructor 194 // Deleting -> scalar deleting destructor 195 // vector deleting destructor 196 // 197 // The base and complete destructors are the same as in Itanium, although the 198 // complete destructor does not accept a VTT parameter when there are virtual 199 // bases. A separate mechanism involving vtordisps is used to ensure that 200 // virtual methods of destroyed subobjects are not called. 201 // 202 // The deleting destructors accept an i32 bitfield as a second parameter. Bit 203 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this 204 // pointer points to an array. The scalar deleting destructor assumes that 205 // bit 2 is zero, and therefore does not contain a loop. 206 // 207 // For virtual destructors, only one entry is reserved in the vftable, and it 208 // always points to the vector deleting destructor. The vector deleting 209 // destructor is the most general, so it can be used to destroy objects in 210 // place, delete single heap objects, or delete arrays. 211 // 212 // A TU defining a non-inline destructor is only guaranteed to emit a base 213 // destructor, and all of the other variants are emitted on an as-needed basis 214 // in COMDATs. Because a non-base destructor can be emitted in a TU that 215 // lacks a definition for the destructor, non-base destructors must always 216 // delegate to or alias the base destructor. 217 218 AddedStructorArgCounts 219 buildStructorSignature(GlobalDecl GD, 220 SmallVectorImpl<CanQualType> &ArgTys) override; 221 222 /// Non-base dtors should be emitted as delegating thunks in this ABI. 223 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, 224 CXXDtorType DT) const override { 225 return DT != Dtor_Base; 226 } 227 228 void setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 229 const CXXDestructorDecl *Dtor, 230 CXXDtorType DT) const override; 231 232 llvm::GlobalValue::LinkageTypes 233 getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor, 234 CXXDtorType DT) const override; 235 236 void EmitCXXDestructors(const CXXDestructorDecl *D) override; 237 238 const CXXRecordDecl * 239 getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override { 240 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) { 241 MethodVFTableLocation ML = 242 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD); 243 // The vbases might be ordered differently in the final overrider object 244 // and the complete object, so the "this" argument may sometimes point to 245 // memory that has no particular type (e.g. past the complete object). 246 // In this case, we just use a generic pointer type. 247 // FIXME: might want to have a more precise type in the non-virtual 248 // multiple inheritance case. 249 if (ML.VBase || !ML.VFPtrOffset.isZero()) 250 return nullptr; 251 } 252 return MD->getParent(); 253 } 254 255 Address 256 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, 257 Address This, 258 bool VirtualCall) override; 259 260 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, 261 FunctionArgList &Params) override; 262 263 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; 264 265 AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, 266 const CXXConstructorDecl *D, 267 CXXCtorType Type, 268 bool ForVirtualBase, 269 bool Delegating) override; 270 271 llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, 272 const CXXDestructorDecl *DD, 273 CXXDtorType Type, 274 bool ForVirtualBase, 275 bool Delegating) override; 276 277 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, 278 CXXDtorType Type, bool ForVirtualBase, 279 bool Delegating, Address This, 280 QualType ThisTy) override; 281 282 void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD, 283 llvm::GlobalVariable *VTable); 284 285 void emitVTableDefinitions(CodeGenVTables &CGVT, 286 const CXXRecordDecl *RD) override; 287 288 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, 289 CodeGenFunction::VPtr Vptr) override; 290 291 /// Don't initialize vptrs if dynamic class 292 /// is marked with with the 'novtable' attribute. 293 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { 294 return !VTableClass->hasAttr<MSNoVTableAttr>(); 295 } 296 297 llvm::Constant * 298 getVTableAddressPoint(BaseSubobject Base, 299 const CXXRecordDecl *VTableClass) override; 300 301 llvm::Value *getVTableAddressPointInStructor( 302 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, 303 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; 304 305 llvm::Constant * 306 getVTableAddressPointForConstExpr(BaseSubobject Base, 307 const CXXRecordDecl *VTableClass) override; 308 309 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, 310 CharUnits VPtrOffset) override; 311 312 CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, 313 Address This, llvm::Type *Ty, 314 SourceLocation Loc) override; 315 316 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, 317 const CXXDestructorDecl *Dtor, 318 CXXDtorType DtorType, Address This, 319 DeleteOrMemberCallExpr E) override; 320 321 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, 322 CallArgList &CallArgs) override { 323 assert(GD.getDtorType() == Dtor_Deleting && 324 "Only deleting destructor thunks are available in this ABI"); 325 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), 326 getContext().IntTy); 327 } 328 329 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; 330 331 llvm::GlobalVariable * 332 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 333 llvm::GlobalVariable::LinkageTypes Linkage); 334 335 llvm::GlobalVariable * 336 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 337 const CXXRecordDecl *DstRD) { 338 SmallString<256> OutName; 339 llvm::raw_svector_ostream Out(OutName); 340 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); 341 StringRef MangledName = OutName.str(); 342 343 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName)) 344 return VDispMap; 345 346 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 347 unsigned NumEntries = 1 + SrcRD->getNumVBases(); 348 SmallVector<llvm::Constant *, 4> Map(NumEntries, 349 llvm::UndefValue::get(CGM.IntTy)); 350 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0); 351 bool AnyDifferent = false; 352 for (const auto &I : SrcRD->vbases()) { 353 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 354 if (!DstRD->isVirtuallyDerivedFrom(VBase)) 355 continue; 356 357 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase); 358 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase); 359 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4); 360 AnyDifferent |= SrcVBIndex != DstVBIndex; 361 } 362 // This map would be useless, don't use it. 363 if (!AnyDifferent) 364 return nullptr; 365 366 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size()); 367 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map); 368 llvm::GlobalValue::LinkageTypes Linkage = 369 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() 370 ? llvm::GlobalValue::LinkOnceODRLinkage 371 : llvm::GlobalValue::InternalLinkage; 372 auto *VDispMap = new llvm::GlobalVariable( 373 CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage, 374 /*Initializer=*/Init, MangledName); 375 return VDispMap; 376 } 377 378 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, 379 llvm::GlobalVariable *GV) const; 380 381 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, 382 GlobalDecl GD, bool ReturnAdjustment) override { 383 GVALinkage Linkage = 384 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); 385 386 if (Linkage == GVA_Internal) 387 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); 388 else if (ReturnAdjustment) 389 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); 390 else 391 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 392 } 393 394 bool exportThunk() override { return false; } 395 396 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, 397 const ThisAdjustment &TA) override; 398 399 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 400 const ReturnAdjustment &RA) override; 401 402 void EmitThreadLocalInitFuncs( 403 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 404 ArrayRef<llvm::Function *> CXXThreadLocalInits, 405 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; 406 407 bool usesThreadWrapperFunction(const VarDecl *VD) const override { 408 return getContext().getLangOpts().isCompatibleWithMSVC( 409 LangOptions::MSVC2019_5) && 410 (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD)); 411 } 412 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, 413 QualType LValType) override; 414 415 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 416 llvm::GlobalVariable *DeclPtr, 417 bool PerformInit) override; 418 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 419 llvm::FunctionCallee Dtor, 420 llvm::Constant *Addr) override; 421 422 // ==== Notes on array cookies ========= 423 // 424 // MSVC seems to only use cookies when the class has a destructor; a 425 // two-argument usual array deallocation function isn't sufficient. 426 // 427 // For example, this code prints "100" and "1": 428 // struct A { 429 // char x; 430 // void *operator new[](size_t sz) { 431 // printf("%u\n", sz); 432 // return malloc(sz); 433 // } 434 // void operator delete[](void *p, size_t sz) { 435 // printf("%u\n", sz); 436 // free(p); 437 // } 438 // }; 439 // int main() { 440 // A *p = new A[100]; 441 // delete[] p; 442 // } 443 // Whereas it prints "104" and "104" if you give A a destructor. 444 445 bool requiresArrayCookie(const CXXDeleteExpr *expr, 446 QualType elementType) override; 447 bool requiresArrayCookie(const CXXNewExpr *expr) override; 448 CharUnits getArrayCookieSizeImpl(QualType type) override; 449 Address InitializeArrayCookie(CodeGenFunction &CGF, 450 Address NewPtr, 451 llvm::Value *NumElements, 452 const CXXNewExpr *expr, 453 QualType ElementType) override; 454 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 455 Address allocPtr, 456 CharUnits cookieSize) override; 457 458 friend struct MSRTTIBuilder; 459 460 bool isImageRelative() const { 461 return CGM.getTarget().getPointerWidth(/*AddrSpace=*/0) == 64; 462 } 463 464 // 5 routines for constructing the llvm types for MS RTTI structs. 465 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { 466 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); 467 TDTypeName += llvm::utostr(TypeInfoString.size()); 468 llvm::StructType *&TypeDescriptorType = 469 TypeDescriptorTypeMap[TypeInfoString.size()]; 470 if (TypeDescriptorType) 471 return TypeDescriptorType; 472 llvm::Type *FieldTypes[] = { 473 CGM.Int8PtrPtrTy, 474 CGM.Int8PtrTy, 475 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; 476 TypeDescriptorType = 477 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); 478 return TypeDescriptorType; 479 } 480 481 llvm::Type *getImageRelativeType(llvm::Type *PtrType) { 482 if (!isImageRelative()) 483 return PtrType; 484 return CGM.IntTy; 485 } 486 487 llvm::StructType *getBaseClassDescriptorType() { 488 if (BaseClassDescriptorType) 489 return BaseClassDescriptorType; 490 llvm::Type *FieldTypes[] = { 491 getImageRelativeType(CGM.Int8PtrTy), 492 CGM.IntTy, 493 CGM.IntTy, 494 CGM.IntTy, 495 CGM.IntTy, 496 CGM.IntTy, 497 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 498 }; 499 BaseClassDescriptorType = llvm::StructType::create( 500 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); 501 return BaseClassDescriptorType; 502 } 503 504 llvm::StructType *getClassHierarchyDescriptorType() { 505 if (ClassHierarchyDescriptorType) 506 return ClassHierarchyDescriptorType; 507 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. 508 ClassHierarchyDescriptorType = llvm::StructType::create( 509 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); 510 llvm::Type *FieldTypes[] = { 511 CGM.IntTy, 512 CGM.IntTy, 513 CGM.IntTy, 514 getImageRelativeType( 515 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), 516 }; 517 ClassHierarchyDescriptorType->setBody(FieldTypes); 518 return ClassHierarchyDescriptorType; 519 } 520 521 llvm::StructType *getCompleteObjectLocatorType() { 522 if (CompleteObjectLocatorType) 523 return CompleteObjectLocatorType; 524 CompleteObjectLocatorType = llvm::StructType::create( 525 CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); 526 llvm::Type *FieldTypes[] = { 527 CGM.IntTy, 528 CGM.IntTy, 529 CGM.IntTy, 530 getImageRelativeType(CGM.Int8PtrTy), 531 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 532 getImageRelativeType(CompleteObjectLocatorType), 533 }; 534 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); 535 if (!isImageRelative()) 536 FieldTypesRef = FieldTypesRef.drop_back(); 537 CompleteObjectLocatorType->setBody(FieldTypesRef); 538 return CompleteObjectLocatorType; 539 } 540 541 llvm::GlobalVariable *getImageBase() { 542 StringRef Name = "__ImageBase"; 543 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) 544 return GV; 545 546 auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, 547 /*isConstant=*/true, 548 llvm::GlobalValue::ExternalLinkage, 549 /*Initializer=*/nullptr, Name); 550 CGM.setDSOLocal(GV); 551 return GV; 552 } 553 554 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { 555 if (!isImageRelative()) 556 return PtrVal; 557 558 if (PtrVal->isNullValue()) 559 return llvm::Constant::getNullValue(CGM.IntTy); 560 561 llvm::Constant *ImageBaseAsInt = 562 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); 563 llvm::Constant *PtrValAsInt = 564 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); 565 llvm::Constant *Diff = 566 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, 567 /*HasNUW=*/true, /*HasNSW=*/true); 568 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); 569 } 570 571 private: 572 MicrosoftMangleContext &getMangleContext() { 573 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); 574 } 575 576 llvm::Constant *getZeroInt() { 577 return llvm::ConstantInt::get(CGM.IntTy, 0); 578 } 579 580 llvm::Constant *getAllOnesInt() { 581 return llvm::Constant::getAllOnesValue(CGM.IntTy); 582 } 583 584 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override; 585 586 void 587 GetNullMemberPointerFields(const MemberPointerType *MPT, 588 llvm::SmallVectorImpl<llvm::Constant *> &fields); 589 590 /// Shared code for virtual base adjustment. Returns the offset from 591 /// the vbptr to the virtual base. Optionally returns the address of the 592 /// vbptr itself. 593 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 594 Address Base, 595 llvm::Value *VBPtrOffset, 596 llvm::Value *VBTableOffset, 597 llvm::Value **VBPtr = nullptr); 598 599 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 600 Address Base, 601 int32_t VBPtrOffset, 602 int32_t VBTableOffset, 603 llvm::Value **VBPtr = nullptr) { 604 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s"); 605 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 606 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); 607 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); 608 } 609 610 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 611 performBaseAdjustment(CodeGenFunction &CGF, Address Value, 612 QualType SrcRecordTy); 613 614 /// Performs a full virtual base adjustment. Used to dereference 615 /// pointers to members of virtual bases. 616 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, 617 const CXXRecordDecl *RD, Address Base, 618 llvm::Value *VirtualBaseAdjustmentOffset, 619 llvm::Value *VBPtrOffset /* optional */); 620 621 /// Emits a full member pointer with the fields common to data and 622 /// function member pointers. 623 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, 624 bool IsMemberFunction, 625 const CXXRecordDecl *RD, 626 CharUnits NonVirtualBaseAdjustment, 627 unsigned VBTableIndex); 628 629 bool MemberPointerConstantIsNull(const MemberPointerType *MPT, 630 llvm::Constant *MP); 631 632 /// - Initialize all vbptrs of 'this' with RD as the complete type. 633 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); 634 635 /// Caching wrapper around VBTableBuilder::enumerateVBTables(). 636 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); 637 638 /// Generate a thunk for calling a virtual member function MD. 639 llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 640 const MethodVFTableLocation &ML); 641 642 llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD, 643 CharUnits offset); 644 645 public: 646 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; 647 648 bool isZeroInitializable(const MemberPointerType *MPT) override; 649 650 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { 651 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 652 return RD->hasAttr<MSInheritanceAttr>(); 653 } 654 655 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; 656 657 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 658 CharUnits offset) override; 659 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; 660 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; 661 662 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 663 llvm::Value *L, 664 llvm::Value *R, 665 const MemberPointerType *MPT, 666 bool Inequality) override; 667 668 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 669 llvm::Value *MemPtr, 670 const MemberPointerType *MPT) override; 671 672 llvm::Value * 673 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, 674 Address Base, llvm::Value *MemPtr, 675 const MemberPointerType *MPT) override; 676 677 llvm::Value *EmitNonNullMemberPointerConversion( 678 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 679 CastKind CK, CastExpr::path_const_iterator PathBegin, 680 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 681 CGBuilderTy &Builder); 682 683 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 684 const CastExpr *E, 685 llvm::Value *Src) override; 686 687 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 688 llvm::Constant *Src) override; 689 690 llvm::Constant *EmitMemberPointerConversion( 691 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 692 CastKind CK, CastExpr::path_const_iterator PathBegin, 693 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); 694 695 CGCallee 696 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, 697 Address This, llvm::Value *&ThisPtrForCall, 698 llvm::Value *MemPtr, 699 const MemberPointerType *MPT) override; 700 701 void emitCXXStructor(GlobalDecl GD) override; 702 703 llvm::StructType *getCatchableTypeType() { 704 if (CatchableTypeType) 705 return CatchableTypeType; 706 llvm::Type *FieldTypes[] = { 707 CGM.IntTy, // Flags 708 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor 709 CGM.IntTy, // NonVirtualAdjustment 710 CGM.IntTy, // OffsetToVBPtr 711 CGM.IntTy, // VBTableIndex 712 CGM.IntTy, // Size 713 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor 714 }; 715 CatchableTypeType = llvm::StructType::create( 716 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType"); 717 return CatchableTypeType; 718 } 719 720 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { 721 llvm::StructType *&CatchableTypeArrayType = 722 CatchableTypeArrayTypeMap[NumEntries]; 723 if (CatchableTypeArrayType) 724 return CatchableTypeArrayType; 725 726 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray."); 727 CTATypeName += llvm::utostr(NumEntries); 728 llvm::Type *CTType = 729 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 730 llvm::Type *FieldTypes[] = { 731 CGM.IntTy, // NumEntries 732 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes 733 }; 734 CatchableTypeArrayType = 735 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName); 736 return CatchableTypeArrayType; 737 } 738 739 llvm::StructType *getThrowInfoType() { 740 if (ThrowInfoType) 741 return ThrowInfoType; 742 llvm::Type *FieldTypes[] = { 743 CGM.IntTy, // Flags 744 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn 745 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat 746 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray 747 }; 748 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, 749 "eh.ThrowInfo"); 750 return ThrowInfoType; 751 } 752 753 llvm::FunctionCallee getThrowFn() { 754 // _CxxThrowException is passed an exception object and a ThrowInfo object 755 // which describes the exception. 756 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()}; 757 llvm::FunctionType *FTy = 758 llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); 759 llvm::FunctionCallee Throw = 760 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"); 761 // _CxxThrowException is stdcall on 32-bit x86 platforms. 762 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) { 763 if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee())) 764 Fn->setCallingConv(llvm::CallingConv::X86_StdCall); 765 } 766 return Throw; 767 } 768 769 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 770 CXXCtorType CT); 771 772 llvm::Constant *getCatchableType(QualType T, 773 uint32_t NVOffset = 0, 774 int32_t VBPtrOffset = -1, 775 uint32_t VBIndex = 0); 776 777 llvm::GlobalVariable *getCatchableTypeArray(QualType T); 778 779 llvm::GlobalVariable *getThrowInfo(QualType T) override; 780 781 std::pair<llvm::Value *, const CXXRecordDecl *> 782 LoadVTablePtr(CodeGenFunction &CGF, Address This, 783 const CXXRecordDecl *RD) override; 784 785 bool 786 isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override; 787 788 private: 789 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; 790 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; 791 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; 792 /// All the vftables that have been referenced. 793 VFTablesMapTy VFTablesMap; 794 VTablesMapTy VTablesMap; 795 796 /// This set holds the record decls we've deferred vtable emission for. 797 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; 798 799 800 /// All the vbtables which have been referenced. 801 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; 802 803 /// Info on the global variable used to guard initialization of static locals. 804 /// The BitIndex field is only used for externally invisible declarations. 805 struct GuardInfo { 806 GuardInfo() : Guard(nullptr), BitIndex(0) {} 807 llvm::GlobalVariable *Guard; 808 unsigned BitIndex; 809 }; 810 811 /// Map from DeclContext to the current guard variable. We assume that the 812 /// AST is visited in source code order. 813 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; 814 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; 815 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; 816 817 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; 818 llvm::StructType *BaseClassDescriptorType; 819 llvm::StructType *ClassHierarchyDescriptorType; 820 llvm::StructType *CompleteObjectLocatorType; 821 822 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; 823 824 llvm::StructType *CatchableTypeType; 825 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; 826 llvm::StructType *ThrowInfoType; 827 }; 828 829 } 830 831 CGCXXABI::RecordArgABI 832 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { 833 // Use the default C calling convention rules for things that can be passed in 834 // registers, i.e. non-trivially copyable records or records marked with 835 // [[trivial_abi]]. 836 if (RD->canPassInRegisters()) 837 return RAA_Default; 838 839 switch (CGM.getTarget().getTriple().getArch()) { 840 default: 841 // FIXME: Implement for other architectures. 842 return RAA_Indirect; 843 844 case llvm::Triple::thumb: 845 // Pass things indirectly for now because it is simple. 846 // FIXME: This is incompatible with MSVC for arguments with a dtor and no 847 // copy ctor. 848 return RAA_Indirect; 849 850 case llvm::Triple::x86: { 851 // If the argument has *required* alignment greater than four bytes, pass 852 // it indirectly. Prior to MSVC version 19.14, passing overaligned 853 // arguments was not supported and resulted in a compiler error. In 19.14 854 // and later versions, such arguments are now passed indirectly. 855 TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl()); 856 if (Info.isAlignRequired() && Info.Align > 4) 857 return RAA_Indirect; 858 859 // If C++ prohibits us from making a copy, construct the arguments directly 860 // into argument memory. 861 return RAA_DirectInMemory; 862 } 863 864 case llvm::Triple::x86_64: 865 case llvm::Triple::aarch64: 866 return RAA_Indirect; 867 } 868 869 llvm_unreachable("invalid enum"); 870 } 871 872 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, 873 const CXXDeleteExpr *DE, 874 Address Ptr, 875 QualType ElementType, 876 const CXXDestructorDecl *Dtor) { 877 // FIXME: Provide a source location here even though there's no 878 // CXXMemberCallExpr for dtor call. 879 bool UseGlobalDelete = DE->isGlobalDelete(); 880 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 881 llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE); 882 if (UseGlobalDelete) 883 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType); 884 } 885 886 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { 887 llvm::Value *Args[] = { 888 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), 889 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())}; 890 llvm::FunctionCallee Fn = getThrowFn(); 891 if (isNoReturn) 892 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args); 893 else 894 CGF.EmitRuntimeCallOrInvoke(Fn, Args); 895 } 896 897 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, 898 const CXXCatchStmt *S) { 899 // In the MS ABI, the runtime handles the copy, and the catch handler is 900 // responsible for destruction. 901 VarDecl *CatchParam = S->getExceptionDecl(); 902 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); 903 llvm::CatchPadInst *CPI = 904 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI()); 905 CGF.CurrentFuncletPad = CPI; 906 907 // If this is a catch-all or the catch parameter is unnamed, we don't need to 908 // emit an alloca to the object. 909 if (!CatchParam || !CatchParam->getDeclName()) { 910 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 911 return; 912 } 913 914 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 915 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer()); 916 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 917 CGF.EmitAutoVarCleanups(var); 918 } 919 920 /// We need to perform a generic polymorphic operation (like a typeid 921 /// or a cast), which requires an object with a vfptr. Adjust the 922 /// address to point to an object with a vfptr. 923 std::tuple<Address, llvm::Value *, const CXXRecordDecl *> 924 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, 925 QualType SrcRecordTy) { 926 Value = CGF.Builder.CreateElementBitCast(Value, CGF.Int8Ty); 927 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 928 const ASTContext &Context = getContext(); 929 930 // If the class itself has a vfptr, great. This check implicitly 931 // covers non-virtual base subobjects: a class with its own virtual 932 // functions would be a candidate to be a primary base. 933 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) 934 return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0), 935 SrcDecl); 936 937 // Okay, one of the vbases must have a vfptr, or else this isn't 938 // actually a polymorphic class. 939 const CXXRecordDecl *PolymorphicBase = nullptr; 940 for (auto &Base : SrcDecl->vbases()) { 941 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 942 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { 943 PolymorphicBase = BaseDecl; 944 break; 945 } 946 } 947 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?"); 948 949 llvm::Value *Offset = 950 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase); 951 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP( 952 Value.getElementType(), Value.getPointer(), Offset); 953 CharUnits VBaseAlign = 954 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase); 955 return std::make_tuple(Address(Ptr, CGF.Int8Ty, VBaseAlign), Offset, 956 PolymorphicBase); 957 } 958 959 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, 960 QualType SrcRecordTy) { 961 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 962 return IsDeref && 963 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 964 } 965 966 static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF, 967 llvm::Value *Argument) { 968 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 969 llvm::FunctionType *FTy = 970 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); 971 llvm::Value *Args[] = {Argument}; 972 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); 973 return CGF.EmitRuntimeCallOrInvoke(Fn, Args); 974 } 975 976 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { 977 llvm::CallBase *Call = 978 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); 979 Call->setDoesNotReturn(); 980 CGF.Builder.CreateUnreachable(); 981 } 982 983 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, 984 QualType SrcRecordTy, 985 Address ThisPtr, 986 llvm::Type *StdTypeInfoPtrTy) { 987 std::tie(ThisPtr, std::ignore, std::ignore) = 988 performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); 989 llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()); 990 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy); 991 } 992 993 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 994 QualType SrcRecordTy) { 995 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 996 return SrcIsPtr && 997 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 998 } 999 1000 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall( 1001 CodeGenFunction &CGF, Address This, QualType SrcRecordTy, 1002 QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { 1003 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 1004 1005 llvm::Value *SrcRTTI = 1006 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 1007 llvm::Value *DestRTTI = 1008 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1009 1010 llvm::Value *Offset; 1011 std::tie(This, Offset, std::ignore) = 1012 performBaseAdjustment(CGF, This, SrcRecordTy); 1013 llvm::Value *ThisPtr = This.getPointer(); 1014 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); 1015 1016 // PVOID __RTDynamicCast( 1017 // PVOID inptr, 1018 // LONG VfDelta, 1019 // PVOID SrcType, 1020 // PVOID TargetType, 1021 // BOOL isReference) 1022 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, 1023 CGF.Int8PtrTy, CGF.Int32Ty}; 1024 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1025 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1026 "__RTDynamicCast"); 1027 llvm::Value *Args[] = { 1028 ThisPtr, Offset, SrcRTTI, DestRTTI, 1029 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; 1030 ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args); 1031 return CGF.Builder.CreateBitCast(ThisPtr, DestLTy); 1032 } 1033 1034 llvm::Value * 1035 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 1036 QualType SrcRecordTy, 1037 QualType DestTy) { 1038 std::tie(Value, std::ignore, std::ignore) = 1039 performBaseAdjustment(CGF, Value, SrcRecordTy); 1040 1041 // PVOID __RTCastToVoid( 1042 // PVOID inptr) 1043 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 1044 llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction( 1045 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1046 "__RTCastToVoid"); 1047 llvm::Value *Args[] = {Value.getPointer()}; 1048 return CGF.EmitRuntimeCall(Function, Args); 1049 } 1050 1051 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { 1052 return false; 1053 } 1054 1055 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( 1056 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, 1057 const CXXRecordDecl *BaseClassDecl) { 1058 const ASTContext &Context = getContext(); 1059 int64_t VBPtrChars = 1060 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); 1061 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); 1062 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); 1063 CharUnits VBTableChars = 1064 IntSize * 1065 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); 1066 llvm::Value *VBTableOffset = 1067 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); 1068 1069 llvm::Value *VBPtrToNewBase = 1070 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); 1071 VBPtrToNewBase = 1072 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); 1073 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); 1074 } 1075 1076 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { 1077 return isa<CXXConstructorDecl>(GD.getDecl()); 1078 } 1079 1080 static bool isDeletingDtor(GlobalDecl GD) { 1081 return isa<CXXDestructorDecl>(GD.getDecl()) && 1082 GD.getDtorType() == Dtor_Deleting; 1083 } 1084 1085 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { 1086 return isDeletingDtor(GD); 1087 } 1088 1089 static bool isTrivialForAArch64MSVC(const CXXRecordDecl *RD) { 1090 // For AArch64, we use the C++14 definition of an aggregate, so we also 1091 // check for: 1092 // No private or protected non static data members. 1093 // No base classes 1094 // No virtual functions 1095 // Additionally, we need to ensure that there is a trivial copy assignment 1096 // operator, a trivial destructor and no user-provided constructors. 1097 if (RD->hasProtectedFields() || RD->hasPrivateFields()) 1098 return false; 1099 if (RD->getNumBases() > 0) 1100 return false; 1101 if (RD->isPolymorphic()) 1102 return false; 1103 if (RD->hasNonTrivialCopyAssignment()) 1104 return false; 1105 for (const CXXConstructorDecl *Ctor : RD->ctors()) 1106 if (Ctor->isUserProvided()) 1107 return false; 1108 if (RD->hasNonTrivialDestructor()) 1109 return false; 1110 return true; 1111 } 1112 1113 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { 1114 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); 1115 if (!RD) 1116 return false; 1117 1118 // Normally, the C++ concept of "is trivially copyable" is used to determine 1119 // if a struct can be returned directly. However, as MSVC and the language 1120 // have evolved, the definition of "trivially copyable" has changed, while the 1121 // ABI must remain stable. AArch64 uses the C++14 concept of an "aggregate", 1122 // while other ISAs use the older concept of "plain old data". 1123 bool isTrivialForABI = RD->isPOD(); 1124 bool isAArch64 = CGM.getTarget().getTriple().isAArch64(); 1125 if (isAArch64) 1126 isTrivialForABI = RD->canPassInRegisters() && isTrivialForAArch64MSVC(RD); 1127 1128 // MSVC always returns structs indirectly from C++ instance methods. 1129 bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod(); 1130 1131 if (isIndirectReturn) { 1132 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); 1133 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 1134 1135 // MSVC always passes `this` before the `sret` parameter. 1136 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); 1137 1138 // On AArch64, use the `inreg` attribute if the object is considered to not 1139 // be trivially copyable, or if this is an instance method struct return. 1140 FI.getReturnInfo().setInReg(isAArch64); 1141 1142 return true; 1143 } 1144 1145 // Otherwise, use the C ABI rules. 1146 return false; 1147 } 1148 1149 llvm::BasicBlock * 1150 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 1151 const CXXRecordDecl *RD) { 1152 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1153 assert(IsMostDerivedClass && 1154 "ctor for a class with virtual bases must have an implicit parameter"); 1155 llvm::Value *IsCompleteObject = 1156 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1157 1158 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); 1159 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); 1160 CGF.Builder.CreateCondBr(IsCompleteObject, 1161 CallVbaseCtorsBB, SkipVbaseCtorsBB); 1162 1163 CGF.EmitBlock(CallVbaseCtorsBB); 1164 1165 // Fill in the vbtable pointers here. 1166 EmitVBPtrStores(CGF, RD); 1167 1168 // CGF will put the base ctor calls in this basic block for us later. 1169 1170 return SkipVbaseCtorsBB; 1171 } 1172 1173 llvm::BasicBlock * 1174 MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) { 1175 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1176 assert(IsMostDerivedClass && 1177 "ctor for a class with virtual bases must have an implicit parameter"); 1178 llvm::Value *IsCompleteObject = 1179 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1180 1181 llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases"); 1182 llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases"); 1183 CGF.Builder.CreateCondBr(IsCompleteObject, 1184 CallVbaseDtorsBB, SkipVbaseDtorsBB); 1185 1186 CGF.EmitBlock(CallVbaseDtorsBB); 1187 // CGF will put the base dtor calls in this basic block for us later. 1188 1189 return SkipVbaseDtorsBB; 1190 } 1191 1192 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( 1193 CodeGenFunction &CGF, const CXXRecordDecl *RD) { 1194 // In most cases, an override for a vbase virtual method can adjust 1195 // the "this" parameter by applying a constant offset. 1196 // However, this is not enough while a constructor or a destructor of some 1197 // class X is being executed if all the following conditions are met: 1198 // - X has virtual bases, (1) 1199 // - X overrides a virtual method M of a vbase Y, (2) 1200 // - X itself is a vbase of the most derived class. 1201 // 1202 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X 1203 // which holds the extra amount of "this" adjustment we must do when we use 1204 // the X vftables (i.e. during X ctor or dtor). 1205 // Outside the ctors and dtors, the values of vtorDisps are zero. 1206 1207 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1208 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; 1209 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); 1210 CGBuilderTy &Builder = CGF.Builder; 1211 1212 unsigned AS = getThisAddress(CGF).getAddressSpace(); 1213 llvm::Value *Int8This = nullptr; // Initialize lazily. 1214 1215 for (const CXXBaseSpecifier &S : RD->vbases()) { 1216 const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl(); 1217 auto I = VBaseMap.find(VBase); 1218 assert(I != VBaseMap.end()); 1219 if (!I->second.hasVtorDisp()) 1220 continue; 1221 1222 llvm::Value *VBaseOffset = 1223 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase); 1224 uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity(); 1225 1226 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). 1227 llvm::Value *VtorDispValue = Builder.CreateSub( 1228 VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset), 1229 "vtordisp.value"); 1230 VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty); 1231 1232 if (!Int8This) 1233 Int8This = Builder.CreateBitCast(getThisValue(CGF), 1234 CGF.Int8Ty->getPointerTo(AS)); 1235 llvm::Value *VtorDispPtr = 1236 Builder.CreateInBoundsGEP(CGF.Int8Ty, Int8This, VBaseOffset); 1237 // vtorDisp is always the 32-bits before the vbase in the class layout. 1238 VtorDispPtr = Builder.CreateConstGEP1_32(CGF.Int8Ty, VtorDispPtr, -4); 1239 VtorDispPtr = Builder.CreateBitCast( 1240 VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr"); 1241 1242 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr, 1243 CharUnits::fromQuantity(4)); 1244 } 1245 } 1246 1247 static bool hasDefaultCXXMethodCC(ASTContext &Context, 1248 const CXXMethodDecl *MD) { 1249 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( 1250 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 1251 CallingConv ActualCallingConv = 1252 MD->getType()->castAs<FunctionProtoType>()->getCallConv(); 1253 return ExpectedCallingConv == ActualCallingConv; 1254 } 1255 1256 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { 1257 // There's only one constructor type in this ABI. 1258 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); 1259 1260 // Exported default constructors either have a simple call-site where they use 1261 // the typical calling convention and have a single 'this' pointer for an 1262 // argument -or- they get a wrapper function which appropriately thunks to the 1263 // real default constructor. This thunk is the default constructor closure. 1264 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() && 1265 D->isDefined()) { 1266 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { 1267 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure); 1268 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); 1269 CGM.setGVProperties(Fn, D); 1270 } 1271 } 1272 } 1273 1274 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, 1275 const CXXRecordDecl *RD) { 1276 Address This = getThisAddress(CGF); 1277 This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8"); 1278 const ASTContext &Context = getContext(); 1279 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1280 1281 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 1282 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 1283 const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I]; 1284 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 1285 const ASTRecordLayout &SubobjectLayout = 1286 Context.getASTRecordLayout(VBT->IntroducingObject); 1287 CharUnits Offs = VBT->NonVirtualOffset; 1288 Offs += SubobjectLayout.getVBPtrOffset(); 1289 if (VBT->getVBaseWithVPtr()) 1290 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 1291 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs); 1292 llvm::Value *GVPtr = 1293 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0); 1294 VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(), 1295 "vbptr." + VBT->ObjectWithVPtr->getName()); 1296 CGF.Builder.CreateStore(GVPtr, VBPtr); 1297 } 1298 } 1299 1300 CGCXXABI::AddedStructorArgCounts 1301 MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD, 1302 SmallVectorImpl<CanQualType> &ArgTys) { 1303 AddedStructorArgCounts Added; 1304 // TODO: 'for base' flag 1305 if (isa<CXXDestructorDecl>(GD.getDecl()) && 1306 GD.getDtorType() == Dtor_Deleting) { 1307 // The scalar deleting destructor takes an implicit int parameter. 1308 ArgTys.push_back(getContext().IntTy); 1309 ++Added.Suffix; 1310 } 1311 auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl()); 1312 if (!CD) 1313 return Added; 1314 1315 // All parameters are already in place except is_most_derived, which goes 1316 // after 'this' if it's variadic and last if it's not. 1317 1318 const CXXRecordDecl *Class = CD->getParent(); 1319 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); 1320 if (Class->getNumVBases()) { 1321 if (FPT->isVariadic()) { 1322 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); 1323 ++Added.Prefix; 1324 } else { 1325 ArgTys.push_back(getContext().IntTy); 1326 ++Added.Suffix; 1327 } 1328 } 1329 1330 return Added; 1331 } 1332 1333 void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV, 1334 const CXXDestructorDecl *Dtor, 1335 CXXDtorType DT) const { 1336 // Deleting destructor variants are never imported or exported. Give them the 1337 // default storage class. 1338 if (DT == Dtor_Deleting) { 1339 GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1340 } else { 1341 const NamedDecl *ND = Dtor; 1342 CGM.setDLLImportDLLExport(GV, ND); 1343 } 1344 } 1345 1346 llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage( 1347 GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const { 1348 // Internal things are always internal, regardless of attributes. After this, 1349 // we know the thunk is externally visible. 1350 if (Linkage == GVA_Internal) 1351 return llvm::GlobalValue::InternalLinkage; 1352 1353 switch (DT) { 1354 case Dtor_Base: 1355 // The base destructor most closely tracks the user-declared constructor, so 1356 // we delegate back to the normal declarator case. 1357 return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage, 1358 /*IsConstantVariable=*/false); 1359 case Dtor_Complete: 1360 // The complete destructor is like an inline function, but it may be 1361 // imported and therefore must be exported as well. This requires changing 1362 // the linkage if a DLL attribute is present. 1363 if (Dtor->hasAttr<DLLExportAttr>()) 1364 return llvm::GlobalValue::WeakODRLinkage; 1365 if (Dtor->hasAttr<DLLImportAttr>()) 1366 return llvm::GlobalValue::AvailableExternallyLinkage; 1367 return llvm::GlobalValue::LinkOnceODRLinkage; 1368 case Dtor_Deleting: 1369 // Deleting destructors are like inline functions. They have vague linkage 1370 // and are emitted everywhere they are used. They are internal if the class 1371 // is internal. 1372 return llvm::GlobalValue::LinkOnceODRLinkage; 1373 case Dtor_Comdat: 1374 llvm_unreachable("MS C++ ABI does not support comdat dtors"); 1375 } 1376 llvm_unreachable("invalid dtor type"); 1377 } 1378 1379 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { 1380 // The TU defining a dtor is only guaranteed to emit a base destructor. All 1381 // other destructor variants are delegating thunks. 1382 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); 1383 1384 // If the class is dllexported, emit the complete (vbase) destructor wherever 1385 // the base dtor is emitted. 1386 // FIXME: To match MSVC, this should only be done when the class is exported 1387 // with -fdllexport-inlines enabled. 1388 if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>()) 1389 CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); 1390 } 1391 1392 CharUnits 1393 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { 1394 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1395 1396 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1397 // Complete destructors take a pointer to the complete object as a 1398 // parameter, thus don't need this adjustment. 1399 if (GD.getDtorType() == Dtor_Complete) 1400 return CharUnits(); 1401 1402 // There's no Dtor_Base in vftable but it shares the this adjustment with 1403 // the deleting one, so look it up instead. 1404 GD = GlobalDecl(DD, Dtor_Deleting); 1405 } 1406 1407 MethodVFTableLocation ML = 1408 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1409 CharUnits Adjustment = ML.VFPtrOffset; 1410 1411 // Normal virtual instance methods need to adjust from the vfptr that first 1412 // defined the virtual method to the virtual base subobject, but destructors 1413 // do not. The vector deleting destructor thunk applies this adjustment for 1414 // us if necessary. 1415 if (isa<CXXDestructorDecl>(MD)) 1416 Adjustment = CharUnits::Zero(); 1417 1418 if (ML.VBase) { 1419 const ASTRecordLayout &DerivedLayout = 1420 getContext().getASTRecordLayout(MD->getParent()); 1421 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); 1422 } 1423 1424 return Adjustment; 1425 } 1426 1427 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( 1428 CodeGenFunction &CGF, GlobalDecl GD, Address This, 1429 bool VirtualCall) { 1430 if (!VirtualCall) { 1431 // If the call of a virtual function is not virtual, we just have to 1432 // compensate for the adjustment the virtual function does in its prologue. 1433 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 1434 if (Adjustment.isZero()) 1435 return This; 1436 1437 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 1438 assert(Adjustment.isPositive()); 1439 return CGF.Builder.CreateConstByteGEP(This, Adjustment); 1440 } 1441 1442 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1443 1444 GlobalDecl LookupGD = GD; 1445 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1446 // Complete dtors take a pointer to the complete object, 1447 // thus don't need adjustment. 1448 if (GD.getDtorType() == Dtor_Complete) 1449 return This; 1450 1451 // There's only Dtor_Deleting in vftable but it shares the this adjustment 1452 // with the base one, so look up the deleting one instead. 1453 LookupGD = GlobalDecl(DD, Dtor_Deleting); 1454 } 1455 MethodVFTableLocation ML = 1456 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 1457 1458 CharUnits StaticOffset = ML.VFPtrOffset; 1459 1460 // Base destructors expect 'this' to point to the beginning of the base 1461 // subobject, not the first vfptr that happens to contain the virtual dtor. 1462 // However, we still need to apply the virtual base adjustment. 1463 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 1464 StaticOffset = CharUnits::Zero(); 1465 1466 Address Result = This; 1467 if (ML.VBase) { 1468 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1469 1470 const CXXRecordDecl *Derived = MD->getParent(); 1471 const CXXRecordDecl *VBase = ML.VBase; 1472 llvm::Value *VBaseOffset = 1473 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase); 1474 llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP( 1475 Result.getElementType(), Result.getPointer(), VBaseOffset); 1476 CharUnits VBaseAlign = 1477 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase); 1478 Result = Address(VBasePtr, CGF.Int8Ty, VBaseAlign); 1479 } 1480 if (!StaticOffset.isZero()) { 1481 assert(StaticOffset.isPositive()); 1482 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1483 if (ML.VBase) { 1484 // Non-virtual adjustment might result in a pointer outside the allocated 1485 // object, e.g. if the final overrider class is laid out after the virtual 1486 // base that declares a method in the most derived class. 1487 // FIXME: Update the code that emits this adjustment in thunks prologues. 1488 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset); 1489 } else { 1490 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset); 1491 } 1492 } 1493 return Result; 1494 } 1495 1496 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, 1497 QualType &ResTy, 1498 FunctionArgList &Params) { 1499 ASTContext &Context = getContext(); 1500 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1501 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); 1502 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1503 auto *IsMostDerived = ImplicitParamDecl::Create( 1504 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1505 &Context.Idents.get("is_most_derived"), Context.IntTy, 1506 ImplicitParamDecl::Other); 1507 // The 'most_derived' parameter goes second if the ctor is variadic and last 1508 // if it's not. Dtors can't be variadic. 1509 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1510 if (FPT->isVariadic()) 1511 Params.insert(Params.begin() + 1, IsMostDerived); 1512 else 1513 Params.push_back(IsMostDerived); 1514 getStructorImplicitParamDecl(CGF) = IsMostDerived; 1515 } else if (isDeletingDtor(CGF.CurGD)) { 1516 auto *ShouldDelete = ImplicitParamDecl::Create( 1517 Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(), 1518 &Context.Idents.get("should_call_delete"), Context.IntTy, 1519 ImplicitParamDecl::Other); 1520 Params.push_back(ShouldDelete); 1521 getStructorImplicitParamDecl(CGF) = ShouldDelete; 1522 } 1523 } 1524 1525 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 1526 // Naked functions have no prolog. 1527 if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) 1528 return; 1529 1530 // Overridden virtual methods of non-primary bases need to adjust the incoming 1531 // 'this' pointer in the prologue. In this hierarchy, C::b will subtract 1532 // sizeof(void*) to adjust from B* to C*: 1533 // struct A { virtual void a(); }; 1534 // struct B { virtual void b(); }; 1535 // struct C : A, B { virtual void b(); }; 1536 // 1537 // Leave the value stored in the 'this' alloca unadjusted, so that the 1538 // debugger sees the unadjusted value. Microsoft debuggers require this, and 1539 // will apply the ThisAdjustment in the method type information. 1540 // FIXME: Do something better for DWARF debuggers, which won't expect this, 1541 // without making our codegen depend on debug info settings. 1542 llvm::Value *This = loadIncomingCXXThis(CGF); 1543 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1544 if (!CGF.CurFuncIsThunk && MD->isVirtual()) { 1545 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD); 1546 if (!Adjustment.isZero()) { 1547 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); 1548 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS), 1549 *thisTy = This->getType(); 1550 This = CGF.Builder.CreateBitCast(This, charPtrTy); 1551 assert(Adjustment.isPositive()); 1552 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This, 1553 -Adjustment.getQuantity()); 1554 This = CGF.Builder.CreateBitCast(This, thisTy, "this.adjusted"); 1555 } 1556 } 1557 setCXXABIThisValue(CGF, This); 1558 1559 // If this is a function that the ABI specifies returns 'this', initialize 1560 // the return slot to 'this' at the start of the function. 1561 // 1562 // Unlike the setting of return types, this is done within the ABI 1563 // implementation instead of by clients of CGCXXABI because: 1564 // 1) getThisValue is currently protected 1565 // 2) in theory, an ABI could implement 'this' returns some other way; 1566 // HasThisReturn only specifies a contract, not the implementation 1567 if (HasThisReturn(CGF.CurGD)) 1568 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 1569 else if (hasMostDerivedReturn(CGF.CurGD)) 1570 CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)), 1571 CGF.ReturnValue); 1572 1573 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1574 assert(getStructorImplicitParamDecl(CGF) && 1575 "no implicit parameter for a constructor with virtual bases?"); 1576 getStructorImplicitParamValue(CGF) 1577 = CGF.Builder.CreateLoad( 1578 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1579 "is_most_derived"); 1580 } 1581 1582 if (isDeletingDtor(CGF.CurGD)) { 1583 assert(getStructorImplicitParamDecl(CGF) && 1584 "no implicit parameter for a deleting destructor?"); 1585 getStructorImplicitParamValue(CGF) 1586 = CGF.Builder.CreateLoad( 1587 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1588 "should_call_delete"); 1589 } 1590 } 1591 1592 CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs( 1593 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, 1594 bool ForVirtualBase, bool Delegating) { 1595 assert(Type == Ctor_Complete || Type == Ctor_Base); 1596 1597 // Check if we need a 'most_derived' parameter. 1598 if (!D->getParent()->getNumVBases()) 1599 return AddedStructorArgs{}; 1600 1601 // Add the 'most_derived' argument second if we are variadic or last if not. 1602 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1603 llvm::Value *MostDerivedArg; 1604 if (Delegating) { 1605 MostDerivedArg = getStructorImplicitParamValue(CGF); 1606 } else { 1607 MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); 1608 } 1609 if (FPT->isVariadic()) { 1610 return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}}); 1611 } 1612 return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}}); 1613 } 1614 1615 llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam( 1616 CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, 1617 bool ForVirtualBase, bool Delegating) { 1618 return nullptr; 1619 } 1620 1621 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, 1622 const CXXDestructorDecl *DD, 1623 CXXDtorType Type, bool ForVirtualBase, 1624 bool Delegating, Address This, 1625 QualType ThisTy) { 1626 // Use the base destructor variant in place of the complete destructor variant 1627 // if the class has no virtual bases. This effectively implements some of the 1628 // -mconstructor-aliases optimization, but as part of the MS C++ ABI. 1629 if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0) 1630 Type = Dtor_Base; 1631 1632 GlobalDecl GD(DD, Type); 1633 CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); 1634 1635 if (DD->isVirtual()) { 1636 assert(Type != CXXDtorType::Dtor_Deleting && 1637 "The deleting destructor should only be called via a virtual call"); 1638 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), 1639 This, false); 1640 } 1641 1642 llvm::BasicBlock *BaseDtorEndBB = nullptr; 1643 if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) { 1644 BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF); 1645 } 1646 1647 llvm::Value *Implicit = 1648 getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, 1649 Delegating); // = nullptr 1650 CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 1651 /*ImplicitParam=*/Implicit, 1652 /*ImplicitParamTy=*/QualType(), nullptr); 1653 if (BaseDtorEndBB) { 1654 // Complete object handler should continue to be the remaining 1655 CGF.Builder.CreateBr(BaseDtorEndBB); 1656 CGF.EmitBlock(BaseDtorEndBB); 1657 } 1658 } 1659 1660 void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info, 1661 const CXXRecordDecl *RD, 1662 llvm::GlobalVariable *VTable) { 1663 if (!CGM.getCodeGenOpts().LTOUnit) 1664 return; 1665 1666 // TODO: Should VirtualFunctionElimination also be supported here? 1667 // See similar handling in CodeGenModule::EmitVTableTypeMetadata. 1668 if (CGM.getCodeGenOpts().WholeProgramVTables) { 1669 llvm::DenseSet<const CXXRecordDecl *> Visited; 1670 llvm::GlobalObject::VCallVisibility TypeVis = 1671 CGM.GetVCallVisibilityLevel(RD, Visited); 1672 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1673 VTable->setVCallVisibilityMetadata(TypeVis); 1674 } 1675 1676 // The location of the first virtual function pointer in the virtual table, 1677 // aka the "address point" on Itanium. This is at offset 0 if RTTI is 1678 // disabled, or sizeof(void*) if RTTI is enabled. 1679 CharUnits AddressPoint = 1680 getContext().getLangOpts().RTTIData 1681 ? getContext().toCharUnitsFromBits( 1682 getContext().getTargetInfo().getPointerWidth(0)) 1683 : CharUnits::Zero(); 1684 1685 if (Info.PathToIntroducingObject.empty()) { 1686 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1687 return; 1688 } 1689 1690 // Add a bitset entry for the least derived base belonging to this vftable. 1691 CGM.AddVTableTypeMetadata(VTable, AddressPoint, 1692 Info.PathToIntroducingObject.back()); 1693 1694 // Add a bitset entry for each derived class that is laid out at the same 1695 // offset as the least derived base. 1696 for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) { 1697 const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1]; 1698 const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I]; 1699 1700 const ASTRecordLayout &Layout = 1701 getContext().getASTRecordLayout(DerivedRD); 1702 CharUnits Offset; 1703 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD); 1704 if (VBI == Layout.getVBaseOffsetsMap().end()) 1705 Offset = Layout.getBaseClassOffset(BaseRD); 1706 else 1707 Offset = VBI->second.VBaseOffset; 1708 if (!Offset.isZero()) 1709 return; 1710 CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD); 1711 } 1712 1713 // Finally do the same for the most derived class. 1714 if (Info.FullOffsetInMDC.isZero()) 1715 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD); 1716 } 1717 1718 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, 1719 const CXXRecordDecl *RD) { 1720 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1721 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); 1722 1723 for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) { 1724 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); 1725 if (VTable->hasInitializer()) 1726 continue; 1727 1728 const VTableLayout &VTLayout = 1729 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); 1730 1731 llvm::Constant *RTTI = nullptr; 1732 if (any_of(VTLayout.vtable_components(), 1733 [](const VTableComponent &VTC) { return VTC.isRTTIKind(); })) 1734 RTTI = getMSCompleteObjectLocator(RD, *Info); 1735 1736 ConstantInitBuilder builder(CGM); 1737 auto components = builder.beginStruct(); 1738 CGVT.createVTableInitializer(components, VTLayout, RTTI, 1739 VTable->hasLocalLinkage()); 1740 components.finishAndSetAsInitializer(VTable); 1741 1742 emitVTableTypeMetadata(*Info, RD, VTable); 1743 } 1744 } 1745 1746 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( 1747 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { 1748 return Vptr.NearestVBase != nullptr; 1749 } 1750 1751 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( 1752 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, 1753 const CXXRecordDecl *NearestVBase) { 1754 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); 1755 if (!VTableAddressPoint) { 1756 assert(Base.getBase()->getNumVBases() && 1757 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); 1758 } 1759 return VTableAddressPoint; 1760 } 1761 1762 static void mangleVFTableName(MicrosoftMangleContext &MangleContext, 1763 const CXXRecordDecl *RD, const VPtrInfo &VFPtr, 1764 SmallString<256> &Name) { 1765 llvm::raw_svector_ostream Out(Name); 1766 MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out); 1767 } 1768 1769 llvm::Constant * 1770 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, 1771 const CXXRecordDecl *VTableClass) { 1772 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); 1773 VFTableIdTy ID(VTableClass, Base.getBaseOffset()); 1774 return VFTablesMap[ID]; 1775 } 1776 1777 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( 1778 BaseSubobject Base, const CXXRecordDecl *VTableClass) { 1779 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass); 1780 assert(VFTable && "Couldn't find a vftable for the given base?"); 1781 return VFTable; 1782 } 1783 1784 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, 1785 CharUnits VPtrOffset) { 1786 // getAddrOfVTable may return 0 if asked to get an address of a vtable which 1787 // shouldn't be used in the given record type. We want to cache this result in 1788 // VFTablesMap, thus a simple zero check is not sufficient. 1789 1790 VFTableIdTy ID(RD, VPtrOffset); 1791 VTablesMapTy::iterator I; 1792 bool Inserted; 1793 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); 1794 if (!Inserted) 1795 return I->second; 1796 1797 llvm::GlobalVariable *&VTable = I->second; 1798 1799 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 1800 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); 1801 1802 if (DeferredVFTables.insert(RD).second) { 1803 // We haven't processed this record type before. 1804 // Queue up this vtable for possible deferred emission. 1805 CGM.addDeferredVTable(RD); 1806 1807 #ifndef NDEBUG 1808 // Create all the vftables at once in order to make sure each vftable has 1809 // a unique mangled name. 1810 llvm::StringSet<> ObservedMangledNames; 1811 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { 1812 SmallString<256> Name; 1813 mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name); 1814 if (!ObservedMangledNames.insert(Name.str()).second) 1815 llvm_unreachable("Already saw this mangling before?"); 1816 } 1817 #endif 1818 } 1819 1820 const std::unique_ptr<VPtrInfo> *VFPtrI = 1821 llvm::find_if(VFPtrs, [&](const std::unique_ptr<VPtrInfo> &VPI) { 1822 return VPI->FullOffsetInMDC == VPtrOffset; 1823 }); 1824 if (VFPtrI == VFPtrs.end()) { 1825 VFTablesMap[ID] = nullptr; 1826 return nullptr; 1827 } 1828 const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI; 1829 1830 SmallString<256> VFTableName; 1831 mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName); 1832 1833 // Classes marked __declspec(dllimport) need vftables generated on the 1834 // import-side in order to support features like constexpr. No other 1835 // translation unit relies on the emission of the local vftable, translation 1836 // units are expected to generate them as needed. 1837 // 1838 // Because of this unique behavior, we maintain this logic here instead of 1839 // getVTableLinkage. 1840 llvm::GlobalValue::LinkageTypes VFTableLinkage = 1841 RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage 1842 : CGM.getVTableLinkage(RD); 1843 bool VFTableComesFromAnotherTU = 1844 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) || 1845 llvm::GlobalValue::isExternalLinkage(VFTableLinkage); 1846 bool VTableAliasIsRequred = 1847 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; 1848 1849 if (llvm::GlobalValue *VFTable = 1850 CGM.getModule().getNamedGlobal(VFTableName)) { 1851 VFTablesMap[ID] = VFTable; 1852 VTable = VTableAliasIsRequred 1853 ? cast<llvm::GlobalVariable>( 1854 cast<llvm::GlobalAlias>(VFTable)->getAliaseeObject()) 1855 : cast<llvm::GlobalVariable>(VFTable); 1856 return VTable; 1857 } 1858 1859 const VTableLayout &VTLayout = 1860 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC); 1861 llvm::GlobalValue::LinkageTypes VTableLinkage = 1862 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; 1863 1864 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); 1865 1866 llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); 1867 1868 // Create a backing variable for the contents of VTable. The VTable may 1869 // or may not include space for a pointer to RTTI data. 1870 llvm::GlobalValue *VFTable; 1871 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, 1872 /*isConstant=*/true, VTableLinkage, 1873 /*Initializer=*/nullptr, VTableName); 1874 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1875 1876 llvm::Comdat *C = nullptr; 1877 if (!VFTableComesFromAnotherTU && 1878 (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) || 1879 (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) && 1880 VTableAliasIsRequred))) 1881 C = CGM.getModule().getOrInsertComdat(VFTableName.str()); 1882 1883 // Only insert a pointer into the VFTable for RTTI data if we are not 1884 // importing it. We never reference the RTTI data directly so there is no 1885 // need to make room for it. 1886 if (VTableAliasIsRequred) { 1887 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0), 1888 llvm::ConstantInt::get(CGM.Int32Ty, 0), 1889 llvm::ConstantInt::get(CGM.Int32Ty, 1)}; 1890 // Create a GEP which points just after the first entry in the VFTable, 1891 // this should be the location of the first virtual method. 1892 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( 1893 VTable->getValueType(), VTable, GEPIndices); 1894 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) { 1895 VFTableLinkage = llvm::GlobalValue::ExternalLinkage; 1896 if (C) 1897 C->setSelectionKind(llvm::Comdat::Largest); 1898 } 1899 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy, 1900 /*AddressSpace=*/0, VFTableLinkage, 1901 VFTableName.str(), VTableGEP, 1902 &CGM.getModule()); 1903 VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1904 } else { 1905 // We don't need a GlobalAlias to be a symbol for the VTable if we won't 1906 // be referencing any RTTI data. 1907 // The GlobalVariable will end up being an appropriate definition of the 1908 // VFTable. 1909 VFTable = VTable; 1910 } 1911 if (C) 1912 VTable->setComdat(C); 1913 1914 if (RD->hasAttr<DLLExportAttr>()) 1915 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1916 1917 VFTablesMap[ID] = VFTable; 1918 return VTable; 1919 } 1920 1921 CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, 1922 GlobalDecl GD, 1923 Address This, 1924 llvm::Type *Ty, 1925 SourceLocation Loc) { 1926 CGBuilderTy &Builder = CGF.Builder; 1927 1928 Ty = Ty->getPointerTo(); 1929 Address VPtr = 1930 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1931 1932 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); 1933 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty->getPointerTo(), 1934 MethodDecl->getParent()); 1935 1936 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1937 MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD); 1938 1939 // Compute the identity of the most derived class whose virtual table is 1940 // located at the MethodVFTableLocation ML. 1941 auto getObjectWithVPtr = [&] { 1942 return llvm::find_if(VFTContext.getVFPtrOffsets( 1943 ML.VBase ? ML.VBase : MethodDecl->getParent()), 1944 [&](const std::unique_ptr<VPtrInfo> &Info) { 1945 return Info->FullOffsetInMDC == ML.VFPtrOffset; 1946 }) 1947 ->get() 1948 ->ObjectWithVPtr; 1949 }; 1950 1951 llvm::Value *VFunc; 1952 if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { 1953 VFunc = CGF.EmitVTableTypeCheckedLoad( 1954 getObjectWithVPtr(), VTable, Ty, 1955 ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8); 1956 } else { 1957 if (CGM.getCodeGenOpts().PrepareForLTO) 1958 CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc); 1959 1960 llvm::Value *VFuncPtr = 1961 Builder.CreateConstInBoundsGEP1_64(Ty, VTable, ML.Index, "vfn"); 1962 VFunc = Builder.CreateAlignedLoad(Ty, VFuncPtr, CGF.getPointerAlign()); 1963 } 1964 1965 CGCallee Callee(GD, VFunc); 1966 return Callee; 1967 } 1968 1969 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( 1970 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, 1971 Address This, DeleteOrMemberCallExpr E) { 1972 auto *CE = E.dyn_cast<const CXXMemberCallExpr *>(); 1973 auto *D = E.dyn_cast<const CXXDeleteExpr *>(); 1974 assert((CE != nullptr) ^ (D != nullptr)); 1975 assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); 1976 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); 1977 1978 // We have only one destructor in the vftable but can get both behaviors 1979 // by passing an implicit int parameter. 1980 GlobalDecl GD(Dtor, Dtor_Deleting); 1981 const CGFunctionInfo *FInfo = 1982 &CGM.getTypes().arrangeCXXStructorDeclaration(GD); 1983 llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); 1984 CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); 1985 1986 ASTContext &Context = getContext(); 1987 llvm::Value *ImplicitParam = llvm::ConstantInt::get( 1988 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), 1989 DtorType == Dtor_Deleting); 1990 1991 QualType ThisTy; 1992 if (CE) { 1993 ThisTy = CE->getObjectType(); 1994 } else { 1995 ThisTy = D->getDestroyedType(); 1996 } 1997 1998 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1999 RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, 2000 ImplicitParam, Context.IntTy, CE); 2001 return RV.getScalarVal(); 2002 } 2003 2004 const VBTableGlobals & 2005 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { 2006 // At this layer, we can key the cache off of a single class, which is much 2007 // easier than caching each vbtable individually. 2008 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; 2009 bool Added; 2010 std::tie(Entry, Added) = 2011 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); 2012 VBTableGlobals &VBGlobals = Entry->second; 2013 if (!Added) 2014 return VBGlobals; 2015 2016 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2017 VBGlobals.VBTables = &Context.enumerateVBTables(RD); 2018 2019 // Cache the globals for all vbtables so we don't have to recompute the 2020 // mangled names. 2021 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); 2022 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), 2023 E = VBGlobals.VBTables->end(); 2024 I != E; ++I) { 2025 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); 2026 } 2027 2028 return VBGlobals; 2029 } 2030 2031 llvm::Function * 2032 MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD, 2033 const MethodVFTableLocation &ML) { 2034 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && 2035 "can't form pointers to ctors or virtual dtors"); 2036 2037 // Calculate the mangled name. 2038 SmallString<256> ThunkName; 2039 llvm::raw_svector_ostream Out(ThunkName); 2040 getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out); 2041 2042 // If the thunk has been generated previously, just return it. 2043 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 2044 return cast<llvm::Function>(GV); 2045 2046 // Create the llvm::Function. 2047 const CGFunctionInfo &FnInfo = 2048 CGM.getTypes().arrangeUnprototypedMustTailThunk(MD); 2049 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 2050 llvm::Function *ThunkFn = 2051 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, 2052 ThunkName.str(), &CGM.getModule()); 2053 assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); 2054 2055 ThunkFn->setLinkage(MD->isExternallyVisible() 2056 ? llvm::GlobalValue::LinkOnceODRLinkage 2057 : llvm::GlobalValue::InternalLinkage); 2058 if (MD->isExternallyVisible()) 2059 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 2060 2061 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); 2062 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); 2063 2064 // Add the "thunk" attribute so that LLVM knows that the return type is 2065 // meaningless. These thunks can be used to call functions with differing 2066 // return types, and the caller is required to cast the prototype 2067 // appropriately to extract the correct value. 2068 ThunkFn->addFnAttr("thunk"); 2069 2070 // These thunks can be compared, so they are not unnamed. 2071 ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None); 2072 2073 // Start codegen. 2074 CodeGenFunction CGF(CGM); 2075 CGF.CurGD = GlobalDecl(MD); 2076 CGF.CurFuncIsThunk = true; 2077 2078 // Build FunctionArgs, but only include the implicit 'this' parameter 2079 // declaration. 2080 FunctionArgList FunctionArgs; 2081 buildThisParam(CGF, FunctionArgs); 2082 2083 // Start defining the function. 2084 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 2085 FunctionArgs, MD->getLocation(), SourceLocation()); 2086 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 2087 2088 // Load the vfptr and then callee from the vftable. The callee should have 2089 // adjusted 'this' so that the vfptr is at offset zero. 2090 llvm::Type *ThunkPtrTy = ThunkTy->getPointerTo(); 2091 llvm::Value *VTable = CGF.GetVTablePtr( 2092 getThisAddress(CGF), ThunkPtrTy->getPointerTo(), MD->getParent()); 2093 2094 llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64( 2095 ThunkPtrTy, VTable, ML.Index, "vfn"); 2096 llvm::Value *Callee = 2097 CGF.Builder.CreateAlignedLoad(ThunkPtrTy, VFuncPtr, CGF.getPointerAlign()); 2098 2099 CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee}); 2100 2101 return ThunkFn; 2102 } 2103 2104 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { 2105 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 2106 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 2107 const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I]; 2108 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 2109 if (GV->isDeclaration()) 2110 emitVBTableDefinition(*VBT, RD, GV); 2111 } 2112 } 2113 2114 llvm::GlobalVariable * 2115 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 2116 llvm::GlobalVariable::LinkageTypes Linkage) { 2117 SmallString<256> OutName; 2118 llvm::raw_svector_ostream Out(OutName); 2119 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); 2120 StringRef Name = OutName.str(); 2121 2122 llvm::ArrayType *VBTableType = 2123 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases()); 2124 2125 assert(!CGM.getModule().getNamedGlobal(Name) && 2126 "vbtable with this name already exists: mangling bug?"); 2127 CharUnits Alignment = 2128 CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy); 2129 llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( 2130 Name, VBTableType, Linkage, Alignment.getQuantity()); 2131 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2132 2133 if (RD->hasAttr<DLLImportAttr>()) 2134 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2135 else if (RD->hasAttr<DLLExportAttr>()) 2136 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2137 2138 if (!GV->hasExternalLinkage()) 2139 emitVBTableDefinition(VBT, RD, GV); 2140 2141 return GV; 2142 } 2143 2144 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, 2145 const CXXRecordDecl *RD, 2146 llvm::GlobalVariable *GV) const { 2147 const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr; 2148 2149 assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() && 2150 "should only emit vbtables for classes with vbtables"); 2151 2152 const ASTRecordLayout &BaseLayout = 2153 getContext().getASTRecordLayout(VBT.IntroducingObject); 2154 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); 2155 2156 SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(), 2157 nullptr); 2158 2159 // The offset from ObjectWithVPtr's vbptr to itself always leads. 2160 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); 2161 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); 2162 2163 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2164 for (const auto &I : ObjectWithVPtr->vbases()) { 2165 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 2166 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); 2167 assert(!Offset.isNegative()); 2168 2169 // Make it relative to the subobject vbptr. 2170 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; 2171 if (VBT.getVBaseWithVPtr()) 2172 CompleteVBPtrOffset += 2173 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); 2174 Offset -= CompleteVBPtrOffset; 2175 2176 unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase); 2177 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); 2178 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); 2179 } 2180 2181 assert(Offsets.size() == 2182 cast<llvm::ArrayType>(GV->getValueType())->getNumElements()); 2183 llvm::ArrayType *VBTableType = 2184 llvm::ArrayType::get(CGM.IntTy, Offsets.size()); 2185 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); 2186 GV->setInitializer(Init); 2187 2188 if (RD->hasAttr<DLLImportAttr>()) 2189 GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage); 2190 } 2191 2192 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, 2193 Address This, 2194 const ThisAdjustment &TA) { 2195 if (TA.isEmpty()) 2196 return This.getPointer(); 2197 2198 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 2199 2200 llvm::Value *V; 2201 if (TA.Virtual.isEmpty()) { 2202 V = This.getPointer(); 2203 } else { 2204 assert(TA.Virtual.Microsoft.VtordispOffset < 0); 2205 // Adjust the this argument based on the vtordisp value. 2206 Address VtorDispPtr = 2207 CGF.Builder.CreateConstInBoundsByteGEP(This, 2208 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset)); 2209 VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty); 2210 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); 2211 V = CGF.Builder.CreateGEP(This.getElementType(), This.getPointer(), 2212 CGF.Builder.CreateNeg(VtorDisp)); 2213 2214 // Unfortunately, having applied the vtordisp means that we no 2215 // longer really have a known alignment for the vbptr step. 2216 // We'll assume the vbptr is pointer-aligned. 2217 2218 if (TA.Virtual.Microsoft.VBPtrOffset) { 2219 // If the final overrider is defined in a virtual base other than the one 2220 // that holds the vfptr, we have to use a vtordispex thunk which looks up 2221 // the vbtable of the derived class. 2222 assert(TA.Virtual.Microsoft.VBPtrOffset > 0); 2223 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); 2224 llvm::Value *VBPtr; 2225 llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr( 2226 CGF, Address(V, CGF.Int8Ty, CGF.getPointerAlign()), 2227 -TA.Virtual.Microsoft.VBPtrOffset, 2228 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); 2229 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); 2230 } 2231 } 2232 2233 if (TA.NonVirtual) { 2234 // Non-virtual adjustment might result in a pointer outside the allocated 2235 // object, e.g. if the final overrider class is laid out after the virtual 2236 // base that declares a method in the most derived class. 2237 V = CGF.Builder.CreateConstGEP1_32(CGF.Int8Ty, V, TA.NonVirtual); 2238 } 2239 2240 // Don't need to bitcast back, the call CodeGen will handle this. 2241 return V; 2242 } 2243 2244 llvm::Value * 2245 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 2246 const ReturnAdjustment &RA) { 2247 if (RA.isEmpty()) 2248 return Ret.getPointer(); 2249 2250 auto OrigTy = Ret.getType(); 2251 Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty); 2252 2253 llvm::Value *V = Ret.getPointer(); 2254 if (RA.Virtual.Microsoft.VBIndex) { 2255 assert(RA.Virtual.Microsoft.VBIndex > 0); 2256 int32_t IntSize = CGF.getIntSize().getQuantity(); 2257 llvm::Value *VBPtr; 2258 llvm::Value *VBaseOffset = 2259 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset, 2260 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); 2261 V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset); 2262 } 2263 2264 if (RA.NonVirtual) 2265 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual); 2266 2267 // Cast back to the original type. 2268 return CGF.Builder.CreateBitCast(V, OrigTy); 2269 } 2270 2271 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, 2272 QualType elementType) { 2273 // Microsoft seems to completely ignore the possibility of a 2274 // two-argument usual deallocation function. 2275 return elementType.isDestructedType(); 2276 } 2277 2278 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { 2279 // Microsoft seems to completely ignore the possibility of a 2280 // two-argument usual deallocation function. 2281 return expr->getAllocatedType().isDestructedType(); 2282 } 2283 2284 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { 2285 // The array cookie is always a size_t; we then pad that out to the 2286 // alignment of the element type. 2287 ASTContext &Ctx = getContext(); 2288 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 2289 Ctx.getTypeAlignInChars(type)); 2290 } 2291 2292 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 2293 Address allocPtr, 2294 CharUnits cookieSize) { 2295 Address numElementsPtr = 2296 CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy); 2297 return CGF.Builder.CreateLoad(numElementsPtr); 2298 } 2299 2300 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 2301 Address newPtr, 2302 llvm::Value *numElements, 2303 const CXXNewExpr *expr, 2304 QualType elementType) { 2305 assert(requiresArrayCookie(expr)); 2306 2307 // The size of the cookie. 2308 CharUnits cookieSize = getArrayCookieSizeImpl(elementType); 2309 2310 // Compute an offset to the cookie. 2311 Address cookiePtr = newPtr; 2312 2313 // Write the number of elements into the appropriate slot. 2314 Address numElementsPtr 2315 = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy); 2316 CGF.Builder.CreateStore(numElements, numElementsPtr); 2317 2318 // Finally, compute a pointer to the actual data buffer by skipping 2319 // over the cookie completely. 2320 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); 2321 } 2322 2323 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, 2324 llvm::FunctionCallee Dtor, 2325 llvm::Constant *Addr) { 2326 // Create a function which calls the destructor. 2327 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); 2328 2329 // extern "C" int __tlregdtor(void (*f)(void)); 2330 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( 2331 CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false); 2332 2333 llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction( 2334 TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true); 2335 if (llvm::Function *TLRegDtorFn = 2336 dyn_cast<llvm::Function>(TLRegDtor.getCallee())) 2337 TLRegDtorFn->setDoesNotThrow(); 2338 2339 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub); 2340 } 2341 2342 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 2343 llvm::FunctionCallee Dtor, 2344 llvm::Constant *Addr) { 2345 if (D.isNoDestroy(CGM.getContext())) 2346 return; 2347 2348 if (D.getTLSKind()) 2349 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr); 2350 2351 // The default behavior is to use atexit. 2352 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr); 2353 } 2354 2355 void MicrosoftCXXABI::EmitThreadLocalInitFuncs( 2356 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 2357 ArrayRef<llvm::Function *> CXXThreadLocalInits, 2358 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { 2359 if (CXXThreadLocalInits.empty()) 2360 return; 2361 2362 CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() == 2363 llvm::Triple::x86 2364 ? "/include:___dyn_tls_init@12" 2365 : "/include:__dyn_tls_init"); 2366 2367 // This will create a GV in the .CRT$XDU section. It will point to our 2368 // initialization function. The CRT will call all of these function 2369 // pointers at start-up time and, eventually, at thread-creation time. 2370 auto AddToXDU = [&CGM](llvm::Function *InitFunc) { 2371 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( 2372 CGM.getModule(), InitFunc->getType(), /*isConstant=*/true, 2373 llvm::GlobalVariable::InternalLinkage, InitFunc, 2374 Twine(InitFunc->getName(), "$initializer$")); 2375 InitFuncPtr->setSection(".CRT$XDU"); 2376 // This variable has discardable linkage, we have to add it to @llvm.used to 2377 // ensure it won't get discarded. 2378 CGM.addUsedGlobal(InitFuncPtr); 2379 return InitFuncPtr; 2380 }; 2381 2382 std::vector<llvm::Function *> NonComdatInits; 2383 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { 2384 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( 2385 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I]))); 2386 llvm::Function *F = CXXThreadLocalInits[I]; 2387 2388 // If the GV is already in a comdat group, then we have to join it. 2389 if (llvm::Comdat *C = GV->getComdat()) 2390 AddToXDU(F)->setComdat(C); 2391 else 2392 NonComdatInits.push_back(F); 2393 } 2394 2395 if (!NonComdatInits.empty()) { 2396 llvm::FunctionType *FTy = 2397 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 2398 llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction( 2399 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(), 2400 SourceLocation(), /*TLS=*/true); 2401 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits); 2402 2403 AddToXDU(InitFunc); 2404 } 2405 } 2406 2407 static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) { 2408 // __tls_guard comes from the MSVC runtime and reflects 2409 // whether TLS has been initialized for a particular thread. 2410 // It is set from within __dyn_tls_init by the runtime. 2411 // Every library and executable has its own variable. 2412 llvm::Type *VTy = llvm::Type::getInt8Ty(CGM.getLLVMContext()); 2413 llvm::Constant *TlsGuardConstant = 2414 CGM.CreateRuntimeVariable(VTy, "__tls_guard"); 2415 llvm::GlobalValue *TlsGuard = cast<llvm::GlobalValue>(TlsGuardConstant); 2416 2417 TlsGuard->setThreadLocal(true); 2418 2419 return TlsGuard; 2420 } 2421 2422 static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) { 2423 // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers 2424 // dynamic TLS initialization by calling __dyn_tls_init internally. 2425 llvm::FunctionType *FTy = 2426 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), {}, 2427 /*isVarArg=*/false); 2428 return CGM.CreateRuntimeFunction( 2429 FTy, "__dyn_tls_on_demand_init", 2430 llvm::AttributeList::get(CGM.getLLVMContext(), 2431 llvm::AttributeList::FunctionIndex, 2432 llvm::Attribute::NoUnwind), 2433 /*Local=*/true); 2434 } 2435 2436 static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard, 2437 llvm::BasicBlock *DynInitBB, 2438 llvm::BasicBlock *ContinueBB) { 2439 llvm::LoadInst *TlsGuardValue = 2440 CGF.Builder.CreateLoad(Address(TlsGuard, CGF.Int8Ty, CharUnits::One())); 2441 llvm::Value *CmpResult = 2442 CGF.Builder.CreateICmpEQ(TlsGuardValue, CGF.Builder.getInt8(0)); 2443 CGF.Builder.CreateCondBr(CmpResult, DynInitBB, ContinueBB); 2444 } 2445 2446 static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF, 2447 llvm::GlobalValue *TlsGuard, 2448 llvm::BasicBlock *ContinueBB) { 2449 llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGF.CGM); 2450 llvm::Function *InitializerFunction = 2451 cast<llvm::Function>(Initializer.getCallee()); 2452 llvm::CallInst *CallVal = CGF.Builder.CreateCall(InitializerFunction); 2453 CallVal->setCallingConv(InitializerFunction->getCallingConv()); 2454 2455 CGF.Builder.CreateBr(ContinueBB); 2456 } 2457 2458 static void emitDynamicTlsInitialization(CodeGenFunction &CGF) { 2459 llvm::BasicBlock *DynInitBB = 2460 CGF.createBasicBlock("dyntls.dyn_init", CGF.CurFn); 2461 llvm::BasicBlock *ContinueBB = 2462 CGF.createBasicBlock("dyntls.continue", CGF.CurFn); 2463 2464 llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGF.CGM); 2465 2466 emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB); 2467 CGF.Builder.SetInsertPoint(DynInitBB); 2468 emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB); 2469 CGF.Builder.SetInsertPoint(ContinueBB); 2470 } 2471 2472 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, 2473 const VarDecl *VD, 2474 QualType LValType) { 2475 // Dynamic TLS initialization works by checking the state of a 2476 // guard variable (__tls_guard) to see whether TLS initialization 2477 // for a thread has happend yet. 2478 // If not, the initialization is triggered on-demand 2479 // by calling __dyn_tls_on_demand_init. 2480 emitDynamicTlsInitialization(CGF); 2481 2482 // Emit the variable just like any regular global variable. 2483 2484 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2485 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2486 2487 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2488 V = CGF.Builder.CreateBitCast(V, RealVarTy->getPointerTo(AS)); 2489 2490 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2491 Address Addr(V, RealVarTy, Alignment); 2492 2493 LValue LV = VD->getType()->isReferenceType() 2494 ? CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2495 AlignmentSource::Decl) 2496 : CGF.MakeAddrLValue(Addr, LValType, AlignmentSource::Decl); 2497 return LV; 2498 } 2499 2500 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { 2501 StringRef VarName("_Init_thread_epoch"); 2502 CharUnits Align = CGM.getIntAlign(); 2503 if (auto *GV = CGM.getModule().getNamedGlobal(VarName)) 2504 return ConstantAddress(GV, GV->getValueType(), Align); 2505 auto *GV = new llvm::GlobalVariable( 2506 CGM.getModule(), CGM.IntTy, 2507 /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage, 2508 /*Initializer=*/nullptr, VarName, 2509 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); 2510 GV->setAlignment(Align.getAsAlign()); 2511 return ConstantAddress(GV, GV->getValueType(), Align); 2512 } 2513 2514 static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) { 2515 llvm::FunctionType *FTy = 2516 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2517 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2518 return CGM.CreateRuntimeFunction( 2519 FTy, "_Init_thread_header", 2520 llvm::AttributeList::get(CGM.getLLVMContext(), 2521 llvm::AttributeList::FunctionIndex, 2522 llvm::Attribute::NoUnwind), 2523 /*Local=*/true); 2524 } 2525 2526 static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) { 2527 llvm::FunctionType *FTy = 2528 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2529 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2530 return CGM.CreateRuntimeFunction( 2531 FTy, "_Init_thread_footer", 2532 llvm::AttributeList::get(CGM.getLLVMContext(), 2533 llvm::AttributeList::FunctionIndex, 2534 llvm::Attribute::NoUnwind), 2535 /*Local=*/true); 2536 } 2537 2538 static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) { 2539 llvm::FunctionType *FTy = 2540 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2541 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2542 return CGM.CreateRuntimeFunction( 2543 FTy, "_Init_thread_abort", 2544 llvm::AttributeList::get(CGM.getLLVMContext(), 2545 llvm::AttributeList::FunctionIndex, 2546 llvm::Attribute::NoUnwind), 2547 /*Local=*/true); 2548 } 2549 2550 namespace { 2551 struct ResetGuardBit final : EHScopeStack::Cleanup { 2552 Address Guard; 2553 unsigned GuardNum; 2554 ResetGuardBit(Address Guard, unsigned GuardNum) 2555 : Guard(Guard), GuardNum(GuardNum) {} 2556 2557 void Emit(CodeGenFunction &CGF, Flags flags) override { 2558 // Reset the bit in the mask so that the static variable may be 2559 // reinitialized. 2560 CGBuilderTy &Builder = CGF.Builder; 2561 llvm::LoadInst *LI = Builder.CreateLoad(Guard); 2562 llvm::ConstantInt *Mask = 2563 llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum)); 2564 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard); 2565 } 2566 }; 2567 2568 struct CallInitThreadAbort final : EHScopeStack::Cleanup { 2569 llvm::Value *Guard; 2570 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {} 2571 2572 void Emit(CodeGenFunction &CGF, Flags flags) override { 2573 // Calling _Init_thread_abort will reset the guard's state. 2574 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard); 2575 } 2576 }; 2577 } 2578 2579 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 2580 llvm::GlobalVariable *GV, 2581 bool PerformInit) { 2582 // MSVC only uses guards for static locals. 2583 if (!D.isStaticLocal()) { 2584 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); 2585 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. 2586 llvm::Function *F = CGF.CurFn; 2587 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 2588 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName())); 2589 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2590 return; 2591 } 2592 2593 bool ThreadlocalStatic = D.getTLSKind(); 2594 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; 2595 2596 // Thread-safe static variables which aren't thread-specific have a 2597 // per-variable guard. 2598 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; 2599 2600 CGBuilderTy &Builder = CGF.Builder; 2601 llvm::IntegerType *GuardTy = CGF.Int32Ty; 2602 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); 2603 CharUnits GuardAlign = CharUnits::fromQuantity(4); 2604 2605 // Get the guard variable for this function if we have one already. 2606 GuardInfo *GI = nullptr; 2607 if (ThreadlocalStatic) 2608 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; 2609 else if (!ThreadsafeStatic) 2610 GI = &GuardVariableMap[D.getDeclContext()]; 2611 2612 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; 2613 unsigned GuardNum; 2614 if (D.isExternallyVisible()) { 2615 // Externally visible variables have to be numbered in Sema to properly 2616 // handle unreachable VarDecls. 2617 GuardNum = getContext().getStaticLocalNumber(&D); 2618 assert(GuardNum > 0); 2619 GuardNum--; 2620 } else if (HasPerVariableGuard) { 2621 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; 2622 } else { 2623 // Non-externally visible variables are numbered here in CodeGen. 2624 GuardNum = GI->BitIndex++; 2625 } 2626 2627 if (!HasPerVariableGuard && GuardNum >= 32) { 2628 if (D.isExternallyVisible()) 2629 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); 2630 GuardNum %= 32; 2631 GuardVar = nullptr; 2632 } 2633 2634 if (!GuardVar) { 2635 // Mangle the name for the guard. 2636 SmallString<256> GuardName; 2637 { 2638 llvm::raw_svector_ostream Out(GuardName); 2639 if (HasPerVariableGuard) 2640 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum, 2641 Out); 2642 else 2643 getMangleContext().mangleStaticGuardVariable(&D, Out); 2644 } 2645 2646 // Create the guard variable with a zero-initializer. Just absorb linkage, 2647 // visibility and dll storage class from the guarded variable. 2648 GuardVar = 2649 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, 2650 GV->getLinkage(), Zero, GuardName.str()); 2651 GuardVar->setVisibility(GV->getVisibility()); 2652 GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); 2653 GuardVar->setAlignment(GuardAlign.getAsAlign()); 2654 if (GuardVar->isWeakForLinker()) 2655 GuardVar->setComdat( 2656 CGM.getModule().getOrInsertComdat(GuardVar->getName())); 2657 if (D.getTLSKind()) 2658 CGM.setTLSMode(GuardVar, D); 2659 if (GI && !HasPerVariableGuard) 2660 GI->Guard = GuardVar; 2661 } 2662 2663 ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign); 2664 2665 assert(GuardVar->getLinkage() == GV->getLinkage() && 2666 "static local from the same function had different linkage"); 2667 2668 if (!HasPerVariableGuard) { 2669 // Pseudo code for the test: 2670 // if (!(GuardVar & MyGuardBit)) { 2671 // GuardVar |= MyGuardBit; 2672 // ... initialize the object ...; 2673 // } 2674 2675 // Test our bit from the guard variable. 2676 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum); 2677 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr); 2678 llvm::Value *NeedsInit = 2679 Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero); 2680 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2681 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2682 CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock, 2683 CodeGenFunction::GuardKind::VariableGuard, &D); 2684 2685 // Set our bit in the guard variable and emit the initializer and add a global 2686 // destructor if appropriate. 2687 CGF.EmitBlock(InitBlock); 2688 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr); 2689 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum); 2690 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2691 CGF.PopCleanupBlock(); 2692 Builder.CreateBr(EndBlock); 2693 2694 // Continue. 2695 CGF.EmitBlock(EndBlock); 2696 } else { 2697 // Pseudo code for the test: 2698 // if (TSS > _Init_thread_epoch) { 2699 // _Init_thread_header(&TSS); 2700 // if (TSS == -1) { 2701 // ... initialize the object ...; 2702 // _Init_thread_footer(&TSS); 2703 // } 2704 // } 2705 // 2706 // The algorithm is almost identical to what can be found in the appendix 2707 // found in N2325. 2708 2709 // This BasicBLock determines whether or not we have any work to do. 2710 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr); 2711 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2712 llvm::LoadInst *InitThreadEpoch = 2713 Builder.CreateLoad(getInitThreadEpochPtr(CGM)); 2714 llvm::Value *IsUninitialized = 2715 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch); 2716 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt"); 2717 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2718 CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock, 2719 CodeGenFunction::GuardKind::VariableGuard, &D); 2720 2721 // This BasicBlock attempts to determine whether or not this thread is 2722 // responsible for doing the initialization. 2723 CGF.EmitBlock(AttemptInitBlock); 2724 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), 2725 GuardAddr.getPointer()); 2726 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr); 2727 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2728 llvm::Value *ShouldDoInit = 2729 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt()); 2730 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2731 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock); 2732 2733 // Ok, we ended up getting selected as the initializing thread. 2734 CGF.EmitBlock(InitBlock); 2735 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr); 2736 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2737 CGF.PopCleanupBlock(); 2738 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), 2739 GuardAddr.getPointer()); 2740 Builder.CreateBr(EndBlock); 2741 2742 CGF.EmitBlock(EndBlock); 2743 } 2744 } 2745 2746 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 2747 // Null-ness for function memptrs only depends on the first field, which is 2748 // the function pointer. The rest don't matter, so we can zero initialize. 2749 if (MPT->isMemberFunctionPointer()) 2750 return true; 2751 2752 // The virtual base adjustment field is always -1 for null, so if we have one 2753 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a 2754 // valid field offset. 2755 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2756 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2757 return (!inheritanceModelHasVBTableOffsetField(Inheritance) && 2758 RD->nullFieldOffsetIsZero()); 2759 } 2760 2761 llvm::Type * 2762 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 2763 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2764 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2765 llvm::SmallVector<llvm::Type *, 4> fields; 2766 if (MPT->isMemberFunctionPointer()) 2767 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk 2768 else 2769 fields.push_back(CGM.IntTy); // FieldOffset 2770 2771 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2772 Inheritance)) 2773 fields.push_back(CGM.IntTy); 2774 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2775 fields.push_back(CGM.IntTy); 2776 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2777 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset 2778 2779 if (fields.size() == 1) 2780 return fields[0]; 2781 return llvm::StructType::get(CGM.getLLVMContext(), fields); 2782 } 2783 2784 void MicrosoftCXXABI:: 2785 GetNullMemberPointerFields(const MemberPointerType *MPT, 2786 llvm::SmallVectorImpl<llvm::Constant *> &fields) { 2787 assert(fields.empty()); 2788 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2789 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2790 if (MPT->isMemberFunctionPointer()) { 2791 // FunctionPointerOrVirtualThunk 2792 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2793 } else { 2794 if (RD->nullFieldOffsetIsZero()) 2795 fields.push_back(getZeroInt()); // FieldOffset 2796 else 2797 fields.push_back(getAllOnesInt()); // FieldOffset 2798 } 2799 2800 if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(), 2801 Inheritance)) 2802 fields.push_back(getZeroInt()); 2803 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 2804 fields.push_back(getZeroInt()); 2805 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2806 fields.push_back(getAllOnesInt()); 2807 } 2808 2809 llvm::Constant * 2810 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 2811 llvm::SmallVector<llvm::Constant *, 4> fields; 2812 GetNullMemberPointerFields(MPT, fields); 2813 if (fields.size() == 1) 2814 return fields[0]; 2815 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); 2816 assert(Res->getType() == ConvertMemberPointerType(MPT)); 2817 return Res; 2818 } 2819 2820 llvm::Constant * 2821 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, 2822 bool IsMemberFunction, 2823 const CXXRecordDecl *RD, 2824 CharUnits NonVirtualBaseAdjustment, 2825 unsigned VBTableIndex) { 2826 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 2827 2828 // Single inheritance class member pointer are represented as scalars instead 2829 // of aggregates. 2830 if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance)) 2831 return FirstField; 2832 2833 llvm::SmallVector<llvm::Constant *, 4> fields; 2834 fields.push_back(FirstField); 2835 2836 if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance)) 2837 fields.push_back(llvm::ConstantInt::get( 2838 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); 2839 2840 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) { 2841 CharUnits Offs = CharUnits::Zero(); 2842 if (VBTableIndex) 2843 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 2844 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); 2845 } 2846 2847 // The rest of the fields are adjusted by conversions to a more derived class. 2848 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 2849 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex)); 2850 2851 return llvm::ConstantStruct::getAnon(fields); 2852 } 2853 2854 llvm::Constant * 2855 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 2856 CharUnits offset) { 2857 return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset); 2858 } 2859 2860 llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD, 2861 CharUnits offset) { 2862 if (RD->getMSInheritanceModel() == 2863 MSInheritanceModel::Virtual) 2864 offset -= getContext().getOffsetOfBaseWithVBPtr(RD); 2865 llvm::Constant *FirstField = 2866 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); 2867 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, 2868 CharUnits::Zero(), /*VBTableIndex=*/0); 2869 } 2870 2871 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, 2872 QualType MPType) { 2873 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); 2874 const ValueDecl *MPD = MP.getMemberPointerDecl(); 2875 if (!MPD) 2876 return EmitNullMemberPointer(DstTy); 2877 2878 ASTContext &Ctx = getContext(); 2879 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); 2880 2881 llvm::Constant *C; 2882 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) { 2883 C = EmitMemberFunctionPointer(MD); 2884 } else { 2885 // For a pointer to data member, start off with the offset of the field in 2886 // the class in which it was declared, and convert from there if necessary. 2887 // For indirect field decls, get the outermost anonymous field and use the 2888 // parent class. 2889 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD)); 2890 const FieldDecl *FD = dyn_cast<FieldDecl>(MPD); 2891 if (!FD) 2892 FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin()); 2893 const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent()); 2894 RD = RD->getMostRecentNonInjectedDecl(); 2895 C = EmitMemberDataPointer(RD, FieldOffset); 2896 } 2897 2898 if (!MemberPointerPath.empty()) { 2899 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext()); 2900 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); 2901 const MemberPointerType *SrcTy = 2902 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy) 2903 ->castAs<MemberPointerType>(); 2904 2905 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 2906 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; 2907 const CXXRecordDecl *PrevRD = SrcRD; 2908 for (const CXXRecordDecl *PathElem : MemberPointerPath) { 2909 const CXXRecordDecl *Base = nullptr; 2910 const CXXRecordDecl *Derived = nullptr; 2911 if (DerivedMember) { 2912 Base = PathElem; 2913 Derived = PrevRD; 2914 } else { 2915 Base = PrevRD; 2916 Derived = PathElem; 2917 } 2918 for (const CXXBaseSpecifier &BS : Derived->bases()) 2919 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == 2920 Base->getCanonicalDecl()) 2921 DerivedToBasePath.push_back(&BS); 2922 PrevRD = PathElem; 2923 } 2924 assert(DerivedToBasePath.size() == MemberPointerPath.size()); 2925 2926 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer 2927 : CK_BaseToDerivedMemberPointer; 2928 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(), 2929 DerivedToBasePath.end(), C); 2930 } 2931 return C; 2932 } 2933 2934 llvm::Constant * 2935 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { 2936 assert(MD->isInstance() && "Member function must not be static!"); 2937 2938 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); 2939 const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl(); 2940 CodeGenTypes &Types = CGM.getTypes(); 2941 2942 unsigned VBTableIndex = 0; 2943 llvm::Constant *FirstField; 2944 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 2945 if (!MD->isVirtual()) { 2946 llvm::Type *Ty; 2947 // Check whether the function has a computable LLVM signature. 2948 if (Types.isFuncTypeConvertible(FPT)) { 2949 // The function has a computable LLVM signature; use the correct type. 2950 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 2951 } else { 2952 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 2953 // function type is incomplete. 2954 Ty = CGM.PtrDiffTy; 2955 } 2956 FirstField = CGM.GetAddrOfFunction(MD, Ty); 2957 } else { 2958 auto &VTableContext = CGM.getMicrosoftVTableContext(); 2959 MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD); 2960 FirstField = EmitVirtualMemPtrThunk(MD, ML); 2961 // Include the vfptr adjustment if the method is in a non-primary vftable. 2962 NonVirtualBaseAdjustment += ML.VFPtrOffset; 2963 if (ML.VBase) 2964 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4; 2965 } 2966 2967 if (VBTableIndex == 0 && 2968 RD->getMSInheritanceModel() == 2969 MSInheritanceModel::Virtual) 2970 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); 2971 2972 // The rest of the fields are common with data member pointers. 2973 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy); 2974 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, 2975 NonVirtualBaseAdjustment, VBTableIndex); 2976 } 2977 2978 /// Member pointers are the same if they're either bitwise identical *or* both 2979 /// null. Null-ness for function members is determined by the first field, 2980 /// while for data member pointers we must compare all fields. 2981 llvm::Value * 2982 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 2983 llvm::Value *L, 2984 llvm::Value *R, 2985 const MemberPointerType *MPT, 2986 bool Inequality) { 2987 CGBuilderTy &Builder = CGF.Builder; 2988 2989 // Handle != comparisons by switching the sense of all boolean operations. 2990 llvm::ICmpInst::Predicate Eq; 2991 llvm::Instruction::BinaryOps And, Or; 2992 if (Inequality) { 2993 Eq = llvm::ICmpInst::ICMP_NE; 2994 And = llvm::Instruction::Or; 2995 Or = llvm::Instruction::And; 2996 } else { 2997 Eq = llvm::ICmpInst::ICMP_EQ; 2998 And = llvm::Instruction::And; 2999 Or = llvm::Instruction::Or; 3000 } 3001 3002 // If this is a single field member pointer (single inheritance), this is a 3003 // single icmp. 3004 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3005 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3006 if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(), 3007 Inheritance)) 3008 return Builder.CreateICmp(Eq, L, R); 3009 3010 // Compare the first field. 3011 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); 3012 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); 3013 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); 3014 3015 // Compare everything other than the first field. 3016 llvm::Value *Res = nullptr; 3017 llvm::StructType *LType = cast<llvm::StructType>(L->getType()); 3018 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { 3019 llvm::Value *LF = Builder.CreateExtractValue(L, I); 3020 llvm::Value *RF = Builder.CreateExtractValue(R, I); 3021 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); 3022 if (Res) 3023 Res = Builder.CreateBinOp(And, Res, Cmp); 3024 else 3025 Res = Cmp; 3026 } 3027 3028 // Check if the first field is 0 if this is a function pointer. 3029 if (MPT->isMemberFunctionPointer()) { 3030 // (l1 == r1 && ...) || l0 == 0 3031 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); 3032 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); 3033 Res = Builder.CreateBinOp(Or, Res, IsZero); 3034 } 3035 3036 // Combine the comparison of the first field, which must always be true for 3037 // this comparison to succeeed. 3038 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); 3039 } 3040 3041 llvm::Value * 3042 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 3043 llvm::Value *MemPtr, 3044 const MemberPointerType *MPT) { 3045 CGBuilderTy &Builder = CGF.Builder; 3046 llvm::SmallVector<llvm::Constant *, 4> fields; 3047 // We only need one field for member functions. 3048 if (MPT->isMemberFunctionPointer()) 3049 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 3050 else 3051 GetNullMemberPointerFields(MPT, fields); 3052 assert(!fields.empty()); 3053 llvm::Value *FirstField = MemPtr; 3054 if (MemPtr->getType()->isStructTy()) 3055 FirstField = Builder.CreateExtractValue(MemPtr, 0); 3056 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); 3057 3058 // For function member pointers, we only need to test the function pointer 3059 // field. The other fields if any can be garbage. 3060 if (MPT->isMemberFunctionPointer()) 3061 return Res; 3062 3063 // Otherwise, emit a series of compares and combine the results. 3064 for (int I = 1, E = fields.size(); I < E; ++I) { 3065 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); 3066 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); 3067 Res = Builder.CreateOr(Res, Next, "memptr.tobool"); 3068 } 3069 return Res; 3070 } 3071 3072 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, 3073 llvm::Constant *Val) { 3074 // Function pointers are null if the pointer in the first field is null. 3075 if (MPT->isMemberFunctionPointer()) { 3076 llvm::Constant *FirstField = Val->getType()->isStructTy() ? 3077 Val->getAggregateElement(0U) : Val; 3078 return FirstField->isNullValue(); 3079 } 3080 3081 // If it's not a function pointer and it's zero initializable, we can easily 3082 // check zero. 3083 if (isZeroInitializable(MPT) && Val->isNullValue()) 3084 return true; 3085 3086 // Otherwise, break down all the fields for comparison. Hopefully these 3087 // little Constants are reused, while a big null struct might not be. 3088 llvm::SmallVector<llvm::Constant *, 4> Fields; 3089 GetNullMemberPointerFields(MPT, Fields); 3090 if (Fields.size() == 1) { 3091 assert(Val->getType()->isIntegerTy()); 3092 return Val == Fields[0]; 3093 } 3094 3095 unsigned I, E; 3096 for (I = 0, E = Fields.size(); I != E; ++I) { 3097 if (Val->getAggregateElement(I) != Fields[I]) 3098 break; 3099 } 3100 return I == E; 3101 } 3102 3103 llvm::Value * 3104 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 3105 Address This, 3106 llvm::Value *VBPtrOffset, 3107 llvm::Value *VBTableOffset, 3108 llvm::Value **VBPtrOut) { 3109 CGBuilderTy &Builder = CGF.Builder; 3110 // Load the vbtable pointer from the vbptr in the instance. 3111 This = Builder.CreateElementBitCast(This, CGM.Int8Ty); 3112 llvm::Value *VBPtr = Builder.CreateInBoundsGEP( 3113 This.getElementType(), This.getPointer(), VBPtrOffset, "vbptr"); 3114 if (VBPtrOut) *VBPtrOut = VBPtr; 3115 VBPtr = Builder.CreateBitCast(VBPtr, 3116 CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace())); 3117 3118 CharUnits VBPtrAlign; 3119 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) { 3120 VBPtrAlign = This.getAlignment().alignmentAtOffset( 3121 CharUnits::fromQuantity(CI->getSExtValue())); 3122 } else { 3123 VBPtrAlign = CGF.getPointerAlign(); 3124 } 3125 3126 llvm::Value *VBTable = Builder.CreateAlignedLoad( 3127 CGM.Int32Ty->getPointerTo(0), VBPtr, VBPtrAlign, "vbtable"); 3128 3129 // Translate from byte offset to table index. It improves analyzability. 3130 llvm::Value *VBTableIndex = Builder.CreateAShr( 3131 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2), 3132 "vbtindex", /*isExact=*/true); 3133 3134 // Load an i32 offset from the vb-table. 3135 llvm::Value *VBaseOffs = 3136 Builder.CreateInBoundsGEP(CGM.Int32Ty, VBTable, VBTableIndex); 3137 VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0)); 3138 return Builder.CreateAlignedLoad(CGM.Int32Ty, VBaseOffs, 3139 CharUnits::fromQuantity(4), "vbase_offs"); 3140 } 3141 3142 // Returns an adjusted base cast to i8*, since we do more address arithmetic on 3143 // it. 3144 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( 3145 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, 3146 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { 3147 CGBuilderTy &Builder = CGF.Builder; 3148 Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty); 3149 llvm::BasicBlock *OriginalBB = nullptr; 3150 llvm::BasicBlock *SkipAdjustBB = nullptr; 3151 llvm::BasicBlock *VBaseAdjustBB = nullptr; 3152 3153 // In the unspecified inheritance model, there might not be a vbtable at all, 3154 // in which case we need to skip the virtual base lookup. If there is a 3155 // vbtable, the first entry is a no-op entry that gives back the original 3156 // base, so look for a virtual base adjustment offset of zero. 3157 if (VBPtrOffset) { 3158 OriginalBB = Builder.GetInsertBlock(); 3159 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); 3160 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); 3161 llvm::Value *IsVirtual = 3162 Builder.CreateICmpNE(VBTableOffset, getZeroInt(), 3163 "memptr.is_vbase"); 3164 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); 3165 CGF.EmitBlock(VBaseAdjustBB); 3166 } 3167 3168 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll 3169 // know the vbptr offset. 3170 if (!VBPtrOffset) { 3171 CharUnits offs = CharUnits::Zero(); 3172 if (!RD->hasDefinition()) { 3173 DiagnosticsEngine &Diags = CGF.CGM.getDiags(); 3174 unsigned DiagID = Diags.getCustomDiagID( 3175 DiagnosticsEngine::Error, 3176 "member pointer representation requires a " 3177 "complete class type for %0 to perform this expression"); 3178 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); 3179 } else if (RD->getNumVBases()) 3180 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 3181 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); 3182 } 3183 llvm::Value *VBPtr = nullptr; 3184 llvm::Value *VBaseOffs = 3185 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); 3186 llvm::Value *AdjustedBase = 3187 Builder.CreateInBoundsGEP(CGM.Int8Ty, VBPtr, VBaseOffs); 3188 3189 // Merge control flow with the case where we didn't have to adjust. 3190 if (VBaseAdjustBB) { 3191 Builder.CreateBr(SkipAdjustBB); 3192 CGF.EmitBlock(SkipAdjustBB); 3193 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); 3194 Phi->addIncoming(Base.getPointer(), OriginalBB); 3195 Phi->addIncoming(AdjustedBase, VBaseAdjustBB); 3196 return Phi; 3197 } 3198 return AdjustedBase; 3199 } 3200 3201 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( 3202 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, 3203 const MemberPointerType *MPT) { 3204 assert(MPT->isMemberDataPointer()); 3205 unsigned AS = Base.getAddressSpace(); 3206 llvm::Type *PType = 3207 CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); 3208 CGBuilderTy &Builder = CGF.Builder; 3209 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3210 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3211 3212 // Extract the fields we need, regardless of model. We'll apply them if we 3213 // have them. 3214 llvm::Value *FieldOffset = MemPtr; 3215 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3216 llvm::Value *VBPtrOffset = nullptr; 3217 if (MemPtr->getType()->isStructTy()) { 3218 // We need to extract values. 3219 unsigned I = 0; 3220 FieldOffset = Builder.CreateExtractValue(MemPtr, I++); 3221 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3222 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3223 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3224 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3225 } 3226 3227 llvm::Value *Addr; 3228 if (VirtualBaseAdjustmentOffset) { 3229 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, 3230 VBPtrOffset); 3231 } else { 3232 Addr = Base.getPointer(); 3233 } 3234 3235 // Cast to char*. 3236 Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS)); 3237 3238 // Apply the offset, which we assume is non-null. 3239 Addr = Builder.CreateInBoundsGEP(CGF.Int8Ty, Addr, FieldOffset, 3240 "memptr.offset"); 3241 3242 // Cast the address to the appropriate pointer type, adopting the address 3243 // space of the base pointer. 3244 return Builder.CreateBitCast(Addr, PType); 3245 } 3246 3247 llvm::Value * 3248 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 3249 const CastExpr *E, 3250 llvm::Value *Src) { 3251 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 3252 E->getCastKind() == CK_BaseToDerivedMemberPointer || 3253 E->getCastKind() == CK_ReinterpretMemberPointer); 3254 3255 // Use constant emission if we can. 3256 if (isa<llvm::Constant>(Src)) 3257 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); 3258 3259 // We may be adding or dropping fields from the member pointer, so we need 3260 // both types and the inheritance models of both records. 3261 const MemberPointerType *SrcTy = 3262 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3263 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3264 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3265 3266 // If the classes use the same null representation, reinterpret_cast is a nop. 3267 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; 3268 if (IsReinterpret && IsFunc) 3269 return Src; 3270 3271 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3272 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3273 if (IsReinterpret && 3274 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) 3275 return Src; 3276 3277 CGBuilderTy &Builder = CGF.Builder; 3278 3279 // Branch past the conversion if Src is null. 3280 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); 3281 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); 3282 3283 // C++ 5.2.10p9: The null member pointer value is converted to the null member 3284 // pointer value of the destination type. 3285 if (IsReinterpret) { 3286 // For reinterpret casts, sema ensures that src and dst are both functions 3287 // or data and have the same size, which means the LLVM types should match. 3288 assert(Src->getType() == DstNull->getType()); 3289 return Builder.CreateSelect(IsNotNull, Src, DstNull); 3290 } 3291 3292 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); 3293 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); 3294 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); 3295 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); 3296 CGF.EmitBlock(ConvertBB); 3297 3298 llvm::Value *Dst = EmitNonNullMemberPointerConversion( 3299 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src, 3300 Builder); 3301 3302 Builder.CreateBr(ContinueBB); 3303 3304 // In the continuation, choose between DstNull and Dst. 3305 CGF.EmitBlock(ContinueBB); 3306 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); 3307 Phi->addIncoming(DstNull, OriginalBB); 3308 Phi->addIncoming(Dst, ConvertBB); 3309 return Phi; 3310 } 3311 3312 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( 3313 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3314 CastExpr::path_const_iterator PathBegin, 3315 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 3316 CGBuilderTy &Builder) { 3317 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3318 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3319 MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel(); 3320 MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel(); 3321 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3322 bool IsConstant = isa<llvm::Constant>(Src); 3323 3324 // Decompose src. 3325 llvm::Value *FirstField = Src; 3326 llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); 3327 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); 3328 llvm::Value *VBPtrOffset = getZeroInt(); 3329 if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) { 3330 // We need to extract values. 3331 unsigned I = 0; 3332 FirstField = Builder.CreateExtractValue(Src, I++); 3333 if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance)) 3334 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); 3335 if (inheritanceModelHasVBPtrOffsetField(SrcInheritance)) 3336 VBPtrOffset = Builder.CreateExtractValue(Src, I++); 3337 if (inheritanceModelHasVBTableOffsetField(SrcInheritance)) 3338 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); 3339 } 3340 3341 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); 3342 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; 3343 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); 3344 3345 // For data pointers, we adjust the field offset directly. For functions, we 3346 // have a separate field. 3347 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; 3348 3349 // The virtual inheritance model has a quirk: the virtual base table is always 3350 // referenced when dereferencing a member pointer even if the member pointer 3351 // is non-virtual. This is accounted for by adjusting the non-virtual offset 3352 // to point backwards to the top of the MDC from the first VBase. Undo this 3353 // adjustment to normalize the member pointer. 3354 llvm::Value *SrcVBIndexEqZero = 3355 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3356 if (SrcInheritance == MSInheritanceModel::Virtual) { 3357 if (int64_t SrcOffsetToFirstVBase = 3358 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) { 3359 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( 3360 SrcVBIndexEqZero, 3361 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase), 3362 getZeroInt()); 3363 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment); 3364 } 3365 } 3366 3367 // A non-zero vbindex implies that we are dealing with a source member in a 3368 // floating virtual base in addition to some non-virtual offset. If the 3369 // vbindex is zero, we are dealing with a source that exists in a non-virtual, 3370 // fixed, base. The difference between these two cases is that the vbindex + 3371 // nvoffset *always* point to the member regardless of what context they are 3372 // evaluated in so long as the vbindex is adjusted. A member inside a fixed 3373 // base requires explicit nv adjustment. 3374 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( 3375 CGM.IntTy, 3376 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd) 3377 .getQuantity()); 3378 3379 llvm::Value *NVDisp; 3380 if (IsDerivedToBase) 3381 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj"); 3382 else 3383 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj"); 3384 3385 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt()); 3386 3387 // Update the vbindex to an appropriate value in the destination because 3388 // SrcRD's vbtable might not be a strict prefix of the one in DstRD. 3389 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; 3390 if (inheritanceModelHasVBTableOffsetField(DstInheritance) && 3391 inheritanceModelHasVBTableOffsetField(SrcInheritance)) { 3392 if (llvm::GlobalVariable *VDispMap = 3393 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { 3394 llvm::Value *VBIndex = Builder.CreateExactUDiv( 3395 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4)); 3396 if (IsConstant) { 3397 llvm::Constant *Mapping = VDispMap->getInitializer(); 3398 VirtualBaseAdjustmentOffset = 3399 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex)); 3400 } else { 3401 llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; 3402 VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad( 3403 CGM.IntTy, Builder.CreateInBoundsGEP(VDispMap->getValueType(), 3404 VDispMap, Idxs), 3405 CharUnits::fromQuantity(4)); 3406 } 3407 3408 DstVBIndexEqZero = 3409 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3410 } 3411 } 3412 3413 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize 3414 // it to the offset of the vbptr. 3415 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) { 3416 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( 3417 CGM.IntTy, 3418 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); 3419 VBPtrOffset = 3420 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset); 3421 } 3422 3423 // Likewise, apply a similar adjustment so that dereferencing the member 3424 // pointer correctly accounts for the distance between the start of the first 3425 // virtual base and the top of the MDC. 3426 if (DstInheritance == MSInheritanceModel::Virtual) { 3427 if (int64_t DstOffsetToFirstVBase = 3428 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) { 3429 llvm::Value *DoDstAdjustment = Builder.CreateSelect( 3430 DstVBIndexEqZero, 3431 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase), 3432 getZeroInt()); 3433 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment); 3434 } 3435 } 3436 3437 // Recompose dst from the null struct and the adjusted fields from src. 3438 llvm::Value *Dst; 3439 if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) { 3440 Dst = FirstField; 3441 } else { 3442 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy)); 3443 unsigned Idx = 0; 3444 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); 3445 if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance)) 3446 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++); 3447 if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) 3448 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++); 3449 if (inheritanceModelHasVBTableOffsetField(DstInheritance)) 3450 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++); 3451 } 3452 return Dst; 3453 } 3454 3455 llvm::Constant * 3456 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, 3457 llvm::Constant *Src) { 3458 const MemberPointerType *SrcTy = 3459 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3460 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3461 3462 CastKind CK = E->getCastKind(); 3463 3464 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(), 3465 E->path_end(), Src); 3466 } 3467 3468 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( 3469 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3470 CastExpr::path_const_iterator PathBegin, 3471 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { 3472 assert(CK == CK_DerivedToBaseMemberPointer || 3473 CK == CK_BaseToDerivedMemberPointer || 3474 CK == CK_ReinterpretMemberPointer); 3475 // If src is null, emit a new null for dst. We can't return src because dst 3476 // might have a new representation. 3477 if (MemberPointerConstantIsNull(SrcTy, Src)) 3478 return EmitNullMemberPointer(DstTy); 3479 3480 // We don't need to do anything for reinterpret_casts of non-null member 3481 // pointers. We should only get here when the two type representations have 3482 // the same size. 3483 if (CK == CK_ReinterpretMemberPointer) 3484 return Src; 3485 3486 CGBuilderTy Builder(CGM, CGM.getLLVMContext()); 3487 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion( 3488 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); 3489 3490 return Dst; 3491 } 3492 3493 CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( 3494 CodeGenFunction &CGF, const Expr *E, Address This, 3495 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, 3496 const MemberPointerType *MPT) { 3497 assert(MPT->isMemberFunctionPointer()); 3498 const FunctionProtoType *FPT = 3499 MPT->getPointeeType()->castAs<FunctionProtoType>(); 3500 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3501 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( 3502 CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr)); 3503 CGBuilderTy &Builder = CGF.Builder; 3504 3505 MSInheritanceModel Inheritance = RD->getMSInheritanceModel(); 3506 3507 // Extract the fields we need, regardless of model. We'll apply them if we 3508 // have them. 3509 llvm::Value *FunctionPointer = MemPtr; 3510 llvm::Value *NonVirtualBaseAdjustment = nullptr; 3511 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3512 llvm::Value *VBPtrOffset = nullptr; 3513 if (MemPtr->getType()->isStructTy()) { 3514 // We need to extract values. 3515 unsigned I = 0; 3516 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); 3517 if (inheritanceModelHasNVOffsetField(MPT, Inheritance)) 3518 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); 3519 if (inheritanceModelHasVBPtrOffsetField(Inheritance)) 3520 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3521 if (inheritanceModelHasVBTableOffsetField(Inheritance)) 3522 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3523 } 3524 3525 if (VirtualBaseAdjustmentOffset) { 3526 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This, 3527 VirtualBaseAdjustmentOffset, VBPtrOffset); 3528 } else { 3529 ThisPtrForCall = This.getPointer(); 3530 } 3531 3532 if (NonVirtualBaseAdjustment) { 3533 // Apply the adjustment and cast back to the original struct type. 3534 llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy); 3535 Ptr = Builder.CreateInBoundsGEP(CGF.Int8Ty, Ptr, NonVirtualBaseAdjustment); 3536 ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(), 3537 "this.adjusted"); 3538 } 3539 3540 FunctionPointer = 3541 Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo()); 3542 CGCallee Callee(FPT, FunctionPointer); 3543 return Callee; 3544 } 3545 3546 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { 3547 return new MicrosoftCXXABI(CGM); 3548 } 3549 3550 // MS RTTI Overview: 3551 // The run time type information emitted by cl.exe contains 5 distinct types of 3552 // structures. Many of them reference each other. 3553 // 3554 // TypeInfo: Static classes that are returned by typeid. 3555 // 3556 // CompleteObjectLocator: Referenced by vftables. They contain information 3557 // required for dynamic casting, including OffsetFromTop. They also contain 3558 // a reference to the TypeInfo for the type and a reference to the 3559 // CompleteHierarchyDescriptor for the type. 3560 // 3561 // ClassHierarchyDescriptor: Contains information about a class hierarchy. 3562 // Used during dynamic_cast to walk a class hierarchy. References a base 3563 // class array and the size of said array. 3564 // 3565 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is 3566 // somewhat of a misnomer because the most derived class is also in the list 3567 // as well as multiple copies of virtual bases (if they occur multiple times 3568 // in the hierarchy.) The BaseClassArray contains one BaseClassDescriptor for 3569 // every path in the hierarchy, in pre-order depth first order. Note, we do 3570 // not declare a specific llvm type for BaseClassArray, it's merely an array 3571 // of BaseClassDescriptor pointers. 3572 // 3573 // BaseClassDescriptor: Contains information about a class in a class hierarchy. 3574 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that 3575 // BaseClassArray is. It contains information about a class within a 3576 // hierarchy such as: is this base is ambiguous and what is its offset in the 3577 // vbtable. The names of the BaseClassDescriptors have all of their fields 3578 // mangled into them so they can be aggressively deduplicated by the linker. 3579 3580 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { 3581 StringRef MangledName("??_7type_info@@6B@"); 3582 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) 3583 return VTable; 3584 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, 3585 /*isConstant=*/true, 3586 llvm::GlobalVariable::ExternalLinkage, 3587 /*Initializer=*/nullptr, MangledName); 3588 } 3589 3590 namespace { 3591 3592 /// A Helper struct that stores information about a class in a class 3593 /// hierarchy. The information stored in these structs struct is used during 3594 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. 3595 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with 3596 // implicit depth first pre-order tree connectivity. getFirstChild and 3597 // getNextSibling allow us to walk the tree efficiently. 3598 struct MSRTTIClass { 3599 enum { 3600 IsPrivateOnPath = 1 | 8, 3601 IsAmbiguous = 2, 3602 IsPrivate = 4, 3603 IsVirtual = 16, 3604 HasHierarchyDescriptor = 64 3605 }; 3606 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} 3607 uint32_t initialize(const MSRTTIClass *Parent, 3608 const CXXBaseSpecifier *Specifier); 3609 3610 MSRTTIClass *getFirstChild() { return this + 1; } 3611 static MSRTTIClass *getNextChild(MSRTTIClass *Child) { 3612 return Child + 1 + Child->NumBases; 3613 } 3614 3615 const CXXRecordDecl *RD, *VirtualRoot; 3616 uint32_t Flags, NumBases, OffsetInVBase; 3617 }; 3618 3619 /// Recursively initialize the base class array. 3620 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, 3621 const CXXBaseSpecifier *Specifier) { 3622 Flags = HasHierarchyDescriptor; 3623 if (!Parent) { 3624 VirtualRoot = nullptr; 3625 OffsetInVBase = 0; 3626 } else { 3627 if (Specifier->getAccessSpecifier() != AS_public) 3628 Flags |= IsPrivate | IsPrivateOnPath; 3629 if (Specifier->isVirtual()) { 3630 Flags |= IsVirtual; 3631 VirtualRoot = RD; 3632 OffsetInVBase = 0; 3633 } else { 3634 if (Parent->Flags & IsPrivateOnPath) 3635 Flags |= IsPrivateOnPath; 3636 VirtualRoot = Parent->VirtualRoot; 3637 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() 3638 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); 3639 } 3640 } 3641 NumBases = 0; 3642 MSRTTIClass *Child = getFirstChild(); 3643 for (const CXXBaseSpecifier &Base : RD->bases()) { 3644 NumBases += Child->initialize(this, &Base) + 1; 3645 Child = getNextChild(Child); 3646 } 3647 return NumBases; 3648 } 3649 3650 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { 3651 switch (Ty->getLinkage()) { 3652 case NoLinkage: 3653 case InternalLinkage: 3654 case UniqueExternalLinkage: 3655 return llvm::GlobalValue::InternalLinkage; 3656 3657 case VisibleNoLinkage: 3658 case ModuleInternalLinkage: 3659 case ModuleLinkage: 3660 case ExternalLinkage: 3661 return llvm::GlobalValue::LinkOnceODRLinkage; 3662 } 3663 llvm_unreachable("Invalid linkage!"); 3664 } 3665 3666 /// An ephemeral helper class for building MS RTTI types. It caches some 3667 /// calls to the module and information about the most derived class in a 3668 /// hierarchy. 3669 struct MSRTTIBuilder { 3670 enum { 3671 HasBranchingHierarchy = 1, 3672 HasVirtualBranchingHierarchy = 2, 3673 HasAmbiguousBases = 4 3674 }; 3675 3676 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) 3677 : CGM(ABI.CGM), Context(CGM.getContext()), 3678 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), 3679 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), 3680 ABI(ABI) {} 3681 3682 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); 3683 llvm::GlobalVariable * 3684 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); 3685 llvm::GlobalVariable *getClassHierarchyDescriptor(); 3686 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info); 3687 3688 CodeGenModule &CGM; 3689 ASTContext &Context; 3690 llvm::LLVMContext &VMContext; 3691 llvm::Module &Module; 3692 const CXXRecordDecl *RD; 3693 llvm::GlobalVariable::LinkageTypes Linkage; 3694 MicrosoftCXXABI &ABI; 3695 }; 3696 3697 } // namespace 3698 3699 /// Recursively serializes a class hierarchy in pre-order depth first 3700 /// order. 3701 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, 3702 const CXXRecordDecl *RD) { 3703 Classes.push_back(MSRTTIClass(RD)); 3704 for (const CXXBaseSpecifier &Base : RD->bases()) 3705 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); 3706 } 3707 3708 /// Find ambiguity among base classes. 3709 static void 3710 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { 3711 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; 3712 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; 3713 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; 3714 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { 3715 if ((Class->Flags & MSRTTIClass::IsVirtual) && 3716 !VirtualBases.insert(Class->RD).second) { 3717 Class = MSRTTIClass::getNextChild(Class); 3718 continue; 3719 } 3720 if (!UniqueBases.insert(Class->RD).second) 3721 AmbiguousBases.insert(Class->RD); 3722 Class++; 3723 } 3724 if (AmbiguousBases.empty()) 3725 return; 3726 for (MSRTTIClass &Class : Classes) 3727 if (AmbiguousBases.count(Class.RD)) 3728 Class.Flags |= MSRTTIClass::IsAmbiguous; 3729 } 3730 3731 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { 3732 SmallString<256> MangledName; 3733 { 3734 llvm::raw_svector_ostream Out(MangledName); 3735 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); 3736 } 3737 3738 // Check to see if we've already declared this ClassHierarchyDescriptor. 3739 if (auto CHD = Module.getNamedGlobal(MangledName)) 3740 return CHD; 3741 3742 // Serialize the class hierarchy and initialize the CHD Fields. 3743 SmallVector<MSRTTIClass, 8> Classes; 3744 serializeClassHierarchy(Classes, RD); 3745 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 3746 detectAmbiguousBases(Classes); 3747 int Flags = 0; 3748 for (auto Class : Classes) { 3749 if (Class.RD->getNumBases() > 1) 3750 Flags |= HasBranchingHierarchy; 3751 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We 3752 // believe the field isn't actually used. 3753 if (Class.Flags & MSRTTIClass::IsAmbiguous) 3754 Flags |= HasAmbiguousBases; 3755 } 3756 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) 3757 Flags |= HasVirtualBranchingHierarchy; 3758 // These gep indices are used to get the address of the first element of the 3759 // base class array. 3760 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 3761 llvm::ConstantInt::get(CGM.IntTy, 0)}; 3762 3763 // Forward-declare the class hierarchy descriptor 3764 auto Type = ABI.getClassHierarchyDescriptorType(); 3765 auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3766 /*Initializer=*/nullptr, 3767 MangledName); 3768 if (CHD->isWeakForLinker()) 3769 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName())); 3770 3771 auto *Bases = getBaseClassArray(Classes); 3772 3773 // Initialize the base class ClassHierarchyDescriptor. 3774 llvm::Constant *Fields[] = { 3775 llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime 3776 llvm::ConstantInt::get(CGM.IntTy, Flags), 3777 llvm::ConstantInt::get(CGM.IntTy, Classes.size()), 3778 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( 3779 Bases->getValueType(), Bases, 3780 llvm::ArrayRef<llvm::Value *>(GEPIndices))), 3781 }; 3782 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3783 return CHD; 3784 } 3785 3786 llvm::GlobalVariable * 3787 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { 3788 SmallString<256> MangledName; 3789 { 3790 llvm::raw_svector_ostream Out(MangledName); 3791 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); 3792 } 3793 3794 // Forward-declare the base class array. 3795 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit 3796 // mode) bytes of padding. We provide a pointer sized amount of padding by 3797 // adding +1 to Classes.size(). The sections have pointer alignment and are 3798 // marked pick-any so it shouldn't matter. 3799 llvm::Type *PtrType = ABI.getImageRelativeType( 3800 ABI.getBaseClassDescriptorType()->getPointerTo()); 3801 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); 3802 auto *BCA = 3803 new llvm::GlobalVariable(Module, ArrType, 3804 /*isConstant=*/true, Linkage, 3805 /*Initializer=*/nullptr, MangledName); 3806 if (BCA->isWeakForLinker()) 3807 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName())); 3808 3809 // Initialize the BaseClassArray. 3810 SmallVector<llvm::Constant *, 8> BaseClassArrayData; 3811 for (MSRTTIClass &Class : Classes) 3812 BaseClassArrayData.push_back( 3813 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); 3814 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); 3815 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); 3816 return BCA; 3817 } 3818 3819 llvm::GlobalVariable * 3820 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { 3821 // Compute the fields for the BaseClassDescriptor. They are computed up front 3822 // because they are mangled into the name of the object. 3823 uint32_t OffsetInVBTable = 0; 3824 int32_t VBPtrOffset = -1; 3825 if (Class.VirtualRoot) { 3826 auto &VTableContext = CGM.getMicrosoftVTableContext(); 3827 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; 3828 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); 3829 } 3830 3831 SmallString<256> MangledName; 3832 { 3833 llvm::raw_svector_ostream Out(MangledName); 3834 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( 3835 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, 3836 Class.Flags, Out); 3837 } 3838 3839 // Check to see if we've already declared this object. 3840 if (auto BCD = Module.getNamedGlobal(MangledName)) 3841 return BCD; 3842 3843 // Forward-declare the base class descriptor. 3844 auto Type = ABI.getBaseClassDescriptorType(); 3845 auto BCD = 3846 new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3847 /*Initializer=*/nullptr, MangledName); 3848 if (BCD->isWeakForLinker()) 3849 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName())); 3850 3851 // Initialize the BaseClassDescriptor. 3852 llvm::Constant *Fields[] = { 3853 ABI.getImageRelativeConstant( 3854 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), 3855 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), 3856 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), 3857 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 3858 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), 3859 llvm::ConstantInt::get(CGM.IntTy, Class.Flags), 3860 ABI.getImageRelativeConstant( 3861 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), 3862 }; 3863 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3864 return BCD; 3865 } 3866 3867 llvm::GlobalVariable * 3868 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) { 3869 SmallString<256> MangledName; 3870 { 3871 llvm::raw_svector_ostream Out(MangledName); 3872 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out); 3873 } 3874 3875 // Check to see if we've already computed this complete object locator. 3876 if (auto COL = Module.getNamedGlobal(MangledName)) 3877 return COL; 3878 3879 // Compute the fields of the complete object locator. 3880 int OffsetToTop = Info.FullOffsetInMDC.getQuantity(); 3881 int VFPtrOffset = 0; 3882 // The offset includes the vtordisp if one exists. 3883 if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr()) 3884 if (Context.getASTRecordLayout(RD) 3885 .getVBaseOffsetsMap() 3886 .find(VBase) 3887 ->second.hasVtorDisp()) 3888 VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4; 3889 3890 // Forward-declare the complete object locator. 3891 llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); 3892 auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage, 3893 /*Initializer=*/nullptr, MangledName); 3894 3895 // Initialize the CompleteObjectLocator. 3896 llvm::Constant *Fields[] = { 3897 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), 3898 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), 3899 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), 3900 ABI.getImageRelativeConstant( 3901 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), 3902 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), 3903 ABI.getImageRelativeConstant(COL), 3904 }; 3905 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); 3906 if (!ABI.isImageRelative()) 3907 FieldsRef = FieldsRef.drop_back(); 3908 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); 3909 if (COL->isWeakForLinker()) 3910 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName())); 3911 return COL; 3912 } 3913 3914 static QualType decomposeTypeForEH(ASTContext &Context, QualType T, 3915 bool &IsConst, bool &IsVolatile, 3916 bool &IsUnaligned) { 3917 T = Context.getExceptionObjectType(T); 3918 3919 // C++14 [except.handle]p3: 3920 // A handler is a match for an exception object of type E if [...] 3921 // - the handler is of type cv T or const T& where T is a pointer type and 3922 // E is a pointer type that can be converted to T by [...] 3923 // - a qualification conversion 3924 IsConst = false; 3925 IsVolatile = false; 3926 IsUnaligned = false; 3927 QualType PointeeType = T->getPointeeType(); 3928 if (!PointeeType.isNull()) { 3929 IsConst = PointeeType.isConstQualified(); 3930 IsVolatile = PointeeType.isVolatileQualified(); 3931 IsUnaligned = PointeeType.getQualifiers().hasUnaligned(); 3932 } 3933 3934 // Member pointer types like "const int A::*" are represented by having RTTI 3935 // for "int A::*" and separately storing the const qualifier. 3936 if (const auto *MPTy = T->getAs<MemberPointerType>()) 3937 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(), 3938 MPTy->getClass()); 3939 3940 // Pointer types like "const int * const *" are represented by having RTTI 3941 // for "const int **" and separately storing the const qualifier. 3942 if (T->isPointerType()) 3943 T = Context.getPointerType(PointeeType.getUnqualifiedType()); 3944 3945 return T; 3946 } 3947 3948 CatchTypeInfo 3949 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, 3950 QualType CatchHandlerType) { 3951 // TypeDescriptors for exceptions never have qualified pointer types, 3952 // qualifiers are stored separately in order to support qualification 3953 // conversions. 3954 bool IsConst, IsVolatile, IsUnaligned; 3955 Type = 3956 decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned); 3957 3958 bool IsReference = CatchHandlerType->isReferenceType(); 3959 3960 uint32_t Flags = 0; 3961 if (IsConst) 3962 Flags |= 1; 3963 if (IsVolatile) 3964 Flags |= 2; 3965 if (IsUnaligned) 3966 Flags |= 4; 3967 if (IsReference) 3968 Flags |= 8; 3969 3970 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(), 3971 Flags}; 3972 } 3973 3974 /// Gets a TypeDescriptor. Returns a llvm::Constant * rather than a 3975 /// llvm::GlobalVariable * because different type descriptors have different 3976 /// types, and need to be abstracted. They are abstracting by casting the 3977 /// address to an Int8PtrTy. 3978 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { 3979 SmallString<256> MangledName; 3980 { 3981 llvm::raw_svector_ostream Out(MangledName); 3982 getMangleContext().mangleCXXRTTI(Type, Out); 3983 } 3984 3985 // Check to see if we've already declared this TypeDescriptor. 3986 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 3987 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); 3988 3989 // Note for the future: If we would ever like to do deferred emission of 3990 // RTTI, check if emitting vtables opportunistically need any adjustment. 3991 3992 // Compute the fields for the TypeDescriptor. 3993 SmallString<256> TypeInfoString; 3994 { 3995 llvm::raw_svector_ostream Out(TypeInfoString); 3996 getMangleContext().mangleCXXRTTIName(Type, Out); 3997 } 3998 3999 // Declare and initialize the TypeDescriptor. 4000 llvm::Constant *Fields[] = { 4001 getTypeInfoVTable(CGM), // VFPtr 4002 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data 4003 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; 4004 llvm::StructType *TypeDescriptorType = 4005 getTypeDescriptorType(TypeInfoString); 4006 auto *Var = new llvm::GlobalVariable( 4007 CGM.getModule(), TypeDescriptorType, /*isConstant=*/false, 4008 getLinkageForRTTI(Type), 4009 llvm::ConstantStruct::get(TypeDescriptorType, Fields), 4010 MangledName); 4011 if (Var->isWeakForLinker()) 4012 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName())); 4013 return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy); 4014 } 4015 4016 /// Gets or a creates a Microsoft CompleteObjectLocator. 4017 llvm::GlobalVariable * 4018 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, 4019 const VPtrInfo &Info) { 4020 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); 4021 } 4022 4023 void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) { 4024 if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) { 4025 // There are no constructor variants, always emit the complete destructor. 4026 llvm::Function *Fn = 4027 CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete)); 4028 CGM.maybeSetTrivialComdat(*ctor, *Fn); 4029 return; 4030 } 4031 4032 auto *dtor = cast<CXXDestructorDecl>(GD.getDecl()); 4033 4034 // Emit the base destructor if the base and complete (vbase) destructors are 4035 // equivalent. This effectively implements -mconstructor-aliases as part of 4036 // the ABI. 4037 if (GD.getDtorType() == Dtor_Complete && 4038 dtor->getParent()->getNumVBases() == 0) 4039 GD = GD.getWithDtorType(Dtor_Base); 4040 4041 // The base destructor is equivalent to the base destructor of its 4042 // base class if there is exactly one non-virtual base class with a 4043 // non-trivial destructor, there are no fields with a non-trivial 4044 // destructor, and the body of the destructor is trivial. 4045 if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor)) 4046 return; 4047 4048 llvm::Function *Fn = CGM.codegenCXXStructor(GD); 4049 if (Fn->isWeakForLinker()) 4050 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName())); 4051 } 4052 4053 llvm::Function * 4054 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 4055 CXXCtorType CT) { 4056 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 4057 4058 // Calculate the mangled name. 4059 SmallString<256> ThunkName; 4060 llvm::raw_svector_ostream Out(ThunkName); 4061 getMangleContext().mangleName(GlobalDecl(CD, CT), Out); 4062 4063 // If the thunk has been generated previously, just return it. 4064 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 4065 return cast<llvm::Function>(GV); 4066 4067 // Create the llvm::Function. 4068 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); 4069 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 4070 const CXXRecordDecl *RD = CD->getParent(); 4071 QualType RecordTy = getContext().getRecordType(RD); 4072 llvm::Function *ThunkFn = llvm::Function::Create( 4073 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule()); 4074 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( 4075 FnInfo.getEffectiveCallingConvention())); 4076 if (ThunkFn->isWeakForLinker()) 4077 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 4078 bool IsCopy = CT == Ctor_CopyingClosure; 4079 4080 // Start codegen. 4081 CodeGenFunction CGF(CGM); 4082 CGF.CurGD = GlobalDecl(CD, Ctor_Complete); 4083 4084 // Build FunctionArgs. 4085 FunctionArgList FunctionArgs; 4086 4087 // A constructor always starts with a 'this' pointer as its first argument. 4088 buildThisParam(CGF, FunctionArgs); 4089 4090 // Following the 'this' pointer is a reference to the source object that we 4091 // are copying from. 4092 ImplicitParamDecl SrcParam( 4093 getContext(), /*DC=*/nullptr, SourceLocation(), 4094 &getContext().Idents.get("src"), 4095 getContext().getLValueReferenceType(RecordTy, 4096 /*SpelledAsLValue=*/true), 4097 ImplicitParamDecl::Other); 4098 if (IsCopy) 4099 FunctionArgs.push_back(&SrcParam); 4100 4101 // Constructors for classes which utilize virtual bases have an additional 4102 // parameter which indicates whether or not it is being delegated to by a more 4103 // derived constructor. 4104 ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr, 4105 SourceLocation(), 4106 &getContext().Idents.get("is_most_derived"), 4107 getContext().IntTy, ImplicitParamDecl::Other); 4108 // Only add the parameter to the list if the class has virtual bases. 4109 if (RD->getNumVBases() > 0) 4110 FunctionArgs.push_back(&IsMostDerived); 4111 4112 // Start defining the function. 4113 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 4114 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 4115 FunctionArgs, CD->getLocation(), SourceLocation()); 4116 // Create a scope with an artificial location for the body of this function. 4117 auto AL = ApplyDebugLocation::CreateArtificial(CGF); 4118 setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); 4119 llvm::Value *This = getThisValue(CGF); 4120 4121 llvm::Value *SrcVal = 4122 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src") 4123 : nullptr; 4124 4125 CallArgList Args; 4126 4127 // Push the this ptr. 4128 Args.add(RValue::get(This), CD->getThisType()); 4129 4130 // Push the src ptr. 4131 if (SrcVal) 4132 Args.add(RValue::get(SrcVal), SrcParam.getType()); 4133 4134 // Add the rest of the default arguments. 4135 SmallVector<const Stmt *, 4> ArgVec; 4136 ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0); 4137 for (const ParmVarDecl *PD : params) { 4138 assert(PD->hasDefaultArg() && "ctor closure lacks default args"); 4139 ArgVec.push_back(PD->getDefaultArg()); 4140 } 4141 4142 CodeGenFunction::RunCleanupsScope Cleanups(CGF); 4143 4144 const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); 4145 CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0); 4146 4147 // Insert any ABI-specific implicit constructor arguments. 4148 AddedStructorArgCounts ExtraArgs = 4149 addImplicitConstructorArgs(CGF, CD, Ctor_Complete, 4150 /*ForVirtualBase=*/false, 4151 /*Delegating=*/false, Args); 4152 // Call the destructor with our arguments. 4153 llvm::Constant *CalleePtr = 4154 CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4155 CGCallee Callee = 4156 CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete)); 4157 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( 4158 Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix); 4159 CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args); 4160 4161 Cleanups.ForceCleanup(); 4162 4163 // Emit the ret instruction, remove any temporary instructions created for the 4164 // aid of CodeGen. 4165 CGF.FinishFunction(SourceLocation()); 4166 4167 return ThunkFn; 4168 } 4169 4170 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, 4171 uint32_t NVOffset, 4172 int32_t VBPtrOffset, 4173 uint32_t VBIndex) { 4174 assert(!T->isReferenceType()); 4175 4176 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 4177 const CXXConstructorDecl *CD = 4178 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; 4179 CXXCtorType CT = Ctor_Complete; 4180 if (CD) 4181 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) 4182 CT = Ctor_CopyingClosure; 4183 4184 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); 4185 SmallString<256> MangledName; 4186 { 4187 llvm::raw_svector_ostream Out(MangledName); 4188 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, 4189 VBPtrOffset, VBIndex, Out); 4190 } 4191 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4192 return getImageRelativeConstant(GV); 4193 4194 // The TypeDescriptor is used by the runtime to determine if a catch handler 4195 // is appropriate for the exception object. 4196 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T)); 4197 4198 // The runtime is responsible for calling the copy constructor if the 4199 // exception is caught by value. 4200 llvm::Constant *CopyCtor; 4201 if (CD) { 4202 if (CT == Ctor_CopyingClosure) 4203 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure); 4204 else 4205 CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete)); 4206 4207 CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy); 4208 } else { 4209 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4210 } 4211 CopyCtor = getImageRelativeConstant(CopyCtor); 4212 4213 bool IsScalar = !RD; 4214 bool HasVirtualBases = false; 4215 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. 4216 QualType PointeeType = T; 4217 if (T->isPointerType()) 4218 PointeeType = T->getPointeeType(); 4219 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { 4220 HasVirtualBases = RD->getNumVBases() > 0; 4221 if (IdentifierInfo *II = RD->getIdentifier()) 4222 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace(); 4223 } 4224 4225 // Encode the relevant CatchableType properties into the Flags bitfield. 4226 // FIXME: Figure out how bits 2 or 8 can get set. 4227 uint32_t Flags = 0; 4228 if (IsScalar) 4229 Flags |= 1; 4230 if (HasVirtualBases) 4231 Flags |= 4; 4232 if (IsStdBadAlloc) 4233 Flags |= 16; 4234 4235 llvm::Constant *Fields[] = { 4236 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4237 TD, // TypeDescriptor 4238 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment 4239 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr 4240 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex 4241 llvm::ConstantInt::get(CGM.IntTy, Size), // Size 4242 CopyCtor // CopyCtor 4243 }; 4244 llvm::StructType *CTType = getCatchableTypeType(); 4245 auto *GV = new llvm::GlobalVariable( 4246 CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T), 4247 llvm::ConstantStruct::get(CTType, Fields), MangledName); 4248 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4249 GV->setSection(".xdata"); 4250 if (GV->isWeakForLinker()) 4251 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4252 return getImageRelativeConstant(GV); 4253 } 4254 4255 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { 4256 assert(!T->isReferenceType()); 4257 4258 // See if we've already generated a CatchableTypeArray for this type before. 4259 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; 4260 if (CTA) 4261 return CTA; 4262 4263 // Ensure that we don't have duplicate entries in our CatchableTypeArray by 4264 // using a SmallSetVector. Duplicates may arise due to virtual bases 4265 // occurring more than once in the hierarchy. 4266 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; 4267 4268 // C++14 [except.handle]p3: 4269 // A handler is a match for an exception object of type E if [...] 4270 // - the handler is of type cv T or cv T& and T is an unambiguous public 4271 // base class of E, or 4272 // - the handler is of type cv T or const T& where T is a pointer type and 4273 // E is a pointer type that can be converted to T by [...] 4274 // - a standard pointer conversion (4.10) not involving conversions to 4275 // pointers to private or protected or ambiguous classes 4276 const CXXRecordDecl *MostDerivedClass = nullptr; 4277 bool IsPointer = T->isPointerType(); 4278 if (IsPointer) 4279 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); 4280 else 4281 MostDerivedClass = T->getAsCXXRecordDecl(); 4282 4283 // Collect all the unambiguous public bases of the MostDerivedClass. 4284 if (MostDerivedClass) { 4285 const ASTContext &Context = getContext(); 4286 const ASTRecordLayout &MostDerivedLayout = 4287 Context.getASTRecordLayout(MostDerivedClass); 4288 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); 4289 SmallVector<MSRTTIClass, 8> Classes; 4290 serializeClassHierarchy(Classes, MostDerivedClass); 4291 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 4292 detectAmbiguousBases(Classes); 4293 for (const MSRTTIClass &Class : Classes) { 4294 // Skip any ambiguous or private bases. 4295 if (Class.Flags & 4296 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) 4297 continue; 4298 // Write down how to convert from a derived pointer to a base pointer. 4299 uint32_t OffsetInVBTable = 0; 4300 int32_t VBPtrOffset = -1; 4301 if (Class.VirtualRoot) { 4302 OffsetInVBTable = 4303 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4; 4304 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); 4305 } 4306 4307 // Turn our record back into a pointer if the exception object is a 4308 // pointer. 4309 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); 4310 if (IsPointer) 4311 RTTITy = Context.getPointerType(RTTITy); 4312 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase, 4313 VBPtrOffset, OffsetInVBTable)); 4314 } 4315 } 4316 4317 // C++14 [except.handle]p3: 4318 // A handler is a match for an exception object of type E if 4319 // - The handler is of type cv T or cv T& and E and T are the same type 4320 // (ignoring the top-level cv-qualifiers) 4321 CatchableTypes.insert(getCatchableType(T)); 4322 4323 // C++14 [except.handle]p3: 4324 // A handler is a match for an exception object of type E if 4325 // - the handler is of type cv T or const T& where T is a pointer type and 4326 // E is a pointer type that can be converted to T by [...] 4327 // - a standard pointer conversion (4.10) not involving conversions to 4328 // pointers to private or protected or ambiguous classes 4329 // 4330 // C++14 [conv.ptr]p2: 4331 // A prvalue of type "pointer to cv T," where T is an object type, can be 4332 // converted to a prvalue of type "pointer to cv void". 4333 if (IsPointer && T->getPointeeType()->isObjectType()) 4334 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4335 4336 // C++14 [except.handle]p3: 4337 // A handler is a match for an exception object of type E if [...] 4338 // - the handler is of type cv T or const T& where T is a pointer or 4339 // pointer to member type and E is std::nullptr_t. 4340 // 4341 // We cannot possibly list all possible pointer types here, making this 4342 // implementation incompatible with the standard. However, MSVC includes an 4343 // entry for pointer-to-void in this case. Let's do the same. 4344 if (T->isNullPtrType()) 4345 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4346 4347 uint32_t NumEntries = CatchableTypes.size(); 4348 llvm::Type *CTType = 4349 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 4350 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries); 4351 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); 4352 llvm::Constant *Fields[] = { 4353 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries 4354 llvm::ConstantArray::get( 4355 AT, llvm::makeArrayRef(CatchableTypes.begin(), 4356 CatchableTypes.end())) // CatchableTypes 4357 }; 4358 SmallString<256> MangledName; 4359 { 4360 llvm::raw_svector_ostream Out(MangledName); 4361 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); 4362 } 4363 CTA = new llvm::GlobalVariable( 4364 CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T), 4365 llvm::ConstantStruct::get(CTAType, Fields), MangledName); 4366 CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4367 CTA->setSection(".xdata"); 4368 if (CTA->isWeakForLinker()) 4369 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName())); 4370 return CTA; 4371 } 4372 4373 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { 4374 bool IsConst, IsVolatile, IsUnaligned; 4375 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned); 4376 4377 // The CatchableTypeArray enumerates the various (CV-unqualified) types that 4378 // the exception object may be caught as. 4379 llvm::GlobalVariable *CTA = getCatchableTypeArray(T); 4380 // The first field in a CatchableTypeArray is the number of CatchableTypes. 4381 // This is used as a component of the mangled name which means that we need to 4382 // know what it is in order to see if we have previously generated the 4383 // ThrowInfo. 4384 uint32_t NumEntries = 4385 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U)) 4386 ->getLimitedValue(); 4387 4388 SmallString<256> MangledName; 4389 { 4390 llvm::raw_svector_ostream Out(MangledName); 4391 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned, 4392 NumEntries, Out); 4393 } 4394 4395 // Reuse a previously generated ThrowInfo if we have generated an appropriate 4396 // one before. 4397 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4398 return GV; 4399 4400 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must 4401 // be at least as CV qualified. Encode this requirement into the Flags 4402 // bitfield. 4403 uint32_t Flags = 0; 4404 if (IsConst) 4405 Flags |= 1; 4406 if (IsVolatile) 4407 Flags |= 2; 4408 if (IsUnaligned) 4409 Flags |= 4; 4410 4411 // The cleanup-function (a destructor) must be called when the exception 4412 // object's lifetime ends. 4413 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4414 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4415 if (CXXDestructorDecl *DtorD = RD->getDestructor()) 4416 if (!DtorD->isTrivial()) 4417 CleanupFn = llvm::ConstantExpr::getBitCast( 4418 CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)), 4419 CGM.Int8PtrTy); 4420 // This is unused as far as we can tell, initialize it to null. 4421 llvm::Constant *ForwardCompat = 4422 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy)); 4423 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant( 4424 llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy)); 4425 llvm::StructType *TIType = getThrowInfoType(); 4426 llvm::Constant *Fields[] = { 4427 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4428 getImageRelativeConstant(CleanupFn), // CleanupFn 4429 ForwardCompat, // ForwardCompat 4430 PointerToCatchableTypes // CatchableTypeArray 4431 }; 4432 auto *GV = new llvm::GlobalVariable( 4433 CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T), 4434 llvm::ConstantStruct::get(TIType, Fields), MangledName.str()); 4435 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4436 GV->setSection(".xdata"); 4437 if (GV->isWeakForLinker()) 4438 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4439 return GV; 4440 } 4441 4442 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { 4443 const Expr *SubExpr = E->getSubExpr(); 4444 assert(SubExpr && "SubExpr cannot be null"); 4445 QualType ThrowType = SubExpr->getType(); 4446 // The exception object lives on the stack and it's address is passed to the 4447 // runtime function. 4448 Address AI = CGF.CreateMemTemp(ThrowType); 4449 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(), 4450 /*IsInit=*/true); 4451 4452 // The so-called ThrowInfo is used to describe how the exception object may be 4453 // caught. 4454 llvm::GlobalVariable *TI = getThrowInfo(ThrowType); 4455 4456 // Call into the runtime to throw the exception. 4457 llvm::Value *Args[] = { 4458 CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy), 4459 TI 4460 }; 4461 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args); 4462 } 4463 4464 std::pair<llvm::Value *, const CXXRecordDecl *> 4465 MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, 4466 const CXXRecordDecl *RD) { 4467 std::tie(This, std::ignore, RD) = 4468 performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0)); 4469 return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; 4470 } 4471 4472 bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate( 4473 const CXXRecordDecl *CXXRD) const { 4474 // MSVC Windows on Arm64 considers a type not HFA if it is not an 4475 // aggregate according to the C++14 spec. This is not consistent with the 4476 // AAPCS64, but is defacto spec on that platform. 4477 return !CGM.getTarget().getTriple().isAArch64() || 4478 isTrivialForAArch64MSVC(CXXRD); 4479 } 4480