1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 #include <optional> 45 46 namespace llvm { 47 class BasicBlock; 48 class LLVMContext; 49 class MDNode; 50 class SwitchInst; 51 class Twine; 52 class Value; 53 class CanonicalLoopInfo; 54 } 55 56 namespace clang { 57 class ASTContext; 58 class CXXDestructorDecl; 59 class CXXForRangeStmt; 60 class CXXTryStmt; 61 class Decl; 62 class LabelDecl; 63 class FunctionDecl; 64 class FunctionProtoType; 65 class LabelStmt; 66 class ObjCContainerDecl; 67 class ObjCInterfaceDecl; 68 class ObjCIvarDecl; 69 class ObjCMethodDecl; 70 class ObjCImplementationDecl; 71 class ObjCPropertyImplDecl; 72 class TargetInfo; 73 class VarDecl; 74 class ObjCForCollectionStmt; 75 class ObjCAtTryStmt; 76 class ObjCAtThrowStmt; 77 class ObjCAtSynchronizedStmt; 78 class ObjCAutoreleasePoolStmt; 79 class OMPUseDevicePtrClause; 80 class OMPUseDeviceAddrClause; 81 class SVETypeFlags; 82 class OMPExecutableDirective; 83 84 namespace analyze_os_log { 85 class OSLogBufferLayout; 86 } 87 88 namespace CodeGen { 89 class CodeGenTypes; 90 class CGCallee; 91 class CGFunctionInfo; 92 class CGBlockInfo; 93 class CGCXXABI; 94 class BlockByrefHelpers; 95 class BlockByrefInfo; 96 class BlockFieldFlags; 97 class RegionCodeGenTy; 98 class TargetCodeGenInfo; 99 struct OMPTaskDataTy; 100 struct CGCoroData; 101 102 /// The kind of evaluation to perform on values of a particular 103 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 104 /// CGExprAgg? 105 /// 106 /// TODO: should vectors maybe be split out into their own thing? 107 enum TypeEvaluationKind { 108 TEK_Scalar, 109 TEK_Complex, 110 TEK_Aggregate 111 }; 112 113 #define LIST_SANITIZER_CHECKS \ 114 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 115 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 116 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 117 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 118 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 119 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 120 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ 121 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 122 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 123 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 124 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 125 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 126 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 127 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 128 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 129 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 130 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 131 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 132 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 133 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 134 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 135 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 136 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 137 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 138 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 139 140 enum SanitizerHandler { 141 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 142 LIST_SANITIZER_CHECKS 143 #undef SANITIZER_CHECK 144 }; 145 146 /// Helper class with most of the code for saving a value for a 147 /// conditional expression cleanup. 148 struct DominatingLLVMValue { 149 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 150 151 /// Answer whether the given value needs extra work to be saved. 152 static bool needsSaving(llvm::Value *value) { 153 // If it's not an instruction, we don't need to save. 154 if (!isa<llvm::Instruction>(value)) return false; 155 156 // If it's an instruction in the entry block, we don't need to save. 157 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 158 return (block != &block->getParent()->getEntryBlock()); 159 } 160 161 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 162 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 163 }; 164 165 /// A partial specialization of DominatingValue for llvm::Values that 166 /// might be llvm::Instructions. 167 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 168 typedef T *type; 169 static type restore(CodeGenFunction &CGF, saved_type value) { 170 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 171 } 172 }; 173 174 /// A specialization of DominatingValue for Address. 175 template <> struct DominatingValue<Address> { 176 typedef Address type; 177 178 struct saved_type { 179 DominatingLLVMValue::saved_type SavedValue; 180 llvm::Type *ElementType; 181 CharUnits Alignment; 182 }; 183 184 static bool needsSaving(type value) { 185 return DominatingLLVMValue::needsSaving(value.getPointer()); 186 } 187 static saved_type save(CodeGenFunction &CGF, type value) { 188 return { DominatingLLVMValue::save(CGF, value.getPointer()), 189 value.getElementType(), value.getAlignment() }; 190 } 191 static type restore(CodeGenFunction &CGF, saved_type value) { 192 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 193 value.ElementType, value.Alignment); 194 } 195 }; 196 197 /// A specialization of DominatingValue for RValue. 198 template <> struct DominatingValue<RValue> { 199 typedef RValue type; 200 class saved_type { 201 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 202 AggregateAddress, ComplexAddress }; 203 204 llvm::Value *Value; 205 llvm::Type *ElementType; 206 unsigned K : 3; 207 unsigned Align : 29; 208 saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0) 209 : Value(v), ElementType(e), K(k), Align(a) {} 210 211 public: 212 static bool needsSaving(RValue value); 213 static saved_type save(CodeGenFunction &CGF, RValue value); 214 RValue restore(CodeGenFunction &CGF); 215 216 // implementations in CGCleanup.cpp 217 }; 218 219 static bool needsSaving(type value) { 220 return saved_type::needsSaving(value); 221 } 222 static saved_type save(CodeGenFunction &CGF, type value) { 223 return saved_type::save(CGF, value); 224 } 225 static type restore(CodeGenFunction &CGF, saved_type value) { 226 return value.restore(CGF); 227 } 228 }; 229 230 /// CodeGenFunction - This class organizes the per-function state that is used 231 /// while generating LLVM code. 232 class CodeGenFunction : public CodeGenTypeCache { 233 CodeGenFunction(const CodeGenFunction &) = delete; 234 void operator=(const CodeGenFunction &) = delete; 235 236 friend class CGCXXABI; 237 public: 238 /// A jump destination is an abstract label, branching to which may 239 /// require a jump out through normal cleanups. 240 struct JumpDest { 241 JumpDest() : Block(nullptr), Index(0) {} 242 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 243 unsigned Index) 244 : Block(Block), ScopeDepth(Depth), Index(Index) {} 245 246 bool isValid() const { return Block != nullptr; } 247 llvm::BasicBlock *getBlock() const { return Block; } 248 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 249 unsigned getDestIndex() const { return Index; } 250 251 // This should be used cautiously. 252 void setScopeDepth(EHScopeStack::stable_iterator depth) { 253 ScopeDepth = depth; 254 } 255 256 private: 257 llvm::BasicBlock *Block; 258 EHScopeStack::stable_iterator ScopeDepth; 259 unsigned Index; 260 }; 261 262 CodeGenModule &CGM; // Per-module state. 263 const TargetInfo &Target; 264 265 // For EH/SEH outlined funclets, this field points to parent's CGF 266 CodeGenFunction *ParentCGF = nullptr; 267 268 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 269 LoopInfoStack LoopStack; 270 CGBuilderTy Builder; 271 272 // Stores variables for which we can't generate correct lifetime markers 273 // because of jumps. 274 VarBypassDetector Bypasses; 275 276 /// List of recently emitted OMPCanonicalLoops. 277 /// 278 /// Since OMPCanonicalLoops are nested inside other statements (in particular 279 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 280 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 281 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 282 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 283 /// this stack when done. Entering a new loop requires clearing this list; it 284 /// either means we start parsing a new loop nest (in which case the previous 285 /// loop nest goes out of scope) or a second loop in the same level in which 286 /// case it would be ambiguous into which of the two (or more) loops the loop 287 /// nest would extend. 288 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 289 290 /// Number of nested loop to be consumed by the last surrounding 291 /// loop-associated directive. 292 int ExpectedOMPLoopDepth = 0; 293 294 // CodeGen lambda for loops and support for ordered clause 295 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 296 JumpDest)> 297 CodeGenLoopTy; 298 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 299 const unsigned, const bool)> 300 CodeGenOrderedTy; 301 302 // Codegen lambda for loop bounds in worksharing loop constructs 303 typedef llvm::function_ref<std::pair<LValue, LValue>( 304 CodeGenFunction &, const OMPExecutableDirective &S)> 305 CodeGenLoopBoundsTy; 306 307 // Codegen lambda for loop bounds in dispatch-based loop implementation 308 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 309 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 310 Address UB)> 311 CodeGenDispatchBoundsTy; 312 313 /// CGBuilder insert helper. This function is called after an 314 /// instruction is created using Builder. 315 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 316 llvm::BasicBlock *BB, 317 llvm::BasicBlock::iterator InsertPt) const; 318 319 /// CurFuncDecl - Holds the Decl for the current outermost 320 /// non-closure context. 321 const Decl *CurFuncDecl = nullptr; 322 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 323 const Decl *CurCodeDecl = nullptr; 324 const CGFunctionInfo *CurFnInfo = nullptr; 325 QualType FnRetTy; 326 llvm::Function *CurFn = nullptr; 327 328 /// Save Parameter Decl for coroutine. 329 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 330 331 // Holds coroutine data if the current function is a coroutine. We use a 332 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 333 // in this header. 334 struct CGCoroInfo { 335 std::unique_ptr<CGCoroData> Data; 336 bool InSuspendBlock = false; 337 CGCoroInfo(); 338 ~CGCoroInfo(); 339 }; 340 CGCoroInfo CurCoro; 341 342 bool isCoroutine() const { 343 return CurCoro.Data != nullptr; 344 } 345 346 bool inSuspendBlock() const { 347 return isCoroutine() && CurCoro.InSuspendBlock; 348 } 349 350 /// CurGD - The GlobalDecl for the current function being compiled. 351 GlobalDecl CurGD; 352 353 /// PrologueCleanupDepth - The cleanup depth enclosing all the 354 /// cleanups associated with the parameters. 355 EHScopeStack::stable_iterator PrologueCleanupDepth; 356 357 /// ReturnBlock - Unified return block. 358 JumpDest ReturnBlock; 359 360 /// ReturnValue - The temporary alloca to hold the return 361 /// value. This is invalid iff the function has no return value. 362 Address ReturnValue = Address::invalid(); 363 364 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 365 /// This is invalid if sret is not in use. 366 Address ReturnValuePointer = Address::invalid(); 367 368 /// If a return statement is being visited, this holds the return statment's 369 /// result expression. 370 const Expr *RetExpr = nullptr; 371 372 /// Return true if a label was seen in the current scope. 373 bool hasLabelBeenSeenInCurrentScope() const { 374 if (CurLexicalScope) 375 return CurLexicalScope->hasLabels(); 376 return !LabelMap.empty(); 377 } 378 379 /// AllocaInsertPoint - This is an instruction in the entry block before which 380 /// we prefer to insert allocas. 381 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 382 383 private: 384 /// PostAllocaInsertPt - This is a place in the prologue where code can be 385 /// inserted that will be dominated by all the static allocas. This helps 386 /// achieve two things: 387 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 388 /// 2. All other prologue code (which are dominated by static allocas) do 389 /// appear in the source order immediately after all static allocas. 390 /// 391 /// PostAllocaInsertPt will be lazily created when it is *really* required. 392 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 393 394 public: 395 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 396 /// immediately after AllocaInsertPt. 397 llvm::Instruction *getPostAllocaInsertPoint() { 398 if (!PostAllocaInsertPt) { 399 assert(AllocaInsertPt && 400 "Expected static alloca insertion point at function prologue"); 401 assert(AllocaInsertPt->getParent()->isEntryBlock() && 402 "EBB should be entry block of the current code gen function"); 403 PostAllocaInsertPt = AllocaInsertPt->clone(); 404 PostAllocaInsertPt->setName("postallocapt"); 405 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 406 } 407 408 return PostAllocaInsertPt; 409 } 410 411 /// API for captured statement code generation. 412 class CGCapturedStmtInfo { 413 public: 414 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 415 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 416 explicit CGCapturedStmtInfo(const CapturedStmt &S, 417 CapturedRegionKind K = CR_Default) 418 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 419 420 RecordDecl::field_iterator Field = 421 S.getCapturedRecordDecl()->field_begin(); 422 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 423 E = S.capture_end(); 424 I != E; ++I, ++Field) { 425 if (I->capturesThis()) 426 CXXThisFieldDecl = *Field; 427 else if (I->capturesVariable()) 428 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 429 else if (I->capturesVariableByCopy()) 430 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 431 } 432 } 433 434 virtual ~CGCapturedStmtInfo(); 435 436 CapturedRegionKind getKind() const { return Kind; } 437 438 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 439 // Retrieve the value of the context parameter. 440 virtual llvm::Value *getContextValue() const { return ThisValue; } 441 442 /// Lookup the captured field decl for a variable. 443 virtual const FieldDecl *lookup(const VarDecl *VD) const { 444 return CaptureFields.lookup(VD->getCanonicalDecl()); 445 } 446 447 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 448 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 449 450 static bool classof(const CGCapturedStmtInfo *) { 451 return true; 452 } 453 454 /// Emit the captured statement body. 455 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 456 CGF.incrementProfileCounter(S); 457 CGF.EmitStmt(S); 458 } 459 460 /// Get the name of the capture helper. 461 virtual StringRef getHelperName() const { return "__captured_stmt"; } 462 463 /// Get the CaptureFields 464 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 465 return CaptureFields; 466 } 467 468 private: 469 /// The kind of captured statement being generated. 470 CapturedRegionKind Kind; 471 472 /// Keep the map between VarDecl and FieldDecl. 473 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 474 475 /// The base address of the captured record, passed in as the first 476 /// argument of the parallel region function. 477 llvm::Value *ThisValue; 478 479 /// Captured 'this' type. 480 FieldDecl *CXXThisFieldDecl; 481 }; 482 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 483 484 /// RAII for correct setting/restoring of CapturedStmtInfo. 485 class CGCapturedStmtRAII { 486 private: 487 CodeGenFunction &CGF; 488 CGCapturedStmtInfo *PrevCapturedStmtInfo; 489 public: 490 CGCapturedStmtRAII(CodeGenFunction &CGF, 491 CGCapturedStmtInfo *NewCapturedStmtInfo) 492 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 493 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 494 } 495 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 496 }; 497 498 /// An abstract representation of regular/ObjC call/message targets. 499 class AbstractCallee { 500 /// The function declaration of the callee. 501 const Decl *CalleeDecl; 502 503 public: 504 AbstractCallee() : CalleeDecl(nullptr) {} 505 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 506 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 507 bool hasFunctionDecl() const { 508 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 509 } 510 const Decl *getDecl() const { return CalleeDecl; } 511 unsigned getNumParams() const { 512 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 513 return FD->getNumParams(); 514 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 515 } 516 const ParmVarDecl *getParamDecl(unsigned I) const { 517 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 518 return FD->getParamDecl(I); 519 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 520 } 521 }; 522 523 /// Sanitizers enabled for this function. 524 SanitizerSet SanOpts; 525 526 /// True if CodeGen currently emits code implementing sanitizer checks. 527 bool IsSanitizerScope = false; 528 529 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 530 class SanitizerScope { 531 CodeGenFunction *CGF; 532 public: 533 SanitizerScope(CodeGenFunction *CGF); 534 ~SanitizerScope(); 535 }; 536 537 /// In C++, whether we are code generating a thunk. This controls whether we 538 /// should emit cleanups. 539 bool CurFuncIsThunk = false; 540 541 /// In ARC, whether we should autorelease the return value. 542 bool AutoreleaseResult = false; 543 544 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 545 /// potentially set the return value. 546 bool SawAsmBlock = false; 547 548 GlobalDecl CurSEHParent; 549 550 /// True if the current function is an outlined SEH helper. This can be a 551 /// finally block or filter expression. 552 bool IsOutlinedSEHHelper = false; 553 554 /// True if CodeGen currently emits code inside presereved access index 555 /// region. 556 bool IsInPreservedAIRegion = false; 557 558 /// True if the current statement has nomerge attribute. 559 bool InNoMergeAttributedStmt = false; 560 561 /// True if the current statement has noinline attribute. 562 bool InNoInlineAttributedStmt = false; 563 564 /// True if the current statement has always_inline attribute. 565 bool InAlwaysInlineAttributedStmt = false; 566 567 // The CallExpr within the current statement that the musttail attribute 568 // applies to. nullptr if there is no 'musttail' on the current statement. 569 const CallExpr *MustTailCall = nullptr; 570 571 /// Returns true if a function must make progress, which means the 572 /// mustprogress attribute can be added. 573 bool checkIfFunctionMustProgress() { 574 if (CGM.getCodeGenOpts().getFiniteLoops() == 575 CodeGenOptions::FiniteLoopsKind::Never) 576 return false; 577 578 // C++11 and later guarantees that a thread eventually will do one of the 579 // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1): 580 // - terminate, 581 // - make a call to a library I/O function, 582 // - perform an access through a volatile glvalue, or 583 // - perform a synchronization operation or an atomic operation. 584 // 585 // Hence each function is 'mustprogress' in C++11 or later. 586 return getLangOpts().CPlusPlus11; 587 } 588 589 /// Returns true if a loop must make progress, which means the mustprogress 590 /// attribute can be added. \p HasConstantCond indicates whether the branch 591 /// condition is a known constant. 592 bool checkIfLoopMustProgress(bool HasConstantCond) { 593 if (CGM.getCodeGenOpts().getFiniteLoops() == 594 CodeGenOptions::FiniteLoopsKind::Always) 595 return true; 596 if (CGM.getCodeGenOpts().getFiniteLoops() == 597 CodeGenOptions::FiniteLoopsKind::Never) 598 return false; 599 600 // If the containing function must make progress, loops also must make 601 // progress (as in C++11 and later). 602 if (checkIfFunctionMustProgress()) 603 return true; 604 605 // Now apply rules for plain C (see 6.8.5.6 in C11). 606 // Loops with constant conditions do not have to make progress in any C 607 // version. 608 if (HasConstantCond) 609 return false; 610 611 // Loops with non-constant conditions must make progress in C11 and later. 612 return getLangOpts().C11; 613 } 614 615 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 616 llvm::Value *BlockPointer = nullptr; 617 618 llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; 619 FieldDecl *LambdaThisCaptureField = nullptr; 620 621 /// A mapping from NRVO variables to the flags used to indicate 622 /// when the NRVO has been applied to this variable. 623 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 624 625 EHScopeStack EHStack; 626 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 627 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 628 629 llvm::Instruction *CurrentFuncletPad = nullptr; 630 631 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 632 bool isRedundantBeforeReturn() override { return true; } 633 634 llvm::Value *Addr; 635 llvm::Value *Size; 636 637 public: 638 CallLifetimeEnd(Address addr, llvm::Value *size) 639 : Addr(addr.getPointer()), Size(size) {} 640 641 void Emit(CodeGenFunction &CGF, Flags flags) override { 642 CGF.EmitLifetimeEnd(Size, Addr); 643 } 644 }; 645 646 /// Header for data within LifetimeExtendedCleanupStack. 647 struct LifetimeExtendedCleanupHeader { 648 /// The size of the following cleanup object. 649 unsigned Size; 650 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 651 unsigned Kind : 31; 652 /// Whether this is a conditional cleanup. 653 unsigned IsConditional : 1; 654 655 size_t getSize() const { return Size; } 656 CleanupKind getKind() const { return (CleanupKind)Kind; } 657 bool isConditional() const { return IsConditional; } 658 }; 659 660 /// i32s containing the indexes of the cleanup destinations. 661 Address NormalCleanupDest = Address::invalid(); 662 663 unsigned NextCleanupDestIndex = 1; 664 665 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 666 llvm::BasicBlock *EHResumeBlock = nullptr; 667 668 /// The exception slot. All landing pads write the current exception pointer 669 /// into this alloca. 670 llvm::Value *ExceptionSlot = nullptr; 671 672 /// The selector slot. Under the MandatoryCleanup model, all landing pads 673 /// write the current selector value into this alloca. 674 llvm::AllocaInst *EHSelectorSlot = nullptr; 675 676 /// A stack of exception code slots. Entering an __except block pushes a slot 677 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 678 /// a value from the top of the stack. 679 SmallVector<Address, 1> SEHCodeSlotStack; 680 681 /// Value returned by __exception_info intrinsic. 682 llvm::Value *SEHInfo = nullptr; 683 684 /// Emits a landing pad for the current EH stack. 685 llvm::BasicBlock *EmitLandingPad(); 686 687 llvm::BasicBlock *getInvokeDestImpl(); 688 689 /// Parent loop-based directive for scan directive. 690 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 691 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 692 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 693 llvm::BasicBlock *OMPScanExitBlock = nullptr; 694 llvm::BasicBlock *OMPScanDispatch = nullptr; 695 bool OMPFirstScanLoop = false; 696 697 /// Manages parent directive for scan directives. 698 class ParentLoopDirectiveForScanRegion { 699 CodeGenFunction &CGF; 700 const OMPExecutableDirective *ParentLoopDirectiveForScan; 701 702 public: 703 ParentLoopDirectiveForScanRegion( 704 CodeGenFunction &CGF, 705 const OMPExecutableDirective &ParentLoopDirectiveForScan) 706 : CGF(CGF), 707 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 708 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 709 } 710 ~ParentLoopDirectiveForScanRegion() { 711 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 712 } 713 }; 714 715 template <class T> 716 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 717 return DominatingValue<T>::save(*this, value); 718 } 719 720 class CGFPOptionsRAII { 721 public: 722 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 723 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 724 ~CGFPOptionsRAII(); 725 726 private: 727 void ConstructorHelper(FPOptions FPFeatures); 728 CodeGenFunction &CGF; 729 FPOptions OldFPFeatures; 730 llvm::fp::ExceptionBehavior OldExcept; 731 llvm::RoundingMode OldRounding; 732 std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 733 }; 734 FPOptions CurFPFeatures; 735 736 public: 737 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 738 /// rethrows. 739 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 740 741 /// A class controlling the emission of a finally block. 742 class FinallyInfo { 743 /// Where the catchall's edge through the cleanup should go. 744 JumpDest RethrowDest; 745 746 /// A function to call to enter the catch. 747 llvm::FunctionCallee BeginCatchFn; 748 749 /// An i1 variable indicating whether or not the @finally is 750 /// running for an exception. 751 llvm::AllocaInst *ForEHVar = nullptr; 752 753 /// An i8* variable into which the exception pointer to rethrow 754 /// has been saved. 755 llvm::AllocaInst *SavedExnVar = nullptr; 756 757 public: 758 void enter(CodeGenFunction &CGF, const Stmt *Finally, 759 llvm::FunctionCallee beginCatchFn, 760 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 761 void exit(CodeGenFunction &CGF); 762 }; 763 764 /// Returns true inside SEH __try blocks. 765 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 766 767 /// Returns true while emitting a cleanuppad. 768 bool isCleanupPadScope() const { 769 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 770 } 771 772 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 773 /// current full-expression. Safe against the possibility that 774 /// we're currently inside a conditionally-evaluated expression. 775 template <class T, class... As> 776 void pushFullExprCleanup(CleanupKind kind, As... A) { 777 // If we're not in a conditional branch, or if none of the 778 // arguments requires saving, then use the unconditional cleanup. 779 if (!isInConditionalBranch()) 780 return EHStack.pushCleanup<T>(kind, A...); 781 782 // Stash values in a tuple so we can guarantee the order of saves. 783 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 784 SavedTuple Saved{saveValueInCond(A)...}; 785 786 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 787 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 788 initFullExprCleanup(); 789 } 790 791 /// Queue a cleanup to be pushed after finishing the current full-expression, 792 /// potentially with an active flag. 793 template <class T, class... As> 794 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 795 if (!isInConditionalBranch()) 796 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 797 A...); 798 799 Address ActiveFlag = createCleanupActiveFlag(); 800 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 801 "cleanup active flag should never need saving"); 802 803 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 804 SavedTuple Saved{saveValueInCond(A)...}; 805 806 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 807 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 808 } 809 810 template <class T, class... As> 811 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 812 Address ActiveFlag, As... A) { 813 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 814 ActiveFlag.isValid()}; 815 816 size_t OldSize = LifetimeExtendedCleanupStack.size(); 817 LifetimeExtendedCleanupStack.resize( 818 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 819 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 820 821 static_assert(sizeof(Header) % alignof(T) == 0, 822 "Cleanup will be allocated on misaligned address"); 823 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 824 new (Buffer) LifetimeExtendedCleanupHeader(Header); 825 new (Buffer + sizeof(Header)) T(A...); 826 if (Header.IsConditional) 827 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 828 } 829 830 /// Set up the last cleanup that was pushed as a conditional 831 /// full-expression cleanup. 832 void initFullExprCleanup() { 833 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 834 } 835 836 void initFullExprCleanupWithFlag(Address ActiveFlag); 837 Address createCleanupActiveFlag(); 838 839 /// PushDestructorCleanup - Push a cleanup to call the 840 /// complete-object destructor of an object of the given type at the 841 /// given address. Does nothing if T is not a C++ class type with a 842 /// non-trivial destructor. 843 void PushDestructorCleanup(QualType T, Address Addr); 844 845 /// PushDestructorCleanup - Push a cleanup to call the 846 /// complete-object variant of the given destructor on the object at 847 /// the given address. 848 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 849 Address Addr); 850 851 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 852 /// process all branch fixups. 853 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 854 855 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 856 /// The block cannot be reactivated. Pops it if it's the top of the 857 /// stack. 858 /// 859 /// \param DominatingIP - An instruction which is known to 860 /// dominate the current IP (if set) and which lies along 861 /// all paths of execution between the current IP and the 862 /// the point at which the cleanup comes into scope. 863 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 864 llvm::Instruction *DominatingIP); 865 866 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 867 /// Cannot be used to resurrect a deactivated cleanup. 868 /// 869 /// \param DominatingIP - An instruction which is known to 870 /// dominate the current IP (if set) and which lies along 871 /// all paths of execution between the current IP and the 872 /// the point at which the cleanup comes into scope. 873 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 874 llvm::Instruction *DominatingIP); 875 876 /// Enters a new scope for capturing cleanups, all of which 877 /// will be executed once the scope is exited. 878 class RunCleanupsScope { 879 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 880 size_t LifetimeExtendedCleanupStackSize; 881 bool OldDidCallStackSave; 882 protected: 883 bool PerformCleanup; 884 private: 885 886 RunCleanupsScope(const RunCleanupsScope &) = delete; 887 void operator=(const RunCleanupsScope &) = delete; 888 889 protected: 890 CodeGenFunction& CGF; 891 892 public: 893 /// Enter a new cleanup scope. 894 explicit RunCleanupsScope(CodeGenFunction &CGF) 895 : PerformCleanup(true), CGF(CGF) 896 { 897 CleanupStackDepth = CGF.EHStack.stable_begin(); 898 LifetimeExtendedCleanupStackSize = 899 CGF.LifetimeExtendedCleanupStack.size(); 900 OldDidCallStackSave = CGF.DidCallStackSave; 901 CGF.DidCallStackSave = false; 902 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 903 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 904 } 905 906 /// Exit this cleanup scope, emitting any accumulated cleanups. 907 ~RunCleanupsScope() { 908 if (PerformCleanup) 909 ForceCleanup(); 910 } 911 912 /// Determine whether this scope requires any cleanups. 913 bool requiresCleanups() const { 914 return CGF.EHStack.stable_begin() != CleanupStackDepth; 915 } 916 917 /// Force the emission of cleanups now, instead of waiting 918 /// until this object is destroyed. 919 /// \param ValuesToReload - A list of values that need to be available at 920 /// the insertion point after cleanup emission. If cleanup emission created 921 /// a shared cleanup block, these value pointers will be rewritten. 922 /// Otherwise, they not will be modified. 923 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 924 assert(PerformCleanup && "Already forced cleanup"); 925 CGF.DidCallStackSave = OldDidCallStackSave; 926 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 927 ValuesToReload); 928 PerformCleanup = false; 929 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 930 } 931 }; 932 933 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 934 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 935 EHScopeStack::stable_end(); 936 937 class LexicalScope : public RunCleanupsScope { 938 SourceRange Range; 939 SmallVector<const LabelDecl*, 4> Labels; 940 LexicalScope *ParentScope; 941 942 LexicalScope(const LexicalScope &) = delete; 943 void operator=(const LexicalScope &) = delete; 944 945 public: 946 /// Enter a new cleanup scope. 947 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 948 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 949 CGF.CurLexicalScope = this; 950 if (CGDebugInfo *DI = CGF.getDebugInfo()) 951 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 952 } 953 954 void addLabel(const LabelDecl *label) { 955 assert(PerformCleanup && "adding label to dead scope?"); 956 Labels.push_back(label); 957 } 958 959 /// Exit this cleanup scope, emitting any accumulated 960 /// cleanups. 961 ~LexicalScope() { 962 if (CGDebugInfo *DI = CGF.getDebugInfo()) 963 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 964 965 // If we should perform a cleanup, force them now. Note that 966 // this ends the cleanup scope before rescoping any labels. 967 if (PerformCleanup) { 968 ApplyDebugLocation DL(CGF, Range.getEnd()); 969 ForceCleanup(); 970 } 971 } 972 973 /// Force the emission of cleanups now, instead of waiting 974 /// until this object is destroyed. 975 void ForceCleanup() { 976 CGF.CurLexicalScope = ParentScope; 977 RunCleanupsScope::ForceCleanup(); 978 979 if (!Labels.empty()) 980 rescopeLabels(); 981 } 982 983 bool hasLabels() const { 984 return !Labels.empty(); 985 } 986 987 void rescopeLabels(); 988 }; 989 990 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 991 992 /// The class used to assign some variables some temporarily addresses. 993 class OMPMapVars { 994 DeclMapTy SavedLocals; 995 DeclMapTy SavedTempAddresses; 996 OMPMapVars(const OMPMapVars &) = delete; 997 void operator=(const OMPMapVars &) = delete; 998 999 public: 1000 explicit OMPMapVars() = default; 1001 ~OMPMapVars() { 1002 assert(SavedLocals.empty() && "Did not restored original addresses."); 1003 }; 1004 1005 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 1006 /// function \p CGF. 1007 /// \return true if at least one variable was set already, false otherwise. 1008 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 1009 Address TempAddr) { 1010 LocalVD = LocalVD->getCanonicalDecl(); 1011 // Only save it once. 1012 if (SavedLocals.count(LocalVD)) return false; 1013 1014 // Copy the existing local entry to SavedLocals. 1015 auto it = CGF.LocalDeclMap.find(LocalVD); 1016 if (it != CGF.LocalDeclMap.end()) 1017 SavedLocals.try_emplace(LocalVD, it->second); 1018 else 1019 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1020 1021 // Generate the private entry. 1022 QualType VarTy = LocalVD->getType(); 1023 if (VarTy->isReferenceType()) { 1024 Address Temp = CGF.CreateMemTemp(VarTy); 1025 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 1026 TempAddr = Temp; 1027 } 1028 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1029 1030 return true; 1031 } 1032 1033 /// Applies new addresses to the list of the variables. 1034 /// \return true if at least one variable is using new address, false 1035 /// otherwise. 1036 bool apply(CodeGenFunction &CGF) { 1037 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1038 SavedTempAddresses.clear(); 1039 return !SavedLocals.empty(); 1040 } 1041 1042 /// Restores original addresses of the variables. 1043 void restore(CodeGenFunction &CGF) { 1044 if (!SavedLocals.empty()) { 1045 copyInto(SavedLocals, CGF.LocalDeclMap); 1046 SavedLocals.clear(); 1047 } 1048 } 1049 1050 private: 1051 /// Copy all the entries in the source map over the corresponding 1052 /// entries in the destination, which must exist. 1053 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1054 for (auto &Pair : Src) { 1055 if (!Pair.second.isValid()) { 1056 Dest.erase(Pair.first); 1057 continue; 1058 } 1059 1060 auto I = Dest.find(Pair.first); 1061 if (I != Dest.end()) 1062 I->second = Pair.second; 1063 else 1064 Dest.insert(Pair); 1065 } 1066 } 1067 }; 1068 1069 /// The scope used to remap some variables as private in the OpenMP loop body 1070 /// (or other captured region emitted without outlining), and to restore old 1071 /// vars back on exit. 1072 class OMPPrivateScope : public RunCleanupsScope { 1073 OMPMapVars MappedVars; 1074 OMPPrivateScope(const OMPPrivateScope &) = delete; 1075 void operator=(const OMPPrivateScope &) = delete; 1076 1077 public: 1078 /// Enter a new OpenMP private scope. 1079 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1080 1081 /// Registers \p LocalVD variable as a private with \p Addr as the address 1082 /// of the corresponding private variable. \p 1083 /// PrivateGen is the address of the generated private variable. 1084 /// \return true if the variable is registered as private, false if it has 1085 /// been privatized already. 1086 bool addPrivate(const VarDecl *LocalVD, Address Addr) { 1087 assert(PerformCleanup && "adding private to dead scope"); 1088 return MappedVars.setVarAddr(CGF, LocalVD, Addr); 1089 } 1090 1091 /// Privatizes local variables previously registered as private. 1092 /// Registration is separate from the actual privatization to allow 1093 /// initializers use values of the original variables, not the private one. 1094 /// This is important, for example, if the private variable is a class 1095 /// variable initialized by a constructor that references other private 1096 /// variables. But at initialization original variables must be used, not 1097 /// private copies. 1098 /// \return true if at least one variable was privatized, false otherwise. 1099 bool Privatize() { return MappedVars.apply(CGF); } 1100 1101 void ForceCleanup() { 1102 RunCleanupsScope::ForceCleanup(); 1103 restoreMap(); 1104 } 1105 1106 /// Exit scope - all the mapped variables are restored. 1107 ~OMPPrivateScope() { 1108 if (PerformCleanup) 1109 ForceCleanup(); 1110 } 1111 1112 /// Checks if the global variable is captured in current function. 1113 bool isGlobalVarCaptured(const VarDecl *VD) const { 1114 VD = VD->getCanonicalDecl(); 1115 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1116 } 1117 1118 /// Restore all mapped variables w/o clean up. This is usefully when we want 1119 /// to reference the original variables but don't want the clean up because 1120 /// that could emit lifetime end too early, causing backend issue #56913. 1121 void restoreMap() { MappedVars.restore(CGF); } 1122 }; 1123 1124 /// Save/restore original map of previously emitted local vars in case when we 1125 /// need to duplicate emission of the same code several times in the same 1126 /// function for OpenMP code. 1127 class OMPLocalDeclMapRAII { 1128 CodeGenFunction &CGF; 1129 DeclMapTy SavedMap; 1130 1131 public: 1132 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1133 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1134 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1135 }; 1136 1137 /// Takes the old cleanup stack size and emits the cleanup blocks 1138 /// that have been added. 1139 void 1140 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1141 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1142 1143 /// Takes the old cleanup stack size and emits the cleanup blocks 1144 /// that have been added, then adds all lifetime-extended cleanups from 1145 /// the given position to the stack. 1146 void 1147 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1148 size_t OldLifetimeExtendedStackSize, 1149 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1150 1151 void ResolveBranchFixups(llvm::BasicBlock *Target); 1152 1153 /// The given basic block lies in the current EH scope, but may be a 1154 /// target of a potentially scope-crossing jump; get a stable handle 1155 /// to which we can perform this jump later. 1156 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1157 return JumpDest(Target, 1158 EHStack.getInnermostNormalCleanup(), 1159 NextCleanupDestIndex++); 1160 } 1161 1162 /// The given basic block lies in the current EH scope, but may be a 1163 /// target of a potentially scope-crossing jump; get a stable handle 1164 /// to which we can perform this jump later. 1165 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1166 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1167 } 1168 1169 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1170 /// block through the normal cleanup handling code (if any) and then 1171 /// on to \arg Dest. 1172 void EmitBranchThroughCleanup(JumpDest Dest); 1173 1174 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1175 /// specified destination obviously has no cleanups to run. 'false' is always 1176 /// a conservatively correct answer for this method. 1177 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1178 1179 /// popCatchScope - Pops the catch scope at the top of the EHScope 1180 /// stack, emitting any required code (other than the catch handlers 1181 /// themselves). 1182 void popCatchScope(); 1183 1184 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1185 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1186 llvm::BasicBlock * 1187 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1188 1189 /// An object to manage conditionally-evaluated expressions. 1190 class ConditionalEvaluation { 1191 llvm::BasicBlock *StartBB; 1192 1193 public: 1194 ConditionalEvaluation(CodeGenFunction &CGF) 1195 : StartBB(CGF.Builder.GetInsertBlock()) {} 1196 1197 void begin(CodeGenFunction &CGF) { 1198 assert(CGF.OutermostConditional != this); 1199 if (!CGF.OutermostConditional) 1200 CGF.OutermostConditional = this; 1201 } 1202 1203 void end(CodeGenFunction &CGF) { 1204 assert(CGF.OutermostConditional != nullptr); 1205 if (CGF.OutermostConditional == this) 1206 CGF.OutermostConditional = nullptr; 1207 } 1208 1209 /// Returns a block which will be executed prior to each 1210 /// evaluation of the conditional code. 1211 llvm::BasicBlock *getStartingBlock() const { 1212 return StartBB; 1213 } 1214 }; 1215 1216 /// isInConditionalBranch - Return true if we're currently emitting 1217 /// one branch or the other of a conditional expression. 1218 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1219 1220 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1221 assert(isInConditionalBranch()); 1222 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1223 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1224 store->setAlignment(addr.getAlignment().getAsAlign()); 1225 } 1226 1227 /// An RAII object to record that we're evaluating a statement 1228 /// expression. 1229 class StmtExprEvaluation { 1230 CodeGenFunction &CGF; 1231 1232 /// We have to save the outermost conditional: cleanups in a 1233 /// statement expression aren't conditional just because the 1234 /// StmtExpr is. 1235 ConditionalEvaluation *SavedOutermostConditional; 1236 1237 public: 1238 StmtExprEvaluation(CodeGenFunction &CGF) 1239 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1240 CGF.OutermostConditional = nullptr; 1241 } 1242 1243 ~StmtExprEvaluation() { 1244 CGF.OutermostConditional = SavedOutermostConditional; 1245 CGF.EnsureInsertPoint(); 1246 } 1247 }; 1248 1249 /// An object which temporarily prevents a value from being 1250 /// destroyed by aggressive peephole optimizations that assume that 1251 /// all uses of a value have been realized in the IR. 1252 class PeepholeProtection { 1253 llvm::Instruction *Inst; 1254 friend class CodeGenFunction; 1255 1256 public: 1257 PeepholeProtection() : Inst(nullptr) {} 1258 }; 1259 1260 /// A non-RAII class containing all the information about a bound 1261 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1262 /// this which makes individual mappings very simple; using this 1263 /// class directly is useful when you have a variable number of 1264 /// opaque values or don't want the RAII functionality for some 1265 /// reason. 1266 class OpaqueValueMappingData { 1267 const OpaqueValueExpr *OpaqueValue; 1268 bool BoundLValue; 1269 CodeGenFunction::PeepholeProtection Protection; 1270 1271 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1272 bool boundLValue) 1273 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1274 public: 1275 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1276 1277 static bool shouldBindAsLValue(const Expr *expr) { 1278 // gl-values should be bound as l-values for obvious reasons. 1279 // Records should be bound as l-values because IR generation 1280 // always keeps them in memory. Expressions of function type 1281 // act exactly like l-values but are formally required to be 1282 // r-values in C. 1283 return expr->isGLValue() || 1284 expr->getType()->isFunctionType() || 1285 hasAggregateEvaluationKind(expr->getType()); 1286 } 1287 1288 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1289 const OpaqueValueExpr *ov, 1290 const Expr *e) { 1291 if (shouldBindAsLValue(ov)) 1292 return bind(CGF, ov, CGF.EmitLValue(e)); 1293 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1294 } 1295 1296 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1297 const OpaqueValueExpr *ov, 1298 const LValue &lv) { 1299 assert(shouldBindAsLValue(ov)); 1300 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1301 return OpaqueValueMappingData(ov, true); 1302 } 1303 1304 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1305 const OpaqueValueExpr *ov, 1306 const RValue &rv) { 1307 assert(!shouldBindAsLValue(ov)); 1308 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1309 1310 OpaqueValueMappingData data(ov, false); 1311 1312 // Work around an extremely aggressive peephole optimization in 1313 // EmitScalarConversion which assumes that all other uses of a 1314 // value are extant. 1315 data.Protection = CGF.protectFromPeepholes(rv); 1316 1317 return data; 1318 } 1319 1320 bool isValid() const { return OpaqueValue != nullptr; } 1321 void clear() { OpaqueValue = nullptr; } 1322 1323 void unbind(CodeGenFunction &CGF) { 1324 assert(OpaqueValue && "no data to unbind!"); 1325 1326 if (BoundLValue) { 1327 CGF.OpaqueLValues.erase(OpaqueValue); 1328 } else { 1329 CGF.OpaqueRValues.erase(OpaqueValue); 1330 CGF.unprotectFromPeepholes(Protection); 1331 } 1332 } 1333 }; 1334 1335 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1336 class OpaqueValueMapping { 1337 CodeGenFunction &CGF; 1338 OpaqueValueMappingData Data; 1339 1340 public: 1341 static bool shouldBindAsLValue(const Expr *expr) { 1342 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1343 } 1344 1345 /// Build the opaque value mapping for the given conditional 1346 /// operator if it's the GNU ?: extension. This is a common 1347 /// enough pattern that the convenience operator is really 1348 /// helpful. 1349 /// 1350 OpaqueValueMapping(CodeGenFunction &CGF, 1351 const AbstractConditionalOperator *op) : CGF(CGF) { 1352 if (isa<ConditionalOperator>(op)) 1353 // Leave Data empty. 1354 return; 1355 1356 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1357 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1358 e->getCommon()); 1359 } 1360 1361 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1362 /// expression is set to the expression the OVE represents. 1363 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1364 : CGF(CGF) { 1365 if (OV) { 1366 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1367 "for OVE with no source expression"); 1368 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1369 } 1370 } 1371 1372 OpaqueValueMapping(CodeGenFunction &CGF, 1373 const OpaqueValueExpr *opaqueValue, 1374 LValue lvalue) 1375 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1376 } 1377 1378 OpaqueValueMapping(CodeGenFunction &CGF, 1379 const OpaqueValueExpr *opaqueValue, 1380 RValue rvalue) 1381 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1382 } 1383 1384 void pop() { 1385 Data.unbind(CGF); 1386 Data.clear(); 1387 } 1388 1389 ~OpaqueValueMapping() { 1390 if (Data.isValid()) Data.unbind(CGF); 1391 } 1392 }; 1393 1394 private: 1395 CGDebugInfo *DebugInfo; 1396 /// Used to create unique names for artificial VLA size debug info variables. 1397 unsigned VLAExprCounter = 0; 1398 bool DisableDebugInfo = false; 1399 1400 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1401 /// calling llvm.stacksave for multiple VLAs in the same scope. 1402 bool DidCallStackSave = false; 1403 1404 /// IndirectBranch - The first time an indirect goto is seen we create a block 1405 /// with an indirect branch. Every time we see the address of a label taken, 1406 /// we add the label to the indirect goto. Every subsequent indirect goto is 1407 /// codegen'd as a jump to the IndirectBranch's basic block. 1408 llvm::IndirectBrInst *IndirectBranch = nullptr; 1409 1410 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1411 /// decls. 1412 DeclMapTy LocalDeclMap; 1413 1414 // Keep track of the cleanups for callee-destructed parameters pushed to the 1415 // cleanup stack so that they can be deactivated later. 1416 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1417 CalleeDestructedParamCleanups; 1418 1419 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1420 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1421 /// parameter. 1422 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1423 SizeArguments; 1424 1425 /// Track escaped local variables with auto storage. Used during SEH 1426 /// outlining to produce a call to llvm.localescape. 1427 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1428 1429 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1430 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1431 1432 // BreakContinueStack - This keeps track of where break and continue 1433 // statements should jump to. 1434 struct BreakContinue { 1435 BreakContinue(JumpDest Break, JumpDest Continue) 1436 : BreakBlock(Break), ContinueBlock(Continue) {} 1437 1438 JumpDest BreakBlock; 1439 JumpDest ContinueBlock; 1440 }; 1441 SmallVector<BreakContinue, 8> BreakContinueStack; 1442 1443 /// Handles cancellation exit points in OpenMP-related constructs. 1444 class OpenMPCancelExitStack { 1445 /// Tracks cancellation exit point and join point for cancel-related exit 1446 /// and normal exit. 1447 struct CancelExit { 1448 CancelExit() = default; 1449 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1450 JumpDest ContBlock) 1451 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1452 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1453 /// true if the exit block has been emitted already by the special 1454 /// emitExit() call, false if the default codegen is used. 1455 bool HasBeenEmitted = false; 1456 JumpDest ExitBlock; 1457 JumpDest ContBlock; 1458 }; 1459 1460 SmallVector<CancelExit, 8> Stack; 1461 1462 public: 1463 OpenMPCancelExitStack() : Stack(1) {} 1464 ~OpenMPCancelExitStack() = default; 1465 /// Fetches the exit block for the current OpenMP construct. 1466 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1467 /// Emits exit block with special codegen procedure specific for the related 1468 /// OpenMP construct + emits code for normal construct cleanup. 1469 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1470 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1471 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1472 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1473 assert(CGF.HaveInsertPoint()); 1474 assert(!Stack.back().HasBeenEmitted); 1475 auto IP = CGF.Builder.saveAndClearIP(); 1476 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1477 CodeGen(CGF); 1478 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1479 CGF.Builder.restoreIP(IP); 1480 Stack.back().HasBeenEmitted = true; 1481 } 1482 CodeGen(CGF); 1483 } 1484 /// Enter the cancel supporting \a Kind construct. 1485 /// \param Kind OpenMP directive that supports cancel constructs. 1486 /// \param HasCancel true, if the construct has inner cancel directive, 1487 /// false otherwise. 1488 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1489 Stack.push_back({Kind, 1490 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1491 : JumpDest(), 1492 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1493 : JumpDest()}); 1494 } 1495 /// Emits default exit point for the cancel construct (if the special one 1496 /// has not be used) + join point for cancel/normal exits. 1497 void exit(CodeGenFunction &CGF) { 1498 if (getExitBlock().isValid()) { 1499 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1500 bool HaveIP = CGF.HaveInsertPoint(); 1501 if (!Stack.back().HasBeenEmitted) { 1502 if (HaveIP) 1503 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1504 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1505 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1506 } 1507 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1508 if (!HaveIP) { 1509 CGF.Builder.CreateUnreachable(); 1510 CGF.Builder.ClearInsertionPoint(); 1511 } 1512 } 1513 Stack.pop_back(); 1514 } 1515 }; 1516 OpenMPCancelExitStack OMPCancelStack; 1517 1518 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1519 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1520 Stmt::Likelihood LH); 1521 1522 CodeGenPGO PGO; 1523 1524 /// Calculate branch weights appropriate for PGO data 1525 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1526 uint64_t FalseCount) const; 1527 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1528 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1529 uint64_t LoopCount) const; 1530 1531 public: 1532 /// Increment the profiler's counter for the given statement by \p StepV. 1533 /// If \p StepV is null, the default increment is 1. 1534 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1535 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1536 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) && 1537 !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile)) 1538 PGO.emitCounterIncrement(Builder, S, StepV); 1539 PGO.setCurrentStmt(S); 1540 } 1541 1542 /// Get the profiler's count for the given statement. 1543 uint64_t getProfileCount(const Stmt *S) { 1544 return PGO.getStmtCount(S).value_or(0); 1545 } 1546 1547 /// Set the profiler's current count. 1548 void setCurrentProfileCount(uint64_t Count) { 1549 PGO.setCurrentRegionCount(Count); 1550 } 1551 1552 /// Get the profiler's current count. This is generally the count for the most 1553 /// recently incremented counter. 1554 uint64_t getCurrentProfileCount() { 1555 return PGO.getCurrentRegionCount(); 1556 } 1557 1558 private: 1559 1560 /// SwitchInsn - This is nearest current switch instruction. It is null if 1561 /// current context is not in a switch. 1562 llvm::SwitchInst *SwitchInsn = nullptr; 1563 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1564 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1565 1566 /// The likelihood attributes of the SwitchCase. 1567 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1568 1569 /// CaseRangeBlock - This block holds if condition check for last case 1570 /// statement range in current switch instruction. 1571 llvm::BasicBlock *CaseRangeBlock = nullptr; 1572 1573 /// OpaqueLValues - Keeps track of the current set of opaque value 1574 /// expressions. 1575 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1576 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1577 1578 // VLASizeMap - This keeps track of the associated size for each VLA type. 1579 // We track this by the size expression rather than the type itself because 1580 // in certain situations, like a const qualifier applied to an VLA typedef, 1581 // multiple VLA types can share the same size expression. 1582 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1583 // enter/leave scopes. 1584 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1585 1586 /// A block containing a single 'unreachable' instruction. Created 1587 /// lazily by getUnreachableBlock(). 1588 llvm::BasicBlock *UnreachableBlock = nullptr; 1589 1590 /// Counts of the number return expressions in the function. 1591 unsigned NumReturnExprs = 0; 1592 1593 /// Count the number of simple (constant) return expressions in the function. 1594 unsigned NumSimpleReturnExprs = 0; 1595 1596 /// The last regular (non-return) debug location (breakpoint) in the function. 1597 SourceLocation LastStopPoint; 1598 1599 public: 1600 /// Source location information about the default argument or member 1601 /// initializer expression we're evaluating, if any. 1602 CurrentSourceLocExprScope CurSourceLocExprScope; 1603 using SourceLocExprScopeGuard = 1604 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1605 1606 /// A scope within which we are constructing the fields of an object which 1607 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1608 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1609 class FieldConstructionScope { 1610 public: 1611 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1612 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1613 CGF.CXXDefaultInitExprThis = This; 1614 } 1615 ~FieldConstructionScope() { 1616 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1617 } 1618 1619 private: 1620 CodeGenFunction &CGF; 1621 Address OldCXXDefaultInitExprThis; 1622 }; 1623 1624 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1625 /// is overridden to be the object under construction. 1626 class CXXDefaultInitExprScope { 1627 public: 1628 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1629 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1630 OldCXXThisAlignment(CGF.CXXThisAlignment), 1631 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1632 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1633 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1634 } 1635 ~CXXDefaultInitExprScope() { 1636 CGF.CXXThisValue = OldCXXThisValue; 1637 CGF.CXXThisAlignment = OldCXXThisAlignment; 1638 } 1639 1640 public: 1641 CodeGenFunction &CGF; 1642 llvm::Value *OldCXXThisValue; 1643 CharUnits OldCXXThisAlignment; 1644 SourceLocExprScopeGuard SourceLocScope; 1645 }; 1646 1647 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1648 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1649 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1650 }; 1651 1652 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1653 /// current loop index is overridden. 1654 class ArrayInitLoopExprScope { 1655 public: 1656 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1657 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1658 CGF.ArrayInitIndex = Index; 1659 } 1660 ~ArrayInitLoopExprScope() { 1661 CGF.ArrayInitIndex = OldArrayInitIndex; 1662 } 1663 1664 private: 1665 CodeGenFunction &CGF; 1666 llvm::Value *OldArrayInitIndex; 1667 }; 1668 1669 class InlinedInheritingConstructorScope { 1670 public: 1671 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1672 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1673 OldCurCodeDecl(CGF.CurCodeDecl), 1674 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1675 OldCXXABIThisValue(CGF.CXXABIThisValue), 1676 OldCXXThisValue(CGF.CXXThisValue), 1677 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1678 OldCXXThisAlignment(CGF.CXXThisAlignment), 1679 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1680 OldCXXInheritedCtorInitExprArgs( 1681 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1682 CGF.CurGD = GD; 1683 CGF.CurFuncDecl = CGF.CurCodeDecl = 1684 cast<CXXConstructorDecl>(GD.getDecl()); 1685 CGF.CXXABIThisDecl = nullptr; 1686 CGF.CXXABIThisValue = nullptr; 1687 CGF.CXXThisValue = nullptr; 1688 CGF.CXXABIThisAlignment = CharUnits(); 1689 CGF.CXXThisAlignment = CharUnits(); 1690 CGF.ReturnValue = Address::invalid(); 1691 CGF.FnRetTy = QualType(); 1692 CGF.CXXInheritedCtorInitExprArgs.clear(); 1693 } 1694 ~InlinedInheritingConstructorScope() { 1695 CGF.CurGD = OldCurGD; 1696 CGF.CurFuncDecl = OldCurFuncDecl; 1697 CGF.CurCodeDecl = OldCurCodeDecl; 1698 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1699 CGF.CXXABIThisValue = OldCXXABIThisValue; 1700 CGF.CXXThisValue = OldCXXThisValue; 1701 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1702 CGF.CXXThisAlignment = OldCXXThisAlignment; 1703 CGF.ReturnValue = OldReturnValue; 1704 CGF.FnRetTy = OldFnRetTy; 1705 CGF.CXXInheritedCtorInitExprArgs = 1706 std::move(OldCXXInheritedCtorInitExprArgs); 1707 } 1708 1709 private: 1710 CodeGenFunction &CGF; 1711 GlobalDecl OldCurGD; 1712 const Decl *OldCurFuncDecl; 1713 const Decl *OldCurCodeDecl; 1714 ImplicitParamDecl *OldCXXABIThisDecl; 1715 llvm::Value *OldCXXABIThisValue; 1716 llvm::Value *OldCXXThisValue; 1717 CharUnits OldCXXABIThisAlignment; 1718 CharUnits OldCXXThisAlignment; 1719 Address OldReturnValue; 1720 QualType OldFnRetTy; 1721 CallArgList OldCXXInheritedCtorInitExprArgs; 1722 }; 1723 1724 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1725 // region body, and finalization codegen callbacks. This will class will also 1726 // contain privatization functions used by the privatization call backs 1727 // 1728 // TODO: this is temporary class for things that are being moved out of 1729 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1730 // utility function for use with the OMPBuilder. Once that move to use the 1731 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1732 // directly, or a new helper class that will contain functions used by both 1733 // this and the OMPBuilder 1734 1735 struct OMPBuilderCBHelpers { 1736 1737 OMPBuilderCBHelpers() = delete; 1738 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1739 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1740 1741 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1742 1743 /// Cleanup action for allocate support. 1744 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1745 1746 private: 1747 llvm::CallInst *RTLFnCI; 1748 1749 public: 1750 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1751 RLFnCI->removeFromParent(); 1752 } 1753 1754 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1755 if (!CGF.HaveInsertPoint()) 1756 return; 1757 CGF.Builder.Insert(RTLFnCI); 1758 } 1759 }; 1760 1761 /// Returns address of the threadprivate variable for the current 1762 /// thread. This Also create any necessary OMP runtime calls. 1763 /// 1764 /// \param VD VarDecl for Threadprivate variable. 1765 /// \param VDAddr Address of the Vardecl 1766 /// \param Loc The location where the barrier directive was encountered 1767 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1768 const VarDecl *VD, Address VDAddr, 1769 SourceLocation Loc); 1770 1771 /// Gets the OpenMP-specific address of the local variable /p VD. 1772 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1773 const VarDecl *VD); 1774 /// Get the platform-specific name separator. 1775 /// \param Parts different parts of the final name that needs separation 1776 /// \param FirstSeparator First separator used between the initial two 1777 /// parts of the name. 1778 /// \param Separator separator used between all of the rest consecutinve 1779 /// parts of the name 1780 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1781 StringRef FirstSeparator = ".", 1782 StringRef Separator = "."); 1783 /// Emit the Finalization for an OMP region 1784 /// \param CGF The Codegen function this belongs to 1785 /// \param IP Insertion point for generating the finalization code. 1786 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1787 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1788 assert(IP.getBlock()->end() != IP.getPoint() && 1789 "OpenMP IR Builder should cause terminated block!"); 1790 1791 llvm::BasicBlock *IPBB = IP.getBlock(); 1792 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1793 assert(DestBB && "Finalization block should have one successor!"); 1794 1795 // erase and replace with cleanup branch. 1796 IPBB->getTerminator()->eraseFromParent(); 1797 CGF.Builder.SetInsertPoint(IPBB); 1798 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1799 CGF.EmitBranchThroughCleanup(Dest); 1800 } 1801 1802 /// Emit the body of an OMP region 1803 /// \param CGF The Codegen function this belongs to 1804 /// \param RegionBodyStmt The body statement for the OpenMP region being 1805 /// generated 1806 /// \param AllocaIP Where to insert alloca instructions 1807 /// \param CodeGenIP Where to insert the region code 1808 /// \param RegionName Name to be used for new blocks 1809 static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, 1810 const Stmt *RegionBodyStmt, 1811 InsertPointTy AllocaIP, 1812 InsertPointTy CodeGenIP, 1813 Twine RegionName); 1814 1815 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1816 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1817 ArrayRef<llvm::Value *> Args) { 1818 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1819 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1820 CodeGenIPBBTI->eraseFromParent(); 1821 1822 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1823 1824 if (Fn->doesNotThrow()) 1825 CGF.EmitNounwindRuntimeCall(Fn, Args); 1826 else 1827 CGF.EmitRuntimeCall(Fn, Args); 1828 1829 if (CGF.Builder.saveIP().isSet()) 1830 CGF.Builder.CreateBr(&FiniBB); 1831 } 1832 1833 /// Emit the body of an OMP region that will be outlined in 1834 /// OpenMPIRBuilder::finalize(). 1835 /// \param CGF The Codegen function this belongs to 1836 /// \param RegionBodyStmt The body statement for the OpenMP region being 1837 /// generated 1838 /// \param AllocaIP Where to insert alloca instructions 1839 /// \param CodeGenIP Where to insert the region code 1840 /// \param RegionName Name to be used for new blocks 1841 static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, 1842 const Stmt *RegionBodyStmt, 1843 InsertPointTy AllocaIP, 1844 InsertPointTy CodeGenIP, 1845 Twine RegionName); 1846 1847 /// RAII for preserving necessary info during Outlined region body codegen. 1848 class OutlinedRegionBodyRAII { 1849 1850 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1851 CodeGenFunction::JumpDest OldReturnBlock; 1852 CodeGenFunction &CGF; 1853 1854 public: 1855 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1856 llvm::BasicBlock &RetBB) 1857 : CGF(cgf) { 1858 assert(AllocaIP.isSet() && 1859 "Must specify Insertion point for allocas of outlined function"); 1860 OldAllocaIP = CGF.AllocaInsertPt; 1861 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1862 1863 OldReturnBlock = CGF.ReturnBlock; 1864 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1865 } 1866 1867 ~OutlinedRegionBodyRAII() { 1868 CGF.AllocaInsertPt = OldAllocaIP; 1869 CGF.ReturnBlock = OldReturnBlock; 1870 } 1871 }; 1872 1873 /// RAII for preserving necessary info during inlined region body codegen. 1874 class InlinedRegionBodyRAII { 1875 1876 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1877 CodeGenFunction &CGF; 1878 1879 public: 1880 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1881 llvm::BasicBlock &FiniBB) 1882 : CGF(cgf) { 1883 // Alloca insertion block should be in the entry block of the containing 1884 // function so it expects an empty AllocaIP in which case will reuse the 1885 // old alloca insertion point, or a new AllocaIP in the same block as 1886 // the old one 1887 assert((!AllocaIP.isSet() || 1888 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1889 "Insertion point should be in the entry block of containing " 1890 "function!"); 1891 OldAllocaIP = CGF.AllocaInsertPt; 1892 if (AllocaIP.isSet()) 1893 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1894 1895 // TODO: Remove the call, after making sure the counter is not used by 1896 // the EHStack. 1897 // Since this is an inlined region, it should not modify the 1898 // ReturnBlock, and should reuse the one for the enclosing outlined 1899 // region. So, the JumpDest being return by the function is discarded 1900 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1901 } 1902 1903 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1904 }; 1905 }; 1906 1907 private: 1908 /// CXXThisDecl - When generating code for a C++ member function, 1909 /// this will hold the implicit 'this' declaration. 1910 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1911 llvm::Value *CXXABIThisValue = nullptr; 1912 llvm::Value *CXXThisValue = nullptr; 1913 CharUnits CXXABIThisAlignment; 1914 CharUnits CXXThisAlignment; 1915 1916 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1917 /// this expression. 1918 Address CXXDefaultInitExprThis = Address::invalid(); 1919 1920 /// The current array initialization index when evaluating an 1921 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1922 llvm::Value *ArrayInitIndex = nullptr; 1923 1924 /// The values of function arguments to use when evaluating 1925 /// CXXInheritedCtorInitExprs within this context. 1926 CallArgList CXXInheritedCtorInitExprArgs; 1927 1928 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1929 /// destructor, this will hold the implicit argument (e.g. VTT). 1930 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1931 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1932 1933 /// OutermostConditional - Points to the outermost active 1934 /// conditional control. This is used so that we know if a 1935 /// temporary should be destroyed conditionally. 1936 ConditionalEvaluation *OutermostConditional = nullptr; 1937 1938 /// The current lexical scope. 1939 LexicalScope *CurLexicalScope = nullptr; 1940 1941 /// The current source location that should be used for exception 1942 /// handling code. 1943 SourceLocation CurEHLocation; 1944 1945 /// BlockByrefInfos - For each __block variable, contains 1946 /// information about the layout of the variable. 1947 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1948 1949 /// Used by -fsanitize=nullability-return to determine whether the return 1950 /// value can be checked. 1951 llvm::Value *RetValNullabilityPrecondition = nullptr; 1952 1953 /// Check if -fsanitize=nullability-return instrumentation is required for 1954 /// this function. 1955 bool requiresReturnValueNullabilityCheck() const { 1956 return RetValNullabilityPrecondition; 1957 } 1958 1959 /// Used to store precise source locations for return statements by the 1960 /// runtime return value checks. 1961 Address ReturnLocation = Address::invalid(); 1962 1963 /// Check if the return value of this function requires sanitization. 1964 bool requiresReturnValueCheck() const; 1965 1966 bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty); 1967 bool hasInAllocaArg(const CXXMethodDecl *MD); 1968 1969 llvm::BasicBlock *TerminateLandingPad = nullptr; 1970 llvm::BasicBlock *TerminateHandler = nullptr; 1971 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1972 1973 /// Terminate funclets keyed by parent funclet pad. 1974 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1975 1976 /// Largest vector width used in ths function. Will be used to create a 1977 /// function attribute. 1978 unsigned LargestVectorWidth = 0; 1979 1980 /// True if we need emit the life-time markers. This is initially set in 1981 /// the constructor, but could be overwritten to true if this is a coroutine. 1982 bool ShouldEmitLifetimeMarkers; 1983 1984 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1985 /// the function metadata. 1986 void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); 1987 1988 public: 1989 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1990 ~CodeGenFunction(); 1991 1992 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1993 ASTContext &getContext() const { return CGM.getContext(); } 1994 CGDebugInfo *getDebugInfo() { 1995 if (DisableDebugInfo) 1996 return nullptr; 1997 return DebugInfo; 1998 } 1999 void disableDebugInfo() { DisableDebugInfo = true; } 2000 void enableDebugInfo() { DisableDebugInfo = false; } 2001 2002 bool shouldUseFusedARCCalls() { 2003 return CGM.getCodeGenOpts().OptimizationLevel == 0; 2004 } 2005 2006 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 2007 2008 /// Returns a pointer to the function's exception object and selector slot, 2009 /// which is assigned in every landing pad. 2010 Address getExceptionSlot(); 2011 Address getEHSelectorSlot(); 2012 2013 /// Returns the contents of the function's exception object and selector 2014 /// slots. 2015 llvm::Value *getExceptionFromSlot(); 2016 llvm::Value *getSelectorFromSlot(); 2017 2018 Address getNormalCleanupDestSlot(); 2019 2020 llvm::BasicBlock *getUnreachableBlock() { 2021 if (!UnreachableBlock) { 2022 UnreachableBlock = createBasicBlock("unreachable"); 2023 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2024 } 2025 return UnreachableBlock; 2026 } 2027 2028 llvm::BasicBlock *getInvokeDest() { 2029 if (!EHStack.requiresLandingPad()) return nullptr; 2030 return getInvokeDestImpl(); 2031 } 2032 2033 bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; } 2034 2035 const TargetInfo &getTarget() const { return Target; } 2036 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2037 const TargetCodeGenInfo &getTargetHooks() const { 2038 return CGM.getTargetCodeGenInfo(); 2039 } 2040 2041 //===--------------------------------------------------------------------===// 2042 // Cleanups 2043 //===--------------------------------------------------------------------===// 2044 2045 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2046 2047 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2048 Address arrayEndPointer, 2049 QualType elementType, 2050 CharUnits elementAlignment, 2051 Destroyer *destroyer); 2052 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2053 llvm::Value *arrayEnd, 2054 QualType elementType, 2055 CharUnits elementAlignment, 2056 Destroyer *destroyer); 2057 2058 void pushDestroy(QualType::DestructionKind dtorKind, 2059 Address addr, QualType type); 2060 void pushEHDestroy(QualType::DestructionKind dtorKind, 2061 Address addr, QualType type); 2062 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2063 Destroyer *destroyer, bool useEHCleanupForArray); 2064 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2065 QualType type, Destroyer *destroyer, 2066 bool useEHCleanupForArray); 2067 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2068 llvm::Value *CompletePtr, 2069 QualType ElementType); 2070 void pushStackRestore(CleanupKind kind, Address SPMem); 2071 void pushKmpcAllocFree(CleanupKind Kind, 2072 std::pair<llvm::Value *, llvm::Value *> AddrSizePair); 2073 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2074 bool useEHCleanupForArray); 2075 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2076 Destroyer *destroyer, 2077 bool useEHCleanupForArray, 2078 const VarDecl *VD); 2079 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2080 QualType elementType, CharUnits elementAlign, 2081 Destroyer *destroyer, 2082 bool checkZeroLength, bool useEHCleanup); 2083 2084 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2085 2086 /// Determines whether an EH cleanup is required to destroy a type 2087 /// with the given destruction kind. 2088 bool needsEHCleanup(QualType::DestructionKind kind) { 2089 switch (kind) { 2090 case QualType::DK_none: 2091 return false; 2092 case QualType::DK_cxx_destructor: 2093 case QualType::DK_objc_weak_lifetime: 2094 case QualType::DK_nontrivial_c_struct: 2095 return getLangOpts().Exceptions; 2096 case QualType::DK_objc_strong_lifetime: 2097 return getLangOpts().Exceptions && 2098 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2099 } 2100 llvm_unreachable("bad destruction kind"); 2101 } 2102 2103 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2104 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2105 } 2106 2107 //===--------------------------------------------------------------------===// 2108 // Objective-C 2109 //===--------------------------------------------------------------------===// 2110 2111 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2112 2113 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2114 2115 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2116 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2117 const ObjCPropertyImplDecl *PID); 2118 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2119 const ObjCPropertyImplDecl *propImpl, 2120 const ObjCMethodDecl *GetterMothodDecl, 2121 llvm::Constant *AtomicHelperFn); 2122 2123 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2124 ObjCMethodDecl *MD, bool ctor); 2125 2126 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2127 /// for the given property. 2128 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2129 const ObjCPropertyImplDecl *PID); 2130 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2131 const ObjCPropertyImplDecl *propImpl, 2132 llvm::Constant *AtomicHelperFn); 2133 2134 //===--------------------------------------------------------------------===// 2135 // Block Bits 2136 //===--------------------------------------------------------------------===// 2137 2138 /// Emit block literal. 2139 /// \return an LLVM value which is a pointer to a struct which contains 2140 /// information about the block, including the block invoke function, the 2141 /// captured variables, etc. 2142 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2143 2144 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2145 const CGBlockInfo &Info, 2146 const DeclMapTy &ldm, 2147 bool IsLambdaConversionToBlock, 2148 bool BuildGlobalBlock); 2149 2150 /// Check if \p T is a C++ class that has a destructor that can throw. 2151 static bool cxxDestructorCanThrow(QualType T); 2152 2153 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2154 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2155 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2156 const ObjCPropertyImplDecl *PID); 2157 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2158 const ObjCPropertyImplDecl *PID); 2159 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2160 2161 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2162 bool CanThrow); 2163 2164 class AutoVarEmission; 2165 2166 void emitByrefStructureInit(const AutoVarEmission &emission); 2167 2168 /// Enter a cleanup to destroy a __block variable. Note that this 2169 /// cleanup should be a no-op if the variable hasn't left the stack 2170 /// yet; if a cleanup is required for the variable itself, that needs 2171 /// to be done externally. 2172 /// 2173 /// \param Kind Cleanup kind. 2174 /// 2175 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2176 /// structure that will be passed to _Block_object_dispose. When 2177 /// \p LoadBlockVarAddr is true, the address of the field of the block 2178 /// structure that holds the address of the __block structure. 2179 /// 2180 /// \param Flags The flag that will be passed to _Block_object_dispose. 2181 /// 2182 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2183 /// \p Addr to get the address of the __block structure. 2184 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2185 bool LoadBlockVarAddr, bool CanThrow); 2186 2187 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2188 llvm::Value *ptr); 2189 2190 Address LoadBlockStruct(); 2191 Address GetAddrOfBlockDecl(const VarDecl *var); 2192 2193 /// BuildBlockByrefAddress - Computes the location of the 2194 /// data in a variable which is declared as __block. 2195 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2196 bool followForward = true); 2197 Address emitBlockByrefAddress(Address baseAddr, 2198 const BlockByrefInfo &info, 2199 bool followForward, 2200 const llvm::Twine &name); 2201 2202 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2203 2204 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2205 2206 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2207 const CGFunctionInfo &FnInfo); 2208 2209 /// Annotate the function with an attribute that disables TSan checking at 2210 /// runtime. 2211 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2212 2213 /// Emit code for the start of a function. 2214 /// \param Loc The location to be associated with the function. 2215 /// \param StartLoc The location of the function body. 2216 void StartFunction(GlobalDecl GD, 2217 QualType RetTy, 2218 llvm::Function *Fn, 2219 const CGFunctionInfo &FnInfo, 2220 const FunctionArgList &Args, 2221 SourceLocation Loc = SourceLocation(), 2222 SourceLocation StartLoc = SourceLocation()); 2223 2224 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2225 2226 void EmitConstructorBody(FunctionArgList &Args); 2227 void EmitDestructorBody(FunctionArgList &Args); 2228 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2229 void EmitFunctionBody(const Stmt *Body); 2230 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2231 2232 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2233 CallArgList &CallArgs, 2234 const CGFunctionInfo *CallOpFnInfo = nullptr, 2235 llvm::Constant *CallOpFn = nullptr); 2236 void EmitLambdaBlockInvokeBody(); 2237 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2238 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, 2239 CallArgList &CallArgs); 2240 void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp, 2241 const CGFunctionInfo **ImplFnInfo, 2242 llvm::Function **ImplFn); 2243 void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD); 2244 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2245 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2246 } 2247 void EmitAsanPrologueOrEpilogue(bool Prologue); 2248 2249 /// Emit the unified return block, trying to avoid its emission when 2250 /// possible. 2251 /// \return The debug location of the user written return statement if the 2252 /// return block is avoided. 2253 llvm::DebugLoc EmitReturnBlock(); 2254 2255 /// FinishFunction - Complete IR generation of the current function. It is 2256 /// legal to call this function even if there is no current insertion point. 2257 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2258 2259 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2260 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2261 2262 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2263 const ThunkInfo *Thunk, bool IsUnprototyped); 2264 2265 void FinishThunk(); 2266 2267 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2268 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2269 llvm::FunctionCallee Callee); 2270 2271 /// Generate a thunk for the given method. 2272 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2273 GlobalDecl GD, const ThunkInfo &Thunk, 2274 bool IsUnprototyped); 2275 2276 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2277 const CGFunctionInfo &FnInfo, 2278 GlobalDecl GD, const ThunkInfo &Thunk); 2279 2280 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2281 FunctionArgList &Args); 2282 2283 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2284 2285 /// Struct with all information about dynamic [sub]class needed to set vptr. 2286 struct VPtr { 2287 BaseSubobject Base; 2288 const CXXRecordDecl *NearestVBase; 2289 CharUnits OffsetFromNearestVBase; 2290 const CXXRecordDecl *VTableClass; 2291 }; 2292 2293 /// Initialize the vtable pointer of the given subobject. 2294 void InitializeVTablePointer(const VPtr &vptr); 2295 2296 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2297 2298 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2299 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2300 2301 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2302 CharUnits OffsetFromNearestVBase, 2303 bool BaseIsNonVirtualPrimaryBase, 2304 const CXXRecordDecl *VTableClass, 2305 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2306 2307 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2308 2309 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2310 /// to by This. 2311 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2312 const CXXRecordDecl *VTableClass); 2313 2314 enum CFITypeCheckKind { 2315 CFITCK_VCall, 2316 CFITCK_NVCall, 2317 CFITCK_DerivedCast, 2318 CFITCK_UnrelatedCast, 2319 CFITCK_ICall, 2320 CFITCK_NVMFCall, 2321 CFITCK_VMFCall, 2322 }; 2323 2324 /// Derived is the presumed address of an object of type T after a 2325 /// cast. If T is a polymorphic class type, emit a check that the virtual 2326 /// table for Derived belongs to a class derived from T. 2327 void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, 2328 CFITypeCheckKind TCK, SourceLocation Loc); 2329 2330 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2331 /// If vptr CFI is enabled, emit a check that VTable is valid. 2332 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2333 CFITypeCheckKind TCK, SourceLocation Loc); 2334 2335 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2336 /// RD using llvm.type.test. 2337 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2338 CFITypeCheckKind TCK, SourceLocation Loc); 2339 2340 /// If whole-program virtual table optimization is enabled, emit an assumption 2341 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2342 /// enabled, emit a check that VTable is a member of RD's type identifier. 2343 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2344 llvm::Value *VTable, SourceLocation Loc); 2345 2346 /// Returns whether we should perform a type checked load when loading a 2347 /// virtual function for virtual calls to members of RD. This is generally 2348 /// true when both vcall CFI and whole-program-vtables are enabled. 2349 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2350 2351 /// Emit a type checked load from the given vtable. 2352 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, 2353 llvm::Value *VTable, 2354 llvm::Type *VTableTy, 2355 uint64_t VTableByteOffset); 2356 2357 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2358 /// given phase of destruction for a destructor. The end result 2359 /// should call destructors on members and base classes in reverse 2360 /// order of their construction. 2361 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2362 2363 /// ShouldInstrumentFunction - Return true if the current function should be 2364 /// instrumented with __cyg_profile_func_* calls 2365 bool ShouldInstrumentFunction(); 2366 2367 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2368 /// should not be instrumented with sanitizers. 2369 bool ShouldSkipSanitizerInstrumentation(); 2370 2371 /// ShouldXRayInstrument - Return true if the current function should be 2372 /// instrumented with XRay nop sleds. 2373 bool ShouldXRayInstrumentFunction() const; 2374 2375 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2376 /// XRay custom event handling calls. 2377 bool AlwaysEmitXRayCustomEvents() const; 2378 2379 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2380 /// XRay typed event handling calls. 2381 bool AlwaysEmitXRayTypedEvents() const; 2382 2383 /// Return a type hash constant for a function instrumented by 2384 /// -fsanitize=function. 2385 llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const; 2386 2387 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2388 /// arguments for the given function. This is also responsible for naming the 2389 /// LLVM function arguments. 2390 void EmitFunctionProlog(const CGFunctionInfo &FI, 2391 llvm::Function *Fn, 2392 const FunctionArgList &Args); 2393 2394 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2395 /// given temporary. 2396 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2397 SourceLocation EndLoc); 2398 2399 /// Emit a test that checks if the return value \p RV is nonnull. 2400 void EmitReturnValueCheck(llvm::Value *RV); 2401 2402 /// EmitStartEHSpec - Emit the start of the exception spec. 2403 void EmitStartEHSpec(const Decl *D); 2404 2405 /// EmitEndEHSpec - Emit the end of the exception spec. 2406 void EmitEndEHSpec(const Decl *D); 2407 2408 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2409 llvm::BasicBlock *getTerminateLandingPad(); 2410 2411 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2412 /// terminate. 2413 llvm::BasicBlock *getTerminateFunclet(); 2414 2415 /// getTerminateHandler - Return a handler (not a landing pad, just 2416 /// a catch handler) that just calls terminate. This is used when 2417 /// a terminate scope encloses a try. 2418 llvm::BasicBlock *getTerminateHandler(); 2419 2420 llvm::Type *ConvertTypeForMem(QualType T); 2421 llvm::Type *ConvertType(QualType T); 2422 llvm::Type *ConvertType(const TypeDecl *T) { 2423 return ConvertType(getContext().getTypeDeclType(T)); 2424 } 2425 2426 /// LoadObjCSelf - Load the value of self. This function is only valid while 2427 /// generating code for an Objective-C method. 2428 llvm::Value *LoadObjCSelf(); 2429 2430 /// TypeOfSelfObject - Return type of object that this self represents. 2431 QualType TypeOfSelfObject(); 2432 2433 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2434 static TypeEvaluationKind getEvaluationKind(QualType T); 2435 2436 static bool hasScalarEvaluationKind(QualType T) { 2437 return getEvaluationKind(T) == TEK_Scalar; 2438 } 2439 2440 static bool hasAggregateEvaluationKind(QualType T) { 2441 return getEvaluationKind(T) == TEK_Aggregate; 2442 } 2443 2444 /// createBasicBlock - Create an LLVM basic block. 2445 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2446 llvm::Function *parent = nullptr, 2447 llvm::BasicBlock *before = nullptr) { 2448 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2449 } 2450 2451 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2452 /// label maps to. 2453 JumpDest getJumpDestForLabel(const LabelDecl *S); 2454 2455 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2456 /// another basic block, simplify it. This assumes that no other code could 2457 /// potentially reference the basic block. 2458 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2459 2460 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2461 /// adding a fall-through branch from the current insert block if 2462 /// necessary. It is legal to call this function even if there is no current 2463 /// insertion point. 2464 /// 2465 /// IsFinished - If true, indicates that the caller has finished emitting 2466 /// branches to the given block and does not expect to emit code into it. This 2467 /// means the block can be ignored if it is unreachable. 2468 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2469 2470 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2471 /// near its uses, and leave the insertion point in it. 2472 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2473 2474 /// EmitBranch - Emit a branch to the specified basic block from the current 2475 /// insert block, taking care to avoid creation of branches from dummy 2476 /// blocks. It is legal to call this function even if there is no current 2477 /// insertion point. 2478 /// 2479 /// This function clears the current insertion point. The caller should follow 2480 /// calls to this function with calls to Emit*Block prior to generation new 2481 /// code. 2482 void EmitBranch(llvm::BasicBlock *Block); 2483 2484 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2485 /// indicates that the current code being emitted is unreachable. 2486 bool HaveInsertPoint() const { 2487 return Builder.GetInsertBlock() != nullptr; 2488 } 2489 2490 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2491 /// emitted IR has a place to go. Note that by definition, if this function 2492 /// creates a block then that block is unreachable; callers may do better to 2493 /// detect when no insertion point is defined and simply skip IR generation. 2494 void EnsureInsertPoint() { 2495 if (!HaveInsertPoint()) 2496 EmitBlock(createBasicBlock()); 2497 } 2498 2499 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2500 /// specified stmt yet. 2501 void ErrorUnsupported(const Stmt *S, const char *Type); 2502 2503 //===--------------------------------------------------------------------===// 2504 // Helpers 2505 //===--------------------------------------------------------------------===// 2506 2507 LValue MakeAddrLValue(Address Addr, QualType T, 2508 AlignmentSource Source = AlignmentSource::Type) { 2509 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2510 CGM.getTBAAAccessInfo(T)); 2511 } 2512 2513 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2514 TBAAAccessInfo TBAAInfo) { 2515 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2516 } 2517 2518 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2519 AlignmentSource Source = AlignmentSource::Type) { 2520 Address Addr(V, ConvertTypeForMem(T), Alignment); 2521 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2522 CGM.getTBAAAccessInfo(T)); 2523 } 2524 2525 LValue 2526 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2527 AlignmentSource Source = AlignmentSource::Type) { 2528 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2529 TBAAAccessInfo()); 2530 } 2531 2532 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2533 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2534 2535 Address EmitLoadOfReference(LValue RefLVal, 2536 LValueBaseInfo *PointeeBaseInfo = nullptr, 2537 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2538 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2539 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2540 AlignmentSource Source = 2541 AlignmentSource::Type) { 2542 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2543 CGM.getTBAAAccessInfo(RefTy)); 2544 return EmitLoadOfReferenceLValue(RefLVal); 2545 } 2546 2547 /// Load a pointer with type \p PtrTy stored at address \p Ptr. 2548 /// Note that \p PtrTy is the type of the loaded pointer, not the addresses 2549 /// it is loaded from. 2550 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2551 LValueBaseInfo *BaseInfo = nullptr, 2552 TBAAAccessInfo *TBAAInfo = nullptr); 2553 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2554 2555 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2556 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2557 /// insertion point of the builder. The caller is responsible for setting an 2558 /// appropriate alignment on 2559 /// the alloca. 2560 /// 2561 /// \p ArraySize is the number of array elements to be allocated if it 2562 /// is not nullptr. 2563 /// 2564 /// LangAS::Default is the address space of pointers to local variables and 2565 /// temporaries, as exposed in the source language. In certain 2566 /// configurations, this is not the same as the alloca address space, and a 2567 /// cast is needed to lift the pointer from the alloca AS into 2568 /// LangAS::Default. This can happen when the target uses a restricted 2569 /// address space for the stack but the source language requires 2570 /// LangAS::Default to be a generic address space. The latter condition is 2571 /// common for most programming languages; OpenCL is an exception in that 2572 /// LangAS::Default is the private address space, which naturally maps 2573 /// to the stack. 2574 /// 2575 /// Because the address of a temporary is often exposed to the program in 2576 /// various ways, this function will perform the cast. The original alloca 2577 /// instruction is returned through \p Alloca if it is not nullptr. 2578 /// 2579 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2580 /// more efficient if the caller knows that the address will not be exposed. 2581 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2582 llvm::Value *ArraySize = nullptr); 2583 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2584 const Twine &Name = "tmp", 2585 llvm::Value *ArraySize = nullptr, 2586 Address *Alloca = nullptr); 2587 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2588 const Twine &Name = "tmp", 2589 llvm::Value *ArraySize = nullptr); 2590 2591 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2592 /// default ABI alignment of the given LLVM type. 2593 /// 2594 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2595 /// any given AST type that happens to have been lowered to the 2596 /// given IR type. This should only ever be used for function-local, 2597 /// IR-driven manipulations like saving and restoring a value. Do 2598 /// not hand this address off to arbitrary IRGen routines, and especially 2599 /// do not pass it as an argument to a function that might expect a 2600 /// properly ABI-aligned value. 2601 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2602 const Twine &Name = "tmp"); 2603 2604 /// CreateIRTemp - Create a temporary IR object of the given type, with 2605 /// appropriate alignment. This routine should only be used when an temporary 2606 /// value needs to be stored into an alloca (for example, to avoid explicit 2607 /// PHI construction), but the type is the IR type, not the type appropriate 2608 /// for storing in memory. 2609 /// 2610 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2611 /// ConvertType instead of ConvertTypeForMem. 2612 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2613 2614 /// CreateMemTemp - Create a temporary memory object of the given type, with 2615 /// appropriate alignmen and cast it to the default address space. Returns 2616 /// the original alloca instruction by \p Alloca if it is not nullptr. 2617 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2618 Address *Alloca = nullptr); 2619 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2620 Address *Alloca = nullptr); 2621 2622 /// CreateMemTemp - Create a temporary memory object of the given type, with 2623 /// appropriate alignmen without casting it to the default address space. 2624 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2625 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2626 const Twine &Name = "tmp"); 2627 2628 /// CreateAggTemp - Create a temporary memory object for the given 2629 /// aggregate type. 2630 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2631 Address *Alloca = nullptr) { 2632 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2633 T.getQualifiers(), 2634 AggValueSlot::IsNotDestructed, 2635 AggValueSlot::DoesNotNeedGCBarriers, 2636 AggValueSlot::IsNotAliased, 2637 AggValueSlot::DoesNotOverlap); 2638 } 2639 2640 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2641 /// expression and compare the result against zero, returning an Int1Ty value. 2642 llvm::Value *EvaluateExprAsBool(const Expr *E); 2643 2644 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2645 void EmitIgnoredExpr(const Expr *E); 2646 2647 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2648 /// any type. The result is returned as an RValue struct. If this is an 2649 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2650 /// the result should be returned. 2651 /// 2652 /// \param ignoreResult True if the resulting value isn't used. 2653 RValue EmitAnyExpr(const Expr *E, 2654 AggValueSlot aggSlot = AggValueSlot::ignored(), 2655 bool ignoreResult = false); 2656 2657 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2658 // or the value of the expression, depending on how va_list is defined. 2659 Address EmitVAListRef(const Expr *E); 2660 2661 /// Emit a "reference" to a __builtin_ms_va_list; this is 2662 /// always the value of the expression, because a __builtin_ms_va_list is a 2663 /// pointer to a char. 2664 Address EmitMSVAListRef(const Expr *E); 2665 2666 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2667 /// always be accessible even if no aggregate location is provided. 2668 RValue EmitAnyExprToTemp(const Expr *E); 2669 2670 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2671 /// arbitrary expression into the given memory location. 2672 void EmitAnyExprToMem(const Expr *E, Address Location, 2673 Qualifiers Quals, bool IsInitializer); 2674 2675 void EmitAnyExprToExn(const Expr *E, Address Addr); 2676 2677 /// EmitExprAsInit - Emits the code necessary to initialize a 2678 /// location in memory with the given initializer. 2679 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2680 bool capturedByInit); 2681 2682 /// hasVolatileMember - returns true if aggregate type has a volatile 2683 /// member. 2684 bool hasVolatileMember(QualType T) { 2685 if (const RecordType *RT = T->getAs<RecordType>()) { 2686 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2687 return RD->hasVolatileMember(); 2688 } 2689 return false; 2690 } 2691 2692 /// Determine whether a return value slot may overlap some other object. 2693 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2694 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2695 // class subobjects. These cases may need to be revisited depending on the 2696 // resolution of the relevant core issue. 2697 return AggValueSlot::DoesNotOverlap; 2698 } 2699 2700 /// Determine whether a field initialization may overlap some other object. 2701 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2702 2703 /// Determine whether a base class initialization may overlap some other 2704 /// object. 2705 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2706 const CXXRecordDecl *BaseRD, 2707 bool IsVirtual); 2708 2709 /// Emit an aggregate assignment. 2710 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2711 bool IsVolatile = hasVolatileMember(EltTy); 2712 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2713 } 2714 2715 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2716 AggValueSlot::Overlap_t MayOverlap) { 2717 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2718 } 2719 2720 /// EmitAggregateCopy - Emit an aggregate copy. 2721 /// 2722 /// \param isVolatile \c true iff either the source or the destination is 2723 /// volatile. 2724 /// \param MayOverlap Whether the tail padding of the destination might be 2725 /// occupied by some other object. More efficient code can often be 2726 /// generated if not. 2727 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2728 AggValueSlot::Overlap_t MayOverlap, 2729 bool isVolatile = false); 2730 2731 /// GetAddrOfLocalVar - Return the address of a local variable. 2732 Address GetAddrOfLocalVar(const VarDecl *VD) { 2733 auto it = LocalDeclMap.find(VD); 2734 assert(it != LocalDeclMap.end() && 2735 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2736 return it->second; 2737 } 2738 2739 /// Given an opaque value expression, return its LValue mapping if it exists, 2740 /// otherwise create one. 2741 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2742 2743 /// Given an opaque value expression, return its RValue mapping if it exists, 2744 /// otherwise create one. 2745 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2746 2747 /// Get the index of the current ArrayInitLoopExpr, if any. 2748 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2749 2750 /// getAccessedFieldNo - Given an encoded value and a result number, return 2751 /// the input field number being accessed. 2752 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2753 2754 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2755 llvm::BasicBlock *GetIndirectGotoBlock(); 2756 2757 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2758 static bool IsWrappedCXXThis(const Expr *E); 2759 2760 /// EmitNullInitialization - Generate code to set a value of the given type to 2761 /// null, If the type contains data member pointers, they will be initialized 2762 /// to -1 in accordance with the Itanium C++ ABI. 2763 void EmitNullInitialization(Address DestPtr, QualType Ty); 2764 2765 /// Emits a call to an LLVM variable-argument intrinsic, either 2766 /// \c llvm.va_start or \c llvm.va_end. 2767 /// \param ArgValue A reference to the \c va_list as emitted by either 2768 /// \c EmitVAListRef or \c EmitMSVAListRef. 2769 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2770 /// calls \c llvm.va_end. 2771 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2772 2773 /// Generate code to get an argument from the passed in pointer 2774 /// and update it accordingly. 2775 /// \param VE The \c VAArgExpr for which to generate code. 2776 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2777 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2778 /// \returns A pointer to the argument. 2779 // FIXME: We should be able to get rid of this method and use the va_arg 2780 // instruction in LLVM instead once it works well enough. 2781 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2782 2783 /// emitArrayLength - Compute the length of an array, even if it's a 2784 /// VLA, and drill down to the base element type. 2785 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2786 QualType &baseType, 2787 Address &addr); 2788 2789 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2790 /// the given variably-modified type and store them in the VLASizeMap. 2791 /// 2792 /// This function can be called with a null (unreachable) insert point. 2793 void EmitVariablyModifiedType(QualType Ty); 2794 2795 struct VlaSizePair { 2796 llvm::Value *NumElts; 2797 QualType Type; 2798 2799 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2800 }; 2801 2802 /// Return the number of elements for a single dimension 2803 /// for the given array type. 2804 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2805 VlaSizePair getVLAElements1D(QualType vla); 2806 2807 /// Returns an LLVM value that corresponds to the size, 2808 /// in non-variably-sized elements, of a variable length array type, 2809 /// plus that largest non-variably-sized element type. Assumes that 2810 /// the type has already been emitted with EmitVariablyModifiedType. 2811 VlaSizePair getVLASize(const VariableArrayType *vla); 2812 VlaSizePair getVLASize(QualType vla); 2813 2814 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2815 /// generating code for an C++ member function. 2816 llvm::Value *LoadCXXThis() { 2817 assert(CXXThisValue && "no 'this' value for this function"); 2818 return CXXThisValue; 2819 } 2820 Address LoadCXXThisAddress(); 2821 2822 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2823 /// virtual bases. 2824 // FIXME: Every place that calls LoadCXXVTT is something 2825 // that needs to be abstracted properly. 2826 llvm::Value *LoadCXXVTT() { 2827 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2828 return CXXStructorImplicitParamValue; 2829 } 2830 2831 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2832 /// complete class to the given direct base. 2833 Address 2834 GetAddressOfDirectBaseInCompleteClass(Address Value, 2835 const CXXRecordDecl *Derived, 2836 const CXXRecordDecl *Base, 2837 bool BaseIsVirtual); 2838 2839 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2840 2841 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2842 /// load of 'this' and returns address of the base class. 2843 Address GetAddressOfBaseClass(Address Value, 2844 const CXXRecordDecl *Derived, 2845 CastExpr::path_const_iterator PathBegin, 2846 CastExpr::path_const_iterator PathEnd, 2847 bool NullCheckValue, SourceLocation Loc); 2848 2849 Address GetAddressOfDerivedClass(Address Value, 2850 const CXXRecordDecl *Derived, 2851 CastExpr::path_const_iterator PathBegin, 2852 CastExpr::path_const_iterator PathEnd, 2853 bool NullCheckValue); 2854 2855 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2856 /// base constructor/destructor with virtual bases. 2857 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2858 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2859 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2860 bool Delegating); 2861 2862 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2863 CXXCtorType CtorType, 2864 const FunctionArgList &Args, 2865 SourceLocation Loc); 2866 // It's important not to confuse this and the previous function. Delegating 2867 // constructors are the C++0x feature. The constructor delegate optimization 2868 // is used to reduce duplication in the base and complete consturctors where 2869 // they are substantially the same. 2870 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2871 const FunctionArgList &Args); 2872 2873 /// Emit a call to an inheriting constructor (that is, one that invokes a 2874 /// constructor inherited from a base class) by inlining its definition. This 2875 /// is necessary if the ABI does not support forwarding the arguments to the 2876 /// base class constructor (because they're variadic or similar). 2877 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2878 CXXCtorType CtorType, 2879 bool ForVirtualBase, 2880 bool Delegating, 2881 CallArgList &Args); 2882 2883 /// Emit a call to a constructor inherited from a base class, passing the 2884 /// current constructor's arguments along unmodified (without even making 2885 /// a copy). 2886 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2887 bool ForVirtualBase, Address This, 2888 bool InheritedFromVBase, 2889 const CXXInheritedCtorInitExpr *E); 2890 2891 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2892 bool ForVirtualBase, bool Delegating, 2893 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2894 2895 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2896 bool ForVirtualBase, bool Delegating, 2897 Address This, CallArgList &Args, 2898 AggValueSlot::Overlap_t Overlap, 2899 SourceLocation Loc, bool NewPointerIsChecked); 2900 2901 /// Emit assumption load for all bases. Requires to be called only on 2902 /// most-derived class and not under construction of the object. 2903 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2904 2905 /// Emit assumption that vptr load == global vtable. 2906 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2907 2908 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2909 Address This, Address Src, 2910 const CXXConstructExpr *E); 2911 2912 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2913 const ArrayType *ArrayTy, 2914 Address ArrayPtr, 2915 const CXXConstructExpr *E, 2916 bool NewPointerIsChecked, 2917 bool ZeroInitialization = false); 2918 2919 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2920 llvm::Value *NumElements, 2921 Address ArrayPtr, 2922 const CXXConstructExpr *E, 2923 bool NewPointerIsChecked, 2924 bool ZeroInitialization = false); 2925 2926 static Destroyer destroyCXXObject; 2927 2928 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2929 bool ForVirtualBase, bool Delegating, Address This, 2930 QualType ThisTy); 2931 2932 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2933 llvm::Type *ElementTy, Address NewPtr, 2934 llvm::Value *NumElements, 2935 llvm::Value *AllocSizeWithoutCookie); 2936 2937 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2938 Address Ptr); 2939 2940 void EmitSehCppScopeBegin(); 2941 void EmitSehCppScopeEnd(); 2942 void EmitSehTryScopeBegin(); 2943 void EmitSehTryScopeEnd(); 2944 2945 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 2946 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2947 2948 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2949 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2950 2951 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2952 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2953 CharUnits CookieSize = CharUnits()); 2954 2955 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2956 const CallExpr *TheCallExpr, bool IsDelete); 2957 2958 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2959 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2960 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2961 2962 /// Situations in which we might emit a check for the suitability of a 2963 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2964 /// compiler-rt. 2965 enum TypeCheckKind { 2966 /// Checking the operand of a load. Must be suitably sized and aligned. 2967 TCK_Load, 2968 /// Checking the destination of a store. Must be suitably sized and aligned. 2969 TCK_Store, 2970 /// Checking the bound value in a reference binding. Must be suitably sized 2971 /// and aligned, but is not required to refer to an object (until the 2972 /// reference is used), per core issue 453. 2973 TCK_ReferenceBinding, 2974 /// Checking the object expression in a non-static data member access. Must 2975 /// be an object within its lifetime. 2976 TCK_MemberAccess, 2977 /// Checking the 'this' pointer for a call to a non-static member function. 2978 /// Must be an object within its lifetime. 2979 TCK_MemberCall, 2980 /// Checking the 'this' pointer for a constructor call. 2981 TCK_ConstructorCall, 2982 /// Checking the operand of a static_cast to a derived pointer type. Must be 2983 /// null or an object within its lifetime. 2984 TCK_DowncastPointer, 2985 /// Checking the operand of a static_cast to a derived reference type. Must 2986 /// be an object within its lifetime. 2987 TCK_DowncastReference, 2988 /// Checking the operand of a cast to a base object. Must be suitably sized 2989 /// and aligned. 2990 TCK_Upcast, 2991 /// Checking the operand of a cast to a virtual base object. Must be an 2992 /// object within its lifetime. 2993 TCK_UpcastToVirtualBase, 2994 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2995 TCK_NonnullAssign, 2996 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2997 /// null or an object within its lifetime. 2998 TCK_DynamicOperation 2999 }; 3000 3001 /// Determine whether the pointer type check \p TCK permits null pointers. 3002 static bool isNullPointerAllowed(TypeCheckKind TCK); 3003 3004 /// Determine whether the pointer type check \p TCK requires a vptr check. 3005 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 3006 3007 /// Whether any type-checking sanitizers are enabled. If \c false, 3008 /// calls to EmitTypeCheck can be skipped. 3009 bool sanitizePerformTypeCheck() const; 3010 3011 /// Emit a check that \p V is the address of storage of the 3012 /// appropriate size and alignment for an object of type \p Type 3013 /// (or if ArraySize is provided, for an array of that bound). 3014 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 3015 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3016 SanitizerSet SkippedChecks = SanitizerSet(), 3017 llvm::Value *ArraySize = nullptr); 3018 3019 /// Emit a check that \p Base points into an array object, which 3020 /// we can access at index \p Index. \p Accessed should be \c false if we 3021 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 3022 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 3023 QualType IndexType, bool Accessed); 3024 3025 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3026 bool isInc, bool isPre); 3027 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3028 bool isInc, bool isPre); 3029 3030 /// Converts Location to a DebugLoc, if debug information is enabled. 3031 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3032 3033 /// Get the record field index as represented in debug info. 3034 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3035 3036 3037 //===--------------------------------------------------------------------===// 3038 // Declaration Emission 3039 //===--------------------------------------------------------------------===// 3040 3041 /// EmitDecl - Emit a declaration. 3042 /// 3043 /// This function can be called with a null (unreachable) insert point. 3044 void EmitDecl(const Decl &D); 3045 3046 /// EmitVarDecl - Emit a local variable declaration. 3047 /// 3048 /// This function can be called with a null (unreachable) insert point. 3049 void EmitVarDecl(const VarDecl &D); 3050 3051 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3052 bool capturedByInit); 3053 3054 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3055 llvm::Value *Address); 3056 3057 /// Determine whether the given initializer is trivial in the sense 3058 /// that it requires no code to be generated. 3059 bool isTrivialInitializer(const Expr *Init); 3060 3061 /// EmitAutoVarDecl - Emit an auto variable declaration. 3062 /// 3063 /// This function can be called with a null (unreachable) insert point. 3064 void EmitAutoVarDecl(const VarDecl &D); 3065 3066 class AutoVarEmission { 3067 friend class CodeGenFunction; 3068 3069 const VarDecl *Variable; 3070 3071 /// The address of the alloca for languages with explicit address space 3072 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3073 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3074 /// as a global constant. 3075 Address Addr; 3076 3077 llvm::Value *NRVOFlag; 3078 3079 /// True if the variable is a __block variable that is captured by an 3080 /// escaping block. 3081 bool IsEscapingByRef; 3082 3083 /// True if the variable is of aggregate type and has a constant 3084 /// initializer. 3085 bool IsConstantAggregate; 3086 3087 /// Non-null if we should use lifetime annotations. 3088 llvm::Value *SizeForLifetimeMarkers; 3089 3090 /// Address with original alloca instruction. Invalid if the variable was 3091 /// emitted as a global constant. 3092 Address AllocaAddr; 3093 3094 struct Invalid {}; 3095 AutoVarEmission(Invalid) 3096 : Variable(nullptr), Addr(Address::invalid()), 3097 AllocaAddr(Address::invalid()) {} 3098 3099 AutoVarEmission(const VarDecl &variable) 3100 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3101 IsEscapingByRef(false), IsConstantAggregate(false), 3102 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 3103 3104 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3105 3106 public: 3107 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3108 3109 bool useLifetimeMarkers() const { 3110 return SizeForLifetimeMarkers != nullptr; 3111 } 3112 llvm::Value *getSizeForLifetimeMarkers() const { 3113 assert(useLifetimeMarkers()); 3114 return SizeForLifetimeMarkers; 3115 } 3116 3117 /// Returns the raw, allocated address, which is not necessarily 3118 /// the address of the object itself. It is casted to default 3119 /// address space for address space agnostic languages. 3120 Address getAllocatedAddress() const { 3121 return Addr; 3122 } 3123 3124 /// Returns the address for the original alloca instruction. 3125 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3126 3127 /// Returns the address of the object within this declaration. 3128 /// Note that this does not chase the forwarding pointer for 3129 /// __block decls. 3130 Address getObjectAddress(CodeGenFunction &CGF) const { 3131 if (!IsEscapingByRef) return Addr; 3132 3133 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3134 } 3135 }; 3136 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3137 void EmitAutoVarInit(const AutoVarEmission &emission); 3138 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3139 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3140 QualType::DestructionKind dtorKind); 3141 3142 /// Emits the alloca and debug information for the size expressions for each 3143 /// dimension of an array. It registers the association of its (1-dimensional) 3144 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3145 /// reference this node when creating the DISubrange object to describe the 3146 /// array types. 3147 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3148 const VarDecl &D, 3149 bool EmitDebugInfo); 3150 3151 void EmitStaticVarDecl(const VarDecl &D, 3152 llvm::GlobalValue::LinkageTypes Linkage); 3153 3154 class ParamValue { 3155 llvm::Value *Value; 3156 llvm::Type *ElementType; 3157 unsigned Alignment; 3158 ParamValue(llvm::Value *V, llvm::Type *T, unsigned A) 3159 : Value(V), ElementType(T), Alignment(A) {} 3160 public: 3161 static ParamValue forDirect(llvm::Value *value) { 3162 return ParamValue(value, nullptr, 0); 3163 } 3164 static ParamValue forIndirect(Address addr) { 3165 assert(!addr.getAlignment().isZero()); 3166 return ParamValue(addr.getPointer(), addr.getElementType(), 3167 addr.getAlignment().getQuantity()); 3168 } 3169 3170 bool isIndirect() const { return Alignment != 0; } 3171 llvm::Value *getAnyValue() const { return Value; } 3172 3173 llvm::Value *getDirectValue() const { 3174 assert(!isIndirect()); 3175 return Value; 3176 } 3177 3178 Address getIndirectAddress() const { 3179 assert(isIndirect()); 3180 return Address(Value, ElementType, CharUnits::fromQuantity(Alignment), 3181 KnownNonNull); 3182 } 3183 }; 3184 3185 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3186 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3187 3188 /// protectFromPeepholes - Protect a value that we're intending to 3189 /// store to the side, but which will probably be used later, from 3190 /// aggressive peepholing optimizations that might delete it. 3191 /// 3192 /// Pass the result to unprotectFromPeepholes to declare that 3193 /// protection is no longer required. 3194 /// 3195 /// There's no particular reason why this shouldn't apply to 3196 /// l-values, it's just that no existing peepholes work on pointers. 3197 PeepholeProtection protectFromPeepholes(RValue rvalue); 3198 void unprotectFromPeepholes(PeepholeProtection protection); 3199 3200 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3201 SourceLocation Loc, 3202 SourceLocation AssumptionLoc, 3203 llvm::Value *Alignment, 3204 llvm::Value *OffsetValue, 3205 llvm::Value *TheCheck, 3206 llvm::Instruction *Assumption); 3207 3208 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3209 SourceLocation Loc, SourceLocation AssumptionLoc, 3210 llvm::Value *Alignment, 3211 llvm::Value *OffsetValue = nullptr); 3212 3213 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3214 SourceLocation AssumptionLoc, 3215 llvm::Value *Alignment, 3216 llvm::Value *OffsetValue = nullptr); 3217 3218 //===--------------------------------------------------------------------===// 3219 // Statement Emission 3220 //===--------------------------------------------------------------------===// 3221 3222 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3223 void EmitStopPoint(const Stmt *S); 3224 3225 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3226 /// this function even if there is no current insertion point. 3227 /// 3228 /// This function may clear the current insertion point; callers should use 3229 /// EnsureInsertPoint if they wish to subsequently generate code without first 3230 /// calling EmitBlock, EmitBranch, or EmitStmt. 3231 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = std::nullopt); 3232 3233 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3234 /// necessarily require an insertion point or debug information; typically 3235 /// because the statement amounts to a jump or a container of other 3236 /// statements. 3237 /// 3238 /// \return True if the statement was handled. 3239 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3240 3241 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3242 AggValueSlot AVS = AggValueSlot::ignored()); 3243 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3244 bool GetLast = false, 3245 AggValueSlot AVS = 3246 AggValueSlot::ignored()); 3247 3248 /// EmitLabel - Emit the block for the given label. It is legal to call this 3249 /// function even if there is no current insertion point. 3250 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3251 3252 void EmitLabelStmt(const LabelStmt &S); 3253 void EmitAttributedStmt(const AttributedStmt &S); 3254 void EmitGotoStmt(const GotoStmt &S); 3255 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3256 void EmitIfStmt(const IfStmt &S); 3257 3258 void EmitWhileStmt(const WhileStmt &S, 3259 ArrayRef<const Attr *> Attrs = std::nullopt); 3260 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = std::nullopt); 3261 void EmitForStmt(const ForStmt &S, 3262 ArrayRef<const Attr *> Attrs = std::nullopt); 3263 void EmitReturnStmt(const ReturnStmt &S); 3264 void EmitDeclStmt(const DeclStmt &S); 3265 void EmitBreakStmt(const BreakStmt &S); 3266 void EmitContinueStmt(const ContinueStmt &S); 3267 void EmitSwitchStmt(const SwitchStmt &S); 3268 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3269 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3270 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3271 void EmitAsmStmt(const AsmStmt &S); 3272 3273 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3274 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3275 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3276 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3277 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3278 3279 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3280 void EmitCoreturnStmt(const CoreturnStmt &S); 3281 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3282 AggValueSlot aggSlot = AggValueSlot::ignored(), 3283 bool ignoreResult = false); 3284 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3285 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3286 AggValueSlot aggSlot = AggValueSlot::ignored(), 3287 bool ignoreResult = false); 3288 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3289 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3290 3291 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3292 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3293 3294 void EmitCXXTryStmt(const CXXTryStmt &S); 3295 void EmitSEHTryStmt(const SEHTryStmt &S); 3296 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3297 void EnterSEHTryStmt(const SEHTryStmt &S); 3298 void ExitSEHTryStmt(const SEHTryStmt &S); 3299 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3300 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3301 3302 void pushSEHCleanup(CleanupKind kind, 3303 llvm::Function *FinallyFunc); 3304 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3305 const Stmt *OutlinedStmt); 3306 3307 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3308 const SEHExceptStmt &Except); 3309 3310 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3311 const SEHFinallyStmt &Finally); 3312 3313 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3314 llvm::Value *ParentFP, 3315 llvm::Value *EntryEBP); 3316 llvm::Value *EmitSEHExceptionCode(); 3317 llvm::Value *EmitSEHExceptionInfo(); 3318 llvm::Value *EmitSEHAbnormalTermination(); 3319 3320 /// Emit simple code for OpenMP directives in Simd-only mode. 3321 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3322 3323 /// Scan the outlined statement for captures from the parent function. For 3324 /// each capture, mark the capture as escaped and emit a call to 3325 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3326 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3327 bool IsFilter); 3328 3329 /// Recovers the address of a local in a parent function. ParentVar is the 3330 /// address of the variable used in the immediate parent function. It can 3331 /// either be an alloca or a call to llvm.localrecover if there are nested 3332 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3333 /// frame. 3334 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3335 Address ParentVar, 3336 llvm::Value *ParentFP); 3337 3338 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3339 ArrayRef<const Attr *> Attrs = std::nullopt); 3340 3341 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3342 class OMPCancelStackRAII { 3343 CodeGenFunction &CGF; 3344 3345 public: 3346 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3347 bool HasCancel) 3348 : CGF(CGF) { 3349 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3350 } 3351 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3352 }; 3353 3354 /// Returns calculated size of the specified type. 3355 llvm::Value *getTypeSize(QualType Ty); 3356 LValue InitCapturedStruct(const CapturedStmt &S); 3357 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3358 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3359 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3360 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3361 SourceLocation Loc); 3362 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3363 SmallVectorImpl<llvm::Value *> &CapturedVars); 3364 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3365 SourceLocation Loc); 3366 /// Perform element by element copying of arrays with type \a 3367 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3368 /// generated by \a CopyGen. 3369 /// 3370 /// \param DestAddr Address of the destination array. 3371 /// \param SrcAddr Address of the source array. 3372 /// \param OriginalType Type of destination and source arrays. 3373 /// \param CopyGen Copying procedure that copies value of single array element 3374 /// to another single array element. 3375 void EmitOMPAggregateAssign( 3376 Address DestAddr, Address SrcAddr, QualType OriginalType, 3377 const llvm::function_ref<void(Address, Address)> CopyGen); 3378 /// Emit proper copying of data from one variable to another. 3379 /// 3380 /// \param OriginalType Original type of the copied variables. 3381 /// \param DestAddr Destination address. 3382 /// \param SrcAddr Source address. 3383 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3384 /// type of the base array element). 3385 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3386 /// the base array element). 3387 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3388 /// DestVD. 3389 void EmitOMPCopy(QualType OriginalType, 3390 Address DestAddr, Address SrcAddr, 3391 const VarDecl *DestVD, const VarDecl *SrcVD, 3392 const Expr *Copy); 3393 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3394 /// \a X = \a E \a BO \a E. 3395 /// 3396 /// \param X Value to be updated. 3397 /// \param E Update value. 3398 /// \param BO Binary operation for update operation. 3399 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3400 /// expression, false otherwise. 3401 /// \param AO Atomic ordering of the generated atomic instructions. 3402 /// \param CommonGen Code generator for complex expressions that cannot be 3403 /// expressed through atomicrmw instruction. 3404 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3405 /// generated, <false, RValue::get(nullptr)> otherwise. 3406 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3407 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3408 llvm::AtomicOrdering AO, SourceLocation Loc, 3409 const llvm::function_ref<RValue(RValue)> CommonGen); 3410 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3411 OMPPrivateScope &PrivateScope); 3412 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3413 OMPPrivateScope &PrivateScope); 3414 void EmitOMPUseDevicePtrClause( 3415 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3416 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 3417 CaptureDeviceAddrMap); 3418 void EmitOMPUseDeviceAddrClause( 3419 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3420 const llvm::DenseMap<const ValueDecl *, llvm::Value *> 3421 CaptureDeviceAddrMap); 3422 /// Emit code for copyin clause in \a D directive. The next code is 3423 /// generated at the start of outlined functions for directives: 3424 /// \code 3425 /// threadprivate_var1 = master_threadprivate_var1; 3426 /// operator=(threadprivate_var2, master_threadprivate_var2); 3427 /// ... 3428 /// __kmpc_barrier(&loc, global_tid); 3429 /// \endcode 3430 /// 3431 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3432 /// \returns true if at least one copyin variable is found, false otherwise. 3433 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3434 /// Emit initial code for lastprivate variables. If some variable is 3435 /// not also firstprivate, then the default initialization is used. Otherwise 3436 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3437 /// method. 3438 /// 3439 /// \param D Directive that may have 'lastprivate' directives. 3440 /// \param PrivateScope Private scope for capturing lastprivate variables for 3441 /// proper codegen in internal captured statement. 3442 /// 3443 /// \returns true if there is at least one lastprivate variable, false 3444 /// otherwise. 3445 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3446 OMPPrivateScope &PrivateScope); 3447 /// Emit final copying of lastprivate values to original variables at 3448 /// the end of the worksharing or simd directive. 3449 /// 3450 /// \param D Directive that has at least one 'lastprivate' directives. 3451 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3452 /// it is the last iteration of the loop code in associated directive, or to 3453 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3454 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3455 bool NoFinals, 3456 llvm::Value *IsLastIterCond = nullptr); 3457 /// Emit initial code for linear clauses. 3458 void EmitOMPLinearClause(const OMPLoopDirective &D, 3459 CodeGenFunction::OMPPrivateScope &PrivateScope); 3460 /// Emit final code for linear clauses. 3461 /// \param CondGen Optional conditional code for final part of codegen for 3462 /// linear clause. 3463 void EmitOMPLinearClauseFinal( 3464 const OMPLoopDirective &D, 3465 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3466 /// Emit initial code for reduction variables. Creates reduction copies 3467 /// and initializes them with the values according to OpenMP standard. 3468 /// 3469 /// \param D Directive (possibly) with the 'reduction' clause. 3470 /// \param PrivateScope Private scope for capturing reduction variables for 3471 /// proper codegen in internal captured statement. 3472 /// 3473 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3474 OMPPrivateScope &PrivateScope, 3475 bool ForInscan = false); 3476 /// Emit final update of reduction values to original variables at 3477 /// the end of the directive. 3478 /// 3479 /// \param D Directive that has at least one 'reduction' directives. 3480 /// \param ReductionKind The kind of reduction to perform. 3481 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3482 const OpenMPDirectiveKind ReductionKind); 3483 /// Emit initial code for linear variables. Creates private copies 3484 /// and initializes them with the values according to OpenMP standard. 3485 /// 3486 /// \param D Directive (possibly) with the 'linear' clause. 3487 /// \return true if at least one linear variable is found that should be 3488 /// initialized with the value of the original variable, false otherwise. 3489 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3490 3491 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3492 llvm::Function * /*OutlinedFn*/, 3493 const OMPTaskDataTy & /*Data*/)> 3494 TaskGenTy; 3495 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3496 const OpenMPDirectiveKind CapturedRegion, 3497 const RegionCodeGenTy &BodyGen, 3498 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3499 struct OMPTargetDataInfo { 3500 Address BasePointersArray = Address::invalid(); 3501 Address PointersArray = Address::invalid(); 3502 Address SizesArray = Address::invalid(); 3503 Address MappersArray = Address::invalid(); 3504 unsigned NumberOfTargetItems = 0; 3505 explicit OMPTargetDataInfo() = default; 3506 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3507 Address SizesArray, Address MappersArray, 3508 unsigned NumberOfTargetItems) 3509 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3510 SizesArray(SizesArray), MappersArray(MappersArray), 3511 NumberOfTargetItems(NumberOfTargetItems) {} 3512 }; 3513 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3514 const RegionCodeGenTy &BodyGen, 3515 OMPTargetDataInfo &InputInfo); 3516 void processInReduction(const OMPExecutableDirective &S, 3517 OMPTaskDataTy &Data, 3518 CodeGenFunction &CGF, 3519 const CapturedStmt *CS, 3520 OMPPrivateScope &Scope); 3521 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3522 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3523 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3524 void EmitOMPTileDirective(const OMPTileDirective &S); 3525 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3526 void EmitOMPForDirective(const OMPForDirective &S); 3527 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3528 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3529 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3530 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3531 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3532 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3533 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3534 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3535 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3536 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3537 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3538 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3539 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3540 void EmitOMPErrorDirective(const OMPErrorDirective &S); 3541 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3542 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3543 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3544 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3545 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3546 void EmitOMPScanDirective(const OMPScanDirective &S); 3547 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3548 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3549 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3550 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3551 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3552 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3553 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3554 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3555 void 3556 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3557 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3558 void 3559 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3560 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3561 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3562 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3563 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3564 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3565 void 3566 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3567 void EmitOMPParallelMasterTaskLoopDirective( 3568 const OMPParallelMasterTaskLoopDirective &S); 3569 void EmitOMPParallelMasterTaskLoopSimdDirective( 3570 const OMPParallelMasterTaskLoopSimdDirective &S); 3571 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3572 void EmitOMPDistributeParallelForDirective( 3573 const OMPDistributeParallelForDirective &S); 3574 void EmitOMPDistributeParallelForSimdDirective( 3575 const OMPDistributeParallelForSimdDirective &S); 3576 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3577 void EmitOMPTargetParallelForSimdDirective( 3578 const OMPTargetParallelForSimdDirective &S); 3579 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3580 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3581 void 3582 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3583 void EmitOMPTeamsDistributeParallelForSimdDirective( 3584 const OMPTeamsDistributeParallelForSimdDirective &S); 3585 void EmitOMPTeamsDistributeParallelForDirective( 3586 const OMPTeamsDistributeParallelForDirective &S); 3587 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3588 void EmitOMPTargetTeamsDistributeDirective( 3589 const OMPTargetTeamsDistributeDirective &S); 3590 void EmitOMPTargetTeamsDistributeParallelForDirective( 3591 const OMPTargetTeamsDistributeParallelForDirective &S); 3592 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3593 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3594 void EmitOMPTargetTeamsDistributeSimdDirective( 3595 const OMPTargetTeamsDistributeSimdDirective &S); 3596 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3597 void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S); 3598 void EmitOMPTargetParallelGenericLoopDirective( 3599 const OMPTargetParallelGenericLoopDirective &S); 3600 void EmitOMPTargetTeamsGenericLoopDirective( 3601 const OMPTargetTeamsGenericLoopDirective &S); 3602 void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S); 3603 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3604 void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S); 3605 3606 /// Emit device code for the target directive. 3607 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3608 StringRef ParentName, 3609 const OMPTargetDirective &S); 3610 static void 3611 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3612 const OMPTargetParallelDirective &S); 3613 /// Emit device code for the target parallel for directive. 3614 static void EmitOMPTargetParallelForDeviceFunction( 3615 CodeGenModule &CGM, StringRef ParentName, 3616 const OMPTargetParallelForDirective &S); 3617 /// Emit device code for the target parallel for simd directive. 3618 static void EmitOMPTargetParallelForSimdDeviceFunction( 3619 CodeGenModule &CGM, StringRef ParentName, 3620 const OMPTargetParallelForSimdDirective &S); 3621 /// Emit device code for the target teams directive. 3622 static void 3623 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3624 const OMPTargetTeamsDirective &S); 3625 /// Emit device code for the target teams distribute directive. 3626 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3627 CodeGenModule &CGM, StringRef ParentName, 3628 const OMPTargetTeamsDistributeDirective &S); 3629 /// Emit device code for the target teams distribute simd directive. 3630 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3631 CodeGenModule &CGM, StringRef ParentName, 3632 const OMPTargetTeamsDistributeSimdDirective &S); 3633 /// Emit device code for the target simd directive. 3634 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3635 StringRef ParentName, 3636 const OMPTargetSimdDirective &S); 3637 /// Emit device code for the target teams distribute parallel for simd 3638 /// directive. 3639 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3640 CodeGenModule &CGM, StringRef ParentName, 3641 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3642 3643 /// Emit device code for the target teams loop directive. 3644 static void EmitOMPTargetTeamsGenericLoopDeviceFunction( 3645 CodeGenModule &CGM, StringRef ParentName, 3646 const OMPTargetTeamsGenericLoopDirective &S); 3647 3648 /// Emit device code for the target parallel loop directive. 3649 static void EmitOMPTargetParallelGenericLoopDeviceFunction( 3650 CodeGenModule &CGM, StringRef ParentName, 3651 const OMPTargetParallelGenericLoopDirective &S); 3652 3653 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3654 CodeGenModule &CGM, StringRef ParentName, 3655 const OMPTargetTeamsDistributeParallelForDirective &S); 3656 3657 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3658 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3659 /// future it is meant to be the number of loops expected in the loop nests 3660 /// (usually specified by the "collapse" clause) that are collapsed to a 3661 /// single loop by this function. 3662 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3663 int Depth); 3664 3665 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3666 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3667 3668 /// Emit inner loop of the worksharing/simd construct. 3669 /// 3670 /// \param S Directive, for which the inner loop must be emitted. 3671 /// \param RequiresCleanup true, if directive has some associated private 3672 /// variables. 3673 /// \param LoopCond Bollean condition for loop continuation. 3674 /// \param IncExpr Increment expression for loop control variable. 3675 /// \param BodyGen Generator for the inner body of the inner loop. 3676 /// \param PostIncGen Genrator for post-increment code (required for ordered 3677 /// loop directvies). 3678 void EmitOMPInnerLoop( 3679 const OMPExecutableDirective &S, bool RequiresCleanup, 3680 const Expr *LoopCond, const Expr *IncExpr, 3681 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3682 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3683 3684 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3685 /// Emit initial code for loop counters of loop-based directives. 3686 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3687 OMPPrivateScope &LoopScope); 3688 3689 /// Helper for the OpenMP loop directives. 3690 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3691 3692 /// Emit code for the worksharing loop-based directive. 3693 /// \return true, if this construct has any lastprivate clause, false - 3694 /// otherwise. 3695 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3696 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3697 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3698 3699 /// Emit code for the distribute loop-based directive. 3700 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3701 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3702 3703 /// Helpers for the OpenMP loop directives. 3704 void EmitOMPSimdInit(const OMPLoopDirective &D); 3705 void EmitOMPSimdFinal( 3706 const OMPLoopDirective &D, 3707 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3708 3709 /// Emits the lvalue for the expression with possibly captured variable. 3710 LValue EmitOMPSharedLValue(const Expr *E); 3711 3712 private: 3713 /// Helpers for blocks. 3714 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3715 3716 /// struct with the values to be passed to the OpenMP loop-related functions 3717 struct OMPLoopArguments { 3718 /// loop lower bound 3719 Address LB = Address::invalid(); 3720 /// loop upper bound 3721 Address UB = Address::invalid(); 3722 /// loop stride 3723 Address ST = Address::invalid(); 3724 /// isLastIteration argument for runtime functions 3725 Address IL = Address::invalid(); 3726 /// Chunk value generated by sema 3727 llvm::Value *Chunk = nullptr; 3728 /// EnsureUpperBound 3729 Expr *EUB = nullptr; 3730 /// IncrementExpression 3731 Expr *IncExpr = nullptr; 3732 /// Loop initialization 3733 Expr *Init = nullptr; 3734 /// Loop exit condition 3735 Expr *Cond = nullptr; 3736 /// Update of LB after a whole chunk has been executed 3737 Expr *NextLB = nullptr; 3738 /// Update of UB after a whole chunk has been executed 3739 Expr *NextUB = nullptr; 3740 OMPLoopArguments() = default; 3741 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3742 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3743 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3744 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3745 Expr *NextUB = nullptr) 3746 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3747 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3748 NextUB(NextUB) {} 3749 }; 3750 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3751 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3752 const OMPLoopArguments &LoopArgs, 3753 const CodeGenLoopTy &CodeGenLoop, 3754 const CodeGenOrderedTy &CodeGenOrdered); 3755 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3756 bool IsMonotonic, const OMPLoopDirective &S, 3757 OMPPrivateScope &LoopScope, bool Ordered, 3758 const OMPLoopArguments &LoopArgs, 3759 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3760 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3761 const OMPLoopDirective &S, 3762 OMPPrivateScope &LoopScope, 3763 const OMPLoopArguments &LoopArgs, 3764 const CodeGenLoopTy &CodeGenLoopContent); 3765 /// Emit code for sections directive. 3766 void EmitSections(const OMPExecutableDirective &S); 3767 3768 public: 3769 3770 //===--------------------------------------------------------------------===// 3771 // LValue Expression Emission 3772 //===--------------------------------------------------------------------===// 3773 3774 /// Create a check that a scalar RValue is non-null. 3775 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3776 3777 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3778 RValue GetUndefRValue(QualType Ty); 3779 3780 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3781 /// and issue an ErrorUnsupported style diagnostic (using the 3782 /// provided Name). 3783 RValue EmitUnsupportedRValue(const Expr *E, 3784 const char *Name); 3785 3786 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3787 /// an ErrorUnsupported style diagnostic (using the provided Name). 3788 LValue EmitUnsupportedLValue(const Expr *E, 3789 const char *Name); 3790 3791 /// EmitLValue - Emit code to compute a designator that specifies the location 3792 /// of the expression. 3793 /// 3794 /// This can return one of two things: a simple address or a bitfield 3795 /// reference. In either case, the LLVM Value* in the LValue structure is 3796 /// guaranteed to be an LLVM pointer type. 3797 /// 3798 /// If this returns a bitfield reference, nothing about the pointee type of 3799 /// the LLVM value is known: For example, it may not be a pointer to an 3800 /// integer. 3801 /// 3802 /// If this returns a normal address, and if the lvalue's C type is fixed 3803 /// size, this method guarantees that the returned pointer type will point to 3804 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3805 /// variable length type, this is not possible. 3806 /// 3807 LValue EmitLValue(const Expr *E, 3808 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 3809 3810 private: 3811 LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull); 3812 3813 public: 3814 /// Same as EmitLValue but additionally we generate checking code to 3815 /// guard against undefined behavior. This is only suitable when we know 3816 /// that the address will be used to access the object. 3817 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3818 3819 RValue convertTempToRValue(Address addr, QualType type, 3820 SourceLocation Loc); 3821 3822 void EmitAtomicInit(Expr *E, LValue lvalue); 3823 3824 bool LValueIsSuitableForInlineAtomic(LValue Src); 3825 3826 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3827 AggValueSlot Slot = AggValueSlot::ignored()); 3828 3829 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3830 llvm::AtomicOrdering AO, bool IsVolatile = false, 3831 AggValueSlot slot = AggValueSlot::ignored()); 3832 3833 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3834 3835 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3836 bool IsVolatile, bool isInit); 3837 3838 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3839 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3840 llvm::AtomicOrdering Success = 3841 llvm::AtomicOrdering::SequentiallyConsistent, 3842 llvm::AtomicOrdering Failure = 3843 llvm::AtomicOrdering::SequentiallyConsistent, 3844 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3845 3846 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3847 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3848 bool IsVolatile); 3849 3850 /// EmitToMemory - Change a scalar value from its value 3851 /// representation to its in-memory representation. 3852 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3853 3854 /// EmitFromMemory - Change a scalar value from its memory 3855 /// representation to its value representation. 3856 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3857 3858 /// Check if the scalar \p Value is within the valid range for the given 3859 /// type \p Ty. 3860 /// 3861 /// Returns true if a check is needed (even if the range is unknown). 3862 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3863 SourceLocation Loc); 3864 3865 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3866 /// care to appropriately convert from the memory representation to 3867 /// the LLVM value representation. 3868 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3869 SourceLocation Loc, 3870 AlignmentSource Source = AlignmentSource::Type, 3871 bool isNontemporal = false) { 3872 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3873 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3874 } 3875 3876 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3877 SourceLocation Loc, LValueBaseInfo BaseInfo, 3878 TBAAAccessInfo TBAAInfo, 3879 bool isNontemporal = false); 3880 3881 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3882 /// care to appropriately convert from the memory representation to 3883 /// the LLVM value representation. The l-value must be a simple 3884 /// l-value. 3885 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3886 3887 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3888 /// care to appropriately convert from the memory representation to 3889 /// the LLVM value representation. 3890 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3891 bool Volatile, QualType Ty, 3892 AlignmentSource Source = AlignmentSource::Type, 3893 bool isInit = false, bool isNontemporal = false) { 3894 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3895 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3896 } 3897 3898 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3899 bool Volatile, QualType Ty, 3900 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3901 bool isInit = false, bool isNontemporal = false); 3902 3903 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3904 /// care to appropriately convert from the memory representation to 3905 /// the LLVM value representation. The l-value must be a simple 3906 /// l-value. The isInit flag indicates whether this is an initialization. 3907 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3908 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3909 3910 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3911 /// this method emits the address of the lvalue, then loads the result as an 3912 /// rvalue, returning the rvalue. 3913 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3914 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3915 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3916 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3917 3918 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3919 /// lvalue, where both are guaranteed to the have the same type, and that type 3920 /// is 'Ty'. 3921 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3922 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3923 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3924 3925 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3926 /// as EmitStoreThroughLValue. 3927 /// 3928 /// \param Result [out] - If non-null, this will be set to a Value* for the 3929 /// bit-field contents after the store, appropriate for use as the result of 3930 /// an assignment to the bit-field. 3931 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3932 llvm::Value **Result=nullptr); 3933 3934 /// Emit an l-value for an assignment (simple or compound) of complex type. 3935 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3936 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3937 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3938 llvm::Value *&Result); 3939 3940 // Note: only available for agg return types 3941 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3942 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3943 // Note: only available for agg return types 3944 LValue EmitCallExprLValue(const CallExpr *E); 3945 // Note: only available for agg return types 3946 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3947 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3948 LValue EmitStringLiteralLValue(const StringLiteral *E); 3949 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3950 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3951 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3952 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3953 bool Accessed = false); 3954 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3955 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3956 bool IsLowerBound = true); 3957 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3958 LValue EmitMemberExpr(const MemberExpr *E); 3959 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3960 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3961 LValue EmitInitListLValue(const InitListExpr *E); 3962 void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); 3963 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3964 LValue EmitCastLValue(const CastExpr *E); 3965 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3966 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3967 3968 Address EmitExtVectorElementLValue(LValue V); 3969 3970 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3971 3972 Address EmitArrayToPointerDecay(const Expr *Array, 3973 LValueBaseInfo *BaseInfo = nullptr, 3974 TBAAAccessInfo *TBAAInfo = nullptr); 3975 3976 class ConstantEmission { 3977 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3978 ConstantEmission(llvm::Constant *C, bool isReference) 3979 : ValueAndIsReference(C, isReference) {} 3980 public: 3981 ConstantEmission() {} 3982 static ConstantEmission forReference(llvm::Constant *C) { 3983 return ConstantEmission(C, true); 3984 } 3985 static ConstantEmission forValue(llvm::Constant *C) { 3986 return ConstantEmission(C, false); 3987 } 3988 3989 explicit operator bool() const { 3990 return ValueAndIsReference.getOpaqueValue() != nullptr; 3991 } 3992 3993 bool isReference() const { return ValueAndIsReference.getInt(); } 3994 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3995 assert(isReference()); 3996 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3997 refExpr->getType()); 3998 } 3999 4000 llvm::Constant *getValue() const { 4001 assert(!isReference()); 4002 return ValueAndIsReference.getPointer(); 4003 } 4004 }; 4005 4006 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 4007 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 4008 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 4009 4010 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 4011 AggValueSlot slot = AggValueSlot::ignored()); 4012 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 4013 4014 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4015 const ObjCIvarDecl *Ivar); 4016 llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, 4017 const ObjCIvarDecl *Ivar); 4018 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 4019 LValue EmitLValueForLambdaField(const FieldDecl *Field); 4020 4021 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 4022 /// if the Field is a reference, this will return the address of the reference 4023 /// and not the address of the value stored in the reference. 4024 LValue EmitLValueForFieldInitialization(LValue Base, 4025 const FieldDecl* Field); 4026 4027 LValue EmitLValueForIvar(QualType ObjectTy, 4028 llvm::Value* Base, const ObjCIvarDecl *Ivar, 4029 unsigned CVRQualifiers); 4030 4031 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 4032 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 4033 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 4034 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 4035 4036 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 4037 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 4038 LValue EmitStmtExprLValue(const StmtExpr *E); 4039 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 4040 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 4041 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 4042 4043 //===--------------------------------------------------------------------===// 4044 // Scalar Expression Emission 4045 //===--------------------------------------------------------------------===// 4046 4047 /// EmitCall - Generate a call of the given function, expecting the given 4048 /// result type, and using the given argument list which specifies both the 4049 /// LLVM arguments and the types they were derived from. 4050 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4051 ReturnValueSlot ReturnValue, const CallArgList &Args, 4052 llvm::CallBase **callOrInvoke, bool IsMustTail, 4053 SourceLocation Loc); 4054 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4055 ReturnValueSlot ReturnValue, const CallArgList &Args, 4056 llvm::CallBase **callOrInvoke = nullptr, 4057 bool IsMustTail = false) { 4058 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 4059 IsMustTail, SourceLocation()); 4060 } 4061 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4062 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 4063 RValue EmitCallExpr(const CallExpr *E, 4064 ReturnValueSlot ReturnValue = ReturnValueSlot()); 4065 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4066 CGCallee EmitCallee(const Expr *E); 4067 4068 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4069 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4070 4071 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4072 const Twine &name = ""); 4073 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4074 ArrayRef<llvm::Value *> args, 4075 const Twine &name = ""); 4076 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4077 const Twine &name = ""); 4078 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4079 ArrayRef<llvm::Value *> args, 4080 const Twine &name = ""); 4081 4082 SmallVector<llvm::OperandBundleDef, 1> 4083 getBundlesForFunclet(llvm::Value *Callee); 4084 4085 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4086 ArrayRef<llvm::Value *> Args, 4087 const Twine &Name = ""); 4088 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4089 ArrayRef<llvm::Value *> args, 4090 const Twine &name = ""); 4091 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4092 const Twine &name = ""); 4093 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4094 ArrayRef<llvm::Value *> args); 4095 4096 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4097 NestedNameSpecifier *Qual, 4098 llvm::Type *Ty); 4099 4100 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4101 CXXDtorType Type, 4102 const CXXRecordDecl *RD); 4103 4104 // Return the copy constructor name with the prefix "__copy_constructor_" 4105 // removed. 4106 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4107 CharUnits Alignment, 4108 bool IsVolatile, 4109 ASTContext &Ctx); 4110 4111 // Return the destructor name with the prefix "__destructor_" removed. 4112 static std::string getNonTrivialDestructorStr(QualType QT, 4113 CharUnits Alignment, 4114 bool IsVolatile, 4115 ASTContext &Ctx); 4116 4117 // These functions emit calls to the special functions of non-trivial C 4118 // structs. 4119 void defaultInitNonTrivialCStructVar(LValue Dst); 4120 void callCStructDefaultConstructor(LValue Dst); 4121 void callCStructDestructor(LValue Dst); 4122 void callCStructCopyConstructor(LValue Dst, LValue Src); 4123 void callCStructMoveConstructor(LValue Dst, LValue Src); 4124 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4125 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4126 4127 RValue 4128 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 4129 const CGCallee &Callee, 4130 ReturnValueSlot ReturnValue, llvm::Value *This, 4131 llvm::Value *ImplicitParam, 4132 QualType ImplicitParamTy, const CallExpr *E, 4133 CallArgList *RtlArgs); 4134 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4135 llvm::Value *This, QualType ThisTy, 4136 llvm::Value *ImplicitParam, 4137 QualType ImplicitParamTy, const CallExpr *E); 4138 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4139 ReturnValueSlot ReturnValue); 4140 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 4141 const CXXMethodDecl *MD, 4142 ReturnValueSlot ReturnValue, 4143 bool HasQualifier, 4144 NestedNameSpecifier *Qualifier, 4145 bool IsArrow, const Expr *Base); 4146 // Compute the object pointer. 4147 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4148 llvm::Value *memberPtr, 4149 const MemberPointerType *memberPtrType, 4150 LValueBaseInfo *BaseInfo = nullptr, 4151 TBAAAccessInfo *TBAAInfo = nullptr); 4152 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4153 ReturnValueSlot ReturnValue); 4154 4155 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4156 const CXXMethodDecl *MD, 4157 ReturnValueSlot ReturnValue); 4158 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4159 4160 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4161 ReturnValueSlot ReturnValue); 4162 4163 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4164 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4165 RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E); 4166 4167 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4168 const CallExpr *E, ReturnValueSlot ReturnValue); 4169 4170 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4171 4172 /// Emit IR for __builtin_os_log_format. 4173 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4174 4175 /// Emit IR for __builtin_is_aligned. 4176 RValue EmitBuiltinIsAligned(const CallExpr *E); 4177 /// Emit IR for __builtin_align_up/__builtin_align_down. 4178 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4179 4180 llvm::Function *generateBuiltinOSLogHelperFunction( 4181 const analyze_os_log::OSLogBufferLayout &Layout, 4182 CharUnits BufferAlignment); 4183 4184 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4185 4186 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4187 /// is unhandled by the current target. 4188 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4189 ReturnValueSlot ReturnValue); 4190 4191 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4192 const llvm::CmpInst::Predicate Fp, 4193 const llvm::CmpInst::Predicate Ip, 4194 const llvm::Twine &Name = ""); 4195 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4196 ReturnValueSlot ReturnValue, 4197 llvm::Triple::ArchType Arch); 4198 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4199 ReturnValueSlot ReturnValue, 4200 llvm::Triple::ArchType Arch); 4201 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4202 ReturnValueSlot ReturnValue, 4203 llvm::Triple::ArchType Arch); 4204 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4205 QualType RTy); 4206 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4207 QualType RTy); 4208 4209 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4210 unsigned LLVMIntrinsic, 4211 unsigned AltLLVMIntrinsic, 4212 const char *NameHint, 4213 unsigned Modifier, 4214 const CallExpr *E, 4215 SmallVectorImpl<llvm::Value *> &Ops, 4216 Address PtrOp0, Address PtrOp1, 4217 llvm::Triple::ArchType Arch); 4218 4219 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4220 unsigned Modifier, llvm::Type *ArgTy, 4221 const CallExpr *E); 4222 llvm::Value *EmitNeonCall(llvm::Function *F, 4223 SmallVectorImpl<llvm::Value*> &O, 4224 const char *name, 4225 unsigned shift = 0, bool rightshift = false); 4226 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4227 const llvm::ElementCount &Count); 4228 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4229 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4230 bool negateForRightShift); 4231 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4232 llvm::Type *Ty, bool usgn, const char *name); 4233 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4234 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4235 /// access builtin. Only required if it can't be inferred from the base 4236 /// pointer operand. 4237 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4238 4239 SmallVector<llvm::Type *, 2> 4240 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4241 ArrayRef<llvm::Value *> Ops); 4242 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4243 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4244 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4245 llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags, 4246 llvm::Type *ReturnType, 4247 ArrayRef<llvm::Value *> Ops); 4248 llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags, 4249 llvm::Type *ReturnType, 4250 ArrayRef<llvm::Value *> Ops); 4251 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4252 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4253 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4254 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4255 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4256 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4257 unsigned BuiltinID); 4258 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4259 llvm::ArrayRef<llvm::Value *> Ops, 4260 unsigned BuiltinID); 4261 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4262 llvm::ScalableVectorType *VTy); 4263 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4264 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4265 unsigned IntID); 4266 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4267 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4268 unsigned IntID); 4269 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4270 SmallVectorImpl<llvm::Value *> &Ops, 4271 unsigned BuiltinID, bool IsZExtReturn); 4272 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4273 SmallVectorImpl<llvm::Value *> &Ops, 4274 unsigned BuiltinID); 4275 llvm::Value *EmitTileslice(llvm::Value *Offset, llvm::Value *Base); 4276 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4277 SmallVectorImpl<llvm::Value *> &Ops, 4278 unsigned BuiltinID); 4279 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4280 SmallVectorImpl<llvm::Value *> &Ops, 4281 unsigned IntID); 4282 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4283 SmallVectorImpl<llvm::Value *> &Ops, 4284 unsigned IntID); 4285 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4286 SmallVectorImpl<llvm::Value *> &Ops, 4287 unsigned IntID); 4288 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4289 4290 llvm::Value *EmitSMELd1St1(SVETypeFlags TypeFlags, 4291 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4292 unsigned IntID); 4293 llvm::Value *EmitSMEReadWrite(SVETypeFlags TypeFlags, 4294 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4295 unsigned IntID); 4296 llvm::Value *EmitSMEZero(SVETypeFlags TypeFlags, 4297 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4298 unsigned IntID); 4299 llvm::Value *EmitSMELdrStr(SVETypeFlags TypeFlags, 4300 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4301 unsigned IntID); 4302 llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4303 4304 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4305 llvm::Triple::ArchType Arch); 4306 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4307 4308 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4309 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4310 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4311 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4312 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4313 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4314 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4315 const CallExpr *E); 4316 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4317 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4318 ReturnValueSlot ReturnValue); 4319 llvm::Value *EmitLoongArchBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4320 void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4321 llvm::AtomicOrdering &AO, 4322 llvm::SyncScope::ID &SSID); 4323 4324 enum class MSVCIntrin; 4325 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4326 4327 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4328 4329 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4330 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4331 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4332 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4333 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4334 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4335 const ObjCMethodDecl *MethodWithObjects); 4336 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4337 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4338 ReturnValueSlot Return = ReturnValueSlot()); 4339 4340 /// Retrieves the default cleanup kind for an ARC cleanup. 4341 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4342 CleanupKind getARCCleanupKind() { 4343 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4344 ? NormalAndEHCleanup : NormalCleanup; 4345 } 4346 4347 // ARC primitives. 4348 void EmitARCInitWeak(Address addr, llvm::Value *value); 4349 void EmitARCDestroyWeak(Address addr); 4350 llvm::Value *EmitARCLoadWeak(Address addr); 4351 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4352 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4353 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4354 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4355 void EmitARCCopyWeak(Address dst, Address src); 4356 void EmitARCMoveWeak(Address dst, Address src); 4357 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4358 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4359 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4360 bool resultIgnored); 4361 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4362 bool resultIgnored); 4363 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4364 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4365 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4366 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4367 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4368 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4369 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4370 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4371 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4372 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4373 4374 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4375 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4376 llvm::Type *returnType); 4377 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4378 4379 std::pair<LValue,llvm::Value*> 4380 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4381 std::pair<LValue,llvm::Value*> 4382 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4383 std::pair<LValue,llvm::Value*> 4384 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4385 4386 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4387 llvm::Type *returnType); 4388 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4389 llvm::Type *returnType); 4390 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4391 4392 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4393 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4394 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4395 4396 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4397 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4398 bool allowUnsafeClaim); 4399 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4400 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4401 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4402 4403 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4404 4405 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4406 4407 static Destroyer destroyARCStrongImprecise; 4408 static Destroyer destroyARCStrongPrecise; 4409 static Destroyer destroyARCWeak; 4410 static Destroyer emitARCIntrinsicUse; 4411 static Destroyer destroyNonTrivialCStruct; 4412 4413 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4414 llvm::Value *EmitObjCAutoreleasePoolPush(); 4415 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4416 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4417 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4418 4419 /// Emits a reference binding to the passed in expression. 4420 RValue EmitReferenceBindingToExpr(const Expr *E); 4421 4422 //===--------------------------------------------------------------------===// 4423 // Expression Emission 4424 //===--------------------------------------------------------------------===// 4425 4426 // Expressions are broken into three classes: scalar, complex, aggregate. 4427 4428 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4429 /// scalar type, returning the result. 4430 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4431 4432 /// Emit a conversion from the specified type to the specified destination 4433 /// type, both of which are LLVM scalar types. 4434 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4435 QualType DstTy, SourceLocation Loc); 4436 4437 /// Emit a conversion from the specified complex type to the specified 4438 /// destination type, where the destination type is an LLVM scalar type. 4439 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4440 QualType DstTy, 4441 SourceLocation Loc); 4442 4443 /// EmitAggExpr - Emit the computation of the specified expression 4444 /// of aggregate type. The result is computed into the given slot, 4445 /// which may be null to indicate that the value is not needed. 4446 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4447 4448 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4449 /// aggregate type into a temporary LValue. 4450 LValue EmitAggExprToLValue(const Expr *E); 4451 4452 /// Build all the stores needed to initialize an aggregate at Dest with the 4453 /// value Val. 4454 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4455 4456 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4457 /// make sure it survives garbage collection until this point. 4458 void EmitExtendGCLifetime(llvm::Value *object); 4459 4460 /// EmitComplexExpr - Emit the computation of the specified expression of 4461 /// complex type, returning the result. 4462 ComplexPairTy EmitComplexExpr(const Expr *E, 4463 bool IgnoreReal = false, 4464 bool IgnoreImag = false); 4465 4466 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4467 /// type and place its result into the specified l-value. 4468 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4469 4470 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4471 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4472 4473 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4474 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4475 4476 ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType); 4477 llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType); 4478 ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType); 4479 ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType); 4480 4481 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4482 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4483 4484 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4485 /// global variable that has already been created for it. If the initializer 4486 /// has a different type than GV does, this may free GV and return a different 4487 /// one. Otherwise it just returns GV. 4488 llvm::GlobalVariable * 4489 AddInitializerToStaticVarDecl(const VarDecl &D, 4490 llvm::GlobalVariable *GV); 4491 4492 // Emit an @llvm.invariant.start call for the given memory region. 4493 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4494 4495 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4496 /// variable with global storage. 4497 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4498 bool PerformInit); 4499 4500 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4501 llvm::Constant *Addr); 4502 4503 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4504 llvm::FunctionCallee Dtor, 4505 llvm::Constant *Addr, 4506 llvm::FunctionCallee &AtExit); 4507 4508 /// Call atexit() with a function that passes the given argument to 4509 /// the given function. 4510 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4511 llvm::Constant *addr); 4512 4513 /// Call atexit() with function dtorStub. 4514 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4515 4516 /// Call unatexit() with function dtorStub. 4517 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4518 4519 /// Emit code in this function to perform a guarded variable 4520 /// initialization. Guarded initializations are used when it's not 4521 /// possible to prove that an initialization will be done exactly 4522 /// once, e.g. with a static local variable or a static data member 4523 /// of a class template. 4524 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4525 bool PerformInit); 4526 4527 enum class GuardKind { VariableGuard, TlsGuard }; 4528 4529 /// Emit a branch to select whether or not to perform guarded initialization. 4530 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4531 llvm::BasicBlock *InitBlock, 4532 llvm::BasicBlock *NoInitBlock, 4533 GuardKind Kind, const VarDecl *D); 4534 4535 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4536 /// variables. 4537 void 4538 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4539 ArrayRef<llvm::Function *> CXXThreadLocals, 4540 ConstantAddress Guard = ConstantAddress::invalid()); 4541 4542 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4543 /// variables. 4544 void GenerateCXXGlobalCleanUpFunc( 4545 llvm::Function *Fn, 4546 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4547 llvm::Constant *>> 4548 DtorsOrStermFinalizers); 4549 4550 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4551 const VarDecl *D, 4552 llvm::GlobalVariable *Addr, 4553 bool PerformInit); 4554 4555 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4556 4557 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4558 4559 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4560 4561 RValue EmitAtomicExpr(AtomicExpr *E); 4562 4563 //===--------------------------------------------------------------------===// 4564 // Annotations Emission 4565 //===--------------------------------------------------------------------===// 4566 4567 /// Emit an annotation call (intrinsic). 4568 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4569 llvm::Value *AnnotatedVal, 4570 StringRef AnnotationStr, 4571 SourceLocation Location, 4572 const AnnotateAttr *Attr); 4573 4574 /// Emit local annotations for the local variable V, declared by D. 4575 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4576 4577 /// Emit field annotations for the given field & value. Returns the 4578 /// annotation result. 4579 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4580 4581 //===--------------------------------------------------------------------===// 4582 // Internal Helpers 4583 //===--------------------------------------------------------------------===// 4584 4585 /// ContainsLabel - Return true if the statement contains a label in it. If 4586 /// this statement is not executed normally, it not containing a label means 4587 /// that we can just remove the code. 4588 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4589 4590 /// containsBreak - Return true if the statement contains a break out of it. 4591 /// If the statement (recursively) contains a switch or loop with a break 4592 /// inside of it, this is fine. 4593 static bool containsBreak(const Stmt *S); 4594 4595 /// Determine if the given statement might introduce a declaration into the 4596 /// current scope, by being a (possibly-labelled) DeclStmt. 4597 static bool mightAddDeclToScope(const Stmt *S); 4598 4599 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4600 /// to a constant, or if it does but contains a label, return false. If it 4601 /// constant folds return true and set the boolean result in Result. 4602 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4603 bool AllowLabels = false); 4604 4605 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4606 /// to a constant, or if it does but contains a label, return false. If it 4607 /// constant folds return true and set the folded value. 4608 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4609 bool AllowLabels = false); 4610 4611 /// isInstrumentedCondition - Determine whether the given condition is an 4612 /// instrumentable condition (i.e. no "&&" or "||"). 4613 static bool isInstrumentedCondition(const Expr *C); 4614 4615 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 4616 /// increments a profile counter based on the semantics of the given logical 4617 /// operator opcode. This is used to instrument branch condition coverage 4618 /// for logical operators. 4619 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 4620 llvm::BasicBlock *TrueBlock, 4621 llvm::BasicBlock *FalseBlock, 4622 uint64_t TrueCount = 0, 4623 Stmt::Likelihood LH = Stmt::LH_None, 4624 const Expr *CntrIdx = nullptr); 4625 4626 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4627 /// if statement) to the specified blocks. Based on the condition, this might 4628 /// try to simplify the codegen of the conditional based on the branch. 4629 /// TrueCount should be the number of times we expect the condition to 4630 /// evaluate to true based on PGO data. 4631 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4632 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4633 Stmt::Likelihood LH = Stmt::LH_None); 4634 4635 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4636 /// nonnull, if \p LHS is marked _Nonnull. 4637 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4638 4639 /// An enumeration which makes it easier to specify whether or not an 4640 /// operation is a subtraction. 4641 enum { NotSubtraction = false, IsSubtraction = true }; 4642 4643 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4644 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4645 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4646 /// \p IsSubtraction indicates whether the expression used to form the GEP 4647 /// is a subtraction. 4648 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 4649 ArrayRef<llvm::Value *> IdxList, 4650 bool SignedIndices, 4651 bool IsSubtraction, 4652 SourceLocation Loc, 4653 const Twine &Name = ""); 4654 4655 /// Specifies which type of sanitizer check to apply when handling a 4656 /// particular builtin. 4657 enum BuiltinCheckKind { 4658 BCK_CTZPassedZero, 4659 BCK_CLZPassedZero, 4660 }; 4661 4662 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4663 /// enabled, a runtime check specified by \p Kind is also emitted. 4664 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4665 4666 /// Emit a description of a type in a format suitable for passing to 4667 /// a runtime sanitizer handler. 4668 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4669 4670 /// Convert a value into a format suitable for passing to a runtime 4671 /// sanitizer handler. 4672 llvm::Value *EmitCheckValue(llvm::Value *V); 4673 4674 /// Emit a description of a source location in a format suitable for 4675 /// passing to a runtime sanitizer handler. 4676 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4677 4678 void EmitKCFIOperandBundle(const CGCallee &Callee, 4679 SmallVectorImpl<llvm::OperandBundleDef> &Bundles); 4680 4681 /// Create a basic block that will either trap or call a handler function in 4682 /// the UBSan runtime with the provided arguments, and create a conditional 4683 /// branch to it. 4684 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4685 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4686 ArrayRef<llvm::Value *> DynamicArgs); 4687 4688 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4689 /// if Cond if false. 4690 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4691 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4692 ArrayRef<llvm::Constant *> StaticArgs); 4693 4694 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4695 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4696 void EmitUnreachable(SourceLocation Loc); 4697 4698 /// Create a basic block that will call the trap intrinsic, and emit a 4699 /// conditional branch to it, for the -ftrapv checks. 4700 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4701 4702 /// Emit a call to trap or debugtrap and attach function attribute 4703 /// "trap-func-name" if specified. 4704 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4705 4706 /// Emit a stub for the cross-DSO CFI check function. 4707 void EmitCfiCheckStub(); 4708 4709 /// Emit a cross-DSO CFI failure handling function. 4710 void EmitCfiCheckFail(); 4711 4712 /// Create a check for a function parameter that may potentially be 4713 /// declared as non-null. 4714 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4715 AbstractCallee AC, unsigned ParmNum); 4716 4717 /// EmitCallArg - Emit a single call argument. 4718 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4719 4720 /// EmitDelegateCallArg - We are performing a delegate call; that 4721 /// is, the current function is delegating to another one. Produce 4722 /// a r-value suitable for passing the given parameter. 4723 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4724 SourceLocation loc); 4725 4726 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4727 /// point operation, expressed as the maximum relative error in ulp. 4728 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4729 4730 /// Set the minimum required accuracy of the given sqrt operation 4731 /// based on CodeGenOpts. 4732 void SetSqrtFPAccuracy(llvm::Value *Val); 4733 4734 /// Set the minimum required accuracy of the given sqrt operation based on 4735 /// CodeGenOpts. 4736 void SetDivFPAccuracy(llvm::Value *Val); 4737 4738 /// Set the codegen fast-math flags. 4739 void SetFastMathFlags(FPOptions FPFeatures); 4740 4741 // Truncate or extend a boolean vector to the requested number of elements. 4742 llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, 4743 unsigned NumElementsDst, 4744 const llvm::Twine &Name = ""); 4745 4746 private: 4747 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4748 void EmitReturnOfRValue(RValue RV, QualType Ty); 4749 4750 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4751 4752 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 4753 DeferredReplacements; 4754 4755 /// Set the address of a local variable. 4756 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4757 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4758 LocalDeclMap.insert({VD, Addr}); 4759 } 4760 4761 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4762 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4763 /// 4764 /// \param AI - The first function argument of the expansion. 4765 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4766 llvm::Function::arg_iterator &AI); 4767 4768 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4769 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4770 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4771 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4772 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4773 unsigned &IRCallArgPos); 4774 4775 std::pair<llvm::Value *, llvm::Type *> 4776 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 4777 std::string &ConstraintStr); 4778 4779 std::pair<llvm::Value *, llvm::Type *> 4780 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 4781 QualType InputType, std::string &ConstraintStr, 4782 SourceLocation Loc); 4783 4784 /// Attempts to statically evaluate the object size of E. If that 4785 /// fails, emits code to figure the size of E out for us. This is 4786 /// pass_object_size aware. 4787 /// 4788 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4789 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4790 llvm::IntegerType *ResType, 4791 llvm::Value *EmittedE, 4792 bool IsDynamic); 4793 4794 /// Emits the size of E, as required by __builtin_object_size. This 4795 /// function is aware of pass_object_size parameters, and will act accordingly 4796 /// if E is a parameter with the pass_object_size attribute. 4797 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4798 llvm::IntegerType *ResType, 4799 llvm::Value *EmittedE, 4800 bool IsDynamic); 4801 4802 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4803 Address Loc); 4804 4805 public: 4806 enum class EvaluationOrder { 4807 ///! No language constraints on evaluation order. 4808 Default, 4809 ///! Language semantics require left-to-right evaluation. 4810 ForceLeftToRight, 4811 ///! Language semantics require right-to-left evaluation. 4812 ForceRightToLeft 4813 }; 4814 4815 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 4816 // an ObjCMethodDecl. 4817 struct PrototypeWrapper { 4818 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 4819 4820 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 4821 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 4822 }; 4823 4824 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 4825 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4826 AbstractCallee AC = AbstractCallee(), 4827 unsigned ParamsToSkip = 0, 4828 EvaluationOrder Order = EvaluationOrder::Default); 4829 4830 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4831 /// emit the value and compute our best estimate of the alignment of the 4832 /// pointee. 4833 /// 4834 /// \param BaseInfo - If non-null, this will be initialized with 4835 /// information about the source of the alignment and the may-alias 4836 /// attribute. Note that this function will conservatively fall back on 4837 /// the type when it doesn't recognize the expression and may-alias will 4838 /// be set to false. 4839 /// 4840 /// One reasonable way to use this information is when there's a language 4841 /// guarantee that the pointer must be aligned to some stricter value, and 4842 /// we're simply trying to ensure that sufficiently obvious uses of under- 4843 /// aligned objects don't get miscompiled; for example, a placement new 4844 /// into the address of a local variable. In such a case, it's quite 4845 /// reasonable to just ignore the returned alignment when it isn't from an 4846 /// explicit source. 4847 Address 4848 EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr, 4849 TBAAAccessInfo *TBAAInfo = nullptr, 4850 KnownNonNull_t IsKnownNonNull = NotKnownNonNull); 4851 4852 /// If \p E references a parameter with pass_object_size info or a constant 4853 /// array size modifier, emit the object size divided by the size of \p EltTy. 4854 /// Otherwise return null. 4855 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4856 4857 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4858 4859 struct MultiVersionResolverOption { 4860 llvm::Function *Function; 4861 struct Conds { 4862 StringRef Architecture; 4863 llvm::SmallVector<StringRef, 8> Features; 4864 4865 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4866 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4867 } Conditions; 4868 4869 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4870 ArrayRef<StringRef> Feats) 4871 : Function(F), Conditions(Arch, Feats) {} 4872 }; 4873 4874 // Emits the body of a multiversion function's resolver. Assumes that the 4875 // options are already sorted in the proper order, with the 'default' option 4876 // last (if it exists). 4877 void EmitMultiVersionResolver(llvm::Function *Resolver, 4878 ArrayRef<MultiVersionResolverOption> Options); 4879 void 4880 EmitX86MultiVersionResolver(llvm::Function *Resolver, 4881 ArrayRef<MultiVersionResolverOption> Options); 4882 void 4883 EmitAArch64MultiVersionResolver(llvm::Function *Resolver, 4884 ArrayRef<MultiVersionResolverOption> Options); 4885 4886 private: 4887 QualType getVarArgType(const Expr *Arg); 4888 4889 void EmitDeclMetadata(); 4890 4891 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4892 const AutoVarEmission &emission); 4893 4894 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4895 4896 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4897 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4898 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4899 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4900 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4901 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4902 llvm::Value *EmitX86CpuInit(); 4903 llvm::Value *FormX86ResolverCondition(const MultiVersionResolverOption &RO); 4904 llvm::Value *EmitAArch64CpuInit(); 4905 llvm::Value * 4906 FormAArch64ResolverCondition(const MultiVersionResolverOption &RO); 4907 llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs); 4908 }; 4909 4910 4911 inline DominatingLLVMValue::saved_type 4912 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4913 if (!needsSaving(value)) return saved_type(value, false); 4914 4915 // Otherwise, we need an alloca. 4916 auto align = CharUnits::fromQuantity( 4917 CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType())); 4918 Address alloca = 4919 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4920 CGF.Builder.CreateStore(value, alloca); 4921 4922 return saved_type(alloca.getPointer(), true); 4923 } 4924 4925 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4926 saved_type value) { 4927 // If the value says it wasn't saved, trust that it's still dominating. 4928 if (!value.getInt()) return value.getPointer(); 4929 4930 // Otherwise, it should be an alloca instruction, as set up in save(). 4931 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4932 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 4933 alloca->getAlign()); 4934 } 4935 4936 } // end namespace CodeGen 4937 4938 // Map the LangOption for floating point exception behavior into 4939 // the corresponding enum in the IR. 4940 llvm::fp::ExceptionBehavior 4941 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4942 } // end namespace clang 4943 4944 #endif 4945