1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the internal per-function state used for llvm translation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 16 #include "CGBuilder.h" 17 #include "CGDebugInfo.h" 18 #include "CGLoopInfo.h" 19 #include "CGValue.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "EHScopeStack.h" 23 #include "VarBypassDetector.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/CurrentSourceLocExprScope.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/StmtOpenMP.h" 30 #include "clang/AST/Type.h" 31 #include "clang/Basic/ABI.h" 32 #include "clang/Basic/CapturedStmt.h" 33 #include "clang/Basic/CodeGenOptions.h" 34 #include "clang/Basic/OpenMPKinds.h" 35 #include "clang/Basic/TargetInfo.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/MapVector.h" 39 #include "llvm/ADT/SmallVector.h" 40 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 41 #include "llvm/IR/ValueHandle.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 namespace llvm { 46 class BasicBlock; 47 class LLVMContext; 48 class MDNode; 49 class SwitchInst; 50 class Twine; 51 class Value; 52 class CanonicalLoopInfo; 53 } 54 55 namespace clang { 56 class ASTContext; 57 class CXXDestructorDecl; 58 class CXXForRangeStmt; 59 class CXXTryStmt; 60 class Decl; 61 class LabelDecl; 62 class FunctionDecl; 63 class FunctionProtoType; 64 class LabelStmt; 65 class ObjCContainerDecl; 66 class ObjCInterfaceDecl; 67 class ObjCIvarDecl; 68 class ObjCMethodDecl; 69 class ObjCImplementationDecl; 70 class ObjCPropertyImplDecl; 71 class TargetInfo; 72 class VarDecl; 73 class ObjCForCollectionStmt; 74 class ObjCAtTryStmt; 75 class ObjCAtThrowStmt; 76 class ObjCAtSynchronizedStmt; 77 class ObjCAutoreleasePoolStmt; 78 class OMPUseDevicePtrClause; 79 class OMPUseDeviceAddrClause; 80 class SVETypeFlags; 81 class OMPExecutableDirective; 82 83 namespace analyze_os_log { 84 class OSLogBufferLayout; 85 } 86 87 namespace CodeGen { 88 class CodeGenTypes; 89 class CGCallee; 90 class CGFunctionInfo; 91 class CGBlockInfo; 92 class CGCXXABI; 93 class BlockByrefHelpers; 94 class BlockByrefInfo; 95 class BlockFieldFlags; 96 class RegionCodeGenTy; 97 class TargetCodeGenInfo; 98 struct OMPTaskDataTy; 99 struct CGCoroData; 100 101 /// The kind of evaluation to perform on values of a particular 102 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 103 /// CGExprAgg? 104 /// 105 /// TODO: should vectors maybe be split out into their own thing? 106 enum TypeEvaluationKind { 107 TEK_Scalar, 108 TEK_Complex, 109 TEK_Aggregate 110 }; 111 112 #define LIST_SANITIZER_CHECKS \ 113 SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ 114 SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ 115 SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ 116 SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ 117 SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ 118 SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ 119 SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 1) \ 120 SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ 121 SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ 122 SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ 123 SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ 124 SANITIZER_CHECK(MissingReturn, missing_return, 0) \ 125 SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ 126 SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ 127 SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ 128 SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ 129 SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ 130 SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ 131 SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ 132 SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ 133 SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ 134 SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ 135 SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ 136 SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ 137 SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) 138 139 enum SanitizerHandler { 140 #define SANITIZER_CHECK(Enum, Name, Version) Enum, 141 LIST_SANITIZER_CHECKS 142 #undef SANITIZER_CHECK 143 }; 144 145 /// Helper class with most of the code for saving a value for a 146 /// conditional expression cleanup. 147 struct DominatingLLVMValue { 148 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 149 150 /// Answer whether the given value needs extra work to be saved. 151 static bool needsSaving(llvm::Value *value) { 152 // If it's not an instruction, we don't need to save. 153 if (!isa<llvm::Instruction>(value)) return false; 154 155 // If it's an instruction in the entry block, we don't need to save. 156 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 157 return (block != &block->getParent()->getEntryBlock()); 158 } 159 160 static saved_type save(CodeGenFunction &CGF, llvm::Value *value); 161 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); 162 }; 163 164 /// A partial specialization of DominatingValue for llvm::Values that 165 /// might be llvm::Instructions. 166 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 167 typedef T *type; 168 static type restore(CodeGenFunction &CGF, saved_type value) { 169 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 170 } 171 }; 172 173 /// A specialization of DominatingValue for Address. 174 template <> struct DominatingValue<Address> { 175 typedef Address type; 176 177 struct saved_type { 178 DominatingLLVMValue::saved_type SavedValue; 179 llvm::Type *ElementType; 180 CharUnits Alignment; 181 }; 182 183 static bool needsSaving(type value) { 184 return DominatingLLVMValue::needsSaving(value.getPointer()); 185 } 186 static saved_type save(CodeGenFunction &CGF, type value) { 187 return { DominatingLLVMValue::save(CGF, value.getPointer()), 188 value.getElementType(), value.getAlignment() }; 189 } 190 static type restore(CodeGenFunction &CGF, saved_type value) { 191 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 192 value.ElementType, value.Alignment); 193 } 194 }; 195 196 /// A specialization of DominatingValue for RValue. 197 template <> struct DominatingValue<RValue> { 198 typedef RValue type; 199 class saved_type { 200 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 201 AggregateAddress, ComplexAddress }; 202 203 llvm::Value *Value; 204 llvm::Type *ElementType; 205 unsigned K : 3; 206 unsigned Align : 29; 207 saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0) 208 : Value(v), ElementType(e), K(k), Align(a) {} 209 210 public: 211 static bool needsSaving(RValue value); 212 static saved_type save(CodeGenFunction &CGF, RValue value); 213 RValue restore(CodeGenFunction &CGF); 214 215 // implementations in CGCleanup.cpp 216 }; 217 218 static bool needsSaving(type value) { 219 return saved_type::needsSaving(value); 220 } 221 static saved_type save(CodeGenFunction &CGF, type value) { 222 return saved_type::save(CGF, value); 223 } 224 static type restore(CodeGenFunction &CGF, saved_type value) { 225 return value.restore(CGF); 226 } 227 }; 228 229 /// CodeGenFunction - This class organizes the per-function state that is used 230 /// while generating LLVM code. 231 class CodeGenFunction : public CodeGenTypeCache { 232 CodeGenFunction(const CodeGenFunction &) = delete; 233 void operator=(const CodeGenFunction &) = delete; 234 235 friend class CGCXXABI; 236 public: 237 /// A jump destination is an abstract label, branching to which may 238 /// require a jump out through normal cleanups. 239 struct JumpDest { 240 JumpDest() : Block(nullptr), Index(0) {} 241 JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, 242 unsigned Index) 243 : Block(Block), ScopeDepth(Depth), Index(Index) {} 244 245 bool isValid() const { return Block != nullptr; } 246 llvm::BasicBlock *getBlock() const { return Block; } 247 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 248 unsigned getDestIndex() const { return Index; } 249 250 // This should be used cautiously. 251 void setScopeDepth(EHScopeStack::stable_iterator depth) { 252 ScopeDepth = depth; 253 } 254 255 private: 256 llvm::BasicBlock *Block; 257 EHScopeStack::stable_iterator ScopeDepth; 258 unsigned Index; 259 }; 260 261 CodeGenModule &CGM; // Per-module state. 262 const TargetInfo &Target; 263 264 // For EH/SEH outlined funclets, this field points to parent's CGF 265 CodeGenFunction *ParentCGF = nullptr; 266 267 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 268 LoopInfoStack LoopStack; 269 CGBuilderTy Builder; 270 271 // Stores variables for which we can't generate correct lifetime markers 272 // because of jumps. 273 VarBypassDetector Bypasses; 274 275 /// List of recently emitted OMPCanonicalLoops. 276 /// 277 /// Since OMPCanonicalLoops are nested inside other statements (in particular 278 /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested 279 /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its 280 /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any 281 /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to 282 /// this stack when done. Entering a new loop requires clearing this list; it 283 /// either means we start parsing a new loop nest (in which case the previous 284 /// loop nest goes out of scope) or a second loop in the same level in which 285 /// case it would be ambiguous into which of the two (or more) loops the loop 286 /// nest would extend. 287 SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; 288 289 /// Number of nested loop to be consumed by the last surrounding 290 /// loop-associated directive. 291 int ExpectedOMPLoopDepth = 0; 292 293 // CodeGen lambda for loops and support for ordered clause 294 typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, 295 JumpDest)> 296 CodeGenLoopTy; 297 typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, 298 const unsigned, const bool)> 299 CodeGenOrderedTy; 300 301 // Codegen lambda for loop bounds in worksharing loop constructs 302 typedef llvm::function_ref<std::pair<LValue, LValue>( 303 CodeGenFunction &, const OMPExecutableDirective &S)> 304 CodeGenLoopBoundsTy; 305 306 // Codegen lambda for loop bounds in dispatch-based loop implementation 307 typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( 308 CodeGenFunction &, const OMPExecutableDirective &S, Address LB, 309 Address UB)> 310 CodeGenDispatchBoundsTy; 311 312 /// CGBuilder insert helper. This function is called after an 313 /// instruction is created using Builder. 314 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 315 llvm::BasicBlock *BB, 316 llvm::BasicBlock::iterator InsertPt) const; 317 318 /// CurFuncDecl - Holds the Decl for the current outermost 319 /// non-closure context. 320 const Decl *CurFuncDecl; 321 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 322 const Decl *CurCodeDecl; 323 const CGFunctionInfo *CurFnInfo; 324 QualType FnRetTy; 325 llvm::Function *CurFn = nullptr; 326 327 /// Save Parameter Decl for coroutine. 328 llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; 329 330 // Holds coroutine data if the current function is a coroutine. We use a 331 // wrapper to manage its lifetime, so that we don't have to define CGCoroData 332 // in this header. 333 struct CGCoroInfo { 334 std::unique_ptr<CGCoroData> Data; 335 CGCoroInfo(); 336 ~CGCoroInfo(); 337 }; 338 CGCoroInfo CurCoro; 339 340 bool isCoroutine() const { 341 return CurCoro.Data != nullptr; 342 } 343 344 /// CurGD - The GlobalDecl for the current function being compiled. 345 GlobalDecl CurGD; 346 347 /// PrologueCleanupDepth - The cleanup depth enclosing all the 348 /// cleanups associated with the parameters. 349 EHScopeStack::stable_iterator PrologueCleanupDepth; 350 351 /// ReturnBlock - Unified return block. 352 JumpDest ReturnBlock; 353 354 /// ReturnValue - The temporary alloca to hold the return 355 /// value. This is invalid iff the function has no return value. 356 Address ReturnValue = Address::invalid(); 357 358 /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. 359 /// This is invalid if sret is not in use. 360 Address ReturnValuePointer = Address::invalid(); 361 362 /// If a return statement is being visited, this holds the return statment's 363 /// result expression. 364 const Expr *RetExpr = nullptr; 365 366 /// Return true if a label was seen in the current scope. 367 bool hasLabelBeenSeenInCurrentScope() const { 368 if (CurLexicalScope) 369 return CurLexicalScope->hasLabels(); 370 return !LabelMap.empty(); 371 } 372 373 /// AllocaInsertPoint - This is an instruction in the entry block before which 374 /// we prefer to insert allocas. 375 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 376 377 private: 378 /// PostAllocaInsertPt - This is a place in the prologue where code can be 379 /// inserted that will be dominated by all the static allocas. This helps 380 /// achieve two things: 381 /// 1. Contiguity of all static allocas (within the prologue) is maintained. 382 /// 2. All other prologue code (which are dominated by static allocas) do 383 /// appear in the source order immediately after all static allocas. 384 /// 385 /// PostAllocaInsertPt will be lazily created when it is *really* required. 386 llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; 387 388 public: 389 /// Return PostAllocaInsertPt. If it is not yet created, then insert it 390 /// immediately after AllocaInsertPt. 391 llvm::Instruction *getPostAllocaInsertPoint() { 392 if (!PostAllocaInsertPt) { 393 assert(AllocaInsertPt && 394 "Expected static alloca insertion point at function prologue"); 395 assert(AllocaInsertPt->getParent()->isEntryBlock() && 396 "EBB should be entry block of the current code gen function"); 397 PostAllocaInsertPt = AllocaInsertPt->clone(); 398 PostAllocaInsertPt->setName("postallocapt"); 399 PostAllocaInsertPt->insertAfter(AllocaInsertPt); 400 } 401 402 return PostAllocaInsertPt; 403 } 404 405 /// API for captured statement code generation. 406 class CGCapturedStmtInfo { 407 public: 408 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 409 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 410 explicit CGCapturedStmtInfo(const CapturedStmt &S, 411 CapturedRegionKind K = CR_Default) 412 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 413 414 RecordDecl::field_iterator Field = 415 S.getCapturedRecordDecl()->field_begin(); 416 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 417 E = S.capture_end(); 418 I != E; ++I, ++Field) { 419 if (I->capturesThis()) 420 CXXThisFieldDecl = *Field; 421 else if (I->capturesVariable()) 422 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 423 else if (I->capturesVariableByCopy()) 424 CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; 425 } 426 } 427 428 virtual ~CGCapturedStmtInfo(); 429 430 CapturedRegionKind getKind() const { return Kind; } 431 432 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 433 // Retrieve the value of the context parameter. 434 virtual llvm::Value *getContextValue() const { return ThisValue; } 435 436 /// Lookup the captured field decl for a variable. 437 virtual const FieldDecl *lookup(const VarDecl *VD) const { 438 return CaptureFields.lookup(VD->getCanonicalDecl()); 439 } 440 441 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 442 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 443 444 static bool classof(const CGCapturedStmtInfo *) { 445 return true; 446 } 447 448 /// Emit the captured statement body. 449 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 450 CGF.incrementProfileCounter(S); 451 CGF.EmitStmt(S); 452 } 453 454 /// Get the name of the capture helper. 455 virtual StringRef getHelperName() const { return "__captured_stmt"; } 456 457 /// Get the CaptureFields 458 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { 459 return CaptureFields; 460 } 461 462 private: 463 /// The kind of captured statement being generated. 464 CapturedRegionKind Kind; 465 466 /// Keep the map between VarDecl and FieldDecl. 467 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 468 469 /// The base address of the captured record, passed in as the first 470 /// argument of the parallel region function. 471 llvm::Value *ThisValue; 472 473 /// Captured 'this' type. 474 FieldDecl *CXXThisFieldDecl; 475 }; 476 CGCapturedStmtInfo *CapturedStmtInfo = nullptr; 477 478 /// RAII for correct setting/restoring of CapturedStmtInfo. 479 class CGCapturedStmtRAII { 480 private: 481 CodeGenFunction &CGF; 482 CGCapturedStmtInfo *PrevCapturedStmtInfo; 483 public: 484 CGCapturedStmtRAII(CodeGenFunction &CGF, 485 CGCapturedStmtInfo *NewCapturedStmtInfo) 486 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 487 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 488 } 489 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 490 }; 491 492 /// An abstract representation of regular/ObjC call/message targets. 493 class AbstractCallee { 494 /// The function declaration of the callee. 495 const Decl *CalleeDecl; 496 497 public: 498 AbstractCallee() : CalleeDecl(nullptr) {} 499 AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} 500 AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} 501 bool hasFunctionDecl() const { 502 return isa_and_nonnull<FunctionDecl>(CalleeDecl); 503 } 504 const Decl *getDecl() const { return CalleeDecl; } 505 unsigned getNumParams() const { 506 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 507 return FD->getNumParams(); 508 return cast<ObjCMethodDecl>(CalleeDecl)->param_size(); 509 } 510 const ParmVarDecl *getParamDecl(unsigned I) const { 511 if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl)) 512 return FD->getParamDecl(I); 513 return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I); 514 } 515 }; 516 517 /// Sanitizers enabled for this function. 518 SanitizerSet SanOpts; 519 520 /// True if CodeGen currently emits code implementing sanitizer checks. 521 bool IsSanitizerScope = false; 522 523 /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. 524 class SanitizerScope { 525 CodeGenFunction *CGF; 526 public: 527 SanitizerScope(CodeGenFunction *CGF); 528 ~SanitizerScope(); 529 }; 530 531 /// In C++, whether we are code generating a thunk. This controls whether we 532 /// should emit cleanups. 533 bool CurFuncIsThunk = false; 534 535 /// In ARC, whether we should autorelease the return value. 536 bool AutoreleaseResult = false; 537 538 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 539 /// potentially set the return value. 540 bool SawAsmBlock = false; 541 542 const NamedDecl *CurSEHParent = nullptr; 543 544 /// True if the current function is an outlined SEH helper. This can be a 545 /// finally block or filter expression. 546 bool IsOutlinedSEHHelper = false; 547 548 /// True if CodeGen currently emits code inside presereved access index 549 /// region. 550 bool IsInPreservedAIRegion = false; 551 552 /// True if the current statement has nomerge attribute. 553 bool InNoMergeAttributedStmt = false; 554 555 /// True if the current statement has noinline attribute. 556 bool InNoInlineAttributedStmt = false; 557 558 /// True if the current statement has always_inline attribute. 559 bool InAlwaysInlineAttributedStmt = false; 560 561 // The CallExpr within the current statement that the musttail attribute 562 // applies to. nullptr if there is no 'musttail' on the current statement. 563 const CallExpr *MustTailCall = nullptr; 564 565 /// Returns true if a function must make progress, which means the 566 /// mustprogress attribute can be added. 567 bool checkIfFunctionMustProgress() { 568 if (CGM.getCodeGenOpts().getFiniteLoops() == 569 CodeGenOptions::FiniteLoopsKind::Never) 570 return false; 571 572 // C++11 and later guarantees that a thread eventually will do one of the 573 // following (6.9.2.3.1 in C++11): 574 // - terminate, 575 // - make a call to a library I/O function, 576 // - perform an access through a volatile glvalue, or 577 // - perform a synchronization operation or an atomic operation. 578 // 579 // Hence each function is 'mustprogress' in C++11 or later. 580 return getLangOpts().CPlusPlus11; 581 } 582 583 /// Returns true if a loop must make progress, which means the mustprogress 584 /// attribute can be added. \p HasConstantCond indicates whether the branch 585 /// condition is a known constant. 586 bool checkIfLoopMustProgress(bool HasConstantCond) { 587 if (CGM.getCodeGenOpts().getFiniteLoops() == 588 CodeGenOptions::FiniteLoopsKind::Always) 589 return true; 590 if (CGM.getCodeGenOpts().getFiniteLoops() == 591 CodeGenOptions::FiniteLoopsKind::Never) 592 return false; 593 594 // If the containing function must make progress, loops also must make 595 // progress (as in C++11 and later). 596 if (checkIfFunctionMustProgress()) 597 return true; 598 599 // Now apply rules for plain C (see 6.8.5.6 in C11). 600 // Loops with constant conditions do not have to make progress in any C 601 // version. 602 if (HasConstantCond) 603 return false; 604 605 // Loops with non-constant conditions must make progress in C11 and later. 606 return getLangOpts().C11; 607 } 608 609 const CodeGen::CGBlockInfo *BlockInfo = nullptr; 610 llvm::Value *BlockPointer = nullptr; 611 612 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 613 FieldDecl *LambdaThisCaptureField = nullptr; 614 615 /// A mapping from NRVO variables to the flags used to indicate 616 /// when the NRVO has been applied to this variable. 617 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 618 619 EHScopeStack EHStack; 620 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 621 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 622 623 llvm::Instruction *CurrentFuncletPad = nullptr; 624 625 class CallLifetimeEnd final : public EHScopeStack::Cleanup { 626 bool isRedundantBeforeReturn() override { return true; } 627 628 llvm::Value *Addr; 629 llvm::Value *Size; 630 631 public: 632 CallLifetimeEnd(Address addr, llvm::Value *size) 633 : Addr(addr.getPointer()), Size(size) {} 634 635 void Emit(CodeGenFunction &CGF, Flags flags) override { 636 CGF.EmitLifetimeEnd(Size, Addr); 637 } 638 }; 639 640 /// Header for data within LifetimeExtendedCleanupStack. 641 struct LifetimeExtendedCleanupHeader { 642 /// The size of the following cleanup object. 643 unsigned Size; 644 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 645 unsigned Kind : 31; 646 /// Whether this is a conditional cleanup. 647 unsigned IsConditional : 1; 648 649 size_t getSize() const { return Size; } 650 CleanupKind getKind() const { return (CleanupKind)Kind; } 651 bool isConditional() const { return IsConditional; } 652 }; 653 654 /// i32s containing the indexes of the cleanup destinations. 655 Address NormalCleanupDest = Address::invalid(); 656 657 unsigned NextCleanupDestIndex = 1; 658 659 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 660 llvm::BasicBlock *EHResumeBlock = nullptr; 661 662 /// The exception slot. All landing pads write the current exception pointer 663 /// into this alloca. 664 llvm::Value *ExceptionSlot = nullptr; 665 666 /// The selector slot. Under the MandatoryCleanup model, all landing pads 667 /// write the current selector value into this alloca. 668 llvm::AllocaInst *EHSelectorSlot = nullptr; 669 670 /// A stack of exception code slots. Entering an __except block pushes a slot 671 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 672 /// a value from the top of the stack. 673 SmallVector<Address, 1> SEHCodeSlotStack; 674 675 /// Value returned by __exception_info intrinsic. 676 llvm::Value *SEHInfo = nullptr; 677 678 /// Emits a landing pad for the current EH stack. 679 llvm::BasicBlock *EmitLandingPad(); 680 681 llvm::BasicBlock *getInvokeDestImpl(); 682 683 /// Parent loop-based directive for scan directive. 684 const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; 685 llvm::BasicBlock *OMPBeforeScanBlock = nullptr; 686 llvm::BasicBlock *OMPAfterScanBlock = nullptr; 687 llvm::BasicBlock *OMPScanExitBlock = nullptr; 688 llvm::BasicBlock *OMPScanDispatch = nullptr; 689 bool OMPFirstScanLoop = false; 690 691 /// Manages parent directive for scan directives. 692 class ParentLoopDirectiveForScanRegion { 693 CodeGenFunction &CGF; 694 const OMPExecutableDirective *ParentLoopDirectiveForScan; 695 696 public: 697 ParentLoopDirectiveForScanRegion( 698 CodeGenFunction &CGF, 699 const OMPExecutableDirective &ParentLoopDirectiveForScan) 700 : CGF(CGF), 701 ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { 702 CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; 703 } 704 ~ParentLoopDirectiveForScanRegion() { 705 CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; 706 } 707 }; 708 709 template <class T> 710 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 711 return DominatingValue<T>::save(*this, value); 712 } 713 714 class CGFPOptionsRAII { 715 public: 716 CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); 717 CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); 718 ~CGFPOptionsRAII(); 719 720 private: 721 void ConstructorHelper(FPOptions FPFeatures); 722 CodeGenFunction &CGF; 723 FPOptions OldFPFeatures; 724 llvm::fp::ExceptionBehavior OldExcept; 725 llvm::RoundingMode OldRounding; 726 Optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; 727 }; 728 FPOptions CurFPFeatures; 729 730 public: 731 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 732 /// rethrows. 733 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 734 735 /// A class controlling the emission of a finally block. 736 class FinallyInfo { 737 /// Where the catchall's edge through the cleanup should go. 738 JumpDest RethrowDest; 739 740 /// A function to call to enter the catch. 741 llvm::FunctionCallee BeginCatchFn; 742 743 /// An i1 variable indicating whether or not the @finally is 744 /// running for an exception. 745 llvm::AllocaInst *ForEHVar; 746 747 /// An i8* variable into which the exception pointer to rethrow 748 /// has been saved. 749 llvm::AllocaInst *SavedExnVar; 750 751 public: 752 void enter(CodeGenFunction &CGF, const Stmt *Finally, 753 llvm::FunctionCallee beginCatchFn, 754 llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); 755 void exit(CodeGenFunction &CGF); 756 }; 757 758 /// Returns true inside SEH __try blocks. 759 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 760 761 /// Returns true while emitting a cleanuppad. 762 bool isCleanupPadScope() const { 763 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 764 } 765 766 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 767 /// current full-expression. Safe against the possibility that 768 /// we're currently inside a conditionally-evaluated expression. 769 template <class T, class... As> 770 void pushFullExprCleanup(CleanupKind kind, As... A) { 771 // If we're not in a conditional branch, or if none of the 772 // arguments requires saving, then use the unconditional cleanup. 773 if (!isInConditionalBranch()) 774 return EHStack.pushCleanup<T>(kind, A...); 775 776 // Stash values in a tuple so we can guarantee the order of saves. 777 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 778 SavedTuple Saved{saveValueInCond(A)...}; 779 780 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 781 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 782 initFullExprCleanup(); 783 } 784 785 /// Queue a cleanup to be pushed after finishing the current full-expression, 786 /// potentially with an active flag. 787 template <class T, class... As> 788 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 789 if (!isInConditionalBranch()) 790 return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(), 791 A...); 792 793 Address ActiveFlag = createCleanupActiveFlag(); 794 assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && 795 "cleanup active flag should never need saving"); 796 797 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 798 SavedTuple Saved{saveValueInCond(A)...}; 799 800 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 801 pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); 802 } 803 804 template <class T, class... As> 805 void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, 806 Address ActiveFlag, As... A) { 807 LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind, 808 ActiveFlag.isValid()}; 809 810 size_t OldSize = LifetimeExtendedCleanupStack.size(); 811 LifetimeExtendedCleanupStack.resize( 812 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + 813 (Header.IsConditional ? sizeof(ActiveFlag) : 0)); 814 815 static_assert(sizeof(Header) % alignof(T) == 0, 816 "Cleanup will be allocated on misaligned address"); 817 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 818 new (Buffer) LifetimeExtendedCleanupHeader(Header); 819 new (Buffer + sizeof(Header)) T(A...); 820 if (Header.IsConditional) 821 new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag); 822 } 823 824 /// Set up the last cleanup that was pushed as a conditional 825 /// full-expression cleanup. 826 void initFullExprCleanup() { 827 initFullExprCleanupWithFlag(createCleanupActiveFlag()); 828 } 829 830 void initFullExprCleanupWithFlag(Address ActiveFlag); 831 Address createCleanupActiveFlag(); 832 833 /// PushDestructorCleanup - Push a cleanup to call the 834 /// complete-object destructor of an object of the given type at the 835 /// given address. Does nothing if T is not a C++ class type with a 836 /// non-trivial destructor. 837 void PushDestructorCleanup(QualType T, Address Addr); 838 839 /// PushDestructorCleanup - Push a cleanup to call the 840 /// complete-object variant of the given destructor on the object at 841 /// the given address. 842 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, 843 Address Addr); 844 845 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 846 /// process all branch fixups. 847 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 848 849 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 850 /// The block cannot be reactivated. Pops it if it's the top of the 851 /// stack. 852 /// 853 /// \param DominatingIP - An instruction which is known to 854 /// dominate the current IP (if set) and which lies along 855 /// all paths of execution between the current IP and the 856 /// the point at which the cleanup comes into scope. 857 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 858 llvm::Instruction *DominatingIP); 859 860 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 861 /// Cannot be used to resurrect a deactivated cleanup. 862 /// 863 /// \param DominatingIP - An instruction which is known to 864 /// dominate the current IP (if set) and which lies along 865 /// all paths of execution between the current IP and the 866 /// the point at which the cleanup comes into scope. 867 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 868 llvm::Instruction *DominatingIP); 869 870 /// Enters a new scope for capturing cleanups, all of which 871 /// will be executed once the scope is exited. 872 class RunCleanupsScope { 873 EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; 874 size_t LifetimeExtendedCleanupStackSize; 875 bool OldDidCallStackSave; 876 protected: 877 bool PerformCleanup; 878 private: 879 880 RunCleanupsScope(const RunCleanupsScope &) = delete; 881 void operator=(const RunCleanupsScope &) = delete; 882 883 protected: 884 CodeGenFunction& CGF; 885 886 public: 887 /// Enter a new cleanup scope. 888 explicit RunCleanupsScope(CodeGenFunction &CGF) 889 : PerformCleanup(true), CGF(CGF) 890 { 891 CleanupStackDepth = CGF.EHStack.stable_begin(); 892 LifetimeExtendedCleanupStackSize = 893 CGF.LifetimeExtendedCleanupStack.size(); 894 OldDidCallStackSave = CGF.DidCallStackSave; 895 CGF.DidCallStackSave = false; 896 OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; 897 CGF.CurrentCleanupScopeDepth = CleanupStackDepth; 898 } 899 900 /// Exit this cleanup scope, emitting any accumulated cleanups. 901 ~RunCleanupsScope() { 902 if (PerformCleanup) 903 ForceCleanup(); 904 } 905 906 /// Determine whether this scope requires any cleanups. 907 bool requiresCleanups() const { 908 return CGF.EHStack.stable_begin() != CleanupStackDepth; 909 } 910 911 /// Force the emission of cleanups now, instead of waiting 912 /// until this object is destroyed. 913 /// \param ValuesToReload - A list of values that need to be available at 914 /// the insertion point after cleanup emission. If cleanup emission created 915 /// a shared cleanup block, these value pointers will be rewritten. 916 /// Otherwise, they not will be modified. 917 void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { 918 assert(PerformCleanup && "Already forced cleanup"); 919 CGF.DidCallStackSave = OldDidCallStackSave; 920 CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize, 921 ValuesToReload); 922 PerformCleanup = false; 923 CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; 924 } 925 }; 926 927 // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. 928 EHScopeStack::stable_iterator CurrentCleanupScopeDepth = 929 EHScopeStack::stable_end(); 930 931 class LexicalScope : public RunCleanupsScope { 932 SourceRange Range; 933 SmallVector<const LabelDecl*, 4> Labels; 934 LexicalScope *ParentScope; 935 936 LexicalScope(const LexicalScope &) = delete; 937 void operator=(const LexicalScope &) = delete; 938 939 public: 940 /// Enter a new cleanup scope. 941 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 942 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 943 CGF.CurLexicalScope = this; 944 if (CGDebugInfo *DI = CGF.getDebugInfo()) 945 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 946 } 947 948 void addLabel(const LabelDecl *label) { 949 assert(PerformCleanup && "adding label to dead scope?"); 950 Labels.push_back(label); 951 } 952 953 /// Exit this cleanup scope, emitting any accumulated 954 /// cleanups. 955 ~LexicalScope() { 956 if (CGDebugInfo *DI = CGF.getDebugInfo()) 957 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 958 959 // If we should perform a cleanup, force them now. Note that 960 // this ends the cleanup scope before rescoping any labels. 961 if (PerformCleanup) { 962 ApplyDebugLocation DL(CGF, Range.getEnd()); 963 ForceCleanup(); 964 } 965 } 966 967 /// Force the emission of cleanups now, instead of waiting 968 /// until this object is destroyed. 969 void ForceCleanup() { 970 CGF.CurLexicalScope = ParentScope; 971 RunCleanupsScope::ForceCleanup(); 972 973 if (!Labels.empty()) 974 rescopeLabels(); 975 } 976 977 bool hasLabels() const { 978 return !Labels.empty(); 979 } 980 981 void rescopeLabels(); 982 }; 983 984 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 985 986 /// The class used to assign some variables some temporarily addresses. 987 class OMPMapVars { 988 DeclMapTy SavedLocals; 989 DeclMapTy SavedTempAddresses; 990 OMPMapVars(const OMPMapVars &) = delete; 991 void operator=(const OMPMapVars &) = delete; 992 993 public: 994 explicit OMPMapVars() = default; 995 ~OMPMapVars() { 996 assert(SavedLocals.empty() && "Did not restored original addresses."); 997 }; 998 999 /// Sets the address of the variable \p LocalVD to be \p TempAddr in 1000 /// function \p CGF. 1001 /// \return true if at least one variable was set already, false otherwise. 1002 bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, 1003 Address TempAddr) { 1004 LocalVD = LocalVD->getCanonicalDecl(); 1005 // Only save it once. 1006 if (SavedLocals.count(LocalVD)) return false; 1007 1008 // Copy the existing local entry to SavedLocals. 1009 auto it = CGF.LocalDeclMap.find(LocalVD); 1010 if (it != CGF.LocalDeclMap.end()) 1011 SavedLocals.try_emplace(LocalVD, it->second); 1012 else 1013 SavedLocals.try_emplace(LocalVD, Address::invalid()); 1014 1015 // Generate the private entry. 1016 QualType VarTy = LocalVD->getType(); 1017 if (VarTy->isReferenceType()) { 1018 Address Temp = CGF.CreateMemTemp(VarTy); 1019 CGF.Builder.CreateStore(TempAddr.getPointer(), Temp); 1020 TempAddr = Temp; 1021 } 1022 SavedTempAddresses.try_emplace(LocalVD, TempAddr); 1023 1024 return true; 1025 } 1026 1027 /// Applies new addresses to the list of the variables. 1028 /// \return true if at least one variable is using new address, false 1029 /// otherwise. 1030 bool apply(CodeGenFunction &CGF) { 1031 copyInto(SavedTempAddresses, CGF.LocalDeclMap); 1032 SavedTempAddresses.clear(); 1033 return !SavedLocals.empty(); 1034 } 1035 1036 /// Restores original addresses of the variables. 1037 void restore(CodeGenFunction &CGF) { 1038 if (!SavedLocals.empty()) { 1039 copyInto(SavedLocals, CGF.LocalDeclMap); 1040 SavedLocals.clear(); 1041 } 1042 } 1043 1044 private: 1045 /// Copy all the entries in the source map over the corresponding 1046 /// entries in the destination, which must exist. 1047 static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { 1048 for (auto &Pair : Src) { 1049 if (!Pair.second.isValid()) { 1050 Dest.erase(Pair.first); 1051 continue; 1052 } 1053 1054 auto I = Dest.find(Pair.first); 1055 if (I != Dest.end()) 1056 I->second = Pair.second; 1057 else 1058 Dest.insert(Pair); 1059 } 1060 } 1061 }; 1062 1063 /// The scope used to remap some variables as private in the OpenMP loop body 1064 /// (or other captured region emitted without outlining), and to restore old 1065 /// vars back on exit. 1066 class OMPPrivateScope : public RunCleanupsScope { 1067 OMPMapVars MappedVars; 1068 OMPPrivateScope(const OMPPrivateScope &) = delete; 1069 void operator=(const OMPPrivateScope &) = delete; 1070 1071 public: 1072 /// Enter a new OpenMP private scope. 1073 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 1074 1075 /// Registers \p LocalVD variable as a private with \p Addr as the address 1076 /// of the corresponding private variable. \p 1077 /// PrivateGen is the address of the generated private variable. 1078 /// \return true if the variable is registered as private, false if it has 1079 /// been privatized already. 1080 bool addPrivate(const VarDecl *LocalVD, Address Addr) { 1081 assert(PerformCleanup && "adding private to dead scope"); 1082 return MappedVars.setVarAddr(CGF, LocalVD, Addr); 1083 } 1084 1085 /// Privatizes local variables previously registered as private. 1086 /// Registration is separate from the actual privatization to allow 1087 /// initializers use values of the original variables, not the private one. 1088 /// This is important, for example, if the private variable is a class 1089 /// variable initialized by a constructor that references other private 1090 /// variables. But at initialization original variables must be used, not 1091 /// private copies. 1092 /// \return true if at least one variable was privatized, false otherwise. 1093 bool Privatize() { return MappedVars.apply(CGF); } 1094 1095 void ForceCleanup() { 1096 RunCleanupsScope::ForceCleanup(); 1097 restoreMap(); 1098 } 1099 1100 /// Exit scope - all the mapped variables are restored. 1101 ~OMPPrivateScope() { 1102 if (PerformCleanup) 1103 ForceCleanup(); 1104 } 1105 1106 /// Checks if the global variable is captured in current function. 1107 bool isGlobalVarCaptured(const VarDecl *VD) const { 1108 VD = VD->getCanonicalDecl(); 1109 return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0; 1110 } 1111 1112 /// Restore all mapped variables w/o clean up. This is usefully when we want 1113 /// to reference the original variables but don't want the clean up because 1114 /// that could emit lifetime end too early, causing backend issue #56913. 1115 void restoreMap() { MappedVars.restore(CGF); } 1116 }; 1117 1118 /// Save/restore original map of previously emitted local vars in case when we 1119 /// need to duplicate emission of the same code several times in the same 1120 /// function for OpenMP code. 1121 class OMPLocalDeclMapRAII { 1122 CodeGenFunction &CGF; 1123 DeclMapTy SavedMap; 1124 1125 public: 1126 OMPLocalDeclMapRAII(CodeGenFunction &CGF) 1127 : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} 1128 ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); } 1129 }; 1130 1131 /// Takes the old cleanup stack size and emits the cleanup blocks 1132 /// that have been added. 1133 void 1134 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1135 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1136 1137 /// Takes the old cleanup stack size and emits the cleanup blocks 1138 /// that have been added, then adds all lifetime-extended cleanups from 1139 /// the given position to the stack. 1140 void 1141 PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 1142 size_t OldLifetimeExtendedStackSize, 1143 std::initializer_list<llvm::Value **> ValuesToReload = {}); 1144 1145 void ResolveBranchFixups(llvm::BasicBlock *Target); 1146 1147 /// The given basic block lies in the current EH scope, but may be a 1148 /// target of a potentially scope-crossing jump; get a stable handle 1149 /// to which we can perform this jump later. 1150 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 1151 return JumpDest(Target, 1152 EHStack.getInnermostNormalCleanup(), 1153 NextCleanupDestIndex++); 1154 } 1155 1156 /// The given basic block lies in the current EH scope, but may be a 1157 /// target of a potentially scope-crossing jump; get a stable handle 1158 /// to which we can perform this jump later. 1159 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 1160 return getJumpDestInCurrentScope(createBasicBlock(Name)); 1161 } 1162 1163 /// EmitBranchThroughCleanup - Emit a branch from the current insert 1164 /// block through the normal cleanup handling code (if any) and then 1165 /// on to \arg Dest. 1166 void EmitBranchThroughCleanup(JumpDest Dest); 1167 1168 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 1169 /// specified destination obviously has no cleanups to run. 'false' is always 1170 /// a conservatively correct answer for this method. 1171 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 1172 1173 /// popCatchScope - Pops the catch scope at the top of the EHScope 1174 /// stack, emitting any required code (other than the catch handlers 1175 /// themselves). 1176 void popCatchScope(); 1177 1178 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 1179 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 1180 llvm::BasicBlock * 1181 getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); 1182 1183 /// An object to manage conditionally-evaluated expressions. 1184 class ConditionalEvaluation { 1185 llvm::BasicBlock *StartBB; 1186 1187 public: 1188 ConditionalEvaluation(CodeGenFunction &CGF) 1189 : StartBB(CGF.Builder.GetInsertBlock()) {} 1190 1191 void begin(CodeGenFunction &CGF) { 1192 assert(CGF.OutermostConditional != this); 1193 if (!CGF.OutermostConditional) 1194 CGF.OutermostConditional = this; 1195 } 1196 1197 void end(CodeGenFunction &CGF) { 1198 assert(CGF.OutermostConditional != nullptr); 1199 if (CGF.OutermostConditional == this) 1200 CGF.OutermostConditional = nullptr; 1201 } 1202 1203 /// Returns a block which will be executed prior to each 1204 /// evaluation of the conditional code. 1205 llvm::BasicBlock *getStartingBlock() const { 1206 return StartBB; 1207 } 1208 }; 1209 1210 /// isInConditionalBranch - Return true if we're currently emitting 1211 /// one branch or the other of a conditional expression. 1212 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 1213 1214 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 1215 assert(isInConditionalBranch()); 1216 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 1217 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 1218 store->setAlignment(addr.getAlignment().getAsAlign()); 1219 } 1220 1221 /// An RAII object to record that we're evaluating a statement 1222 /// expression. 1223 class StmtExprEvaluation { 1224 CodeGenFunction &CGF; 1225 1226 /// We have to save the outermost conditional: cleanups in a 1227 /// statement expression aren't conditional just because the 1228 /// StmtExpr is. 1229 ConditionalEvaluation *SavedOutermostConditional; 1230 1231 public: 1232 StmtExprEvaluation(CodeGenFunction &CGF) 1233 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 1234 CGF.OutermostConditional = nullptr; 1235 } 1236 1237 ~StmtExprEvaluation() { 1238 CGF.OutermostConditional = SavedOutermostConditional; 1239 CGF.EnsureInsertPoint(); 1240 } 1241 }; 1242 1243 /// An object which temporarily prevents a value from being 1244 /// destroyed by aggressive peephole optimizations that assume that 1245 /// all uses of a value have been realized in the IR. 1246 class PeepholeProtection { 1247 llvm::Instruction *Inst; 1248 friend class CodeGenFunction; 1249 1250 public: 1251 PeepholeProtection() : Inst(nullptr) {} 1252 }; 1253 1254 /// A non-RAII class containing all the information about a bound 1255 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 1256 /// this which makes individual mappings very simple; using this 1257 /// class directly is useful when you have a variable number of 1258 /// opaque values or don't want the RAII functionality for some 1259 /// reason. 1260 class OpaqueValueMappingData { 1261 const OpaqueValueExpr *OpaqueValue; 1262 bool BoundLValue; 1263 CodeGenFunction::PeepholeProtection Protection; 1264 1265 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1266 bool boundLValue) 1267 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1268 public: 1269 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 1270 1271 static bool shouldBindAsLValue(const Expr *expr) { 1272 // gl-values should be bound as l-values for obvious reasons. 1273 // Records should be bound as l-values because IR generation 1274 // always keeps them in memory. Expressions of function type 1275 // act exactly like l-values but are formally required to be 1276 // r-values in C. 1277 return expr->isGLValue() || 1278 expr->getType()->isFunctionType() || 1279 hasAggregateEvaluationKind(expr->getType()); 1280 } 1281 1282 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1283 const OpaqueValueExpr *ov, 1284 const Expr *e) { 1285 if (shouldBindAsLValue(ov)) 1286 return bind(CGF, ov, CGF.EmitLValue(e)); 1287 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1288 } 1289 1290 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1291 const OpaqueValueExpr *ov, 1292 const LValue &lv) { 1293 assert(shouldBindAsLValue(ov)); 1294 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1295 return OpaqueValueMappingData(ov, true); 1296 } 1297 1298 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1299 const OpaqueValueExpr *ov, 1300 const RValue &rv) { 1301 assert(!shouldBindAsLValue(ov)); 1302 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1303 1304 OpaqueValueMappingData data(ov, false); 1305 1306 // Work around an extremely aggressive peephole optimization in 1307 // EmitScalarConversion which assumes that all other uses of a 1308 // value are extant. 1309 data.Protection = CGF.protectFromPeepholes(rv); 1310 1311 return data; 1312 } 1313 1314 bool isValid() const { return OpaqueValue != nullptr; } 1315 void clear() { OpaqueValue = nullptr; } 1316 1317 void unbind(CodeGenFunction &CGF) { 1318 assert(OpaqueValue && "no data to unbind!"); 1319 1320 if (BoundLValue) { 1321 CGF.OpaqueLValues.erase(OpaqueValue); 1322 } else { 1323 CGF.OpaqueRValues.erase(OpaqueValue); 1324 CGF.unprotectFromPeepholes(Protection); 1325 } 1326 } 1327 }; 1328 1329 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1330 class OpaqueValueMapping { 1331 CodeGenFunction &CGF; 1332 OpaqueValueMappingData Data; 1333 1334 public: 1335 static bool shouldBindAsLValue(const Expr *expr) { 1336 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1337 } 1338 1339 /// Build the opaque value mapping for the given conditional 1340 /// operator if it's the GNU ?: extension. This is a common 1341 /// enough pattern that the convenience operator is really 1342 /// helpful. 1343 /// 1344 OpaqueValueMapping(CodeGenFunction &CGF, 1345 const AbstractConditionalOperator *op) : CGF(CGF) { 1346 if (isa<ConditionalOperator>(op)) 1347 // Leave Data empty. 1348 return; 1349 1350 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1351 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1352 e->getCommon()); 1353 } 1354 1355 /// Build the opaque value mapping for an OpaqueValueExpr whose source 1356 /// expression is set to the expression the OVE represents. 1357 OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) 1358 : CGF(CGF) { 1359 if (OV) { 1360 assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " 1361 "for OVE with no source expression"); 1362 Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr()); 1363 } 1364 } 1365 1366 OpaqueValueMapping(CodeGenFunction &CGF, 1367 const OpaqueValueExpr *opaqueValue, 1368 LValue lvalue) 1369 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1370 } 1371 1372 OpaqueValueMapping(CodeGenFunction &CGF, 1373 const OpaqueValueExpr *opaqueValue, 1374 RValue rvalue) 1375 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1376 } 1377 1378 void pop() { 1379 Data.unbind(CGF); 1380 Data.clear(); 1381 } 1382 1383 ~OpaqueValueMapping() { 1384 if (Data.isValid()) Data.unbind(CGF); 1385 } 1386 }; 1387 1388 private: 1389 CGDebugInfo *DebugInfo; 1390 /// Used to create unique names for artificial VLA size debug info variables. 1391 unsigned VLAExprCounter = 0; 1392 bool DisableDebugInfo = false; 1393 1394 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1395 /// calling llvm.stacksave for multiple VLAs in the same scope. 1396 bool DidCallStackSave = false; 1397 1398 /// IndirectBranch - The first time an indirect goto is seen we create a block 1399 /// with an indirect branch. Every time we see the address of a label taken, 1400 /// we add the label to the indirect goto. Every subsequent indirect goto is 1401 /// codegen'd as a jump to the IndirectBranch's basic block. 1402 llvm::IndirectBrInst *IndirectBranch = nullptr; 1403 1404 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1405 /// decls. 1406 DeclMapTy LocalDeclMap; 1407 1408 // Keep track of the cleanups for callee-destructed parameters pushed to the 1409 // cleanup stack so that they can be deactivated later. 1410 llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> 1411 CalleeDestructedParamCleanups; 1412 1413 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 1414 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 1415 /// parameter. 1416 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 1417 SizeArguments; 1418 1419 /// Track escaped local variables with auto storage. Used during SEH 1420 /// outlining to produce a call to llvm.localescape. 1421 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 1422 1423 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1424 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1425 1426 // BreakContinueStack - This keeps track of where break and continue 1427 // statements should jump to. 1428 struct BreakContinue { 1429 BreakContinue(JumpDest Break, JumpDest Continue) 1430 : BreakBlock(Break), ContinueBlock(Continue) {} 1431 1432 JumpDest BreakBlock; 1433 JumpDest ContinueBlock; 1434 }; 1435 SmallVector<BreakContinue, 8> BreakContinueStack; 1436 1437 /// Handles cancellation exit points in OpenMP-related constructs. 1438 class OpenMPCancelExitStack { 1439 /// Tracks cancellation exit point and join point for cancel-related exit 1440 /// and normal exit. 1441 struct CancelExit { 1442 CancelExit() = default; 1443 CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, 1444 JumpDest ContBlock) 1445 : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} 1446 OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; 1447 /// true if the exit block has been emitted already by the special 1448 /// emitExit() call, false if the default codegen is used. 1449 bool HasBeenEmitted = false; 1450 JumpDest ExitBlock; 1451 JumpDest ContBlock; 1452 }; 1453 1454 SmallVector<CancelExit, 8> Stack; 1455 1456 public: 1457 OpenMPCancelExitStack() : Stack(1) {} 1458 ~OpenMPCancelExitStack() = default; 1459 /// Fetches the exit block for the current OpenMP construct. 1460 JumpDest getExitBlock() const { return Stack.back().ExitBlock; } 1461 /// Emits exit block with special codegen procedure specific for the related 1462 /// OpenMP construct + emits code for normal construct cleanup. 1463 void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 1464 const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { 1465 if (Stack.back().Kind == Kind && getExitBlock().isValid()) { 1466 assert(CGF.getOMPCancelDestination(Kind).isValid()); 1467 assert(CGF.HaveInsertPoint()); 1468 assert(!Stack.back().HasBeenEmitted); 1469 auto IP = CGF.Builder.saveAndClearIP(); 1470 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1471 CodeGen(CGF); 1472 CGF.EmitBranch(Stack.back().ContBlock.getBlock()); 1473 CGF.Builder.restoreIP(IP); 1474 Stack.back().HasBeenEmitted = true; 1475 } 1476 CodeGen(CGF); 1477 } 1478 /// Enter the cancel supporting \a Kind construct. 1479 /// \param Kind OpenMP directive that supports cancel constructs. 1480 /// \param HasCancel true, if the construct has inner cancel directive, 1481 /// false otherwise. 1482 void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { 1483 Stack.push_back({Kind, 1484 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit") 1485 : JumpDest(), 1486 HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont") 1487 : JumpDest()}); 1488 } 1489 /// Emits default exit point for the cancel construct (if the special one 1490 /// has not be used) + join point for cancel/normal exits. 1491 void exit(CodeGenFunction &CGF) { 1492 if (getExitBlock().isValid()) { 1493 assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); 1494 bool HaveIP = CGF.HaveInsertPoint(); 1495 if (!Stack.back().HasBeenEmitted) { 1496 if (HaveIP) 1497 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1498 CGF.EmitBlock(Stack.back().ExitBlock.getBlock()); 1499 CGF.EmitBranchThroughCleanup(Stack.back().ContBlock); 1500 } 1501 CGF.EmitBlock(Stack.back().ContBlock.getBlock()); 1502 if (!HaveIP) { 1503 CGF.Builder.CreateUnreachable(); 1504 CGF.Builder.ClearInsertionPoint(); 1505 } 1506 } 1507 Stack.pop_back(); 1508 } 1509 }; 1510 OpenMPCancelExitStack OMPCancelStack; 1511 1512 /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. 1513 llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 1514 Stmt::Likelihood LH); 1515 1516 CodeGenPGO PGO; 1517 1518 /// Calculate branch weights appropriate for PGO data 1519 llvm::MDNode *createProfileWeights(uint64_t TrueCount, 1520 uint64_t FalseCount) const; 1521 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; 1522 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 1523 uint64_t LoopCount) const; 1524 1525 public: 1526 /// Increment the profiler's counter for the given statement by \p StepV. 1527 /// If \p StepV is null, the default increment is 1. 1528 void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { 1529 if (CGM.getCodeGenOpts().hasProfileClangInstr() && 1530 !CurFn->hasFnAttribute(llvm::Attribute::NoProfile)) 1531 PGO.emitCounterIncrement(Builder, S, StepV); 1532 PGO.setCurrentStmt(S); 1533 } 1534 1535 /// Get the profiler's count for the given statement. 1536 uint64_t getProfileCount(const Stmt *S) { 1537 return PGO.getStmtCount(S).value_or(0); 1538 } 1539 1540 /// Set the profiler's current count. 1541 void setCurrentProfileCount(uint64_t Count) { 1542 PGO.setCurrentRegionCount(Count); 1543 } 1544 1545 /// Get the profiler's current count. This is generally the count for the most 1546 /// recently incremented counter. 1547 uint64_t getCurrentProfileCount() { 1548 return PGO.getCurrentRegionCount(); 1549 } 1550 1551 private: 1552 1553 /// SwitchInsn - This is nearest current switch instruction. It is null if 1554 /// current context is not in a switch. 1555 llvm::SwitchInst *SwitchInsn = nullptr; 1556 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 1557 SmallVector<uint64_t, 16> *SwitchWeights = nullptr; 1558 1559 /// The likelihood attributes of the SwitchCase. 1560 SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; 1561 1562 /// CaseRangeBlock - This block holds if condition check for last case 1563 /// statement range in current switch instruction. 1564 llvm::BasicBlock *CaseRangeBlock = nullptr; 1565 1566 /// OpaqueLValues - Keeps track of the current set of opaque value 1567 /// expressions. 1568 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1569 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1570 1571 // VLASizeMap - This keeps track of the associated size for each VLA type. 1572 // We track this by the size expression rather than the type itself because 1573 // in certain situations, like a const qualifier applied to an VLA typedef, 1574 // multiple VLA types can share the same size expression. 1575 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1576 // enter/leave scopes. 1577 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1578 1579 /// A block containing a single 'unreachable' instruction. Created 1580 /// lazily by getUnreachableBlock(). 1581 llvm::BasicBlock *UnreachableBlock = nullptr; 1582 1583 /// Counts of the number return expressions in the function. 1584 unsigned NumReturnExprs = 0; 1585 1586 /// Count the number of simple (constant) return expressions in the function. 1587 unsigned NumSimpleReturnExprs = 0; 1588 1589 /// The last regular (non-return) debug location (breakpoint) in the function. 1590 SourceLocation LastStopPoint; 1591 1592 public: 1593 /// Source location information about the default argument or member 1594 /// initializer expression we're evaluating, if any. 1595 CurrentSourceLocExprScope CurSourceLocExprScope; 1596 using SourceLocExprScopeGuard = 1597 CurrentSourceLocExprScope::SourceLocExprScopeGuard; 1598 1599 /// A scope within which we are constructing the fields of an object which 1600 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1601 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1602 class FieldConstructionScope { 1603 public: 1604 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1605 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1606 CGF.CXXDefaultInitExprThis = This; 1607 } 1608 ~FieldConstructionScope() { 1609 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1610 } 1611 1612 private: 1613 CodeGenFunction &CGF; 1614 Address OldCXXDefaultInitExprThis; 1615 }; 1616 1617 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1618 /// is overridden to be the object under construction. 1619 class CXXDefaultInitExprScope { 1620 public: 1621 CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) 1622 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1623 OldCXXThisAlignment(CGF.CXXThisAlignment), 1624 SourceLocScope(E, CGF.CurSourceLocExprScope) { 1625 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1626 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1627 } 1628 ~CXXDefaultInitExprScope() { 1629 CGF.CXXThisValue = OldCXXThisValue; 1630 CGF.CXXThisAlignment = OldCXXThisAlignment; 1631 } 1632 1633 public: 1634 CodeGenFunction &CGF; 1635 llvm::Value *OldCXXThisValue; 1636 CharUnits OldCXXThisAlignment; 1637 SourceLocExprScopeGuard SourceLocScope; 1638 }; 1639 1640 struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { 1641 CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) 1642 : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} 1643 }; 1644 1645 /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the 1646 /// current loop index is overridden. 1647 class ArrayInitLoopExprScope { 1648 public: 1649 ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) 1650 : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { 1651 CGF.ArrayInitIndex = Index; 1652 } 1653 ~ArrayInitLoopExprScope() { 1654 CGF.ArrayInitIndex = OldArrayInitIndex; 1655 } 1656 1657 private: 1658 CodeGenFunction &CGF; 1659 llvm::Value *OldArrayInitIndex; 1660 }; 1661 1662 class InlinedInheritingConstructorScope { 1663 public: 1664 InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) 1665 : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), 1666 OldCurCodeDecl(CGF.CurCodeDecl), 1667 OldCXXABIThisDecl(CGF.CXXABIThisDecl), 1668 OldCXXABIThisValue(CGF.CXXABIThisValue), 1669 OldCXXThisValue(CGF.CXXThisValue), 1670 OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), 1671 OldCXXThisAlignment(CGF.CXXThisAlignment), 1672 OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), 1673 OldCXXInheritedCtorInitExprArgs( 1674 std::move(CGF.CXXInheritedCtorInitExprArgs)) { 1675 CGF.CurGD = GD; 1676 CGF.CurFuncDecl = CGF.CurCodeDecl = 1677 cast<CXXConstructorDecl>(GD.getDecl()); 1678 CGF.CXXABIThisDecl = nullptr; 1679 CGF.CXXABIThisValue = nullptr; 1680 CGF.CXXThisValue = nullptr; 1681 CGF.CXXABIThisAlignment = CharUnits(); 1682 CGF.CXXThisAlignment = CharUnits(); 1683 CGF.ReturnValue = Address::invalid(); 1684 CGF.FnRetTy = QualType(); 1685 CGF.CXXInheritedCtorInitExprArgs.clear(); 1686 } 1687 ~InlinedInheritingConstructorScope() { 1688 CGF.CurGD = OldCurGD; 1689 CGF.CurFuncDecl = OldCurFuncDecl; 1690 CGF.CurCodeDecl = OldCurCodeDecl; 1691 CGF.CXXABIThisDecl = OldCXXABIThisDecl; 1692 CGF.CXXABIThisValue = OldCXXABIThisValue; 1693 CGF.CXXThisValue = OldCXXThisValue; 1694 CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; 1695 CGF.CXXThisAlignment = OldCXXThisAlignment; 1696 CGF.ReturnValue = OldReturnValue; 1697 CGF.FnRetTy = OldFnRetTy; 1698 CGF.CXXInheritedCtorInitExprArgs = 1699 std::move(OldCXXInheritedCtorInitExprArgs); 1700 } 1701 1702 private: 1703 CodeGenFunction &CGF; 1704 GlobalDecl OldCurGD; 1705 const Decl *OldCurFuncDecl; 1706 const Decl *OldCurCodeDecl; 1707 ImplicitParamDecl *OldCXXABIThisDecl; 1708 llvm::Value *OldCXXABIThisValue; 1709 llvm::Value *OldCXXThisValue; 1710 CharUnits OldCXXABIThisAlignment; 1711 CharUnits OldCXXThisAlignment; 1712 Address OldReturnValue; 1713 QualType OldFnRetTy; 1714 CallArgList OldCXXInheritedCtorInitExprArgs; 1715 }; 1716 1717 // Helper class for the OpenMP IR Builder. Allows reusability of code used for 1718 // region body, and finalization codegen callbacks. This will class will also 1719 // contain privatization functions used by the privatization call backs 1720 // 1721 // TODO: this is temporary class for things that are being moved out of 1722 // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or 1723 // utility function for use with the OMPBuilder. Once that move to use the 1724 // OMPBuilder is done, everything here will either become part of CodeGenFunc. 1725 // directly, or a new helper class that will contain functions used by both 1726 // this and the OMPBuilder 1727 1728 struct OMPBuilderCBHelpers { 1729 1730 OMPBuilderCBHelpers() = delete; 1731 OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; 1732 OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; 1733 1734 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1735 1736 /// Cleanup action for allocate support. 1737 class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { 1738 1739 private: 1740 llvm::CallInst *RTLFnCI; 1741 1742 public: 1743 OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { 1744 RLFnCI->removeFromParent(); 1745 } 1746 1747 void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { 1748 if (!CGF.HaveInsertPoint()) 1749 return; 1750 CGF.Builder.Insert(RTLFnCI); 1751 } 1752 }; 1753 1754 /// Returns address of the threadprivate variable for the current 1755 /// thread. This Also create any necessary OMP runtime calls. 1756 /// 1757 /// \param VD VarDecl for Threadprivate variable. 1758 /// \param VDAddr Address of the Vardecl 1759 /// \param Loc The location where the barrier directive was encountered 1760 static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, 1761 const VarDecl *VD, Address VDAddr, 1762 SourceLocation Loc); 1763 1764 /// Gets the OpenMP-specific address of the local variable /p VD. 1765 static Address getAddressOfLocalVariable(CodeGenFunction &CGF, 1766 const VarDecl *VD); 1767 /// Get the platform-specific name separator. 1768 /// \param Parts different parts of the final name that needs separation 1769 /// \param FirstSeparator First separator used between the initial two 1770 /// parts of the name. 1771 /// \param Separator separator used between all of the rest consecutinve 1772 /// parts of the name 1773 static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, 1774 StringRef FirstSeparator = ".", 1775 StringRef Separator = "."); 1776 /// Emit the Finalization for an OMP region 1777 /// \param CGF The Codegen function this belongs to 1778 /// \param IP Insertion point for generating the finalization code. 1779 static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { 1780 CGBuilderTy::InsertPointGuard IPG(CGF.Builder); 1781 assert(IP.getBlock()->end() != IP.getPoint() && 1782 "OpenMP IR Builder should cause terminated block!"); 1783 1784 llvm::BasicBlock *IPBB = IP.getBlock(); 1785 llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); 1786 assert(DestBB && "Finalization block should have one successor!"); 1787 1788 // erase and replace with cleanup branch. 1789 IPBB->getTerminator()->eraseFromParent(); 1790 CGF.Builder.SetInsertPoint(IPBB); 1791 CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB); 1792 CGF.EmitBranchThroughCleanup(Dest); 1793 } 1794 1795 /// Emit the body of an OMP region 1796 /// \param CGF The Codegen function this belongs to 1797 /// \param RegionBodyStmt The body statement for the OpenMP region being 1798 /// generated 1799 /// \param AllocaIP Where to insert alloca instructions 1800 /// \param CodeGenIP Where to insert the region code 1801 /// \param RegionName Name to be used for new blocks 1802 static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, 1803 const Stmt *RegionBodyStmt, 1804 InsertPointTy AllocaIP, 1805 InsertPointTy CodeGenIP, 1806 Twine RegionName); 1807 1808 static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, 1809 llvm::BasicBlock &FiniBB, llvm::Function *Fn, 1810 ArrayRef<llvm::Value *> Args) { 1811 llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); 1812 if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) 1813 CodeGenIPBBTI->eraseFromParent(); 1814 1815 CGF.Builder.SetInsertPoint(CodeGenIPBB); 1816 1817 if (Fn->doesNotThrow()) 1818 CGF.EmitNounwindRuntimeCall(Fn, Args); 1819 else 1820 CGF.EmitRuntimeCall(Fn, Args); 1821 1822 if (CGF.Builder.saveIP().isSet()) 1823 CGF.Builder.CreateBr(&FiniBB); 1824 } 1825 1826 /// Emit the body of an OMP region that will be outlined in 1827 /// OpenMPIRBuilder::finalize(). 1828 /// \param CGF The Codegen function this belongs to 1829 /// \param RegionBodyStmt The body statement for the OpenMP region being 1830 /// generated 1831 /// \param AllocaIP Where to insert alloca instructions 1832 /// \param CodeGenIP Where to insert the region code 1833 /// \param RegionName Name to be used for new blocks 1834 static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, 1835 const Stmt *RegionBodyStmt, 1836 InsertPointTy AllocaIP, 1837 InsertPointTy CodeGenIP, 1838 Twine RegionName); 1839 1840 /// RAII for preserving necessary info during Outlined region body codegen. 1841 class OutlinedRegionBodyRAII { 1842 1843 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1844 CodeGenFunction::JumpDest OldReturnBlock; 1845 CodeGenFunction &CGF; 1846 1847 public: 1848 OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1849 llvm::BasicBlock &RetBB) 1850 : CGF(cgf) { 1851 assert(AllocaIP.isSet() && 1852 "Must specify Insertion point for allocas of outlined function"); 1853 OldAllocaIP = CGF.AllocaInsertPt; 1854 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1855 1856 OldReturnBlock = CGF.ReturnBlock; 1857 CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB); 1858 } 1859 1860 ~OutlinedRegionBodyRAII() { 1861 CGF.AllocaInsertPt = OldAllocaIP; 1862 CGF.ReturnBlock = OldReturnBlock; 1863 } 1864 }; 1865 1866 /// RAII for preserving necessary info during inlined region body codegen. 1867 class InlinedRegionBodyRAII { 1868 1869 llvm::AssertingVH<llvm::Instruction> OldAllocaIP; 1870 CodeGenFunction &CGF; 1871 1872 public: 1873 InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, 1874 llvm::BasicBlock &FiniBB) 1875 : CGF(cgf) { 1876 // Alloca insertion block should be in the entry block of the containing 1877 // function so it expects an empty AllocaIP in which case will reuse the 1878 // old alloca insertion point, or a new AllocaIP in the same block as 1879 // the old one 1880 assert((!AllocaIP.isSet() || 1881 CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && 1882 "Insertion point should be in the entry block of containing " 1883 "function!"); 1884 OldAllocaIP = CGF.AllocaInsertPt; 1885 if (AllocaIP.isSet()) 1886 CGF.AllocaInsertPt = &*AllocaIP.getPoint(); 1887 1888 // TODO: Remove the call, after making sure the counter is not used by 1889 // the EHStack. 1890 // Since this is an inlined region, it should not modify the 1891 // ReturnBlock, and should reuse the one for the enclosing outlined 1892 // region. So, the JumpDest being return by the function is discarded 1893 (void)CGF.getJumpDestInCurrentScope(&FiniBB); 1894 } 1895 1896 ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } 1897 }; 1898 }; 1899 1900 private: 1901 /// CXXThisDecl - When generating code for a C++ member function, 1902 /// this will hold the implicit 'this' declaration. 1903 ImplicitParamDecl *CXXABIThisDecl = nullptr; 1904 llvm::Value *CXXABIThisValue = nullptr; 1905 llvm::Value *CXXThisValue = nullptr; 1906 CharUnits CXXABIThisAlignment; 1907 CharUnits CXXThisAlignment; 1908 1909 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1910 /// this expression. 1911 Address CXXDefaultInitExprThis = Address::invalid(); 1912 1913 /// The current array initialization index when evaluating an 1914 /// ArrayInitIndexExpr within an ArrayInitLoopExpr. 1915 llvm::Value *ArrayInitIndex = nullptr; 1916 1917 /// The values of function arguments to use when evaluating 1918 /// CXXInheritedCtorInitExprs within this context. 1919 CallArgList CXXInheritedCtorInitExprArgs; 1920 1921 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1922 /// destructor, this will hold the implicit argument (e.g. VTT). 1923 ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; 1924 llvm::Value *CXXStructorImplicitParamValue = nullptr; 1925 1926 /// OutermostConditional - Points to the outermost active 1927 /// conditional control. This is used so that we know if a 1928 /// temporary should be destroyed conditionally. 1929 ConditionalEvaluation *OutermostConditional = nullptr; 1930 1931 /// The current lexical scope. 1932 LexicalScope *CurLexicalScope = nullptr; 1933 1934 /// The current source location that should be used for exception 1935 /// handling code. 1936 SourceLocation CurEHLocation; 1937 1938 /// BlockByrefInfos - For each __block variable, contains 1939 /// information about the layout of the variable. 1940 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1941 1942 /// Used by -fsanitize=nullability-return to determine whether the return 1943 /// value can be checked. 1944 llvm::Value *RetValNullabilityPrecondition = nullptr; 1945 1946 /// Check if -fsanitize=nullability-return instrumentation is required for 1947 /// this function. 1948 bool requiresReturnValueNullabilityCheck() const { 1949 return RetValNullabilityPrecondition; 1950 } 1951 1952 /// Used to store precise source locations for return statements by the 1953 /// runtime return value checks. 1954 Address ReturnLocation = Address::invalid(); 1955 1956 /// Check if the return value of this function requires sanitization. 1957 bool requiresReturnValueCheck() const; 1958 1959 llvm::BasicBlock *TerminateLandingPad = nullptr; 1960 llvm::BasicBlock *TerminateHandler = nullptr; 1961 llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; 1962 1963 /// Terminate funclets keyed by parent funclet pad. 1964 llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; 1965 1966 /// Largest vector width used in ths function. Will be used to create a 1967 /// function attribute. 1968 unsigned LargestVectorWidth = 0; 1969 1970 /// True if we need emit the life-time markers. This is initially set in 1971 /// the constructor, but could be overwritten to true if this is a coroutine. 1972 bool ShouldEmitLifetimeMarkers; 1973 1974 /// Add OpenCL kernel arg metadata and the kernel attribute metadata to 1975 /// the function metadata. 1976 void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); 1977 1978 public: 1979 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1980 ~CodeGenFunction(); 1981 1982 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1983 ASTContext &getContext() const { return CGM.getContext(); } 1984 CGDebugInfo *getDebugInfo() { 1985 if (DisableDebugInfo) 1986 return nullptr; 1987 return DebugInfo; 1988 } 1989 void disableDebugInfo() { DisableDebugInfo = true; } 1990 void enableDebugInfo() { DisableDebugInfo = false; } 1991 1992 bool shouldUseFusedARCCalls() { 1993 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1994 } 1995 1996 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1997 1998 /// Returns a pointer to the function's exception object and selector slot, 1999 /// which is assigned in every landing pad. 2000 Address getExceptionSlot(); 2001 Address getEHSelectorSlot(); 2002 2003 /// Returns the contents of the function's exception object and selector 2004 /// slots. 2005 llvm::Value *getExceptionFromSlot(); 2006 llvm::Value *getSelectorFromSlot(); 2007 2008 Address getNormalCleanupDestSlot(); 2009 2010 llvm::BasicBlock *getUnreachableBlock() { 2011 if (!UnreachableBlock) { 2012 UnreachableBlock = createBasicBlock("unreachable"); 2013 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 2014 } 2015 return UnreachableBlock; 2016 } 2017 2018 llvm::BasicBlock *getInvokeDest() { 2019 if (!EHStack.requiresLandingPad()) return nullptr; 2020 return getInvokeDestImpl(); 2021 } 2022 2023 bool currentFunctionUsesSEHTry() const { return CurSEHParent != nullptr; } 2024 2025 const TargetInfo &getTarget() const { return Target; } 2026 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 2027 const TargetCodeGenInfo &getTargetHooks() const { 2028 return CGM.getTargetCodeGenInfo(); 2029 } 2030 2031 //===--------------------------------------------------------------------===// 2032 // Cleanups 2033 //===--------------------------------------------------------------------===// 2034 2035 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 2036 2037 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2038 Address arrayEndPointer, 2039 QualType elementType, 2040 CharUnits elementAlignment, 2041 Destroyer *destroyer); 2042 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2043 llvm::Value *arrayEnd, 2044 QualType elementType, 2045 CharUnits elementAlignment, 2046 Destroyer *destroyer); 2047 2048 void pushDestroy(QualType::DestructionKind dtorKind, 2049 Address addr, QualType type); 2050 void pushEHDestroy(QualType::DestructionKind dtorKind, 2051 Address addr, QualType type); 2052 void pushDestroy(CleanupKind kind, Address addr, QualType type, 2053 Destroyer *destroyer, bool useEHCleanupForArray); 2054 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 2055 QualType type, Destroyer *destroyer, 2056 bool useEHCleanupForArray); 2057 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 2058 llvm::Value *CompletePtr, 2059 QualType ElementType); 2060 void pushStackRestore(CleanupKind kind, Address SPMem); 2061 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 2062 bool useEHCleanupForArray); 2063 llvm::Function *generateDestroyHelper(Address addr, QualType type, 2064 Destroyer *destroyer, 2065 bool useEHCleanupForArray, 2066 const VarDecl *VD); 2067 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 2068 QualType elementType, CharUnits elementAlign, 2069 Destroyer *destroyer, 2070 bool checkZeroLength, bool useEHCleanup); 2071 2072 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 2073 2074 /// Determines whether an EH cleanup is required to destroy a type 2075 /// with the given destruction kind. 2076 bool needsEHCleanup(QualType::DestructionKind kind) { 2077 switch (kind) { 2078 case QualType::DK_none: 2079 return false; 2080 case QualType::DK_cxx_destructor: 2081 case QualType::DK_objc_weak_lifetime: 2082 case QualType::DK_nontrivial_c_struct: 2083 return getLangOpts().Exceptions; 2084 case QualType::DK_objc_strong_lifetime: 2085 return getLangOpts().Exceptions && 2086 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 2087 } 2088 llvm_unreachable("bad destruction kind"); 2089 } 2090 2091 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 2092 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 2093 } 2094 2095 //===--------------------------------------------------------------------===// 2096 // Objective-C 2097 //===--------------------------------------------------------------------===// 2098 2099 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 2100 2101 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 2102 2103 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 2104 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 2105 const ObjCPropertyImplDecl *PID); 2106 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 2107 const ObjCPropertyImplDecl *propImpl, 2108 const ObjCMethodDecl *GetterMothodDecl, 2109 llvm::Constant *AtomicHelperFn); 2110 2111 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 2112 ObjCMethodDecl *MD, bool ctor); 2113 2114 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 2115 /// for the given property. 2116 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 2117 const ObjCPropertyImplDecl *PID); 2118 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 2119 const ObjCPropertyImplDecl *propImpl, 2120 llvm::Constant *AtomicHelperFn); 2121 2122 //===--------------------------------------------------------------------===// 2123 // Block Bits 2124 //===--------------------------------------------------------------------===// 2125 2126 /// Emit block literal. 2127 /// \return an LLVM value which is a pointer to a struct which contains 2128 /// information about the block, including the block invoke function, the 2129 /// captured variables, etc. 2130 llvm::Value *EmitBlockLiteral(const BlockExpr *); 2131 2132 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 2133 const CGBlockInfo &Info, 2134 const DeclMapTy &ldm, 2135 bool IsLambdaConversionToBlock, 2136 bool BuildGlobalBlock); 2137 2138 /// Check if \p T is a C++ class that has a destructor that can throw. 2139 static bool cxxDestructorCanThrow(QualType T); 2140 2141 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 2142 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 2143 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 2144 const ObjCPropertyImplDecl *PID); 2145 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 2146 const ObjCPropertyImplDecl *PID); 2147 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 2148 2149 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, 2150 bool CanThrow); 2151 2152 class AutoVarEmission; 2153 2154 void emitByrefStructureInit(const AutoVarEmission &emission); 2155 2156 /// Enter a cleanup to destroy a __block variable. Note that this 2157 /// cleanup should be a no-op if the variable hasn't left the stack 2158 /// yet; if a cleanup is required for the variable itself, that needs 2159 /// to be done externally. 2160 /// 2161 /// \param Kind Cleanup kind. 2162 /// 2163 /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block 2164 /// structure that will be passed to _Block_object_dispose. When 2165 /// \p LoadBlockVarAddr is true, the address of the field of the block 2166 /// structure that holds the address of the __block structure. 2167 /// 2168 /// \param Flags The flag that will be passed to _Block_object_dispose. 2169 /// 2170 /// \param LoadBlockVarAddr Indicates whether we need to emit a load from 2171 /// \p Addr to get the address of the __block structure. 2172 void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, 2173 bool LoadBlockVarAddr, bool CanThrow); 2174 2175 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 2176 llvm::Value *ptr); 2177 2178 Address LoadBlockStruct(); 2179 Address GetAddrOfBlockDecl(const VarDecl *var); 2180 2181 /// BuildBlockByrefAddress - Computes the location of the 2182 /// data in a variable which is declared as __block. 2183 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 2184 bool followForward = true); 2185 Address emitBlockByrefAddress(Address baseAddr, 2186 const BlockByrefInfo &info, 2187 bool followForward, 2188 const llvm::Twine &name); 2189 2190 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 2191 2192 QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); 2193 2194 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 2195 const CGFunctionInfo &FnInfo); 2196 2197 /// Annotate the function with an attribute that disables TSan checking at 2198 /// runtime. 2199 void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); 2200 2201 /// Emit code for the start of a function. 2202 /// \param Loc The location to be associated with the function. 2203 /// \param StartLoc The location of the function body. 2204 void StartFunction(GlobalDecl GD, 2205 QualType RetTy, 2206 llvm::Function *Fn, 2207 const CGFunctionInfo &FnInfo, 2208 const FunctionArgList &Args, 2209 SourceLocation Loc = SourceLocation(), 2210 SourceLocation StartLoc = SourceLocation()); 2211 2212 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); 2213 2214 void EmitConstructorBody(FunctionArgList &Args); 2215 void EmitDestructorBody(FunctionArgList &Args); 2216 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 2217 void EmitFunctionBody(const Stmt *Body); 2218 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 2219 2220 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 2221 CallArgList &CallArgs); 2222 void EmitLambdaBlockInvokeBody(); 2223 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 2224 void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); 2225 void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { 2226 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2227 } 2228 void EmitAsanPrologueOrEpilogue(bool Prologue); 2229 2230 /// Emit the unified return block, trying to avoid its emission when 2231 /// possible. 2232 /// \return The debug location of the user written return statement if the 2233 /// return block is is avoided. 2234 llvm::DebugLoc EmitReturnBlock(); 2235 2236 /// FinishFunction - Complete IR generation of the current function. It is 2237 /// legal to call this function even if there is no current insertion point. 2238 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 2239 2240 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 2241 const CGFunctionInfo &FnInfo, bool IsUnprototyped); 2242 2243 void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 2244 const ThunkInfo *Thunk, bool IsUnprototyped); 2245 2246 void FinishThunk(); 2247 2248 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 2249 void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, 2250 llvm::FunctionCallee Callee); 2251 2252 /// Generate a thunk for the given method. 2253 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 2254 GlobalDecl GD, const ThunkInfo &Thunk, 2255 bool IsUnprototyped); 2256 2257 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 2258 const CGFunctionInfo &FnInfo, 2259 GlobalDecl GD, const ThunkInfo &Thunk); 2260 2261 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 2262 FunctionArgList &Args); 2263 2264 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); 2265 2266 /// Struct with all information about dynamic [sub]class needed to set vptr. 2267 struct VPtr { 2268 BaseSubobject Base; 2269 const CXXRecordDecl *NearestVBase; 2270 CharUnits OffsetFromNearestVBase; 2271 const CXXRecordDecl *VTableClass; 2272 }; 2273 2274 /// Initialize the vtable pointer of the given subobject. 2275 void InitializeVTablePointer(const VPtr &vptr); 2276 2277 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 2278 2279 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 2280 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 2281 2282 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 2283 CharUnits OffsetFromNearestVBase, 2284 bool BaseIsNonVirtualPrimaryBase, 2285 const CXXRecordDecl *VTableClass, 2286 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 2287 2288 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 2289 2290 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 2291 /// to by This. 2292 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 2293 const CXXRecordDecl *VTableClass); 2294 2295 enum CFITypeCheckKind { 2296 CFITCK_VCall, 2297 CFITCK_NVCall, 2298 CFITCK_DerivedCast, 2299 CFITCK_UnrelatedCast, 2300 CFITCK_ICall, 2301 CFITCK_NVMFCall, 2302 CFITCK_VMFCall, 2303 }; 2304 2305 /// Derived is the presumed address of an object of type T after a 2306 /// cast. If T is a polymorphic class type, emit a check that the virtual 2307 /// table for Derived belongs to a class derived from T. 2308 void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, 2309 CFITypeCheckKind TCK, SourceLocation Loc); 2310 2311 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 2312 /// If vptr CFI is enabled, emit a check that VTable is valid. 2313 void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, 2314 CFITypeCheckKind TCK, SourceLocation Loc); 2315 2316 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 2317 /// RD using llvm.type.test. 2318 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 2319 CFITypeCheckKind TCK, SourceLocation Loc); 2320 2321 /// If whole-program virtual table optimization is enabled, emit an assumption 2322 /// that VTable is a member of RD's type identifier. Or, if vptr CFI is 2323 /// enabled, emit a check that VTable is a member of RD's type identifier. 2324 void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, 2325 llvm::Value *VTable, SourceLocation Loc); 2326 2327 /// Returns whether we should perform a type checked load when loading a 2328 /// virtual function for virtual calls to members of RD. This is generally 2329 /// true when both vcall CFI and whole-program-vtables are enabled. 2330 bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); 2331 2332 /// Emit a type checked load from the given vtable. 2333 llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, 2334 llvm::Value *VTable, 2335 llvm::Type *VTableTy, 2336 uint64_t VTableByteOffset); 2337 2338 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 2339 /// given phase of destruction for a destructor. The end result 2340 /// should call destructors on members and base classes in reverse 2341 /// order of their construction. 2342 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 2343 2344 /// ShouldInstrumentFunction - Return true if the current function should be 2345 /// instrumented with __cyg_profile_func_* calls 2346 bool ShouldInstrumentFunction(); 2347 2348 /// ShouldSkipSanitizerInstrumentation - Return true if the current function 2349 /// should not be instrumented with sanitizers. 2350 bool ShouldSkipSanitizerInstrumentation(); 2351 2352 /// ShouldXRayInstrument - Return true if the current function should be 2353 /// instrumented with XRay nop sleds. 2354 bool ShouldXRayInstrumentFunction() const; 2355 2356 /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit 2357 /// XRay custom event handling calls. 2358 bool AlwaysEmitXRayCustomEvents() const; 2359 2360 /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit 2361 /// XRay typed event handling calls. 2362 bool AlwaysEmitXRayTypedEvents() const; 2363 2364 /// Decode an address used in a function prologue, encoded by \c 2365 /// EncodeAddrForUseInPrologue. 2366 llvm::Value *DecodeAddrUsedInPrologue(llvm::Value *F, 2367 llvm::Value *EncodedAddr); 2368 2369 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 2370 /// arguments for the given function. This is also responsible for naming the 2371 /// LLVM function arguments. 2372 void EmitFunctionProlog(const CGFunctionInfo &FI, 2373 llvm::Function *Fn, 2374 const FunctionArgList &Args); 2375 2376 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 2377 /// given temporary. 2378 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 2379 SourceLocation EndLoc); 2380 2381 /// Emit a test that checks if the return value \p RV is nonnull. 2382 void EmitReturnValueCheck(llvm::Value *RV); 2383 2384 /// EmitStartEHSpec - Emit the start of the exception spec. 2385 void EmitStartEHSpec(const Decl *D); 2386 2387 /// EmitEndEHSpec - Emit the end of the exception spec. 2388 void EmitEndEHSpec(const Decl *D); 2389 2390 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 2391 llvm::BasicBlock *getTerminateLandingPad(); 2392 2393 /// getTerminateLandingPad - Return a cleanup funclet that just calls 2394 /// terminate. 2395 llvm::BasicBlock *getTerminateFunclet(); 2396 2397 /// getTerminateHandler - Return a handler (not a landing pad, just 2398 /// a catch handler) that just calls terminate. This is used when 2399 /// a terminate scope encloses a try. 2400 llvm::BasicBlock *getTerminateHandler(); 2401 2402 llvm::Type *ConvertTypeForMem(QualType T); 2403 llvm::Type *ConvertType(QualType T); 2404 llvm::Type *ConvertType(const TypeDecl *T) { 2405 return ConvertType(getContext().getTypeDeclType(T)); 2406 } 2407 2408 /// LoadObjCSelf - Load the value of self. This function is only valid while 2409 /// generating code for an Objective-C method. 2410 llvm::Value *LoadObjCSelf(); 2411 2412 /// TypeOfSelfObject - Return type of object that this self represents. 2413 QualType TypeOfSelfObject(); 2414 2415 /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. 2416 static TypeEvaluationKind getEvaluationKind(QualType T); 2417 2418 static bool hasScalarEvaluationKind(QualType T) { 2419 return getEvaluationKind(T) == TEK_Scalar; 2420 } 2421 2422 static bool hasAggregateEvaluationKind(QualType T) { 2423 return getEvaluationKind(T) == TEK_Aggregate; 2424 } 2425 2426 /// createBasicBlock - Create an LLVM basic block. 2427 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 2428 llvm::Function *parent = nullptr, 2429 llvm::BasicBlock *before = nullptr) { 2430 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 2431 } 2432 2433 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 2434 /// label maps to. 2435 JumpDest getJumpDestForLabel(const LabelDecl *S); 2436 2437 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 2438 /// another basic block, simplify it. This assumes that no other code could 2439 /// potentially reference the basic block. 2440 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 2441 2442 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 2443 /// adding a fall-through branch from the current insert block if 2444 /// necessary. It is legal to call this function even if there is no current 2445 /// insertion point. 2446 /// 2447 /// IsFinished - If true, indicates that the caller has finished emitting 2448 /// branches to the given block and does not expect to emit code into it. This 2449 /// means the block can be ignored if it is unreachable. 2450 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 2451 2452 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 2453 /// near its uses, and leave the insertion point in it. 2454 void EmitBlockAfterUses(llvm::BasicBlock *BB); 2455 2456 /// EmitBranch - Emit a branch to the specified basic block from the current 2457 /// insert block, taking care to avoid creation of branches from dummy 2458 /// blocks. It is legal to call this function even if there is no current 2459 /// insertion point. 2460 /// 2461 /// This function clears the current insertion point. The caller should follow 2462 /// calls to this function with calls to Emit*Block prior to generation new 2463 /// code. 2464 void EmitBranch(llvm::BasicBlock *Block); 2465 2466 /// HaveInsertPoint - True if an insertion point is defined. If not, this 2467 /// indicates that the current code being emitted is unreachable. 2468 bool HaveInsertPoint() const { 2469 return Builder.GetInsertBlock() != nullptr; 2470 } 2471 2472 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 2473 /// emitted IR has a place to go. Note that by definition, if this function 2474 /// creates a block then that block is unreachable; callers may do better to 2475 /// detect when no insertion point is defined and simply skip IR generation. 2476 void EnsureInsertPoint() { 2477 if (!HaveInsertPoint()) 2478 EmitBlock(createBasicBlock()); 2479 } 2480 2481 /// ErrorUnsupported - Print out an error that codegen doesn't support the 2482 /// specified stmt yet. 2483 void ErrorUnsupported(const Stmt *S, const char *Type); 2484 2485 //===--------------------------------------------------------------------===// 2486 // Helpers 2487 //===--------------------------------------------------------------------===// 2488 2489 LValue MakeAddrLValue(Address Addr, QualType T, 2490 AlignmentSource Source = AlignmentSource::Type) { 2491 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2492 CGM.getTBAAAccessInfo(T)); 2493 } 2494 2495 LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, 2496 TBAAAccessInfo TBAAInfo) { 2497 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 2498 } 2499 2500 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 2501 AlignmentSource Source = AlignmentSource::Type) { 2502 Address Addr(V, ConvertTypeForMem(T), Alignment); 2503 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2504 CGM.getTBAAAccessInfo(T)); 2505 } 2506 2507 LValue 2508 MakeAddrLValueWithoutTBAA(Address Addr, QualType T, 2509 AlignmentSource Source = AlignmentSource::Type) { 2510 return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source), 2511 TBAAAccessInfo()); 2512 } 2513 2514 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 2515 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 2516 2517 Address EmitLoadOfReference(LValue RefLVal, 2518 LValueBaseInfo *PointeeBaseInfo = nullptr, 2519 TBAAAccessInfo *PointeeTBAAInfo = nullptr); 2520 LValue EmitLoadOfReferenceLValue(LValue RefLVal); 2521 LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, 2522 AlignmentSource Source = 2523 AlignmentSource::Type) { 2524 LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source), 2525 CGM.getTBAAAccessInfo(RefTy)); 2526 return EmitLoadOfReferenceLValue(RefLVal); 2527 } 2528 2529 /// Load a pointer with type \p PtrTy stored at address \p Ptr. 2530 /// Note that \p PtrTy is the type of the loaded pointer, not the addresses 2531 /// it is loaded from. 2532 Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, 2533 LValueBaseInfo *BaseInfo = nullptr, 2534 TBAAAccessInfo *TBAAInfo = nullptr); 2535 LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); 2536 2537 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 2538 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 2539 /// insertion point of the builder. The caller is responsible for setting an 2540 /// appropriate alignment on 2541 /// the alloca. 2542 /// 2543 /// \p ArraySize is the number of array elements to be allocated if it 2544 /// is not nullptr. 2545 /// 2546 /// LangAS::Default is the address space of pointers to local variables and 2547 /// temporaries, as exposed in the source language. In certain 2548 /// configurations, this is not the same as the alloca address space, and a 2549 /// cast is needed to lift the pointer from the alloca AS into 2550 /// LangAS::Default. This can happen when the target uses a restricted 2551 /// address space for the stack but the source language requires 2552 /// LangAS::Default to be a generic address space. The latter condition is 2553 /// common for most programming languages; OpenCL is an exception in that 2554 /// LangAS::Default is the private address space, which naturally maps 2555 /// to the stack. 2556 /// 2557 /// Because the address of a temporary is often exposed to the program in 2558 /// various ways, this function will perform the cast. The original alloca 2559 /// instruction is returned through \p Alloca if it is not nullptr. 2560 /// 2561 /// The cast is not performaed in CreateTempAllocaWithoutCast. This is 2562 /// more efficient if the caller knows that the address will not be exposed. 2563 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp", 2564 llvm::Value *ArraySize = nullptr); 2565 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 2566 const Twine &Name = "tmp", 2567 llvm::Value *ArraySize = nullptr, 2568 Address *Alloca = nullptr); 2569 Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, 2570 const Twine &Name = "tmp", 2571 llvm::Value *ArraySize = nullptr); 2572 2573 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 2574 /// default ABI alignment of the given LLVM type. 2575 /// 2576 /// IMPORTANT NOTE: This is *not* generally the right alignment for 2577 /// any given AST type that happens to have been lowered to the 2578 /// given IR type. This should only ever be used for function-local, 2579 /// IR-driven manipulations like saving and restoring a value. Do 2580 /// not hand this address off to arbitrary IRGen routines, and especially 2581 /// do not pass it as an argument to a function that might expect a 2582 /// properly ABI-aligned value. 2583 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 2584 const Twine &Name = "tmp"); 2585 2586 /// CreateIRTemp - Create a temporary IR object of the given type, with 2587 /// appropriate alignment. This routine should only be used when an temporary 2588 /// value needs to be stored into an alloca (for example, to avoid explicit 2589 /// PHI construction), but the type is the IR type, not the type appropriate 2590 /// for storing in memory. 2591 /// 2592 /// That is, this is exactly equivalent to CreateMemTemp, but calling 2593 /// ConvertType instead of ConvertTypeForMem. 2594 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 2595 2596 /// CreateMemTemp - Create a temporary memory object of the given type, with 2597 /// appropriate alignmen and cast it to the default address space. Returns 2598 /// the original alloca instruction by \p Alloca if it is not nullptr. 2599 Address CreateMemTemp(QualType T, const Twine &Name = "tmp", 2600 Address *Alloca = nullptr); 2601 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp", 2602 Address *Alloca = nullptr); 2603 2604 /// CreateMemTemp - Create a temporary memory object of the given type, with 2605 /// appropriate alignmen without casting it to the default address space. 2606 Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp"); 2607 Address CreateMemTempWithoutCast(QualType T, CharUnits Align, 2608 const Twine &Name = "tmp"); 2609 2610 /// CreateAggTemp - Create a temporary memory object for the given 2611 /// aggregate type. 2612 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp", 2613 Address *Alloca = nullptr) { 2614 return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca), 2615 T.getQualifiers(), 2616 AggValueSlot::IsNotDestructed, 2617 AggValueSlot::DoesNotNeedGCBarriers, 2618 AggValueSlot::IsNotAliased, 2619 AggValueSlot::DoesNotOverlap); 2620 } 2621 2622 /// Emit a cast to void* in the appropriate address space. 2623 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 2624 2625 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 2626 /// expression and compare the result against zero, returning an Int1Ty value. 2627 llvm::Value *EvaluateExprAsBool(const Expr *E); 2628 2629 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 2630 void EmitIgnoredExpr(const Expr *E); 2631 2632 /// EmitAnyExpr - Emit code to compute the specified expression which can have 2633 /// any type. The result is returned as an RValue struct. If this is an 2634 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 2635 /// the result should be returned. 2636 /// 2637 /// \param ignoreResult True if the resulting value isn't used. 2638 RValue EmitAnyExpr(const Expr *E, 2639 AggValueSlot aggSlot = AggValueSlot::ignored(), 2640 bool ignoreResult = false); 2641 2642 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 2643 // or the value of the expression, depending on how va_list is defined. 2644 Address EmitVAListRef(const Expr *E); 2645 2646 /// Emit a "reference" to a __builtin_ms_va_list; this is 2647 /// always the value of the expression, because a __builtin_ms_va_list is a 2648 /// pointer to a char. 2649 Address EmitMSVAListRef(const Expr *E); 2650 2651 /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will 2652 /// always be accessible even if no aggregate location is provided. 2653 RValue EmitAnyExprToTemp(const Expr *E); 2654 2655 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 2656 /// arbitrary expression into the given memory location. 2657 void EmitAnyExprToMem(const Expr *E, Address Location, 2658 Qualifiers Quals, bool IsInitializer); 2659 2660 void EmitAnyExprToExn(const Expr *E, Address Addr); 2661 2662 /// EmitExprAsInit - Emits the code necessary to initialize a 2663 /// location in memory with the given initializer. 2664 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 2665 bool capturedByInit); 2666 2667 /// hasVolatileMember - returns true if aggregate type has a volatile 2668 /// member. 2669 bool hasVolatileMember(QualType T) { 2670 if (const RecordType *RT = T->getAs<RecordType>()) { 2671 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 2672 return RD->hasVolatileMember(); 2673 } 2674 return false; 2675 } 2676 2677 /// Determine whether a return value slot may overlap some other object. 2678 AggValueSlot::Overlap_t getOverlapForReturnValue() { 2679 // FIXME: Assuming no overlap here breaks guaranteed copy elision for base 2680 // class subobjects. These cases may need to be revisited depending on the 2681 // resolution of the relevant core issue. 2682 return AggValueSlot::DoesNotOverlap; 2683 } 2684 2685 /// Determine whether a field initialization may overlap some other object. 2686 AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); 2687 2688 /// Determine whether a base class initialization may overlap some other 2689 /// object. 2690 AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, 2691 const CXXRecordDecl *BaseRD, 2692 bool IsVirtual); 2693 2694 /// Emit an aggregate assignment. 2695 void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { 2696 bool IsVolatile = hasVolatileMember(EltTy); 2697 EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile); 2698 } 2699 2700 void EmitAggregateCopyCtor(LValue Dest, LValue Src, 2701 AggValueSlot::Overlap_t MayOverlap) { 2702 EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap); 2703 } 2704 2705 /// EmitAggregateCopy - Emit an aggregate copy. 2706 /// 2707 /// \param isVolatile \c true iff either the source or the destination is 2708 /// volatile. 2709 /// \param MayOverlap Whether the tail padding of the destination might be 2710 /// occupied by some other object. More efficient code can often be 2711 /// generated if not. 2712 void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, 2713 AggValueSlot::Overlap_t MayOverlap, 2714 bool isVolatile = false); 2715 2716 /// GetAddrOfLocalVar - Return the address of a local variable. 2717 Address GetAddrOfLocalVar(const VarDecl *VD) { 2718 auto it = LocalDeclMap.find(VD); 2719 assert(it != LocalDeclMap.end() && 2720 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 2721 return it->second; 2722 } 2723 2724 /// Given an opaque value expression, return its LValue mapping if it exists, 2725 /// otherwise create one. 2726 LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); 2727 2728 /// Given an opaque value expression, return its RValue mapping if it exists, 2729 /// otherwise create one. 2730 RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); 2731 2732 /// Get the index of the current ArrayInitLoopExpr, if any. 2733 llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } 2734 2735 /// getAccessedFieldNo - Given an encoded value and a result number, return 2736 /// the input field number being accessed. 2737 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 2738 2739 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 2740 llvm::BasicBlock *GetIndirectGotoBlock(); 2741 2742 /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. 2743 static bool IsWrappedCXXThis(const Expr *E); 2744 2745 /// EmitNullInitialization - Generate code to set a value of the given type to 2746 /// null, If the type contains data member pointers, they will be initialized 2747 /// to -1 in accordance with the Itanium C++ ABI. 2748 void EmitNullInitialization(Address DestPtr, QualType Ty); 2749 2750 /// Emits a call to an LLVM variable-argument intrinsic, either 2751 /// \c llvm.va_start or \c llvm.va_end. 2752 /// \param ArgValue A reference to the \c va_list as emitted by either 2753 /// \c EmitVAListRef or \c EmitMSVAListRef. 2754 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 2755 /// calls \c llvm.va_end. 2756 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 2757 2758 /// Generate code to get an argument from the passed in pointer 2759 /// and update it accordingly. 2760 /// \param VE The \c VAArgExpr for which to generate code. 2761 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 2762 /// either \c EmitVAListRef or \c EmitMSVAListRef. 2763 /// \returns A pointer to the argument. 2764 // FIXME: We should be able to get rid of this method and use the va_arg 2765 // instruction in LLVM instead once it works well enough. 2766 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 2767 2768 /// emitArrayLength - Compute the length of an array, even if it's a 2769 /// VLA, and drill down to the base element type. 2770 llvm::Value *emitArrayLength(const ArrayType *arrayType, 2771 QualType &baseType, 2772 Address &addr); 2773 2774 /// EmitVLASize - Capture all the sizes for the VLA expressions in 2775 /// the given variably-modified type and store them in the VLASizeMap. 2776 /// 2777 /// This function can be called with a null (unreachable) insert point. 2778 void EmitVariablyModifiedType(QualType Ty); 2779 2780 struct VlaSizePair { 2781 llvm::Value *NumElts; 2782 QualType Type; 2783 2784 VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} 2785 }; 2786 2787 /// Return the number of elements for a single dimension 2788 /// for the given array type. 2789 VlaSizePair getVLAElements1D(const VariableArrayType *vla); 2790 VlaSizePair getVLAElements1D(QualType vla); 2791 2792 /// Returns an LLVM value that corresponds to the size, 2793 /// in non-variably-sized elements, of a variable length array type, 2794 /// plus that largest non-variably-sized element type. Assumes that 2795 /// the type has already been emitted with EmitVariablyModifiedType. 2796 VlaSizePair getVLASize(const VariableArrayType *vla); 2797 VlaSizePair getVLASize(QualType vla); 2798 2799 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 2800 /// generating code for an C++ member function. 2801 llvm::Value *LoadCXXThis() { 2802 assert(CXXThisValue && "no 'this' value for this function"); 2803 return CXXThisValue; 2804 } 2805 Address LoadCXXThisAddress(); 2806 2807 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 2808 /// virtual bases. 2809 // FIXME: Every place that calls LoadCXXVTT is something 2810 // that needs to be abstracted properly. 2811 llvm::Value *LoadCXXVTT() { 2812 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 2813 return CXXStructorImplicitParamValue; 2814 } 2815 2816 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 2817 /// complete class to the given direct base. 2818 Address 2819 GetAddressOfDirectBaseInCompleteClass(Address Value, 2820 const CXXRecordDecl *Derived, 2821 const CXXRecordDecl *Base, 2822 bool BaseIsVirtual); 2823 2824 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 2825 2826 /// GetAddressOfBaseClass - This function will add the necessary delta to the 2827 /// load of 'this' and returns address of the base class. 2828 Address GetAddressOfBaseClass(Address Value, 2829 const CXXRecordDecl *Derived, 2830 CastExpr::path_const_iterator PathBegin, 2831 CastExpr::path_const_iterator PathEnd, 2832 bool NullCheckValue, SourceLocation Loc); 2833 2834 Address GetAddressOfDerivedClass(Address Value, 2835 const CXXRecordDecl *Derived, 2836 CastExpr::path_const_iterator PathBegin, 2837 CastExpr::path_const_iterator PathEnd, 2838 bool NullCheckValue); 2839 2840 /// GetVTTParameter - Return the VTT parameter that should be passed to a 2841 /// base constructor/destructor with virtual bases. 2842 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 2843 /// to ItaniumCXXABI.cpp together with all the references to VTT. 2844 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 2845 bool Delegating); 2846 2847 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2848 CXXCtorType CtorType, 2849 const FunctionArgList &Args, 2850 SourceLocation Loc); 2851 // It's important not to confuse this and the previous function. Delegating 2852 // constructors are the C++0x feature. The constructor delegate optimization 2853 // is used to reduce duplication in the base and complete consturctors where 2854 // they are substantially the same. 2855 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2856 const FunctionArgList &Args); 2857 2858 /// Emit a call to an inheriting constructor (that is, one that invokes a 2859 /// constructor inherited from a base class) by inlining its definition. This 2860 /// is necessary if the ABI does not support forwarding the arguments to the 2861 /// base class constructor (because they're variadic or similar). 2862 void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2863 CXXCtorType CtorType, 2864 bool ForVirtualBase, 2865 bool Delegating, 2866 CallArgList &Args); 2867 2868 /// Emit a call to a constructor inherited from a base class, passing the 2869 /// current constructor's arguments along unmodified (without even making 2870 /// a copy). 2871 void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, 2872 bool ForVirtualBase, Address This, 2873 bool InheritedFromVBase, 2874 const CXXInheritedCtorInitExpr *E); 2875 2876 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2877 bool ForVirtualBase, bool Delegating, 2878 AggValueSlot ThisAVS, const CXXConstructExpr *E); 2879 2880 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 2881 bool ForVirtualBase, bool Delegating, 2882 Address This, CallArgList &Args, 2883 AggValueSlot::Overlap_t Overlap, 2884 SourceLocation Loc, bool NewPointerIsChecked); 2885 2886 /// Emit assumption load for all bases. Requires to be be called only on 2887 /// most-derived class and not under construction of the object. 2888 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 2889 2890 /// Emit assumption that vptr load == global vtable. 2891 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 2892 2893 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2894 Address This, Address Src, 2895 const CXXConstructExpr *E); 2896 2897 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2898 const ArrayType *ArrayTy, 2899 Address ArrayPtr, 2900 const CXXConstructExpr *E, 2901 bool NewPointerIsChecked, 2902 bool ZeroInitialization = false); 2903 2904 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 2905 llvm::Value *NumElements, 2906 Address ArrayPtr, 2907 const CXXConstructExpr *E, 2908 bool NewPointerIsChecked, 2909 bool ZeroInitialization = false); 2910 2911 static Destroyer destroyCXXObject; 2912 2913 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 2914 bool ForVirtualBase, bool Delegating, Address This, 2915 QualType ThisTy); 2916 2917 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 2918 llvm::Type *ElementTy, Address NewPtr, 2919 llvm::Value *NumElements, 2920 llvm::Value *AllocSizeWithoutCookie); 2921 2922 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 2923 Address Ptr); 2924 2925 void EmitSehCppScopeBegin(); 2926 void EmitSehCppScopeEnd(); 2927 void EmitSehTryScopeBegin(); 2928 void EmitSehTryScopeEnd(); 2929 2930 llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); 2931 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 2932 2933 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 2934 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 2935 2936 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 2937 QualType DeleteTy, llvm::Value *NumElements = nullptr, 2938 CharUnits CookieSize = CharUnits()); 2939 2940 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 2941 const CallExpr *TheCallExpr, bool IsDelete); 2942 2943 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 2944 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 2945 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 2946 2947 /// Situations in which we might emit a check for the suitability of a 2948 /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in 2949 /// compiler-rt. 2950 enum TypeCheckKind { 2951 /// Checking the operand of a load. Must be suitably sized and aligned. 2952 TCK_Load, 2953 /// Checking the destination of a store. Must be suitably sized and aligned. 2954 TCK_Store, 2955 /// Checking the bound value in a reference binding. Must be suitably sized 2956 /// and aligned, but is not required to refer to an object (until the 2957 /// reference is used), per core issue 453. 2958 TCK_ReferenceBinding, 2959 /// Checking the object expression in a non-static data member access. Must 2960 /// be an object within its lifetime. 2961 TCK_MemberAccess, 2962 /// Checking the 'this' pointer for a call to a non-static member function. 2963 /// Must be an object within its lifetime. 2964 TCK_MemberCall, 2965 /// Checking the 'this' pointer for a constructor call. 2966 TCK_ConstructorCall, 2967 /// Checking the operand of a static_cast to a derived pointer type. Must be 2968 /// null or an object within its lifetime. 2969 TCK_DowncastPointer, 2970 /// Checking the operand of a static_cast to a derived reference type. Must 2971 /// be an object within its lifetime. 2972 TCK_DowncastReference, 2973 /// Checking the operand of a cast to a base object. Must be suitably sized 2974 /// and aligned. 2975 TCK_Upcast, 2976 /// Checking the operand of a cast to a virtual base object. Must be an 2977 /// object within its lifetime. 2978 TCK_UpcastToVirtualBase, 2979 /// Checking the value assigned to a _Nonnull pointer. Must not be null. 2980 TCK_NonnullAssign, 2981 /// Checking the operand of a dynamic_cast or a typeid expression. Must be 2982 /// null or an object within its lifetime. 2983 TCK_DynamicOperation 2984 }; 2985 2986 /// Determine whether the pointer type check \p TCK permits null pointers. 2987 static bool isNullPointerAllowed(TypeCheckKind TCK); 2988 2989 /// Determine whether the pointer type check \p TCK requires a vptr check. 2990 static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); 2991 2992 /// Whether any type-checking sanitizers are enabled. If \c false, 2993 /// calls to EmitTypeCheck can be skipped. 2994 bool sanitizePerformTypeCheck() const; 2995 2996 /// Emit a check that \p V is the address of storage of the 2997 /// appropriate size and alignment for an object of type \p Type 2998 /// (or if ArraySize is provided, for an array of that bound). 2999 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 3000 QualType Type, CharUnits Alignment = CharUnits::Zero(), 3001 SanitizerSet SkippedChecks = SanitizerSet(), 3002 llvm::Value *ArraySize = nullptr); 3003 3004 /// Emit a check that \p Base points into an array object, which 3005 /// we can access at index \p Index. \p Accessed should be \c false if we 3006 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 3007 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 3008 QualType IndexType, bool Accessed); 3009 3010 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3011 bool isInc, bool isPre); 3012 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 3013 bool isInc, bool isPre); 3014 3015 /// Converts Location to a DebugLoc, if debug information is enabled. 3016 llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); 3017 3018 /// Get the record field index as represented in debug info. 3019 unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); 3020 3021 3022 //===--------------------------------------------------------------------===// 3023 // Declaration Emission 3024 //===--------------------------------------------------------------------===// 3025 3026 /// EmitDecl - Emit a declaration. 3027 /// 3028 /// This function can be called with a null (unreachable) insert point. 3029 void EmitDecl(const Decl &D); 3030 3031 /// EmitVarDecl - Emit a local variable declaration. 3032 /// 3033 /// This function can be called with a null (unreachable) insert point. 3034 void EmitVarDecl(const VarDecl &D); 3035 3036 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 3037 bool capturedByInit); 3038 3039 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 3040 llvm::Value *Address); 3041 3042 /// Determine whether the given initializer is trivial in the sense 3043 /// that it requires no code to be generated. 3044 bool isTrivialInitializer(const Expr *Init); 3045 3046 /// EmitAutoVarDecl - Emit an auto variable declaration. 3047 /// 3048 /// This function can be called with a null (unreachable) insert point. 3049 void EmitAutoVarDecl(const VarDecl &D); 3050 3051 class AutoVarEmission { 3052 friend class CodeGenFunction; 3053 3054 const VarDecl *Variable; 3055 3056 /// The address of the alloca for languages with explicit address space 3057 /// (e.g. OpenCL) or alloca casted to generic pointer for address space 3058 /// agnostic languages (e.g. C++). Invalid if the variable was emitted 3059 /// as a global constant. 3060 Address Addr; 3061 3062 llvm::Value *NRVOFlag; 3063 3064 /// True if the variable is a __block variable that is captured by an 3065 /// escaping block. 3066 bool IsEscapingByRef; 3067 3068 /// True if the variable is of aggregate type and has a constant 3069 /// initializer. 3070 bool IsConstantAggregate; 3071 3072 /// Non-null if we should use lifetime annotations. 3073 llvm::Value *SizeForLifetimeMarkers; 3074 3075 /// Address with original alloca instruction. Invalid if the variable was 3076 /// emitted as a global constant. 3077 Address AllocaAddr; 3078 3079 struct Invalid {}; 3080 AutoVarEmission(Invalid) 3081 : Variable(nullptr), Addr(Address::invalid()), 3082 AllocaAddr(Address::invalid()) {} 3083 3084 AutoVarEmission(const VarDecl &variable) 3085 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 3086 IsEscapingByRef(false), IsConstantAggregate(false), 3087 SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {} 3088 3089 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 3090 3091 public: 3092 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 3093 3094 bool useLifetimeMarkers() const { 3095 return SizeForLifetimeMarkers != nullptr; 3096 } 3097 llvm::Value *getSizeForLifetimeMarkers() const { 3098 assert(useLifetimeMarkers()); 3099 return SizeForLifetimeMarkers; 3100 } 3101 3102 /// Returns the raw, allocated address, which is not necessarily 3103 /// the address of the object itself. It is casted to default 3104 /// address space for address space agnostic languages. 3105 Address getAllocatedAddress() const { 3106 return Addr; 3107 } 3108 3109 /// Returns the address for the original alloca instruction. 3110 Address getOriginalAllocatedAddress() const { return AllocaAddr; } 3111 3112 /// Returns the address of the object within this declaration. 3113 /// Note that this does not chase the forwarding pointer for 3114 /// __block decls. 3115 Address getObjectAddress(CodeGenFunction &CGF) const { 3116 if (!IsEscapingByRef) return Addr; 3117 3118 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 3119 } 3120 }; 3121 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 3122 void EmitAutoVarInit(const AutoVarEmission &emission); 3123 void EmitAutoVarCleanups(const AutoVarEmission &emission); 3124 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 3125 QualType::DestructionKind dtorKind); 3126 3127 /// Emits the alloca and debug information for the size expressions for each 3128 /// dimension of an array. It registers the association of its (1-dimensional) 3129 /// QualTypes and size expression's debug node, so that CGDebugInfo can 3130 /// reference this node when creating the DISubrange object to describe the 3131 /// array types. 3132 void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, 3133 const VarDecl &D, 3134 bool EmitDebugInfo); 3135 3136 void EmitStaticVarDecl(const VarDecl &D, 3137 llvm::GlobalValue::LinkageTypes Linkage); 3138 3139 class ParamValue { 3140 llvm::Value *Value; 3141 llvm::Type *ElementType; 3142 unsigned Alignment; 3143 ParamValue(llvm::Value *V, llvm::Type *T, unsigned A) 3144 : Value(V), ElementType(T), Alignment(A) {} 3145 public: 3146 static ParamValue forDirect(llvm::Value *value) { 3147 return ParamValue(value, nullptr, 0); 3148 } 3149 static ParamValue forIndirect(Address addr) { 3150 assert(!addr.getAlignment().isZero()); 3151 return ParamValue(addr.getPointer(), addr.getElementType(), 3152 addr.getAlignment().getQuantity()); 3153 } 3154 3155 bool isIndirect() const { return Alignment != 0; } 3156 llvm::Value *getAnyValue() const { return Value; } 3157 3158 llvm::Value *getDirectValue() const { 3159 assert(!isIndirect()); 3160 return Value; 3161 } 3162 3163 Address getIndirectAddress() const { 3164 assert(isIndirect()); 3165 return Address(Value, ElementType, CharUnits::fromQuantity(Alignment)); 3166 } 3167 }; 3168 3169 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 3170 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 3171 3172 /// protectFromPeepholes - Protect a value that we're intending to 3173 /// store to the side, but which will probably be used later, from 3174 /// aggressive peepholing optimizations that might delete it. 3175 /// 3176 /// Pass the result to unprotectFromPeepholes to declare that 3177 /// protection is no longer required. 3178 /// 3179 /// There's no particular reason why this shouldn't apply to 3180 /// l-values, it's just that no existing peepholes work on pointers. 3181 PeepholeProtection protectFromPeepholes(RValue rvalue); 3182 void unprotectFromPeepholes(PeepholeProtection protection); 3183 3184 void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, 3185 SourceLocation Loc, 3186 SourceLocation AssumptionLoc, 3187 llvm::Value *Alignment, 3188 llvm::Value *OffsetValue, 3189 llvm::Value *TheCheck, 3190 llvm::Instruction *Assumption); 3191 3192 void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, 3193 SourceLocation Loc, SourceLocation AssumptionLoc, 3194 llvm::Value *Alignment, 3195 llvm::Value *OffsetValue = nullptr); 3196 3197 void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, 3198 SourceLocation AssumptionLoc, 3199 llvm::Value *Alignment, 3200 llvm::Value *OffsetValue = nullptr); 3201 3202 //===--------------------------------------------------------------------===// 3203 // Statement Emission 3204 //===--------------------------------------------------------------------===// 3205 3206 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 3207 void EmitStopPoint(const Stmt *S); 3208 3209 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 3210 /// this function even if there is no current insertion point. 3211 /// 3212 /// This function may clear the current insertion point; callers should use 3213 /// EnsureInsertPoint if they wish to subsequently generate code without first 3214 /// calling EmitBlock, EmitBranch, or EmitStmt. 3215 void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = None); 3216 3217 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 3218 /// necessarily require an insertion point or debug information; typically 3219 /// because the statement amounts to a jump or a container of other 3220 /// statements. 3221 /// 3222 /// \return True if the statement was handled. 3223 bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); 3224 3225 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 3226 AggValueSlot AVS = AggValueSlot::ignored()); 3227 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 3228 bool GetLast = false, 3229 AggValueSlot AVS = 3230 AggValueSlot::ignored()); 3231 3232 /// EmitLabel - Emit the block for the given label. It is legal to call this 3233 /// function even if there is no current insertion point. 3234 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 3235 3236 void EmitLabelStmt(const LabelStmt &S); 3237 void EmitAttributedStmt(const AttributedStmt &S); 3238 void EmitGotoStmt(const GotoStmt &S); 3239 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 3240 void EmitIfStmt(const IfStmt &S); 3241 3242 void EmitWhileStmt(const WhileStmt &S, 3243 ArrayRef<const Attr *> Attrs = None); 3244 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 3245 void EmitForStmt(const ForStmt &S, 3246 ArrayRef<const Attr *> Attrs = None); 3247 void EmitReturnStmt(const ReturnStmt &S); 3248 void EmitDeclStmt(const DeclStmt &S); 3249 void EmitBreakStmt(const BreakStmt &S); 3250 void EmitContinueStmt(const ContinueStmt &S); 3251 void EmitSwitchStmt(const SwitchStmt &S); 3252 void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); 3253 void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3254 void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); 3255 void EmitAsmStmt(const AsmStmt &S); 3256 3257 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 3258 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 3259 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 3260 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 3261 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 3262 3263 void EmitCoroutineBody(const CoroutineBodyStmt &S); 3264 void EmitCoreturnStmt(const CoreturnStmt &S); 3265 RValue EmitCoawaitExpr(const CoawaitExpr &E, 3266 AggValueSlot aggSlot = AggValueSlot::ignored(), 3267 bool ignoreResult = false); 3268 LValue EmitCoawaitLValue(const CoawaitExpr *E); 3269 RValue EmitCoyieldExpr(const CoyieldExpr &E, 3270 AggValueSlot aggSlot = AggValueSlot::ignored(), 3271 bool ignoreResult = false); 3272 LValue EmitCoyieldLValue(const CoyieldExpr *E); 3273 RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); 3274 3275 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3276 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 3277 3278 void EmitCXXTryStmt(const CXXTryStmt &S); 3279 void EmitSEHTryStmt(const SEHTryStmt &S); 3280 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 3281 void EnterSEHTryStmt(const SEHTryStmt &S); 3282 void ExitSEHTryStmt(const SEHTryStmt &S); 3283 void VolatilizeTryBlocks(llvm::BasicBlock *BB, 3284 llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); 3285 3286 void pushSEHCleanup(CleanupKind kind, 3287 llvm::Function *FinallyFunc); 3288 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 3289 const Stmt *OutlinedStmt); 3290 3291 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 3292 const SEHExceptStmt &Except); 3293 3294 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 3295 const SEHFinallyStmt &Finally); 3296 3297 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 3298 llvm::Value *ParentFP, 3299 llvm::Value *EntryEBP); 3300 llvm::Value *EmitSEHExceptionCode(); 3301 llvm::Value *EmitSEHExceptionInfo(); 3302 llvm::Value *EmitSEHAbnormalTermination(); 3303 3304 /// Emit simple code for OpenMP directives in Simd-only mode. 3305 void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); 3306 3307 /// Scan the outlined statement for captures from the parent function. For 3308 /// each capture, mark the capture as escaped and emit a call to 3309 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 3310 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 3311 bool IsFilter); 3312 3313 /// Recovers the address of a local in a parent function. ParentVar is the 3314 /// address of the variable used in the immediate parent function. It can 3315 /// either be an alloca or a call to llvm.localrecover if there are nested 3316 /// outlined functions. ParentFP is the frame pointer of the outermost parent 3317 /// frame. 3318 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 3319 Address ParentVar, 3320 llvm::Value *ParentFP); 3321 3322 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 3323 ArrayRef<const Attr *> Attrs = None); 3324 3325 /// Controls insertion of cancellation exit blocks in worksharing constructs. 3326 class OMPCancelStackRAII { 3327 CodeGenFunction &CGF; 3328 3329 public: 3330 OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, 3331 bool HasCancel) 3332 : CGF(CGF) { 3333 CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); 3334 } 3335 ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } 3336 }; 3337 3338 /// Returns calculated size of the specified type. 3339 llvm::Value *getTypeSize(QualType Ty); 3340 LValue InitCapturedStruct(const CapturedStmt &S); 3341 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 3342 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 3343 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 3344 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 3345 SourceLocation Loc); 3346 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 3347 SmallVectorImpl<llvm::Value *> &CapturedVars); 3348 void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, 3349 SourceLocation Loc); 3350 /// Perform element by element copying of arrays with type \a 3351 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 3352 /// generated by \a CopyGen. 3353 /// 3354 /// \param DestAddr Address of the destination array. 3355 /// \param SrcAddr Address of the source array. 3356 /// \param OriginalType Type of destination and source arrays. 3357 /// \param CopyGen Copying procedure that copies value of single array element 3358 /// to another single array element. 3359 void EmitOMPAggregateAssign( 3360 Address DestAddr, Address SrcAddr, QualType OriginalType, 3361 const llvm::function_ref<void(Address, Address)> CopyGen); 3362 /// Emit proper copying of data from one variable to another. 3363 /// 3364 /// \param OriginalType Original type of the copied variables. 3365 /// \param DestAddr Destination address. 3366 /// \param SrcAddr Source address. 3367 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 3368 /// type of the base array element). 3369 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 3370 /// the base array element). 3371 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 3372 /// DestVD. 3373 void EmitOMPCopy(QualType OriginalType, 3374 Address DestAddr, Address SrcAddr, 3375 const VarDecl *DestVD, const VarDecl *SrcVD, 3376 const Expr *Copy); 3377 /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or 3378 /// \a X = \a E \a BO \a E. 3379 /// 3380 /// \param X Value to be updated. 3381 /// \param E Update value. 3382 /// \param BO Binary operation for update operation. 3383 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 3384 /// expression, false otherwise. 3385 /// \param AO Atomic ordering of the generated atomic instructions. 3386 /// \param CommonGen Code generator for complex expressions that cannot be 3387 /// expressed through atomicrmw instruction. 3388 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 3389 /// generated, <false, RValue::get(nullptr)> otherwise. 3390 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 3391 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 3392 llvm::AtomicOrdering AO, SourceLocation Loc, 3393 const llvm::function_ref<RValue(RValue)> CommonGen); 3394 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 3395 OMPPrivateScope &PrivateScope); 3396 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 3397 OMPPrivateScope &PrivateScope); 3398 void EmitOMPUseDevicePtrClause( 3399 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 3400 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3401 void EmitOMPUseDeviceAddrClause( 3402 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 3403 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap); 3404 /// Emit code for copyin clause in \a D directive. The next code is 3405 /// generated at the start of outlined functions for directives: 3406 /// \code 3407 /// threadprivate_var1 = master_threadprivate_var1; 3408 /// operator=(threadprivate_var2, master_threadprivate_var2); 3409 /// ... 3410 /// __kmpc_barrier(&loc, global_tid); 3411 /// \endcode 3412 /// 3413 /// \param D OpenMP directive possibly with 'copyin' clause(s). 3414 /// \returns true if at least one copyin variable is found, false otherwise. 3415 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 3416 /// Emit initial code for lastprivate variables. If some variable is 3417 /// not also firstprivate, then the default initialization is used. Otherwise 3418 /// initialization of this variable is performed by EmitOMPFirstprivateClause 3419 /// method. 3420 /// 3421 /// \param D Directive that may have 'lastprivate' directives. 3422 /// \param PrivateScope Private scope for capturing lastprivate variables for 3423 /// proper codegen in internal captured statement. 3424 /// 3425 /// \returns true if there is at least one lastprivate variable, false 3426 /// otherwise. 3427 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 3428 OMPPrivateScope &PrivateScope); 3429 /// Emit final copying of lastprivate values to original variables at 3430 /// the end of the worksharing or simd directive. 3431 /// 3432 /// \param D Directive that has at least one 'lastprivate' directives. 3433 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 3434 /// it is the last iteration of the loop code in associated directive, or to 3435 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 3436 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 3437 bool NoFinals, 3438 llvm::Value *IsLastIterCond = nullptr); 3439 /// Emit initial code for linear clauses. 3440 void EmitOMPLinearClause(const OMPLoopDirective &D, 3441 CodeGenFunction::OMPPrivateScope &PrivateScope); 3442 /// Emit final code for linear clauses. 3443 /// \param CondGen Optional conditional code for final part of codegen for 3444 /// linear clause. 3445 void EmitOMPLinearClauseFinal( 3446 const OMPLoopDirective &D, 3447 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3448 /// Emit initial code for reduction variables. Creates reduction copies 3449 /// and initializes them with the values according to OpenMP standard. 3450 /// 3451 /// \param D Directive (possibly) with the 'reduction' clause. 3452 /// \param PrivateScope Private scope for capturing reduction variables for 3453 /// proper codegen in internal captured statement. 3454 /// 3455 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 3456 OMPPrivateScope &PrivateScope, 3457 bool ForInscan = false); 3458 /// Emit final update of reduction values to original variables at 3459 /// the end of the directive. 3460 /// 3461 /// \param D Directive that has at least one 'reduction' directives. 3462 /// \param ReductionKind The kind of reduction to perform. 3463 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, 3464 const OpenMPDirectiveKind ReductionKind); 3465 /// Emit initial code for linear variables. Creates private copies 3466 /// and initializes them with the values according to OpenMP standard. 3467 /// 3468 /// \param D Directive (possibly) with the 'linear' clause. 3469 /// \return true if at least one linear variable is found that should be 3470 /// initialized with the value of the original variable, false otherwise. 3471 bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); 3472 3473 typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, 3474 llvm::Function * /*OutlinedFn*/, 3475 const OMPTaskDataTy & /*Data*/)> 3476 TaskGenTy; 3477 void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, 3478 const OpenMPDirectiveKind CapturedRegion, 3479 const RegionCodeGenTy &BodyGen, 3480 const TaskGenTy &TaskGen, OMPTaskDataTy &Data); 3481 struct OMPTargetDataInfo { 3482 Address BasePointersArray = Address::invalid(); 3483 Address PointersArray = Address::invalid(); 3484 Address SizesArray = Address::invalid(); 3485 Address MappersArray = Address::invalid(); 3486 unsigned NumberOfTargetItems = 0; 3487 explicit OMPTargetDataInfo() = default; 3488 OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, 3489 Address SizesArray, Address MappersArray, 3490 unsigned NumberOfTargetItems) 3491 : BasePointersArray(BasePointersArray), PointersArray(PointersArray), 3492 SizesArray(SizesArray), MappersArray(MappersArray), 3493 NumberOfTargetItems(NumberOfTargetItems) {} 3494 }; 3495 void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, 3496 const RegionCodeGenTy &BodyGen, 3497 OMPTargetDataInfo &InputInfo); 3498 void processInReduction(const OMPExecutableDirective &S, 3499 OMPTaskDataTy &Data, 3500 CodeGenFunction &CGF, 3501 const CapturedStmt *CS, 3502 OMPPrivateScope &Scope); 3503 void EmitOMPMetaDirective(const OMPMetaDirective &S); 3504 void EmitOMPParallelDirective(const OMPParallelDirective &S); 3505 void EmitOMPSimdDirective(const OMPSimdDirective &S); 3506 void EmitOMPTileDirective(const OMPTileDirective &S); 3507 void EmitOMPUnrollDirective(const OMPUnrollDirective &S); 3508 void EmitOMPForDirective(const OMPForDirective &S); 3509 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 3510 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 3511 void EmitOMPSectionDirective(const OMPSectionDirective &S); 3512 void EmitOMPSingleDirective(const OMPSingleDirective &S); 3513 void EmitOMPMasterDirective(const OMPMasterDirective &S); 3514 void EmitOMPMaskedDirective(const OMPMaskedDirective &S); 3515 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 3516 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 3517 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 3518 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 3519 void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); 3520 void EmitOMPTaskDirective(const OMPTaskDirective &S); 3521 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 3522 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 3523 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 3524 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 3525 void EmitOMPFlushDirective(const OMPFlushDirective &S); 3526 void EmitOMPDepobjDirective(const OMPDepobjDirective &S); 3527 void EmitOMPScanDirective(const OMPScanDirective &S); 3528 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 3529 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 3530 void EmitOMPTargetDirective(const OMPTargetDirective &S); 3531 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 3532 void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); 3533 void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); 3534 void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); 3535 void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); 3536 void 3537 EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); 3538 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 3539 void 3540 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 3541 void EmitOMPCancelDirective(const OMPCancelDirective &S); 3542 void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); 3543 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 3544 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 3545 void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); 3546 void 3547 EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); 3548 void EmitOMPParallelMasterTaskLoopDirective( 3549 const OMPParallelMasterTaskLoopDirective &S); 3550 void EmitOMPParallelMasterTaskLoopSimdDirective( 3551 const OMPParallelMasterTaskLoopSimdDirective &S); 3552 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 3553 void EmitOMPDistributeParallelForDirective( 3554 const OMPDistributeParallelForDirective &S); 3555 void EmitOMPDistributeParallelForSimdDirective( 3556 const OMPDistributeParallelForSimdDirective &S); 3557 void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); 3558 void EmitOMPTargetParallelForSimdDirective( 3559 const OMPTargetParallelForSimdDirective &S); 3560 void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); 3561 void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); 3562 void 3563 EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); 3564 void EmitOMPTeamsDistributeParallelForSimdDirective( 3565 const OMPTeamsDistributeParallelForSimdDirective &S); 3566 void EmitOMPTeamsDistributeParallelForDirective( 3567 const OMPTeamsDistributeParallelForDirective &S); 3568 void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); 3569 void EmitOMPTargetTeamsDistributeDirective( 3570 const OMPTargetTeamsDistributeDirective &S); 3571 void EmitOMPTargetTeamsDistributeParallelForDirective( 3572 const OMPTargetTeamsDistributeParallelForDirective &S); 3573 void EmitOMPTargetTeamsDistributeParallelForSimdDirective( 3574 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3575 void EmitOMPTargetTeamsDistributeSimdDirective( 3576 const OMPTargetTeamsDistributeSimdDirective &S); 3577 void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); 3578 void EmitOMPInteropDirective(const OMPInteropDirective &S); 3579 3580 /// Emit device code for the target directive. 3581 static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 3582 StringRef ParentName, 3583 const OMPTargetDirective &S); 3584 static void 3585 EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3586 const OMPTargetParallelDirective &S); 3587 /// Emit device code for the target parallel for directive. 3588 static void EmitOMPTargetParallelForDeviceFunction( 3589 CodeGenModule &CGM, StringRef ParentName, 3590 const OMPTargetParallelForDirective &S); 3591 /// Emit device code for the target parallel for simd directive. 3592 static void EmitOMPTargetParallelForSimdDeviceFunction( 3593 CodeGenModule &CGM, StringRef ParentName, 3594 const OMPTargetParallelForSimdDirective &S); 3595 /// Emit device code for the target teams directive. 3596 static void 3597 EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, 3598 const OMPTargetTeamsDirective &S); 3599 /// Emit device code for the target teams distribute directive. 3600 static void EmitOMPTargetTeamsDistributeDeviceFunction( 3601 CodeGenModule &CGM, StringRef ParentName, 3602 const OMPTargetTeamsDistributeDirective &S); 3603 /// Emit device code for the target teams distribute simd directive. 3604 static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( 3605 CodeGenModule &CGM, StringRef ParentName, 3606 const OMPTargetTeamsDistributeSimdDirective &S); 3607 /// Emit device code for the target simd directive. 3608 static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, 3609 StringRef ParentName, 3610 const OMPTargetSimdDirective &S); 3611 /// Emit device code for the target teams distribute parallel for simd 3612 /// directive. 3613 static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 3614 CodeGenModule &CGM, StringRef ParentName, 3615 const OMPTargetTeamsDistributeParallelForSimdDirective &S); 3616 3617 static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 3618 CodeGenModule &CGM, StringRef ParentName, 3619 const OMPTargetTeamsDistributeParallelForDirective &S); 3620 3621 /// Emit the Stmt \p S and return its topmost canonical loop, if any. 3622 /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the 3623 /// future it is meant to be the number of loops expected in the loop nests 3624 /// (usually specified by the "collapse" clause) that are collapsed to a 3625 /// single loop by this function. 3626 llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, 3627 int Depth); 3628 3629 /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. 3630 void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); 3631 3632 /// Emit inner loop of the worksharing/simd construct. 3633 /// 3634 /// \param S Directive, for which the inner loop must be emitted. 3635 /// \param RequiresCleanup true, if directive has some associated private 3636 /// variables. 3637 /// \param LoopCond Bollean condition for loop continuation. 3638 /// \param IncExpr Increment expression for loop control variable. 3639 /// \param BodyGen Generator for the inner body of the inner loop. 3640 /// \param PostIncGen Genrator for post-increment code (required for ordered 3641 /// loop directvies). 3642 void EmitOMPInnerLoop( 3643 const OMPExecutableDirective &S, bool RequiresCleanup, 3644 const Expr *LoopCond, const Expr *IncExpr, 3645 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 3646 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); 3647 3648 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 3649 /// Emit initial code for loop counters of loop-based directives. 3650 void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, 3651 OMPPrivateScope &LoopScope); 3652 3653 /// Helper for the OpenMP loop directives. 3654 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 3655 3656 /// Emit code for the worksharing loop-based directive. 3657 /// \return true, if this construct has any lastprivate clause, false - 3658 /// otherwise. 3659 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, 3660 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3661 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3662 3663 /// Emit code for the distribute loop-based directive. 3664 void EmitOMPDistributeLoop(const OMPLoopDirective &S, 3665 const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); 3666 3667 /// Helpers for the OpenMP loop directives. 3668 void EmitOMPSimdInit(const OMPLoopDirective &D); 3669 void EmitOMPSimdFinal( 3670 const OMPLoopDirective &D, 3671 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); 3672 3673 /// Emits the lvalue for the expression with possibly captured variable. 3674 LValue EmitOMPSharedLValue(const Expr *E); 3675 3676 private: 3677 /// Helpers for blocks. 3678 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 3679 3680 /// struct with the values to be passed to the OpenMP loop-related functions 3681 struct OMPLoopArguments { 3682 /// loop lower bound 3683 Address LB = Address::invalid(); 3684 /// loop upper bound 3685 Address UB = Address::invalid(); 3686 /// loop stride 3687 Address ST = Address::invalid(); 3688 /// isLastIteration argument for runtime functions 3689 Address IL = Address::invalid(); 3690 /// Chunk value generated by sema 3691 llvm::Value *Chunk = nullptr; 3692 /// EnsureUpperBound 3693 Expr *EUB = nullptr; 3694 /// IncrementExpression 3695 Expr *IncExpr = nullptr; 3696 /// Loop initialization 3697 Expr *Init = nullptr; 3698 /// Loop exit condition 3699 Expr *Cond = nullptr; 3700 /// Update of LB after a whole chunk has been executed 3701 Expr *NextLB = nullptr; 3702 /// Update of UB after a whole chunk has been executed 3703 Expr *NextUB = nullptr; 3704 OMPLoopArguments() = default; 3705 OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, 3706 llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, 3707 Expr *IncExpr = nullptr, Expr *Init = nullptr, 3708 Expr *Cond = nullptr, Expr *NextLB = nullptr, 3709 Expr *NextUB = nullptr) 3710 : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), 3711 IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), 3712 NextUB(NextUB) {} 3713 }; 3714 void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, 3715 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, 3716 const OMPLoopArguments &LoopArgs, 3717 const CodeGenLoopTy &CodeGenLoop, 3718 const CodeGenOrderedTy &CodeGenOrdered); 3719 void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, 3720 bool IsMonotonic, const OMPLoopDirective &S, 3721 OMPPrivateScope &LoopScope, bool Ordered, 3722 const OMPLoopArguments &LoopArgs, 3723 const CodeGenDispatchBoundsTy &CGDispatchBounds); 3724 void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, 3725 const OMPLoopDirective &S, 3726 OMPPrivateScope &LoopScope, 3727 const OMPLoopArguments &LoopArgs, 3728 const CodeGenLoopTy &CodeGenLoopContent); 3729 /// Emit code for sections directive. 3730 void EmitSections(const OMPExecutableDirective &S); 3731 3732 public: 3733 3734 //===--------------------------------------------------------------------===// 3735 // LValue Expression Emission 3736 //===--------------------------------------------------------------------===// 3737 3738 /// Create a check that a scalar RValue is non-null. 3739 llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); 3740 3741 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 3742 RValue GetUndefRValue(QualType Ty); 3743 3744 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 3745 /// and issue an ErrorUnsupported style diagnostic (using the 3746 /// provided Name). 3747 RValue EmitUnsupportedRValue(const Expr *E, 3748 const char *Name); 3749 3750 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 3751 /// an ErrorUnsupported style diagnostic (using the provided Name). 3752 LValue EmitUnsupportedLValue(const Expr *E, 3753 const char *Name); 3754 3755 /// EmitLValue - Emit code to compute a designator that specifies the location 3756 /// of the expression. 3757 /// 3758 /// This can return one of two things: a simple address or a bitfield 3759 /// reference. In either case, the LLVM Value* in the LValue structure is 3760 /// guaranteed to be an LLVM pointer type. 3761 /// 3762 /// If this returns a bitfield reference, nothing about the pointee type of 3763 /// the LLVM value is known: For example, it may not be a pointer to an 3764 /// integer. 3765 /// 3766 /// If this returns a normal address, and if the lvalue's C type is fixed 3767 /// size, this method guarantees that the returned pointer type will point to 3768 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 3769 /// variable length type, this is not possible. 3770 /// 3771 LValue EmitLValue(const Expr *E); 3772 3773 /// Same as EmitLValue but additionally we generate checking code to 3774 /// guard against undefined behavior. This is only suitable when we know 3775 /// that the address will be used to access the object. 3776 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 3777 3778 RValue convertTempToRValue(Address addr, QualType type, 3779 SourceLocation Loc); 3780 3781 void EmitAtomicInit(Expr *E, LValue lvalue); 3782 3783 bool LValueIsSuitableForInlineAtomic(LValue Src); 3784 3785 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 3786 AggValueSlot Slot = AggValueSlot::ignored()); 3787 3788 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 3789 llvm::AtomicOrdering AO, bool IsVolatile = false, 3790 AggValueSlot slot = AggValueSlot::ignored()); 3791 3792 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 3793 3794 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 3795 bool IsVolatile, bool isInit); 3796 3797 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 3798 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 3799 llvm::AtomicOrdering Success = 3800 llvm::AtomicOrdering::SequentiallyConsistent, 3801 llvm::AtomicOrdering Failure = 3802 llvm::AtomicOrdering::SequentiallyConsistent, 3803 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 3804 3805 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 3806 const llvm::function_ref<RValue(RValue)> &UpdateOp, 3807 bool IsVolatile); 3808 3809 /// EmitToMemory - Change a scalar value from its value 3810 /// representation to its in-memory representation. 3811 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 3812 3813 /// EmitFromMemory - Change a scalar value from its memory 3814 /// representation to its value representation. 3815 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 3816 3817 /// Check if the scalar \p Value is within the valid range for the given 3818 /// type \p Ty. 3819 /// 3820 /// Returns true if a check is needed (even if the range is unknown). 3821 bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 3822 SourceLocation Loc); 3823 3824 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3825 /// care to appropriately convert from the memory representation to 3826 /// the LLVM value representation. 3827 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3828 SourceLocation Loc, 3829 AlignmentSource Source = AlignmentSource::Type, 3830 bool isNontemporal = false) { 3831 return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source), 3832 CGM.getTBAAAccessInfo(Ty), isNontemporal); 3833 } 3834 3835 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 3836 SourceLocation Loc, LValueBaseInfo BaseInfo, 3837 TBAAAccessInfo TBAAInfo, 3838 bool isNontemporal = false); 3839 3840 /// EmitLoadOfScalar - Load a scalar value from an address, taking 3841 /// care to appropriately convert from the memory representation to 3842 /// the LLVM value representation. The l-value must be a simple 3843 /// l-value. 3844 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 3845 3846 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3847 /// care to appropriately convert from the memory representation to 3848 /// the LLVM value representation. 3849 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3850 bool Volatile, QualType Ty, 3851 AlignmentSource Source = AlignmentSource::Type, 3852 bool isInit = false, bool isNontemporal = false) { 3853 EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source), 3854 CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal); 3855 } 3856 3857 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 3858 bool Volatile, QualType Ty, 3859 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, 3860 bool isInit = false, bool isNontemporal = false); 3861 3862 /// EmitStoreOfScalar - Store a scalar value to an address, taking 3863 /// care to appropriately convert from the memory representation to 3864 /// the LLVM value representation. The l-value must be a simple 3865 /// l-value. The isInit flag indicates whether this is an initialization. 3866 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 3867 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 3868 3869 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 3870 /// this method emits the address of the lvalue, then loads the result as an 3871 /// rvalue, returning the rvalue. 3872 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 3873 RValue EmitLoadOfExtVectorElementLValue(LValue V); 3874 RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); 3875 RValue EmitLoadOfGlobalRegLValue(LValue LV); 3876 3877 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 3878 /// lvalue, where both are guaranteed to the have the same type, and that type 3879 /// is 'Ty'. 3880 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 3881 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 3882 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 3883 3884 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 3885 /// as EmitStoreThroughLValue. 3886 /// 3887 /// \param Result [out] - If non-null, this will be set to a Value* for the 3888 /// bit-field contents after the store, appropriate for use as the result of 3889 /// an assignment to the bit-field. 3890 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 3891 llvm::Value **Result=nullptr); 3892 3893 /// Emit an l-value for an assignment (simple or compound) of complex type. 3894 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 3895 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 3896 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 3897 llvm::Value *&Result); 3898 3899 // Note: only available for agg return types 3900 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 3901 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 3902 // Note: only available for agg return types 3903 LValue EmitCallExprLValue(const CallExpr *E); 3904 // Note: only available for agg return types 3905 LValue EmitVAArgExprLValue(const VAArgExpr *E); 3906 LValue EmitDeclRefLValue(const DeclRefExpr *E); 3907 LValue EmitStringLiteralLValue(const StringLiteral *E); 3908 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 3909 LValue EmitPredefinedLValue(const PredefinedExpr *E); 3910 LValue EmitUnaryOpLValue(const UnaryOperator *E); 3911 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3912 bool Accessed = false); 3913 LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); 3914 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3915 bool IsLowerBound = true); 3916 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 3917 LValue EmitMemberExpr(const MemberExpr *E); 3918 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 3919 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 3920 LValue EmitInitListLValue(const InitListExpr *E); 3921 void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); 3922 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 3923 LValue EmitCastLValue(const CastExpr *E); 3924 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 3925 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 3926 3927 Address EmitExtVectorElementLValue(LValue V); 3928 3929 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 3930 3931 Address EmitArrayToPointerDecay(const Expr *Array, 3932 LValueBaseInfo *BaseInfo = nullptr, 3933 TBAAAccessInfo *TBAAInfo = nullptr); 3934 3935 class ConstantEmission { 3936 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 3937 ConstantEmission(llvm::Constant *C, bool isReference) 3938 : ValueAndIsReference(C, isReference) {} 3939 public: 3940 ConstantEmission() {} 3941 static ConstantEmission forReference(llvm::Constant *C) { 3942 return ConstantEmission(C, true); 3943 } 3944 static ConstantEmission forValue(llvm::Constant *C) { 3945 return ConstantEmission(C, false); 3946 } 3947 3948 explicit operator bool() const { 3949 return ValueAndIsReference.getOpaqueValue() != nullptr; 3950 } 3951 3952 bool isReference() const { return ValueAndIsReference.getInt(); } 3953 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 3954 assert(isReference()); 3955 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 3956 refExpr->getType()); 3957 } 3958 3959 llvm::Constant *getValue() const { 3960 assert(!isReference()); 3961 return ValueAndIsReference.getPointer(); 3962 } 3963 }; 3964 3965 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 3966 ConstantEmission tryEmitAsConstant(const MemberExpr *ME); 3967 llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); 3968 3969 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 3970 AggValueSlot slot = AggValueSlot::ignored()); 3971 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 3972 3973 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3974 const ObjCIvarDecl *Ivar); 3975 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 3976 LValue EmitLValueForLambdaField(const FieldDecl *Field); 3977 3978 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 3979 /// if the Field is a reference, this will return the address of the reference 3980 /// and not the address of the value stored in the reference. 3981 LValue EmitLValueForFieldInitialization(LValue Base, 3982 const FieldDecl* Field); 3983 3984 LValue EmitLValueForIvar(QualType ObjectTy, 3985 llvm::Value* Base, const ObjCIvarDecl *Ivar, 3986 unsigned CVRQualifiers); 3987 3988 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 3989 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 3990 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 3991 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 3992 3993 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 3994 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 3995 LValue EmitStmtExprLValue(const StmtExpr *E); 3996 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 3997 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 3998 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); 3999 4000 //===--------------------------------------------------------------------===// 4001 // Scalar Expression Emission 4002 //===--------------------------------------------------------------------===// 4003 4004 /// EmitCall - Generate a call of the given function, expecting the given 4005 /// result type, and using the given argument list which specifies both the 4006 /// LLVM arguments and the types they were derived from. 4007 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4008 ReturnValueSlot ReturnValue, const CallArgList &Args, 4009 llvm::CallBase **callOrInvoke, bool IsMustTail, 4010 SourceLocation Loc); 4011 RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, 4012 ReturnValueSlot ReturnValue, const CallArgList &Args, 4013 llvm::CallBase **callOrInvoke = nullptr, 4014 bool IsMustTail = false) { 4015 return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, 4016 IsMustTail, SourceLocation()); 4017 } 4018 RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, 4019 ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); 4020 RValue EmitCallExpr(const CallExpr *E, 4021 ReturnValueSlot ReturnValue = ReturnValueSlot()); 4022 RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4023 CGCallee EmitCallee(const Expr *E); 4024 4025 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 4026 void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); 4027 4028 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4029 const Twine &name = ""); 4030 llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, 4031 ArrayRef<llvm::Value *> args, 4032 const Twine &name = ""); 4033 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4034 const Twine &name = ""); 4035 llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4036 ArrayRef<llvm::Value *> args, 4037 const Twine &name = ""); 4038 4039 SmallVector<llvm::OperandBundleDef, 1> 4040 getBundlesForFunclet(llvm::Value *Callee); 4041 4042 llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, 4043 ArrayRef<llvm::Value *> Args, 4044 const Twine &Name = ""); 4045 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4046 ArrayRef<llvm::Value *> args, 4047 const Twine &name = ""); 4048 llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4049 const Twine &name = ""); 4050 void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4051 ArrayRef<llvm::Value *> args); 4052 4053 CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 4054 NestedNameSpecifier *Qual, 4055 llvm::Type *Ty); 4056 4057 CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 4058 CXXDtorType Type, 4059 const CXXRecordDecl *RD); 4060 4061 // Return the copy constructor name with the prefix "__copy_constructor_" 4062 // removed. 4063 static std::string getNonTrivialCopyConstructorStr(QualType QT, 4064 CharUnits Alignment, 4065 bool IsVolatile, 4066 ASTContext &Ctx); 4067 4068 // Return the destructor name with the prefix "__destructor_" removed. 4069 static std::string getNonTrivialDestructorStr(QualType QT, 4070 CharUnits Alignment, 4071 bool IsVolatile, 4072 ASTContext &Ctx); 4073 4074 // These functions emit calls to the special functions of non-trivial C 4075 // structs. 4076 void defaultInitNonTrivialCStructVar(LValue Dst); 4077 void callCStructDefaultConstructor(LValue Dst); 4078 void callCStructDestructor(LValue Dst); 4079 void callCStructCopyConstructor(LValue Dst, LValue Src); 4080 void callCStructMoveConstructor(LValue Dst, LValue Src); 4081 void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); 4082 void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); 4083 4084 RValue 4085 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, 4086 const CGCallee &Callee, 4087 ReturnValueSlot ReturnValue, llvm::Value *This, 4088 llvm::Value *ImplicitParam, 4089 QualType ImplicitParamTy, const CallExpr *E, 4090 CallArgList *RtlArgs); 4091 RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, 4092 llvm::Value *This, QualType ThisTy, 4093 llvm::Value *ImplicitParam, 4094 QualType ImplicitParamTy, const CallExpr *E); 4095 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 4096 ReturnValueSlot ReturnValue); 4097 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 4098 const CXXMethodDecl *MD, 4099 ReturnValueSlot ReturnValue, 4100 bool HasQualifier, 4101 NestedNameSpecifier *Qualifier, 4102 bool IsArrow, const Expr *Base); 4103 // Compute the object pointer. 4104 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 4105 llvm::Value *memberPtr, 4106 const MemberPointerType *memberPtrType, 4107 LValueBaseInfo *BaseInfo = nullptr, 4108 TBAAAccessInfo *TBAAInfo = nullptr); 4109 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 4110 ReturnValueSlot ReturnValue); 4111 4112 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 4113 const CXXMethodDecl *MD, 4114 ReturnValueSlot ReturnValue); 4115 RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); 4116 4117 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 4118 ReturnValueSlot ReturnValue); 4119 4120 RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); 4121 RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); 4122 RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E); 4123 4124 RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 4125 const CallExpr *E, ReturnValueSlot ReturnValue); 4126 4127 RValue emitRotate(const CallExpr *E, bool IsRotateRight); 4128 4129 /// Emit IR for __builtin_os_log_format. 4130 RValue emitBuiltinOSLogFormat(const CallExpr &E); 4131 4132 /// Emit IR for __builtin_is_aligned. 4133 RValue EmitBuiltinIsAligned(const CallExpr *E); 4134 /// Emit IR for __builtin_align_up/__builtin_align_down. 4135 RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); 4136 4137 llvm::Function *generateBuiltinOSLogHelperFunction( 4138 const analyze_os_log::OSLogBufferLayout &Layout, 4139 CharUnits BufferAlignment); 4140 4141 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 4142 4143 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 4144 /// is unhandled by the current target. 4145 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4146 ReturnValueSlot ReturnValue); 4147 4148 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 4149 const llvm::CmpInst::Predicate Fp, 4150 const llvm::CmpInst::Predicate Ip, 4151 const llvm::Twine &Name = ""); 4152 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4153 ReturnValueSlot ReturnValue, 4154 llvm::Triple::ArchType Arch); 4155 llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4156 ReturnValueSlot ReturnValue, 4157 llvm::Triple::ArchType Arch); 4158 llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4159 ReturnValueSlot ReturnValue, 4160 llvm::Triple::ArchType Arch); 4161 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, 4162 QualType RTy); 4163 llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, 4164 QualType RTy); 4165 4166 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 4167 unsigned LLVMIntrinsic, 4168 unsigned AltLLVMIntrinsic, 4169 const char *NameHint, 4170 unsigned Modifier, 4171 const CallExpr *E, 4172 SmallVectorImpl<llvm::Value *> &Ops, 4173 Address PtrOp0, Address PtrOp1, 4174 llvm::Triple::ArchType Arch); 4175 4176 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 4177 unsigned Modifier, llvm::Type *ArgTy, 4178 const CallExpr *E); 4179 llvm::Value *EmitNeonCall(llvm::Function *F, 4180 SmallVectorImpl<llvm::Value*> &O, 4181 const char *name, 4182 unsigned shift = 0, bool rightshift = false); 4183 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, 4184 const llvm::ElementCount &Count); 4185 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 4186 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 4187 bool negateForRightShift); 4188 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 4189 llvm::Type *Ty, bool usgn, const char *name); 4190 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 4191 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 4192 /// access builtin. Only required if it can't be inferred from the base 4193 /// pointer operand. 4194 llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); 4195 4196 SmallVector<llvm::Type *, 2> 4197 getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, 4198 ArrayRef<llvm::Value *> Ops); 4199 llvm::Type *getEltType(const SVETypeFlags &TypeFlags); 4200 llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); 4201 llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); 4202 llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); 4203 llvm::Value *EmitSVEDupX(llvm::Value *Scalar); 4204 llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); 4205 llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); 4206 llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, 4207 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4208 unsigned BuiltinID); 4209 llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, 4210 llvm::ArrayRef<llvm::Value *> Ops, 4211 unsigned BuiltinID); 4212 llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, 4213 llvm::ScalableVectorType *VTy); 4214 llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 4215 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4216 unsigned IntID); 4217 llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 4218 llvm::SmallVectorImpl<llvm::Value *> &Ops, 4219 unsigned IntID); 4220 llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, 4221 SmallVectorImpl<llvm::Value *> &Ops, 4222 unsigned BuiltinID, bool IsZExtReturn); 4223 llvm::Value *EmitSVEMaskedStore(const CallExpr *, 4224 SmallVectorImpl<llvm::Value *> &Ops, 4225 unsigned BuiltinID); 4226 llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 4227 SmallVectorImpl<llvm::Value *> &Ops, 4228 unsigned BuiltinID); 4229 llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 4230 SmallVectorImpl<llvm::Value *> &Ops, 4231 unsigned IntID); 4232 llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 4233 SmallVectorImpl<llvm::Value *> &Ops, 4234 unsigned IntID); 4235 llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, 4236 SmallVectorImpl<llvm::Value *> &Ops, 4237 unsigned IntID); 4238 llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4239 4240 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4241 llvm::Triple::ArchType Arch); 4242 llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4243 4244 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 4245 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4246 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4247 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4248 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4249 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4250 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 4251 const CallExpr *E); 4252 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 4253 llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, 4254 ReturnValueSlot ReturnValue); 4255 bool ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, 4256 llvm::AtomicOrdering &AO, 4257 llvm::SyncScope::ID &SSID); 4258 4259 enum class MSVCIntrin; 4260 llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); 4261 4262 llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); 4263 4264 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 4265 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 4266 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 4267 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 4268 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 4269 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 4270 const ObjCMethodDecl *MethodWithObjects); 4271 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 4272 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 4273 ReturnValueSlot Return = ReturnValueSlot()); 4274 4275 /// Retrieves the default cleanup kind for an ARC cleanup. 4276 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 4277 CleanupKind getARCCleanupKind() { 4278 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 4279 ? NormalAndEHCleanup : NormalCleanup; 4280 } 4281 4282 // ARC primitives. 4283 void EmitARCInitWeak(Address addr, llvm::Value *value); 4284 void EmitARCDestroyWeak(Address addr); 4285 llvm::Value *EmitARCLoadWeak(Address addr); 4286 llvm::Value *EmitARCLoadWeakRetained(Address addr); 4287 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 4288 void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4289 void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); 4290 void EmitARCCopyWeak(Address dst, Address src); 4291 void EmitARCMoveWeak(Address dst, Address src); 4292 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 4293 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 4294 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 4295 bool resultIgnored); 4296 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 4297 bool resultIgnored); 4298 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 4299 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 4300 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 4301 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 4302 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4303 llvm::Value *EmitARCAutorelease(llvm::Value *value); 4304 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 4305 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 4306 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 4307 llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); 4308 4309 llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); 4310 llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, 4311 llvm::Type *returnType); 4312 void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 4313 4314 std::pair<LValue,llvm::Value*> 4315 EmitARCStoreAutoreleasing(const BinaryOperator *e); 4316 std::pair<LValue,llvm::Value*> 4317 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 4318 std::pair<LValue,llvm::Value*> 4319 EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); 4320 4321 llvm::Value *EmitObjCAlloc(llvm::Value *value, 4322 llvm::Type *returnType); 4323 llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, 4324 llvm::Type *returnType); 4325 llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); 4326 4327 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 4328 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 4329 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 4330 4331 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 4332 llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, 4333 bool allowUnsafeClaim); 4334 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 4335 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 4336 llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); 4337 4338 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 4339 4340 void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); 4341 4342 static Destroyer destroyARCStrongImprecise; 4343 static Destroyer destroyARCStrongPrecise; 4344 static Destroyer destroyARCWeak; 4345 static Destroyer emitARCIntrinsicUse; 4346 static Destroyer destroyNonTrivialCStruct; 4347 4348 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 4349 llvm::Value *EmitObjCAutoreleasePoolPush(); 4350 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 4351 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 4352 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 4353 4354 /// Emits a reference binding to the passed in expression. 4355 RValue EmitReferenceBindingToExpr(const Expr *E); 4356 4357 //===--------------------------------------------------------------------===// 4358 // Expression Emission 4359 //===--------------------------------------------------------------------===// 4360 4361 // Expressions are broken into three classes: scalar, complex, aggregate. 4362 4363 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 4364 /// scalar type, returning the result. 4365 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 4366 4367 /// Emit a conversion from the specified type to the specified destination 4368 /// type, both of which are LLVM scalar types. 4369 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 4370 QualType DstTy, SourceLocation Loc); 4371 4372 /// Emit a conversion from the specified complex type to the specified 4373 /// destination type, where the destination type is an LLVM scalar type. 4374 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 4375 QualType DstTy, 4376 SourceLocation Loc); 4377 4378 /// EmitAggExpr - Emit the computation of the specified expression 4379 /// of aggregate type. The result is computed into the given slot, 4380 /// which may be null to indicate that the value is not needed. 4381 void EmitAggExpr(const Expr *E, AggValueSlot AS); 4382 4383 /// EmitAggExprToLValue - Emit the computation of the specified expression of 4384 /// aggregate type into a temporary LValue. 4385 LValue EmitAggExprToLValue(const Expr *E); 4386 4387 /// Build all the stores needed to initialize an aggregate at Dest with the 4388 /// value Val. 4389 void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile); 4390 4391 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 4392 /// make sure it survives garbage collection until this point. 4393 void EmitExtendGCLifetime(llvm::Value *object); 4394 4395 /// EmitComplexExpr - Emit the computation of the specified expression of 4396 /// complex type, returning the result. 4397 ComplexPairTy EmitComplexExpr(const Expr *E, 4398 bool IgnoreReal = false, 4399 bool IgnoreImag = false); 4400 4401 /// EmitComplexExprIntoLValue - Emit the given expression of complex 4402 /// type and place its result into the specified l-value. 4403 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 4404 4405 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 4406 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 4407 4408 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 4409 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 4410 4411 Address emitAddrOfRealComponent(Address complex, QualType complexType); 4412 Address emitAddrOfImagComponent(Address complex, QualType complexType); 4413 4414 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 4415 /// global variable that has already been created for it. If the initializer 4416 /// has a different type than GV does, this may free GV and return a different 4417 /// one. Otherwise it just returns GV. 4418 llvm::GlobalVariable * 4419 AddInitializerToStaticVarDecl(const VarDecl &D, 4420 llvm::GlobalVariable *GV); 4421 4422 // Emit an @llvm.invariant.start call for the given memory region. 4423 void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); 4424 4425 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 4426 /// variable with global storage. 4427 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, 4428 bool PerformInit); 4429 4430 llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, 4431 llvm::Constant *Addr); 4432 4433 llvm::Function *createTLSAtExitStub(const VarDecl &VD, 4434 llvm::FunctionCallee Dtor, 4435 llvm::Constant *Addr, 4436 llvm::FunctionCallee &AtExit); 4437 4438 /// Call atexit() with a function that passes the given argument to 4439 /// the given function. 4440 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, 4441 llvm::Constant *addr); 4442 4443 /// Call atexit() with function dtorStub. 4444 void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); 4445 4446 /// Call unatexit() with function dtorStub. 4447 llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); 4448 4449 /// Emit code in this function to perform a guarded variable 4450 /// initialization. Guarded initializations are used when it's not 4451 /// possible to prove that an initialization will be done exactly 4452 /// once, e.g. with a static local variable or a static data member 4453 /// of a class template. 4454 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 4455 bool PerformInit); 4456 4457 enum class GuardKind { VariableGuard, TlsGuard }; 4458 4459 /// Emit a branch to select whether or not to perform guarded initialization. 4460 void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, 4461 llvm::BasicBlock *InitBlock, 4462 llvm::BasicBlock *NoInitBlock, 4463 GuardKind Kind, const VarDecl *D); 4464 4465 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 4466 /// variables. 4467 void 4468 GenerateCXXGlobalInitFunc(llvm::Function *Fn, 4469 ArrayRef<llvm::Function *> CXXThreadLocals, 4470 ConstantAddress Guard = ConstantAddress::invalid()); 4471 4472 /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global 4473 /// variables. 4474 void GenerateCXXGlobalCleanUpFunc( 4475 llvm::Function *Fn, 4476 ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, 4477 llvm::Constant *>> 4478 DtorsOrStermFinalizers); 4479 4480 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 4481 const VarDecl *D, 4482 llvm::GlobalVariable *Addr, 4483 bool PerformInit); 4484 4485 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 4486 4487 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 4488 4489 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 4490 4491 RValue EmitAtomicExpr(AtomicExpr *E); 4492 4493 //===--------------------------------------------------------------------===// 4494 // Annotations Emission 4495 //===--------------------------------------------------------------------===// 4496 4497 /// Emit an annotation call (intrinsic). 4498 llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, 4499 llvm::Value *AnnotatedVal, 4500 StringRef AnnotationStr, 4501 SourceLocation Location, 4502 const AnnotateAttr *Attr); 4503 4504 /// Emit local annotations for the local variable V, declared by D. 4505 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 4506 4507 /// Emit field annotations for the given field & value. Returns the 4508 /// annotation result. 4509 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 4510 4511 //===--------------------------------------------------------------------===// 4512 // Internal Helpers 4513 //===--------------------------------------------------------------------===// 4514 4515 /// ContainsLabel - Return true if the statement contains a label in it. If 4516 /// this statement is not executed normally, it not containing a label means 4517 /// that we can just remove the code. 4518 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 4519 4520 /// containsBreak - Return true if the statement contains a break out of it. 4521 /// If the statement (recursively) contains a switch or loop with a break 4522 /// inside of it, this is fine. 4523 static bool containsBreak(const Stmt *S); 4524 4525 /// Determine if the given statement might introduce a declaration into the 4526 /// current scope, by being a (possibly-labelled) DeclStmt. 4527 static bool mightAddDeclToScope(const Stmt *S); 4528 4529 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4530 /// to a constant, or if it does but contains a label, return false. If it 4531 /// constant folds return true and set the boolean result in Result. 4532 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, 4533 bool AllowLabels = false); 4534 4535 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 4536 /// to a constant, or if it does but contains a label, return false. If it 4537 /// constant folds return true and set the folded value. 4538 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, 4539 bool AllowLabels = false); 4540 4541 /// isInstrumentedCondition - Determine whether the given condition is an 4542 /// instrumentable condition (i.e. no "&&" or "||"). 4543 static bool isInstrumentedCondition(const Expr *C); 4544 4545 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 4546 /// increments a profile counter based on the semantics of the given logical 4547 /// operator opcode. This is used to instrument branch condition coverage 4548 /// for logical operators. 4549 void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, 4550 llvm::BasicBlock *TrueBlock, 4551 llvm::BasicBlock *FalseBlock, 4552 uint64_t TrueCount = 0, 4553 Stmt::Likelihood LH = Stmt::LH_None, 4554 const Expr *CntrIdx = nullptr); 4555 4556 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 4557 /// if statement) to the specified blocks. Based on the condition, this might 4558 /// try to simplify the codegen of the conditional based on the branch. 4559 /// TrueCount should be the number of times we expect the condition to 4560 /// evaluate to true based on PGO data. 4561 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 4562 llvm::BasicBlock *FalseBlock, uint64_t TrueCount, 4563 Stmt::Likelihood LH = Stmt::LH_None); 4564 4565 /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is 4566 /// nonnull, if \p LHS is marked _Nonnull. 4567 void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); 4568 4569 /// An enumeration which makes it easier to specify whether or not an 4570 /// operation is a subtraction. 4571 enum { NotSubtraction = false, IsSubtraction = true }; 4572 4573 /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to 4574 /// detect undefined behavior when the pointer overflow sanitizer is enabled. 4575 /// \p SignedIndices indicates whether any of the GEP indices are signed. 4576 /// \p IsSubtraction indicates whether the expression used to form the GEP 4577 /// is a subtraction. 4578 llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, 4579 ArrayRef<llvm::Value *> IdxList, 4580 bool SignedIndices, 4581 bool IsSubtraction, 4582 SourceLocation Loc, 4583 const Twine &Name = ""); 4584 4585 /// Specifies which type of sanitizer check to apply when handling a 4586 /// particular builtin. 4587 enum BuiltinCheckKind { 4588 BCK_CTZPassedZero, 4589 BCK_CLZPassedZero, 4590 }; 4591 4592 /// Emits an argument for a call to a builtin. If the builtin sanitizer is 4593 /// enabled, a runtime check specified by \p Kind is also emitted. 4594 llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); 4595 4596 /// Emit a description of a type in a format suitable for passing to 4597 /// a runtime sanitizer handler. 4598 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 4599 4600 /// Convert a value into a format suitable for passing to a runtime 4601 /// sanitizer handler. 4602 llvm::Value *EmitCheckValue(llvm::Value *V); 4603 4604 /// Emit a description of a source location in a format suitable for 4605 /// passing to a runtime sanitizer handler. 4606 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 4607 4608 /// Create a basic block that will either trap or call a handler function in 4609 /// the UBSan runtime with the provided arguments, and create a conditional 4610 /// branch to it. 4611 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 4612 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, 4613 ArrayRef<llvm::Value *> DynamicArgs); 4614 4615 /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 4616 /// if Cond if false. 4617 void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, 4618 llvm::ConstantInt *TypeId, llvm::Value *Ptr, 4619 ArrayRef<llvm::Constant *> StaticArgs); 4620 4621 /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime 4622 /// checking is enabled. Otherwise, just emit an unreachable instruction. 4623 void EmitUnreachable(SourceLocation Loc); 4624 4625 /// Create a basic block that will call the trap intrinsic, and emit a 4626 /// conditional branch to it, for the -ftrapv checks. 4627 void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); 4628 4629 /// Emit a call to trap or debugtrap and attach function attribute 4630 /// "trap-func-name" if specified. 4631 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 4632 4633 /// Emit a stub for the cross-DSO CFI check function. 4634 void EmitCfiCheckStub(); 4635 4636 /// Emit a cross-DSO CFI failure handling function. 4637 void EmitCfiCheckFail(); 4638 4639 /// Create a check for a function parameter that may potentially be 4640 /// declared as non-null. 4641 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 4642 AbstractCallee AC, unsigned ParmNum); 4643 4644 /// EmitCallArg - Emit a single call argument. 4645 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 4646 4647 /// EmitDelegateCallArg - We are performing a delegate call; that 4648 /// is, the current function is delegating to another one. Produce 4649 /// a r-value suitable for passing the given parameter. 4650 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 4651 SourceLocation loc); 4652 4653 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 4654 /// point operation, expressed as the maximum relative error in ulp. 4655 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 4656 4657 /// Set the codegen fast-math flags. 4658 void SetFastMathFlags(FPOptions FPFeatures); 4659 4660 // Truncate or extend a boolean vector to the requested number of elements. 4661 llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, 4662 unsigned NumElementsDst, 4663 const llvm::Twine &Name = ""); 4664 4665 private: 4666 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 4667 void EmitReturnOfRValue(RValue RV, QualType Ty); 4668 4669 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 4670 4671 llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> 4672 DeferredReplacements; 4673 4674 /// Set the address of a local variable. 4675 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 4676 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 4677 LocalDeclMap.insert({VD, Addr}); 4678 } 4679 4680 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 4681 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 4682 /// 4683 /// \param AI - The first function argument of the expansion. 4684 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 4685 llvm::Function::arg_iterator &AI); 4686 4687 /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg 4688 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 4689 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 4690 void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 4691 SmallVectorImpl<llvm::Value *> &IRCallArgs, 4692 unsigned &IRCallArgPos); 4693 4694 std::pair<llvm::Value *, llvm::Type *> 4695 EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, 4696 std::string &ConstraintStr); 4697 4698 std::pair<llvm::Value *, llvm::Type *> 4699 EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, 4700 QualType InputType, std::string &ConstraintStr, 4701 SourceLocation Loc); 4702 4703 /// Attempts to statically evaluate the object size of E. If that 4704 /// fails, emits code to figure the size of E out for us. This is 4705 /// pass_object_size aware. 4706 /// 4707 /// If EmittedExpr is non-null, this will use that instead of re-emitting E. 4708 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 4709 llvm::IntegerType *ResType, 4710 llvm::Value *EmittedE, 4711 bool IsDynamic); 4712 4713 /// Emits the size of E, as required by __builtin_object_size. This 4714 /// function is aware of pass_object_size parameters, and will act accordingly 4715 /// if E is a parameter with the pass_object_size attribute. 4716 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 4717 llvm::IntegerType *ResType, 4718 llvm::Value *EmittedE, 4719 bool IsDynamic); 4720 4721 void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, 4722 Address Loc); 4723 4724 public: 4725 enum class EvaluationOrder { 4726 ///! No language constraints on evaluation order. 4727 Default, 4728 ///! Language semantics require left-to-right evaluation. 4729 ForceLeftToRight, 4730 ///! Language semantics require right-to-left evaluation. 4731 ForceRightToLeft 4732 }; 4733 4734 // Wrapper for function prototype sources. Wraps either a FunctionProtoType or 4735 // an ObjCMethodDecl. 4736 struct PrototypeWrapper { 4737 llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; 4738 4739 PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} 4740 PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} 4741 }; 4742 4743 void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, 4744 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4745 AbstractCallee AC = AbstractCallee(), 4746 unsigned ParamsToSkip = 0, 4747 EvaluationOrder Order = EvaluationOrder::Default); 4748 4749 /// EmitPointerWithAlignment - Given an expression with a pointer type, 4750 /// emit the value and compute our best estimate of the alignment of the 4751 /// pointee. 4752 /// 4753 /// \param BaseInfo - If non-null, this will be initialized with 4754 /// information about the source of the alignment and the may-alias 4755 /// attribute. Note that this function will conservatively fall back on 4756 /// the type when it doesn't recognize the expression and may-alias will 4757 /// be set to false. 4758 /// 4759 /// One reasonable way to use this information is when there's a language 4760 /// guarantee that the pointer must be aligned to some stricter value, and 4761 /// we're simply trying to ensure that sufficiently obvious uses of under- 4762 /// aligned objects don't get miscompiled; for example, a placement new 4763 /// into the address of a local variable. In such a case, it's quite 4764 /// reasonable to just ignore the returned alignment when it isn't from an 4765 /// explicit source. 4766 Address EmitPointerWithAlignment(const Expr *Addr, 4767 LValueBaseInfo *BaseInfo = nullptr, 4768 TBAAAccessInfo *TBAAInfo = nullptr); 4769 4770 /// If \p E references a parameter with pass_object_size info or a constant 4771 /// array size modifier, emit the object size divided by the size of \p EltTy. 4772 /// Otherwise return null. 4773 llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); 4774 4775 void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); 4776 4777 struct MultiVersionResolverOption { 4778 llvm::Function *Function; 4779 struct Conds { 4780 StringRef Architecture; 4781 llvm::SmallVector<StringRef, 8> Features; 4782 4783 Conds(StringRef Arch, ArrayRef<StringRef> Feats) 4784 : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} 4785 } Conditions; 4786 4787 MultiVersionResolverOption(llvm::Function *F, StringRef Arch, 4788 ArrayRef<StringRef> Feats) 4789 : Function(F), Conditions(Arch, Feats) {} 4790 }; 4791 4792 // Emits the body of a multiversion function's resolver. Assumes that the 4793 // options are already sorted in the proper order, with the 'default' option 4794 // last (if it exists). 4795 void EmitMultiVersionResolver(llvm::Function *Resolver, 4796 ArrayRef<MultiVersionResolverOption> Options); 4797 4798 private: 4799 QualType getVarArgType(const Expr *Arg); 4800 4801 void EmitDeclMetadata(); 4802 4803 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 4804 const AutoVarEmission &emission); 4805 4806 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 4807 4808 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 4809 llvm::Value *EmitX86CpuIs(const CallExpr *E); 4810 llvm::Value *EmitX86CpuIs(StringRef CPUStr); 4811 llvm::Value *EmitX86CpuSupports(const CallExpr *E); 4812 llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); 4813 llvm::Value *EmitX86CpuSupports(uint64_t Mask); 4814 llvm::Value *EmitX86CpuInit(); 4815 llvm::Value *FormResolverCondition(const MultiVersionResolverOption &RO); 4816 }; 4817 4818 4819 inline DominatingLLVMValue::saved_type 4820 DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { 4821 if (!needsSaving(value)) return saved_type(value, false); 4822 4823 // Otherwise, we need an alloca. 4824 auto align = CharUnits::fromQuantity( 4825 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 4826 Address alloca = 4827 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 4828 CGF.Builder.CreateStore(value, alloca); 4829 4830 return saved_type(alloca.getPointer(), true); 4831 } 4832 4833 inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, 4834 saved_type value) { 4835 // If the value says it wasn't saved, trust that it's still dominating. 4836 if (!value.getInt()) return value.getPointer(); 4837 4838 // Otherwise, it should be an alloca instruction, as set up in save(). 4839 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 4840 return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca, 4841 alloca->getAlign()); 4842 } 4843 4844 } // end namespace CodeGen 4845 4846 // Map the LangOption for floating point exception behavior into 4847 // the corresponding enum in the IR. 4848 llvm::fp::ExceptionBehavior 4849 ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); 4850 } // end namespace clang 4851 4852 #endif 4853