1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 49 using namespace clang; 50 using namespace CodeGen; 51 52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 53 /// markers. 54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 55 const LangOptions &LangOpts) { 56 if (CGOpts.DisableLifetimeMarkers) 57 return false; 58 59 // Sanitizers may use markers. 60 if (CGOpts.SanitizeAddressUseAfterScope || 61 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 62 LangOpts.Sanitize.has(SanitizerKind::Memory)) 63 return true; 64 65 // For now, only in optimized builds. 66 return CGOpts.OptimizationLevel != 0; 67 } 68 69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 70 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 71 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 72 CGBuilderInserterTy(this)), 73 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 74 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 75 ShouldEmitLifetimeMarkers( 76 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 77 if (!suppressNewContext) 78 CGM.getCXXABI().getMangleContext().startNewFunction(); 79 EHStack.setCGF(this); 80 81 SetFastMathFlags(CurFPFeatures); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 113 llvm::FastMathFlags FMF; 114 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 115 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 116 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 117 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 118 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 119 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 120 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 121 Builder.setFastMathFlags(FMF); 122 } 123 124 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 125 const Expr *E) 126 : CGF(CGF) { 127 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 128 } 129 130 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 131 FPOptions FPFeatures) 132 : CGF(CGF) { 133 ConstructorHelper(FPFeatures); 134 } 135 136 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 137 OldFPFeatures = CGF.CurFPFeatures; 138 CGF.CurFPFeatures = FPFeatures; 139 140 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 141 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 142 143 if (OldFPFeatures == FPFeatures) 144 return; 145 146 FMFGuard.emplace(CGF.Builder); 147 148 llvm::RoundingMode NewRoundingBehavior = 149 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 150 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 151 auto NewExceptionBehavior = 152 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 153 FPFeatures.getFPExceptionMode())); 154 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 155 156 CGF.SetFastMathFlags(FPFeatures); 157 158 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 159 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 160 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 161 (NewExceptionBehavior == llvm::fp::ebIgnore && 162 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 163 "FPConstrained should be enabled on entire function"); 164 165 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 166 auto OldValue = 167 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 168 auto NewValue = OldValue & Value; 169 if (OldValue != NewValue) 170 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 171 }; 172 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 173 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 174 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 175 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 176 FPFeatures.getAllowReciprocal() && 177 FPFeatures.getAllowApproxFunc() && 178 FPFeatures.getNoSignedZero()); 179 } 180 181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 182 CGF.CurFPFeatures = OldFPFeatures; 183 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 184 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 185 } 186 187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 188 LValueBaseInfo BaseInfo; 189 TBAAAccessInfo TBAAInfo; 190 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 191 Address Addr(V, ConvertTypeForMem(T), Alignment); 192 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); 193 } 194 195 /// Given a value of type T* that may not be to a complete object, 196 /// construct an l-value with the natural pointee alignment of T. 197 LValue 198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 202 /* forPointeeType= */ true); 203 Address Addr(V, ConvertTypeForMem(T), Align); 204 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 205 } 206 207 208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 209 return CGM.getTypes().ConvertTypeForMem(T); 210 } 211 212 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 213 return CGM.getTypes().ConvertType(T); 214 } 215 216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 217 type = type.getCanonicalType(); 218 while (true) { 219 switch (type->getTypeClass()) { 220 #define TYPE(name, parent) 221 #define ABSTRACT_TYPE(name, parent) 222 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 223 #define DEPENDENT_TYPE(name, parent) case Type::name: 224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 225 #include "clang/AST/TypeNodes.inc" 226 llvm_unreachable("non-canonical or dependent type in IR-generation"); 227 228 case Type::Auto: 229 case Type::DeducedTemplateSpecialization: 230 llvm_unreachable("undeduced type in IR-generation"); 231 232 // Various scalar types. 233 case Type::Builtin: 234 case Type::Pointer: 235 case Type::BlockPointer: 236 case Type::LValueReference: 237 case Type::RValueReference: 238 case Type::MemberPointer: 239 case Type::Vector: 240 case Type::ExtVector: 241 case Type::ConstantMatrix: 242 case Type::FunctionProto: 243 case Type::FunctionNoProto: 244 case Type::Enum: 245 case Type::ObjCObjectPointer: 246 case Type::Pipe: 247 case Type::BitInt: 248 return TEK_Scalar; 249 250 // Complexes. 251 case Type::Complex: 252 return TEK_Complex; 253 254 // Arrays, records, and Objective-C objects. 255 case Type::ConstantArray: 256 case Type::IncompleteArray: 257 case Type::VariableArray: 258 case Type::Record: 259 case Type::ObjCObject: 260 case Type::ObjCInterface: 261 return TEK_Aggregate; 262 263 // We operate on atomic values according to their underlying type. 264 case Type::Atomic: 265 type = cast<AtomicType>(type)->getValueType(); 266 continue; 267 } 268 llvm_unreachable("unknown type kind!"); 269 } 270 } 271 272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 273 // For cleanliness, we try to avoid emitting the return block for 274 // simple cases. 275 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 276 277 if (CurBB) { 278 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 279 280 // We have a valid insert point, reuse it if it is empty or there are no 281 // explicit jumps to the return block. 282 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 283 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 284 delete ReturnBlock.getBlock(); 285 ReturnBlock = JumpDest(); 286 } else 287 EmitBlock(ReturnBlock.getBlock()); 288 return llvm::DebugLoc(); 289 } 290 291 // Otherwise, if the return block is the target of a single direct 292 // branch then we can just put the code in that block instead. This 293 // cleans up functions which started with a unified return block. 294 if (ReturnBlock.getBlock()->hasOneUse()) { 295 llvm::BranchInst *BI = 296 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 297 if (BI && BI->isUnconditional() && 298 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 299 // Record/return the DebugLoc of the simple 'return' expression to be used 300 // later by the actual 'ret' instruction. 301 llvm::DebugLoc Loc = BI->getDebugLoc(); 302 Builder.SetInsertPoint(BI->getParent()); 303 BI->eraseFromParent(); 304 delete ReturnBlock.getBlock(); 305 ReturnBlock = JumpDest(); 306 return Loc; 307 } 308 } 309 310 // FIXME: We are at an unreachable point, there is no reason to emit the block 311 // unless it has uses. However, we still need a place to put the debug 312 // region.end for now. 313 314 EmitBlock(ReturnBlock.getBlock()); 315 return llvm::DebugLoc(); 316 } 317 318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 319 if (!BB) return; 320 if (!BB->use_empty()) 321 return CGF.CurFn->getBasicBlockList().push_back(BB); 322 delete BB; 323 } 324 325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 326 assert(BreakContinueStack.empty() && 327 "mismatched push/pop in break/continue stack!"); 328 329 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 330 && NumSimpleReturnExprs == NumReturnExprs 331 && ReturnBlock.getBlock()->use_empty(); 332 // Usually the return expression is evaluated before the cleanup 333 // code. If the function contains only a simple return statement, 334 // such as a constant, the location before the cleanup code becomes 335 // the last useful breakpoint in the function, because the simple 336 // return expression will be evaluated after the cleanup code. To be 337 // safe, set the debug location for cleanup code to the location of 338 // the return statement. Otherwise the cleanup code should be at the 339 // end of the function's lexical scope. 340 // 341 // If there are multiple branches to the return block, the branch 342 // instructions will get the location of the return statements and 343 // all will be fine. 344 if (CGDebugInfo *DI = getDebugInfo()) { 345 if (OnlySimpleReturnStmts) 346 DI->EmitLocation(Builder, LastStopPoint); 347 else 348 DI->EmitLocation(Builder, EndLoc); 349 } 350 351 // Pop any cleanups that might have been associated with the 352 // parameters. Do this in whatever block we're currently in; it's 353 // important to do this before we enter the return block or return 354 // edges will be *really* confused. 355 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 356 bool HasOnlyLifetimeMarkers = 357 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 358 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 359 if (HasCleanups) { 360 // Make sure the line table doesn't jump back into the body for 361 // the ret after it's been at EndLoc. 362 Optional<ApplyDebugLocation> AL; 363 if (CGDebugInfo *DI = getDebugInfo()) { 364 if (OnlySimpleReturnStmts) 365 DI->EmitLocation(Builder, EndLoc); 366 else 367 // We may not have a valid end location. Try to apply it anyway, and 368 // fall back to an artificial location if needed. 369 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 370 } 371 372 PopCleanupBlocks(PrologueCleanupDepth); 373 } 374 375 // Emit function epilog (to return). 376 llvm::DebugLoc Loc = EmitReturnBlock(); 377 378 if (ShouldInstrumentFunction()) { 379 if (CGM.getCodeGenOpts().InstrumentFunctions) 380 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 381 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 382 CurFn->addFnAttr("instrument-function-exit-inlined", 383 "__cyg_profile_func_exit"); 384 } 385 386 if (ShouldSkipSanitizerInstrumentation()) 387 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 388 389 // Emit debug descriptor for function end. 390 if (CGDebugInfo *DI = getDebugInfo()) 391 DI->EmitFunctionEnd(Builder, CurFn); 392 393 // Reset the debug location to that of the simple 'return' expression, if any 394 // rather than that of the end of the function's scope '}'. 395 ApplyDebugLocation AL(*this, Loc); 396 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 397 EmitEndEHSpec(CurCodeDecl); 398 399 assert(EHStack.empty() && 400 "did not remove all scopes from cleanup stack!"); 401 402 // If someone did an indirect goto, emit the indirect goto block at the end of 403 // the function. 404 if (IndirectBranch) { 405 EmitBlock(IndirectBranch->getParent()); 406 Builder.ClearInsertionPoint(); 407 } 408 409 // If some of our locals escaped, insert a call to llvm.localescape in the 410 // entry block. 411 if (!EscapedLocals.empty()) { 412 // Invert the map from local to index into a simple vector. There should be 413 // no holes. 414 SmallVector<llvm::Value *, 4> EscapeArgs; 415 EscapeArgs.resize(EscapedLocals.size()); 416 for (auto &Pair : EscapedLocals) 417 EscapeArgs[Pair.second] = Pair.first; 418 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 419 &CGM.getModule(), llvm::Intrinsic::localescape); 420 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 421 } 422 423 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 424 llvm::Instruction *Ptr = AllocaInsertPt; 425 AllocaInsertPt = nullptr; 426 Ptr->eraseFromParent(); 427 428 // PostAllocaInsertPt, if created, was lazily created when it was required, 429 // remove it now since it was just created for our own convenience. 430 if (PostAllocaInsertPt) { 431 llvm::Instruction *PostPtr = PostAllocaInsertPt; 432 PostAllocaInsertPt = nullptr; 433 PostPtr->eraseFromParent(); 434 } 435 436 // If someone took the address of a label but never did an indirect goto, we 437 // made a zero entry PHI node, which is illegal, zap it now. 438 if (IndirectBranch) { 439 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 440 if (PN->getNumIncomingValues() == 0) { 441 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 442 PN->eraseFromParent(); 443 } 444 } 445 446 EmitIfUsed(*this, EHResumeBlock); 447 EmitIfUsed(*this, TerminateLandingPad); 448 EmitIfUsed(*this, TerminateHandler); 449 EmitIfUsed(*this, UnreachableBlock); 450 451 for (const auto &FuncletAndParent : TerminateFunclets) 452 EmitIfUsed(*this, FuncletAndParent.second); 453 454 if (CGM.getCodeGenOpts().EmitDeclMetadata) 455 EmitDeclMetadata(); 456 457 for (const auto &R : DeferredReplacements) { 458 if (llvm::Value *Old = R.first) { 459 Old->replaceAllUsesWith(R.second); 460 cast<llvm::Instruction>(Old)->eraseFromParent(); 461 } 462 } 463 DeferredReplacements.clear(); 464 465 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 466 // PHIs if the current function is a coroutine. We don't do it for all 467 // functions as it may result in slight increase in numbers of instructions 468 // if compiled with no optimizations. We do it for coroutine as the lifetime 469 // of CleanupDestSlot alloca make correct coroutine frame building very 470 // difficult. 471 if (NormalCleanupDest.isValid() && isCoroutine()) { 472 llvm::DominatorTree DT(*CurFn); 473 llvm::PromoteMemToReg( 474 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 475 NormalCleanupDest = Address::invalid(); 476 } 477 478 // Scan function arguments for vector width. 479 for (llvm::Argument &A : CurFn->args()) 480 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 481 LargestVectorWidth = 482 std::max((uint64_t)LargestVectorWidth, 483 VT->getPrimitiveSizeInBits().getKnownMinSize()); 484 485 // Update vector width based on return type. 486 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 487 LargestVectorWidth = 488 std::max((uint64_t)LargestVectorWidth, 489 VT->getPrimitiveSizeInBits().getKnownMinSize()); 490 491 // Add the required-vector-width attribute. This contains the max width from: 492 // 1. min-vector-width attribute used in the source program. 493 // 2. Any builtins used that have a vector width specified. 494 // 3. Values passed in and out of inline assembly. 495 // 4. Width of vector arguments and return types for this function. 496 // 5. Width of vector aguments and return types for functions called by this 497 // function. 498 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 499 500 // Add vscale_range attribute if appropriate. 501 Optional<std::pair<unsigned, unsigned>> VScaleRange = 502 getContext().getTargetInfo().getVScaleRange(getLangOpts()); 503 if (VScaleRange) { 504 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( 505 getLLVMContext(), VScaleRange.getValue().first, 506 VScaleRange.getValue().second)); 507 } 508 509 // If we generated an unreachable return block, delete it now. 510 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 511 Builder.ClearInsertionPoint(); 512 ReturnBlock.getBlock()->eraseFromParent(); 513 } 514 if (ReturnValue.isValid()) { 515 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 516 if (RetAlloca && RetAlloca->use_empty()) { 517 RetAlloca->eraseFromParent(); 518 ReturnValue = Address::invalid(); 519 } 520 } 521 } 522 523 /// ShouldInstrumentFunction - Return true if the current function should be 524 /// instrumented with __cyg_profile_func_* calls 525 bool CodeGenFunction::ShouldInstrumentFunction() { 526 if (!CGM.getCodeGenOpts().InstrumentFunctions && 527 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 528 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 529 return false; 530 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 531 return false; 532 return true; 533 } 534 535 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { 536 if (!CurFuncDecl) 537 return false; 538 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); 539 } 540 541 /// ShouldXRayInstrument - Return true if the current function should be 542 /// instrumented with XRay nop sleds. 543 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 544 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 545 } 546 547 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 548 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 549 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 550 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 551 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 552 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 553 XRayInstrKind::Custom); 554 } 555 556 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 557 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 558 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 559 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 560 XRayInstrKind::Typed); 561 } 562 563 llvm::Constant * 564 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 565 llvm::Constant *Addr) { 566 // Addresses stored in prologue data can't require run-time fixups and must 567 // be PC-relative. Run-time fixups are undesirable because they necessitate 568 // writable text segments, which are unsafe. And absolute addresses are 569 // undesirable because they break PIE mode. 570 571 // Add a layer of indirection through a private global. Taking its address 572 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 573 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 574 /*isConstant=*/true, 575 llvm::GlobalValue::PrivateLinkage, Addr); 576 577 // Create a PC-relative address. 578 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 579 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 580 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 581 return (IntPtrTy == Int32Ty) 582 ? PCRelAsInt 583 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 584 } 585 586 llvm::Value * 587 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 588 llvm::Value *EncodedAddr) { 589 // Reconstruct the address of the global. 590 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 591 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 592 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 593 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 594 595 // Load the original pointer through the global. 596 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 597 "decoded_addr"); 598 } 599 600 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 601 llvm::Function *Fn) 602 { 603 if (!FD->hasAttr<OpenCLKernelAttr>()) 604 return; 605 606 llvm::LLVMContext &Context = getLLVMContext(); 607 608 CGM.GenOpenCLArgMetadata(Fn, FD, this); 609 610 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 611 QualType HintQTy = A->getTypeHint(); 612 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 613 bool IsSignedInteger = 614 HintQTy->isSignedIntegerType() || 615 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 616 llvm::Metadata *AttrMDArgs[] = { 617 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 618 CGM.getTypes().ConvertType(A->getTypeHint()))), 619 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 620 llvm::IntegerType::get(Context, 32), 621 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 622 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 623 } 624 625 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 626 llvm::Metadata *AttrMDArgs[] = { 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 629 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 630 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 631 } 632 633 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 636 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 637 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 638 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 639 } 640 641 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 642 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 643 llvm::Metadata *AttrMDArgs[] = { 644 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 645 Fn->setMetadata("intel_reqd_sub_group_size", 646 llvm::MDNode::get(Context, AttrMDArgs)); 647 } 648 } 649 650 /// Determine whether the function F ends with a return stmt. 651 static bool endsWithReturn(const Decl* F) { 652 const Stmt *Body = nullptr; 653 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 654 Body = FD->getBody(); 655 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 656 Body = OMD->getBody(); 657 658 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 659 auto LastStmt = CS->body_rbegin(); 660 if (LastStmt != CS->body_rend()) 661 return isa<ReturnStmt>(*LastStmt); 662 } 663 return false; 664 } 665 666 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 667 if (SanOpts.has(SanitizerKind::Thread)) { 668 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 669 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 670 } 671 } 672 673 /// Check if the return value of this function requires sanitization. 674 bool CodeGenFunction::requiresReturnValueCheck() const { 675 return requiresReturnValueNullabilityCheck() || 676 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 677 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 678 } 679 680 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 681 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 682 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 683 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 684 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 685 return false; 686 687 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 688 return false; 689 690 if (MD->getNumParams() == 2) { 691 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 692 if (!PT || !PT->isVoidPointerType() || 693 !PT->getPointeeType().isConstQualified()) 694 return false; 695 } 696 697 return true; 698 } 699 700 /// Return the UBSan prologue signature for \p FD if one is available. 701 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 702 const FunctionDecl *FD) { 703 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 704 if (!MD->isStatic()) 705 return nullptr; 706 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 707 } 708 709 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 710 llvm::Function *Fn, 711 const CGFunctionInfo &FnInfo, 712 const FunctionArgList &Args, 713 SourceLocation Loc, 714 SourceLocation StartLoc) { 715 assert(!CurFn && 716 "Do not use a CodeGenFunction object for more than one function"); 717 718 const Decl *D = GD.getDecl(); 719 720 DidCallStackSave = false; 721 CurCodeDecl = D; 722 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 723 if (FD && FD->usesSEHTry()) 724 CurSEHParent = FD; 725 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 726 FnRetTy = RetTy; 727 CurFn = Fn; 728 CurFnInfo = &FnInfo; 729 assert(CurFn->isDeclaration() && "Function already has body?"); 730 731 // If this function is ignored for any of the enabled sanitizers, 732 // disable the sanitizer for the function. 733 do { 734 #define SANITIZER(NAME, ID) \ 735 if (SanOpts.empty()) \ 736 break; \ 737 if (SanOpts.has(SanitizerKind::ID)) \ 738 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 739 SanOpts.set(SanitizerKind::ID, false); 740 741 #include "clang/Basic/Sanitizers.def" 742 #undef SANITIZER 743 } while (false); 744 745 if (D) { 746 bool NoSanitizeCoverage = false; 747 748 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 749 // Apply the no_sanitize* attributes to SanOpts. 750 SanitizerMask mask = Attr->getMask(); 751 SanOpts.Mask &= ~mask; 752 if (mask & SanitizerKind::Address) 753 SanOpts.set(SanitizerKind::KernelAddress, false); 754 if (mask & SanitizerKind::KernelAddress) 755 SanOpts.set(SanitizerKind::Address, false); 756 if (mask & SanitizerKind::HWAddress) 757 SanOpts.set(SanitizerKind::KernelHWAddress, false); 758 if (mask & SanitizerKind::KernelHWAddress) 759 SanOpts.set(SanitizerKind::HWAddress, false); 760 761 // SanitizeCoverage is not handled by SanOpts. 762 if (Attr->hasCoverage()) 763 NoSanitizeCoverage = true; 764 } 765 766 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) 767 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); 768 } 769 770 // Apply sanitizer attributes to the function. 771 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 772 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 773 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 774 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 775 if (SanOpts.has(SanitizerKind::MemTag)) 776 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 777 if (SanOpts.has(SanitizerKind::Thread)) 778 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 779 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 780 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 781 if (SanOpts.has(SanitizerKind::SafeStack)) 782 Fn->addFnAttr(llvm::Attribute::SafeStack); 783 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 784 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 785 786 // Apply fuzzing attribute to the function. 787 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 788 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 789 790 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 791 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 792 if (SanOpts.has(SanitizerKind::Thread)) { 793 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 794 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 795 if (OMD->getMethodFamily() == OMF_dealloc || 796 OMD->getMethodFamily() == OMF_initialize || 797 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 798 markAsIgnoreThreadCheckingAtRuntime(Fn); 799 } 800 } 801 } 802 803 // Ignore unrelated casts in STL allocate() since the allocator must cast 804 // from void* to T* before object initialization completes. Don't match on the 805 // namespace because not all allocators are in std:: 806 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 807 if (matchesStlAllocatorFn(D, getContext())) 808 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 809 } 810 811 // Ignore null checks in coroutine functions since the coroutines passes 812 // are not aware of how to move the extra UBSan instructions across the split 813 // coroutine boundaries. 814 if (D && SanOpts.has(SanitizerKind::Null)) 815 if (FD && FD->getBody() && 816 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 817 SanOpts.Mask &= ~SanitizerKind::Null; 818 819 // Apply xray attributes to the function (as a string, for now) 820 bool AlwaysXRayAttr = false; 821 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 822 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 823 XRayInstrKind::FunctionEntry) || 824 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 825 XRayInstrKind::FunctionExit)) { 826 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 827 Fn->addFnAttr("function-instrument", "xray-always"); 828 AlwaysXRayAttr = true; 829 } 830 if (XRayAttr->neverXRayInstrument()) 831 Fn->addFnAttr("function-instrument", "xray-never"); 832 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 833 if (ShouldXRayInstrumentFunction()) 834 Fn->addFnAttr("xray-log-args", 835 llvm::utostr(LogArgs->getArgumentCount())); 836 } 837 } else { 838 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 839 Fn->addFnAttr( 840 "xray-instruction-threshold", 841 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 842 } 843 844 if (ShouldXRayInstrumentFunction()) { 845 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 846 Fn->addFnAttr("xray-ignore-loops"); 847 848 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 849 XRayInstrKind::FunctionExit)) 850 Fn->addFnAttr("xray-skip-exit"); 851 852 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 853 XRayInstrKind::FunctionEntry)) 854 Fn->addFnAttr("xray-skip-entry"); 855 856 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 857 if (FuncGroups > 1) { 858 auto FuncName = llvm::makeArrayRef<uint8_t>( 859 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 860 auto Group = crc32(FuncName) % FuncGroups; 861 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 862 !AlwaysXRayAttr) 863 Fn->addFnAttr("function-instrument", "xray-never"); 864 } 865 } 866 867 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 868 if (CGM.isProfileInstrExcluded(Fn, Loc)) 869 Fn->addFnAttr(llvm::Attribute::NoProfile); 870 871 unsigned Count, Offset; 872 if (const auto *Attr = 873 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 874 Count = Attr->getCount(); 875 Offset = Attr->getOffset(); 876 } else { 877 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 878 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 879 } 880 if (Count && Offset <= Count) { 881 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 882 if (Offset) 883 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 884 } 885 // Instruct that functions for COFF/CodeView targets should start with a 886 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 887 // backends as they don't need it -- instructions on these architectures are 888 // always atomically patchable at runtime. 889 if (CGM.getCodeGenOpts().HotPatch && 890 getContext().getTargetInfo().getTriple().isX86()) 891 Fn->addFnAttr("patchable-function", "prologue-short-redirect"); 892 893 // Add no-jump-tables value. 894 if (CGM.getCodeGenOpts().NoUseJumpTables) 895 Fn->addFnAttr("no-jump-tables", "true"); 896 897 // Add no-inline-line-tables value. 898 if (CGM.getCodeGenOpts().NoInlineLineTables) 899 Fn->addFnAttr("no-inline-line-tables"); 900 901 // Add profile-sample-accurate value. 902 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 903 Fn->addFnAttr("profile-sample-accurate"); 904 905 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 906 Fn->addFnAttr("use-sample-profile"); 907 908 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 909 Fn->addFnAttr("cfi-canonical-jump-table"); 910 911 if (D && D->hasAttr<NoProfileFunctionAttr>()) 912 Fn->addFnAttr(llvm::Attribute::NoProfile); 913 914 if (FD && getLangOpts().OpenCL) { 915 // Add metadata for a kernel function. 916 EmitOpenCLKernelMetadata(FD, Fn); 917 } 918 919 // If we are checking function types, emit a function type signature as 920 // prologue data. 921 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 922 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 923 // Remove any (C++17) exception specifications, to allow calling e.g. a 924 // noexcept function through a non-noexcept pointer. 925 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec( 926 FD->getType(), EST_None); 927 llvm::Constant *FTRTTIConst = 928 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 929 llvm::Constant *FTRTTIConstEncoded = 930 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 931 llvm::Constant *PrologueStructElems[] = {PrologueSig, FTRTTIConstEncoded}; 932 llvm::Constant *PrologueStructConst = 933 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 934 Fn->setPrologueData(PrologueStructConst); 935 } 936 } 937 938 // If we're checking nullability, we need to know whether we can check the 939 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 940 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 941 auto Nullability = FnRetTy->getNullability(getContext()); 942 if (Nullability && *Nullability == NullabilityKind::NonNull) { 943 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 944 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 945 RetValNullabilityPrecondition = 946 llvm::ConstantInt::getTrue(getLLVMContext()); 947 } 948 } 949 950 // If we're in C++ mode and the function name is "main", it is guaranteed 951 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 952 // used within a program"). 953 // 954 // OpenCL C 2.0 v2.2-11 s6.9.i: 955 // Recursion is not supported. 956 // 957 // SYCL v1.2.1 s3.10: 958 // kernels cannot include RTTI information, exception classes, 959 // recursive code, virtual functions or make use of C++ libraries that 960 // are not compiled for the device. 961 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || 962 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || 963 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) 964 Fn->addFnAttr(llvm::Attribute::NoRecurse); 965 966 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 967 llvm::fp::ExceptionBehavior FPExceptionBehavior = 968 ToConstrainedExceptMD(getLangOpts().getFPExceptionMode()); 969 Builder.setDefaultConstrainedRounding(RM); 970 Builder.setDefaultConstrainedExcept(FPExceptionBehavior); 971 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || 972 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || 973 RM != llvm::RoundingMode::NearestTiesToEven))) { 974 Builder.setIsFPConstrained(true); 975 Fn->addFnAttr(llvm::Attribute::StrictFP); 976 } 977 978 // If a custom alignment is used, force realigning to this alignment on 979 // any main function which certainly will need it. 980 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 981 CGM.getCodeGenOpts().StackAlignment)) 982 Fn->addFnAttr("stackrealign"); 983 984 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 985 986 // Create a marker to make it easy to insert allocas into the entryblock 987 // later. Don't create this with the builder, because we don't want it 988 // folded. 989 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 990 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 991 992 ReturnBlock = getJumpDestInCurrentScope("return"); 993 994 Builder.SetInsertPoint(EntryBB); 995 996 // If we're checking the return value, allocate space for a pointer to a 997 // precise source location of the checked return statement. 998 if (requiresReturnValueCheck()) { 999 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1000 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), 1001 ReturnLocation); 1002 } 1003 1004 // Emit subprogram debug descriptor. 1005 if (CGDebugInfo *DI = getDebugInfo()) { 1006 // Reconstruct the type from the argument list so that implicit parameters, 1007 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1008 // convention. 1009 DI->emitFunctionStart(GD, Loc, StartLoc, 1010 DI->getFunctionType(FD, RetTy, Args), CurFn, 1011 CurFuncIsThunk); 1012 } 1013 1014 if (ShouldInstrumentFunction()) { 1015 if (CGM.getCodeGenOpts().InstrumentFunctions) 1016 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1017 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1018 CurFn->addFnAttr("instrument-function-entry-inlined", 1019 "__cyg_profile_func_enter"); 1020 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1021 CurFn->addFnAttr("instrument-function-entry-inlined", 1022 "__cyg_profile_func_enter_bare"); 1023 } 1024 1025 // Since emitting the mcount call here impacts optimizations such as function 1026 // inlining, we just add an attribute to insert a mcount call in backend. 1027 // The attribute "counting-function" is set to mcount function name which is 1028 // architecture dependent. 1029 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1030 // Calls to fentry/mcount should not be generated if function has 1031 // the no_instrument_function attribute. 1032 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1033 if (CGM.getCodeGenOpts().CallFEntry) 1034 Fn->addFnAttr("fentry-call", "true"); 1035 else { 1036 Fn->addFnAttr("instrument-function-entry-inlined", 1037 getTarget().getMCountName()); 1038 } 1039 if (CGM.getCodeGenOpts().MNopMCount) { 1040 if (!CGM.getCodeGenOpts().CallFEntry) 1041 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1042 << "-mnop-mcount" << "-mfentry"; 1043 Fn->addFnAttr("mnop-mcount"); 1044 } 1045 1046 if (CGM.getCodeGenOpts().RecordMCount) { 1047 if (!CGM.getCodeGenOpts().CallFEntry) 1048 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1049 << "-mrecord-mcount" << "-mfentry"; 1050 Fn->addFnAttr("mrecord-mcount"); 1051 } 1052 } 1053 } 1054 1055 if (CGM.getCodeGenOpts().PackedStack) { 1056 if (getContext().getTargetInfo().getTriple().getArch() != 1057 llvm::Triple::systemz) 1058 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1059 << "-mpacked-stack"; 1060 Fn->addFnAttr("packed-stack"); 1061 } 1062 1063 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && 1064 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) 1065 Fn->addFnAttr("warn-stack-size", 1066 std::to_string(CGM.getCodeGenOpts().WarnStackSize)); 1067 1068 if (RetTy->isVoidType()) { 1069 // Void type; nothing to return. 1070 ReturnValue = Address::invalid(); 1071 1072 // Count the implicit return. 1073 if (!endsWithReturn(D)) 1074 ++NumReturnExprs; 1075 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1076 // Indirect return; emit returned value directly into sret slot. 1077 // This reduces code size, and affects correctness in C++. 1078 auto AI = CurFn->arg_begin(); 1079 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1080 ++AI; 1081 ReturnValue = Address(&*AI, ConvertType(RetTy), 1082 CurFnInfo->getReturnInfo().getIndirectAlign()); 1083 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1084 ReturnValuePointer = 1085 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1086 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1087 ReturnValue.getPointer(), Int8PtrTy), 1088 ReturnValuePointer); 1089 } 1090 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1091 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1092 // Load the sret pointer from the argument struct and return into that. 1093 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1094 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1095 --EI; 1096 llvm::Value *Addr = Builder.CreateStructGEP( 1097 EI->getType()->getPointerElementType(), &*EI, Idx); 1098 llvm::Type *Ty = 1099 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1100 ReturnValuePointer = Address(Addr, getPointerAlign()); 1101 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1102 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1103 } else { 1104 ReturnValue = CreateIRTemp(RetTy, "retval"); 1105 1106 // Tell the epilog emitter to autorelease the result. We do this 1107 // now so that various specialized functions can suppress it 1108 // during their IR-generation. 1109 if (getLangOpts().ObjCAutoRefCount && 1110 !CurFnInfo->isReturnsRetained() && 1111 RetTy->isObjCRetainableType()) 1112 AutoreleaseResult = true; 1113 } 1114 1115 EmitStartEHSpec(CurCodeDecl); 1116 1117 PrologueCleanupDepth = EHStack.stable_begin(); 1118 1119 // Emit OpenMP specific initialization of the device functions. 1120 if (getLangOpts().OpenMP && CurCodeDecl) 1121 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1122 1123 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1124 1125 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1126 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1127 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1128 if (MD->getParent()->isLambda() && 1129 MD->getOverloadedOperator() == OO_Call) { 1130 // We're in a lambda; figure out the captures. 1131 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1132 LambdaThisCaptureField); 1133 if (LambdaThisCaptureField) { 1134 // If the lambda captures the object referred to by '*this' - either by 1135 // value or by reference, make sure CXXThisValue points to the correct 1136 // object. 1137 1138 // Get the lvalue for the field (which is a copy of the enclosing object 1139 // or contains the address of the enclosing object). 1140 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1141 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1142 // If the enclosing object was captured by value, just use its address. 1143 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1144 } else { 1145 // Load the lvalue pointed to by the field, since '*this' was captured 1146 // by reference. 1147 CXXThisValue = 1148 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1149 } 1150 } 1151 for (auto *FD : MD->getParent()->fields()) { 1152 if (FD->hasCapturedVLAType()) { 1153 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1154 SourceLocation()).getScalarVal(); 1155 auto VAT = FD->getCapturedVLAType(); 1156 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1157 } 1158 } 1159 } else { 1160 // Not in a lambda; just use 'this' from the method. 1161 // FIXME: Should we generate a new load for each use of 'this'? The 1162 // fast register allocator would be happier... 1163 CXXThisValue = CXXABIThisValue; 1164 } 1165 1166 // Check the 'this' pointer once per function, if it's available. 1167 if (CXXABIThisValue) { 1168 SanitizerSet SkippedChecks; 1169 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1170 QualType ThisTy = MD->getThisType(); 1171 1172 // If this is the call operator of a lambda with no capture-default, it 1173 // may have a static invoker function, which may call this operator with 1174 // a null 'this' pointer. 1175 if (isLambdaCallOperator(MD) && 1176 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1177 SkippedChecks.set(SanitizerKind::Null, true); 1178 1179 EmitTypeCheck( 1180 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1181 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1182 } 1183 } 1184 1185 // If any of the arguments have a variably modified type, make sure to 1186 // emit the type size. 1187 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1188 i != e; ++i) { 1189 const VarDecl *VD = *i; 1190 1191 // Dig out the type as written from ParmVarDecls; it's unclear whether 1192 // the standard (C99 6.9.1p10) requires this, but we're following the 1193 // precedent set by gcc. 1194 QualType Ty; 1195 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1196 Ty = PVD->getOriginalType(); 1197 else 1198 Ty = VD->getType(); 1199 1200 if (Ty->isVariablyModifiedType()) 1201 EmitVariablyModifiedType(Ty); 1202 } 1203 // Emit a location at the end of the prologue. 1204 if (CGDebugInfo *DI = getDebugInfo()) 1205 DI->EmitLocation(Builder, StartLoc); 1206 1207 // TODO: Do we need to handle this in two places like we do with 1208 // target-features/target-cpu? 1209 if (CurFuncDecl) 1210 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1211 LargestVectorWidth = VecWidth->getVectorWidth(); 1212 } 1213 1214 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1215 incrementProfileCounter(Body); 1216 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1217 EmitCompoundStmtWithoutScope(*S); 1218 else 1219 EmitStmt(Body); 1220 1221 // This is checked after emitting the function body so we know if there 1222 // are any permitted infinite loops. 1223 if (checkIfFunctionMustProgress()) 1224 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1225 } 1226 1227 /// When instrumenting to collect profile data, the counts for some blocks 1228 /// such as switch cases need to not include the fall-through counts, so 1229 /// emit a branch around the instrumentation code. When not instrumenting, 1230 /// this just calls EmitBlock(). 1231 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1232 const Stmt *S) { 1233 llvm::BasicBlock *SkipCountBB = nullptr; 1234 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1235 // When instrumenting for profiling, the fallthrough to certain 1236 // statements needs to skip over the instrumentation code so that we 1237 // get an accurate count. 1238 SkipCountBB = createBasicBlock("skipcount"); 1239 EmitBranch(SkipCountBB); 1240 } 1241 EmitBlock(BB); 1242 uint64_t CurrentCount = getCurrentProfileCount(); 1243 incrementProfileCounter(S); 1244 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1245 if (SkipCountBB) 1246 EmitBlock(SkipCountBB); 1247 } 1248 1249 /// Tries to mark the given function nounwind based on the 1250 /// non-existence of any throwing calls within it. We believe this is 1251 /// lightweight enough to do at -O0. 1252 static void TryMarkNoThrow(llvm::Function *F) { 1253 // LLVM treats 'nounwind' on a function as part of the type, so we 1254 // can't do this on functions that can be overwritten. 1255 if (F->isInterposable()) return; 1256 1257 for (llvm::BasicBlock &BB : *F) 1258 for (llvm::Instruction &I : BB) 1259 if (I.mayThrow()) 1260 return; 1261 1262 F->setDoesNotThrow(); 1263 } 1264 1265 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1266 FunctionArgList &Args) { 1267 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1268 QualType ResTy = FD->getReturnType(); 1269 1270 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1271 if (MD && MD->isInstance()) { 1272 if (CGM.getCXXABI().HasThisReturn(GD)) 1273 ResTy = MD->getThisType(); 1274 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1275 ResTy = CGM.getContext().VoidPtrTy; 1276 CGM.getCXXABI().buildThisParam(*this, Args); 1277 } 1278 1279 // The base version of an inheriting constructor whose constructed base is a 1280 // virtual base is not passed any arguments (because it doesn't actually call 1281 // the inherited constructor). 1282 bool PassedParams = true; 1283 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1284 if (auto Inherited = CD->getInheritedConstructor()) 1285 PassedParams = 1286 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1287 1288 if (PassedParams) { 1289 for (auto *Param : FD->parameters()) { 1290 Args.push_back(Param); 1291 if (!Param->hasAttr<PassObjectSizeAttr>()) 1292 continue; 1293 1294 auto *Implicit = ImplicitParamDecl::Create( 1295 getContext(), Param->getDeclContext(), Param->getLocation(), 1296 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1297 SizeArguments[Param] = Implicit; 1298 Args.push_back(Implicit); 1299 } 1300 } 1301 1302 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1303 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1304 1305 return ResTy; 1306 } 1307 1308 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1309 const CGFunctionInfo &FnInfo) { 1310 assert(Fn && "generating code for null Function"); 1311 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1312 CurGD = GD; 1313 1314 FunctionArgList Args; 1315 QualType ResTy = BuildFunctionArgList(GD, Args); 1316 1317 if (FD->isInlineBuiltinDeclaration()) { 1318 // When generating code for a builtin with an inline declaration, use a 1319 // mangled name to hold the actual body, while keeping an external 1320 // definition in case the function pointer is referenced somewhere. 1321 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1322 llvm::Module *M = Fn->getParent(); 1323 llvm::Function *Clone = M->getFunction(FDInlineName); 1324 if (!Clone) { 1325 Clone = llvm::Function::Create(Fn->getFunctionType(), 1326 llvm::GlobalValue::InternalLinkage, 1327 Fn->getAddressSpace(), FDInlineName, M); 1328 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 1329 } 1330 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); 1331 Fn = Clone; 1332 } else { 1333 // Detect the unusual situation where an inline version is shadowed by a 1334 // non-inline version. In that case we should pick the external one 1335 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way 1336 // to detect that situation before we reach codegen, so do some late 1337 // replacement. 1338 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; 1339 PD = PD->getPreviousDecl()) { 1340 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { 1341 std::string FDInlineName = (Fn->getName() + ".inline").str(); 1342 llvm::Module *M = Fn->getParent(); 1343 if (llvm::Function *Clone = M->getFunction(FDInlineName)) { 1344 Clone->replaceAllUsesWith(Fn); 1345 Clone->eraseFromParent(); 1346 } 1347 break; 1348 } 1349 } 1350 } 1351 1352 // Check if we should generate debug info for this function. 1353 if (FD->hasAttr<NoDebugAttr>()) { 1354 // Clear non-distinct debug info that was possibly attached to the function 1355 // due to an earlier declaration without the nodebug attribute 1356 Fn->setSubprogram(nullptr); 1357 // Disable debug info indefinitely for this function 1358 DebugInfo = nullptr; 1359 } 1360 1361 // The function might not have a body if we're generating thunks for a 1362 // function declaration. 1363 SourceRange BodyRange; 1364 if (Stmt *Body = FD->getBody()) 1365 BodyRange = Body->getSourceRange(); 1366 else 1367 BodyRange = FD->getLocation(); 1368 CurEHLocation = BodyRange.getEnd(); 1369 1370 // Use the location of the start of the function to determine where 1371 // the function definition is located. By default use the location 1372 // of the declaration as the location for the subprogram. A function 1373 // may lack a declaration in the source code if it is created by code 1374 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1375 SourceLocation Loc = FD->getLocation(); 1376 1377 // If this is a function specialization then use the pattern body 1378 // as the location for the function. 1379 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1380 if (SpecDecl->hasBody(SpecDecl)) 1381 Loc = SpecDecl->getLocation(); 1382 1383 Stmt *Body = FD->getBody(); 1384 1385 if (Body) { 1386 // Coroutines always emit lifetime markers. 1387 if (isa<CoroutineBodyStmt>(Body)) 1388 ShouldEmitLifetimeMarkers = true; 1389 1390 // Initialize helper which will detect jumps which can cause invalid 1391 // lifetime markers. 1392 if (ShouldEmitLifetimeMarkers) 1393 Bypasses.Init(Body); 1394 } 1395 1396 // Emit the standard function prologue. 1397 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1398 1399 // Save parameters for coroutine function. 1400 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1401 for (const auto *ParamDecl : FD->parameters()) 1402 FnArgs.push_back(ParamDecl); 1403 1404 // Generate the body of the function. 1405 PGO.assignRegionCounters(GD, CurFn); 1406 if (isa<CXXDestructorDecl>(FD)) 1407 EmitDestructorBody(Args); 1408 else if (isa<CXXConstructorDecl>(FD)) 1409 EmitConstructorBody(Args); 1410 else if (getLangOpts().CUDA && 1411 !getLangOpts().CUDAIsDevice && 1412 FD->hasAttr<CUDAGlobalAttr>()) 1413 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1414 else if (isa<CXXMethodDecl>(FD) && 1415 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1416 // The lambda static invoker function is special, because it forwards or 1417 // clones the body of the function call operator (but is actually static). 1418 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1419 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1420 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1421 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1422 // Implicit copy-assignment gets the same special treatment as implicit 1423 // copy-constructors. 1424 emitImplicitAssignmentOperatorBody(Args); 1425 } else if (Body) { 1426 EmitFunctionBody(Body); 1427 } else 1428 llvm_unreachable("no definition for emitted function"); 1429 1430 // C++11 [stmt.return]p2: 1431 // Flowing off the end of a function [...] results in undefined behavior in 1432 // a value-returning function. 1433 // C11 6.9.1p12: 1434 // If the '}' that terminates a function is reached, and the value of the 1435 // function call is used by the caller, the behavior is undefined. 1436 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1437 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1438 bool ShouldEmitUnreachable = 1439 CGM.getCodeGenOpts().StrictReturn || 1440 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1441 if (SanOpts.has(SanitizerKind::Return)) { 1442 SanitizerScope SanScope(this); 1443 llvm::Value *IsFalse = Builder.getFalse(); 1444 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1445 SanitizerHandler::MissingReturn, 1446 EmitCheckSourceLocation(FD->getLocation()), None); 1447 } else if (ShouldEmitUnreachable) { 1448 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1449 EmitTrapCall(llvm::Intrinsic::trap); 1450 } 1451 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1452 Builder.CreateUnreachable(); 1453 Builder.ClearInsertionPoint(); 1454 } 1455 } 1456 1457 // Emit the standard function epilogue. 1458 FinishFunction(BodyRange.getEnd()); 1459 1460 // If we haven't marked the function nothrow through other means, do 1461 // a quick pass now to see if we can. 1462 if (!CurFn->doesNotThrow()) 1463 TryMarkNoThrow(CurFn); 1464 } 1465 1466 /// ContainsLabel - Return true if the statement contains a label in it. If 1467 /// this statement is not executed normally, it not containing a label means 1468 /// that we can just remove the code. 1469 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1470 // Null statement, not a label! 1471 if (!S) return false; 1472 1473 // If this is a label, we have to emit the code, consider something like: 1474 // if (0) { ... foo: bar(); } goto foo; 1475 // 1476 // TODO: If anyone cared, we could track __label__'s, since we know that you 1477 // can't jump to one from outside their declared region. 1478 if (isa<LabelStmt>(S)) 1479 return true; 1480 1481 // If this is a case/default statement, and we haven't seen a switch, we have 1482 // to emit the code. 1483 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1484 return true; 1485 1486 // If this is a switch statement, we want to ignore cases below it. 1487 if (isa<SwitchStmt>(S)) 1488 IgnoreCaseStmts = true; 1489 1490 // Scan subexpressions for verboten labels. 1491 for (const Stmt *SubStmt : S->children()) 1492 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1493 return true; 1494 1495 return false; 1496 } 1497 1498 /// containsBreak - Return true if the statement contains a break out of it. 1499 /// If the statement (recursively) contains a switch or loop with a break 1500 /// inside of it, this is fine. 1501 bool CodeGenFunction::containsBreak(const Stmt *S) { 1502 // Null statement, not a label! 1503 if (!S) return false; 1504 1505 // If this is a switch or loop that defines its own break scope, then we can 1506 // include it and anything inside of it. 1507 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1508 isa<ForStmt>(S)) 1509 return false; 1510 1511 if (isa<BreakStmt>(S)) 1512 return true; 1513 1514 // Scan subexpressions for verboten breaks. 1515 for (const Stmt *SubStmt : S->children()) 1516 if (containsBreak(SubStmt)) 1517 return true; 1518 1519 return false; 1520 } 1521 1522 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1523 if (!S) return false; 1524 1525 // Some statement kinds add a scope and thus never add a decl to the current 1526 // scope. Note, this list is longer than the list of statements that might 1527 // have an unscoped decl nested within them, but this way is conservatively 1528 // correct even if more statement kinds are added. 1529 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1530 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1531 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1532 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1533 return false; 1534 1535 if (isa<DeclStmt>(S)) 1536 return true; 1537 1538 for (const Stmt *SubStmt : S->children()) 1539 if (mightAddDeclToScope(SubStmt)) 1540 return true; 1541 1542 return false; 1543 } 1544 1545 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1546 /// to a constant, or if it does but contains a label, return false. If it 1547 /// constant folds return true and set the boolean result in Result. 1548 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1549 bool &ResultBool, 1550 bool AllowLabels) { 1551 llvm::APSInt ResultInt; 1552 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1553 return false; 1554 1555 ResultBool = ResultInt.getBoolValue(); 1556 return true; 1557 } 1558 1559 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1560 /// to a constant, or if it does but contains a label, return false. If it 1561 /// constant folds return true and set the folded value. 1562 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1563 llvm::APSInt &ResultInt, 1564 bool AllowLabels) { 1565 // FIXME: Rename and handle conversion of other evaluatable things 1566 // to bool. 1567 Expr::EvalResult Result; 1568 if (!Cond->EvaluateAsInt(Result, getContext())) 1569 return false; // Not foldable, not integer or not fully evaluatable. 1570 1571 llvm::APSInt Int = Result.Val.getInt(); 1572 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1573 return false; // Contains a label. 1574 1575 ResultInt = Int; 1576 return true; 1577 } 1578 1579 /// Determine whether the given condition is an instrumentable condition 1580 /// (i.e. no "&&" or "||"). 1581 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1582 // Bypass simplistic logical-NOT operator before determining whether the 1583 // condition contains any other logical operator. 1584 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1585 if (UnOp->getOpcode() == UO_LNot) 1586 C = UnOp->getSubExpr(); 1587 1588 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1589 return (!BOp || !BOp->isLogicalOp()); 1590 } 1591 1592 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1593 /// increments a profile counter based on the semantics of the given logical 1594 /// operator opcode. This is used to instrument branch condition coverage for 1595 /// logical operators. 1596 void CodeGenFunction::EmitBranchToCounterBlock( 1597 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1598 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1599 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1600 // If not instrumenting, just emit a branch. 1601 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1602 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1603 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1604 1605 llvm::BasicBlock *ThenBlock = nullptr; 1606 llvm::BasicBlock *ElseBlock = nullptr; 1607 llvm::BasicBlock *NextBlock = nullptr; 1608 1609 // Create the block we'll use to increment the appropriate counter. 1610 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1611 1612 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1613 // means we need to evaluate the condition and increment the counter on TRUE: 1614 // 1615 // if (Cond) 1616 // goto CounterIncrBlock; 1617 // else 1618 // goto FalseBlock; 1619 // 1620 // CounterIncrBlock: 1621 // Counter++; 1622 // goto TrueBlock; 1623 1624 if (LOp == BO_LAnd) { 1625 ThenBlock = CounterIncrBlock; 1626 ElseBlock = FalseBlock; 1627 NextBlock = TrueBlock; 1628 } 1629 1630 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1631 // we need to evaluate the condition and increment the counter on FALSE: 1632 // 1633 // if (Cond) 1634 // goto TrueBlock; 1635 // else 1636 // goto CounterIncrBlock; 1637 // 1638 // CounterIncrBlock: 1639 // Counter++; 1640 // goto FalseBlock; 1641 1642 else if (LOp == BO_LOr) { 1643 ThenBlock = TrueBlock; 1644 ElseBlock = CounterIncrBlock; 1645 NextBlock = FalseBlock; 1646 } else { 1647 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1648 } 1649 1650 // Emit Branch based on condition. 1651 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1652 1653 // Emit the block containing the counter increment(s). 1654 EmitBlock(CounterIncrBlock); 1655 1656 // Increment corresponding counter; if index not provided, use Cond as index. 1657 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1658 1659 // Go to the next block. 1660 EmitBranch(NextBlock); 1661 } 1662 1663 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1664 /// statement) to the specified blocks. Based on the condition, this might try 1665 /// to simplify the codegen of the conditional based on the branch. 1666 /// \param LH The value of the likelihood attribute on the True branch. 1667 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1668 llvm::BasicBlock *TrueBlock, 1669 llvm::BasicBlock *FalseBlock, 1670 uint64_t TrueCount, 1671 Stmt::Likelihood LH) { 1672 Cond = Cond->IgnoreParens(); 1673 1674 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1675 1676 // Handle X && Y in a condition. 1677 if (CondBOp->getOpcode() == BO_LAnd) { 1678 // If we have "1 && X", simplify the code. "0 && X" would have constant 1679 // folded if the case was simple enough. 1680 bool ConstantBool = false; 1681 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1682 ConstantBool) { 1683 // br(1 && X) -> br(X). 1684 incrementProfileCounter(CondBOp); 1685 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1686 FalseBlock, TrueCount, LH); 1687 } 1688 1689 // If we have "X && 1", simplify the code to use an uncond branch. 1690 // "X && 0" would have been constant folded to 0. 1691 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1692 ConstantBool) { 1693 // br(X && 1) -> br(X). 1694 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1695 FalseBlock, TrueCount, LH, CondBOp); 1696 } 1697 1698 // Emit the LHS as a conditional. If the LHS conditional is false, we 1699 // want to jump to the FalseBlock. 1700 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1701 // The counter tells us how often we evaluate RHS, and all of TrueCount 1702 // can be propagated to that branch. 1703 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1704 1705 ConditionalEvaluation eval(*this); 1706 { 1707 ApplyDebugLocation DL(*this, Cond); 1708 // Propagate the likelihood attribute like __builtin_expect 1709 // __builtin_expect(X && Y, 1) -> X and Y are likely 1710 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1711 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1712 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1713 EmitBlock(LHSTrue); 1714 } 1715 1716 incrementProfileCounter(CondBOp); 1717 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1718 1719 // Any temporaries created here are conditional. 1720 eval.begin(*this); 1721 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1722 FalseBlock, TrueCount, LH); 1723 eval.end(*this); 1724 1725 return; 1726 } 1727 1728 if (CondBOp->getOpcode() == BO_LOr) { 1729 // If we have "0 || X", simplify the code. "1 || X" would have constant 1730 // folded if the case was simple enough. 1731 bool ConstantBool = false; 1732 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1733 !ConstantBool) { 1734 // br(0 || X) -> br(X). 1735 incrementProfileCounter(CondBOp); 1736 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1737 FalseBlock, TrueCount, LH); 1738 } 1739 1740 // If we have "X || 0", simplify the code to use an uncond branch. 1741 // "X || 1" would have been constant folded to 1. 1742 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1743 !ConstantBool) { 1744 // br(X || 0) -> br(X). 1745 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1746 FalseBlock, TrueCount, LH, CondBOp); 1747 } 1748 1749 // Emit the LHS as a conditional. If the LHS conditional is true, we 1750 // want to jump to the TrueBlock. 1751 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1752 // We have the count for entry to the RHS and for the whole expression 1753 // being true, so we can divy up True count between the short circuit and 1754 // the RHS. 1755 uint64_t LHSCount = 1756 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1757 uint64_t RHSCount = TrueCount - LHSCount; 1758 1759 ConditionalEvaluation eval(*this); 1760 { 1761 // Propagate the likelihood attribute like __builtin_expect 1762 // __builtin_expect(X || Y, 1) -> only Y is likely 1763 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1764 ApplyDebugLocation DL(*this, Cond); 1765 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1766 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1767 EmitBlock(LHSFalse); 1768 } 1769 1770 incrementProfileCounter(CondBOp); 1771 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1772 1773 // Any temporaries created here are conditional. 1774 eval.begin(*this); 1775 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1776 RHSCount, LH); 1777 1778 eval.end(*this); 1779 1780 return; 1781 } 1782 } 1783 1784 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1785 // br(!x, t, f) -> br(x, f, t) 1786 if (CondUOp->getOpcode() == UO_LNot) { 1787 // Negate the count. 1788 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1789 // The values of the enum are chosen to make this negation possible. 1790 LH = static_cast<Stmt::Likelihood>(-LH); 1791 // Negate the condition and swap the destination blocks. 1792 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1793 FalseCount, LH); 1794 } 1795 } 1796 1797 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1798 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1799 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1800 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1801 1802 // The ConditionalOperator itself has no likelihood information for its 1803 // true and false branches. This matches the behavior of __builtin_expect. 1804 ConditionalEvaluation cond(*this); 1805 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1806 getProfileCount(CondOp), Stmt::LH_None); 1807 1808 // When computing PGO branch weights, we only know the overall count for 1809 // the true block. This code is essentially doing tail duplication of the 1810 // naive code-gen, introducing new edges for which counts are not 1811 // available. Divide the counts proportionally between the LHS and RHS of 1812 // the conditional operator. 1813 uint64_t LHSScaledTrueCount = 0; 1814 if (TrueCount) { 1815 double LHSRatio = 1816 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1817 LHSScaledTrueCount = TrueCount * LHSRatio; 1818 } 1819 1820 cond.begin(*this); 1821 EmitBlock(LHSBlock); 1822 incrementProfileCounter(CondOp); 1823 { 1824 ApplyDebugLocation DL(*this, Cond); 1825 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1826 LHSScaledTrueCount, LH); 1827 } 1828 cond.end(*this); 1829 1830 cond.begin(*this); 1831 EmitBlock(RHSBlock); 1832 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1833 TrueCount - LHSScaledTrueCount, LH); 1834 cond.end(*this); 1835 1836 return; 1837 } 1838 1839 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1840 // Conditional operator handling can give us a throw expression as a 1841 // condition for a case like: 1842 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1843 // Fold this to: 1844 // br(c, throw x, br(y, t, f)) 1845 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1846 return; 1847 } 1848 1849 // Emit the code with the fully general case. 1850 llvm::Value *CondV; 1851 { 1852 ApplyDebugLocation DL(*this, Cond); 1853 CondV = EvaluateExprAsBool(Cond); 1854 } 1855 1856 llvm::MDNode *Weights = nullptr; 1857 llvm::MDNode *Unpredictable = nullptr; 1858 1859 // If the branch has a condition wrapped by __builtin_unpredictable, 1860 // create metadata that specifies that the branch is unpredictable. 1861 // Don't bother if not optimizing because that metadata would not be used. 1862 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1863 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1864 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1865 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1866 llvm::MDBuilder MDHelper(getLLVMContext()); 1867 Unpredictable = MDHelper.createUnpredictable(); 1868 } 1869 } 1870 1871 // If there is a Likelihood knowledge for the cond, lower it. 1872 // Note that if not optimizing this won't emit anything. 1873 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1874 if (CondV != NewCondV) 1875 CondV = NewCondV; 1876 else { 1877 // Otherwise, lower profile counts. Note that we do this even at -O0. 1878 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1879 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1880 } 1881 1882 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1883 } 1884 1885 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1886 /// specified stmt yet. 1887 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1888 CGM.ErrorUnsupported(S, Type); 1889 } 1890 1891 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1892 /// variable-length array whose elements have a non-zero bit-pattern. 1893 /// 1894 /// \param baseType the inner-most element type of the array 1895 /// \param src - a char* pointing to the bit-pattern for a single 1896 /// base element of the array 1897 /// \param sizeInChars - the total size of the VLA, in chars 1898 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1899 Address dest, Address src, 1900 llvm::Value *sizeInChars) { 1901 CGBuilderTy &Builder = CGF.Builder; 1902 1903 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1904 llvm::Value *baseSizeInChars 1905 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1906 1907 Address begin = 1908 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1909 llvm::Value *end = Builder.CreateInBoundsGEP( 1910 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1911 1912 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1913 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1914 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1915 1916 // Make a loop over the VLA. C99 guarantees that the VLA element 1917 // count must be nonzero. 1918 CGF.EmitBlock(loopBB); 1919 1920 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1921 cur->addIncoming(begin.getPointer(), originBB); 1922 1923 CharUnits curAlign = 1924 dest.getAlignment().alignmentOfArrayElement(baseSize); 1925 1926 // memcpy the individual element bit-pattern. 1927 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1928 /*volatile*/ false); 1929 1930 // Go to the next element. 1931 llvm::Value *next = 1932 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1933 1934 // Leave if that's the end of the VLA. 1935 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1936 Builder.CreateCondBr(done, contBB, loopBB); 1937 cur->addIncoming(next, loopBB); 1938 1939 CGF.EmitBlock(contBB); 1940 } 1941 1942 void 1943 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1944 // Ignore empty classes in C++. 1945 if (getLangOpts().CPlusPlus) { 1946 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1947 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1948 return; 1949 } 1950 } 1951 1952 // Cast the dest ptr to the appropriate i8 pointer type. 1953 if (DestPtr.getElementType() != Int8Ty) 1954 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1955 1956 // Get size and alignment info for this aggregate. 1957 CharUnits size = getContext().getTypeSizeInChars(Ty); 1958 1959 llvm::Value *SizeVal; 1960 const VariableArrayType *vla; 1961 1962 // Don't bother emitting a zero-byte memset. 1963 if (size.isZero()) { 1964 // But note that getTypeInfo returns 0 for a VLA. 1965 if (const VariableArrayType *vlaType = 1966 dyn_cast_or_null<VariableArrayType>( 1967 getContext().getAsArrayType(Ty))) { 1968 auto VlaSize = getVLASize(vlaType); 1969 SizeVal = VlaSize.NumElts; 1970 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1971 if (!eltSize.isOne()) 1972 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1973 vla = vlaType; 1974 } else { 1975 return; 1976 } 1977 } else { 1978 SizeVal = CGM.getSize(size); 1979 vla = nullptr; 1980 } 1981 1982 // If the type contains a pointer to data member we can't memset it to zero. 1983 // Instead, create a null constant and copy it to the destination. 1984 // TODO: there are other patterns besides zero that we can usefully memset, 1985 // like -1, which happens to be the pattern used by member-pointers. 1986 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1987 // For a VLA, emit a single element, then splat that over the VLA. 1988 if (vla) Ty = getContext().getBaseElementType(vla); 1989 1990 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1991 1992 llvm::GlobalVariable *NullVariable = 1993 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1994 /*isConstant=*/true, 1995 llvm::GlobalVariable::PrivateLinkage, 1996 NullConstant, Twine()); 1997 CharUnits NullAlign = DestPtr.getAlignment(); 1998 NullVariable->setAlignment(NullAlign.getAsAlign()); 1999 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 2000 NullAlign); 2001 2002 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 2003 2004 // Get and call the appropriate llvm.memcpy overload. 2005 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 2006 return; 2007 } 2008 2009 // Otherwise, just memset the whole thing to zero. This is legal 2010 // because in LLVM, all default initializers (other than the ones we just 2011 // handled above) are guaranteed to have a bit pattern of all zeros. 2012 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 2013 } 2014 2015 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 2016 // Make sure that there is a block for the indirect goto. 2017 if (!IndirectBranch) 2018 GetIndirectGotoBlock(); 2019 2020 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 2021 2022 // Make sure the indirect branch includes all of the address-taken blocks. 2023 IndirectBranch->addDestination(BB); 2024 return llvm::BlockAddress::get(CurFn, BB); 2025 } 2026 2027 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 2028 // If we already made the indirect branch for indirect goto, return its block. 2029 if (IndirectBranch) return IndirectBranch->getParent(); 2030 2031 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 2032 2033 // Create the PHI node that indirect gotos will add entries to. 2034 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 2035 "indirect.goto.dest"); 2036 2037 // Create the indirect branch instruction. 2038 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 2039 return IndirectBranch->getParent(); 2040 } 2041 2042 /// Computes the length of an array in elements, as well as the base 2043 /// element type and a properly-typed first element pointer. 2044 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 2045 QualType &baseType, 2046 Address &addr) { 2047 const ArrayType *arrayType = origArrayType; 2048 2049 // If it's a VLA, we have to load the stored size. Note that 2050 // this is the size of the VLA in bytes, not its size in elements. 2051 llvm::Value *numVLAElements = nullptr; 2052 if (isa<VariableArrayType>(arrayType)) { 2053 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 2054 2055 // Walk into all VLAs. This doesn't require changes to addr, 2056 // which has type T* where T is the first non-VLA element type. 2057 do { 2058 QualType elementType = arrayType->getElementType(); 2059 arrayType = getContext().getAsArrayType(elementType); 2060 2061 // If we only have VLA components, 'addr' requires no adjustment. 2062 if (!arrayType) { 2063 baseType = elementType; 2064 return numVLAElements; 2065 } 2066 } while (isa<VariableArrayType>(arrayType)); 2067 2068 // We get out here only if we find a constant array type 2069 // inside the VLA. 2070 } 2071 2072 // We have some number of constant-length arrays, so addr should 2073 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2074 // down to the first element of addr. 2075 SmallVector<llvm::Value*, 8> gepIndices; 2076 2077 // GEP down to the array type. 2078 llvm::ConstantInt *zero = Builder.getInt32(0); 2079 gepIndices.push_back(zero); 2080 2081 uint64_t countFromCLAs = 1; 2082 QualType eltType; 2083 2084 llvm::ArrayType *llvmArrayType = 2085 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2086 while (llvmArrayType) { 2087 assert(isa<ConstantArrayType>(arrayType)); 2088 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2089 == llvmArrayType->getNumElements()); 2090 2091 gepIndices.push_back(zero); 2092 countFromCLAs *= llvmArrayType->getNumElements(); 2093 eltType = arrayType->getElementType(); 2094 2095 llvmArrayType = 2096 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2097 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2098 assert((!llvmArrayType || arrayType) && 2099 "LLVM and Clang types are out-of-synch"); 2100 } 2101 2102 if (arrayType) { 2103 // From this point onwards, the Clang array type has been emitted 2104 // as some other type (probably a packed struct). Compute the array 2105 // size, and just emit the 'begin' expression as a bitcast. 2106 while (arrayType) { 2107 countFromCLAs *= 2108 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2109 eltType = arrayType->getElementType(); 2110 arrayType = getContext().getAsArrayType(eltType); 2111 } 2112 2113 llvm::Type *baseType = ConvertType(eltType); 2114 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2115 } else { 2116 // Create the actual GEP. 2117 addr = Address(Builder.CreateInBoundsGEP( 2118 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2119 ConvertTypeForMem(eltType), 2120 addr.getAlignment()); 2121 } 2122 2123 baseType = eltType; 2124 2125 llvm::Value *numElements 2126 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2127 2128 // If we had any VLA dimensions, factor them in. 2129 if (numVLAElements) 2130 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2131 2132 return numElements; 2133 } 2134 2135 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2136 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2137 assert(vla && "type was not a variable array type!"); 2138 return getVLASize(vla); 2139 } 2140 2141 CodeGenFunction::VlaSizePair 2142 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2143 // The number of elements so far; always size_t. 2144 llvm::Value *numElements = nullptr; 2145 2146 QualType elementType; 2147 do { 2148 elementType = type->getElementType(); 2149 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2150 assert(vlaSize && "no size for VLA!"); 2151 assert(vlaSize->getType() == SizeTy); 2152 2153 if (!numElements) { 2154 numElements = vlaSize; 2155 } else { 2156 // It's undefined behavior if this wraps around, so mark it that way. 2157 // FIXME: Teach -fsanitize=undefined to trap this. 2158 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2159 } 2160 } while ((type = getContext().getAsVariableArrayType(elementType))); 2161 2162 return { numElements, elementType }; 2163 } 2164 2165 CodeGenFunction::VlaSizePair 2166 CodeGenFunction::getVLAElements1D(QualType type) { 2167 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2168 assert(vla && "type was not a variable array type!"); 2169 return getVLAElements1D(vla); 2170 } 2171 2172 CodeGenFunction::VlaSizePair 2173 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2174 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2175 assert(VlaSize && "no size for VLA!"); 2176 assert(VlaSize->getType() == SizeTy); 2177 return { VlaSize, Vla->getElementType() }; 2178 } 2179 2180 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2181 assert(type->isVariablyModifiedType() && 2182 "Must pass variably modified type to EmitVLASizes!"); 2183 2184 EnsureInsertPoint(); 2185 2186 // We're going to walk down into the type and look for VLA 2187 // expressions. 2188 do { 2189 assert(type->isVariablyModifiedType()); 2190 2191 const Type *ty = type.getTypePtr(); 2192 switch (ty->getTypeClass()) { 2193 2194 #define TYPE(Class, Base) 2195 #define ABSTRACT_TYPE(Class, Base) 2196 #define NON_CANONICAL_TYPE(Class, Base) 2197 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2198 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2199 #include "clang/AST/TypeNodes.inc" 2200 llvm_unreachable("unexpected dependent type!"); 2201 2202 // These types are never variably-modified. 2203 case Type::Builtin: 2204 case Type::Complex: 2205 case Type::Vector: 2206 case Type::ExtVector: 2207 case Type::ConstantMatrix: 2208 case Type::Record: 2209 case Type::Enum: 2210 case Type::Elaborated: 2211 case Type::Using: 2212 case Type::TemplateSpecialization: 2213 case Type::ObjCTypeParam: 2214 case Type::ObjCObject: 2215 case Type::ObjCInterface: 2216 case Type::ObjCObjectPointer: 2217 case Type::BitInt: 2218 llvm_unreachable("type class is never variably-modified!"); 2219 2220 case Type::Adjusted: 2221 type = cast<AdjustedType>(ty)->getAdjustedType(); 2222 break; 2223 2224 case Type::Decayed: 2225 type = cast<DecayedType>(ty)->getPointeeType(); 2226 break; 2227 2228 case Type::Pointer: 2229 type = cast<PointerType>(ty)->getPointeeType(); 2230 break; 2231 2232 case Type::BlockPointer: 2233 type = cast<BlockPointerType>(ty)->getPointeeType(); 2234 break; 2235 2236 case Type::LValueReference: 2237 case Type::RValueReference: 2238 type = cast<ReferenceType>(ty)->getPointeeType(); 2239 break; 2240 2241 case Type::MemberPointer: 2242 type = cast<MemberPointerType>(ty)->getPointeeType(); 2243 break; 2244 2245 case Type::ConstantArray: 2246 case Type::IncompleteArray: 2247 // Losing element qualification here is fine. 2248 type = cast<ArrayType>(ty)->getElementType(); 2249 break; 2250 2251 case Type::VariableArray: { 2252 // Losing element qualification here is fine. 2253 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2254 2255 // Unknown size indication requires no size computation. 2256 // Otherwise, evaluate and record it. 2257 if (const Expr *sizeExpr = vat->getSizeExpr()) { 2258 // It's possible that we might have emitted this already, 2259 // e.g. with a typedef and a pointer to it. 2260 llvm::Value *&entry = VLASizeMap[sizeExpr]; 2261 if (!entry) { 2262 llvm::Value *size = EmitScalarExpr(sizeExpr); 2263 2264 // C11 6.7.6.2p5: 2265 // If the size is an expression that is not an integer constant 2266 // expression [...] each time it is evaluated it shall have a value 2267 // greater than zero. 2268 if (SanOpts.has(SanitizerKind::VLABound)) { 2269 SanitizerScope SanScope(this); 2270 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); 2271 clang::QualType SEType = sizeExpr->getType(); 2272 llvm::Value *CheckCondition = 2273 SEType->isSignedIntegerType() 2274 ? Builder.CreateICmpSGT(size, Zero) 2275 : Builder.CreateICmpUGT(size, Zero); 2276 llvm::Constant *StaticArgs[] = { 2277 EmitCheckSourceLocation(sizeExpr->getBeginLoc()), 2278 EmitCheckTypeDescriptor(SEType)}; 2279 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), 2280 SanitizerHandler::VLABoundNotPositive, StaticArgs, size); 2281 } 2282 2283 // Always zexting here would be wrong if it weren't 2284 // undefined behavior to have a negative bound. 2285 // FIXME: What about when size's type is larger than size_t? 2286 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); 2287 } 2288 } 2289 type = vat->getElementType(); 2290 break; 2291 } 2292 2293 case Type::FunctionProto: 2294 case Type::FunctionNoProto: 2295 type = cast<FunctionType>(ty)->getReturnType(); 2296 break; 2297 2298 case Type::Paren: 2299 case Type::TypeOf: 2300 case Type::UnaryTransform: 2301 case Type::Attributed: 2302 case Type::SubstTemplateTypeParm: 2303 case Type::MacroQualified: 2304 // Keep walking after single level desugaring. 2305 type = type.getSingleStepDesugaredType(getContext()); 2306 break; 2307 2308 case Type::Typedef: 2309 case Type::Decltype: 2310 case Type::Auto: 2311 case Type::DeducedTemplateSpecialization: 2312 // Stop walking: nothing to do. 2313 return; 2314 2315 case Type::TypeOfExpr: 2316 // Stop walking: emit typeof expression. 2317 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2318 return; 2319 2320 case Type::Atomic: 2321 type = cast<AtomicType>(ty)->getValueType(); 2322 break; 2323 2324 case Type::Pipe: 2325 type = cast<PipeType>(ty)->getElementType(); 2326 break; 2327 } 2328 } while (type->isVariablyModifiedType()); 2329 } 2330 2331 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2332 if (getContext().getBuiltinVaListType()->isArrayType()) 2333 return EmitPointerWithAlignment(E); 2334 return EmitLValue(E).getAddress(*this); 2335 } 2336 2337 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2338 return EmitLValue(E).getAddress(*this); 2339 } 2340 2341 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2342 const APValue &Init) { 2343 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2344 if (CGDebugInfo *Dbg = getDebugInfo()) 2345 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2346 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2347 } 2348 2349 CodeGenFunction::PeepholeProtection 2350 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2351 // At the moment, the only aggressive peephole we do in IR gen 2352 // is trunc(zext) folding, but if we add more, we can easily 2353 // extend this protection. 2354 2355 if (!rvalue.isScalar()) return PeepholeProtection(); 2356 llvm::Value *value = rvalue.getScalarVal(); 2357 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2358 2359 // Just make an extra bitcast. 2360 assert(HaveInsertPoint()); 2361 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2362 Builder.GetInsertBlock()); 2363 2364 PeepholeProtection protection; 2365 protection.Inst = inst; 2366 return protection; 2367 } 2368 2369 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2370 if (!protection.Inst) return; 2371 2372 // In theory, we could try to duplicate the peepholes now, but whatever. 2373 protection.Inst->eraseFromParent(); 2374 } 2375 2376 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2377 QualType Ty, SourceLocation Loc, 2378 SourceLocation AssumptionLoc, 2379 llvm::Value *Alignment, 2380 llvm::Value *OffsetValue) { 2381 if (Alignment->getType() != IntPtrTy) 2382 Alignment = 2383 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2384 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2385 OffsetValue = 2386 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2387 llvm::Value *TheCheck = nullptr; 2388 if (SanOpts.has(SanitizerKind::Alignment)) { 2389 llvm::Value *PtrIntValue = 2390 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2391 2392 if (OffsetValue) { 2393 bool IsOffsetZero = false; 2394 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2395 IsOffsetZero = CI->isZero(); 2396 2397 if (!IsOffsetZero) 2398 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2399 } 2400 2401 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2402 llvm::Value *Mask = 2403 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2404 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2405 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2406 } 2407 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2408 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2409 2410 if (!SanOpts.has(SanitizerKind::Alignment)) 2411 return; 2412 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2413 OffsetValue, TheCheck, Assumption); 2414 } 2415 2416 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2417 const Expr *E, 2418 SourceLocation AssumptionLoc, 2419 llvm::Value *Alignment, 2420 llvm::Value *OffsetValue) { 2421 if (auto *CE = dyn_cast<CastExpr>(E)) 2422 E = CE->getSubExprAsWritten(); 2423 QualType Ty = E->getType(); 2424 SourceLocation Loc = E->getExprLoc(); 2425 2426 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2427 OffsetValue); 2428 } 2429 2430 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2431 llvm::Value *AnnotatedVal, 2432 StringRef AnnotationStr, 2433 SourceLocation Location, 2434 const AnnotateAttr *Attr) { 2435 SmallVector<llvm::Value *, 5> Args = { 2436 AnnotatedVal, 2437 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2438 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2439 CGM.EmitAnnotationLineNo(Location), 2440 }; 2441 if (Attr) 2442 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2443 return Builder.CreateCall(AnnotationFn, Args); 2444 } 2445 2446 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2447 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2448 // FIXME We create a new bitcast for every annotation because that's what 2449 // llvm-gcc was doing. 2450 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2451 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2452 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2453 I->getAnnotation(), D->getLocation(), I); 2454 } 2455 2456 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2457 Address Addr) { 2458 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2459 llvm::Value *V = Addr.getPointer(); 2460 llvm::Type *VTy = V->getType(); 2461 auto *PTy = dyn_cast<llvm::PointerType>(VTy); 2462 unsigned AS = PTy ? PTy->getAddressSpace() : 0; 2463 llvm::PointerType *IntrinTy = 2464 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS); 2465 llvm::Function *F = 2466 CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy); 2467 2468 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2469 // FIXME Always emit the cast inst so we can differentiate between 2470 // annotation on the first field of a struct and annotation on the struct 2471 // itself. 2472 if (VTy != IntrinTy) 2473 V = Builder.CreateBitCast(V, IntrinTy); 2474 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2475 V = Builder.CreateBitCast(V, VTy); 2476 } 2477 2478 return Address(V, Addr.getAlignment()); 2479 } 2480 2481 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2482 2483 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2484 : CGF(CGF) { 2485 assert(!CGF->IsSanitizerScope); 2486 CGF->IsSanitizerScope = true; 2487 } 2488 2489 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2490 CGF->IsSanitizerScope = false; 2491 } 2492 2493 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2494 const llvm::Twine &Name, 2495 llvm::BasicBlock *BB, 2496 llvm::BasicBlock::iterator InsertPt) const { 2497 LoopStack.InsertHelper(I); 2498 if (IsSanitizerScope) 2499 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2500 } 2501 2502 void CGBuilderInserter::InsertHelper( 2503 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2504 llvm::BasicBlock::iterator InsertPt) const { 2505 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2506 if (CGF) 2507 CGF->InsertHelper(I, Name, BB, InsertPt); 2508 } 2509 2510 // Emits an error if we don't have a valid set of target features for the 2511 // called function. 2512 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2513 const FunctionDecl *TargetDecl) { 2514 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2515 } 2516 2517 // Emits an error if we don't have a valid set of target features for the 2518 // called function. 2519 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2520 const FunctionDecl *TargetDecl) { 2521 // Early exit if this is an indirect call. 2522 if (!TargetDecl) 2523 return; 2524 2525 // Get the current enclosing function if it exists. If it doesn't 2526 // we can't check the target features anyhow. 2527 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2528 if (!FD) 2529 return; 2530 2531 // Grab the required features for the call. For a builtin this is listed in 2532 // the td file with the default cpu, for an always_inline function this is any 2533 // listed cpu and any listed features. 2534 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2535 std::string MissingFeature; 2536 llvm::StringMap<bool> CallerFeatureMap; 2537 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2538 if (BuiltinID) { 2539 StringRef FeatureList( 2540 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2541 // Return if the builtin doesn't have any required features. 2542 if (FeatureList.empty()) 2543 return; 2544 assert(!FeatureList.contains(' ') && "Space in feature list"); 2545 TargetFeatures TF(CallerFeatureMap); 2546 if (!TF.hasRequiredFeatures(FeatureList)) 2547 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2548 << TargetDecl->getDeclName() << FeatureList; 2549 } else if (!TargetDecl->isMultiVersion() && 2550 TargetDecl->hasAttr<TargetAttr>()) { 2551 // Get the required features for the callee. 2552 2553 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2554 ParsedTargetAttr ParsedAttr = 2555 CGM.getContext().filterFunctionTargetAttrs(TD); 2556 2557 SmallVector<StringRef, 1> ReqFeatures; 2558 llvm::StringMap<bool> CalleeFeatureMap; 2559 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2560 2561 for (const auto &F : ParsedAttr.Features) { 2562 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2563 ReqFeatures.push_back(StringRef(F).substr(1)); 2564 } 2565 2566 for (const auto &F : CalleeFeatureMap) { 2567 // Only positive features are "required". 2568 if (F.getValue()) 2569 ReqFeatures.push_back(F.getKey()); 2570 } 2571 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2572 if (!CallerFeatureMap.lookup(Feature)) { 2573 MissingFeature = Feature.str(); 2574 return false; 2575 } 2576 return true; 2577 })) 2578 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2579 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2580 } 2581 } 2582 2583 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2584 if (!CGM.getCodeGenOpts().SanitizeStats) 2585 return; 2586 2587 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2588 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2589 CGM.getSanStats().create(IRB, SSK); 2590 } 2591 2592 llvm::Value * 2593 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2594 llvm::Value *Condition = nullptr; 2595 2596 if (!RO.Conditions.Architecture.empty()) 2597 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2598 2599 if (!RO.Conditions.Features.empty()) { 2600 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2601 Condition = 2602 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2603 } 2604 return Condition; 2605 } 2606 2607 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2608 llvm::Function *Resolver, 2609 CGBuilderTy &Builder, 2610 llvm::Function *FuncToReturn, 2611 bool SupportsIFunc) { 2612 if (SupportsIFunc) { 2613 Builder.CreateRet(FuncToReturn); 2614 return; 2615 } 2616 2617 llvm::SmallVector<llvm::Value *, 10> Args; 2618 llvm::for_each(Resolver->args(), 2619 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2620 2621 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2622 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2623 2624 if (Resolver->getReturnType()->isVoidTy()) 2625 Builder.CreateRetVoid(); 2626 else 2627 Builder.CreateRet(Result); 2628 } 2629 2630 void CodeGenFunction::EmitMultiVersionResolver( 2631 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2632 assert(getContext().getTargetInfo().getTriple().isX86() && 2633 "Only implemented for x86 targets"); 2634 2635 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2636 2637 // Main function's basic block. 2638 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2639 Builder.SetInsertPoint(CurBlock); 2640 EmitX86CpuInit(); 2641 2642 for (const MultiVersionResolverOption &RO : Options) { 2643 Builder.SetInsertPoint(CurBlock); 2644 llvm::Value *Condition = FormResolverCondition(RO); 2645 2646 // The 'default' or 'generic' case. 2647 if (!Condition) { 2648 assert(&RO == Options.end() - 1 && 2649 "Default or Generic case must be last"); 2650 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2651 SupportsIFunc); 2652 return; 2653 } 2654 2655 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2656 CGBuilderTy RetBuilder(*this, RetBlock); 2657 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2658 SupportsIFunc); 2659 CurBlock = createBasicBlock("resolver_else", Resolver); 2660 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2661 } 2662 2663 // If no generic/default, emit an unreachable. 2664 Builder.SetInsertPoint(CurBlock); 2665 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2666 TrapCall->setDoesNotReturn(); 2667 TrapCall->setDoesNotThrow(); 2668 Builder.CreateUnreachable(); 2669 Builder.ClearInsertionPoint(); 2670 } 2671 2672 // Loc - where the diagnostic will point, where in the source code this 2673 // alignment has failed. 2674 // SecondaryLoc - if present (will be present if sufficiently different from 2675 // Loc), the diagnostic will additionally point a "Note:" to this location. 2676 // It should be the location where the __attribute__((assume_aligned)) 2677 // was written e.g. 2678 void CodeGenFunction::emitAlignmentAssumptionCheck( 2679 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2680 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2681 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2682 llvm::Instruction *Assumption) { 2683 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2684 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2685 llvm::Intrinsic::getDeclaration( 2686 Builder.GetInsertBlock()->getParent()->getParent(), 2687 llvm::Intrinsic::assume) && 2688 "Assumption should be a call to llvm.assume()."); 2689 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2690 "Assumption should be the last instruction of the basic block, " 2691 "since the basic block is still being generated."); 2692 2693 if (!SanOpts.has(SanitizerKind::Alignment)) 2694 return; 2695 2696 // Don't check pointers to volatile data. The behavior here is implementation- 2697 // defined. 2698 if (Ty->getPointeeType().isVolatileQualified()) 2699 return; 2700 2701 // We need to temorairly remove the assumption so we can insert the 2702 // sanitizer check before it, else the check will be dropped by optimizations. 2703 Assumption->removeFromParent(); 2704 2705 { 2706 SanitizerScope SanScope(this); 2707 2708 if (!OffsetValue) 2709 OffsetValue = Builder.getInt1(false); // no offset. 2710 2711 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2712 EmitCheckSourceLocation(SecondaryLoc), 2713 EmitCheckTypeDescriptor(Ty)}; 2714 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2715 EmitCheckValue(Alignment), 2716 EmitCheckValue(OffsetValue)}; 2717 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2718 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2719 } 2720 2721 // We are now in the (new, empty) "cont" basic block. 2722 // Reintroduce the assumption. 2723 Builder.Insert(Assumption); 2724 // FIXME: Assumption still has it's original basic block as it's Parent. 2725 } 2726 2727 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2728 if (CGDebugInfo *DI = getDebugInfo()) 2729 return DI->SourceLocToDebugLoc(Location); 2730 2731 return llvm::DebugLoc(); 2732 } 2733 2734 llvm::Value * 2735 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2736 Stmt::Likelihood LH) { 2737 switch (LH) { 2738 case Stmt::LH_None: 2739 return Cond; 2740 case Stmt::LH_Likely: 2741 case Stmt::LH_Unlikely: 2742 // Don't generate llvm.expect on -O0 as the backend won't use it for 2743 // anything. 2744 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2745 return Cond; 2746 llvm::Type *CondTy = Cond->getType(); 2747 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2748 llvm::Function *FnExpect = 2749 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2750 llvm::Value *ExpectedValueOfCond = 2751 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2752 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2753 Cond->getName() + ".expval"); 2754 } 2755 llvm_unreachable("Unknown Likelihood"); 2756 } 2757