1 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes implement wrappers around llvm::Value in order to 10 // fully represent the range of values for C L- and R- values. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H 15 #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H 16 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Type.h" 19 #include "llvm/IR/Value.h" 20 #include "llvm/IR/Type.h" 21 #include "Address.h" 22 #include "CodeGenTBAA.h" 23 24 namespace llvm { 25 class Constant; 26 class MDNode; 27 } 28 29 namespace clang { 30 namespace CodeGen { 31 class AggValueSlot; 32 class CodeGenFunction; 33 struct CGBitFieldInfo; 34 35 /// RValue - This trivial value class is used to represent the result of an 36 /// expression that is evaluated. It can be one of three things: either a 37 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the 38 /// address of an aggregate value in memory. 39 class RValue { 40 enum Flavor { Scalar, Complex, Aggregate }; 41 42 // The shift to make to an aggregate's alignment to make it look 43 // like a pointer. 44 enum { AggAlignShift = 4 }; 45 46 // Stores first value and flavor. 47 llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1; 48 // Stores second value and volatility. 49 llvm::PointerIntPair<llvm::Value *, 1, bool> V2; 50 // Stores element type for aggregate values. 51 llvm::Type *ElementType; 52 53 public: 54 bool isScalar() const { return V1.getInt() == Scalar; } 55 bool isComplex() const { return V1.getInt() == Complex; } 56 bool isAggregate() const { return V1.getInt() == Aggregate; } 57 58 bool isVolatileQualified() const { return V2.getInt(); } 59 60 /// getScalarVal() - Return the Value* of this scalar value. 61 llvm::Value *getScalarVal() const { 62 assert(isScalar() && "Not a scalar!"); 63 return V1.getPointer(); 64 } 65 66 /// getComplexVal - Return the real/imag components of this complex value. 67 /// 68 std::pair<llvm::Value *, llvm::Value *> getComplexVal() const { 69 return std::make_pair(V1.getPointer(), V2.getPointer()); 70 } 71 72 /// getAggregateAddr() - Return the Value* of the address of the aggregate. 73 Address getAggregateAddress() const { 74 assert(isAggregate() && "Not an aggregate!"); 75 auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift; 76 return Address( 77 V1.getPointer(), ElementType, CharUnits::fromQuantity(align)); 78 } 79 llvm::Value *getAggregatePointer() const { 80 assert(isAggregate() && "Not an aggregate!"); 81 return V1.getPointer(); 82 } 83 84 static RValue getIgnored() { 85 // FIXME: should we make this a more explicit state? 86 return get(nullptr); 87 } 88 89 static RValue get(llvm::Value *V) { 90 RValue ER; 91 ER.V1.setPointer(V); 92 ER.V1.setInt(Scalar); 93 ER.V2.setInt(false); 94 return ER; 95 } 96 static RValue getComplex(llvm::Value *V1, llvm::Value *V2) { 97 RValue ER; 98 ER.V1.setPointer(V1); 99 ER.V2.setPointer(V2); 100 ER.V1.setInt(Complex); 101 ER.V2.setInt(false); 102 return ER; 103 } 104 static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) { 105 return getComplex(C.first, C.second); 106 } 107 // FIXME: Aggregate rvalues need to retain information about whether they are 108 // volatile or not. Remove default to find all places that probably get this 109 // wrong. 110 static RValue getAggregate(Address addr, bool isVolatile = false) { 111 RValue ER; 112 ER.V1.setPointer(addr.getPointer()); 113 ER.V1.setInt(Aggregate); 114 ER.ElementType = addr.getElementType(); 115 116 auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity()); 117 ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift)); 118 ER.V2.setInt(isVolatile); 119 return ER; 120 } 121 }; 122 123 /// Does an ARC strong l-value have precise lifetime? 124 enum ARCPreciseLifetime_t { 125 ARCImpreciseLifetime, ARCPreciseLifetime 126 }; 127 128 /// The source of the alignment of an l-value; an expression of 129 /// confidence in the alignment actually matching the estimate. 130 enum class AlignmentSource { 131 /// The l-value was an access to a declared entity or something 132 /// equivalently strong, like the address of an array allocated by a 133 /// language runtime. 134 Decl, 135 136 /// The l-value was considered opaque, so the alignment was 137 /// determined from a type, but that type was an explicitly-aligned 138 /// typedef. 139 AttributedType, 140 141 /// The l-value was considered opaque, so the alignment was 142 /// determined from a type. 143 Type 144 }; 145 146 /// Given that the base address has the given alignment source, what's 147 /// our confidence in the alignment of the field? 148 static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) { 149 // For now, we don't distinguish fields of opaque pointers from 150 // top-level declarations, but maybe we should. 151 return AlignmentSource::Decl; 152 } 153 154 class LValueBaseInfo { 155 AlignmentSource AlignSource; 156 157 public: 158 explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type) 159 : AlignSource(Source) {} 160 AlignmentSource getAlignmentSource() const { return AlignSource; } 161 void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; } 162 163 void mergeForCast(const LValueBaseInfo &Info) { 164 setAlignmentSource(Info.getAlignmentSource()); 165 } 166 }; 167 168 /// LValue - This represents an lvalue references. Because C/C++ allow 169 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a 170 /// bitrange. 171 class LValue { 172 enum { 173 Simple, // This is a normal l-value, use getAddress(). 174 VectorElt, // This is a vector element l-value (V[i]), use getVector* 175 BitField, // This is a bitfield l-value, use getBitfield*. 176 ExtVectorElt, // This is an extended vector subset, use getExtVectorComp 177 GlobalReg, // This is a register l-value, use getGlobalReg() 178 MatrixElt // This is a matrix element, use getVector* 179 } LVType; 180 181 llvm::Value *V; 182 llvm::Type *ElementType; 183 184 union { 185 // Index into a vector subscript: V[i] 186 llvm::Value *VectorIdx; 187 188 // ExtVector element subset: V.xyx 189 llvm::Constant *VectorElts; 190 191 // BitField start bit and size 192 const CGBitFieldInfo *BitFieldInfo; 193 }; 194 195 QualType Type; 196 197 // 'const' is unused here 198 Qualifiers Quals; 199 200 // The alignment to use when accessing this lvalue. (For vector elements, 201 // this is the alignment of the whole vector.) 202 unsigned Alignment; 203 204 // objective-c's ivar 205 bool Ivar:1; 206 207 // objective-c's ivar is an array 208 bool ObjIsArray:1; 209 210 // LValue is non-gc'able for any reason, including being a parameter or local 211 // variable. 212 bool NonGC: 1; 213 214 // Lvalue is a global reference of an objective-c object 215 bool GlobalObjCRef : 1; 216 217 // Lvalue is a thread local reference 218 bool ThreadLocalRef : 1; 219 220 // Lvalue has ARC imprecise lifetime. We store this inverted to try 221 // to make the default bitfield pattern all-zeroes. 222 bool ImpreciseLifetime : 1; 223 224 // This flag shows if a nontemporal load/stores should be used when accessing 225 // this lvalue. 226 bool Nontemporal : 1; 227 228 LValueBaseInfo BaseInfo; 229 TBAAAccessInfo TBAAInfo; 230 231 Expr *BaseIvarExp; 232 233 private: 234 void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment, 235 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 236 assert((!Alignment.isZero() || Type->isIncompleteType()) && 237 "initializing l-value with zero alignment!"); 238 if (isGlobalReg()) 239 assert(ElementType == nullptr && "Global reg does not store elem type"); 240 else 241 assert(llvm::cast<llvm::PointerType>(V->getType()) 242 ->isOpaqueOrPointeeTypeMatches(ElementType) && 243 "Pointer element type mismatch"); 244 245 this->Type = Type; 246 this->Quals = Quals; 247 const unsigned MaxAlign = 1U << 31; 248 this->Alignment = Alignment.getQuantity() <= MaxAlign 249 ? Alignment.getQuantity() 250 : MaxAlign; 251 assert(this->Alignment == Alignment.getQuantity() && 252 "Alignment exceeds allowed max!"); 253 this->BaseInfo = BaseInfo; 254 this->TBAAInfo = TBAAInfo; 255 256 // Initialize Objective-C flags. 257 this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false; 258 this->ImpreciseLifetime = false; 259 this->Nontemporal = false; 260 this->ThreadLocalRef = false; 261 this->BaseIvarExp = nullptr; 262 } 263 264 public: 265 bool isSimple() const { return LVType == Simple; } 266 bool isVectorElt() const { return LVType == VectorElt; } 267 bool isBitField() const { return LVType == BitField; } 268 bool isExtVectorElt() const { return LVType == ExtVectorElt; } 269 bool isGlobalReg() const { return LVType == GlobalReg; } 270 bool isMatrixElt() const { return LVType == MatrixElt; } 271 272 bool isVolatileQualified() const { return Quals.hasVolatile(); } 273 bool isRestrictQualified() const { return Quals.hasRestrict(); } 274 unsigned getVRQualifiers() const { 275 return Quals.getCVRQualifiers() & ~Qualifiers::Const; 276 } 277 278 QualType getType() const { return Type; } 279 280 Qualifiers::ObjCLifetime getObjCLifetime() const { 281 return Quals.getObjCLifetime(); 282 } 283 284 bool isObjCIvar() const { return Ivar; } 285 void setObjCIvar(bool Value) { Ivar = Value; } 286 287 bool isObjCArray() const { return ObjIsArray; } 288 void setObjCArray(bool Value) { ObjIsArray = Value; } 289 290 bool isNonGC () const { return NonGC; } 291 void setNonGC(bool Value) { NonGC = Value; } 292 293 bool isGlobalObjCRef() const { return GlobalObjCRef; } 294 void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; } 295 296 bool isThreadLocalRef() const { return ThreadLocalRef; } 297 void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;} 298 299 ARCPreciseLifetime_t isARCPreciseLifetime() const { 300 return ARCPreciseLifetime_t(!ImpreciseLifetime); 301 } 302 void setARCPreciseLifetime(ARCPreciseLifetime_t value) { 303 ImpreciseLifetime = (value == ARCImpreciseLifetime); 304 } 305 bool isNontemporal() const { return Nontemporal; } 306 void setNontemporal(bool Value) { Nontemporal = Value; } 307 308 bool isObjCWeak() const { 309 return Quals.getObjCGCAttr() == Qualifiers::Weak; 310 } 311 bool isObjCStrong() const { 312 return Quals.getObjCGCAttr() == Qualifiers::Strong; 313 } 314 315 bool isVolatile() const { 316 return Quals.hasVolatile(); 317 } 318 319 Expr *getBaseIvarExp() const { return BaseIvarExp; } 320 void setBaseIvarExp(Expr *V) { BaseIvarExp = V; } 321 322 TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; } 323 void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; } 324 325 const Qualifiers &getQuals() const { return Quals; } 326 Qualifiers &getQuals() { return Quals; } 327 328 LangAS getAddressSpace() const { return Quals.getAddressSpace(); } 329 330 CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); } 331 void setAlignment(CharUnits A) { Alignment = A.getQuantity(); } 332 333 LValueBaseInfo getBaseInfo() const { return BaseInfo; } 334 void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; } 335 336 // simple lvalue 337 llvm::Value *getPointer(CodeGenFunction &CGF) const { 338 assert(isSimple()); 339 return V; 340 } 341 Address getAddress(CodeGenFunction &CGF) const { 342 return Address(getPointer(CGF), ElementType, getAlignment()); 343 } 344 void setAddress(Address address) { 345 assert(isSimple()); 346 V = address.getPointer(); 347 ElementType = address.getElementType(); 348 Alignment = address.getAlignment().getQuantity(); 349 } 350 351 // vector elt lvalue 352 Address getVectorAddress() const { 353 return Address(getVectorPointer(), ElementType, getAlignment()); 354 } 355 llvm::Value *getVectorPointer() const { 356 assert(isVectorElt()); 357 return V; 358 } 359 llvm::Value *getVectorIdx() const { 360 assert(isVectorElt()); 361 return VectorIdx; 362 } 363 364 Address getMatrixAddress() const { 365 return Address(getMatrixPointer(), ElementType, getAlignment()); 366 } 367 llvm::Value *getMatrixPointer() const { 368 assert(isMatrixElt()); 369 return V; 370 } 371 llvm::Value *getMatrixIdx() const { 372 assert(isMatrixElt()); 373 return VectorIdx; 374 } 375 376 // extended vector elements. 377 Address getExtVectorAddress() const { 378 return Address(getExtVectorPointer(), ElementType, getAlignment()); 379 } 380 llvm::Value *getExtVectorPointer() const { 381 assert(isExtVectorElt()); 382 return V; 383 } 384 llvm::Constant *getExtVectorElts() const { 385 assert(isExtVectorElt()); 386 return VectorElts; 387 } 388 389 // bitfield lvalue 390 Address getBitFieldAddress() const { 391 return Address(getBitFieldPointer(), ElementType, getAlignment()); 392 } 393 llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; } 394 const CGBitFieldInfo &getBitFieldInfo() const { 395 assert(isBitField()); 396 return *BitFieldInfo; 397 } 398 399 // global register lvalue 400 llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; } 401 402 static LValue MakeAddr(Address address, QualType type, ASTContext &Context, 403 LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) { 404 Qualifiers qs = type.getQualifiers(); 405 qs.setObjCGCAttr(Context.getObjCGCAttrKind(type)); 406 407 LValue R; 408 R.LVType = Simple; 409 assert(address.getPointer()->getType()->isPointerTy()); 410 R.V = address.getPointer(); 411 R.ElementType = address.getElementType(); 412 R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo); 413 return R; 414 } 415 416 static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx, 417 QualType type, LValueBaseInfo BaseInfo, 418 TBAAAccessInfo TBAAInfo) { 419 LValue R; 420 R.LVType = VectorElt; 421 R.V = vecAddress.getPointer(); 422 R.ElementType = vecAddress.getElementType(); 423 R.VectorIdx = Idx; 424 R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), 425 BaseInfo, TBAAInfo); 426 return R; 427 } 428 429 static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts, 430 QualType type, LValueBaseInfo BaseInfo, 431 TBAAAccessInfo TBAAInfo) { 432 LValue R; 433 R.LVType = ExtVectorElt; 434 R.V = vecAddress.getPointer(); 435 R.ElementType = vecAddress.getElementType(); 436 R.VectorElts = Elts; 437 R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(), 438 BaseInfo, TBAAInfo); 439 return R; 440 } 441 442 /// Create a new object to represent a bit-field access. 443 /// 444 /// \param Addr - The base address of the bit-field sequence this 445 /// bit-field refers to. 446 /// \param Info - The information describing how to perform the bit-field 447 /// access. 448 static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info, 449 QualType type, LValueBaseInfo BaseInfo, 450 TBAAAccessInfo TBAAInfo) { 451 LValue R; 452 R.LVType = BitField; 453 R.V = Addr.getPointer(); 454 R.ElementType = Addr.getElementType(); 455 R.BitFieldInfo = &Info; 456 R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo, 457 TBAAInfo); 458 return R; 459 } 460 461 static LValue MakeGlobalReg(llvm::Value *V, CharUnits alignment, 462 QualType type) { 463 LValue R; 464 R.LVType = GlobalReg; 465 R.V = V; 466 R.ElementType = nullptr; 467 R.Initialize(type, type.getQualifiers(), alignment, 468 LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo()); 469 return R; 470 } 471 472 static LValue MakeMatrixElt(Address matAddress, llvm::Value *Idx, 473 QualType type, LValueBaseInfo BaseInfo, 474 TBAAAccessInfo TBAAInfo) { 475 LValue R; 476 R.LVType = MatrixElt; 477 R.V = matAddress.getPointer(); 478 R.ElementType = matAddress.getElementType(); 479 R.VectorIdx = Idx; 480 R.Initialize(type, type.getQualifiers(), matAddress.getAlignment(), 481 BaseInfo, TBAAInfo); 482 return R; 483 } 484 485 RValue asAggregateRValue(CodeGenFunction &CGF) const { 486 return RValue::getAggregate(getAddress(CGF), isVolatileQualified()); 487 } 488 }; 489 490 /// An aggregate value slot. 491 class AggValueSlot { 492 /// The address. 493 Address Addr; 494 495 // Qualifiers 496 Qualifiers Quals; 497 498 /// DestructedFlag - This is set to true if some external code is 499 /// responsible for setting up a destructor for the slot. Otherwise 500 /// the code which constructs it should push the appropriate cleanup. 501 bool DestructedFlag : 1; 502 503 /// ObjCGCFlag - This is set to true if writing to the memory in the 504 /// slot might require calling an appropriate Objective-C GC 505 /// barrier. The exact interaction here is unnecessarily mysterious. 506 bool ObjCGCFlag : 1; 507 508 /// ZeroedFlag - This is set to true if the memory in the slot is 509 /// known to be zero before the assignment into it. This means that 510 /// zero fields don't need to be set. 511 bool ZeroedFlag : 1; 512 513 /// AliasedFlag - This is set to true if the slot might be aliased 514 /// and it's not undefined behavior to access it through such an 515 /// alias. Note that it's always undefined behavior to access a C++ 516 /// object that's under construction through an alias derived from 517 /// outside the construction process. 518 /// 519 /// This flag controls whether calls that produce the aggregate 520 /// value may be evaluated directly into the slot, or whether they 521 /// must be evaluated into an unaliased temporary and then memcpy'ed 522 /// over. Since it's invalid in general to memcpy a non-POD C++ 523 /// object, it's important that this flag never be set when 524 /// evaluating an expression which constructs such an object. 525 bool AliasedFlag : 1; 526 527 /// This is set to true if the tail padding of this slot might overlap 528 /// another object that may have already been initialized (and whose 529 /// value must be preserved by this initialization). If so, we may only 530 /// store up to the dsize of the type. Otherwise we can widen stores to 531 /// the size of the type. 532 bool OverlapFlag : 1; 533 534 /// If is set to true, sanitizer checks are already generated for this address 535 /// or not required. For instance, if this address represents an object 536 /// created in 'new' expression, sanitizer checks for memory is made as a part 537 /// of 'operator new' emission and object constructor should not generate 538 /// them. 539 bool SanitizerCheckedFlag : 1; 540 541 AggValueSlot(Address Addr, Qualifiers Quals, bool DestructedFlag, 542 bool ObjCGCFlag, bool ZeroedFlag, bool AliasedFlag, 543 bool OverlapFlag, bool SanitizerCheckedFlag) 544 : Addr(Addr), Quals(Quals), DestructedFlag(DestructedFlag), 545 ObjCGCFlag(ObjCGCFlag), ZeroedFlag(ZeroedFlag), 546 AliasedFlag(AliasedFlag), OverlapFlag(OverlapFlag), 547 SanitizerCheckedFlag(SanitizerCheckedFlag) {} 548 549 public: 550 enum IsAliased_t { IsNotAliased, IsAliased }; 551 enum IsDestructed_t { IsNotDestructed, IsDestructed }; 552 enum IsZeroed_t { IsNotZeroed, IsZeroed }; 553 enum Overlap_t { DoesNotOverlap, MayOverlap }; 554 enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers }; 555 enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked }; 556 557 /// ignored - Returns an aggregate value slot indicating that the 558 /// aggregate value is being ignored. 559 static AggValueSlot ignored() { 560 return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed, 561 DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap); 562 } 563 564 /// forAddr - Make a slot for an aggregate value. 565 /// 566 /// \param quals - The qualifiers that dictate how the slot should 567 /// be initialied. Only 'volatile' and the Objective-C lifetime 568 /// qualifiers matter. 569 /// 570 /// \param isDestructed - true if something else is responsible 571 /// for calling destructors on this object 572 /// \param needsGC - true if the slot is potentially located 573 /// somewhere that ObjC GC calls should be emitted for 574 static AggValueSlot forAddr(Address addr, 575 Qualifiers quals, 576 IsDestructed_t isDestructed, 577 NeedsGCBarriers_t needsGC, 578 IsAliased_t isAliased, 579 Overlap_t mayOverlap, 580 IsZeroed_t isZeroed = IsNotZeroed, 581 IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { 582 return AggValueSlot(addr, quals, isDestructed, needsGC, isZeroed, isAliased, 583 mayOverlap, isChecked); 584 } 585 586 static AggValueSlot 587 forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed, 588 NeedsGCBarriers_t needsGC, IsAliased_t isAliased, 589 Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed, 590 IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) { 591 return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC, 592 isAliased, mayOverlap, isZeroed, isChecked); 593 } 594 595 IsDestructed_t isExternallyDestructed() const { 596 return IsDestructed_t(DestructedFlag); 597 } 598 void setExternallyDestructed(bool destructed = true) { 599 DestructedFlag = destructed; 600 } 601 602 Qualifiers getQualifiers() const { return Quals; } 603 604 bool isVolatile() const { 605 return Quals.hasVolatile(); 606 } 607 608 void setVolatile(bool flag) { 609 if (flag) 610 Quals.addVolatile(); 611 else 612 Quals.removeVolatile(); 613 } 614 615 Qualifiers::ObjCLifetime getObjCLifetime() const { 616 return Quals.getObjCLifetime(); 617 } 618 619 NeedsGCBarriers_t requiresGCollection() const { 620 return NeedsGCBarriers_t(ObjCGCFlag); 621 } 622 623 llvm::Value *getPointer() const { 624 return Addr.getPointer(); 625 } 626 627 Address getAddress() const { 628 return Addr; 629 } 630 631 bool isIgnored() const { 632 return !Addr.isValid(); 633 } 634 635 CharUnits getAlignment() const { 636 return Addr.getAlignment(); 637 } 638 639 IsAliased_t isPotentiallyAliased() const { 640 return IsAliased_t(AliasedFlag); 641 } 642 643 Overlap_t mayOverlap() const { 644 return Overlap_t(OverlapFlag); 645 } 646 647 bool isSanitizerChecked() const { 648 return SanitizerCheckedFlag; 649 } 650 651 RValue asRValue() const { 652 if (isIgnored()) { 653 return RValue::getIgnored(); 654 } else { 655 return RValue::getAggregate(getAddress(), isVolatile()); 656 } 657 } 658 659 void setZeroed(bool V = true) { ZeroedFlag = V; } 660 IsZeroed_t isZeroed() const { 661 return IsZeroed_t(ZeroedFlag); 662 } 663 664 /// Get the preferred size to use when storing a value to this slot. This 665 /// is the type size unless that might overlap another object, in which 666 /// case it's the dsize. 667 CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const { 668 return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).Width 669 : Ctx.getTypeSizeInChars(Type); 670 } 671 }; 672 673 } // end namespace CodeGen 674 } // end namespace clang 675 676 #endif 677