1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with C++ code generation of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Basic/CodeGenOptions.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Support/Format.h" 24 #include "llvm/Transforms/Utils/Cloning.h" 25 #include <algorithm> 26 #include <cstdio> 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 32 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 33 34 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, 35 GlobalDecl GD) { 36 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, 37 /*DontDefer=*/true, /*IsThunk=*/true); 38 } 39 40 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 41 llvm::Function *ThunkFn, bool ForVTable, 42 GlobalDecl GD) { 43 CGM.setFunctionLinkage(GD, ThunkFn); 44 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 45 !Thunk.Return.isEmpty()); 46 47 // Set the right visibility. 48 CGM.setGVProperties(ThunkFn, GD); 49 50 if (!CGM.getCXXABI().exportThunk()) { 51 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 52 ThunkFn->setDSOLocal(true); 53 } 54 55 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 56 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 57 } 58 59 #ifndef NDEBUG 60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 61 const ABIArgInfo &infoR, CanQualType typeR) { 62 return (infoL.getKind() == infoR.getKind() && 63 (typeL == typeR || 64 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 65 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 66 } 67 #endif 68 69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 70 QualType ResultType, RValue RV, 71 const ThunkInfo &Thunk) { 72 // Emit the return adjustment. 73 bool NullCheckValue = !ResultType->isReferenceType(); 74 75 llvm::BasicBlock *AdjustNull = nullptr; 76 llvm::BasicBlock *AdjustNotNull = nullptr; 77 llvm::BasicBlock *AdjustEnd = nullptr; 78 79 llvm::Value *ReturnValue = RV.getScalarVal(); 80 81 if (NullCheckValue) { 82 AdjustNull = CGF.createBasicBlock("adjust.null"); 83 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 84 AdjustEnd = CGF.createBasicBlock("adjust.end"); 85 86 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 87 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 88 CGF.EmitBlock(AdjustNotNull); 89 } 90 91 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 92 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 93 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 94 Address(ReturnValue, ClassAlign), 95 Thunk.Return); 96 97 if (NullCheckValue) { 98 CGF.Builder.CreateBr(AdjustEnd); 99 CGF.EmitBlock(AdjustNull); 100 CGF.Builder.CreateBr(AdjustEnd); 101 CGF.EmitBlock(AdjustEnd); 102 103 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 104 PHI->addIncoming(ReturnValue, AdjustNotNull); 105 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 106 AdjustNull); 107 ReturnValue = PHI; 108 } 109 110 return RValue::get(ReturnValue); 111 } 112 113 /// This function clones a function's DISubprogram node and enters it into 114 /// a value map with the intent that the map can be utilized by the cloner 115 /// to short-circuit Metadata node mapping. 116 /// Furthermore, the function resolves any DILocalVariable nodes referenced 117 /// by dbg.value intrinsics so they can be properly mapped during cloning. 118 static void resolveTopLevelMetadata(llvm::Function *Fn, 119 llvm::ValueToValueMapTy &VMap) { 120 // Clone the DISubprogram node and put it into the Value map. 121 auto *DIS = Fn->getSubprogram(); 122 if (!DIS) 123 return; 124 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); 125 VMap.MD()[DIS].reset(NewDIS); 126 127 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes 128 // they are referencing. 129 for (auto &BB : Fn->getBasicBlockList()) { 130 for (auto &I : BB) { 131 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { 132 auto *DILocal = DII->getVariable(); 133 if (!DILocal->isResolved()) 134 DILocal->resolve(); 135 } 136 } 137 } 138 } 139 140 // This function does roughly the same thing as GenerateThunk, but in a 141 // very different way, so that va_start and va_end work correctly. 142 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 143 // a function, and that there is an alloca built in the entry block 144 // for all accesses to "this". 145 // FIXME: This function assumes there is only one "ret" statement per function. 146 // FIXME: Cloning isn't correct in the presence of indirect goto! 147 // FIXME: This implementation of thunks bloats codesize by duplicating the 148 // function definition. There are alternatives: 149 // 1. Add some sort of stub support to LLVM for cases where we can 150 // do a this adjustment, then a sibcall. 151 // 2. We could transform the definition to take a va_list instead of an 152 // actual variable argument list, then have the thunks (including a 153 // no-op thunk for the regular definition) call va_start/va_end. 154 // There's a bit of per-call overhead for this solution, but it's 155 // better for codesize if the definition is long. 156 llvm::Function * 157 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 158 const CGFunctionInfo &FnInfo, 159 GlobalDecl GD, const ThunkInfo &Thunk) { 160 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 161 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 162 QualType ResultType = FPT->getReturnType(); 163 164 // Get the original function 165 assert(FnInfo.isVariadic()); 166 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 167 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 168 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 169 170 // Cloning can't work if we don't have a definition. The Microsoft ABI may 171 // require thunks when a definition is not available. Emit an error in these 172 // cases. 173 if (!MD->isDefined()) { 174 CGM.ErrorUnsupported(MD, "return-adjusting thunk with variadic arguments"); 175 return Fn; 176 } 177 assert(!BaseFn->isDeclaration() && "cannot clone undefined variadic method"); 178 179 // Clone to thunk. 180 llvm::ValueToValueMapTy VMap; 181 182 // We are cloning a function while some Metadata nodes are still unresolved. 183 // Ensure that the value mapper does not encounter any of them. 184 resolveTopLevelMetadata(BaseFn, VMap); 185 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 186 Fn->replaceAllUsesWith(NewFn); 187 NewFn->takeName(Fn); 188 Fn->eraseFromParent(); 189 Fn = NewFn; 190 191 // "Initialize" CGF (minimally). 192 CurFn = Fn; 193 194 // Get the "this" value 195 llvm::Function::arg_iterator AI = Fn->arg_begin(); 196 if (CGM.ReturnTypeUsesSRet(FnInfo)) 197 ++AI; 198 199 // Find the first store of "this", which will be to the alloca associated 200 // with "this". 201 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 202 llvm::BasicBlock *EntryBB = &Fn->front(); 203 llvm::BasicBlock::iterator ThisStore = 204 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 205 return isa<llvm::StoreInst>(I) && 206 I.getOperand(0) == ThisPtr.getPointer(); 207 }); 208 assert(ThisStore != EntryBB->end() && 209 "Store of this should be in entry block?"); 210 // Adjust "this", if necessary. 211 Builder.SetInsertPoint(&*ThisStore); 212 llvm::Value *AdjustedThisPtr = 213 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 214 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, 215 ThisStore->getOperand(0)->getType()); 216 ThisStore->setOperand(0, AdjustedThisPtr); 217 218 if (!Thunk.Return.isEmpty()) { 219 // Fix up the returned value, if necessary. 220 for (llvm::BasicBlock &BB : *Fn) { 221 llvm::Instruction *T = BB.getTerminator(); 222 if (isa<llvm::ReturnInst>(T)) { 223 RValue RV = RValue::get(T->getOperand(0)); 224 T->eraseFromParent(); 225 Builder.SetInsertPoint(&BB); 226 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 227 Builder.CreateRet(RV.getScalarVal()); 228 break; 229 } 230 } 231 } 232 233 return Fn; 234 } 235 236 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 237 const CGFunctionInfo &FnInfo, 238 bool IsUnprototyped) { 239 assert(!CurGD.getDecl() && "CurGD was already set!"); 240 CurGD = GD; 241 CurFuncIsThunk = true; 242 243 // Build FunctionArgs. 244 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 245 QualType ThisType = MD->getThisType(); 246 QualType ResultType; 247 if (IsUnprototyped) 248 ResultType = CGM.getContext().VoidTy; 249 else if (CGM.getCXXABI().HasThisReturn(GD)) 250 ResultType = ThisType; 251 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 252 ResultType = CGM.getContext().VoidPtrTy; 253 else 254 ResultType = MD->getType()->castAs<FunctionProtoType>()->getReturnType(); 255 FunctionArgList FunctionArgs; 256 257 // Create the implicit 'this' parameter declaration. 258 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 259 260 // Add the rest of the parameters, if we have a prototype to work with. 261 if (!IsUnprototyped) { 262 FunctionArgs.append(MD->param_begin(), MD->param_end()); 263 264 if (isa<CXXDestructorDecl>(MD)) 265 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, 266 FunctionArgs); 267 } 268 269 // Start defining the function. 270 auto NL = ApplyDebugLocation::CreateEmpty(*this); 271 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 272 MD->getLocation()); 273 // Create a scope with an artificial location for the body of this function. 274 auto AL = ApplyDebugLocation::CreateArtificial(*this); 275 276 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 277 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 278 CXXThisValue = CXXABIThisValue; 279 CurCodeDecl = MD; 280 CurFuncDecl = MD; 281 } 282 283 void CodeGenFunction::FinishThunk() { 284 // Clear these to restore the invariants expected by 285 // StartFunction/FinishFunction. 286 CurCodeDecl = nullptr; 287 CurFuncDecl = nullptr; 288 289 FinishFunction(); 290 } 291 292 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, 293 const ThunkInfo *Thunk, 294 bool IsUnprototyped) { 295 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 296 "Please use a new CGF for this thunk"); 297 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 298 299 // Adjust the 'this' pointer if necessary 300 llvm::Value *AdjustedThisPtr = 301 Thunk ? CGM.getCXXABI().performThisAdjustment( 302 *this, LoadCXXThisAddress(), Thunk->This) 303 : LoadCXXThis(); 304 305 // If perfect forwarding is required a variadic method, a method using 306 // inalloca, or an unprototyped thunk, use musttail. Emit an error if this 307 // thunk requires a return adjustment, since that is impossible with musttail. 308 if (CurFnInfo->usesInAlloca() || CurFnInfo->isVariadic() || IsUnprototyped) { 309 if (Thunk && !Thunk->Return.isEmpty()) { 310 if (IsUnprototyped) 311 CGM.ErrorUnsupported( 312 MD, "return-adjusting thunk with incomplete parameter type"); 313 else if (CurFnInfo->isVariadic()) 314 llvm_unreachable("shouldn't try to emit musttail return-adjusting " 315 "thunks for variadic functions"); 316 else 317 CGM.ErrorUnsupported( 318 MD, "non-trivial argument copy for return-adjusting thunk"); 319 } 320 EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee); 321 return; 322 } 323 324 // Start building CallArgs. 325 CallArgList CallArgs; 326 QualType ThisType = MD->getThisType(); 327 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 328 329 if (isa<CXXDestructorDecl>(MD)) 330 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 331 332 #ifndef NDEBUG 333 unsigned PrefixArgs = CallArgs.size() - 1; 334 #endif 335 // Add the rest of the arguments. 336 for (const ParmVarDecl *PD : MD->parameters()) 337 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 338 339 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 340 341 #ifndef NDEBUG 342 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 343 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs); 344 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 345 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 346 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 347 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 348 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 349 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 350 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 351 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 352 assert(similar(CallFnInfo.arg_begin()[i].info, 353 CallFnInfo.arg_begin()[i].type, 354 CurFnInfo->arg_begin()[i].info, 355 CurFnInfo->arg_begin()[i].type)); 356 #endif 357 358 // Determine whether we have a return value slot to use. 359 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 360 ? ThisType 361 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 362 ? CGM.getContext().VoidPtrTy 363 : FPT->getReturnType(); 364 ReturnValueSlot Slot; 365 if (!ResultType->isVoidType() && 366 (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect || 367 hasAggregateEvaluationKind(ResultType))) 368 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified(), 369 /*IsUnused=*/false, /*IsExternallyDestructed=*/true); 370 371 // Now emit our call. 372 llvm::CallBase *CallOrInvoke; 373 RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot, 374 CallArgs, &CallOrInvoke); 375 376 // Consider return adjustment if we have ThunkInfo. 377 if (Thunk && !Thunk->Return.isEmpty()) 378 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 379 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 380 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 381 382 // Emit return. 383 if (!ResultType->isVoidType() && Slot.isNull()) 384 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 385 386 // Disable the final ARC autorelease. 387 AutoreleaseResult = false; 388 389 FinishThunk(); 390 } 391 392 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, 393 llvm::Value *AdjustedThisPtr, 394 llvm::FunctionCallee Callee) { 395 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 396 // to translate AST arguments into LLVM IR arguments. For thunks, we know 397 // that the caller prototype more or less matches the callee prototype with 398 // the exception of 'this'. 399 SmallVector<llvm::Value *, 8> Args; 400 for (llvm::Argument &A : CurFn->args()) 401 Args.push_back(&A); 402 403 // Set the adjusted 'this' pointer. 404 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 405 if (ThisAI.isDirect()) { 406 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 407 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 408 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 409 if (ThisType != AdjustedThisPtr->getType()) 410 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 411 Args[ThisArgNo] = AdjustedThisPtr; 412 } else { 413 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 414 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 415 llvm::Type *ThisType = ThisAddr.getElementType(); 416 if (ThisType != AdjustedThisPtr->getType()) 417 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 418 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 419 } 420 421 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 422 // don't actually want to run them. 423 llvm::CallInst *Call = Builder.CreateCall(Callee, Args); 424 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 425 426 // Apply the standard set of call attributes. 427 unsigned CallingConv; 428 llvm::AttributeList Attrs; 429 CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD, 430 Attrs, CallingConv, /*AttrOnCallSite=*/true, 431 /*IsThunk=*/false); 432 Call->setAttributes(Attrs); 433 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 434 435 if (Call->getType()->isVoidTy()) 436 Builder.CreateRetVoid(); 437 else 438 Builder.CreateRet(Call); 439 440 // Finish the function to maintain CodeGenFunction invariants. 441 // FIXME: Don't emit unreachable code. 442 EmitBlock(createBasicBlock()); 443 444 FinishThunk(); 445 } 446 447 void CodeGenFunction::generateThunk(llvm::Function *Fn, 448 const CGFunctionInfo &FnInfo, GlobalDecl GD, 449 const ThunkInfo &Thunk, 450 bool IsUnprototyped) { 451 StartThunk(Fn, GD, FnInfo, IsUnprototyped); 452 // Create a scope with an artificial location for the body of this function. 453 auto AL = ApplyDebugLocation::CreateArtificial(*this); 454 455 // Get our callee. Use a placeholder type if this method is unprototyped so 456 // that CodeGenModule doesn't try to set attributes. 457 llvm::Type *Ty; 458 if (IsUnprototyped) 459 Ty = llvm::StructType::get(getLLVMContext()); 460 else 461 Ty = CGM.getTypes().GetFunctionType(FnInfo); 462 463 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 464 465 // Fix up the function type for an unprototyped musttail call. 466 if (IsUnprototyped) 467 Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType()); 468 469 // Make the call and return the result. 470 EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee), 471 &Thunk, IsUnprototyped); 472 } 473 474 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, 475 bool IsUnprototyped, bool ForVTable) { 476 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to 477 // provide thunks for us. 478 if (CGM.getTarget().getCXXABI().isMicrosoft()) 479 return true; 480 481 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide 482 // definitions of the main method. Therefore, emitting thunks with the vtable 483 // is purely an optimization. Emit the thunk if optimizations are enabled and 484 // all of the parameter types are complete. 485 if (ForVTable) 486 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; 487 488 // Always emit thunks along with the method definition. 489 return true; 490 } 491 492 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, 493 const ThunkInfo &TI, 494 bool ForVTable) { 495 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 496 497 // First, get a declaration. Compute the mangled name. Don't worry about 498 // getting the function prototype right, since we may only need this 499 // declaration to fill in a vtable slot. 500 SmallString<256> Name; 501 MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); 502 llvm::raw_svector_ostream Out(Name); 503 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) 504 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out); 505 else 506 MCtx.mangleThunk(MD, TI, Out); 507 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 508 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); 509 510 // If we don't need to emit a definition, return this declaration as is. 511 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( 512 MD->getType()->castAs<FunctionType>()); 513 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) 514 return Thunk; 515 516 // Arrange a function prototype appropriate for a function definition. In some 517 // cases in the MS ABI, we may need to build an unprototyped musttail thunk. 518 const CGFunctionInfo &FnInfo = 519 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) 520 : CGM.getTypes().arrangeGlobalDeclaration(GD); 521 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); 522 523 // If the type of the underlying GlobalValue is wrong, we'll have to replace 524 // it. It should be a declaration. 525 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); 526 if (ThunkFn->getFunctionType() != ThunkFnTy) { 527 llvm::GlobalValue *OldThunkFn = ThunkFn; 528 529 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); 530 531 // Remove the name from the old thunk function and get a new thunk. 532 OldThunkFn->setName(StringRef()); 533 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, 534 Name.str(), &CGM.getModule()); 535 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false); 536 537 // If needed, replace the old thunk with a bitcast. 538 if (!OldThunkFn->use_empty()) { 539 llvm::Constant *NewPtrForOldDecl = 540 llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType()); 541 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 542 } 543 544 // Remove the old thunk. 545 OldThunkFn->eraseFromParent(); 546 } 547 548 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 549 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 550 551 if (!ThunkFn->isDeclaration()) { 552 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 553 // There is already a thunk emitted for this function, do nothing. 554 return ThunkFn; 555 } 556 557 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 558 return ThunkFn; 559 } 560 561 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows 562 // that the return type is meaningless. These thunks can be used to call 563 // functions with differing return types, and the caller is required to cast 564 // the prototype appropriately to extract the correct value. 565 if (IsUnprototyped) 566 ThunkFn->addFnAttr("thunk"); 567 568 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 569 570 // Thunks for variadic methods are special because in general variadic 571 // arguments cannot be perfectly forwarded. In the general case, clang 572 // implements such thunks by cloning the original function body. However, for 573 // thunks with no return adjustment on targets that support musttail, we can 574 // use musttail to perfectly forward the variadic arguments. 575 bool ShouldCloneVarArgs = false; 576 if (!IsUnprototyped && ThunkFn->isVarArg()) { 577 ShouldCloneVarArgs = true; 578 if (TI.Return.isEmpty()) { 579 switch (CGM.getTriple().getArch()) { 580 case llvm::Triple::x86_64: 581 case llvm::Triple::x86: 582 case llvm::Triple::aarch64: 583 ShouldCloneVarArgs = false; 584 break; 585 default: 586 break; 587 } 588 } 589 } 590 591 if (ShouldCloneVarArgs) { 592 if (UseAvailableExternallyLinkage) 593 return ThunkFn; 594 ThunkFn = 595 CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, TI); 596 } else { 597 // Normal thunk body generation. 598 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); 599 } 600 601 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 602 return ThunkFn; 603 } 604 605 void CodeGenVTables::EmitThunks(GlobalDecl GD) { 606 const CXXMethodDecl *MD = 607 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 608 609 // We don't need to generate thunks for the base destructor. 610 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 611 return; 612 613 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 614 VTContext->getThunkInfo(GD); 615 616 if (!ThunkInfoVector) 617 return; 618 619 for (const ThunkInfo& Thunk : *ThunkInfoVector) 620 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); 621 } 622 623 void CodeGenVTables::addRelativeComponent(ConstantArrayBuilder &builder, 624 llvm::Constant *component, 625 unsigned vtableAddressPoint, 626 bool vtableHasLocalLinkage, 627 bool isCompleteDtor) const { 628 // No need to get the offset of a nullptr. 629 if (component->isNullValue()) 630 return builder.add(llvm::ConstantInt::get(CGM.Int32Ty, 0)); 631 632 auto *globalVal = 633 cast<llvm::GlobalValue>(component->stripPointerCastsAndAliases()); 634 llvm::Module &module = CGM.getModule(); 635 636 // We don't want to copy the linkage of the vtable exactly because we still 637 // want the stub/proxy to be emitted for properly calculating the offset. 638 // Examples where there would be no symbol emitted are available_externally 639 // and private linkages. 640 auto stubLinkage = vtableHasLocalLinkage ? llvm::GlobalValue::InternalLinkage 641 : llvm::GlobalValue::ExternalLinkage; 642 643 llvm::Constant *target; 644 if (auto *func = dyn_cast<llvm::Function>(globalVal)) { 645 target = llvm::DSOLocalEquivalent::get(func); 646 } else { 647 llvm::SmallString<16> rttiProxyName(globalVal->getName()); 648 rttiProxyName.append(".rtti_proxy"); 649 650 // The RTTI component may not always be emitted in the same linkage unit as 651 // the vtable. As a general case, we can make a dso_local proxy to the RTTI 652 // that points to the actual RTTI struct somewhere. This will result in a 653 // GOTPCREL relocation when taking the relative offset to the proxy. 654 llvm::GlobalVariable *proxy = module.getNamedGlobal(rttiProxyName); 655 if (!proxy) { 656 proxy = new llvm::GlobalVariable(module, globalVal->getType(), 657 /*isConstant=*/true, stubLinkage, 658 globalVal, rttiProxyName); 659 proxy->setDSOLocal(true); 660 proxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 661 if (!proxy->hasLocalLinkage()) { 662 proxy->setVisibility(llvm::GlobalValue::HiddenVisibility); 663 proxy->setComdat(module.getOrInsertComdat(rttiProxyName)); 664 } 665 } 666 target = proxy; 667 } 668 669 builder.addRelativeOffsetToPosition(CGM.Int32Ty, target, 670 /*position=*/vtableAddressPoint); 671 } 672 673 bool CodeGenVTables::useRelativeLayout() const { 674 return CGM.getTarget().getCXXABI().isItaniumFamily() && 675 CGM.getItaniumVTableContext().isRelativeLayout(); 676 } 677 678 llvm::Type *CodeGenVTables::getVTableComponentType() const { 679 if (useRelativeLayout()) 680 return CGM.Int32Ty; 681 return CGM.Int8PtrTy; 682 } 683 684 static void AddPointerLayoutOffset(const CodeGenModule &CGM, 685 ConstantArrayBuilder &builder, 686 CharUnits offset) { 687 builder.add(llvm::ConstantExpr::getIntToPtr( 688 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), 689 CGM.Int8PtrTy)); 690 } 691 692 static void AddRelativeLayoutOffset(const CodeGenModule &CGM, 693 ConstantArrayBuilder &builder, 694 CharUnits offset) { 695 builder.add(llvm::ConstantInt::get(CGM.Int32Ty, offset.getQuantity())); 696 } 697 698 void CodeGenVTables::addVTableComponent(ConstantArrayBuilder &builder, 699 const VTableLayout &layout, 700 unsigned componentIndex, 701 llvm::Constant *rtti, 702 unsigned &nextVTableThunkIndex, 703 unsigned vtableAddressPoint, 704 bool vtableHasLocalLinkage) { 705 auto &component = layout.vtable_components()[componentIndex]; 706 707 auto addOffsetConstant = 708 useRelativeLayout() ? AddRelativeLayoutOffset : AddPointerLayoutOffset; 709 710 switch (component.getKind()) { 711 case VTableComponent::CK_VCallOffset: 712 return addOffsetConstant(CGM, builder, component.getVCallOffset()); 713 714 case VTableComponent::CK_VBaseOffset: 715 return addOffsetConstant(CGM, builder, component.getVBaseOffset()); 716 717 case VTableComponent::CK_OffsetToTop: 718 return addOffsetConstant(CGM, builder, component.getOffsetToTop()); 719 720 case VTableComponent::CK_RTTI: 721 if (useRelativeLayout()) 722 return addRelativeComponent(builder, rtti, vtableAddressPoint, 723 vtableHasLocalLinkage, 724 /*isCompleteDtor=*/false); 725 else 726 return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy)); 727 728 case VTableComponent::CK_FunctionPointer: 729 case VTableComponent::CK_CompleteDtorPointer: 730 case VTableComponent::CK_DeletingDtorPointer: { 731 GlobalDecl GD = component.getGlobalDecl(); 732 733 if (CGM.getLangOpts().CUDA) { 734 // Emit NULL for methods we can't codegen on this 735 // side. Otherwise we'd end up with vtable with unresolved 736 // references. 737 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 738 // OK on device side: functions w/ __device__ attribute 739 // OK on host side: anything except __device__-only functions. 740 bool CanEmitMethod = 741 CGM.getLangOpts().CUDAIsDevice 742 ? MD->hasAttr<CUDADeviceAttr>() 743 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 744 if (!CanEmitMethod) 745 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int8PtrTy)); 746 // Method is acceptable, continue processing as usual. 747 } 748 749 auto getSpecialVirtualFn = [&](StringRef name) -> llvm::Constant * { 750 // FIXME(PR43094): When merging comdat groups, lld can select a local 751 // symbol as the signature symbol even though it cannot be accessed 752 // outside that symbol's TU. The relative vtables ABI would make 753 // __cxa_pure_virtual and __cxa_deleted_virtual local symbols, and 754 // depending on link order, the comdat groups could resolve to the one 755 // with the local symbol. As a temporary solution, fill these components 756 // with zero. We shouldn't be calling these in the first place anyway. 757 if (useRelativeLayout()) 758 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 759 760 // For NVPTX devices in OpenMP emit special functon as null pointers, 761 // otherwise linking ends up with unresolved references. 762 if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPIsDevice && 763 CGM.getTriple().isNVPTX()) 764 return llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 765 llvm::FunctionType *fnTy = 766 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 767 llvm::Constant *fn = cast<llvm::Constant>( 768 CGM.CreateRuntimeFunction(fnTy, name).getCallee()); 769 if (auto f = dyn_cast<llvm::Function>(fn)) 770 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 771 return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy); 772 }; 773 774 llvm::Constant *fnPtr; 775 776 // Pure virtual member functions. 777 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 778 if (!PureVirtualFn) 779 PureVirtualFn = 780 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); 781 fnPtr = PureVirtualFn; 782 783 // Deleted virtual member functions. 784 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 785 if (!DeletedVirtualFn) 786 DeletedVirtualFn = 787 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); 788 fnPtr = DeletedVirtualFn; 789 790 // Thunks. 791 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && 792 layout.vtable_thunks()[nextVTableThunkIndex].first == 793 componentIndex) { 794 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; 795 796 nextVTableThunkIndex++; 797 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); 798 799 // Otherwise we can use the method definition directly. 800 } else { 801 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 802 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); 803 } 804 805 if (useRelativeLayout()) { 806 return addRelativeComponent( 807 builder, fnPtr, vtableAddressPoint, vtableHasLocalLinkage, 808 component.getKind() == VTableComponent::CK_CompleteDtorPointer); 809 } else 810 return builder.add(llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy)); 811 } 812 813 case VTableComponent::CK_UnusedFunctionPointer: 814 if (useRelativeLayout()) 815 return builder.add(llvm::ConstantExpr::getNullValue(CGM.Int32Ty)); 816 else 817 return builder.addNullPointer(CGM.Int8PtrTy); 818 } 819 820 llvm_unreachable("Unexpected vtable component kind"); 821 } 822 823 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { 824 SmallVector<llvm::Type *, 4> tys; 825 llvm::Type *componentType = getVTableComponentType(); 826 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) 827 tys.push_back(llvm::ArrayType::get(componentType, layout.getVTableSize(i))); 828 829 return llvm::StructType::get(CGM.getLLVMContext(), tys); 830 } 831 832 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, 833 const VTableLayout &layout, 834 llvm::Constant *rtti, 835 bool vtableHasLocalLinkage) { 836 llvm::Type *componentType = getVTableComponentType(); 837 838 const auto &addressPoints = layout.getAddressPointIndices(); 839 unsigned nextVTableThunkIndex = 0; 840 for (unsigned vtableIndex = 0, endIndex = layout.getNumVTables(); 841 vtableIndex != endIndex; ++vtableIndex) { 842 auto vtableElem = builder.beginArray(componentType); 843 844 size_t vtableStart = layout.getVTableOffset(vtableIndex); 845 size_t vtableEnd = vtableStart + layout.getVTableSize(vtableIndex); 846 for (size_t componentIndex = vtableStart; componentIndex < vtableEnd; 847 ++componentIndex) { 848 addVTableComponent(vtableElem, layout, componentIndex, rtti, 849 nextVTableThunkIndex, addressPoints[vtableIndex], 850 vtableHasLocalLinkage); 851 } 852 vtableElem.finishAndAddTo(builder); 853 } 854 } 855 856 llvm::GlobalVariable *CodeGenVTables::GenerateConstructionVTable( 857 const CXXRecordDecl *RD, const BaseSubobject &Base, bool BaseIsVirtual, 858 llvm::GlobalVariable::LinkageTypes Linkage, 859 VTableAddressPointsMapTy &AddressPoints) { 860 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 861 DI->completeClassData(Base.getBase()); 862 863 std::unique_ptr<VTableLayout> VTLayout( 864 getItaniumVTableContext().createConstructionVTableLayout( 865 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 866 867 // Add the address points. 868 AddressPoints = VTLayout->getAddressPoints(); 869 870 // Get the mangled construction vtable name. 871 SmallString<256> OutName; 872 llvm::raw_svector_ostream Out(OutName); 873 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 874 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 875 Base.getBase(), Out); 876 SmallString<256> Name(OutName); 877 878 bool UsingRelativeLayout = getItaniumVTableContext().isRelativeLayout(); 879 bool VTableAliasExists = 880 UsingRelativeLayout && CGM.getModule().getNamedAlias(Name); 881 if (VTableAliasExists) { 882 // We previously made the vtable hidden and changed its name. 883 Name.append(".local"); 884 } 885 886 llvm::Type *VTType = getVTableType(*VTLayout); 887 888 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 889 // guarantee that they actually will be available externally. Instead, when 890 // emitting an available_externally VTT, we provide references to an internal 891 // linkage construction vtable. The ABI only requires complete-object vtables 892 // to be the same for all instances of a type, not construction vtables. 893 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 894 Linkage = llvm::GlobalVariable::InternalLinkage; 895 896 unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType); 897 898 // Create the variable that will hold the construction vtable. 899 llvm::GlobalVariable *VTable = 900 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); 901 902 // V-tables are always unnamed_addr. 903 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 904 905 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 906 CGM.getContext().getTagDeclType(Base.getBase())); 907 908 // Create and set the initializer. 909 ConstantInitBuilder builder(CGM); 910 auto components = builder.beginStruct(); 911 createVTableInitializer(components, *VTLayout, RTTI, 912 VTable->hasLocalLinkage()); 913 components.finishAndSetAsInitializer(VTable); 914 915 // Set properties only after the initializer has been set to ensure that the 916 // GV is treated as definition and not declaration. 917 assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration"); 918 CGM.setGVProperties(VTable, RD); 919 920 CGM.EmitVTableTypeMetadata(RD, VTable, *VTLayout.get()); 921 922 if (UsingRelativeLayout && !VTable->isDSOLocal()) 923 GenerateRelativeVTableAlias(VTable, OutName); 924 925 return VTable; 926 } 927 928 // If the VTable is not dso_local, then we will not be able to indicate that 929 // the VTable does not need a relocation and move into rodata. A frequent 930 // time this can occur is for classes that should be made public from a DSO 931 // (like in libc++). For cases like these, we can make the vtable hidden or 932 // private and create a public alias with the same visibility and linkage as 933 // the original vtable type. 934 void CodeGenVTables::GenerateRelativeVTableAlias(llvm::GlobalVariable *VTable, 935 llvm::StringRef AliasNameRef) { 936 assert(getItaniumVTableContext().isRelativeLayout() && 937 "Can only use this if the relative vtable ABI is used"); 938 assert(!VTable->isDSOLocal() && "This should be called only if the vtable is " 939 "not guaranteed to be dso_local"); 940 941 // If the vtable is available_externally, we shouldn't (or need to) generate 942 // an alias for it in the first place since the vtable won't actually by 943 // emitted in this compilation unit. 944 if (VTable->hasAvailableExternallyLinkage()) 945 return; 946 947 // Create a new string in the event the alias is already the name of the 948 // vtable. Using the reference directly could lead to use of an inititialized 949 // value in the module's StringMap. 950 llvm::SmallString<256> AliasName(AliasNameRef); 951 VTable->setName(AliasName + ".local"); 952 953 auto Linkage = VTable->getLinkage(); 954 assert(llvm::GlobalAlias::isValidLinkage(Linkage) && 955 "Invalid vtable alias linkage"); 956 957 llvm::GlobalAlias *VTableAlias = CGM.getModule().getNamedAlias(AliasName); 958 if (!VTableAlias) { 959 VTableAlias = llvm::GlobalAlias::create(VTable->getValueType(), 960 VTable->getAddressSpace(), Linkage, 961 AliasName, &CGM.getModule()); 962 } else { 963 assert(VTableAlias->getValueType() == VTable->getValueType()); 964 assert(VTableAlias->getLinkage() == Linkage); 965 } 966 VTableAlias->setVisibility(VTable->getVisibility()); 967 VTableAlias->setUnnamedAddr(VTable->getUnnamedAddr()); 968 969 // Both of these imply dso_local for the vtable. 970 if (!VTable->hasComdat()) { 971 // If this is in a comdat, then we shouldn't make the linkage private due to 972 // an issue in lld where private symbols can be used as the key symbol when 973 // choosing the prevelant group. This leads to "relocation refers to a 974 // symbol in a discarded section". 975 VTable->setLinkage(llvm::GlobalValue::PrivateLinkage); 976 } else { 977 // We should at least make this hidden since we don't want to expose it. 978 VTable->setVisibility(llvm::GlobalValue::HiddenVisibility); 979 } 980 981 VTableAlias->setAliasee(VTable); 982 } 983 984 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 985 const CXXRecordDecl *RD) { 986 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 987 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 988 } 989 990 /// Compute the required linkage of the vtable for the given class. 991 /// 992 /// Note that we only call this at the end of the translation unit. 993 llvm::GlobalVariable::LinkageTypes 994 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 995 if (!RD->isExternallyVisible()) 996 return llvm::GlobalVariable::InternalLinkage; 997 998 // We're at the end of the translation unit, so the current key 999 // function is fully correct. 1000 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 1001 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 1002 // If this class has a key function, use that to determine the 1003 // linkage of the vtable. 1004 const FunctionDecl *def = nullptr; 1005 if (keyFunction->hasBody(def)) 1006 keyFunction = cast<CXXMethodDecl>(def); 1007 1008 switch (keyFunction->getTemplateSpecializationKind()) { 1009 case TSK_Undeclared: 1010 case TSK_ExplicitSpecialization: 1011 assert((def || CodeGenOpts.OptimizationLevel > 0 || 1012 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) && 1013 "Shouldn't query vtable linkage without key function, " 1014 "optimizations, or debug info"); 1015 if (!def && CodeGenOpts.OptimizationLevel > 0) 1016 return llvm::GlobalVariable::AvailableExternallyLinkage; 1017 1018 if (keyFunction->isInlined()) 1019 return !Context.getLangOpts().AppleKext ? 1020 llvm::GlobalVariable::LinkOnceODRLinkage : 1021 llvm::Function::InternalLinkage; 1022 1023 return llvm::GlobalVariable::ExternalLinkage; 1024 1025 case TSK_ImplicitInstantiation: 1026 return !Context.getLangOpts().AppleKext ? 1027 llvm::GlobalVariable::LinkOnceODRLinkage : 1028 llvm::Function::InternalLinkage; 1029 1030 case TSK_ExplicitInstantiationDefinition: 1031 return !Context.getLangOpts().AppleKext ? 1032 llvm::GlobalVariable::WeakODRLinkage : 1033 llvm::Function::InternalLinkage; 1034 1035 case TSK_ExplicitInstantiationDeclaration: 1036 llvm_unreachable("Should not have been asked to emit this"); 1037 } 1038 } 1039 1040 // -fapple-kext mode does not support weak linkage, so we must use 1041 // internal linkage. 1042 if (Context.getLangOpts().AppleKext) 1043 return llvm::Function::InternalLinkage; 1044 1045 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 1046 llvm::GlobalValue::LinkOnceODRLinkage; 1047 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 1048 llvm::GlobalValue::WeakODRLinkage; 1049 if (RD->hasAttr<DLLExportAttr>()) { 1050 // Cannot discard exported vtables. 1051 DiscardableODRLinkage = NonDiscardableODRLinkage; 1052 } else if (RD->hasAttr<DLLImportAttr>()) { 1053 // Imported vtables are available externally. 1054 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1055 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 1056 } 1057 1058 switch (RD->getTemplateSpecializationKind()) { 1059 case TSK_Undeclared: 1060 case TSK_ExplicitSpecialization: 1061 case TSK_ImplicitInstantiation: 1062 return DiscardableODRLinkage; 1063 1064 case TSK_ExplicitInstantiationDeclaration: 1065 // Explicit instantiations in MSVC do not provide vtables, so we must emit 1066 // our own. 1067 if (getTarget().getCXXABI().isMicrosoft()) 1068 return DiscardableODRLinkage; 1069 return shouldEmitAvailableExternallyVTable(*this, RD) 1070 ? llvm::GlobalVariable::AvailableExternallyLinkage 1071 : llvm::GlobalVariable::ExternalLinkage; 1072 1073 case TSK_ExplicitInstantiationDefinition: 1074 return NonDiscardableODRLinkage; 1075 } 1076 1077 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1078 } 1079 1080 /// This is a callback from Sema to tell us that a particular vtable is 1081 /// required to be emitted in this translation unit. 1082 /// 1083 /// This is only called for vtables that _must_ be emitted (mainly due to key 1084 /// functions). For weak vtables, CodeGen tracks when they are needed and 1085 /// emits them as-needed. 1086 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 1087 VTables.GenerateClassData(theClass); 1088 } 1089 1090 void 1091 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 1092 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 1093 DI->completeClassData(RD); 1094 1095 if (RD->getNumVBases()) 1096 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 1097 1098 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 1099 } 1100 1101 /// At this point in the translation unit, does it appear that can we 1102 /// rely on the vtable being defined elsewhere in the program? 1103 /// 1104 /// The response is really only definitive when called at the end of 1105 /// the translation unit. 1106 /// 1107 /// The only semantic restriction here is that the object file should 1108 /// not contain a vtable definition when that vtable is defined 1109 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 1110 /// vtables when unnecessary. 1111 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 1112 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 1113 1114 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 1115 // emit them even if there is an explicit template instantiation. 1116 if (CGM.getTarget().getCXXABI().isMicrosoft()) 1117 return false; 1118 1119 // If we have an explicit instantiation declaration (and not a 1120 // definition), the vtable is defined elsewhere. 1121 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 1122 if (TSK == TSK_ExplicitInstantiationDeclaration) 1123 return true; 1124 1125 // Otherwise, if the class is an instantiated template, the 1126 // vtable must be defined here. 1127 if (TSK == TSK_ImplicitInstantiation || 1128 TSK == TSK_ExplicitInstantiationDefinition) 1129 return false; 1130 1131 // Otherwise, if the class doesn't have a key function (possibly 1132 // anymore), the vtable must be defined here. 1133 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 1134 if (!keyFunction) 1135 return false; 1136 1137 // Otherwise, if we don't have a definition of the key function, the 1138 // vtable must be defined somewhere else. 1139 return !keyFunction->hasBody(); 1140 } 1141 1142 /// Given that we're currently at the end of the translation unit, and 1143 /// we've emitted a reference to the vtable for this class, should 1144 /// we define that vtable? 1145 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 1146 const CXXRecordDecl *RD) { 1147 // If vtable is internal then it has to be done. 1148 if (!CGM.getVTables().isVTableExternal(RD)) 1149 return true; 1150 1151 // If it's external then maybe we will need it as available_externally. 1152 return shouldEmitAvailableExternallyVTable(CGM, RD); 1153 } 1154 1155 /// Given that at some point we emitted a reference to one or more 1156 /// vtables, and that we are now at the end of the translation unit, 1157 /// decide whether we should emit them. 1158 void CodeGenModule::EmitDeferredVTables() { 1159 #ifndef NDEBUG 1160 // Remember the size of DeferredVTables, because we're going to assume 1161 // that this entire operation doesn't modify it. 1162 size_t savedSize = DeferredVTables.size(); 1163 #endif 1164 1165 for (const CXXRecordDecl *RD : DeferredVTables) 1166 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 1167 VTables.GenerateClassData(RD); 1168 else if (shouldOpportunisticallyEmitVTables()) 1169 OpportunisticVTables.push_back(RD); 1170 1171 assert(savedSize == DeferredVTables.size() && 1172 "deferred extra vtables during vtable emission?"); 1173 DeferredVTables.clear(); 1174 } 1175 1176 bool CodeGenModule::HasLTOVisibilityPublicStd(const CXXRecordDecl *RD) { 1177 if (!getCodeGenOpts().LTOVisibilityPublicStd) 1178 return false; 1179 1180 const DeclContext *DC = RD; 1181 while (1) { 1182 auto *D = cast<Decl>(DC); 1183 DC = DC->getParent(); 1184 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 1185 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 1186 if (const IdentifierInfo *II = ND->getIdentifier()) 1187 if (II->isStr("std") || II->isStr("stdext")) 1188 return true; 1189 break; 1190 } 1191 } 1192 1193 return false; 1194 } 1195 1196 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 1197 LinkageInfo LV = RD->getLinkageAndVisibility(); 1198 if (!isExternallyVisible(LV.getLinkage())) 1199 return true; 1200 1201 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) 1202 return false; 1203 1204 if (getTriple().isOSBinFormatCOFF()) { 1205 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 1206 return false; 1207 } else { 1208 if (LV.getVisibility() != HiddenVisibility) 1209 return false; 1210 } 1211 1212 return !HasLTOVisibilityPublicStd(RD); 1213 } 1214 1215 llvm::GlobalObject::VCallVisibility CodeGenModule::GetVCallVisibilityLevel( 1216 const CXXRecordDecl *RD, llvm::DenseSet<const CXXRecordDecl *> &Visited) { 1217 // If we have already visited this RD (which means this is a recursive call 1218 // since the initial call should have an empty Visited set), return the max 1219 // visibility. The recursive calls below compute the min between the result 1220 // of the recursive call and the current TypeVis, so returning the max here 1221 // ensures that it will have no effect on the current TypeVis. 1222 if (!Visited.insert(RD).second) 1223 return llvm::GlobalObject::VCallVisibilityTranslationUnit; 1224 1225 LinkageInfo LV = RD->getLinkageAndVisibility(); 1226 llvm::GlobalObject::VCallVisibility TypeVis; 1227 if (!isExternallyVisible(LV.getLinkage())) 1228 TypeVis = llvm::GlobalObject::VCallVisibilityTranslationUnit; 1229 else if (HasHiddenLTOVisibility(RD)) 1230 TypeVis = llvm::GlobalObject::VCallVisibilityLinkageUnit; 1231 else 1232 TypeVis = llvm::GlobalObject::VCallVisibilityPublic; 1233 1234 for (auto B : RD->bases()) 1235 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1236 TypeVis = std::min( 1237 TypeVis, 1238 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); 1239 1240 for (auto B : RD->vbases()) 1241 if (B.getType()->getAsCXXRecordDecl()->isDynamicClass()) 1242 TypeVis = std::min( 1243 TypeVis, 1244 GetVCallVisibilityLevel(B.getType()->getAsCXXRecordDecl(), Visited)); 1245 1246 return TypeVis; 1247 } 1248 1249 void CodeGenModule::EmitVTableTypeMetadata(const CXXRecordDecl *RD, 1250 llvm::GlobalVariable *VTable, 1251 const VTableLayout &VTLayout) { 1252 if (!getCodeGenOpts().LTOUnit) 1253 return; 1254 1255 CharUnits PointerWidth = 1256 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 1257 1258 typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint; 1259 std::vector<AddressPoint> AddressPoints; 1260 for (auto &&AP : VTLayout.getAddressPoints()) 1261 AddressPoints.push_back(std::make_pair( 1262 AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) + 1263 AP.second.AddressPointIndex)); 1264 1265 // Sort the address points for determinism. 1266 llvm::sort(AddressPoints, [this](const AddressPoint &AP1, 1267 const AddressPoint &AP2) { 1268 if (&AP1 == &AP2) 1269 return false; 1270 1271 std::string S1; 1272 llvm::raw_string_ostream O1(S1); 1273 getCXXABI().getMangleContext().mangleTypeName( 1274 QualType(AP1.first->getTypeForDecl(), 0), O1); 1275 O1.flush(); 1276 1277 std::string S2; 1278 llvm::raw_string_ostream O2(S2); 1279 getCXXABI().getMangleContext().mangleTypeName( 1280 QualType(AP2.first->getTypeForDecl(), 0), O2); 1281 O2.flush(); 1282 1283 if (S1 < S2) 1284 return true; 1285 if (S1 != S2) 1286 return false; 1287 1288 return AP1.second < AP2.second; 1289 }); 1290 1291 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); 1292 for (auto AP : AddressPoints) { 1293 // Create type metadata for the address point. 1294 AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first); 1295 1296 // The class associated with each address point could also potentially be 1297 // used for indirect calls via a member function pointer, so we need to 1298 // annotate the address of each function pointer with the appropriate member 1299 // function pointer type. 1300 for (unsigned I = 0; I != Comps.size(); ++I) { 1301 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) 1302 continue; 1303 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( 1304 Context.getMemberPointerType( 1305 Comps[I].getFunctionDecl()->getType(), 1306 Context.getRecordType(AP.first).getTypePtr())); 1307 VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD); 1308 } 1309 } 1310 1311 if (getCodeGenOpts().VirtualFunctionElimination || 1312 getCodeGenOpts().WholeProgramVTables) { 1313 llvm::DenseSet<const CXXRecordDecl *> Visited; 1314 llvm::GlobalObject::VCallVisibility TypeVis = 1315 GetVCallVisibilityLevel(RD, Visited); 1316 if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic) 1317 VTable->setVCallVisibilityMetadata(TypeVis); 1318 } 1319 } 1320