1 //===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit OpenMP nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCleanup.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/DeclOpenMP.h" 21 #include "clang/AST/OpenMPClause.h" 22 #include "clang/AST/Stmt.h" 23 #include "clang/AST/StmtOpenMP.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/OpenMPKinds.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "llvm/Frontend/OpenMP/OMPConstants.h" 28 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/Support/AtomicOrdering.h" 32 using namespace clang; 33 using namespace CodeGen; 34 using namespace llvm::omp; 35 36 static const VarDecl *getBaseDecl(const Expr *Ref); 37 38 namespace { 39 /// Lexical scope for OpenMP executable constructs, that handles correct codegen 40 /// for captured expressions. 41 class OMPLexicalScope : public CodeGenFunction::LexicalScope { 42 void emitPreInitStmt(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 43 for (const auto *C : S.clauses()) { 44 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 45 if (const auto *PreInit = 46 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 47 for (const auto *I : PreInit->decls()) { 48 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 49 CGF.EmitVarDecl(cast<VarDecl>(*I)); 50 } else { 51 CodeGenFunction::AutoVarEmission Emission = 52 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 53 CGF.EmitAutoVarCleanups(Emission); 54 } 55 } 56 } 57 } 58 } 59 } 60 CodeGenFunction::OMPPrivateScope InlinedShareds; 61 62 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 63 return CGF.LambdaCaptureFields.lookup(VD) || 64 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 65 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 66 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 67 } 68 69 public: 70 OMPLexicalScope( 71 CodeGenFunction &CGF, const OMPExecutableDirective &S, 72 const llvm::Optional<OpenMPDirectiveKind> CapturedRegion = llvm::None, 73 const bool EmitPreInitStmt = true) 74 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 75 InlinedShareds(CGF) { 76 if (EmitPreInitStmt) 77 emitPreInitStmt(CGF, S); 78 if (!CapturedRegion.hasValue()) 79 return; 80 assert(S.hasAssociatedStmt() && 81 "Expected associated statement for inlined directive."); 82 const CapturedStmt *CS = S.getCapturedStmt(*CapturedRegion); 83 for (const auto &C : CS->captures()) { 84 if (C.capturesVariable() || C.capturesVariableByCopy()) { 85 auto *VD = C.getCapturedVar(); 86 assert(VD == VD->getCanonicalDecl() && 87 "Canonical decl must be captured."); 88 DeclRefExpr DRE( 89 CGF.getContext(), const_cast<VarDecl *>(VD), 90 isCapturedVar(CGF, VD) || (CGF.CapturedStmtInfo && 91 InlinedShareds.isGlobalVarCaptured(VD)), 92 VD->getType().getNonReferenceType(), VK_LValue, C.getLocation()); 93 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 94 return CGF.EmitLValue(&DRE).getAddress(CGF); 95 }); 96 } 97 } 98 (void)InlinedShareds.Privatize(); 99 } 100 }; 101 102 /// Lexical scope for OpenMP parallel construct, that handles correct codegen 103 /// for captured expressions. 104 class OMPParallelScope final : public OMPLexicalScope { 105 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 106 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 107 return !(isOpenMPTargetExecutionDirective(Kind) || 108 isOpenMPLoopBoundSharingDirective(Kind)) && 109 isOpenMPParallelDirective(Kind); 110 } 111 112 public: 113 OMPParallelScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 114 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 115 EmitPreInitStmt(S)) {} 116 }; 117 118 /// Lexical scope for OpenMP teams construct, that handles correct codegen 119 /// for captured expressions. 120 class OMPTeamsScope final : public OMPLexicalScope { 121 bool EmitPreInitStmt(const OMPExecutableDirective &S) { 122 OpenMPDirectiveKind Kind = S.getDirectiveKind(); 123 return !isOpenMPTargetExecutionDirective(Kind) && 124 isOpenMPTeamsDirective(Kind); 125 } 126 127 public: 128 OMPTeamsScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 129 : OMPLexicalScope(CGF, S, /*CapturedRegion=*/llvm::None, 130 EmitPreInitStmt(S)) {} 131 }; 132 133 /// Private scope for OpenMP loop-based directives, that supports capturing 134 /// of used expression from loop statement. 135 class OMPLoopScope : public CodeGenFunction::RunCleanupsScope { 136 void emitPreInitStmt(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) { 137 const DeclStmt *PreInits; 138 CodeGenFunction::OMPMapVars PreCondVars; 139 if (auto *LD = dyn_cast<OMPLoopDirective>(&S)) { 140 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 141 for (const auto *E : LD->counters()) { 142 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 143 EmittedAsPrivate.insert(VD->getCanonicalDecl()); 144 (void)PreCondVars.setVarAddr( 145 CGF, VD, CGF.CreateMemTemp(VD->getType().getNonReferenceType())); 146 } 147 // Mark private vars as undefs. 148 for (const auto *C : LD->getClausesOfKind<OMPPrivateClause>()) { 149 for (const Expr *IRef : C->varlists()) { 150 const auto *OrigVD = 151 cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 152 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 153 (void)PreCondVars.setVarAddr( 154 CGF, OrigVD, 155 Address(llvm::UndefValue::get(CGF.ConvertTypeForMem( 156 CGF.getContext().getPointerType( 157 OrigVD->getType().getNonReferenceType()))), 158 CGF.getContext().getDeclAlign(OrigVD))); 159 } 160 } 161 } 162 (void)PreCondVars.apply(CGF); 163 // Emit init, __range and __end variables for C++ range loops. 164 (void)OMPLoopBasedDirective::doForAllLoops( 165 LD->getInnermostCapturedStmt()->getCapturedStmt(), 166 /*TryImperfectlyNestedLoops=*/true, LD->getLoopsNumber(), 167 [&CGF](unsigned Cnt, const Stmt *CurStmt) { 168 if (const auto *CXXFor = dyn_cast<CXXForRangeStmt>(CurStmt)) { 169 if (const Stmt *Init = CXXFor->getInit()) 170 CGF.EmitStmt(Init); 171 CGF.EmitStmt(CXXFor->getRangeStmt()); 172 CGF.EmitStmt(CXXFor->getEndStmt()); 173 } 174 return false; 175 }); 176 PreInits = cast_or_null<DeclStmt>(LD->getPreInits()); 177 } else if (const auto *Tile = dyn_cast<OMPTileDirective>(&S)) { 178 PreInits = cast_or_null<DeclStmt>(Tile->getPreInits()); 179 } else if (const auto *Unroll = dyn_cast<OMPUnrollDirective>(&S)) { 180 PreInits = cast_or_null<DeclStmt>(Unroll->getPreInits()); 181 } else { 182 llvm_unreachable("Unknown loop-based directive kind."); 183 } 184 if (PreInits) { 185 for (const auto *I : PreInits->decls()) 186 CGF.EmitVarDecl(cast<VarDecl>(*I)); 187 } 188 PreCondVars.restore(CGF); 189 } 190 191 public: 192 OMPLoopScope(CodeGenFunction &CGF, const OMPLoopBasedDirective &S) 193 : CodeGenFunction::RunCleanupsScope(CGF) { 194 emitPreInitStmt(CGF, S); 195 } 196 }; 197 198 class OMPSimdLexicalScope : public CodeGenFunction::LexicalScope { 199 CodeGenFunction::OMPPrivateScope InlinedShareds; 200 201 static bool isCapturedVar(CodeGenFunction &CGF, const VarDecl *VD) { 202 return CGF.LambdaCaptureFields.lookup(VD) || 203 (CGF.CapturedStmtInfo && CGF.CapturedStmtInfo->lookup(VD)) || 204 (CGF.CurCodeDecl && isa<BlockDecl>(CGF.CurCodeDecl) && 205 cast<BlockDecl>(CGF.CurCodeDecl)->capturesVariable(VD)); 206 } 207 208 public: 209 OMPSimdLexicalScope(CodeGenFunction &CGF, const OMPExecutableDirective &S) 210 : CodeGenFunction::LexicalScope(CGF, S.getSourceRange()), 211 InlinedShareds(CGF) { 212 for (const auto *C : S.clauses()) { 213 if (const auto *CPI = OMPClauseWithPreInit::get(C)) { 214 if (const auto *PreInit = 215 cast_or_null<DeclStmt>(CPI->getPreInitStmt())) { 216 for (const auto *I : PreInit->decls()) { 217 if (!I->hasAttr<OMPCaptureNoInitAttr>()) { 218 CGF.EmitVarDecl(cast<VarDecl>(*I)); 219 } else { 220 CodeGenFunction::AutoVarEmission Emission = 221 CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); 222 CGF.EmitAutoVarCleanups(Emission); 223 } 224 } 225 } 226 } else if (const auto *UDP = dyn_cast<OMPUseDevicePtrClause>(C)) { 227 for (const Expr *E : UDP->varlists()) { 228 const Decl *D = cast<DeclRefExpr>(E)->getDecl(); 229 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 230 CGF.EmitVarDecl(*OED); 231 } 232 } else if (const auto *UDP = dyn_cast<OMPUseDeviceAddrClause>(C)) { 233 for (const Expr *E : UDP->varlists()) { 234 const Decl *D = getBaseDecl(E); 235 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(D)) 236 CGF.EmitVarDecl(*OED); 237 } 238 } 239 } 240 if (!isOpenMPSimdDirective(S.getDirectiveKind())) 241 CGF.EmitOMPPrivateClause(S, InlinedShareds); 242 if (const auto *TG = dyn_cast<OMPTaskgroupDirective>(&S)) { 243 if (const Expr *E = TG->getReductionRef()) 244 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())); 245 } 246 // Temp copy arrays for inscan reductions should not be emitted as they are 247 // not used in simd only mode. 248 llvm::DenseSet<CanonicalDeclPtr<const Decl>> CopyArrayTemps; 249 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 250 if (C->getModifier() != OMPC_REDUCTION_inscan) 251 continue; 252 for (const Expr *E : C->copy_array_temps()) 253 CopyArrayTemps.insert(cast<DeclRefExpr>(E)->getDecl()); 254 } 255 const auto *CS = cast_or_null<CapturedStmt>(S.getAssociatedStmt()); 256 while (CS) { 257 for (auto &C : CS->captures()) { 258 if (C.capturesVariable() || C.capturesVariableByCopy()) { 259 auto *VD = C.getCapturedVar(); 260 if (CopyArrayTemps.contains(VD)) 261 continue; 262 assert(VD == VD->getCanonicalDecl() && 263 "Canonical decl must be captured."); 264 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), 265 isCapturedVar(CGF, VD) || 266 (CGF.CapturedStmtInfo && 267 InlinedShareds.isGlobalVarCaptured(VD)), 268 VD->getType().getNonReferenceType(), VK_LValue, 269 C.getLocation()); 270 InlinedShareds.addPrivate(VD, [&CGF, &DRE]() -> Address { 271 return CGF.EmitLValue(&DRE).getAddress(CGF); 272 }); 273 } 274 } 275 CS = dyn_cast<CapturedStmt>(CS->getCapturedStmt()); 276 } 277 (void)InlinedShareds.Privatize(); 278 } 279 }; 280 281 } // namespace 282 283 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 284 const OMPExecutableDirective &S, 285 const RegionCodeGenTy &CodeGen); 286 287 LValue CodeGenFunction::EmitOMPSharedLValue(const Expr *E) { 288 if (const auto *OrigDRE = dyn_cast<DeclRefExpr>(E)) { 289 if (const auto *OrigVD = dyn_cast<VarDecl>(OrigDRE->getDecl())) { 290 OrigVD = OrigVD->getCanonicalDecl(); 291 bool IsCaptured = 292 LambdaCaptureFields.lookup(OrigVD) || 293 (CapturedStmtInfo && CapturedStmtInfo->lookup(OrigVD)) || 294 (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)); 295 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), IsCaptured, 296 OrigDRE->getType(), VK_LValue, OrigDRE->getExprLoc()); 297 return EmitLValue(&DRE); 298 } 299 } 300 return EmitLValue(E); 301 } 302 303 llvm::Value *CodeGenFunction::getTypeSize(QualType Ty) { 304 ASTContext &C = getContext(); 305 llvm::Value *Size = nullptr; 306 auto SizeInChars = C.getTypeSizeInChars(Ty); 307 if (SizeInChars.isZero()) { 308 // getTypeSizeInChars() returns 0 for a VLA. 309 while (const VariableArrayType *VAT = C.getAsVariableArrayType(Ty)) { 310 VlaSizePair VlaSize = getVLASize(VAT); 311 Ty = VlaSize.Type; 312 Size = Size ? Builder.CreateNUWMul(Size, VlaSize.NumElts) 313 : VlaSize.NumElts; 314 } 315 SizeInChars = C.getTypeSizeInChars(Ty); 316 if (SizeInChars.isZero()) 317 return llvm::ConstantInt::get(SizeTy, /*V=*/0); 318 return Builder.CreateNUWMul(Size, CGM.getSize(SizeInChars)); 319 } 320 return CGM.getSize(SizeInChars); 321 } 322 323 void CodeGenFunction::GenerateOpenMPCapturedVars( 324 const CapturedStmt &S, SmallVectorImpl<llvm::Value *> &CapturedVars) { 325 const RecordDecl *RD = S.getCapturedRecordDecl(); 326 auto CurField = RD->field_begin(); 327 auto CurCap = S.captures().begin(); 328 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 329 E = S.capture_init_end(); 330 I != E; ++I, ++CurField, ++CurCap) { 331 if (CurField->hasCapturedVLAType()) { 332 const VariableArrayType *VAT = CurField->getCapturedVLAType(); 333 llvm::Value *Val = VLASizeMap[VAT->getSizeExpr()]; 334 CapturedVars.push_back(Val); 335 } else if (CurCap->capturesThis()) { 336 CapturedVars.push_back(CXXThisValue); 337 } else if (CurCap->capturesVariableByCopy()) { 338 llvm::Value *CV = EmitLoadOfScalar(EmitLValue(*I), CurCap->getLocation()); 339 340 // If the field is not a pointer, we need to save the actual value 341 // and load it as a void pointer. 342 if (!CurField->getType()->isAnyPointerType()) { 343 ASTContext &Ctx = getContext(); 344 Address DstAddr = CreateMemTemp( 345 Ctx.getUIntPtrType(), 346 Twine(CurCap->getCapturedVar()->getName(), ".casted")); 347 LValue DstLV = MakeAddrLValue(DstAddr, Ctx.getUIntPtrType()); 348 349 llvm::Value *SrcAddrVal = EmitScalarConversion( 350 DstAddr.getPointer(), Ctx.getPointerType(Ctx.getUIntPtrType()), 351 Ctx.getPointerType(CurField->getType()), CurCap->getLocation()); 352 LValue SrcLV = 353 MakeNaturalAlignAddrLValue(SrcAddrVal, CurField->getType()); 354 355 // Store the value using the source type pointer. 356 EmitStoreThroughLValue(RValue::get(CV), SrcLV); 357 358 // Load the value using the destination type pointer. 359 CV = EmitLoadOfScalar(DstLV, CurCap->getLocation()); 360 } 361 CapturedVars.push_back(CV); 362 } else { 363 assert(CurCap->capturesVariable() && "Expected capture by reference."); 364 CapturedVars.push_back(EmitLValue(*I).getAddress(*this).getPointer()); 365 } 366 } 367 } 368 369 static Address castValueFromUintptr(CodeGenFunction &CGF, SourceLocation Loc, 370 QualType DstType, StringRef Name, 371 LValue AddrLV) { 372 ASTContext &Ctx = CGF.getContext(); 373 374 llvm::Value *CastedPtr = CGF.EmitScalarConversion( 375 AddrLV.getAddress(CGF).getPointer(), Ctx.getUIntPtrType(), 376 Ctx.getPointerType(DstType), Loc); 377 Address TmpAddr = 378 CGF.MakeNaturalAlignAddrLValue(CastedPtr, Ctx.getPointerType(DstType)) 379 .getAddress(CGF); 380 return TmpAddr; 381 } 382 383 static QualType getCanonicalParamType(ASTContext &C, QualType T) { 384 if (T->isLValueReferenceType()) 385 return C.getLValueReferenceType( 386 getCanonicalParamType(C, T.getNonReferenceType()), 387 /*SpelledAsLValue=*/false); 388 if (T->isPointerType()) 389 return C.getPointerType(getCanonicalParamType(C, T->getPointeeType())); 390 if (const ArrayType *A = T->getAsArrayTypeUnsafe()) { 391 if (const auto *VLA = dyn_cast<VariableArrayType>(A)) 392 return getCanonicalParamType(C, VLA->getElementType()); 393 if (!A->isVariablyModifiedType()) 394 return C.getCanonicalType(T); 395 } 396 return C.getCanonicalParamType(T); 397 } 398 399 namespace { 400 /// Contains required data for proper outlined function codegen. 401 struct FunctionOptions { 402 /// Captured statement for which the function is generated. 403 const CapturedStmt *S = nullptr; 404 /// true if cast to/from UIntPtr is required for variables captured by 405 /// value. 406 const bool UIntPtrCastRequired = true; 407 /// true if only casted arguments must be registered as local args or VLA 408 /// sizes. 409 const bool RegisterCastedArgsOnly = false; 410 /// Name of the generated function. 411 const StringRef FunctionName; 412 /// Location of the non-debug version of the outlined function. 413 SourceLocation Loc; 414 explicit FunctionOptions(const CapturedStmt *S, bool UIntPtrCastRequired, 415 bool RegisterCastedArgsOnly, StringRef FunctionName, 416 SourceLocation Loc) 417 : S(S), UIntPtrCastRequired(UIntPtrCastRequired), 418 RegisterCastedArgsOnly(UIntPtrCastRequired && RegisterCastedArgsOnly), 419 FunctionName(FunctionName), Loc(Loc) {} 420 }; 421 } // namespace 422 423 static llvm::Function *emitOutlinedFunctionPrologue( 424 CodeGenFunction &CGF, FunctionArgList &Args, 425 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> 426 &LocalAddrs, 427 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> 428 &VLASizes, 429 llvm::Value *&CXXThisValue, const FunctionOptions &FO) { 430 const CapturedDecl *CD = FO.S->getCapturedDecl(); 431 const RecordDecl *RD = FO.S->getCapturedRecordDecl(); 432 assert(CD->hasBody() && "missing CapturedDecl body"); 433 434 CXXThisValue = nullptr; 435 // Build the argument list. 436 CodeGenModule &CGM = CGF.CGM; 437 ASTContext &Ctx = CGM.getContext(); 438 FunctionArgList TargetArgs; 439 Args.append(CD->param_begin(), 440 std::next(CD->param_begin(), CD->getContextParamPosition())); 441 TargetArgs.append( 442 CD->param_begin(), 443 std::next(CD->param_begin(), CD->getContextParamPosition())); 444 auto I = FO.S->captures().begin(); 445 FunctionDecl *DebugFunctionDecl = nullptr; 446 if (!FO.UIntPtrCastRequired) { 447 FunctionProtoType::ExtProtoInfo EPI; 448 QualType FunctionTy = Ctx.getFunctionType(Ctx.VoidTy, llvm::None, EPI); 449 DebugFunctionDecl = FunctionDecl::Create( 450 Ctx, Ctx.getTranslationUnitDecl(), FO.S->getBeginLoc(), 451 SourceLocation(), DeclarationName(), FunctionTy, 452 Ctx.getTrivialTypeSourceInfo(FunctionTy), SC_Static, 453 /*isInlineSpecified=*/false, /*hasWrittenPrototype=*/false); 454 } 455 for (const FieldDecl *FD : RD->fields()) { 456 QualType ArgType = FD->getType(); 457 IdentifierInfo *II = nullptr; 458 VarDecl *CapVar = nullptr; 459 460 // If this is a capture by copy and the type is not a pointer, the outlined 461 // function argument type should be uintptr and the value properly casted to 462 // uintptr. This is necessary given that the runtime library is only able to 463 // deal with pointers. We can pass in the same way the VLA type sizes to the 464 // outlined function. 465 if (FO.UIntPtrCastRequired && 466 ((I->capturesVariableByCopy() && !ArgType->isAnyPointerType()) || 467 I->capturesVariableArrayType())) 468 ArgType = Ctx.getUIntPtrType(); 469 470 if (I->capturesVariable() || I->capturesVariableByCopy()) { 471 CapVar = I->getCapturedVar(); 472 II = CapVar->getIdentifier(); 473 } else if (I->capturesThis()) { 474 II = &Ctx.Idents.get("this"); 475 } else { 476 assert(I->capturesVariableArrayType()); 477 II = &Ctx.Idents.get("vla"); 478 } 479 if (ArgType->isVariablyModifiedType()) 480 ArgType = getCanonicalParamType(Ctx, ArgType); 481 VarDecl *Arg; 482 if (DebugFunctionDecl && (CapVar || I->capturesThis())) { 483 Arg = ParmVarDecl::Create( 484 Ctx, DebugFunctionDecl, 485 CapVar ? CapVar->getBeginLoc() : FD->getBeginLoc(), 486 CapVar ? CapVar->getLocation() : FD->getLocation(), II, ArgType, 487 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 488 } else { 489 Arg = ImplicitParamDecl::Create(Ctx, /*DC=*/nullptr, FD->getLocation(), 490 II, ArgType, ImplicitParamDecl::Other); 491 } 492 Args.emplace_back(Arg); 493 // Do not cast arguments if we emit function with non-original types. 494 TargetArgs.emplace_back( 495 FO.UIntPtrCastRequired 496 ? Arg 497 : CGM.getOpenMPRuntime().translateParameter(FD, Arg)); 498 ++I; 499 } 500 Args.append( 501 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 502 CD->param_end()); 503 TargetArgs.append( 504 std::next(CD->param_begin(), CD->getContextParamPosition() + 1), 505 CD->param_end()); 506 507 // Create the function declaration. 508 const CGFunctionInfo &FuncInfo = 509 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, TargetArgs); 510 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 511 512 auto *F = 513 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 514 FO.FunctionName, &CGM.getModule()); 515 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 516 if (CD->isNothrow()) 517 F->setDoesNotThrow(); 518 F->setDoesNotRecurse(); 519 520 // Always inline the outlined function if optimizations are enabled. 521 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 522 F->addFnAttr(llvm::Attribute::AlwaysInline); 523 524 // Generate the function. 525 CGF.StartFunction(CD, Ctx.VoidTy, F, FuncInfo, TargetArgs, 526 FO.UIntPtrCastRequired ? FO.Loc : FO.S->getBeginLoc(), 527 FO.UIntPtrCastRequired ? FO.Loc 528 : CD->getBody()->getBeginLoc()); 529 unsigned Cnt = CD->getContextParamPosition(); 530 I = FO.S->captures().begin(); 531 for (const FieldDecl *FD : RD->fields()) { 532 // Do not map arguments if we emit function with non-original types. 533 Address LocalAddr(Address::invalid()); 534 if (!FO.UIntPtrCastRequired && Args[Cnt] != TargetArgs[Cnt]) { 535 LocalAddr = CGM.getOpenMPRuntime().getParameterAddress(CGF, Args[Cnt], 536 TargetArgs[Cnt]); 537 } else { 538 LocalAddr = CGF.GetAddrOfLocalVar(Args[Cnt]); 539 } 540 // If we are capturing a pointer by copy we don't need to do anything, just 541 // use the value that we get from the arguments. 542 if (I->capturesVariableByCopy() && FD->getType()->isAnyPointerType()) { 543 const VarDecl *CurVD = I->getCapturedVar(); 544 if (!FO.RegisterCastedArgsOnly) 545 LocalAddrs.insert({Args[Cnt], {CurVD, LocalAddr}}); 546 ++Cnt; 547 ++I; 548 continue; 549 } 550 551 LValue ArgLVal = CGF.MakeAddrLValue(LocalAddr, Args[Cnt]->getType(), 552 AlignmentSource::Decl); 553 if (FD->hasCapturedVLAType()) { 554 if (FO.UIntPtrCastRequired) { 555 ArgLVal = CGF.MakeAddrLValue( 556 castValueFromUintptr(CGF, I->getLocation(), FD->getType(), 557 Args[Cnt]->getName(), ArgLVal), 558 FD->getType(), AlignmentSource::Decl); 559 } 560 llvm::Value *ExprArg = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 561 const VariableArrayType *VAT = FD->getCapturedVLAType(); 562 VLASizes.try_emplace(Args[Cnt], VAT->getSizeExpr(), ExprArg); 563 } else if (I->capturesVariable()) { 564 const VarDecl *Var = I->getCapturedVar(); 565 QualType VarTy = Var->getType(); 566 Address ArgAddr = ArgLVal.getAddress(CGF); 567 if (ArgLVal.getType()->isLValueReferenceType()) { 568 ArgAddr = CGF.EmitLoadOfReference(ArgLVal); 569 } else if (!VarTy->isVariablyModifiedType() || !VarTy->isPointerType()) { 570 assert(ArgLVal.getType()->isPointerType()); 571 ArgAddr = CGF.EmitLoadOfPointer( 572 ArgAddr, ArgLVal.getType()->castAs<PointerType>()); 573 } 574 if (!FO.RegisterCastedArgsOnly) { 575 LocalAddrs.insert( 576 {Args[Cnt], 577 {Var, Address(ArgAddr.getPointer(), Ctx.getDeclAlign(Var))}}); 578 } 579 } else if (I->capturesVariableByCopy()) { 580 assert(!FD->getType()->isAnyPointerType() && 581 "Not expecting a captured pointer."); 582 const VarDecl *Var = I->getCapturedVar(); 583 LocalAddrs.insert({Args[Cnt], 584 {Var, FO.UIntPtrCastRequired 585 ? castValueFromUintptr( 586 CGF, I->getLocation(), FD->getType(), 587 Args[Cnt]->getName(), ArgLVal) 588 : ArgLVal.getAddress(CGF)}}); 589 } else { 590 // If 'this' is captured, load it into CXXThisValue. 591 assert(I->capturesThis()); 592 CXXThisValue = CGF.EmitLoadOfScalar(ArgLVal, I->getLocation()); 593 LocalAddrs.insert({Args[Cnt], {nullptr, ArgLVal.getAddress(CGF)}}); 594 } 595 ++Cnt; 596 ++I; 597 } 598 599 return F; 600 } 601 602 llvm::Function * 603 CodeGenFunction::GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, 604 SourceLocation Loc) { 605 assert( 606 CapturedStmtInfo && 607 "CapturedStmtInfo should be set when generating the captured function"); 608 const CapturedDecl *CD = S.getCapturedDecl(); 609 // Build the argument list. 610 bool NeedWrapperFunction = 611 getDebugInfo() && CGM.getCodeGenOpts().hasReducedDebugInfo(); 612 FunctionArgList Args; 613 llvm::MapVector<const Decl *, std::pair<const VarDecl *, Address>> LocalAddrs; 614 llvm::DenseMap<const Decl *, std::pair<const Expr *, llvm::Value *>> VLASizes; 615 SmallString<256> Buffer; 616 llvm::raw_svector_ostream Out(Buffer); 617 Out << CapturedStmtInfo->getHelperName(); 618 if (NeedWrapperFunction) 619 Out << "_debug__"; 620 FunctionOptions FO(&S, !NeedWrapperFunction, /*RegisterCastedArgsOnly=*/false, 621 Out.str(), Loc); 622 llvm::Function *F = emitOutlinedFunctionPrologue(*this, Args, LocalAddrs, 623 VLASizes, CXXThisValue, FO); 624 CodeGenFunction::OMPPrivateScope LocalScope(*this); 625 for (const auto &LocalAddrPair : LocalAddrs) { 626 if (LocalAddrPair.second.first) { 627 LocalScope.addPrivate(LocalAddrPair.second.first, [&LocalAddrPair]() { 628 return LocalAddrPair.second.second; 629 }); 630 } 631 } 632 (void)LocalScope.Privatize(); 633 for (const auto &VLASizePair : VLASizes) 634 VLASizeMap[VLASizePair.second.first] = VLASizePair.second.second; 635 PGO.assignRegionCounters(GlobalDecl(CD), F); 636 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 637 (void)LocalScope.ForceCleanup(); 638 FinishFunction(CD->getBodyRBrace()); 639 if (!NeedWrapperFunction) 640 return F; 641 642 FunctionOptions WrapperFO(&S, /*UIntPtrCastRequired=*/true, 643 /*RegisterCastedArgsOnly=*/true, 644 CapturedStmtInfo->getHelperName(), Loc); 645 CodeGenFunction WrapperCGF(CGM, /*suppressNewContext=*/true); 646 WrapperCGF.CapturedStmtInfo = CapturedStmtInfo; 647 Args.clear(); 648 LocalAddrs.clear(); 649 VLASizes.clear(); 650 llvm::Function *WrapperF = 651 emitOutlinedFunctionPrologue(WrapperCGF, Args, LocalAddrs, VLASizes, 652 WrapperCGF.CXXThisValue, WrapperFO); 653 llvm::SmallVector<llvm::Value *, 4> CallArgs; 654 auto *PI = F->arg_begin(); 655 for (const auto *Arg : Args) { 656 llvm::Value *CallArg; 657 auto I = LocalAddrs.find(Arg); 658 if (I != LocalAddrs.end()) { 659 LValue LV = WrapperCGF.MakeAddrLValue( 660 I->second.second, 661 I->second.first ? I->second.first->getType() : Arg->getType(), 662 AlignmentSource::Decl); 663 if (LV.getType()->isAnyComplexType()) 664 LV.setAddress(WrapperCGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 665 LV.getAddress(WrapperCGF), 666 PI->getType()->getPointerTo( 667 LV.getAddress(WrapperCGF).getAddressSpace()))); 668 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 669 } else { 670 auto EI = VLASizes.find(Arg); 671 if (EI != VLASizes.end()) { 672 CallArg = EI->second.second; 673 } else { 674 LValue LV = WrapperCGF.MakeAddrLValue(WrapperCGF.GetAddrOfLocalVar(Arg), 675 Arg->getType(), 676 AlignmentSource::Decl); 677 CallArg = WrapperCGF.EmitLoadOfScalar(LV, S.getBeginLoc()); 678 } 679 } 680 CallArgs.emplace_back(WrapperCGF.EmitFromMemory(CallArg, Arg->getType())); 681 ++PI; 682 } 683 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(WrapperCGF, Loc, F, CallArgs); 684 WrapperCGF.FinishFunction(); 685 return WrapperF; 686 } 687 688 //===----------------------------------------------------------------------===// 689 // OpenMP Directive Emission 690 //===----------------------------------------------------------------------===// 691 void CodeGenFunction::EmitOMPAggregateAssign( 692 Address DestAddr, Address SrcAddr, QualType OriginalType, 693 const llvm::function_ref<void(Address, Address)> CopyGen) { 694 // Perform element-by-element initialization. 695 QualType ElementTy; 696 697 // Drill down to the base element type on both arrays. 698 const ArrayType *ArrayTy = OriginalType->getAsArrayTypeUnsafe(); 699 llvm::Value *NumElements = emitArrayLength(ArrayTy, ElementTy, DestAddr); 700 SrcAddr = Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); 701 702 llvm::Value *SrcBegin = SrcAddr.getPointer(); 703 llvm::Value *DestBegin = DestAddr.getPointer(); 704 // Cast from pointer to array type to pointer to single element. 705 llvm::Value *DestEnd = 706 Builder.CreateGEP(DestAddr.getElementType(), DestBegin, NumElements); 707 // The basic structure here is a while-do loop. 708 llvm::BasicBlock *BodyBB = createBasicBlock("omp.arraycpy.body"); 709 llvm::BasicBlock *DoneBB = createBasicBlock("omp.arraycpy.done"); 710 llvm::Value *IsEmpty = 711 Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty"); 712 Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); 713 714 // Enter the loop body, making that address the current address. 715 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 716 EmitBlock(BodyBB); 717 718 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementTy); 719 720 llvm::PHINode *SrcElementPHI = 721 Builder.CreatePHI(SrcBegin->getType(), 2, "omp.arraycpy.srcElementPast"); 722 SrcElementPHI->addIncoming(SrcBegin, EntryBB); 723 Address SrcElementCurrent = 724 Address(SrcElementPHI, 725 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 726 727 llvm::PHINode *DestElementPHI = 728 Builder.CreatePHI(DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); 729 DestElementPHI->addIncoming(DestBegin, EntryBB); 730 Address DestElementCurrent = 731 Address(DestElementPHI, 732 DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); 733 734 // Emit copy. 735 CopyGen(DestElementCurrent, SrcElementCurrent); 736 737 // Shift the address forward by one element. 738 llvm::Value *DestElementNext = Builder.CreateConstGEP1_32( 739 DestAddr.getElementType(), DestElementPHI, /*Idx0=*/1, 740 "omp.arraycpy.dest.element"); 741 llvm::Value *SrcElementNext = Builder.CreateConstGEP1_32( 742 SrcAddr.getElementType(), SrcElementPHI, /*Idx0=*/1, 743 "omp.arraycpy.src.element"); 744 // Check whether we've reached the end. 745 llvm::Value *Done = 746 Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); 747 Builder.CreateCondBr(Done, DoneBB, BodyBB); 748 DestElementPHI->addIncoming(DestElementNext, Builder.GetInsertBlock()); 749 SrcElementPHI->addIncoming(SrcElementNext, Builder.GetInsertBlock()); 750 751 // Done. 752 EmitBlock(DoneBB, /*IsFinished=*/true); 753 } 754 755 void CodeGenFunction::EmitOMPCopy(QualType OriginalType, Address DestAddr, 756 Address SrcAddr, const VarDecl *DestVD, 757 const VarDecl *SrcVD, const Expr *Copy) { 758 if (OriginalType->isArrayType()) { 759 const auto *BO = dyn_cast<BinaryOperator>(Copy); 760 if (BO && BO->getOpcode() == BO_Assign) { 761 // Perform simple memcpy for simple copying. 762 LValue Dest = MakeAddrLValue(DestAddr, OriginalType); 763 LValue Src = MakeAddrLValue(SrcAddr, OriginalType); 764 EmitAggregateAssign(Dest, Src, OriginalType); 765 } else { 766 // For arrays with complex element types perform element by element 767 // copying. 768 EmitOMPAggregateAssign( 769 DestAddr, SrcAddr, OriginalType, 770 [this, Copy, SrcVD, DestVD](Address DestElement, Address SrcElement) { 771 // Working with the single array element, so have to remap 772 // destination and source variables to corresponding array 773 // elements. 774 CodeGenFunction::OMPPrivateScope Remap(*this); 775 Remap.addPrivate(DestVD, [DestElement]() { return DestElement; }); 776 Remap.addPrivate(SrcVD, [SrcElement]() { return SrcElement; }); 777 (void)Remap.Privatize(); 778 EmitIgnoredExpr(Copy); 779 }); 780 } 781 } else { 782 // Remap pseudo source variable to private copy. 783 CodeGenFunction::OMPPrivateScope Remap(*this); 784 Remap.addPrivate(SrcVD, [SrcAddr]() { return SrcAddr; }); 785 Remap.addPrivate(DestVD, [DestAddr]() { return DestAddr; }); 786 (void)Remap.Privatize(); 787 // Emit copying of the whole variable. 788 EmitIgnoredExpr(Copy); 789 } 790 } 791 792 bool CodeGenFunction::EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 793 OMPPrivateScope &PrivateScope) { 794 if (!HaveInsertPoint()) 795 return false; 796 bool DeviceConstTarget = 797 getLangOpts().OpenMPIsDevice && 798 isOpenMPTargetExecutionDirective(D.getDirectiveKind()); 799 bool FirstprivateIsLastprivate = false; 800 llvm::DenseMap<const VarDecl *, OpenMPLastprivateModifier> Lastprivates; 801 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 802 for (const auto *D : C->varlists()) 803 Lastprivates.try_emplace( 804 cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl())->getCanonicalDecl(), 805 C->getKind()); 806 } 807 llvm::DenseSet<const VarDecl *> EmittedAsFirstprivate; 808 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 809 getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind()); 810 // Force emission of the firstprivate copy if the directive does not emit 811 // outlined function, like omp for, omp simd, omp distribute etc. 812 bool MustEmitFirstprivateCopy = 813 CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown; 814 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 815 const auto *IRef = C->varlist_begin(); 816 const auto *InitsRef = C->inits().begin(); 817 for (const Expr *IInit : C->private_copies()) { 818 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 819 bool ThisFirstprivateIsLastprivate = 820 Lastprivates.count(OrigVD->getCanonicalDecl()) > 0; 821 const FieldDecl *FD = CapturedStmtInfo->lookup(OrigVD); 822 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 823 if (!MustEmitFirstprivateCopy && !ThisFirstprivateIsLastprivate && FD && 824 !FD->getType()->isReferenceType() && 825 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 826 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 827 ++IRef; 828 ++InitsRef; 829 continue; 830 } 831 // Do not emit copy for firstprivate constant variables in target regions, 832 // captured by reference. 833 if (DeviceConstTarget && OrigVD->getType().isConstant(getContext()) && 834 FD && FD->getType()->isReferenceType() && 835 (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())) { 836 EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()); 837 ++IRef; 838 ++InitsRef; 839 continue; 840 } 841 FirstprivateIsLastprivate = 842 FirstprivateIsLastprivate || ThisFirstprivateIsLastprivate; 843 if (EmittedAsFirstprivate.insert(OrigVD->getCanonicalDecl()).second) { 844 const auto *VDInit = 845 cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl()); 846 bool IsRegistered; 847 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 848 /*RefersToEnclosingVariableOrCapture=*/FD != nullptr, 849 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 850 LValue OriginalLVal; 851 if (!FD) { 852 // Check if the firstprivate variable is just a constant value. 853 ConstantEmission CE = tryEmitAsConstant(&DRE); 854 if (CE && !CE.isReference()) { 855 // Constant value, no need to create a copy. 856 ++IRef; 857 ++InitsRef; 858 continue; 859 } 860 if (CE && CE.isReference()) { 861 OriginalLVal = CE.getReferenceLValue(*this, &DRE); 862 } else { 863 assert(!CE && "Expected non-constant firstprivate."); 864 OriginalLVal = EmitLValue(&DRE); 865 } 866 } else { 867 OriginalLVal = EmitLValue(&DRE); 868 } 869 QualType Type = VD->getType(); 870 if (Type->isArrayType()) { 871 // Emit VarDecl with copy init for arrays. 872 // Get the address of the original variable captured in current 873 // captured region. 874 IsRegistered = PrivateScope.addPrivate( 875 OrigVD, [this, VD, Type, OriginalLVal, VDInit]() { 876 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 877 const Expr *Init = VD->getInit(); 878 if (!isa<CXXConstructExpr>(Init) || 879 isTrivialInitializer(Init)) { 880 // Perform simple memcpy. 881 LValue Dest = 882 MakeAddrLValue(Emission.getAllocatedAddress(), Type); 883 EmitAggregateAssign(Dest, OriginalLVal, Type); 884 } else { 885 EmitOMPAggregateAssign( 886 Emission.getAllocatedAddress(), 887 OriginalLVal.getAddress(*this), Type, 888 [this, VDInit, Init](Address DestElement, 889 Address SrcElement) { 890 // Clean up any temporaries needed by the 891 // initialization. 892 RunCleanupsScope InitScope(*this); 893 // Emit initialization for single element. 894 setAddrOfLocalVar(VDInit, SrcElement); 895 EmitAnyExprToMem(Init, DestElement, 896 Init->getType().getQualifiers(), 897 /*IsInitializer*/ false); 898 LocalDeclMap.erase(VDInit); 899 }); 900 } 901 EmitAutoVarCleanups(Emission); 902 return Emission.getAllocatedAddress(); 903 }); 904 } else { 905 Address OriginalAddr = OriginalLVal.getAddress(*this); 906 IsRegistered = 907 PrivateScope.addPrivate(OrigVD, [this, VDInit, OriginalAddr, VD, 908 ThisFirstprivateIsLastprivate, 909 OrigVD, &Lastprivates, IRef]() { 910 // Emit private VarDecl with copy init. 911 // Remap temp VDInit variable to the address of the original 912 // variable (for proper handling of captured global variables). 913 setAddrOfLocalVar(VDInit, OriginalAddr); 914 EmitDecl(*VD); 915 LocalDeclMap.erase(VDInit); 916 if (ThisFirstprivateIsLastprivate && 917 Lastprivates[OrigVD->getCanonicalDecl()] == 918 OMPC_LASTPRIVATE_conditional) { 919 // Create/init special variable for lastprivate conditionals. 920 Address VDAddr = 921 CGM.getOpenMPRuntime().emitLastprivateConditionalInit( 922 *this, OrigVD); 923 llvm::Value *V = EmitLoadOfScalar( 924 MakeAddrLValue(GetAddrOfLocalVar(VD), (*IRef)->getType(), 925 AlignmentSource::Decl), 926 (*IRef)->getExprLoc()); 927 EmitStoreOfScalar(V, 928 MakeAddrLValue(VDAddr, (*IRef)->getType(), 929 AlignmentSource::Decl)); 930 LocalDeclMap.erase(VD); 931 setAddrOfLocalVar(VD, VDAddr); 932 return VDAddr; 933 } 934 return GetAddrOfLocalVar(VD); 935 }); 936 } 937 assert(IsRegistered && 938 "firstprivate var already registered as private"); 939 // Silence the warning about unused variable. 940 (void)IsRegistered; 941 } 942 ++IRef; 943 ++InitsRef; 944 } 945 } 946 return FirstprivateIsLastprivate && !EmittedAsFirstprivate.empty(); 947 } 948 949 void CodeGenFunction::EmitOMPPrivateClause( 950 const OMPExecutableDirective &D, 951 CodeGenFunction::OMPPrivateScope &PrivateScope) { 952 if (!HaveInsertPoint()) 953 return; 954 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 955 for (const auto *C : D.getClausesOfKind<OMPPrivateClause>()) { 956 auto IRef = C->varlist_begin(); 957 for (const Expr *IInit : C->private_copies()) { 958 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 959 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 960 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 961 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD]() { 962 // Emit private VarDecl with copy init. 963 EmitDecl(*VD); 964 return GetAddrOfLocalVar(VD); 965 }); 966 assert(IsRegistered && "private var already registered as private"); 967 // Silence the warning about unused variable. 968 (void)IsRegistered; 969 } 970 ++IRef; 971 } 972 } 973 } 974 975 bool CodeGenFunction::EmitOMPCopyinClause(const OMPExecutableDirective &D) { 976 if (!HaveInsertPoint()) 977 return false; 978 // threadprivate_var1 = master_threadprivate_var1; 979 // operator=(threadprivate_var2, master_threadprivate_var2); 980 // ... 981 // __kmpc_barrier(&loc, global_tid); 982 llvm::DenseSet<const VarDecl *> CopiedVars; 983 llvm::BasicBlock *CopyBegin = nullptr, *CopyEnd = nullptr; 984 for (const auto *C : D.getClausesOfKind<OMPCopyinClause>()) { 985 auto IRef = C->varlist_begin(); 986 auto ISrcRef = C->source_exprs().begin(); 987 auto IDestRef = C->destination_exprs().begin(); 988 for (const Expr *AssignOp : C->assignment_ops()) { 989 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 990 QualType Type = VD->getType(); 991 if (CopiedVars.insert(VD->getCanonicalDecl()).second) { 992 // Get the address of the master variable. If we are emitting code with 993 // TLS support, the address is passed from the master as field in the 994 // captured declaration. 995 Address MasterAddr = Address::invalid(); 996 if (getLangOpts().OpenMPUseTLS && 997 getContext().getTargetInfo().isTLSSupported()) { 998 assert(CapturedStmtInfo->lookup(VD) && 999 "Copyin threadprivates should have been captured!"); 1000 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), true, 1001 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1002 MasterAddr = EmitLValue(&DRE).getAddress(*this); 1003 LocalDeclMap.erase(VD); 1004 } else { 1005 MasterAddr = 1006 Address(VD->isStaticLocal() ? CGM.getStaticLocalDeclAddress(VD) 1007 : CGM.GetAddrOfGlobal(VD), 1008 getContext().getDeclAlign(VD)); 1009 } 1010 // Get the address of the threadprivate variable. 1011 Address PrivateAddr = EmitLValue(*IRef).getAddress(*this); 1012 if (CopiedVars.size() == 1) { 1013 // At first check if current thread is a master thread. If it is, no 1014 // need to copy data. 1015 CopyBegin = createBasicBlock("copyin.not.master"); 1016 CopyEnd = createBasicBlock("copyin.not.master.end"); 1017 // TODO: Avoid ptrtoint conversion. 1018 auto *MasterAddrInt = 1019 Builder.CreatePtrToInt(MasterAddr.getPointer(), CGM.IntPtrTy); 1020 auto *PrivateAddrInt = 1021 Builder.CreatePtrToInt(PrivateAddr.getPointer(), CGM.IntPtrTy); 1022 Builder.CreateCondBr( 1023 Builder.CreateICmpNE(MasterAddrInt, PrivateAddrInt), CopyBegin, 1024 CopyEnd); 1025 EmitBlock(CopyBegin); 1026 } 1027 const auto *SrcVD = 1028 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1029 const auto *DestVD = 1030 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1031 EmitOMPCopy(Type, PrivateAddr, MasterAddr, DestVD, SrcVD, AssignOp); 1032 } 1033 ++IRef; 1034 ++ISrcRef; 1035 ++IDestRef; 1036 } 1037 } 1038 if (CopyEnd) { 1039 // Exit out of copying procedure for non-master thread. 1040 EmitBlock(CopyEnd, /*IsFinished=*/true); 1041 return true; 1042 } 1043 return false; 1044 } 1045 1046 bool CodeGenFunction::EmitOMPLastprivateClauseInit( 1047 const OMPExecutableDirective &D, OMPPrivateScope &PrivateScope) { 1048 if (!HaveInsertPoint()) 1049 return false; 1050 bool HasAtLeastOneLastprivate = false; 1051 llvm::DenseSet<const VarDecl *> SIMDLCVs; 1052 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 1053 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 1054 for (const Expr *C : LoopDirective->counters()) { 1055 SIMDLCVs.insert( 1056 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 1057 } 1058 } 1059 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1060 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1061 HasAtLeastOneLastprivate = true; 1062 if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && 1063 !getLangOpts().OpenMPSimd) 1064 break; 1065 const auto *IRef = C->varlist_begin(); 1066 const auto *IDestRef = C->destination_exprs().begin(); 1067 for (const Expr *IInit : C->private_copies()) { 1068 // Keep the address of the original variable for future update at the end 1069 // of the loop. 1070 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1071 // Taskloops do not require additional initialization, it is done in 1072 // runtime support library. 1073 if (AlreadyEmittedVars.insert(OrigVD->getCanonicalDecl()).second) { 1074 const auto *DestVD = 1075 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1076 PrivateScope.addPrivate(DestVD, [this, OrigVD, IRef]() { 1077 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 1078 /*RefersToEnclosingVariableOrCapture=*/ 1079 CapturedStmtInfo->lookup(OrigVD) != nullptr, 1080 (*IRef)->getType(), VK_LValue, (*IRef)->getExprLoc()); 1081 return EmitLValue(&DRE).getAddress(*this); 1082 }); 1083 // Check if the variable is also a firstprivate: in this case IInit is 1084 // not generated. Initialization of this variable will happen in codegen 1085 // for 'firstprivate' clause. 1086 if (IInit && !SIMDLCVs.count(OrigVD->getCanonicalDecl())) { 1087 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl()); 1088 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, VD, C, 1089 OrigVD]() { 1090 if (C->getKind() == OMPC_LASTPRIVATE_conditional) { 1091 Address VDAddr = 1092 CGM.getOpenMPRuntime().emitLastprivateConditionalInit(*this, 1093 OrigVD); 1094 setAddrOfLocalVar(VD, VDAddr); 1095 return VDAddr; 1096 } 1097 // Emit private VarDecl with copy init. 1098 EmitDecl(*VD); 1099 return GetAddrOfLocalVar(VD); 1100 }); 1101 assert(IsRegistered && 1102 "lastprivate var already registered as private"); 1103 (void)IsRegistered; 1104 } 1105 } 1106 ++IRef; 1107 ++IDestRef; 1108 } 1109 } 1110 return HasAtLeastOneLastprivate; 1111 } 1112 1113 void CodeGenFunction::EmitOMPLastprivateClauseFinal( 1114 const OMPExecutableDirective &D, bool NoFinals, 1115 llvm::Value *IsLastIterCond) { 1116 if (!HaveInsertPoint()) 1117 return; 1118 // Emit following code: 1119 // if (<IsLastIterCond>) { 1120 // orig_var1 = private_orig_var1; 1121 // ... 1122 // orig_varn = private_orig_varn; 1123 // } 1124 llvm::BasicBlock *ThenBB = nullptr; 1125 llvm::BasicBlock *DoneBB = nullptr; 1126 if (IsLastIterCond) { 1127 // Emit implicit barrier if at least one lastprivate conditional is found 1128 // and this is not a simd mode. 1129 if (!getLangOpts().OpenMPSimd && 1130 llvm::any_of(D.getClausesOfKind<OMPLastprivateClause>(), 1131 [](const OMPLastprivateClause *C) { 1132 return C->getKind() == OMPC_LASTPRIVATE_conditional; 1133 })) { 1134 CGM.getOpenMPRuntime().emitBarrierCall(*this, D.getBeginLoc(), 1135 OMPD_unknown, 1136 /*EmitChecks=*/false, 1137 /*ForceSimpleCall=*/true); 1138 } 1139 ThenBB = createBasicBlock(".omp.lastprivate.then"); 1140 DoneBB = createBasicBlock(".omp.lastprivate.done"); 1141 Builder.CreateCondBr(IsLastIterCond, ThenBB, DoneBB); 1142 EmitBlock(ThenBB); 1143 } 1144 llvm::DenseSet<const VarDecl *> AlreadyEmittedVars; 1145 llvm::DenseMap<const VarDecl *, const Expr *> LoopCountersAndUpdates; 1146 if (const auto *LoopDirective = dyn_cast<OMPLoopDirective>(&D)) { 1147 auto IC = LoopDirective->counters().begin(); 1148 for (const Expr *F : LoopDirective->finals()) { 1149 const auto *D = 1150 cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl())->getCanonicalDecl(); 1151 if (NoFinals) 1152 AlreadyEmittedVars.insert(D); 1153 else 1154 LoopCountersAndUpdates[D] = F; 1155 ++IC; 1156 } 1157 } 1158 for (const auto *C : D.getClausesOfKind<OMPLastprivateClause>()) { 1159 auto IRef = C->varlist_begin(); 1160 auto ISrcRef = C->source_exprs().begin(); 1161 auto IDestRef = C->destination_exprs().begin(); 1162 for (const Expr *AssignOp : C->assignment_ops()) { 1163 const auto *PrivateVD = 1164 cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 1165 QualType Type = PrivateVD->getType(); 1166 const auto *CanonicalVD = PrivateVD->getCanonicalDecl(); 1167 if (AlreadyEmittedVars.insert(CanonicalVD).second) { 1168 // If lastprivate variable is a loop control variable for loop-based 1169 // directive, update its value before copyin back to original 1170 // variable. 1171 if (const Expr *FinalExpr = LoopCountersAndUpdates.lookup(CanonicalVD)) 1172 EmitIgnoredExpr(FinalExpr); 1173 const auto *SrcVD = 1174 cast<VarDecl>(cast<DeclRefExpr>(*ISrcRef)->getDecl()); 1175 const auto *DestVD = 1176 cast<VarDecl>(cast<DeclRefExpr>(*IDestRef)->getDecl()); 1177 // Get the address of the private variable. 1178 Address PrivateAddr = GetAddrOfLocalVar(PrivateVD); 1179 if (const auto *RefTy = PrivateVD->getType()->getAs<ReferenceType>()) 1180 PrivateAddr = 1181 Address(Builder.CreateLoad(PrivateAddr), 1182 CGM.getNaturalTypeAlignment(RefTy->getPointeeType())); 1183 // Store the last value to the private copy in the last iteration. 1184 if (C->getKind() == OMPC_LASTPRIVATE_conditional) 1185 CGM.getOpenMPRuntime().emitLastprivateConditionalFinalUpdate( 1186 *this, MakeAddrLValue(PrivateAddr, (*IRef)->getType()), PrivateVD, 1187 (*IRef)->getExprLoc()); 1188 // Get the address of the original variable. 1189 Address OriginalAddr = GetAddrOfLocalVar(DestVD); 1190 EmitOMPCopy(Type, OriginalAddr, PrivateAddr, DestVD, SrcVD, AssignOp); 1191 } 1192 ++IRef; 1193 ++ISrcRef; 1194 ++IDestRef; 1195 } 1196 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 1197 EmitIgnoredExpr(PostUpdate); 1198 } 1199 if (IsLastIterCond) 1200 EmitBlock(DoneBB, /*IsFinished=*/true); 1201 } 1202 1203 void CodeGenFunction::EmitOMPReductionClauseInit( 1204 const OMPExecutableDirective &D, 1205 CodeGenFunction::OMPPrivateScope &PrivateScope, bool ForInscan) { 1206 if (!HaveInsertPoint()) 1207 return; 1208 SmallVector<const Expr *, 4> Shareds; 1209 SmallVector<const Expr *, 4> Privates; 1210 SmallVector<const Expr *, 4> ReductionOps; 1211 SmallVector<const Expr *, 4> LHSs; 1212 SmallVector<const Expr *, 4> RHSs; 1213 OMPTaskDataTy Data; 1214 SmallVector<const Expr *, 4> TaskLHSs; 1215 SmallVector<const Expr *, 4> TaskRHSs; 1216 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1217 if (ForInscan != (C->getModifier() == OMPC_REDUCTION_inscan)) 1218 continue; 1219 Shareds.append(C->varlist_begin(), C->varlist_end()); 1220 Privates.append(C->privates().begin(), C->privates().end()); 1221 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1222 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1223 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1224 if (C->getModifier() == OMPC_REDUCTION_task) { 1225 Data.ReductionVars.append(C->privates().begin(), C->privates().end()); 1226 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 1227 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 1228 Data.ReductionOps.append(C->reduction_ops().begin(), 1229 C->reduction_ops().end()); 1230 TaskLHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1231 TaskRHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1232 } 1233 } 1234 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 1235 unsigned Count = 0; 1236 auto *ILHS = LHSs.begin(); 1237 auto *IRHS = RHSs.begin(); 1238 auto *IPriv = Privates.begin(); 1239 for (const Expr *IRef : Shareds) { 1240 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*IPriv)->getDecl()); 1241 // Emit private VarDecl with reduction init. 1242 RedCG.emitSharedOrigLValue(*this, Count); 1243 RedCG.emitAggregateType(*this, Count); 1244 AutoVarEmission Emission = EmitAutoVarAlloca(*PrivateVD); 1245 RedCG.emitInitialization(*this, Count, Emission.getAllocatedAddress(), 1246 RedCG.getSharedLValue(Count), 1247 [&Emission](CodeGenFunction &CGF) { 1248 CGF.EmitAutoVarInit(Emission); 1249 return true; 1250 }); 1251 EmitAutoVarCleanups(Emission); 1252 Address BaseAddr = RedCG.adjustPrivateAddress( 1253 *this, Count, Emission.getAllocatedAddress()); 1254 bool IsRegistered = PrivateScope.addPrivate( 1255 RedCG.getBaseDecl(Count), [BaseAddr]() { return BaseAddr; }); 1256 assert(IsRegistered && "private var already registered as private"); 1257 // Silence the warning about unused variable. 1258 (void)IsRegistered; 1259 1260 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 1261 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 1262 QualType Type = PrivateVD->getType(); 1263 bool isaOMPArraySectionExpr = isa<OMPArraySectionExpr>(IRef); 1264 if (isaOMPArraySectionExpr && Type->isVariablyModifiedType()) { 1265 // Store the address of the original variable associated with the LHS 1266 // implicit variable. 1267 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1268 return RedCG.getSharedLValue(Count).getAddress(*this); 1269 }); 1270 PrivateScope.addPrivate( 1271 RHSVD, [this, PrivateVD]() { return GetAddrOfLocalVar(PrivateVD); }); 1272 } else if ((isaOMPArraySectionExpr && Type->isScalarType()) || 1273 isa<ArraySubscriptExpr>(IRef)) { 1274 // Store the address of the original variable associated with the LHS 1275 // implicit variable. 1276 PrivateScope.addPrivate(LHSVD, [&RedCG, Count, this]() { 1277 return RedCG.getSharedLValue(Count).getAddress(*this); 1278 }); 1279 PrivateScope.addPrivate(RHSVD, [this, PrivateVD, RHSVD]() { 1280 return Builder.CreateElementBitCast(GetAddrOfLocalVar(PrivateVD), 1281 ConvertTypeForMem(RHSVD->getType()), 1282 "rhs.begin"); 1283 }); 1284 } else { 1285 QualType Type = PrivateVD->getType(); 1286 bool IsArray = getContext().getAsArrayType(Type) != nullptr; 1287 Address OriginalAddr = RedCG.getSharedLValue(Count).getAddress(*this); 1288 // Store the address of the original variable associated with the LHS 1289 // implicit variable. 1290 if (IsArray) { 1291 OriginalAddr = Builder.CreateElementBitCast( 1292 OriginalAddr, ConvertTypeForMem(LHSVD->getType()), "lhs.begin"); 1293 } 1294 PrivateScope.addPrivate(LHSVD, [OriginalAddr]() { return OriginalAddr; }); 1295 PrivateScope.addPrivate( 1296 RHSVD, [this, PrivateVD, RHSVD, IsArray]() { 1297 return IsArray 1298 ? Builder.CreateElementBitCast( 1299 GetAddrOfLocalVar(PrivateVD), 1300 ConvertTypeForMem(RHSVD->getType()), "rhs.begin") 1301 : GetAddrOfLocalVar(PrivateVD); 1302 }); 1303 } 1304 ++ILHS; 1305 ++IRHS; 1306 ++IPriv; 1307 ++Count; 1308 } 1309 if (!Data.ReductionVars.empty()) { 1310 Data.IsReductionWithTaskMod = true; 1311 Data.IsWorksharingReduction = 1312 isOpenMPWorksharingDirective(D.getDirectiveKind()); 1313 llvm::Value *ReductionDesc = CGM.getOpenMPRuntime().emitTaskReductionInit( 1314 *this, D.getBeginLoc(), TaskLHSs, TaskRHSs, Data); 1315 const Expr *TaskRedRef = nullptr; 1316 switch (D.getDirectiveKind()) { 1317 case OMPD_parallel: 1318 TaskRedRef = cast<OMPParallelDirective>(D).getTaskReductionRefExpr(); 1319 break; 1320 case OMPD_for: 1321 TaskRedRef = cast<OMPForDirective>(D).getTaskReductionRefExpr(); 1322 break; 1323 case OMPD_sections: 1324 TaskRedRef = cast<OMPSectionsDirective>(D).getTaskReductionRefExpr(); 1325 break; 1326 case OMPD_parallel_for: 1327 TaskRedRef = cast<OMPParallelForDirective>(D).getTaskReductionRefExpr(); 1328 break; 1329 case OMPD_parallel_master: 1330 TaskRedRef = 1331 cast<OMPParallelMasterDirective>(D).getTaskReductionRefExpr(); 1332 break; 1333 case OMPD_parallel_sections: 1334 TaskRedRef = 1335 cast<OMPParallelSectionsDirective>(D).getTaskReductionRefExpr(); 1336 break; 1337 case OMPD_target_parallel: 1338 TaskRedRef = 1339 cast<OMPTargetParallelDirective>(D).getTaskReductionRefExpr(); 1340 break; 1341 case OMPD_target_parallel_for: 1342 TaskRedRef = 1343 cast<OMPTargetParallelForDirective>(D).getTaskReductionRefExpr(); 1344 break; 1345 case OMPD_distribute_parallel_for: 1346 TaskRedRef = 1347 cast<OMPDistributeParallelForDirective>(D).getTaskReductionRefExpr(); 1348 break; 1349 case OMPD_teams_distribute_parallel_for: 1350 TaskRedRef = cast<OMPTeamsDistributeParallelForDirective>(D) 1351 .getTaskReductionRefExpr(); 1352 break; 1353 case OMPD_target_teams_distribute_parallel_for: 1354 TaskRedRef = cast<OMPTargetTeamsDistributeParallelForDirective>(D) 1355 .getTaskReductionRefExpr(); 1356 break; 1357 case OMPD_simd: 1358 case OMPD_for_simd: 1359 case OMPD_section: 1360 case OMPD_single: 1361 case OMPD_master: 1362 case OMPD_critical: 1363 case OMPD_parallel_for_simd: 1364 case OMPD_task: 1365 case OMPD_taskyield: 1366 case OMPD_barrier: 1367 case OMPD_taskwait: 1368 case OMPD_taskgroup: 1369 case OMPD_flush: 1370 case OMPD_depobj: 1371 case OMPD_scan: 1372 case OMPD_ordered: 1373 case OMPD_atomic: 1374 case OMPD_teams: 1375 case OMPD_target: 1376 case OMPD_cancellation_point: 1377 case OMPD_cancel: 1378 case OMPD_target_data: 1379 case OMPD_target_enter_data: 1380 case OMPD_target_exit_data: 1381 case OMPD_taskloop: 1382 case OMPD_taskloop_simd: 1383 case OMPD_master_taskloop: 1384 case OMPD_master_taskloop_simd: 1385 case OMPD_parallel_master_taskloop: 1386 case OMPD_parallel_master_taskloop_simd: 1387 case OMPD_distribute: 1388 case OMPD_target_update: 1389 case OMPD_distribute_parallel_for_simd: 1390 case OMPD_distribute_simd: 1391 case OMPD_target_parallel_for_simd: 1392 case OMPD_target_simd: 1393 case OMPD_teams_distribute: 1394 case OMPD_teams_distribute_simd: 1395 case OMPD_teams_distribute_parallel_for_simd: 1396 case OMPD_target_teams: 1397 case OMPD_target_teams_distribute: 1398 case OMPD_target_teams_distribute_parallel_for_simd: 1399 case OMPD_target_teams_distribute_simd: 1400 case OMPD_declare_target: 1401 case OMPD_end_declare_target: 1402 case OMPD_threadprivate: 1403 case OMPD_allocate: 1404 case OMPD_declare_reduction: 1405 case OMPD_declare_mapper: 1406 case OMPD_declare_simd: 1407 case OMPD_requires: 1408 case OMPD_declare_variant: 1409 case OMPD_begin_declare_variant: 1410 case OMPD_end_declare_variant: 1411 case OMPD_unknown: 1412 default: 1413 llvm_unreachable("Enexpected directive with task reductions."); 1414 } 1415 1416 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(TaskRedRef)->getDecl()); 1417 EmitVarDecl(*VD); 1418 EmitStoreOfScalar(ReductionDesc, GetAddrOfLocalVar(VD), 1419 /*Volatile=*/false, TaskRedRef->getType()); 1420 } 1421 } 1422 1423 void CodeGenFunction::EmitOMPReductionClauseFinal( 1424 const OMPExecutableDirective &D, const OpenMPDirectiveKind ReductionKind) { 1425 if (!HaveInsertPoint()) 1426 return; 1427 llvm::SmallVector<const Expr *, 8> Privates; 1428 llvm::SmallVector<const Expr *, 8> LHSExprs; 1429 llvm::SmallVector<const Expr *, 8> RHSExprs; 1430 llvm::SmallVector<const Expr *, 8> ReductionOps; 1431 bool HasAtLeastOneReduction = false; 1432 bool IsReductionWithTaskMod = false; 1433 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1434 // Do not emit for inscan reductions. 1435 if (C->getModifier() == OMPC_REDUCTION_inscan) 1436 continue; 1437 HasAtLeastOneReduction = true; 1438 Privates.append(C->privates().begin(), C->privates().end()); 1439 LHSExprs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 1440 RHSExprs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 1441 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 1442 IsReductionWithTaskMod = 1443 IsReductionWithTaskMod || C->getModifier() == OMPC_REDUCTION_task; 1444 } 1445 if (HasAtLeastOneReduction) { 1446 if (IsReductionWithTaskMod) { 1447 CGM.getOpenMPRuntime().emitTaskReductionFini( 1448 *this, D.getBeginLoc(), 1449 isOpenMPWorksharingDirective(D.getDirectiveKind())); 1450 } 1451 bool WithNowait = D.getSingleClause<OMPNowaitClause>() || 1452 isOpenMPParallelDirective(D.getDirectiveKind()) || 1453 ReductionKind == OMPD_simd; 1454 bool SimpleReduction = ReductionKind == OMPD_simd; 1455 // Emit nowait reduction if nowait clause is present or directive is a 1456 // parallel directive (it always has implicit barrier). 1457 CGM.getOpenMPRuntime().emitReduction( 1458 *this, D.getEndLoc(), Privates, LHSExprs, RHSExprs, ReductionOps, 1459 {WithNowait, SimpleReduction, ReductionKind}); 1460 } 1461 } 1462 1463 static void emitPostUpdateForReductionClause( 1464 CodeGenFunction &CGF, const OMPExecutableDirective &D, 1465 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 1466 if (!CGF.HaveInsertPoint()) 1467 return; 1468 llvm::BasicBlock *DoneBB = nullptr; 1469 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1470 if (const Expr *PostUpdate = C->getPostUpdateExpr()) { 1471 if (!DoneBB) { 1472 if (llvm::Value *Cond = CondGen(CGF)) { 1473 // If the first post-update expression is found, emit conditional 1474 // block if it was requested. 1475 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.pu"); 1476 DoneBB = CGF.createBasicBlock(".omp.reduction.pu.done"); 1477 CGF.Builder.CreateCondBr(Cond, ThenBB, DoneBB); 1478 CGF.EmitBlock(ThenBB); 1479 } 1480 } 1481 CGF.EmitIgnoredExpr(PostUpdate); 1482 } 1483 } 1484 if (DoneBB) 1485 CGF.EmitBlock(DoneBB, /*IsFinished=*/true); 1486 } 1487 1488 namespace { 1489 /// Codegen lambda for appending distribute lower and upper bounds to outlined 1490 /// parallel function. This is necessary for combined constructs such as 1491 /// 'distribute parallel for' 1492 typedef llvm::function_ref<void(CodeGenFunction &, 1493 const OMPExecutableDirective &, 1494 llvm::SmallVectorImpl<llvm::Value *> &)> 1495 CodeGenBoundParametersTy; 1496 } // anonymous namespace 1497 1498 static void 1499 checkForLastprivateConditionalUpdate(CodeGenFunction &CGF, 1500 const OMPExecutableDirective &S) { 1501 if (CGF.getLangOpts().OpenMP < 50) 1502 return; 1503 llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> PrivateDecls; 1504 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 1505 for (const Expr *Ref : C->varlists()) { 1506 if (!Ref->getType()->isScalarType()) 1507 continue; 1508 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1509 if (!DRE) 1510 continue; 1511 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1512 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1513 } 1514 } 1515 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 1516 for (const Expr *Ref : C->varlists()) { 1517 if (!Ref->getType()->isScalarType()) 1518 continue; 1519 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1520 if (!DRE) 1521 continue; 1522 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1523 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1524 } 1525 } 1526 for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) { 1527 for (const Expr *Ref : C->varlists()) { 1528 if (!Ref->getType()->isScalarType()) 1529 continue; 1530 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1531 if (!DRE) 1532 continue; 1533 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1534 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, Ref); 1535 } 1536 } 1537 // Privates should ne analyzed since they are not captured at all. 1538 // Task reductions may be skipped - tasks are ignored. 1539 // Firstprivates do not return value but may be passed by reference - no need 1540 // to check for updated lastprivate conditional. 1541 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 1542 for (const Expr *Ref : C->varlists()) { 1543 if (!Ref->getType()->isScalarType()) 1544 continue; 1545 const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 1546 if (!DRE) 1547 continue; 1548 PrivateDecls.insert(cast<VarDecl>(DRE->getDecl())); 1549 } 1550 } 1551 CGF.CGM.getOpenMPRuntime().checkAndEmitSharedLastprivateConditional( 1552 CGF, S, PrivateDecls); 1553 } 1554 1555 static void emitCommonOMPParallelDirective( 1556 CodeGenFunction &CGF, const OMPExecutableDirective &S, 1557 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, 1558 const CodeGenBoundParametersTy &CodeGenBoundParameters) { 1559 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1560 llvm::Function *OutlinedFn = 1561 CGF.CGM.getOpenMPRuntime().emitParallelOutlinedFunction( 1562 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 1563 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) { 1564 CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); 1565 llvm::Value *NumThreads = 1566 CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(), 1567 /*IgnoreResultAssign=*/true); 1568 CGF.CGM.getOpenMPRuntime().emitNumThreadsClause( 1569 CGF, NumThreads, NumThreadsClause->getBeginLoc()); 1570 } 1571 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) { 1572 CodeGenFunction::RunCleanupsScope ProcBindScope(CGF); 1573 CGF.CGM.getOpenMPRuntime().emitProcBindClause( 1574 CGF, ProcBindClause->getProcBindKind(), ProcBindClause->getBeginLoc()); 1575 } 1576 const Expr *IfCond = nullptr; 1577 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 1578 if (C->getNameModifier() == OMPD_unknown || 1579 C->getNameModifier() == OMPD_parallel) { 1580 IfCond = C->getCondition(); 1581 break; 1582 } 1583 } 1584 1585 OMPParallelScope Scope(CGF, S); 1586 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 1587 // Combining 'distribute' with 'for' requires sharing each 'distribute' chunk 1588 // lower and upper bounds with the pragma 'for' chunking mechanism. 1589 // The following lambda takes care of appending the lower and upper bound 1590 // parameters when necessary 1591 CodeGenBoundParameters(CGF, S, CapturedVars); 1592 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 1593 CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getBeginLoc(), OutlinedFn, 1594 CapturedVars, IfCond); 1595 } 1596 1597 static bool isAllocatableDecl(const VarDecl *VD) { 1598 const VarDecl *CVD = VD->getCanonicalDecl(); 1599 if (!CVD->hasAttr<OMPAllocateDeclAttr>()) 1600 return false; 1601 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1602 // Use the default allocation. 1603 return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc || 1604 AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) && 1605 !AA->getAllocator()); 1606 } 1607 1608 static void emitEmptyBoundParameters(CodeGenFunction &, 1609 const OMPExecutableDirective &, 1610 llvm::SmallVectorImpl<llvm::Value *> &) {} 1611 1612 Address CodeGenFunction::OMPBuilderCBHelpers::getAddressOfLocalVariable( 1613 CodeGenFunction &CGF, const VarDecl *VD) { 1614 CodeGenModule &CGM = CGF.CGM; 1615 auto &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1616 1617 if (!VD) 1618 return Address::invalid(); 1619 const VarDecl *CVD = VD->getCanonicalDecl(); 1620 if (!isAllocatableDecl(CVD)) 1621 return Address::invalid(); 1622 llvm::Value *Size; 1623 CharUnits Align = CGM.getContext().getDeclAlign(CVD); 1624 if (CVD->getType()->isVariablyModifiedType()) { 1625 Size = CGF.getTypeSize(CVD->getType()); 1626 // Align the size: ((size + align - 1) / align) * align 1627 Size = CGF.Builder.CreateNUWAdd( 1628 Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); 1629 Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); 1630 Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); 1631 } else { 1632 CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); 1633 Size = CGM.getSize(Sz.alignTo(Align)); 1634 } 1635 1636 const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); 1637 assert(AA->getAllocator() && 1638 "Expected allocator expression for non-default allocator."); 1639 llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); 1640 // According to the standard, the original allocator type is a enum (integer). 1641 // Convert to pointer type, if required. 1642 if (Allocator->getType()->isIntegerTy()) 1643 Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); 1644 else if (Allocator->getType()->isPointerTy()) 1645 Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, 1646 CGM.VoidPtrTy); 1647 1648 llvm::Value *Addr = OMPBuilder.createOMPAlloc( 1649 CGF.Builder, Size, Allocator, 1650 getNameWithSeparators({CVD->getName(), ".void.addr"}, ".", ".")); 1651 llvm::CallInst *FreeCI = 1652 OMPBuilder.createOMPFree(CGF.Builder, Addr, Allocator); 1653 1654 CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FreeCI); 1655 Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1656 Addr, 1657 CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), 1658 getNameWithSeparators({CVD->getName(), ".addr"}, ".", ".")); 1659 return Address(Addr, Align); 1660 } 1661 1662 Address CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 1663 CodeGenFunction &CGF, const VarDecl *VD, Address VDAddr, 1664 SourceLocation Loc) { 1665 CodeGenModule &CGM = CGF.CGM; 1666 if (CGM.getLangOpts().OpenMPUseTLS && 1667 CGM.getContext().getTargetInfo().isTLSSupported()) 1668 return VDAddr; 1669 1670 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1671 1672 llvm::Type *VarTy = VDAddr.getElementType(); 1673 llvm::Value *Data = 1674 CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.Int8PtrTy); 1675 llvm::ConstantInt *Size = CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)); 1676 std::string Suffix = getNameWithSeparators({"cache", ""}); 1677 llvm::Twine CacheName = Twine(CGM.getMangledName(VD)).concat(Suffix); 1678 1679 llvm::CallInst *ThreadPrivateCacheCall = 1680 OMPBuilder.createCachedThreadPrivate(CGF.Builder, Data, Size, CacheName); 1681 1682 return Address(ThreadPrivateCacheCall, VDAddr.getAlignment()); 1683 } 1684 1685 std::string CodeGenFunction::OMPBuilderCBHelpers::getNameWithSeparators( 1686 ArrayRef<StringRef> Parts, StringRef FirstSeparator, StringRef Separator) { 1687 SmallString<128> Buffer; 1688 llvm::raw_svector_ostream OS(Buffer); 1689 StringRef Sep = FirstSeparator; 1690 for (StringRef Part : Parts) { 1691 OS << Sep << Part; 1692 Sep = Separator; 1693 } 1694 return OS.str().str(); 1695 } 1696 void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) { 1697 if (CGM.getLangOpts().OpenMPIRBuilder) { 1698 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 1699 // Check if we have any if clause associated with the directive. 1700 llvm::Value *IfCond = nullptr; 1701 if (const auto *C = S.getSingleClause<OMPIfClause>()) 1702 IfCond = EmitScalarExpr(C->getCondition(), 1703 /*IgnoreResultAssign=*/true); 1704 1705 llvm::Value *NumThreads = nullptr; 1706 if (const auto *NumThreadsClause = S.getSingleClause<OMPNumThreadsClause>()) 1707 NumThreads = EmitScalarExpr(NumThreadsClause->getNumThreads(), 1708 /*IgnoreResultAssign=*/true); 1709 1710 ProcBindKind ProcBind = OMP_PROC_BIND_default; 1711 if (const auto *ProcBindClause = S.getSingleClause<OMPProcBindClause>()) 1712 ProcBind = ProcBindClause->getProcBindKind(); 1713 1714 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 1715 1716 // The cleanup callback that finalizes all variabels at the given location, 1717 // thus calls destructors etc. 1718 auto FiniCB = [this](InsertPointTy IP) { 1719 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 1720 }; 1721 1722 // Privatization callback that performs appropriate action for 1723 // shared/private/firstprivate/lastprivate/copyin/... variables. 1724 // 1725 // TODO: This defaults to shared right now. 1726 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1727 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 1728 // The next line is appropriate only for variables (Val) with the 1729 // data-sharing attribute "shared". 1730 ReplVal = &Val; 1731 1732 return CodeGenIP; 1733 }; 1734 1735 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 1736 const Stmt *ParallelRegionBodyStmt = CS->getCapturedStmt(); 1737 1738 auto BodyGenCB = [ParallelRegionBodyStmt, 1739 this](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 1740 llvm::BasicBlock &ContinuationBB) { 1741 OMPBuilderCBHelpers::OutlinedRegionBodyRAII ORB(*this, AllocaIP, 1742 ContinuationBB); 1743 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, ParallelRegionBodyStmt, 1744 CodeGenIP, ContinuationBB); 1745 }; 1746 1747 CGCapturedStmtInfo CGSI(*CS, CR_OpenMP); 1748 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 1749 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 1750 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 1751 Builder.restoreIP( 1752 OMPBuilder.createParallel(Builder, AllocaIP, BodyGenCB, PrivCB, FiniCB, 1753 IfCond, NumThreads, ProcBind, S.hasCancel())); 1754 return; 1755 } 1756 1757 // Emit parallel region as a standalone region. 1758 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 1759 Action.Enter(CGF); 1760 OMPPrivateScope PrivateScope(CGF); 1761 bool Copyins = CGF.EmitOMPCopyinClause(S); 1762 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 1763 if (Copyins) { 1764 // Emit implicit barrier to synchronize threads and avoid data races on 1765 // propagation master's thread values of threadprivate variables to local 1766 // instances of that variables of all other implicit threads. 1767 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 1768 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 1769 /*ForceSimpleCall=*/true); 1770 } 1771 CGF.EmitOMPPrivateClause(S, PrivateScope); 1772 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 1773 (void)PrivateScope.Privatize(); 1774 CGF.EmitStmt(S.getCapturedStmt(OMPD_parallel)->getCapturedStmt()); 1775 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 1776 }; 1777 { 1778 auto LPCRegion = 1779 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 1780 emitCommonOMPParallelDirective(*this, S, OMPD_parallel, CodeGen, 1781 emitEmptyBoundParameters); 1782 emitPostUpdateForReductionClause(*this, S, 1783 [](CodeGenFunction &) { return nullptr; }); 1784 } 1785 // Check for outer lastprivate conditional update. 1786 checkForLastprivateConditionalUpdate(*this, S); 1787 } 1788 1789 namespace { 1790 /// RAII to handle scopes for loop transformation directives. 1791 class OMPTransformDirectiveScopeRAII { 1792 OMPLoopScope *Scope = nullptr; 1793 CodeGenFunction::CGCapturedStmtInfo *CGSI = nullptr; 1794 CodeGenFunction::CGCapturedStmtRAII *CapInfoRAII = nullptr; 1795 1796 public: 1797 OMPTransformDirectiveScopeRAII(CodeGenFunction &CGF, const Stmt *S) { 1798 if (const auto *Dir = dyn_cast<OMPLoopBasedDirective>(S)) { 1799 Scope = new OMPLoopScope(CGF, *Dir); 1800 CGSI = new CodeGenFunction::CGCapturedStmtInfo(CR_OpenMP); 1801 CapInfoRAII = new CodeGenFunction::CGCapturedStmtRAII(CGF, CGSI); 1802 } 1803 } 1804 ~OMPTransformDirectiveScopeRAII() { 1805 if (!Scope) 1806 return; 1807 delete CapInfoRAII; 1808 delete CGSI; 1809 delete Scope; 1810 } 1811 }; 1812 } // namespace 1813 1814 static void emitBody(CodeGenFunction &CGF, const Stmt *S, const Stmt *NextLoop, 1815 int MaxLevel, int Level = 0) { 1816 assert(Level < MaxLevel && "Too deep lookup during loop body codegen."); 1817 const Stmt *SimplifiedS = S->IgnoreContainers(); 1818 if (const auto *CS = dyn_cast<CompoundStmt>(SimplifiedS)) { 1819 PrettyStackTraceLoc CrashInfo( 1820 CGF.getContext().getSourceManager(), CS->getLBracLoc(), 1821 "LLVM IR generation of compound statement ('{}')"); 1822 1823 // Keep track of the current cleanup stack depth, including debug scopes. 1824 CodeGenFunction::LexicalScope Scope(CGF, S->getSourceRange()); 1825 for (const Stmt *CurStmt : CS->body()) 1826 emitBody(CGF, CurStmt, NextLoop, MaxLevel, Level); 1827 return; 1828 } 1829 if (SimplifiedS == NextLoop) { 1830 if (auto *Dir = dyn_cast<OMPTileDirective>(SimplifiedS)) 1831 SimplifiedS = Dir->getTransformedStmt(); 1832 if (auto *Dir = dyn_cast<OMPUnrollDirective>(SimplifiedS)) 1833 SimplifiedS = Dir->getTransformedStmt(); 1834 if (const auto *CanonLoop = dyn_cast<OMPCanonicalLoop>(SimplifiedS)) 1835 SimplifiedS = CanonLoop->getLoopStmt(); 1836 if (const auto *For = dyn_cast<ForStmt>(SimplifiedS)) { 1837 S = For->getBody(); 1838 } else { 1839 assert(isa<CXXForRangeStmt>(SimplifiedS) && 1840 "Expected canonical for loop or range-based for loop."); 1841 const auto *CXXFor = cast<CXXForRangeStmt>(SimplifiedS); 1842 CGF.EmitStmt(CXXFor->getLoopVarStmt()); 1843 S = CXXFor->getBody(); 1844 } 1845 if (Level + 1 < MaxLevel) { 1846 NextLoop = OMPLoopDirective::tryToFindNextInnerLoop( 1847 S, /*TryImperfectlyNestedLoops=*/true); 1848 emitBody(CGF, S, NextLoop, MaxLevel, Level + 1); 1849 return; 1850 } 1851 } 1852 CGF.EmitStmt(S); 1853 } 1854 1855 void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &D, 1856 JumpDest LoopExit) { 1857 RunCleanupsScope BodyScope(*this); 1858 // Update counters values on current iteration. 1859 for (const Expr *UE : D.updates()) 1860 EmitIgnoredExpr(UE); 1861 // Update the linear variables. 1862 // In distribute directives only loop counters may be marked as linear, no 1863 // need to generate the code for them. 1864 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1865 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 1866 for (const Expr *UE : C->updates()) 1867 EmitIgnoredExpr(UE); 1868 } 1869 } 1870 1871 // On a continue in the body, jump to the end. 1872 JumpDest Continue = getJumpDestInCurrentScope("omp.body.continue"); 1873 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1874 for (const Expr *E : D.finals_conditions()) { 1875 if (!E) 1876 continue; 1877 // Check that loop counter in non-rectangular nest fits into the iteration 1878 // space. 1879 llvm::BasicBlock *NextBB = createBasicBlock("omp.body.next"); 1880 EmitBranchOnBoolExpr(E, NextBB, Continue.getBlock(), 1881 getProfileCount(D.getBody())); 1882 EmitBlock(NextBB); 1883 } 1884 1885 OMPPrivateScope InscanScope(*this); 1886 EmitOMPReductionClauseInit(D, InscanScope, /*ForInscan=*/true); 1887 bool IsInscanRegion = InscanScope.Privatize(); 1888 if (IsInscanRegion) { 1889 // Need to remember the block before and after scan directive 1890 // to dispatch them correctly depending on the clause used in 1891 // this directive, inclusive or exclusive. For inclusive scan the natural 1892 // order of the blocks is used, for exclusive clause the blocks must be 1893 // executed in reverse order. 1894 OMPBeforeScanBlock = createBasicBlock("omp.before.scan.bb"); 1895 OMPAfterScanBlock = createBasicBlock("omp.after.scan.bb"); 1896 // No need to allocate inscan exit block, in simd mode it is selected in the 1897 // codegen for the scan directive. 1898 if (D.getDirectiveKind() != OMPD_simd && !getLangOpts().OpenMPSimd) 1899 OMPScanExitBlock = createBasicBlock("omp.exit.inscan.bb"); 1900 OMPScanDispatch = createBasicBlock("omp.inscan.dispatch"); 1901 EmitBranch(OMPScanDispatch); 1902 EmitBlock(OMPBeforeScanBlock); 1903 } 1904 1905 // Emit loop variables for C++ range loops. 1906 const Stmt *Body = 1907 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(); 1908 // Emit loop body. 1909 emitBody(*this, Body, 1910 OMPLoopBasedDirective::tryToFindNextInnerLoop( 1911 Body, /*TryImperfectlyNestedLoops=*/true), 1912 D.getLoopsNumber()); 1913 1914 // Jump to the dispatcher at the end of the loop body. 1915 if (IsInscanRegion) 1916 EmitBranch(OMPScanExitBlock); 1917 1918 // The end (updates/cleanups). 1919 EmitBlock(Continue.getBlock()); 1920 BreakContinueStack.pop_back(); 1921 } 1922 1923 using EmittedClosureTy = std::pair<llvm::Function *, llvm::Value *>; 1924 1925 /// Emit a captured statement and return the function as well as its captured 1926 /// closure context. 1927 static EmittedClosureTy emitCapturedStmtFunc(CodeGenFunction &ParentCGF, 1928 const CapturedStmt *S) { 1929 LValue CapStruct = ParentCGF.InitCapturedStruct(*S); 1930 CodeGenFunction CGF(ParentCGF.CGM, /*suppressNewContext=*/true); 1931 std::unique_ptr<CodeGenFunction::CGCapturedStmtInfo> CSI = 1932 std::make_unique<CodeGenFunction::CGCapturedStmtInfo>(*S); 1933 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, CSI.get()); 1934 llvm::Function *F = CGF.GenerateCapturedStmtFunction(*S); 1935 1936 return {F, CapStruct.getPointer(ParentCGF)}; 1937 } 1938 1939 /// Emit a call to a previously captured closure. 1940 static llvm::CallInst * 1941 emitCapturedStmtCall(CodeGenFunction &ParentCGF, EmittedClosureTy Cap, 1942 llvm::ArrayRef<llvm::Value *> Args) { 1943 // Append the closure context to the argument. 1944 SmallVector<llvm::Value *> EffectiveArgs; 1945 EffectiveArgs.reserve(Args.size() + 1); 1946 llvm::append_range(EffectiveArgs, Args); 1947 EffectiveArgs.push_back(Cap.second); 1948 1949 return ParentCGF.Builder.CreateCall(Cap.first, EffectiveArgs); 1950 } 1951 1952 llvm::CanonicalLoopInfo * 1953 CodeGenFunction::EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, int Depth) { 1954 assert(Depth == 1 && "Nested loops with OpenMPIRBuilder not yet implemented"); 1955 1956 EmitStmt(S); 1957 assert(OMPLoopNestStack.size() >= (size_t)Depth && "Found too few loops"); 1958 1959 // The last added loop is the outermost one. 1960 return OMPLoopNestStack.back(); 1961 } 1962 1963 void CodeGenFunction::EmitOMPCanonicalLoop(const OMPCanonicalLoop *S) { 1964 const Stmt *SyntacticalLoop = S->getLoopStmt(); 1965 if (!getLangOpts().OpenMPIRBuilder) { 1966 // Ignore if OpenMPIRBuilder is not enabled. 1967 EmitStmt(SyntacticalLoop); 1968 return; 1969 } 1970 1971 LexicalScope ForScope(*this, S->getSourceRange()); 1972 1973 // Emit init statements. The Distance/LoopVar funcs may reference variable 1974 // declarations they contain. 1975 const Stmt *BodyStmt; 1976 if (const auto *For = dyn_cast<ForStmt>(SyntacticalLoop)) { 1977 if (const Stmt *InitStmt = For->getInit()) 1978 EmitStmt(InitStmt); 1979 BodyStmt = For->getBody(); 1980 } else if (const auto *RangeFor = 1981 dyn_cast<CXXForRangeStmt>(SyntacticalLoop)) { 1982 if (const DeclStmt *RangeStmt = RangeFor->getRangeStmt()) 1983 EmitStmt(RangeStmt); 1984 if (const DeclStmt *BeginStmt = RangeFor->getBeginStmt()) 1985 EmitStmt(BeginStmt); 1986 if (const DeclStmt *EndStmt = RangeFor->getEndStmt()) 1987 EmitStmt(EndStmt); 1988 if (const DeclStmt *LoopVarStmt = RangeFor->getLoopVarStmt()) 1989 EmitStmt(LoopVarStmt); 1990 BodyStmt = RangeFor->getBody(); 1991 } else 1992 llvm_unreachable("Expected for-stmt or range-based for-stmt"); 1993 1994 // Emit closure for later use. By-value captures will be captured here. 1995 const CapturedStmt *DistanceFunc = S->getDistanceFunc(); 1996 EmittedClosureTy DistanceClosure = emitCapturedStmtFunc(*this, DistanceFunc); 1997 const CapturedStmt *LoopVarFunc = S->getLoopVarFunc(); 1998 EmittedClosureTy LoopVarClosure = emitCapturedStmtFunc(*this, LoopVarFunc); 1999 2000 // Call the distance function to get the number of iterations of the loop to 2001 // come. 2002 QualType LogicalTy = DistanceFunc->getCapturedDecl() 2003 ->getParam(0) 2004 ->getType() 2005 .getNonReferenceType(); 2006 Address CountAddr = CreateMemTemp(LogicalTy, ".count.addr"); 2007 emitCapturedStmtCall(*this, DistanceClosure, {CountAddr.getPointer()}); 2008 llvm::Value *DistVal = Builder.CreateLoad(CountAddr, ".count"); 2009 2010 // Emit the loop structure. 2011 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 2012 auto BodyGen = [&, this](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP, 2013 llvm::Value *IndVar) { 2014 Builder.restoreIP(CodeGenIP); 2015 2016 // Emit the loop body: Convert the logical iteration number to the loop 2017 // variable and emit the body. 2018 const DeclRefExpr *LoopVarRef = S->getLoopVarRef(); 2019 LValue LCVal = EmitLValue(LoopVarRef); 2020 Address LoopVarAddress = LCVal.getAddress(*this); 2021 emitCapturedStmtCall(*this, LoopVarClosure, 2022 {LoopVarAddress.getPointer(), IndVar}); 2023 2024 RunCleanupsScope BodyScope(*this); 2025 EmitStmt(BodyStmt); 2026 }; 2027 llvm::CanonicalLoopInfo *CL = 2028 OMPBuilder.createCanonicalLoop(Builder, BodyGen, DistVal); 2029 2030 // Finish up the loop. 2031 Builder.restoreIP(CL->getAfterIP()); 2032 ForScope.ForceCleanup(); 2033 2034 // Remember the CanonicalLoopInfo for parent AST nodes consuming it. 2035 OMPLoopNestStack.push_back(CL); 2036 } 2037 2038 void CodeGenFunction::EmitOMPInnerLoop( 2039 const OMPExecutableDirective &S, bool RequiresCleanup, const Expr *LoopCond, 2040 const Expr *IncExpr, 2041 const llvm::function_ref<void(CodeGenFunction &)> BodyGen, 2042 const llvm::function_ref<void(CodeGenFunction &)> PostIncGen) { 2043 auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end"); 2044 2045 // Start the loop with a block that tests the condition. 2046 auto CondBlock = createBasicBlock("omp.inner.for.cond"); 2047 EmitBlock(CondBlock); 2048 const SourceRange R = S.getSourceRange(); 2049 2050 // If attributes are attached, push to the basic block with them. 2051 const auto &OMPED = cast<OMPExecutableDirective>(S); 2052 const CapturedStmt *ICS = OMPED.getInnermostCapturedStmt(); 2053 const Stmt *SS = ICS->getCapturedStmt(); 2054 const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(SS); 2055 OMPLoopNestStack.clear(); 2056 if (AS) 2057 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), 2058 AS->getAttrs(), SourceLocToDebugLoc(R.getBegin()), 2059 SourceLocToDebugLoc(R.getEnd())); 2060 else 2061 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2062 SourceLocToDebugLoc(R.getEnd())); 2063 2064 // If there are any cleanups between here and the loop-exit scope, 2065 // create a block to stage a loop exit along. 2066 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2067 if (RequiresCleanup) 2068 ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup"); 2069 2070 llvm::BasicBlock *LoopBody = createBasicBlock("omp.inner.for.body"); 2071 2072 // Emit condition. 2073 EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, getProfileCount(&S)); 2074 if (ExitBlock != LoopExit.getBlock()) { 2075 EmitBlock(ExitBlock); 2076 EmitBranchThroughCleanup(LoopExit); 2077 } 2078 2079 EmitBlock(LoopBody); 2080 incrementProfileCounter(&S); 2081 2082 // Create a block for the increment. 2083 JumpDest Continue = getJumpDestInCurrentScope("omp.inner.for.inc"); 2084 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2085 2086 BodyGen(*this); 2087 2088 // Emit "IV = IV + 1" and a back-edge to the condition block. 2089 EmitBlock(Continue.getBlock()); 2090 EmitIgnoredExpr(IncExpr); 2091 PostIncGen(*this); 2092 BreakContinueStack.pop_back(); 2093 EmitBranch(CondBlock); 2094 LoopStack.pop(); 2095 // Emit the fall-through block. 2096 EmitBlock(LoopExit.getBlock()); 2097 } 2098 2099 bool CodeGenFunction::EmitOMPLinearClauseInit(const OMPLoopDirective &D) { 2100 if (!HaveInsertPoint()) 2101 return false; 2102 // Emit inits for the linear variables. 2103 bool HasLinears = false; 2104 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2105 for (const Expr *Init : C->inits()) { 2106 HasLinears = true; 2107 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl()); 2108 if (const auto *Ref = 2109 dyn_cast<DeclRefExpr>(VD->getInit()->IgnoreImpCasts())) { 2110 AutoVarEmission Emission = EmitAutoVarAlloca(*VD); 2111 const auto *OrigVD = cast<VarDecl>(Ref->getDecl()); 2112 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2113 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2114 VD->getInit()->getType(), VK_LValue, 2115 VD->getInit()->getExprLoc()); 2116 EmitExprAsInit(&DRE, VD, MakeAddrLValue(Emission.getAllocatedAddress(), 2117 VD->getType()), 2118 /*capturedByInit=*/false); 2119 EmitAutoVarCleanups(Emission); 2120 } else { 2121 EmitVarDecl(*VD); 2122 } 2123 } 2124 // Emit the linear steps for the linear clauses. 2125 // If a step is not constant, it is pre-calculated before the loop. 2126 if (const auto *CS = cast_or_null<BinaryOperator>(C->getCalcStep())) 2127 if (const auto *SaveRef = cast<DeclRefExpr>(CS->getLHS())) { 2128 EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl())); 2129 // Emit calculation of the linear step. 2130 EmitIgnoredExpr(CS); 2131 } 2132 } 2133 return HasLinears; 2134 } 2135 2136 void CodeGenFunction::EmitOMPLinearClauseFinal( 2137 const OMPLoopDirective &D, 2138 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2139 if (!HaveInsertPoint()) 2140 return; 2141 llvm::BasicBlock *DoneBB = nullptr; 2142 // Emit the final values of the linear variables. 2143 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2144 auto IC = C->varlist_begin(); 2145 for (const Expr *F : C->finals()) { 2146 if (!DoneBB) { 2147 if (llvm::Value *Cond = CondGen(*this)) { 2148 // If the first post-update expression is found, emit conditional 2149 // block if it was requested. 2150 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.linear.pu"); 2151 DoneBB = createBasicBlock(".omp.linear.pu.done"); 2152 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2153 EmitBlock(ThenBB); 2154 } 2155 } 2156 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IC)->getDecl()); 2157 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(OrigVD), 2158 CapturedStmtInfo->lookup(OrigVD) != nullptr, 2159 (*IC)->getType(), VK_LValue, (*IC)->getExprLoc()); 2160 Address OrigAddr = EmitLValue(&DRE).getAddress(*this); 2161 CodeGenFunction::OMPPrivateScope VarScope(*this); 2162 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2163 (void)VarScope.Privatize(); 2164 EmitIgnoredExpr(F); 2165 ++IC; 2166 } 2167 if (const Expr *PostUpdate = C->getPostUpdateExpr()) 2168 EmitIgnoredExpr(PostUpdate); 2169 } 2170 if (DoneBB) 2171 EmitBlock(DoneBB, /*IsFinished=*/true); 2172 } 2173 2174 static void emitAlignedClause(CodeGenFunction &CGF, 2175 const OMPExecutableDirective &D) { 2176 if (!CGF.HaveInsertPoint()) 2177 return; 2178 for (const auto *Clause : D.getClausesOfKind<OMPAlignedClause>()) { 2179 llvm::APInt ClauseAlignment(64, 0); 2180 if (const Expr *AlignmentExpr = Clause->getAlignment()) { 2181 auto *AlignmentCI = 2182 cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr)); 2183 ClauseAlignment = AlignmentCI->getValue(); 2184 } 2185 for (const Expr *E : Clause->varlists()) { 2186 llvm::APInt Alignment(ClauseAlignment); 2187 if (Alignment == 0) { 2188 // OpenMP [2.8.1, Description] 2189 // If no optional parameter is specified, implementation-defined default 2190 // alignments for SIMD instructions on the target platforms are assumed. 2191 Alignment = 2192 CGF.getContext() 2193 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2194 E->getType()->getPointeeType())) 2195 .getQuantity(); 2196 } 2197 assert((Alignment == 0 || Alignment.isPowerOf2()) && 2198 "alignment is not power of 2"); 2199 if (Alignment != 0) { 2200 llvm::Value *PtrValue = CGF.EmitScalarExpr(E); 2201 CGF.emitAlignmentAssumption( 2202 PtrValue, E, /*No second loc needed*/ SourceLocation(), 2203 llvm::ConstantInt::get(CGF.getLLVMContext(), Alignment)); 2204 } 2205 } 2206 } 2207 } 2208 2209 void CodeGenFunction::EmitOMPPrivateLoopCounters( 2210 const OMPLoopDirective &S, CodeGenFunction::OMPPrivateScope &LoopScope) { 2211 if (!HaveInsertPoint()) 2212 return; 2213 auto I = S.private_counters().begin(); 2214 for (const Expr *E : S.counters()) { 2215 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2216 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()); 2217 // Emit var without initialization. 2218 AutoVarEmission VarEmission = EmitAutoVarAlloca(*PrivateVD); 2219 EmitAutoVarCleanups(VarEmission); 2220 LocalDeclMap.erase(PrivateVD); 2221 (void)LoopScope.addPrivate(VD, [&VarEmission]() { 2222 return VarEmission.getAllocatedAddress(); 2223 }); 2224 if (LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD) || 2225 VD->hasGlobalStorage()) { 2226 (void)LoopScope.addPrivate(PrivateVD, [this, VD, E]() { 2227 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(VD), 2228 LocalDeclMap.count(VD) || CapturedStmtInfo->lookup(VD), 2229 E->getType(), VK_LValue, E->getExprLoc()); 2230 return EmitLValue(&DRE).getAddress(*this); 2231 }); 2232 } else { 2233 (void)LoopScope.addPrivate(PrivateVD, [&VarEmission]() { 2234 return VarEmission.getAllocatedAddress(); 2235 }); 2236 } 2237 ++I; 2238 } 2239 // Privatize extra loop counters used in loops for ordered(n) clauses. 2240 for (const auto *C : S.getClausesOfKind<OMPOrderedClause>()) { 2241 if (!C->getNumForLoops()) 2242 continue; 2243 for (unsigned I = S.getLoopsNumber(), E = C->getLoopNumIterations().size(); 2244 I < E; ++I) { 2245 const auto *DRE = cast<DeclRefExpr>(C->getLoopCounter(I)); 2246 const auto *VD = cast<VarDecl>(DRE->getDecl()); 2247 // Override only those variables that can be captured to avoid re-emission 2248 // of the variables declared within the loops. 2249 if (DRE->refersToEnclosingVariableOrCapture()) { 2250 (void)LoopScope.addPrivate(VD, [this, DRE, VD]() { 2251 return CreateMemTemp(DRE->getType(), VD->getName()); 2252 }); 2253 } 2254 } 2255 } 2256 } 2257 2258 static void emitPreCond(CodeGenFunction &CGF, const OMPLoopDirective &S, 2259 const Expr *Cond, llvm::BasicBlock *TrueBlock, 2260 llvm::BasicBlock *FalseBlock, uint64_t TrueCount) { 2261 if (!CGF.HaveInsertPoint()) 2262 return; 2263 { 2264 CodeGenFunction::OMPPrivateScope PreCondScope(CGF); 2265 CGF.EmitOMPPrivateLoopCounters(S, PreCondScope); 2266 (void)PreCondScope.Privatize(); 2267 // Get initial values of real counters. 2268 for (const Expr *I : S.inits()) { 2269 CGF.EmitIgnoredExpr(I); 2270 } 2271 } 2272 // Create temp loop control variables with their init values to support 2273 // non-rectangular loops. 2274 CodeGenFunction::OMPMapVars PreCondVars; 2275 for (const Expr * E: S.dependent_counters()) { 2276 if (!E) 2277 continue; 2278 assert(!E->getType().getNonReferenceType()->isRecordType() && 2279 "dependent counter must not be an iterator."); 2280 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2281 Address CounterAddr = 2282 CGF.CreateMemTemp(VD->getType().getNonReferenceType()); 2283 (void)PreCondVars.setVarAddr(CGF, VD, CounterAddr); 2284 } 2285 (void)PreCondVars.apply(CGF); 2286 for (const Expr *E : S.dependent_inits()) { 2287 if (!E) 2288 continue; 2289 CGF.EmitIgnoredExpr(E); 2290 } 2291 // Check that loop is executed at least one time. 2292 CGF.EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount); 2293 PreCondVars.restore(CGF); 2294 } 2295 2296 void CodeGenFunction::EmitOMPLinearClause( 2297 const OMPLoopDirective &D, CodeGenFunction::OMPPrivateScope &PrivateScope) { 2298 if (!HaveInsertPoint()) 2299 return; 2300 llvm::DenseSet<const VarDecl *> SIMDLCVs; 2301 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 2302 const auto *LoopDirective = cast<OMPLoopDirective>(&D); 2303 for (const Expr *C : LoopDirective->counters()) { 2304 SIMDLCVs.insert( 2305 cast<VarDecl>(cast<DeclRefExpr>(C)->getDecl())->getCanonicalDecl()); 2306 } 2307 } 2308 for (const auto *C : D.getClausesOfKind<OMPLinearClause>()) { 2309 auto CurPrivate = C->privates().begin(); 2310 for (const Expr *E : C->varlists()) { 2311 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 2312 const auto *PrivateVD = 2313 cast<VarDecl>(cast<DeclRefExpr>(*CurPrivate)->getDecl()); 2314 if (!SIMDLCVs.count(VD->getCanonicalDecl())) { 2315 bool IsRegistered = PrivateScope.addPrivate(VD, [this, PrivateVD]() { 2316 // Emit private VarDecl with copy init. 2317 EmitVarDecl(*PrivateVD); 2318 return GetAddrOfLocalVar(PrivateVD); 2319 }); 2320 assert(IsRegistered && "linear var already registered as private"); 2321 // Silence the warning about unused variable. 2322 (void)IsRegistered; 2323 } else { 2324 EmitVarDecl(*PrivateVD); 2325 } 2326 ++CurPrivate; 2327 } 2328 } 2329 } 2330 2331 static void emitSimdlenSafelenClause(CodeGenFunction &CGF, 2332 const OMPExecutableDirective &D) { 2333 if (!CGF.HaveInsertPoint()) 2334 return; 2335 if (const auto *C = D.getSingleClause<OMPSimdlenClause>()) { 2336 RValue Len = CGF.EmitAnyExpr(C->getSimdlen(), AggValueSlot::ignored(), 2337 /*ignoreResult=*/true); 2338 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2339 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2340 // In presence of finite 'safelen', it may be unsafe to mark all 2341 // the memory instructions parallel, because loop-carried 2342 // dependences of 'safelen' iterations are possible. 2343 CGF.LoopStack.setParallel(!D.getSingleClause<OMPSafelenClause>()); 2344 } else if (const auto *C = D.getSingleClause<OMPSafelenClause>()) { 2345 RValue Len = CGF.EmitAnyExpr(C->getSafelen(), AggValueSlot::ignored(), 2346 /*ignoreResult=*/true); 2347 auto *Val = cast<llvm::ConstantInt>(Len.getScalarVal()); 2348 CGF.LoopStack.setVectorizeWidth(Val->getZExtValue()); 2349 // In presence of finite 'safelen', it may be unsafe to mark all 2350 // the memory instructions parallel, because loop-carried 2351 // dependences of 'safelen' iterations are possible. 2352 CGF.LoopStack.setParallel(/*Enable=*/false); 2353 } 2354 } 2355 2356 void CodeGenFunction::EmitOMPSimdInit(const OMPLoopDirective &D) { 2357 // Walk clauses and process safelen/lastprivate. 2358 LoopStack.setParallel(/*Enable=*/true); 2359 LoopStack.setVectorizeEnable(); 2360 emitSimdlenSafelenClause(*this, D); 2361 if (const auto *C = D.getSingleClause<OMPOrderClause>()) 2362 if (C->getKind() == OMPC_ORDER_concurrent) 2363 LoopStack.setParallel(/*Enable=*/true); 2364 if ((D.getDirectiveKind() == OMPD_simd || 2365 (getLangOpts().OpenMPSimd && 2366 isOpenMPSimdDirective(D.getDirectiveKind()))) && 2367 llvm::any_of(D.getClausesOfKind<OMPReductionClause>(), 2368 [](const OMPReductionClause *C) { 2369 return C->getModifier() == OMPC_REDUCTION_inscan; 2370 })) 2371 // Disable parallel access in case of prefix sum. 2372 LoopStack.setParallel(/*Enable=*/false); 2373 } 2374 2375 void CodeGenFunction::EmitOMPSimdFinal( 2376 const OMPLoopDirective &D, 2377 const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen) { 2378 if (!HaveInsertPoint()) 2379 return; 2380 llvm::BasicBlock *DoneBB = nullptr; 2381 auto IC = D.counters().begin(); 2382 auto IPC = D.private_counters().begin(); 2383 for (const Expr *F : D.finals()) { 2384 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>((*IC))->getDecl()); 2385 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>((*IPC))->getDecl()); 2386 const auto *CED = dyn_cast<OMPCapturedExprDecl>(OrigVD); 2387 if (LocalDeclMap.count(OrigVD) || CapturedStmtInfo->lookup(OrigVD) || 2388 OrigVD->hasGlobalStorage() || CED) { 2389 if (!DoneBB) { 2390 if (llvm::Value *Cond = CondGen(*this)) { 2391 // If the first post-update expression is found, emit conditional 2392 // block if it was requested. 2393 llvm::BasicBlock *ThenBB = createBasicBlock(".omp.final.then"); 2394 DoneBB = createBasicBlock(".omp.final.done"); 2395 Builder.CreateCondBr(Cond, ThenBB, DoneBB); 2396 EmitBlock(ThenBB); 2397 } 2398 } 2399 Address OrigAddr = Address::invalid(); 2400 if (CED) { 2401 OrigAddr = 2402 EmitLValue(CED->getInit()->IgnoreImpCasts()).getAddress(*this); 2403 } else { 2404 DeclRefExpr DRE(getContext(), const_cast<VarDecl *>(PrivateVD), 2405 /*RefersToEnclosingVariableOrCapture=*/false, 2406 (*IPC)->getType(), VK_LValue, (*IPC)->getExprLoc()); 2407 OrigAddr = EmitLValue(&DRE).getAddress(*this); 2408 } 2409 OMPPrivateScope VarScope(*this); 2410 VarScope.addPrivate(OrigVD, [OrigAddr]() { return OrigAddr; }); 2411 (void)VarScope.Privatize(); 2412 EmitIgnoredExpr(F); 2413 } 2414 ++IC; 2415 ++IPC; 2416 } 2417 if (DoneBB) 2418 EmitBlock(DoneBB, /*IsFinished=*/true); 2419 } 2420 2421 static void emitOMPLoopBodyWithStopPoint(CodeGenFunction &CGF, 2422 const OMPLoopDirective &S, 2423 CodeGenFunction::JumpDest LoopExit) { 2424 CGF.EmitOMPLoopBody(S, LoopExit); 2425 CGF.EmitStopPoint(&S); 2426 } 2427 2428 /// Emit a helper variable and return corresponding lvalue. 2429 static LValue EmitOMPHelperVar(CodeGenFunction &CGF, 2430 const DeclRefExpr *Helper) { 2431 auto VDecl = cast<VarDecl>(Helper->getDecl()); 2432 CGF.EmitVarDecl(*VDecl); 2433 return CGF.EmitLValue(Helper); 2434 } 2435 2436 static void emitCommonSimdLoop(CodeGenFunction &CGF, const OMPLoopDirective &S, 2437 const RegionCodeGenTy &SimdInitGen, 2438 const RegionCodeGenTy &BodyCodeGen) { 2439 auto &&ThenGen = [&S, &SimdInitGen, &BodyCodeGen](CodeGenFunction &CGF, 2440 PrePostActionTy &) { 2441 CGOpenMPRuntime::NontemporalDeclsRAII NontemporalsRegion(CGF.CGM, S); 2442 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2443 SimdInitGen(CGF); 2444 2445 BodyCodeGen(CGF); 2446 }; 2447 auto &&ElseGen = [&BodyCodeGen](CodeGenFunction &CGF, PrePostActionTy &) { 2448 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 2449 CGF.LoopStack.setVectorizeEnable(/*Enable=*/false); 2450 2451 BodyCodeGen(CGF); 2452 }; 2453 const Expr *IfCond = nullptr; 2454 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 2455 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 2456 if (CGF.getLangOpts().OpenMP >= 50 && 2457 (C->getNameModifier() == OMPD_unknown || 2458 C->getNameModifier() == OMPD_simd)) { 2459 IfCond = C->getCondition(); 2460 break; 2461 } 2462 } 2463 } 2464 if (IfCond) { 2465 CGF.CGM.getOpenMPRuntime().emitIfClause(CGF, IfCond, ThenGen, ElseGen); 2466 } else { 2467 RegionCodeGenTy ThenRCG(ThenGen); 2468 ThenRCG(CGF); 2469 } 2470 } 2471 2472 static void emitOMPSimdRegion(CodeGenFunction &CGF, const OMPLoopDirective &S, 2473 PrePostActionTy &Action) { 2474 Action.Enter(CGF); 2475 assert(isOpenMPSimdDirective(S.getDirectiveKind()) && 2476 "Expected simd directive"); 2477 OMPLoopScope PreInitScope(CGF, S); 2478 // if (PreCond) { 2479 // for (IV in 0..LastIteration) BODY; 2480 // <Final counter/linear vars updates>; 2481 // } 2482 // 2483 if (isOpenMPDistributeDirective(S.getDirectiveKind()) || 2484 isOpenMPWorksharingDirective(S.getDirectiveKind()) || 2485 isOpenMPTaskLoopDirective(S.getDirectiveKind())) { 2486 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable())); 2487 (void)EmitOMPHelperVar(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable())); 2488 } 2489 2490 // Emit: if (PreCond) - begin. 2491 // If the condition constant folds and can be elided, avoid emitting the 2492 // whole loop. 2493 bool CondConstant; 2494 llvm::BasicBlock *ContBlock = nullptr; 2495 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 2496 if (!CondConstant) 2497 return; 2498 } else { 2499 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("simd.if.then"); 2500 ContBlock = CGF.createBasicBlock("simd.if.end"); 2501 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 2502 CGF.getProfileCount(&S)); 2503 CGF.EmitBlock(ThenBlock); 2504 CGF.incrementProfileCounter(&S); 2505 } 2506 2507 // Emit the loop iteration variable. 2508 const Expr *IVExpr = S.getIterationVariable(); 2509 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 2510 CGF.EmitVarDecl(*IVDecl); 2511 CGF.EmitIgnoredExpr(S.getInit()); 2512 2513 // Emit the iterations count variable. 2514 // If it is not a variable, Sema decided to calculate iterations count on 2515 // each iteration (e.g., it is foldable into a constant). 2516 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 2517 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 2518 // Emit calculation of the iterations count. 2519 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 2520 } 2521 2522 emitAlignedClause(CGF, S); 2523 (void)CGF.EmitOMPLinearClauseInit(S); 2524 { 2525 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 2526 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 2527 CGF.EmitOMPLinearClause(S, LoopScope); 2528 CGF.EmitOMPPrivateClause(S, LoopScope); 2529 CGF.EmitOMPReductionClauseInit(S, LoopScope); 2530 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 2531 CGF, S, CGF.EmitLValue(S.getIterationVariable())); 2532 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 2533 (void)LoopScope.Privatize(); 2534 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 2535 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 2536 2537 emitCommonSimdLoop( 2538 CGF, S, 2539 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 2540 CGF.EmitOMPSimdInit(S); 2541 }, 2542 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2543 CGF.EmitOMPInnerLoop( 2544 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 2545 [&S](CodeGenFunction &CGF) { 2546 emitOMPLoopBodyWithStopPoint(CGF, S, 2547 CodeGenFunction::JumpDest()); 2548 }, 2549 [](CodeGenFunction &) {}); 2550 }); 2551 CGF.EmitOMPSimdFinal(S, [](CodeGenFunction &) { return nullptr; }); 2552 // Emit final copy of the lastprivate variables at the end of loops. 2553 if (HasLastprivateClause) 2554 CGF.EmitOMPLastprivateClauseFinal(S, /*NoFinals=*/true); 2555 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_simd); 2556 emitPostUpdateForReductionClause(CGF, S, 2557 [](CodeGenFunction &) { return nullptr; }); 2558 } 2559 CGF.EmitOMPLinearClauseFinal(S, [](CodeGenFunction &) { return nullptr; }); 2560 // Emit: if (PreCond) - end. 2561 if (ContBlock) { 2562 CGF.EmitBranch(ContBlock); 2563 CGF.EmitBlock(ContBlock, true); 2564 } 2565 } 2566 2567 void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) { 2568 ParentLoopDirectiveForScanRegion ScanRegion(*this, S); 2569 OMPFirstScanLoop = true; 2570 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 2571 emitOMPSimdRegion(CGF, S, Action); 2572 }; 2573 { 2574 auto LPCRegion = 2575 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 2576 OMPLexicalScope Scope(*this, S, OMPD_unknown); 2577 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 2578 } 2579 // Check for outer lastprivate conditional update. 2580 checkForLastprivateConditionalUpdate(*this, S); 2581 } 2582 2583 void CodeGenFunction::EmitOMPTileDirective(const OMPTileDirective &S) { 2584 // Emit the de-sugared statement. 2585 OMPTransformDirectiveScopeRAII TileScope(*this, &S); 2586 EmitStmt(S.getTransformedStmt()); 2587 } 2588 2589 void CodeGenFunction::EmitOMPUnrollDirective(const OMPUnrollDirective &S) { 2590 // This function is only called if the unrolled loop is not consumed by any 2591 // other loop-associated construct. Such a loop-associated construct will have 2592 // used the transformed AST. 2593 2594 // Set the unroll metadata for the next emitted loop. 2595 LoopStack.setUnrollState(LoopAttributes::Enable); 2596 2597 if (S.hasClausesOfKind<OMPFullClause>()) { 2598 LoopStack.setUnrollState(LoopAttributes::Full); 2599 } else if (auto *PartialClause = S.getSingleClause<OMPPartialClause>()) { 2600 if (Expr *FactorExpr = PartialClause->getFactor()) { 2601 uint64_t Factor = 2602 FactorExpr->EvaluateKnownConstInt(getContext()).getZExtValue(); 2603 assert(Factor >= 1 && "Only positive factors are valid"); 2604 LoopStack.setUnrollCount(Factor); 2605 } 2606 } 2607 2608 EmitStmt(S.getAssociatedStmt()); 2609 } 2610 2611 void CodeGenFunction::EmitOMPOuterLoop( 2612 bool DynamicOrOrdered, bool IsMonotonic, const OMPLoopDirective &S, 2613 CodeGenFunction::OMPPrivateScope &LoopScope, 2614 const CodeGenFunction::OMPLoopArguments &LoopArgs, 2615 const CodeGenFunction::CodeGenLoopTy &CodeGenLoop, 2616 const CodeGenFunction::CodeGenOrderedTy &CodeGenOrdered) { 2617 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2618 2619 const Expr *IVExpr = S.getIterationVariable(); 2620 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2621 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2622 2623 JumpDest LoopExit = getJumpDestInCurrentScope("omp.dispatch.end"); 2624 2625 // Start the loop with a block that tests the condition. 2626 llvm::BasicBlock *CondBlock = createBasicBlock("omp.dispatch.cond"); 2627 EmitBlock(CondBlock); 2628 const SourceRange R = S.getSourceRange(); 2629 OMPLoopNestStack.clear(); 2630 LoopStack.push(CondBlock, SourceLocToDebugLoc(R.getBegin()), 2631 SourceLocToDebugLoc(R.getEnd())); 2632 2633 llvm::Value *BoolCondVal = nullptr; 2634 if (!DynamicOrOrdered) { 2635 // UB = min(UB, GlobalUB) or 2636 // UB = min(UB, PrevUB) for combined loop sharing constructs (e.g. 2637 // 'distribute parallel for') 2638 EmitIgnoredExpr(LoopArgs.EUB); 2639 // IV = LB 2640 EmitIgnoredExpr(LoopArgs.Init); 2641 // IV < UB 2642 BoolCondVal = EvaluateExprAsBool(LoopArgs.Cond); 2643 } else { 2644 BoolCondVal = 2645 RT.emitForNext(*this, S.getBeginLoc(), IVSize, IVSigned, LoopArgs.IL, 2646 LoopArgs.LB, LoopArgs.UB, LoopArgs.ST); 2647 } 2648 2649 // If there are any cleanups between here and the loop-exit scope, 2650 // create a block to stage a loop exit along. 2651 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 2652 if (LoopScope.requiresCleanups()) 2653 ExitBlock = createBasicBlock("omp.dispatch.cleanup"); 2654 2655 llvm::BasicBlock *LoopBody = createBasicBlock("omp.dispatch.body"); 2656 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 2657 if (ExitBlock != LoopExit.getBlock()) { 2658 EmitBlock(ExitBlock); 2659 EmitBranchThroughCleanup(LoopExit); 2660 } 2661 EmitBlock(LoopBody); 2662 2663 // Emit "IV = LB" (in case of static schedule, we have already calculated new 2664 // LB for loop condition and emitted it above). 2665 if (DynamicOrOrdered) 2666 EmitIgnoredExpr(LoopArgs.Init); 2667 2668 // Create a block for the increment. 2669 JumpDest Continue = getJumpDestInCurrentScope("omp.dispatch.inc"); 2670 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 2671 2672 emitCommonSimdLoop( 2673 *this, S, 2674 [&S, IsMonotonic](CodeGenFunction &CGF, PrePostActionTy &) { 2675 // Generate !llvm.loop.parallel metadata for loads and stores for loops 2676 // with dynamic/guided scheduling and without ordered clause. 2677 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2678 CGF.LoopStack.setParallel(!IsMonotonic); 2679 if (const auto *C = S.getSingleClause<OMPOrderClause>()) 2680 if (C->getKind() == OMPC_ORDER_concurrent) 2681 CGF.LoopStack.setParallel(/*Enable=*/true); 2682 } else { 2683 CGF.EmitOMPSimdInit(S); 2684 } 2685 }, 2686 [&S, &LoopArgs, LoopExit, &CodeGenLoop, IVSize, IVSigned, &CodeGenOrdered, 2687 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 2688 SourceLocation Loc = S.getBeginLoc(); 2689 // when 'distribute' is not combined with a 'for': 2690 // while (idx <= UB) { BODY; ++idx; } 2691 // when 'distribute' is combined with a 'for' 2692 // (e.g. 'distribute parallel for') 2693 // while (idx <= UB) { <CodeGen rest of pragma>; idx += ST; } 2694 CGF.EmitOMPInnerLoop( 2695 S, LoopScope.requiresCleanups(), LoopArgs.Cond, LoopArgs.IncExpr, 2696 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 2697 CodeGenLoop(CGF, S, LoopExit); 2698 }, 2699 [IVSize, IVSigned, Loc, &CodeGenOrdered](CodeGenFunction &CGF) { 2700 CodeGenOrdered(CGF, Loc, IVSize, IVSigned); 2701 }); 2702 }); 2703 2704 EmitBlock(Continue.getBlock()); 2705 BreakContinueStack.pop_back(); 2706 if (!DynamicOrOrdered) { 2707 // Emit "LB = LB + Stride", "UB = UB + Stride". 2708 EmitIgnoredExpr(LoopArgs.NextLB); 2709 EmitIgnoredExpr(LoopArgs.NextUB); 2710 } 2711 2712 EmitBranch(CondBlock); 2713 OMPLoopNestStack.clear(); 2714 LoopStack.pop(); 2715 // Emit the fall-through block. 2716 EmitBlock(LoopExit.getBlock()); 2717 2718 // Tell the runtime we are done. 2719 auto &&CodeGen = [DynamicOrOrdered, &S](CodeGenFunction &CGF) { 2720 if (!DynamicOrOrdered) 2721 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 2722 S.getDirectiveKind()); 2723 }; 2724 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 2725 } 2726 2727 void CodeGenFunction::EmitOMPForOuterLoop( 2728 const OpenMPScheduleTy &ScheduleKind, bool IsMonotonic, 2729 const OMPLoopDirective &S, OMPPrivateScope &LoopScope, bool Ordered, 2730 const OMPLoopArguments &LoopArgs, 2731 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 2732 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2733 2734 // Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime). 2735 const bool DynamicOrOrdered = 2736 Ordered || RT.isDynamic(ScheduleKind.Schedule); 2737 2738 assert((Ordered || 2739 !RT.isStaticNonchunked(ScheduleKind.Schedule, 2740 LoopArgs.Chunk != nullptr)) && 2741 "static non-chunked schedule does not need outer loop"); 2742 2743 // Emit outer loop. 2744 // 2745 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2746 // When schedule(dynamic,chunk_size) is specified, the iterations are 2747 // distributed to threads in the team in chunks as the threads request them. 2748 // Each thread executes a chunk of iterations, then requests another chunk, 2749 // until no chunks remain to be distributed. Each chunk contains chunk_size 2750 // iterations, except for the last chunk to be distributed, which may have 2751 // fewer iterations. When no chunk_size is specified, it defaults to 1. 2752 // 2753 // When schedule(guided,chunk_size) is specified, the iterations are assigned 2754 // to threads in the team in chunks as the executing threads request them. 2755 // Each thread executes a chunk of iterations, then requests another chunk, 2756 // until no chunks remain to be assigned. For a chunk_size of 1, the size of 2757 // each chunk is proportional to the number of unassigned iterations divided 2758 // by the number of threads in the team, decreasing to 1. For a chunk_size 2759 // with value k (greater than 1), the size of each chunk is determined in the 2760 // same way, with the restriction that the chunks do not contain fewer than k 2761 // iterations (except for the last chunk to be assigned, which may have fewer 2762 // than k iterations). 2763 // 2764 // When schedule(auto) is specified, the decision regarding scheduling is 2765 // delegated to the compiler and/or runtime system. The programmer gives the 2766 // implementation the freedom to choose any possible mapping of iterations to 2767 // threads in the team. 2768 // 2769 // When schedule(runtime) is specified, the decision regarding scheduling is 2770 // deferred until run time, and the schedule and chunk size are taken from the 2771 // run-sched-var ICV. If the ICV is set to auto, the schedule is 2772 // implementation defined 2773 // 2774 // while(__kmpc_dispatch_next(&LB, &UB)) { 2775 // idx = LB; 2776 // while (idx <= UB) { BODY; ++idx; 2777 // __kmpc_dispatch_fini_(4|8)[u](); // For ordered loops only. 2778 // } // inner loop 2779 // } 2780 // 2781 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 2782 // When schedule(static, chunk_size) is specified, iterations are divided into 2783 // chunks of size chunk_size, and the chunks are assigned to the threads in 2784 // the team in a round-robin fashion in the order of the thread number. 2785 // 2786 // while(UB = min(UB, GlobalUB), idx = LB, idx < UB) { 2787 // while (idx <= UB) { BODY; ++idx; } // inner loop 2788 // LB = LB + ST; 2789 // UB = UB + ST; 2790 // } 2791 // 2792 2793 const Expr *IVExpr = S.getIterationVariable(); 2794 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2795 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2796 2797 if (DynamicOrOrdered) { 2798 const std::pair<llvm::Value *, llvm::Value *> DispatchBounds = 2799 CGDispatchBounds(*this, S, LoopArgs.LB, LoopArgs.UB); 2800 llvm::Value *LBVal = DispatchBounds.first; 2801 llvm::Value *UBVal = DispatchBounds.second; 2802 CGOpenMPRuntime::DispatchRTInput DipatchRTInputValues = {LBVal, UBVal, 2803 LoopArgs.Chunk}; 2804 RT.emitForDispatchInit(*this, S.getBeginLoc(), ScheduleKind, IVSize, 2805 IVSigned, Ordered, DipatchRTInputValues); 2806 } else { 2807 CGOpenMPRuntime::StaticRTInput StaticInit( 2808 IVSize, IVSigned, Ordered, LoopArgs.IL, LoopArgs.LB, LoopArgs.UB, 2809 LoopArgs.ST, LoopArgs.Chunk); 2810 RT.emitForStaticInit(*this, S.getBeginLoc(), S.getDirectiveKind(), 2811 ScheduleKind, StaticInit); 2812 } 2813 2814 auto &&CodeGenOrdered = [Ordered](CodeGenFunction &CGF, SourceLocation Loc, 2815 const unsigned IVSize, 2816 const bool IVSigned) { 2817 if (Ordered) { 2818 CGF.CGM.getOpenMPRuntime().emitForOrderedIterationEnd(CGF, Loc, IVSize, 2819 IVSigned); 2820 } 2821 }; 2822 2823 OMPLoopArguments OuterLoopArgs(LoopArgs.LB, LoopArgs.UB, LoopArgs.ST, 2824 LoopArgs.IL, LoopArgs.Chunk, LoopArgs.EUB); 2825 OuterLoopArgs.IncExpr = S.getInc(); 2826 OuterLoopArgs.Init = S.getInit(); 2827 OuterLoopArgs.Cond = S.getCond(); 2828 OuterLoopArgs.NextLB = S.getNextLowerBound(); 2829 OuterLoopArgs.NextUB = S.getNextUpperBound(); 2830 EmitOMPOuterLoop(DynamicOrOrdered, IsMonotonic, S, LoopScope, OuterLoopArgs, 2831 emitOMPLoopBodyWithStopPoint, CodeGenOrdered); 2832 } 2833 2834 static void emitEmptyOrdered(CodeGenFunction &, SourceLocation Loc, 2835 const unsigned IVSize, const bool IVSigned) {} 2836 2837 void CodeGenFunction::EmitOMPDistributeOuterLoop( 2838 OpenMPDistScheduleClauseKind ScheduleKind, const OMPLoopDirective &S, 2839 OMPPrivateScope &LoopScope, const OMPLoopArguments &LoopArgs, 2840 const CodeGenLoopTy &CodeGenLoopContent) { 2841 2842 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 2843 2844 // Emit outer loop. 2845 // Same behavior as a OMPForOuterLoop, except that schedule cannot be 2846 // dynamic 2847 // 2848 2849 const Expr *IVExpr = S.getIterationVariable(); 2850 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 2851 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 2852 2853 CGOpenMPRuntime::StaticRTInput StaticInit( 2854 IVSize, IVSigned, /* Ordered = */ false, LoopArgs.IL, LoopArgs.LB, 2855 LoopArgs.UB, LoopArgs.ST, LoopArgs.Chunk); 2856 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, StaticInit); 2857 2858 // for combined 'distribute' and 'for' the increment expression of distribute 2859 // is stored in DistInc. For 'distribute' alone, it is in Inc. 2860 Expr *IncExpr; 2861 if (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind())) 2862 IncExpr = S.getDistInc(); 2863 else 2864 IncExpr = S.getInc(); 2865 2866 // this routine is shared by 'omp distribute parallel for' and 2867 // 'omp distribute': select the right EUB expression depending on the 2868 // directive 2869 OMPLoopArguments OuterLoopArgs; 2870 OuterLoopArgs.LB = LoopArgs.LB; 2871 OuterLoopArgs.UB = LoopArgs.UB; 2872 OuterLoopArgs.ST = LoopArgs.ST; 2873 OuterLoopArgs.IL = LoopArgs.IL; 2874 OuterLoopArgs.Chunk = LoopArgs.Chunk; 2875 OuterLoopArgs.EUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2876 ? S.getCombinedEnsureUpperBound() 2877 : S.getEnsureUpperBound(); 2878 OuterLoopArgs.IncExpr = IncExpr; 2879 OuterLoopArgs.Init = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2880 ? S.getCombinedInit() 2881 : S.getInit(); 2882 OuterLoopArgs.Cond = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2883 ? S.getCombinedCond() 2884 : S.getCond(); 2885 OuterLoopArgs.NextLB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2886 ? S.getCombinedNextLowerBound() 2887 : S.getNextLowerBound(); 2888 OuterLoopArgs.NextUB = isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 2889 ? S.getCombinedNextUpperBound() 2890 : S.getNextUpperBound(); 2891 2892 EmitOMPOuterLoop(/* DynamicOrOrdered = */ false, /* IsMonotonic = */ false, S, 2893 LoopScope, OuterLoopArgs, CodeGenLoopContent, 2894 emitEmptyOrdered); 2895 } 2896 2897 static std::pair<LValue, LValue> 2898 emitDistributeParallelForInnerBounds(CodeGenFunction &CGF, 2899 const OMPExecutableDirective &S) { 2900 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2901 LValue LB = 2902 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 2903 LValue UB = 2904 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 2905 2906 // When composing 'distribute' with 'for' (e.g. as in 'distribute 2907 // parallel for') we need to use the 'distribute' 2908 // chunk lower and upper bounds rather than the whole loop iteration 2909 // space. These are parameters to the outlined function for 'parallel' 2910 // and we copy the bounds of the previous schedule into the 2911 // the current ones. 2912 LValue PrevLB = CGF.EmitLValue(LS.getPrevLowerBoundVariable()); 2913 LValue PrevUB = CGF.EmitLValue(LS.getPrevUpperBoundVariable()); 2914 llvm::Value *PrevLBVal = CGF.EmitLoadOfScalar( 2915 PrevLB, LS.getPrevLowerBoundVariable()->getExprLoc()); 2916 PrevLBVal = CGF.EmitScalarConversion( 2917 PrevLBVal, LS.getPrevLowerBoundVariable()->getType(), 2918 LS.getIterationVariable()->getType(), 2919 LS.getPrevLowerBoundVariable()->getExprLoc()); 2920 llvm::Value *PrevUBVal = CGF.EmitLoadOfScalar( 2921 PrevUB, LS.getPrevUpperBoundVariable()->getExprLoc()); 2922 PrevUBVal = CGF.EmitScalarConversion( 2923 PrevUBVal, LS.getPrevUpperBoundVariable()->getType(), 2924 LS.getIterationVariable()->getType(), 2925 LS.getPrevUpperBoundVariable()->getExprLoc()); 2926 2927 CGF.EmitStoreOfScalar(PrevLBVal, LB); 2928 CGF.EmitStoreOfScalar(PrevUBVal, UB); 2929 2930 return {LB, UB}; 2931 } 2932 2933 /// if the 'for' loop has a dispatch schedule (e.g. dynamic, guided) then 2934 /// we need to use the LB and UB expressions generated by the worksharing 2935 /// code generation support, whereas in non combined situations we would 2936 /// just emit 0 and the LastIteration expression 2937 /// This function is necessary due to the difference of the LB and UB 2938 /// types for the RT emission routines for 'for_static_init' and 2939 /// 'for_dispatch_init' 2940 static std::pair<llvm::Value *, llvm::Value *> 2941 emitDistributeParallelForDispatchBounds(CodeGenFunction &CGF, 2942 const OMPExecutableDirective &S, 2943 Address LB, Address UB) { 2944 const OMPLoopDirective &LS = cast<OMPLoopDirective>(S); 2945 const Expr *IVExpr = LS.getIterationVariable(); 2946 // when implementing a dynamic schedule for a 'for' combined with a 2947 // 'distribute' (e.g. 'distribute parallel for'), the 'for' loop 2948 // is not normalized as each team only executes its own assigned 2949 // distribute chunk 2950 QualType IteratorTy = IVExpr->getType(); 2951 llvm::Value *LBVal = 2952 CGF.EmitLoadOfScalar(LB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2953 llvm::Value *UBVal = 2954 CGF.EmitLoadOfScalar(UB, /*Volatile=*/false, IteratorTy, S.getBeginLoc()); 2955 return {LBVal, UBVal}; 2956 } 2957 2958 static void emitDistributeParallelForDistributeInnerBoundParams( 2959 CodeGenFunction &CGF, const OMPExecutableDirective &S, 2960 llvm::SmallVectorImpl<llvm::Value *> &CapturedVars) { 2961 const auto &Dir = cast<OMPLoopDirective>(S); 2962 LValue LB = 2963 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedLowerBoundVariable())); 2964 llvm::Value *LBCast = 2965 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(LB.getAddress(CGF)), 2966 CGF.SizeTy, /*isSigned=*/false); 2967 CapturedVars.push_back(LBCast); 2968 LValue UB = 2969 CGF.EmitLValue(cast<DeclRefExpr>(Dir.getCombinedUpperBoundVariable())); 2970 2971 llvm::Value *UBCast = 2972 CGF.Builder.CreateIntCast(CGF.Builder.CreateLoad(UB.getAddress(CGF)), 2973 CGF.SizeTy, /*isSigned=*/false); 2974 CapturedVars.push_back(UBCast); 2975 } 2976 2977 static void 2978 emitInnerParallelForWhenCombined(CodeGenFunction &CGF, 2979 const OMPLoopDirective &S, 2980 CodeGenFunction::JumpDest LoopExit) { 2981 auto &&CGInlinedWorksharingLoop = [&S](CodeGenFunction &CGF, 2982 PrePostActionTy &Action) { 2983 Action.Enter(CGF); 2984 bool HasCancel = false; 2985 if (!isOpenMPSimdDirective(S.getDirectiveKind())) { 2986 if (const auto *D = dyn_cast<OMPTeamsDistributeParallelForDirective>(&S)) 2987 HasCancel = D->hasCancel(); 2988 else if (const auto *D = dyn_cast<OMPDistributeParallelForDirective>(&S)) 2989 HasCancel = D->hasCancel(); 2990 else if (const auto *D = 2991 dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&S)) 2992 HasCancel = D->hasCancel(); 2993 } 2994 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 2995 HasCancel); 2996 CGF.EmitOMPWorksharingLoop(S, S.getPrevEnsureUpperBound(), 2997 emitDistributeParallelForInnerBounds, 2998 emitDistributeParallelForDispatchBounds); 2999 }; 3000 3001 emitCommonOMPParallelDirective( 3002 CGF, S, 3003 isOpenMPSimdDirective(S.getDirectiveKind()) ? OMPD_for_simd : OMPD_for, 3004 CGInlinedWorksharingLoop, 3005 emitDistributeParallelForDistributeInnerBoundParams); 3006 } 3007 3008 void CodeGenFunction::EmitOMPDistributeParallelForDirective( 3009 const OMPDistributeParallelForDirective &S) { 3010 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3011 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3012 S.getDistInc()); 3013 }; 3014 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3015 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3016 } 3017 3018 void CodeGenFunction::EmitOMPDistributeParallelForSimdDirective( 3019 const OMPDistributeParallelForSimdDirective &S) { 3020 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3021 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 3022 S.getDistInc()); 3023 }; 3024 OMPLexicalScope Scope(*this, S, OMPD_parallel); 3025 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 3026 } 3027 3028 void CodeGenFunction::EmitOMPDistributeSimdDirective( 3029 const OMPDistributeSimdDirective &S) { 3030 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3031 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 3032 }; 3033 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3034 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3035 } 3036 3037 void CodeGenFunction::EmitOMPTargetSimdDeviceFunction( 3038 CodeGenModule &CGM, StringRef ParentName, const OMPTargetSimdDirective &S) { 3039 // Emit SPMD target parallel for region as a standalone region. 3040 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3041 emitOMPSimdRegion(CGF, S, Action); 3042 }; 3043 llvm::Function *Fn; 3044 llvm::Constant *Addr; 3045 // Emit target region as a standalone region. 3046 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 3047 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 3048 assert(Fn && Addr && "Target device function emission failed."); 3049 } 3050 3051 void CodeGenFunction::EmitOMPTargetSimdDirective( 3052 const OMPTargetSimdDirective &S) { 3053 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3054 emitOMPSimdRegion(CGF, S, Action); 3055 }; 3056 emitCommonOMPTargetDirective(*this, S, CodeGen); 3057 } 3058 3059 namespace { 3060 struct ScheduleKindModifiersTy { 3061 OpenMPScheduleClauseKind Kind; 3062 OpenMPScheduleClauseModifier M1; 3063 OpenMPScheduleClauseModifier M2; 3064 ScheduleKindModifiersTy(OpenMPScheduleClauseKind Kind, 3065 OpenMPScheduleClauseModifier M1, 3066 OpenMPScheduleClauseModifier M2) 3067 : Kind(Kind), M1(M1), M2(M2) {} 3068 }; 3069 } // namespace 3070 3071 bool CodeGenFunction::EmitOMPWorksharingLoop( 3072 const OMPLoopDirective &S, Expr *EUB, 3073 const CodeGenLoopBoundsTy &CodeGenLoopBounds, 3074 const CodeGenDispatchBoundsTy &CGDispatchBounds) { 3075 // Emit the loop iteration variable. 3076 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 3077 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 3078 EmitVarDecl(*IVDecl); 3079 3080 // Emit the iterations count variable. 3081 // If it is not a variable, Sema decided to calculate iterations count on each 3082 // iteration (e.g., it is foldable into a constant). 3083 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 3084 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 3085 // Emit calculation of the iterations count. 3086 EmitIgnoredExpr(S.getCalcLastIteration()); 3087 } 3088 3089 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 3090 3091 bool HasLastprivateClause; 3092 // Check pre-condition. 3093 { 3094 OMPLoopScope PreInitScope(*this, S); 3095 // Skip the entire loop if we don't meet the precondition. 3096 // If the condition constant folds and can be elided, avoid emitting the 3097 // whole loop. 3098 bool CondConstant; 3099 llvm::BasicBlock *ContBlock = nullptr; 3100 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 3101 if (!CondConstant) 3102 return false; 3103 } else { 3104 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 3105 ContBlock = createBasicBlock("omp.precond.end"); 3106 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 3107 getProfileCount(&S)); 3108 EmitBlock(ThenBlock); 3109 incrementProfileCounter(&S); 3110 } 3111 3112 RunCleanupsScope DoacrossCleanupScope(*this); 3113 bool Ordered = false; 3114 if (const auto *OrderedClause = S.getSingleClause<OMPOrderedClause>()) { 3115 if (OrderedClause->getNumForLoops()) 3116 RT.emitDoacrossInit(*this, S, OrderedClause->getLoopNumIterations()); 3117 else 3118 Ordered = true; 3119 } 3120 3121 llvm::DenseSet<const Expr *> EmittedFinals; 3122 emitAlignedClause(*this, S); 3123 bool HasLinears = EmitOMPLinearClauseInit(S); 3124 // Emit helper vars inits. 3125 3126 std::pair<LValue, LValue> Bounds = CodeGenLoopBounds(*this, S); 3127 LValue LB = Bounds.first; 3128 LValue UB = Bounds.second; 3129 LValue ST = 3130 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 3131 LValue IL = 3132 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 3133 3134 // Emit 'then' code. 3135 { 3136 OMPPrivateScope LoopScope(*this); 3137 if (EmitOMPFirstprivateClause(S, LoopScope) || HasLinears) { 3138 // Emit implicit barrier to synchronize threads and avoid data races on 3139 // initialization of firstprivate variables and post-update of 3140 // lastprivate variables. 3141 CGM.getOpenMPRuntime().emitBarrierCall( 3142 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3143 /*ForceSimpleCall=*/true); 3144 } 3145 EmitOMPPrivateClause(S, LoopScope); 3146 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion( 3147 *this, S, EmitLValue(S.getIterationVariable())); 3148 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 3149 EmitOMPReductionClauseInit(S, LoopScope); 3150 EmitOMPPrivateLoopCounters(S, LoopScope); 3151 EmitOMPLinearClause(S, LoopScope); 3152 (void)LoopScope.Privatize(); 3153 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3154 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 3155 3156 // Detect the loop schedule kind and chunk. 3157 const Expr *ChunkExpr = nullptr; 3158 OpenMPScheduleTy ScheduleKind; 3159 if (const auto *C = S.getSingleClause<OMPScheduleClause>()) { 3160 ScheduleKind.Schedule = C->getScheduleKind(); 3161 ScheduleKind.M1 = C->getFirstScheduleModifier(); 3162 ScheduleKind.M2 = C->getSecondScheduleModifier(); 3163 ChunkExpr = C->getChunkSize(); 3164 } else { 3165 // Default behaviour for schedule clause. 3166 CGM.getOpenMPRuntime().getDefaultScheduleAndChunk( 3167 *this, S, ScheduleKind.Schedule, ChunkExpr); 3168 } 3169 bool HasChunkSizeOne = false; 3170 llvm::Value *Chunk = nullptr; 3171 if (ChunkExpr) { 3172 Chunk = EmitScalarExpr(ChunkExpr); 3173 Chunk = EmitScalarConversion(Chunk, ChunkExpr->getType(), 3174 S.getIterationVariable()->getType(), 3175 S.getBeginLoc()); 3176 Expr::EvalResult Result; 3177 if (ChunkExpr->EvaluateAsInt(Result, getContext())) { 3178 llvm::APSInt EvaluatedChunk = Result.Val.getInt(); 3179 HasChunkSizeOne = (EvaluatedChunk.getLimitedValue() == 1); 3180 } 3181 } 3182 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 3183 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 3184 // OpenMP 4.5, 2.7.1 Loop Construct, Description. 3185 // If the static schedule kind is specified or if the ordered clause is 3186 // specified, and if no monotonic modifier is specified, the effect will 3187 // be as if the monotonic modifier was specified. 3188 bool StaticChunkedOne = RT.isStaticChunked(ScheduleKind.Schedule, 3189 /* Chunked */ Chunk != nullptr) && HasChunkSizeOne && 3190 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 3191 bool IsMonotonic = 3192 Ordered || 3193 (ScheduleKind.Schedule == OMPC_SCHEDULE_static && 3194 !(ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_nonmonotonic || 3195 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_nonmonotonic)) || 3196 ScheduleKind.M1 == OMPC_SCHEDULE_MODIFIER_monotonic || 3197 ScheduleKind.M2 == OMPC_SCHEDULE_MODIFIER_monotonic; 3198 if ((RT.isStaticNonchunked(ScheduleKind.Schedule, 3199 /* Chunked */ Chunk != nullptr) || 3200 StaticChunkedOne) && 3201 !Ordered) { 3202 JumpDest LoopExit = 3203 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 3204 emitCommonSimdLoop( 3205 *this, S, 3206 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 3207 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3208 CGF.EmitOMPSimdInit(S); 3209 } else if (const auto *C = S.getSingleClause<OMPOrderClause>()) { 3210 if (C->getKind() == OMPC_ORDER_concurrent) 3211 CGF.LoopStack.setParallel(/*Enable=*/true); 3212 } 3213 }, 3214 [IVSize, IVSigned, Ordered, IL, LB, UB, ST, StaticChunkedOne, Chunk, 3215 &S, ScheduleKind, LoopExit, 3216 &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 3217 // OpenMP [2.7.1, Loop Construct, Description, table 2-1] 3218 // When no chunk_size is specified, the iteration space is divided 3219 // into chunks that are approximately equal in size, and at most 3220 // one chunk is distributed to each thread. Note that the size of 3221 // the chunks is unspecified in this case. 3222 CGOpenMPRuntime::StaticRTInput StaticInit( 3223 IVSize, IVSigned, Ordered, IL.getAddress(CGF), 3224 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF), 3225 StaticChunkedOne ? Chunk : nullptr); 3226 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3227 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, 3228 StaticInit); 3229 // UB = min(UB, GlobalUB); 3230 if (!StaticChunkedOne) 3231 CGF.EmitIgnoredExpr(S.getEnsureUpperBound()); 3232 // IV = LB; 3233 CGF.EmitIgnoredExpr(S.getInit()); 3234 // For unchunked static schedule generate: 3235 // 3236 // while (idx <= UB) { 3237 // BODY; 3238 // ++idx; 3239 // } 3240 // 3241 // For static schedule with chunk one: 3242 // 3243 // while (IV <= PrevUB) { 3244 // BODY; 3245 // IV += ST; 3246 // } 3247 CGF.EmitOMPInnerLoop( 3248 S, LoopScope.requiresCleanups(), 3249 StaticChunkedOne ? S.getCombinedParForInDistCond() 3250 : S.getCond(), 3251 StaticChunkedOne ? S.getDistInc() : S.getInc(), 3252 [&S, LoopExit](CodeGenFunction &CGF) { 3253 emitOMPLoopBodyWithStopPoint(CGF, S, LoopExit); 3254 }, 3255 [](CodeGenFunction &) {}); 3256 }); 3257 EmitBlock(LoopExit.getBlock()); 3258 // Tell the runtime we are done. 3259 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3260 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3261 S.getDirectiveKind()); 3262 }; 3263 OMPCancelStack.emitExit(*this, S.getDirectiveKind(), CodeGen); 3264 } else { 3265 // Emit the outer loop, which requests its work chunk [LB..UB] from 3266 // runtime and runs the inner loop to process it. 3267 const OMPLoopArguments LoopArguments( 3268 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 3269 IL.getAddress(*this), Chunk, EUB); 3270 EmitOMPForOuterLoop(ScheduleKind, IsMonotonic, S, LoopScope, Ordered, 3271 LoopArguments, CGDispatchBounds); 3272 } 3273 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 3274 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 3275 return CGF.Builder.CreateIsNotNull( 3276 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3277 }); 3278 } 3279 EmitOMPReductionClauseFinal( 3280 S, /*ReductionKind=*/isOpenMPSimdDirective(S.getDirectiveKind()) 3281 ? /*Parallel and Simd*/ OMPD_parallel_for_simd 3282 : /*Parallel only*/ OMPD_parallel); 3283 // Emit post-update of the reduction variables if IsLastIter != 0. 3284 emitPostUpdateForReductionClause( 3285 *this, S, [IL, &S](CodeGenFunction &CGF) { 3286 return CGF.Builder.CreateIsNotNull( 3287 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3288 }); 3289 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3290 if (HasLastprivateClause) 3291 EmitOMPLastprivateClauseFinal( 3292 S, isOpenMPSimdDirective(S.getDirectiveKind()), 3293 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 3294 } 3295 EmitOMPLinearClauseFinal(S, [IL, &S](CodeGenFunction &CGF) { 3296 return CGF.Builder.CreateIsNotNull( 3297 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3298 }); 3299 DoacrossCleanupScope.ForceCleanup(); 3300 // We're now done with the loop, so jump to the continuation block. 3301 if (ContBlock) { 3302 EmitBranch(ContBlock); 3303 EmitBlock(ContBlock, /*IsFinished=*/true); 3304 } 3305 } 3306 return HasLastprivateClause; 3307 } 3308 3309 /// The following two functions generate expressions for the loop lower 3310 /// and upper bounds in case of static and dynamic (dispatch) schedule 3311 /// of the associated 'for' or 'distribute' loop. 3312 static std::pair<LValue, LValue> 3313 emitForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3314 const auto &LS = cast<OMPLoopDirective>(S); 3315 LValue LB = 3316 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getLowerBoundVariable())); 3317 LValue UB = 3318 EmitOMPHelperVar(CGF, cast<DeclRefExpr>(LS.getUpperBoundVariable())); 3319 return {LB, UB}; 3320 } 3321 3322 /// When dealing with dispatch schedules (e.g. dynamic, guided) we do not 3323 /// consider the lower and upper bound expressions generated by the 3324 /// worksharing loop support, but we use 0 and the iteration space size as 3325 /// constants 3326 static std::pair<llvm::Value *, llvm::Value *> 3327 emitDispatchForLoopBounds(CodeGenFunction &CGF, const OMPExecutableDirective &S, 3328 Address LB, Address UB) { 3329 const auto &LS = cast<OMPLoopDirective>(S); 3330 const Expr *IVExpr = LS.getIterationVariable(); 3331 const unsigned IVSize = CGF.getContext().getTypeSize(IVExpr->getType()); 3332 llvm::Value *LBVal = CGF.Builder.getIntN(IVSize, 0); 3333 llvm::Value *UBVal = CGF.EmitScalarExpr(LS.getLastIteration()); 3334 return {LBVal, UBVal}; 3335 } 3336 3337 /// Emits internal temp array declarations for the directive with inscan 3338 /// reductions. 3339 /// The code is the following: 3340 /// \code 3341 /// size num_iters = <num_iters>; 3342 /// <type> buffer[num_iters]; 3343 /// \endcode 3344 static void emitScanBasedDirectiveDecls( 3345 CodeGenFunction &CGF, const OMPLoopDirective &S, 3346 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen) { 3347 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3348 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3349 SmallVector<const Expr *, 4> Shareds; 3350 SmallVector<const Expr *, 4> Privates; 3351 SmallVector<const Expr *, 4> ReductionOps; 3352 SmallVector<const Expr *, 4> CopyArrayTemps; 3353 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3354 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3355 "Only inscan reductions are expected."); 3356 Shareds.append(C->varlist_begin(), C->varlist_end()); 3357 Privates.append(C->privates().begin(), C->privates().end()); 3358 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3359 CopyArrayTemps.append(C->copy_array_temps().begin(), 3360 C->copy_array_temps().end()); 3361 } 3362 { 3363 // Emit buffers for each reduction variables. 3364 // ReductionCodeGen is required to emit correctly the code for array 3365 // reductions. 3366 ReductionCodeGen RedCG(Shareds, Shareds, Privates, ReductionOps); 3367 unsigned Count = 0; 3368 auto *ITA = CopyArrayTemps.begin(); 3369 for (const Expr *IRef : Privates) { 3370 const auto *PrivateVD = cast<VarDecl>(cast<DeclRefExpr>(IRef)->getDecl()); 3371 // Emit variably modified arrays, used for arrays/array sections 3372 // reductions. 3373 if (PrivateVD->getType()->isVariablyModifiedType()) { 3374 RedCG.emitSharedOrigLValue(CGF, Count); 3375 RedCG.emitAggregateType(CGF, Count); 3376 } 3377 CodeGenFunction::OpaqueValueMapping DimMapping( 3378 CGF, 3379 cast<OpaqueValueExpr>( 3380 cast<VariableArrayType>((*ITA)->getType()->getAsArrayTypeUnsafe()) 3381 ->getSizeExpr()), 3382 RValue::get(OMPScanNumIterations)); 3383 // Emit temp buffer. 3384 CGF.EmitVarDecl(*cast<VarDecl>(cast<DeclRefExpr>(*ITA)->getDecl())); 3385 ++ITA; 3386 ++Count; 3387 } 3388 } 3389 } 3390 3391 /// Emits the code for the directive with inscan reductions. 3392 /// The code is the following: 3393 /// \code 3394 /// #pragma omp ... 3395 /// for (i: 0..<num_iters>) { 3396 /// <input phase>; 3397 /// buffer[i] = red; 3398 /// } 3399 /// #pragma omp master // in parallel region 3400 /// for (int k = 0; k != ceil(log2(num_iters)); ++k) 3401 /// for (size cnt = last_iter; cnt >= pow(2, k); --k) 3402 /// buffer[i] op= buffer[i-pow(2,k)]; 3403 /// #pragma omp barrier // in parallel region 3404 /// #pragma omp ... 3405 /// for (0..<num_iters>) { 3406 /// red = InclusiveScan ? buffer[i] : buffer[i-1]; 3407 /// <scan phase>; 3408 /// } 3409 /// \endcode 3410 static void emitScanBasedDirective( 3411 CodeGenFunction &CGF, const OMPLoopDirective &S, 3412 llvm::function_ref<llvm::Value *(CodeGenFunction &)> NumIteratorsGen, 3413 llvm::function_ref<void(CodeGenFunction &)> FirstGen, 3414 llvm::function_ref<void(CodeGenFunction &)> SecondGen) { 3415 llvm::Value *OMPScanNumIterations = CGF.Builder.CreateIntCast( 3416 NumIteratorsGen(CGF), CGF.SizeTy, /*isSigned=*/false); 3417 SmallVector<const Expr *, 4> Privates; 3418 SmallVector<const Expr *, 4> ReductionOps; 3419 SmallVector<const Expr *, 4> LHSs; 3420 SmallVector<const Expr *, 4> RHSs; 3421 SmallVector<const Expr *, 4> CopyArrayElems; 3422 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 3423 assert(C->getModifier() == OMPC_REDUCTION_inscan && 3424 "Only inscan reductions are expected."); 3425 Privates.append(C->privates().begin(), C->privates().end()); 3426 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 3427 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 3428 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 3429 CopyArrayElems.append(C->copy_array_elems().begin(), 3430 C->copy_array_elems().end()); 3431 } 3432 CodeGenFunction::ParentLoopDirectiveForScanRegion ScanRegion(CGF, S); 3433 { 3434 // Emit loop with input phase: 3435 // #pragma omp ... 3436 // for (i: 0..<num_iters>) { 3437 // <input phase>; 3438 // buffer[i] = red; 3439 // } 3440 CGF.OMPFirstScanLoop = true; 3441 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3442 FirstGen(CGF); 3443 } 3444 // #pragma omp barrier // in parallel region 3445 auto &&CodeGen = [&S, OMPScanNumIterations, &LHSs, &RHSs, &CopyArrayElems, 3446 &ReductionOps, 3447 &Privates](CodeGenFunction &CGF, PrePostActionTy &Action) { 3448 Action.Enter(CGF); 3449 // Emit prefix reduction: 3450 // #pragma omp master // in parallel region 3451 // for (int k = 0; k <= ceil(log2(n)); ++k) 3452 llvm::BasicBlock *InputBB = CGF.Builder.GetInsertBlock(); 3453 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.outer.log.scan.body"); 3454 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.outer.log.scan.exit"); 3455 llvm::Function *F = 3456 CGF.CGM.getIntrinsic(llvm::Intrinsic::log2, CGF.DoubleTy); 3457 llvm::Value *Arg = 3458 CGF.Builder.CreateUIToFP(OMPScanNumIterations, CGF.DoubleTy); 3459 llvm::Value *LogVal = CGF.EmitNounwindRuntimeCall(F, Arg); 3460 F = CGF.CGM.getIntrinsic(llvm::Intrinsic::ceil, CGF.DoubleTy); 3461 LogVal = CGF.EmitNounwindRuntimeCall(F, LogVal); 3462 LogVal = CGF.Builder.CreateFPToUI(LogVal, CGF.IntTy); 3463 llvm::Value *NMin1 = CGF.Builder.CreateNUWSub( 3464 OMPScanNumIterations, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3465 auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getBeginLoc()); 3466 CGF.EmitBlock(LoopBB); 3467 auto *Counter = CGF.Builder.CreatePHI(CGF.IntTy, 2); 3468 // size pow2k = 1; 3469 auto *Pow2K = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3470 Counter->addIncoming(llvm::ConstantInt::get(CGF.IntTy, 0), InputBB); 3471 Pow2K->addIncoming(llvm::ConstantInt::get(CGF.SizeTy, 1), InputBB); 3472 // for (size i = n - 1; i >= 2 ^ k; --i) 3473 // tmp[i] op= tmp[i-pow2k]; 3474 llvm::BasicBlock *InnerLoopBB = 3475 CGF.createBasicBlock("omp.inner.log.scan.body"); 3476 llvm::BasicBlock *InnerExitBB = 3477 CGF.createBasicBlock("omp.inner.log.scan.exit"); 3478 llvm::Value *CmpI = CGF.Builder.CreateICmpUGE(NMin1, Pow2K); 3479 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3480 CGF.EmitBlock(InnerLoopBB); 3481 auto *IVal = CGF.Builder.CreatePHI(CGF.SizeTy, 2); 3482 IVal->addIncoming(NMin1, LoopBB); 3483 { 3484 CodeGenFunction::OMPPrivateScope PrivScope(CGF); 3485 auto *ILHS = LHSs.begin(); 3486 auto *IRHS = RHSs.begin(); 3487 for (const Expr *CopyArrayElem : CopyArrayElems) { 3488 const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); 3489 const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); 3490 Address LHSAddr = Address::invalid(); 3491 { 3492 CodeGenFunction::OpaqueValueMapping IdxMapping( 3493 CGF, 3494 cast<OpaqueValueExpr>( 3495 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3496 RValue::get(IVal)); 3497 LHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3498 } 3499 PrivScope.addPrivate(LHSVD, [LHSAddr]() { return LHSAddr; }); 3500 Address RHSAddr = Address::invalid(); 3501 { 3502 llvm::Value *OffsetIVal = CGF.Builder.CreateNUWSub(IVal, Pow2K); 3503 CodeGenFunction::OpaqueValueMapping IdxMapping( 3504 CGF, 3505 cast<OpaqueValueExpr>( 3506 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 3507 RValue::get(OffsetIVal)); 3508 RHSAddr = CGF.EmitLValue(CopyArrayElem).getAddress(CGF); 3509 } 3510 PrivScope.addPrivate(RHSVD, [RHSAddr]() { return RHSAddr; }); 3511 ++ILHS; 3512 ++IRHS; 3513 } 3514 PrivScope.Privatize(); 3515 CGF.CGM.getOpenMPRuntime().emitReduction( 3516 CGF, S.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 3517 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_unknown}); 3518 } 3519 llvm::Value *NextIVal = 3520 CGF.Builder.CreateNUWSub(IVal, llvm::ConstantInt::get(CGF.SizeTy, 1)); 3521 IVal->addIncoming(NextIVal, CGF.Builder.GetInsertBlock()); 3522 CmpI = CGF.Builder.CreateICmpUGE(NextIVal, Pow2K); 3523 CGF.Builder.CreateCondBr(CmpI, InnerLoopBB, InnerExitBB); 3524 CGF.EmitBlock(InnerExitBB); 3525 llvm::Value *Next = 3526 CGF.Builder.CreateNUWAdd(Counter, llvm::ConstantInt::get(CGF.IntTy, 1)); 3527 Counter->addIncoming(Next, CGF.Builder.GetInsertBlock()); 3528 // pow2k <<= 1; 3529 llvm::Value *NextPow2K = 3530 CGF.Builder.CreateShl(Pow2K, 1, "", /*HasNUW=*/true); 3531 Pow2K->addIncoming(NextPow2K, CGF.Builder.GetInsertBlock()); 3532 llvm::Value *Cmp = CGF.Builder.CreateICmpNE(Next, LogVal); 3533 CGF.Builder.CreateCondBr(Cmp, LoopBB, ExitBB); 3534 auto DL1 = ApplyDebugLocation::CreateDefaultArtificial(CGF, S.getEndLoc()); 3535 CGF.EmitBlock(ExitBB); 3536 }; 3537 if (isOpenMPParallelDirective(S.getDirectiveKind())) { 3538 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3539 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3540 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3541 /*ForceSimpleCall=*/true); 3542 } else { 3543 RegionCodeGenTy RCG(CodeGen); 3544 RCG(CGF); 3545 } 3546 3547 CGF.OMPFirstScanLoop = false; 3548 SecondGen(CGF); 3549 } 3550 3551 static bool emitWorksharingDirective(CodeGenFunction &CGF, 3552 const OMPLoopDirective &S, 3553 bool HasCancel) { 3554 bool HasLastprivates; 3555 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 3556 [](const OMPReductionClause *C) { 3557 return C->getModifier() == OMPC_REDUCTION_inscan; 3558 })) { 3559 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 3560 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 3561 OMPLoopScope LoopScope(CGF, S); 3562 return CGF.EmitScalarExpr(S.getNumIterations()); 3563 }; 3564 const auto &&FirstGen = [&S, HasCancel](CodeGenFunction &CGF) { 3565 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3566 CGF, S.getDirectiveKind(), HasCancel); 3567 (void)CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3568 emitForLoopBounds, 3569 emitDispatchForLoopBounds); 3570 // Emit an implicit barrier at the end. 3571 CGF.CGM.getOpenMPRuntime().emitBarrierCall(CGF, S.getBeginLoc(), 3572 OMPD_for); 3573 }; 3574 const auto &&SecondGen = [&S, HasCancel, 3575 &HasLastprivates](CodeGenFunction &CGF) { 3576 CodeGenFunction::OMPCancelStackRAII CancelRegion( 3577 CGF, S.getDirectiveKind(), HasCancel); 3578 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3579 emitForLoopBounds, 3580 emitDispatchForLoopBounds); 3581 }; 3582 if (!isOpenMPParallelDirective(S.getDirectiveKind())) 3583 emitScanBasedDirectiveDecls(CGF, S, NumIteratorsGen); 3584 emitScanBasedDirective(CGF, S, NumIteratorsGen, FirstGen, SecondGen); 3585 } else { 3586 CodeGenFunction::OMPCancelStackRAII CancelRegion(CGF, S.getDirectiveKind(), 3587 HasCancel); 3588 HasLastprivates = CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), 3589 emitForLoopBounds, 3590 emitDispatchForLoopBounds); 3591 } 3592 return HasLastprivates; 3593 } 3594 3595 static bool isSupportedByOpenMPIRBuilder(const OMPForDirective &S) { 3596 if (S.hasCancel()) 3597 return false; 3598 for (OMPClause *C : S.clauses()) 3599 if (!isa<OMPNowaitClause>(C)) 3600 return false; 3601 3602 return true; 3603 } 3604 3605 void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) { 3606 bool HasLastprivates = false; 3607 bool UseOMPIRBuilder = 3608 CGM.getLangOpts().OpenMPIRBuilder && isSupportedByOpenMPIRBuilder(S); 3609 auto &&CodeGen = [this, &S, &HasLastprivates, 3610 UseOMPIRBuilder](CodeGenFunction &CGF, PrePostActionTy &) { 3611 // Use the OpenMPIRBuilder if enabled. 3612 if (UseOMPIRBuilder) { 3613 // Emit the associated statement and get its loop representation. 3614 const Stmt *Inner = S.getRawStmt(); 3615 llvm::CanonicalLoopInfo *CLI = 3616 EmitOMPCollapsedCanonicalLoopNest(Inner, 1); 3617 3618 bool NeedsBarrier = !S.getSingleClause<OMPNowaitClause>(); 3619 llvm::OpenMPIRBuilder &OMPBuilder = 3620 CGM.getOpenMPRuntime().getOMPBuilder(); 3621 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3622 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3623 OMPBuilder.createWorkshareLoop(Builder, CLI, AllocaIP, NeedsBarrier); 3624 return; 3625 } 3626 3627 HasLastprivates = emitWorksharingDirective(CGF, S, S.hasCancel()); 3628 }; 3629 { 3630 auto LPCRegion = 3631 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3632 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3633 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_for, CodeGen, 3634 S.hasCancel()); 3635 } 3636 3637 if (!UseOMPIRBuilder) { 3638 // Emit an implicit barrier at the end. 3639 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3640 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3641 } 3642 // Check for outer lastprivate conditional update. 3643 checkForLastprivateConditionalUpdate(*this, S); 3644 } 3645 3646 void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &S) { 3647 bool HasLastprivates = false; 3648 auto &&CodeGen = [&S, &HasLastprivates](CodeGenFunction &CGF, 3649 PrePostActionTy &) { 3650 HasLastprivates = emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 3651 }; 3652 { 3653 auto LPCRegion = 3654 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3655 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3656 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_simd, CodeGen); 3657 } 3658 3659 // Emit an implicit barrier at the end. 3660 if (!S.getSingleClause<OMPNowaitClause>() || HasLastprivates) 3661 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_for); 3662 // Check for outer lastprivate conditional update. 3663 checkForLastprivateConditionalUpdate(*this, S); 3664 } 3665 3666 static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty, 3667 const Twine &Name, 3668 llvm::Value *Init = nullptr) { 3669 LValue LVal = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty); 3670 if (Init) 3671 CGF.EmitStoreThroughLValue(RValue::get(Init), LVal, /*isInit*/ true); 3672 return LVal; 3673 } 3674 3675 void CodeGenFunction::EmitSections(const OMPExecutableDirective &S) { 3676 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3677 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3678 bool HasLastprivates = false; 3679 auto &&CodeGen = [&S, CapturedStmt, CS, 3680 &HasLastprivates](CodeGenFunction &CGF, PrePostActionTy &) { 3681 const ASTContext &C = CGF.getContext(); 3682 QualType KmpInt32Ty = 3683 C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); 3684 // Emit helper vars inits. 3685 LValue LB = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.lb.", 3686 CGF.Builder.getInt32(0)); 3687 llvm::ConstantInt *GlobalUBVal = CS != nullptr 3688 ? CGF.Builder.getInt32(CS->size() - 1) 3689 : CGF.Builder.getInt32(0); 3690 LValue UB = 3691 createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal); 3692 LValue ST = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.st.", 3693 CGF.Builder.getInt32(1)); 3694 LValue IL = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.il.", 3695 CGF.Builder.getInt32(0)); 3696 // Loop counter. 3697 LValue IV = createSectionLVal(CGF, KmpInt32Ty, ".omp.sections.iv."); 3698 OpaqueValueExpr IVRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3699 CodeGenFunction::OpaqueValueMapping OpaqueIV(CGF, &IVRefExpr, IV); 3700 OpaqueValueExpr UBRefExpr(S.getBeginLoc(), KmpInt32Ty, VK_LValue); 3701 CodeGenFunction::OpaqueValueMapping OpaqueUB(CGF, &UBRefExpr, UB); 3702 // Generate condition for loop. 3703 BinaryOperator *Cond = BinaryOperator::Create( 3704 C, &IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_PRValue, OK_Ordinary, 3705 S.getBeginLoc(), FPOptionsOverride()); 3706 // Increment for loop counter. 3707 UnaryOperator *Inc = UnaryOperator::Create( 3708 C, &IVRefExpr, UO_PreInc, KmpInt32Ty, VK_PRValue, OK_Ordinary, 3709 S.getBeginLoc(), true, FPOptionsOverride()); 3710 auto &&BodyGen = [CapturedStmt, CS, &S, &IV](CodeGenFunction &CGF) { 3711 // Iterate through all sections and emit a switch construct: 3712 // switch (IV) { 3713 // case 0: 3714 // <SectionStmt[0]>; 3715 // break; 3716 // ... 3717 // case <NumSection> - 1: 3718 // <SectionStmt[<NumSection> - 1]>; 3719 // break; 3720 // } 3721 // .omp.sections.exit: 3722 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.sections.exit"); 3723 llvm::SwitchInst *SwitchStmt = 3724 CGF.Builder.CreateSwitch(CGF.EmitLoadOfScalar(IV, S.getBeginLoc()), 3725 ExitBB, CS == nullptr ? 1 : CS->size()); 3726 if (CS) { 3727 unsigned CaseNumber = 0; 3728 for (const Stmt *SubStmt : CS->children()) { 3729 auto CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3730 CGF.EmitBlock(CaseBB); 3731 SwitchStmt->addCase(CGF.Builder.getInt32(CaseNumber), CaseBB); 3732 CGF.EmitStmt(SubStmt); 3733 CGF.EmitBranch(ExitBB); 3734 ++CaseNumber; 3735 } 3736 } else { 3737 llvm::BasicBlock *CaseBB = CGF.createBasicBlock(".omp.sections.case"); 3738 CGF.EmitBlock(CaseBB); 3739 SwitchStmt->addCase(CGF.Builder.getInt32(0), CaseBB); 3740 CGF.EmitStmt(CapturedStmt); 3741 CGF.EmitBranch(ExitBB); 3742 } 3743 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3744 }; 3745 3746 CodeGenFunction::OMPPrivateScope LoopScope(CGF); 3747 if (CGF.EmitOMPFirstprivateClause(S, LoopScope)) { 3748 // Emit implicit barrier to synchronize threads and avoid data races on 3749 // initialization of firstprivate variables and post-update of lastprivate 3750 // variables. 3751 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 3752 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 3753 /*ForceSimpleCall=*/true); 3754 } 3755 CGF.EmitOMPPrivateClause(S, LoopScope); 3756 CGOpenMPRuntime::LastprivateConditionalRAII LPCRegion(CGF, S, IV); 3757 HasLastprivates = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 3758 CGF.EmitOMPReductionClauseInit(S, LoopScope); 3759 (void)LoopScope.Privatize(); 3760 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 3761 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 3762 3763 // Emit static non-chunked loop. 3764 OpenMPScheduleTy ScheduleKind; 3765 ScheduleKind.Schedule = OMPC_SCHEDULE_static; 3766 CGOpenMPRuntime::StaticRTInput StaticInit( 3767 /*IVSize=*/32, /*IVSigned=*/true, /*Ordered=*/false, IL.getAddress(CGF), 3768 LB.getAddress(CGF), UB.getAddress(CGF), ST.getAddress(CGF)); 3769 CGF.CGM.getOpenMPRuntime().emitForStaticInit( 3770 CGF, S.getBeginLoc(), S.getDirectiveKind(), ScheduleKind, StaticInit); 3771 // UB = min(UB, GlobalUB); 3772 llvm::Value *UBVal = CGF.EmitLoadOfScalar(UB, S.getBeginLoc()); 3773 llvm::Value *MinUBGlobalUB = CGF.Builder.CreateSelect( 3774 CGF.Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal); 3775 CGF.EmitStoreOfScalar(MinUBGlobalUB, UB); 3776 // IV = LB; 3777 CGF.EmitStoreOfScalar(CGF.EmitLoadOfScalar(LB, S.getBeginLoc()), IV); 3778 // while (idx <= UB) { BODY; ++idx; } 3779 CGF.EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, Cond, Inc, BodyGen, 3780 [](CodeGenFunction &) {}); 3781 // Tell the runtime we are done. 3782 auto &&CodeGen = [&S](CodeGenFunction &CGF) { 3783 CGF.CGM.getOpenMPRuntime().emitForStaticFinish(CGF, S.getEndLoc(), 3784 S.getDirectiveKind()); 3785 }; 3786 CGF.OMPCancelStack.emitExit(CGF, S.getDirectiveKind(), CodeGen); 3787 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 3788 // Emit post-update of the reduction variables if IsLastIter != 0. 3789 emitPostUpdateForReductionClause(CGF, S, [IL, &S](CodeGenFunction &CGF) { 3790 return CGF.Builder.CreateIsNotNull( 3791 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 3792 }); 3793 3794 // Emit final copy of the lastprivate variables if IsLastIter != 0. 3795 if (HasLastprivates) 3796 CGF.EmitOMPLastprivateClauseFinal( 3797 S, /*NoFinals=*/false, 3798 CGF.Builder.CreateIsNotNull( 3799 CGF.EmitLoadOfScalar(IL, S.getBeginLoc()))); 3800 }; 3801 3802 bool HasCancel = false; 3803 if (auto *OSD = dyn_cast<OMPSectionsDirective>(&S)) 3804 HasCancel = OSD->hasCancel(); 3805 else if (auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&S)) 3806 HasCancel = OPSD->hasCancel(); 3807 OMPCancelStackRAII CancelRegion(*this, S.getDirectiveKind(), HasCancel); 3808 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_sections, CodeGen, 3809 HasCancel); 3810 // Emit barrier for lastprivates only if 'sections' directive has 'nowait' 3811 // clause. Otherwise the barrier will be generated by the codegen for the 3812 // directive. 3813 if (HasLastprivates && S.getSingleClause<OMPNowaitClause>()) { 3814 // Emit implicit barrier to synchronize threads and avoid data races on 3815 // initialization of firstprivate variables. 3816 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3817 OMPD_unknown); 3818 } 3819 } 3820 3821 void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) { 3822 if (CGM.getLangOpts().OpenMPIRBuilder) { 3823 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3824 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3825 using BodyGenCallbackTy = llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy; 3826 3827 auto FiniCB = [this](InsertPointTy IP) { 3828 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3829 }; 3830 3831 const CapturedStmt *ICS = S.getInnermostCapturedStmt(); 3832 const Stmt *CapturedStmt = S.getInnermostCapturedStmt()->getCapturedStmt(); 3833 const auto *CS = dyn_cast<CompoundStmt>(CapturedStmt); 3834 llvm::SmallVector<BodyGenCallbackTy, 4> SectionCBVector; 3835 if (CS) { 3836 for (const Stmt *SubStmt : CS->children()) { 3837 auto SectionCB = [this, SubStmt](InsertPointTy AllocaIP, 3838 InsertPointTy CodeGenIP, 3839 llvm::BasicBlock &FiniBB) { 3840 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, 3841 FiniBB); 3842 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SubStmt, CodeGenIP, 3843 FiniBB); 3844 }; 3845 SectionCBVector.push_back(SectionCB); 3846 } 3847 } else { 3848 auto SectionCB = [this, CapturedStmt](InsertPointTy AllocaIP, 3849 InsertPointTy CodeGenIP, 3850 llvm::BasicBlock &FiniBB) { 3851 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3852 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CapturedStmt, CodeGenIP, 3853 FiniBB); 3854 }; 3855 SectionCBVector.push_back(SectionCB); 3856 } 3857 3858 // Privatization callback that performs appropriate action for 3859 // shared/private/firstprivate/lastprivate/copyin/... variables. 3860 // 3861 // TODO: This defaults to shared right now. 3862 auto PrivCB = [](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, 3863 llvm::Value &, llvm::Value &Val, llvm::Value *&ReplVal) { 3864 // The next line is appropriate only for variables (Val) with the 3865 // data-sharing attribute "shared". 3866 ReplVal = &Val; 3867 3868 return CodeGenIP; 3869 }; 3870 3871 CGCapturedStmtInfo CGSI(*ICS, CR_OpenMP); 3872 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(*this, &CGSI); 3873 llvm::OpenMPIRBuilder::InsertPointTy AllocaIP( 3874 AllocaInsertPt->getParent(), AllocaInsertPt->getIterator()); 3875 Builder.restoreIP(OMPBuilder.createSections( 3876 Builder, AllocaIP, SectionCBVector, PrivCB, FiniCB, S.hasCancel(), 3877 S.getSingleClause<OMPNowaitClause>())); 3878 return; 3879 } 3880 { 3881 auto LPCRegion = 3882 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3883 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3884 EmitSections(S); 3885 } 3886 // Emit an implicit barrier at the end. 3887 if (!S.getSingleClause<OMPNowaitClause>()) { 3888 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), 3889 OMPD_sections); 3890 } 3891 // Check for outer lastprivate conditional update. 3892 checkForLastprivateConditionalUpdate(*this, S); 3893 } 3894 3895 void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) { 3896 if (CGM.getLangOpts().OpenMPIRBuilder) { 3897 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3898 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3899 3900 const Stmt *SectionRegionBodyStmt = S.getAssociatedStmt(); 3901 auto FiniCB = [this](InsertPointTy IP) { 3902 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3903 }; 3904 3905 auto BodyGenCB = [SectionRegionBodyStmt, this](InsertPointTy AllocaIP, 3906 InsertPointTy CodeGenIP, 3907 llvm::BasicBlock &FiniBB) { 3908 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3909 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, SectionRegionBodyStmt, 3910 CodeGenIP, FiniBB); 3911 }; 3912 3913 LexicalScope Scope(*this, S.getSourceRange()); 3914 EmitStopPoint(&S); 3915 Builder.restoreIP(OMPBuilder.createSection(Builder, BodyGenCB, FiniCB)); 3916 3917 return; 3918 } 3919 LexicalScope Scope(*this, S.getSourceRange()); 3920 EmitStopPoint(&S); 3921 EmitStmt(S.getAssociatedStmt()); 3922 } 3923 3924 void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) { 3925 llvm::SmallVector<const Expr *, 8> CopyprivateVars; 3926 llvm::SmallVector<const Expr *, 8> DestExprs; 3927 llvm::SmallVector<const Expr *, 8> SrcExprs; 3928 llvm::SmallVector<const Expr *, 8> AssignmentOps; 3929 // Check if there are any 'copyprivate' clauses associated with this 3930 // 'single' construct. 3931 // Build a list of copyprivate variables along with helper expressions 3932 // (<source>, <destination>, <destination>=<source> expressions) 3933 for (const auto *C : S.getClausesOfKind<OMPCopyprivateClause>()) { 3934 CopyprivateVars.append(C->varlists().begin(), C->varlists().end()); 3935 DestExprs.append(C->destination_exprs().begin(), 3936 C->destination_exprs().end()); 3937 SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end()); 3938 AssignmentOps.append(C->assignment_ops().begin(), 3939 C->assignment_ops().end()); 3940 } 3941 // Emit code for 'single' region along with 'copyprivate' clauses 3942 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3943 Action.Enter(CGF); 3944 OMPPrivateScope SingleScope(CGF); 3945 (void)CGF.EmitOMPFirstprivateClause(S, SingleScope); 3946 CGF.EmitOMPPrivateClause(S, SingleScope); 3947 (void)SingleScope.Privatize(); 3948 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 3949 }; 3950 { 3951 auto LPCRegion = 3952 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 3953 OMPLexicalScope Scope(*this, S, OMPD_unknown); 3954 CGM.getOpenMPRuntime().emitSingleRegion(*this, CodeGen, S.getBeginLoc(), 3955 CopyprivateVars, DestExprs, 3956 SrcExprs, AssignmentOps); 3957 } 3958 // Emit an implicit barrier at the end (to avoid data race on firstprivate 3959 // init or if no 'nowait' clause was specified and no 'copyprivate' clause). 3960 if (!S.getSingleClause<OMPNowaitClause>() && CopyprivateVars.empty()) { 3961 CGM.getOpenMPRuntime().emitBarrierCall( 3962 *this, S.getBeginLoc(), 3963 S.getSingleClause<OMPNowaitClause>() ? OMPD_unknown : OMPD_single); 3964 } 3965 // Check for outer lastprivate conditional update. 3966 checkForLastprivateConditionalUpdate(*this, S); 3967 } 3968 3969 static void emitMaster(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 3970 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 3971 Action.Enter(CGF); 3972 CGF.EmitStmt(S.getRawStmt()); 3973 }; 3974 CGF.CGM.getOpenMPRuntime().emitMasterRegion(CGF, CodeGen, S.getBeginLoc()); 3975 } 3976 3977 void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) { 3978 if (CGM.getLangOpts().OpenMPIRBuilder) { 3979 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 3980 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 3981 3982 const Stmt *MasterRegionBodyStmt = S.getAssociatedStmt(); 3983 3984 auto FiniCB = [this](InsertPointTy IP) { 3985 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 3986 }; 3987 3988 auto BodyGenCB = [MasterRegionBodyStmt, this](InsertPointTy AllocaIP, 3989 InsertPointTy CodeGenIP, 3990 llvm::BasicBlock &FiniBB) { 3991 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 3992 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MasterRegionBodyStmt, 3993 CodeGenIP, FiniBB); 3994 }; 3995 3996 LexicalScope Scope(*this, S.getSourceRange()); 3997 EmitStopPoint(&S); 3998 Builder.restoreIP(OMPBuilder.createMaster(Builder, BodyGenCB, FiniCB)); 3999 4000 return; 4001 } 4002 LexicalScope Scope(*this, S.getSourceRange()); 4003 EmitStopPoint(&S); 4004 emitMaster(*this, S); 4005 } 4006 4007 static void emitMasked(CodeGenFunction &CGF, const OMPExecutableDirective &S) { 4008 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4009 Action.Enter(CGF); 4010 CGF.EmitStmt(S.getRawStmt()); 4011 }; 4012 Expr *Filter = nullptr; 4013 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4014 Filter = FilterClause->getThreadID(); 4015 CGF.CGM.getOpenMPRuntime().emitMaskedRegion(CGF, CodeGen, S.getBeginLoc(), 4016 Filter); 4017 } 4018 4019 void CodeGenFunction::EmitOMPMaskedDirective(const OMPMaskedDirective &S) { 4020 if (CGM.getLangOpts().OpenMPIRBuilder) { 4021 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4022 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4023 4024 const Stmt *MaskedRegionBodyStmt = S.getAssociatedStmt(); 4025 const Expr *Filter = nullptr; 4026 if (const auto *FilterClause = S.getSingleClause<OMPFilterClause>()) 4027 Filter = FilterClause->getThreadID(); 4028 llvm::Value *FilterVal = Filter 4029 ? EmitScalarExpr(Filter, CGM.Int32Ty) 4030 : llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0); 4031 4032 auto FiniCB = [this](InsertPointTy IP) { 4033 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4034 }; 4035 4036 auto BodyGenCB = [MaskedRegionBodyStmt, this](InsertPointTy AllocaIP, 4037 InsertPointTy CodeGenIP, 4038 llvm::BasicBlock &FiniBB) { 4039 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4040 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, MaskedRegionBodyStmt, 4041 CodeGenIP, FiniBB); 4042 }; 4043 4044 LexicalScope Scope(*this, S.getSourceRange()); 4045 EmitStopPoint(&S); 4046 Builder.restoreIP( 4047 OMPBuilder.createMasked(Builder, BodyGenCB, FiniCB, FilterVal)); 4048 4049 return; 4050 } 4051 LexicalScope Scope(*this, S.getSourceRange()); 4052 EmitStopPoint(&S); 4053 emitMasked(*this, S); 4054 } 4055 4056 void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) { 4057 if (CGM.getLangOpts().OpenMPIRBuilder) { 4058 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 4059 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 4060 4061 const Stmt *CriticalRegionBodyStmt = S.getAssociatedStmt(); 4062 const Expr *Hint = nullptr; 4063 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4064 Hint = HintClause->getHint(); 4065 4066 // TODO: This is slightly different from what's currently being done in 4067 // clang. Fix the Int32Ty to IntPtrTy (pointer width size) when everything 4068 // about typing is final. 4069 llvm::Value *HintInst = nullptr; 4070 if (Hint) 4071 HintInst = 4072 Builder.CreateIntCast(EmitScalarExpr(Hint), CGM.Int32Ty, false); 4073 4074 auto FiniCB = [this](InsertPointTy IP) { 4075 OMPBuilderCBHelpers::FinalizeOMPRegion(*this, IP); 4076 }; 4077 4078 auto BodyGenCB = [CriticalRegionBodyStmt, this](InsertPointTy AllocaIP, 4079 InsertPointTy CodeGenIP, 4080 llvm::BasicBlock &FiniBB) { 4081 OMPBuilderCBHelpers::InlinedRegionBodyRAII IRB(*this, AllocaIP, FiniBB); 4082 OMPBuilderCBHelpers::EmitOMPRegionBody(*this, CriticalRegionBodyStmt, 4083 CodeGenIP, FiniBB); 4084 }; 4085 4086 LexicalScope Scope(*this, S.getSourceRange()); 4087 EmitStopPoint(&S); 4088 Builder.restoreIP(OMPBuilder.createCritical( 4089 Builder, BodyGenCB, FiniCB, S.getDirectiveName().getAsString(), 4090 HintInst)); 4091 4092 return; 4093 } 4094 4095 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4096 Action.Enter(CGF); 4097 CGF.EmitStmt(S.getAssociatedStmt()); 4098 }; 4099 const Expr *Hint = nullptr; 4100 if (const auto *HintClause = S.getSingleClause<OMPHintClause>()) 4101 Hint = HintClause->getHint(); 4102 LexicalScope Scope(*this, S.getSourceRange()); 4103 EmitStopPoint(&S); 4104 CGM.getOpenMPRuntime().emitCriticalRegion(*this, 4105 S.getDirectiveName().getAsString(), 4106 CodeGen, S.getBeginLoc(), Hint); 4107 } 4108 4109 void CodeGenFunction::EmitOMPParallelForDirective( 4110 const OMPParallelForDirective &S) { 4111 // Emit directive as a combined directive that consists of two implicit 4112 // directives: 'parallel' with 'for' directive. 4113 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4114 Action.Enter(CGF); 4115 (void)emitWorksharingDirective(CGF, S, S.hasCancel()); 4116 }; 4117 { 4118 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4119 [](const OMPReductionClause *C) { 4120 return C->getModifier() == OMPC_REDUCTION_inscan; 4121 })) { 4122 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4123 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4124 CGCapturedStmtInfo CGSI(CR_OpenMP); 4125 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4126 OMPLoopScope LoopScope(CGF, S); 4127 return CGF.EmitScalarExpr(S.getNumIterations()); 4128 }; 4129 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4130 } 4131 auto LPCRegion = 4132 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4133 emitCommonOMPParallelDirective(*this, S, OMPD_for, CodeGen, 4134 emitEmptyBoundParameters); 4135 } 4136 // Check for outer lastprivate conditional update. 4137 checkForLastprivateConditionalUpdate(*this, S); 4138 } 4139 4140 void CodeGenFunction::EmitOMPParallelForSimdDirective( 4141 const OMPParallelForSimdDirective &S) { 4142 // Emit directive as a combined directive that consists of two implicit 4143 // directives: 'parallel' with 'for' directive. 4144 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4145 Action.Enter(CGF); 4146 (void)emitWorksharingDirective(CGF, S, /*HasCancel=*/false); 4147 }; 4148 { 4149 if (llvm::any_of(S.getClausesOfKind<OMPReductionClause>(), 4150 [](const OMPReductionClause *C) { 4151 return C->getModifier() == OMPC_REDUCTION_inscan; 4152 })) { 4153 const auto &&NumIteratorsGen = [&S](CodeGenFunction &CGF) { 4154 CodeGenFunction::OMPLocalDeclMapRAII Scope(CGF); 4155 CGCapturedStmtInfo CGSI(CR_OpenMP); 4156 CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGSI); 4157 OMPLoopScope LoopScope(CGF, S); 4158 return CGF.EmitScalarExpr(S.getNumIterations()); 4159 }; 4160 emitScanBasedDirectiveDecls(*this, S, NumIteratorsGen); 4161 } 4162 auto LPCRegion = 4163 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4164 emitCommonOMPParallelDirective(*this, S, OMPD_for_simd, CodeGen, 4165 emitEmptyBoundParameters); 4166 } 4167 // Check for outer lastprivate conditional update. 4168 checkForLastprivateConditionalUpdate(*this, S); 4169 } 4170 4171 void CodeGenFunction::EmitOMPParallelMasterDirective( 4172 const OMPParallelMasterDirective &S) { 4173 // Emit directive as a combined directive that consists of two implicit 4174 // directives: 'parallel' with 'master' directive. 4175 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4176 Action.Enter(CGF); 4177 OMPPrivateScope PrivateScope(CGF); 4178 bool Copyins = CGF.EmitOMPCopyinClause(S); 4179 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 4180 if (Copyins) { 4181 // Emit implicit barrier to synchronize threads and avoid data races on 4182 // propagation master's thread values of threadprivate variables to local 4183 // instances of that variables of all other implicit threads. 4184 CGF.CGM.getOpenMPRuntime().emitBarrierCall( 4185 CGF, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 4186 /*ForceSimpleCall=*/true); 4187 } 4188 CGF.EmitOMPPrivateClause(S, PrivateScope); 4189 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 4190 (void)PrivateScope.Privatize(); 4191 emitMaster(CGF, S); 4192 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 4193 }; 4194 { 4195 auto LPCRegion = 4196 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4197 emitCommonOMPParallelDirective(*this, S, OMPD_master, CodeGen, 4198 emitEmptyBoundParameters); 4199 emitPostUpdateForReductionClause(*this, S, 4200 [](CodeGenFunction &) { return nullptr; }); 4201 } 4202 // Check for outer lastprivate conditional update. 4203 checkForLastprivateConditionalUpdate(*this, S); 4204 } 4205 4206 void CodeGenFunction::EmitOMPParallelSectionsDirective( 4207 const OMPParallelSectionsDirective &S) { 4208 // Emit directive as a combined directive that consists of two implicit 4209 // directives: 'parallel' with 'sections' directive. 4210 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4211 Action.Enter(CGF); 4212 CGF.EmitSections(S); 4213 }; 4214 { 4215 auto LPCRegion = 4216 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4217 emitCommonOMPParallelDirective(*this, S, OMPD_sections, CodeGen, 4218 emitEmptyBoundParameters); 4219 } 4220 // Check for outer lastprivate conditional update. 4221 checkForLastprivateConditionalUpdate(*this, S); 4222 } 4223 4224 namespace { 4225 /// Get the list of variables declared in the context of the untied tasks. 4226 class CheckVarsEscapingUntiedTaskDeclContext final 4227 : public ConstStmtVisitor<CheckVarsEscapingUntiedTaskDeclContext> { 4228 llvm::SmallVector<const VarDecl *, 4> PrivateDecls; 4229 4230 public: 4231 explicit CheckVarsEscapingUntiedTaskDeclContext() = default; 4232 virtual ~CheckVarsEscapingUntiedTaskDeclContext() = default; 4233 void VisitDeclStmt(const DeclStmt *S) { 4234 if (!S) 4235 return; 4236 // Need to privatize only local vars, static locals can be processed as is. 4237 for (const Decl *D : S->decls()) { 4238 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) 4239 if (VD->hasLocalStorage()) 4240 PrivateDecls.push_back(VD); 4241 } 4242 } 4243 void VisitOMPExecutableDirective(const OMPExecutableDirective *) { return; } 4244 void VisitCapturedStmt(const CapturedStmt *) { return; } 4245 void VisitLambdaExpr(const LambdaExpr *) { return; } 4246 void VisitBlockExpr(const BlockExpr *) { return; } 4247 void VisitStmt(const Stmt *S) { 4248 if (!S) 4249 return; 4250 for (const Stmt *Child : S->children()) 4251 if (Child) 4252 Visit(Child); 4253 } 4254 4255 /// Swaps list of vars with the provided one. 4256 ArrayRef<const VarDecl *> getPrivateDecls() const { return PrivateDecls; } 4257 }; 4258 } // anonymous namespace 4259 4260 void CodeGenFunction::EmitOMPTaskBasedDirective( 4261 const OMPExecutableDirective &S, const OpenMPDirectiveKind CapturedRegion, 4262 const RegionCodeGenTy &BodyGen, const TaskGenTy &TaskGen, 4263 OMPTaskDataTy &Data) { 4264 // Emit outlined function for task construct. 4265 const CapturedStmt *CS = S.getCapturedStmt(CapturedRegion); 4266 auto I = CS->getCapturedDecl()->param_begin(); 4267 auto PartId = std::next(I); 4268 auto TaskT = std::next(I, 4); 4269 // Check if the task is final 4270 if (const auto *Clause = S.getSingleClause<OMPFinalClause>()) { 4271 // If the condition constant folds and can be elided, try to avoid emitting 4272 // the condition and the dead arm of the if/else. 4273 const Expr *Cond = Clause->getCondition(); 4274 bool CondConstant; 4275 if (ConstantFoldsToSimpleInteger(Cond, CondConstant)) 4276 Data.Final.setInt(CondConstant); 4277 else 4278 Data.Final.setPointer(EvaluateExprAsBool(Cond)); 4279 } else { 4280 // By default the task is not final. 4281 Data.Final.setInt(/*IntVal=*/false); 4282 } 4283 // Check if the task has 'priority' clause. 4284 if (const auto *Clause = S.getSingleClause<OMPPriorityClause>()) { 4285 const Expr *Prio = Clause->getPriority(); 4286 Data.Priority.setInt(/*IntVal=*/true); 4287 Data.Priority.setPointer(EmitScalarConversion( 4288 EmitScalarExpr(Prio), Prio->getType(), 4289 getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1), 4290 Prio->getExprLoc())); 4291 } 4292 // The first function argument for tasks is a thread id, the second one is a 4293 // part id (0 for tied tasks, >=0 for untied task). 4294 llvm::DenseSet<const VarDecl *> EmittedAsPrivate; 4295 // Get list of private variables. 4296 for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) { 4297 auto IRef = C->varlist_begin(); 4298 for (const Expr *IInit : C->private_copies()) { 4299 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4300 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4301 Data.PrivateVars.push_back(*IRef); 4302 Data.PrivateCopies.push_back(IInit); 4303 } 4304 ++IRef; 4305 } 4306 } 4307 EmittedAsPrivate.clear(); 4308 // Get list of firstprivate variables. 4309 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4310 auto IRef = C->varlist_begin(); 4311 auto IElemInitRef = C->inits().begin(); 4312 for (const Expr *IInit : C->private_copies()) { 4313 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4314 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4315 Data.FirstprivateVars.push_back(*IRef); 4316 Data.FirstprivateCopies.push_back(IInit); 4317 Data.FirstprivateInits.push_back(*IElemInitRef); 4318 } 4319 ++IRef; 4320 ++IElemInitRef; 4321 } 4322 } 4323 // Get list of lastprivate variables (for taskloops). 4324 llvm::MapVector<const VarDecl *, const DeclRefExpr *> LastprivateDstsOrigs; 4325 for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) { 4326 auto IRef = C->varlist_begin(); 4327 auto ID = C->destination_exprs().begin(); 4328 for (const Expr *IInit : C->private_copies()) { 4329 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl()); 4330 if (EmittedAsPrivate.insert(OrigVD->getCanonicalDecl()).second) { 4331 Data.LastprivateVars.push_back(*IRef); 4332 Data.LastprivateCopies.push_back(IInit); 4333 } 4334 LastprivateDstsOrigs.insert( 4335 std::make_pair(cast<VarDecl>(cast<DeclRefExpr>(*ID)->getDecl()), 4336 cast<DeclRefExpr>(*IRef))); 4337 ++IRef; 4338 ++ID; 4339 } 4340 } 4341 SmallVector<const Expr *, 4> LHSs; 4342 SmallVector<const Expr *, 4> RHSs; 4343 for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) { 4344 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4345 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4346 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4347 Data.ReductionOps.append(C->reduction_ops().begin(), 4348 C->reduction_ops().end()); 4349 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4350 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4351 } 4352 Data.Reductions = CGM.getOpenMPRuntime().emitTaskReductionInit( 4353 *this, S.getBeginLoc(), LHSs, RHSs, Data); 4354 // Build list of dependences. 4355 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4356 OMPTaskDataTy::DependData &DD = 4357 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4358 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4359 } 4360 // Get list of local vars for untied tasks. 4361 if (!Data.Tied) { 4362 CheckVarsEscapingUntiedTaskDeclContext Checker; 4363 Checker.Visit(S.getInnermostCapturedStmt()->getCapturedStmt()); 4364 Data.PrivateLocals.append(Checker.getPrivateDecls().begin(), 4365 Checker.getPrivateDecls().end()); 4366 } 4367 auto &&CodeGen = [&Data, &S, CS, &BodyGen, &LastprivateDstsOrigs, 4368 CapturedRegion](CodeGenFunction &CGF, 4369 PrePostActionTy &Action) { 4370 llvm::MapVector<CanonicalDeclPtr<const VarDecl>, 4371 std::pair<Address, Address>> 4372 UntiedLocalVars; 4373 // Set proper addresses for generated private copies. 4374 OMPPrivateScope Scope(CGF); 4375 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> FirstprivatePtrs; 4376 if (!Data.PrivateVars.empty() || !Data.FirstprivateVars.empty() || 4377 !Data.LastprivateVars.empty() || !Data.PrivateLocals.empty()) { 4378 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4379 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4380 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4381 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4382 CS->getCapturedDecl()->getParam(PrivatesParam))); 4383 // Map privates. 4384 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4385 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4386 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4387 CallArgs.push_back(PrivatesPtr); 4388 ParamTypes.push_back(PrivatesPtr->getType()); 4389 for (const Expr *E : Data.PrivateVars) { 4390 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4391 Address PrivatePtr = CGF.CreateMemTemp( 4392 CGF.getContext().getPointerType(E->getType()), ".priv.ptr.addr"); 4393 PrivatePtrs.emplace_back(VD, PrivatePtr); 4394 CallArgs.push_back(PrivatePtr.getPointer()); 4395 ParamTypes.push_back(PrivatePtr.getType()); 4396 } 4397 for (const Expr *E : Data.FirstprivateVars) { 4398 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4399 Address PrivatePtr = 4400 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4401 ".firstpriv.ptr.addr"); 4402 PrivatePtrs.emplace_back(VD, PrivatePtr); 4403 FirstprivatePtrs.emplace_back(VD, PrivatePtr); 4404 CallArgs.push_back(PrivatePtr.getPointer()); 4405 ParamTypes.push_back(PrivatePtr.getType()); 4406 } 4407 for (const Expr *E : Data.LastprivateVars) { 4408 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4409 Address PrivatePtr = 4410 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4411 ".lastpriv.ptr.addr"); 4412 PrivatePtrs.emplace_back(VD, PrivatePtr); 4413 CallArgs.push_back(PrivatePtr.getPointer()); 4414 ParamTypes.push_back(PrivatePtr.getType()); 4415 } 4416 for (const VarDecl *VD : Data.PrivateLocals) { 4417 QualType Ty = VD->getType().getNonReferenceType(); 4418 if (VD->getType()->isLValueReferenceType()) 4419 Ty = CGF.getContext().getPointerType(Ty); 4420 if (isAllocatableDecl(VD)) 4421 Ty = CGF.getContext().getPointerType(Ty); 4422 Address PrivatePtr = CGF.CreateMemTemp( 4423 CGF.getContext().getPointerType(Ty), ".local.ptr.addr"); 4424 auto Result = UntiedLocalVars.insert( 4425 std::make_pair(VD, std::make_pair(PrivatePtr, Address::invalid()))); 4426 // If key exists update in place. 4427 if (Result.second == false) 4428 *Result.first = std::make_pair( 4429 VD, std::make_pair(PrivatePtr, Address::invalid())); 4430 CallArgs.push_back(PrivatePtr.getPointer()); 4431 ParamTypes.push_back(PrivatePtr.getType()); 4432 } 4433 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4434 ParamTypes, /*isVarArg=*/false); 4435 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4436 CopyFn, CopyFnTy->getPointerTo()); 4437 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4438 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4439 for (const auto &Pair : LastprivateDstsOrigs) { 4440 const auto *OrigVD = cast<VarDecl>(Pair.second->getDecl()); 4441 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(OrigVD), 4442 /*RefersToEnclosingVariableOrCapture=*/ 4443 CGF.CapturedStmtInfo->lookup(OrigVD) != nullptr, 4444 Pair.second->getType(), VK_LValue, 4445 Pair.second->getExprLoc()); 4446 Scope.addPrivate(Pair.first, [&CGF, &DRE]() { 4447 return CGF.EmitLValue(&DRE).getAddress(CGF); 4448 }); 4449 } 4450 for (const auto &Pair : PrivatePtrs) { 4451 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4452 CGF.getContext().getDeclAlign(Pair.first)); 4453 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4454 } 4455 // Adjust mapping for internal locals by mapping actual memory instead of 4456 // a pointer to this memory. 4457 for (auto &Pair : UntiedLocalVars) { 4458 if (isAllocatableDecl(Pair.first)) { 4459 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4460 Address Replacement(Ptr, CGF.getPointerAlign()); 4461 Pair.second.first = Replacement; 4462 Ptr = CGF.Builder.CreateLoad(Replacement); 4463 Replacement = Address(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4464 Pair.second.second = Replacement; 4465 } else { 4466 llvm::Value *Ptr = CGF.Builder.CreateLoad(Pair.second.first); 4467 Address Replacement(Ptr, CGF.getContext().getDeclAlign(Pair.first)); 4468 Pair.second.first = Replacement; 4469 } 4470 } 4471 } 4472 if (Data.Reductions) { 4473 OMPPrivateScope FirstprivateScope(CGF); 4474 for (const auto &Pair : FirstprivatePtrs) { 4475 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4476 CGF.getContext().getDeclAlign(Pair.first)); 4477 FirstprivateScope.addPrivate(Pair.first, 4478 [Replacement]() { return Replacement; }); 4479 } 4480 (void)FirstprivateScope.Privatize(); 4481 OMPLexicalScope LexScope(CGF, S, CapturedRegion); 4482 ReductionCodeGen RedCG(Data.ReductionVars, Data.ReductionVars, 4483 Data.ReductionCopies, Data.ReductionOps); 4484 llvm::Value *ReductionsPtr = CGF.Builder.CreateLoad( 4485 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(9))); 4486 for (unsigned Cnt = 0, E = Data.ReductionVars.size(); Cnt < E; ++Cnt) { 4487 RedCG.emitSharedOrigLValue(CGF, Cnt); 4488 RedCG.emitAggregateType(CGF, Cnt); 4489 // FIXME: This must removed once the runtime library is fixed. 4490 // Emit required threadprivate variables for 4491 // initializer/combiner/finalizer. 4492 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4493 RedCG, Cnt); 4494 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4495 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4496 Replacement = 4497 Address(CGF.EmitScalarConversion( 4498 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4499 CGF.getContext().getPointerType( 4500 Data.ReductionCopies[Cnt]->getType()), 4501 Data.ReductionCopies[Cnt]->getExprLoc()), 4502 Replacement.getAlignment()); 4503 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4504 Scope.addPrivate(RedCG.getBaseDecl(Cnt), 4505 [Replacement]() { return Replacement; }); 4506 } 4507 } 4508 // Privatize all private variables except for in_reduction items. 4509 (void)Scope.Privatize(); 4510 SmallVector<const Expr *, 4> InRedVars; 4511 SmallVector<const Expr *, 4> InRedPrivs; 4512 SmallVector<const Expr *, 4> InRedOps; 4513 SmallVector<const Expr *, 4> TaskgroupDescriptors; 4514 for (const auto *C : S.getClausesOfKind<OMPInReductionClause>()) { 4515 auto IPriv = C->privates().begin(); 4516 auto IRed = C->reduction_ops().begin(); 4517 auto ITD = C->taskgroup_descriptors().begin(); 4518 for (const Expr *Ref : C->varlists()) { 4519 InRedVars.emplace_back(Ref); 4520 InRedPrivs.emplace_back(*IPriv); 4521 InRedOps.emplace_back(*IRed); 4522 TaskgroupDescriptors.emplace_back(*ITD); 4523 std::advance(IPriv, 1); 4524 std::advance(IRed, 1); 4525 std::advance(ITD, 1); 4526 } 4527 } 4528 // Privatize in_reduction items here, because taskgroup descriptors must be 4529 // privatized earlier. 4530 OMPPrivateScope InRedScope(CGF); 4531 if (!InRedVars.empty()) { 4532 ReductionCodeGen RedCG(InRedVars, InRedVars, InRedPrivs, InRedOps); 4533 for (unsigned Cnt = 0, E = InRedVars.size(); Cnt < E; ++Cnt) { 4534 RedCG.emitSharedOrigLValue(CGF, Cnt); 4535 RedCG.emitAggregateType(CGF, Cnt); 4536 // The taskgroup descriptor variable is always implicit firstprivate and 4537 // privatized already during processing of the firstprivates. 4538 // FIXME: This must removed once the runtime library is fixed. 4539 // Emit required threadprivate variables for 4540 // initializer/combiner/finalizer. 4541 CGF.CGM.getOpenMPRuntime().emitTaskReductionFixups(CGF, S.getBeginLoc(), 4542 RedCG, Cnt); 4543 llvm::Value *ReductionsPtr; 4544 if (const Expr *TRExpr = TaskgroupDescriptors[Cnt]) { 4545 ReductionsPtr = CGF.EmitLoadOfScalar(CGF.EmitLValue(TRExpr), 4546 TRExpr->getExprLoc()); 4547 } else { 4548 ReductionsPtr = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); 4549 } 4550 Address Replacement = CGF.CGM.getOpenMPRuntime().getTaskReductionItem( 4551 CGF, S.getBeginLoc(), ReductionsPtr, RedCG.getSharedLValue(Cnt)); 4552 Replacement = Address( 4553 CGF.EmitScalarConversion( 4554 Replacement.getPointer(), CGF.getContext().VoidPtrTy, 4555 CGF.getContext().getPointerType(InRedPrivs[Cnt]->getType()), 4556 InRedPrivs[Cnt]->getExprLoc()), 4557 Replacement.getAlignment()); 4558 Replacement = RedCG.adjustPrivateAddress(CGF, Cnt, Replacement); 4559 InRedScope.addPrivate(RedCG.getBaseDecl(Cnt), 4560 [Replacement]() { return Replacement; }); 4561 } 4562 } 4563 (void)InRedScope.Privatize(); 4564 4565 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII LocalVarsScope(CGF, 4566 UntiedLocalVars); 4567 Action.Enter(CGF); 4568 BodyGen(CGF); 4569 }; 4570 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4571 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, Data.Tied, 4572 Data.NumberOfParts); 4573 OMPLexicalScope Scope(*this, S, llvm::None, 4574 !isOpenMPParallelDirective(S.getDirectiveKind()) && 4575 !isOpenMPSimdDirective(S.getDirectiveKind())); 4576 TaskGen(*this, OutlinedFn, Data); 4577 } 4578 4579 static ImplicitParamDecl * 4580 createImplicitFirstprivateForType(ASTContext &C, OMPTaskDataTy &Data, 4581 QualType Ty, CapturedDecl *CD, 4582 SourceLocation Loc) { 4583 auto *OrigVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4584 ImplicitParamDecl::Other); 4585 auto *OrigRef = DeclRefExpr::Create( 4586 C, NestedNameSpecifierLoc(), SourceLocation(), OrigVD, 4587 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4588 auto *PrivateVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, Ty, 4589 ImplicitParamDecl::Other); 4590 auto *PrivateRef = DeclRefExpr::Create( 4591 C, NestedNameSpecifierLoc(), SourceLocation(), PrivateVD, 4592 /*RefersToEnclosingVariableOrCapture=*/false, Loc, Ty, VK_LValue); 4593 QualType ElemType = C.getBaseElementType(Ty); 4594 auto *InitVD = ImplicitParamDecl::Create(C, CD, Loc, /*Id=*/nullptr, ElemType, 4595 ImplicitParamDecl::Other); 4596 auto *InitRef = DeclRefExpr::Create( 4597 C, NestedNameSpecifierLoc(), SourceLocation(), InitVD, 4598 /*RefersToEnclosingVariableOrCapture=*/false, Loc, ElemType, VK_LValue); 4599 PrivateVD->setInitStyle(VarDecl::CInit); 4600 PrivateVD->setInit(ImplicitCastExpr::Create(C, ElemType, CK_LValueToRValue, 4601 InitRef, /*BasePath=*/nullptr, 4602 VK_PRValue, FPOptionsOverride())); 4603 Data.FirstprivateVars.emplace_back(OrigRef); 4604 Data.FirstprivateCopies.emplace_back(PrivateRef); 4605 Data.FirstprivateInits.emplace_back(InitRef); 4606 return OrigVD; 4607 } 4608 4609 void CodeGenFunction::EmitOMPTargetTaskBasedDirective( 4610 const OMPExecutableDirective &S, const RegionCodeGenTy &BodyGen, 4611 OMPTargetDataInfo &InputInfo) { 4612 // Emit outlined function for task construct. 4613 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4614 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4615 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4616 auto I = CS->getCapturedDecl()->param_begin(); 4617 auto PartId = std::next(I); 4618 auto TaskT = std::next(I, 4); 4619 OMPTaskDataTy Data; 4620 // The task is not final. 4621 Data.Final.setInt(/*IntVal=*/false); 4622 // Get list of firstprivate variables. 4623 for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) { 4624 auto IRef = C->varlist_begin(); 4625 auto IElemInitRef = C->inits().begin(); 4626 for (auto *IInit : C->private_copies()) { 4627 Data.FirstprivateVars.push_back(*IRef); 4628 Data.FirstprivateCopies.push_back(IInit); 4629 Data.FirstprivateInits.push_back(*IElemInitRef); 4630 ++IRef; 4631 ++IElemInitRef; 4632 } 4633 } 4634 OMPPrivateScope TargetScope(*this); 4635 VarDecl *BPVD = nullptr; 4636 VarDecl *PVD = nullptr; 4637 VarDecl *SVD = nullptr; 4638 VarDecl *MVD = nullptr; 4639 if (InputInfo.NumberOfTargetItems > 0) { 4640 auto *CD = CapturedDecl::Create( 4641 getContext(), getContext().getTranslationUnitDecl(), /*NumParams=*/0); 4642 llvm::APInt ArrSize(/*numBits=*/32, InputInfo.NumberOfTargetItems); 4643 QualType BaseAndPointerAndMapperType = getContext().getConstantArrayType( 4644 getContext().VoidPtrTy, ArrSize, nullptr, ArrayType::Normal, 4645 /*IndexTypeQuals=*/0); 4646 BPVD = createImplicitFirstprivateForType( 4647 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4648 PVD = createImplicitFirstprivateForType( 4649 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4650 QualType SizesType = getContext().getConstantArrayType( 4651 getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1), 4652 ArrSize, nullptr, ArrayType::Normal, 4653 /*IndexTypeQuals=*/0); 4654 SVD = createImplicitFirstprivateForType(getContext(), Data, SizesType, CD, 4655 S.getBeginLoc()); 4656 TargetScope.addPrivate( 4657 BPVD, [&InputInfo]() { return InputInfo.BasePointersArray; }); 4658 TargetScope.addPrivate(PVD, 4659 [&InputInfo]() { return InputInfo.PointersArray; }); 4660 TargetScope.addPrivate(SVD, 4661 [&InputInfo]() { return InputInfo.SizesArray; }); 4662 // If there is no user-defined mapper, the mapper array will be nullptr. In 4663 // this case, we don't need to privatize it. 4664 if (!dyn_cast_or_null<llvm::ConstantPointerNull>( 4665 InputInfo.MappersArray.getPointer())) { 4666 MVD = createImplicitFirstprivateForType( 4667 getContext(), Data, BaseAndPointerAndMapperType, CD, S.getBeginLoc()); 4668 TargetScope.addPrivate(MVD, 4669 [&InputInfo]() { return InputInfo.MappersArray; }); 4670 } 4671 } 4672 (void)TargetScope.Privatize(); 4673 // Build list of dependences. 4674 for (const auto *C : S.getClausesOfKind<OMPDependClause>()) { 4675 OMPTaskDataTy::DependData &DD = 4676 Data.Dependences.emplace_back(C->getDependencyKind(), C->getModifier()); 4677 DD.DepExprs.append(C->varlist_begin(), C->varlist_end()); 4678 } 4679 auto &&CodeGen = [&Data, &S, CS, &BodyGen, BPVD, PVD, SVD, MVD, 4680 &InputInfo](CodeGenFunction &CGF, PrePostActionTy &Action) { 4681 // Set proper addresses for generated private copies. 4682 OMPPrivateScope Scope(CGF); 4683 if (!Data.FirstprivateVars.empty()) { 4684 enum { PrivatesParam = 2, CopyFnParam = 3 }; 4685 llvm::Value *CopyFn = CGF.Builder.CreateLoad( 4686 CGF.GetAddrOfLocalVar(CS->getCapturedDecl()->getParam(CopyFnParam))); 4687 llvm::Value *PrivatesPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar( 4688 CS->getCapturedDecl()->getParam(PrivatesParam))); 4689 // Map privates. 4690 llvm::SmallVector<std::pair<const VarDecl *, Address>, 16> PrivatePtrs; 4691 llvm::SmallVector<llvm::Value *, 16> CallArgs; 4692 llvm::SmallVector<llvm::Type *, 4> ParamTypes; 4693 CallArgs.push_back(PrivatesPtr); 4694 ParamTypes.push_back(PrivatesPtr->getType()); 4695 for (const Expr *E : Data.FirstprivateVars) { 4696 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4697 Address PrivatePtr = 4698 CGF.CreateMemTemp(CGF.getContext().getPointerType(E->getType()), 4699 ".firstpriv.ptr.addr"); 4700 PrivatePtrs.emplace_back(VD, PrivatePtr); 4701 CallArgs.push_back(PrivatePtr.getPointer()); 4702 ParamTypes.push_back(PrivatePtr.getType()); 4703 } 4704 auto *CopyFnTy = llvm::FunctionType::get(CGF.Builder.getVoidTy(), 4705 ParamTypes, /*isVarArg=*/false); 4706 CopyFn = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4707 CopyFn, CopyFnTy->getPointerTo()); 4708 CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 4709 CGF, S.getBeginLoc(), {CopyFnTy, CopyFn}, CallArgs); 4710 for (const auto &Pair : PrivatePtrs) { 4711 Address Replacement(CGF.Builder.CreateLoad(Pair.second), 4712 CGF.getContext().getDeclAlign(Pair.first)); 4713 Scope.addPrivate(Pair.first, [Replacement]() { return Replacement; }); 4714 } 4715 } 4716 // Privatize all private variables except for in_reduction items. 4717 (void)Scope.Privatize(); 4718 if (InputInfo.NumberOfTargetItems > 0) { 4719 InputInfo.BasePointersArray = CGF.Builder.CreateConstArrayGEP( 4720 CGF.GetAddrOfLocalVar(BPVD), /*Index=*/0); 4721 InputInfo.PointersArray = CGF.Builder.CreateConstArrayGEP( 4722 CGF.GetAddrOfLocalVar(PVD), /*Index=*/0); 4723 InputInfo.SizesArray = CGF.Builder.CreateConstArrayGEP( 4724 CGF.GetAddrOfLocalVar(SVD), /*Index=*/0); 4725 // If MVD is nullptr, the mapper array is not privatized 4726 if (MVD) 4727 InputInfo.MappersArray = CGF.Builder.CreateConstArrayGEP( 4728 CGF.GetAddrOfLocalVar(MVD), /*Index=*/0); 4729 } 4730 4731 Action.Enter(CGF); 4732 OMPLexicalScope LexScope(CGF, S, OMPD_task, /*EmitPreInitStmt=*/false); 4733 BodyGen(CGF); 4734 }; 4735 llvm::Function *OutlinedFn = CGM.getOpenMPRuntime().emitTaskOutlinedFunction( 4736 S, *I, *PartId, *TaskT, S.getDirectiveKind(), CodeGen, /*Tied=*/true, 4737 Data.NumberOfParts); 4738 llvm::APInt TrueOrFalse(32, S.hasClausesOfKind<OMPNowaitClause>() ? 1 : 0); 4739 IntegerLiteral IfCond(getContext(), TrueOrFalse, 4740 getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4741 SourceLocation()); 4742 4743 CGM.getOpenMPRuntime().emitTaskCall(*this, S.getBeginLoc(), S, OutlinedFn, 4744 SharedsTy, CapturedStruct, &IfCond, Data); 4745 } 4746 4747 void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) { 4748 // Emit outlined function for task construct. 4749 const CapturedStmt *CS = S.getCapturedStmt(OMPD_task); 4750 Address CapturedStruct = GenerateCapturedStmtArgument(*CS); 4751 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 4752 const Expr *IfCond = nullptr; 4753 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 4754 if (C->getNameModifier() == OMPD_unknown || 4755 C->getNameModifier() == OMPD_task) { 4756 IfCond = C->getCondition(); 4757 break; 4758 } 4759 } 4760 4761 OMPTaskDataTy Data; 4762 // Check if we should emit tied or untied task. 4763 Data.Tied = !S.getSingleClause<OMPUntiedClause>(); 4764 auto &&BodyGen = [CS](CodeGenFunction &CGF, PrePostActionTy &) { 4765 CGF.EmitStmt(CS->getCapturedStmt()); 4766 }; 4767 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 4768 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 4769 const OMPTaskDataTy &Data) { 4770 CGF.CGM.getOpenMPRuntime().emitTaskCall(CGF, S.getBeginLoc(), S, OutlinedFn, 4771 SharedsTy, CapturedStruct, IfCond, 4772 Data); 4773 }; 4774 auto LPCRegion = 4775 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 4776 EmitOMPTaskBasedDirective(S, OMPD_task, BodyGen, TaskGen, Data); 4777 } 4778 4779 void CodeGenFunction::EmitOMPTaskyieldDirective( 4780 const OMPTaskyieldDirective &S) { 4781 CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getBeginLoc()); 4782 } 4783 4784 void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) { 4785 CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getBeginLoc(), OMPD_barrier); 4786 } 4787 4788 void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S) { 4789 CGM.getOpenMPRuntime().emitTaskwaitCall(*this, S.getBeginLoc()); 4790 } 4791 4792 void CodeGenFunction::EmitOMPTaskgroupDirective( 4793 const OMPTaskgroupDirective &S) { 4794 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 4795 Action.Enter(CGF); 4796 if (const Expr *E = S.getReductionRef()) { 4797 SmallVector<const Expr *, 4> LHSs; 4798 SmallVector<const Expr *, 4> RHSs; 4799 OMPTaskDataTy Data; 4800 for (const auto *C : S.getClausesOfKind<OMPTaskReductionClause>()) { 4801 Data.ReductionVars.append(C->varlist_begin(), C->varlist_end()); 4802 Data.ReductionOrigs.append(C->varlist_begin(), C->varlist_end()); 4803 Data.ReductionCopies.append(C->privates().begin(), C->privates().end()); 4804 Data.ReductionOps.append(C->reduction_ops().begin(), 4805 C->reduction_ops().end()); 4806 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4807 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4808 } 4809 llvm::Value *ReductionDesc = 4810 CGF.CGM.getOpenMPRuntime().emitTaskReductionInit(CGF, S.getBeginLoc(), 4811 LHSs, RHSs, Data); 4812 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 4813 CGF.EmitVarDecl(*VD); 4814 CGF.EmitStoreOfScalar(ReductionDesc, CGF.GetAddrOfLocalVar(VD), 4815 /*Volatile=*/false, E->getType()); 4816 } 4817 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 4818 }; 4819 OMPLexicalScope Scope(*this, S, OMPD_unknown); 4820 CGM.getOpenMPRuntime().emitTaskgroupRegion(*this, CodeGen, S.getBeginLoc()); 4821 } 4822 4823 void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) { 4824 llvm::AtomicOrdering AO = S.getSingleClause<OMPFlushClause>() 4825 ? llvm::AtomicOrdering::NotAtomic 4826 : llvm::AtomicOrdering::AcquireRelease; 4827 CGM.getOpenMPRuntime().emitFlush( 4828 *this, 4829 [&S]() -> ArrayRef<const Expr *> { 4830 if (const auto *FlushClause = S.getSingleClause<OMPFlushClause>()) 4831 return llvm::makeArrayRef(FlushClause->varlist_begin(), 4832 FlushClause->varlist_end()); 4833 return llvm::None; 4834 }(), 4835 S.getBeginLoc(), AO); 4836 } 4837 4838 void CodeGenFunction::EmitOMPDepobjDirective(const OMPDepobjDirective &S) { 4839 const auto *DO = S.getSingleClause<OMPDepobjClause>(); 4840 LValue DOLVal = EmitLValue(DO->getDepobj()); 4841 if (const auto *DC = S.getSingleClause<OMPDependClause>()) { 4842 OMPTaskDataTy::DependData Dependencies(DC->getDependencyKind(), 4843 DC->getModifier()); 4844 Dependencies.DepExprs.append(DC->varlist_begin(), DC->varlist_end()); 4845 Address DepAddr = CGM.getOpenMPRuntime().emitDepobjDependClause( 4846 *this, Dependencies, DC->getBeginLoc()); 4847 EmitStoreOfScalar(DepAddr.getPointer(), DOLVal); 4848 return; 4849 } 4850 if (const auto *DC = S.getSingleClause<OMPDestroyClause>()) { 4851 CGM.getOpenMPRuntime().emitDestroyClause(*this, DOLVal, DC->getBeginLoc()); 4852 return; 4853 } 4854 if (const auto *UC = S.getSingleClause<OMPUpdateClause>()) { 4855 CGM.getOpenMPRuntime().emitUpdateClause( 4856 *this, DOLVal, UC->getDependencyKind(), UC->getBeginLoc()); 4857 return; 4858 } 4859 } 4860 4861 void CodeGenFunction::EmitOMPScanDirective(const OMPScanDirective &S) { 4862 if (!OMPParentLoopDirectiveForScan) 4863 return; 4864 const OMPExecutableDirective &ParentDir = *OMPParentLoopDirectiveForScan; 4865 bool IsInclusive = S.hasClausesOfKind<OMPInclusiveClause>(); 4866 SmallVector<const Expr *, 4> Shareds; 4867 SmallVector<const Expr *, 4> Privates; 4868 SmallVector<const Expr *, 4> LHSs; 4869 SmallVector<const Expr *, 4> RHSs; 4870 SmallVector<const Expr *, 4> ReductionOps; 4871 SmallVector<const Expr *, 4> CopyOps; 4872 SmallVector<const Expr *, 4> CopyArrayTemps; 4873 SmallVector<const Expr *, 4> CopyArrayElems; 4874 for (const auto *C : ParentDir.getClausesOfKind<OMPReductionClause>()) { 4875 if (C->getModifier() != OMPC_REDUCTION_inscan) 4876 continue; 4877 Shareds.append(C->varlist_begin(), C->varlist_end()); 4878 Privates.append(C->privates().begin(), C->privates().end()); 4879 LHSs.append(C->lhs_exprs().begin(), C->lhs_exprs().end()); 4880 RHSs.append(C->rhs_exprs().begin(), C->rhs_exprs().end()); 4881 ReductionOps.append(C->reduction_ops().begin(), C->reduction_ops().end()); 4882 CopyOps.append(C->copy_ops().begin(), C->copy_ops().end()); 4883 CopyArrayTemps.append(C->copy_array_temps().begin(), 4884 C->copy_array_temps().end()); 4885 CopyArrayElems.append(C->copy_array_elems().begin(), 4886 C->copy_array_elems().end()); 4887 } 4888 if (ParentDir.getDirectiveKind() == OMPD_simd || 4889 (getLangOpts().OpenMPSimd && 4890 isOpenMPSimdDirective(ParentDir.getDirectiveKind()))) { 4891 // For simd directive and simd-based directives in simd only mode, use the 4892 // following codegen: 4893 // int x = 0; 4894 // #pragma omp simd reduction(inscan, +: x) 4895 // for (..) { 4896 // <first part> 4897 // #pragma omp scan inclusive(x) 4898 // <second part> 4899 // } 4900 // is transformed to: 4901 // int x = 0; 4902 // for (..) { 4903 // int x_priv = 0; 4904 // <first part> 4905 // x = x_priv + x; 4906 // x_priv = x; 4907 // <second part> 4908 // } 4909 // and 4910 // int x = 0; 4911 // #pragma omp simd reduction(inscan, +: x) 4912 // for (..) { 4913 // <first part> 4914 // #pragma omp scan exclusive(x) 4915 // <second part> 4916 // } 4917 // to 4918 // int x = 0; 4919 // for (..) { 4920 // int x_priv = 0; 4921 // <second part> 4922 // int temp = x; 4923 // x = x_priv + x; 4924 // x_priv = temp; 4925 // <first part> 4926 // } 4927 llvm::BasicBlock *OMPScanReduce = createBasicBlock("omp.inscan.reduce"); 4928 EmitBranch(IsInclusive 4929 ? OMPScanReduce 4930 : BreakContinueStack.back().ContinueBlock.getBlock()); 4931 EmitBlock(OMPScanDispatch); 4932 { 4933 // New scope for correct construction/destruction of temp variables for 4934 // exclusive scan. 4935 LexicalScope Scope(*this, S.getSourceRange()); 4936 EmitBranch(IsInclusive ? OMPBeforeScanBlock : OMPAfterScanBlock); 4937 EmitBlock(OMPScanReduce); 4938 if (!IsInclusive) { 4939 // Create temp var and copy LHS value to this temp value. 4940 // TMP = LHS; 4941 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4942 const Expr *PrivateExpr = Privates[I]; 4943 const Expr *TempExpr = CopyArrayTemps[I]; 4944 EmitAutoVarDecl( 4945 *cast<VarDecl>(cast<DeclRefExpr>(TempExpr)->getDecl())); 4946 LValue DestLVal = EmitLValue(TempExpr); 4947 LValue SrcLVal = EmitLValue(LHSs[I]); 4948 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4949 SrcLVal.getAddress(*this), 4950 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4951 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4952 CopyOps[I]); 4953 } 4954 } 4955 CGM.getOpenMPRuntime().emitReduction( 4956 *this, ParentDir.getEndLoc(), Privates, LHSs, RHSs, ReductionOps, 4957 {/*WithNowait=*/true, /*SimpleReduction=*/true, OMPD_simd}); 4958 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4959 const Expr *PrivateExpr = Privates[I]; 4960 LValue DestLVal; 4961 LValue SrcLVal; 4962 if (IsInclusive) { 4963 DestLVal = EmitLValue(RHSs[I]); 4964 SrcLVal = EmitLValue(LHSs[I]); 4965 } else { 4966 const Expr *TempExpr = CopyArrayTemps[I]; 4967 DestLVal = EmitLValue(RHSs[I]); 4968 SrcLVal = EmitLValue(TempExpr); 4969 } 4970 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 4971 SrcLVal.getAddress(*this), 4972 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 4973 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 4974 CopyOps[I]); 4975 } 4976 } 4977 EmitBranch(IsInclusive ? OMPAfterScanBlock : OMPBeforeScanBlock); 4978 OMPScanExitBlock = IsInclusive 4979 ? BreakContinueStack.back().ContinueBlock.getBlock() 4980 : OMPScanReduce; 4981 EmitBlock(OMPAfterScanBlock); 4982 return; 4983 } 4984 if (!IsInclusive) { 4985 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 4986 EmitBlock(OMPScanExitBlock); 4987 } 4988 if (OMPFirstScanLoop) { 4989 // Emit buffer[i] = red; at the end of the input phase. 4990 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 4991 .getIterationVariable() 4992 ->IgnoreParenImpCasts(); 4993 LValue IdxLVal = EmitLValue(IVExpr); 4994 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 4995 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 4996 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 4997 const Expr *PrivateExpr = Privates[I]; 4998 const Expr *OrigExpr = Shareds[I]; 4999 const Expr *CopyArrayElem = CopyArrayElems[I]; 5000 OpaqueValueMapping IdxMapping( 5001 *this, 5002 cast<OpaqueValueExpr>( 5003 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5004 RValue::get(IdxVal)); 5005 LValue DestLVal = EmitLValue(CopyArrayElem); 5006 LValue SrcLVal = EmitLValue(OrigExpr); 5007 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5008 SrcLVal.getAddress(*this), 5009 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5010 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5011 CopyOps[I]); 5012 } 5013 } 5014 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5015 if (IsInclusive) { 5016 EmitBlock(OMPScanExitBlock); 5017 EmitBranch(BreakContinueStack.back().ContinueBlock.getBlock()); 5018 } 5019 EmitBlock(OMPScanDispatch); 5020 if (!OMPFirstScanLoop) { 5021 // Emit red = buffer[i]; at the entrance to the scan phase. 5022 const auto *IVExpr = cast<OMPLoopDirective>(ParentDir) 5023 .getIterationVariable() 5024 ->IgnoreParenImpCasts(); 5025 LValue IdxLVal = EmitLValue(IVExpr); 5026 llvm::Value *IdxVal = EmitLoadOfScalar(IdxLVal, IVExpr->getExprLoc()); 5027 IdxVal = Builder.CreateIntCast(IdxVal, SizeTy, /*isSigned=*/false); 5028 llvm::BasicBlock *ExclusiveExitBB = nullptr; 5029 if (!IsInclusive) { 5030 llvm::BasicBlock *ContBB = createBasicBlock("omp.exclusive.dec"); 5031 ExclusiveExitBB = createBasicBlock("omp.exclusive.copy.exit"); 5032 llvm::Value *Cmp = Builder.CreateIsNull(IdxVal); 5033 Builder.CreateCondBr(Cmp, ExclusiveExitBB, ContBB); 5034 EmitBlock(ContBB); 5035 // Use idx - 1 iteration for exclusive scan. 5036 IdxVal = Builder.CreateNUWSub(IdxVal, llvm::ConstantInt::get(SizeTy, 1)); 5037 } 5038 for (unsigned I = 0, E = CopyArrayElems.size(); I < E; ++I) { 5039 const Expr *PrivateExpr = Privates[I]; 5040 const Expr *OrigExpr = Shareds[I]; 5041 const Expr *CopyArrayElem = CopyArrayElems[I]; 5042 OpaqueValueMapping IdxMapping( 5043 *this, 5044 cast<OpaqueValueExpr>( 5045 cast<ArraySubscriptExpr>(CopyArrayElem)->getIdx()), 5046 RValue::get(IdxVal)); 5047 LValue SrcLVal = EmitLValue(CopyArrayElem); 5048 LValue DestLVal = EmitLValue(OrigExpr); 5049 EmitOMPCopy(PrivateExpr->getType(), DestLVal.getAddress(*this), 5050 SrcLVal.getAddress(*this), 5051 cast<VarDecl>(cast<DeclRefExpr>(LHSs[I])->getDecl()), 5052 cast<VarDecl>(cast<DeclRefExpr>(RHSs[I])->getDecl()), 5053 CopyOps[I]); 5054 } 5055 if (!IsInclusive) { 5056 EmitBlock(ExclusiveExitBB); 5057 } 5058 } 5059 EmitBranch((OMPFirstScanLoop == IsInclusive) ? OMPBeforeScanBlock 5060 : OMPAfterScanBlock); 5061 EmitBlock(OMPAfterScanBlock); 5062 } 5063 5064 void CodeGenFunction::EmitOMPDistributeLoop(const OMPLoopDirective &S, 5065 const CodeGenLoopTy &CodeGenLoop, 5066 Expr *IncExpr) { 5067 // Emit the loop iteration variable. 5068 const auto *IVExpr = cast<DeclRefExpr>(S.getIterationVariable()); 5069 const auto *IVDecl = cast<VarDecl>(IVExpr->getDecl()); 5070 EmitVarDecl(*IVDecl); 5071 5072 // Emit the iterations count variable. 5073 // If it is not a variable, Sema decided to calculate iterations count on each 5074 // iteration (e.g., it is foldable into a constant). 5075 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 5076 EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 5077 // Emit calculation of the iterations count. 5078 EmitIgnoredExpr(S.getCalcLastIteration()); 5079 } 5080 5081 CGOpenMPRuntime &RT = CGM.getOpenMPRuntime(); 5082 5083 bool HasLastprivateClause = false; 5084 // Check pre-condition. 5085 { 5086 OMPLoopScope PreInitScope(*this, S); 5087 // Skip the entire loop if we don't meet the precondition. 5088 // If the condition constant folds and can be elided, avoid emitting the 5089 // whole loop. 5090 bool CondConstant; 5091 llvm::BasicBlock *ContBlock = nullptr; 5092 if (ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 5093 if (!CondConstant) 5094 return; 5095 } else { 5096 llvm::BasicBlock *ThenBlock = createBasicBlock("omp.precond.then"); 5097 ContBlock = createBasicBlock("omp.precond.end"); 5098 emitPreCond(*this, S, S.getPreCond(), ThenBlock, ContBlock, 5099 getProfileCount(&S)); 5100 EmitBlock(ThenBlock); 5101 incrementProfileCounter(&S); 5102 } 5103 5104 emitAlignedClause(*this, S); 5105 // Emit 'then' code. 5106 { 5107 // Emit helper vars inits. 5108 5109 LValue LB = EmitOMPHelperVar( 5110 *this, cast<DeclRefExpr>( 5111 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5112 ? S.getCombinedLowerBoundVariable() 5113 : S.getLowerBoundVariable()))); 5114 LValue UB = EmitOMPHelperVar( 5115 *this, cast<DeclRefExpr>( 5116 (isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5117 ? S.getCombinedUpperBoundVariable() 5118 : S.getUpperBoundVariable()))); 5119 LValue ST = 5120 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable())); 5121 LValue IL = 5122 EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable())); 5123 5124 OMPPrivateScope LoopScope(*this); 5125 if (EmitOMPFirstprivateClause(S, LoopScope)) { 5126 // Emit implicit barrier to synchronize threads and avoid data races 5127 // on initialization of firstprivate variables and post-update of 5128 // lastprivate variables. 5129 CGM.getOpenMPRuntime().emitBarrierCall( 5130 *this, S.getBeginLoc(), OMPD_unknown, /*EmitChecks=*/false, 5131 /*ForceSimpleCall=*/true); 5132 } 5133 EmitOMPPrivateClause(S, LoopScope); 5134 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5135 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5136 !isOpenMPTeamsDirective(S.getDirectiveKind())) 5137 EmitOMPReductionClauseInit(S, LoopScope); 5138 HasLastprivateClause = EmitOMPLastprivateClauseInit(S, LoopScope); 5139 EmitOMPPrivateLoopCounters(S, LoopScope); 5140 (void)LoopScope.Privatize(); 5141 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 5142 CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(*this, S); 5143 5144 // Detect the distribute schedule kind and chunk. 5145 llvm::Value *Chunk = nullptr; 5146 OpenMPDistScheduleClauseKind ScheduleKind = OMPC_DIST_SCHEDULE_unknown; 5147 if (const auto *C = S.getSingleClause<OMPDistScheduleClause>()) { 5148 ScheduleKind = C->getDistScheduleKind(); 5149 if (const Expr *Ch = C->getChunkSize()) { 5150 Chunk = EmitScalarExpr(Ch); 5151 Chunk = EmitScalarConversion(Chunk, Ch->getType(), 5152 S.getIterationVariable()->getType(), 5153 S.getBeginLoc()); 5154 } 5155 } else { 5156 // Default behaviour for dist_schedule clause. 5157 CGM.getOpenMPRuntime().getDefaultDistScheduleAndChunk( 5158 *this, S, ScheduleKind, Chunk); 5159 } 5160 const unsigned IVSize = getContext().getTypeSize(IVExpr->getType()); 5161 const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation(); 5162 5163 // OpenMP [2.10.8, distribute Construct, Description] 5164 // If dist_schedule is specified, kind must be static. If specified, 5165 // iterations are divided into chunks of size chunk_size, chunks are 5166 // assigned to the teams of the league in a round-robin fashion in the 5167 // order of the team number. When no chunk_size is specified, the 5168 // iteration space is divided into chunks that are approximately equal 5169 // in size, and at most one chunk is distributed to each team of the 5170 // league. The size of the chunks is unspecified in this case. 5171 bool StaticChunked = RT.isStaticChunked( 5172 ScheduleKind, /* Chunked */ Chunk != nullptr) && 5173 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()); 5174 if (RT.isStaticNonchunked(ScheduleKind, 5175 /* Chunked */ Chunk != nullptr) || 5176 StaticChunked) { 5177 CGOpenMPRuntime::StaticRTInput StaticInit( 5178 IVSize, IVSigned, /* Ordered = */ false, IL.getAddress(*this), 5179 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5180 StaticChunked ? Chunk : nullptr); 5181 RT.emitDistributeStaticInit(*this, S.getBeginLoc(), ScheduleKind, 5182 StaticInit); 5183 JumpDest LoopExit = 5184 getJumpDestInCurrentScope(createBasicBlock("omp.loop.exit")); 5185 // UB = min(UB, GlobalUB); 5186 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5187 ? S.getCombinedEnsureUpperBound() 5188 : S.getEnsureUpperBound()); 5189 // IV = LB; 5190 EmitIgnoredExpr(isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5191 ? S.getCombinedInit() 5192 : S.getInit()); 5193 5194 const Expr *Cond = 5195 isOpenMPLoopBoundSharingDirective(S.getDirectiveKind()) 5196 ? S.getCombinedCond() 5197 : S.getCond(); 5198 5199 if (StaticChunked) 5200 Cond = S.getCombinedDistCond(); 5201 5202 // For static unchunked schedules generate: 5203 // 5204 // 1. For distribute alone, codegen 5205 // while (idx <= UB) { 5206 // BODY; 5207 // ++idx; 5208 // } 5209 // 5210 // 2. When combined with 'for' (e.g. as in 'distribute parallel for') 5211 // while (idx <= UB) { 5212 // <CodeGen rest of pragma>(LB, UB); 5213 // idx += ST; 5214 // } 5215 // 5216 // For static chunk one schedule generate: 5217 // 5218 // while (IV <= GlobalUB) { 5219 // <CodeGen rest of pragma>(LB, UB); 5220 // LB += ST; 5221 // UB += ST; 5222 // UB = min(UB, GlobalUB); 5223 // IV = LB; 5224 // } 5225 // 5226 emitCommonSimdLoop( 5227 *this, S, 5228 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5229 if (isOpenMPSimdDirective(S.getDirectiveKind())) 5230 CGF.EmitOMPSimdInit(S); 5231 }, 5232 [&S, &LoopScope, Cond, IncExpr, LoopExit, &CodeGenLoop, 5233 StaticChunked](CodeGenFunction &CGF, PrePostActionTy &) { 5234 CGF.EmitOMPInnerLoop( 5235 S, LoopScope.requiresCleanups(), Cond, IncExpr, 5236 [&S, LoopExit, &CodeGenLoop](CodeGenFunction &CGF) { 5237 CodeGenLoop(CGF, S, LoopExit); 5238 }, 5239 [&S, StaticChunked](CodeGenFunction &CGF) { 5240 if (StaticChunked) { 5241 CGF.EmitIgnoredExpr(S.getCombinedNextLowerBound()); 5242 CGF.EmitIgnoredExpr(S.getCombinedNextUpperBound()); 5243 CGF.EmitIgnoredExpr(S.getCombinedEnsureUpperBound()); 5244 CGF.EmitIgnoredExpr(S.getCombinedInit()); 5245 } 5246 }); 5247 }); 5248 EmitBlock(LoopExit.getBlock()); 5249 // Tell the runtime we are done. 5250 RT.emitForStaticFinish(*this, S.getEndLoc(), S.getDirectiveKind()); 5251 } else { 5252 // Emit the outer loop, which requests its work chunk [LB..UB] from 5253 // runtime and runs the inner loop to process it. 5254 const OMPLoopArguments LoopArguments = { 5255 LB.getAddress(*this), UB.getAddress(*this), ST.getAddress(*this), 5256 IL.getAddress(*this), Chunk}; 5257 EmitOMPDistributeOuterLoop(ScheduleKind, S, LoopScope, LoopArguments, 5258 CodeGenLoop); 5259 } 5260 if (isOpenMPSimdDirective(S.getDirectiveKind())) { 5261 EmitOMPSimdFinal(S, [IL, &S](CodeGenFunction &CGF) { 5262 return CGF.Builder.CreateIsNotNull( 5263 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5264 }); 5265 } 5266 if (isOpenMPSimdDirective(S.getDirectiveKind()) && 5267 !isOpenMPParallelDirective(S.getDirectiveKind()) && 5268 !isOpenMPTeamsDirective(S.getDirectiveKind())) { 5269 EmitOMPReductionClauseFinal(S, OMPD_simd); 5270 // Emit post-update of the reduction variables if IsLastIter != 0. 5271 emitPostUpdateForReductionClause( 5272 *this, S, [IL, &S](CodeGenFunction &CGF) { 5273 return CGF.Builder.CreateIsNotNull( 5274 CGF.EmitLoadOfScalar(IL, S.getBeginLoc())); 5275 }); 5276 } 5277 // Emit final copy of the lastprivate variables if IsLastIter != 0. 5278 if (HasLastprivateClause) { 5279 EmitOMPLastprivateClauseFinal( 5280 S, /*NoFinals=*/false, 5281 Builder.CreateIsNotNull(EmitLoadOfScalar(IL, S.getBeginLoc()))); 5282 } 5283 } 5284 5285 // We're now done with the loop, so jump to the continuation block. 5286 if (ContBlock) { 5287 EmitBranch(ContBlock); 5288 EmitBlock(ContBlock, true); 5289 } 5290 } 5291 } 5292 5293 void CodeGenFunction::EmitOMPDistributeDirective( 5294 const OMPDistributeDirective &S) { 5295 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5296 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 5297 }; 5298 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5299 CGM.getOpenMPRuntime().emitInlinedDirective(*this, OMPD_distribute, CodeGen); 5300 } 5301 5302 static llvm::Function *emitOutlinedOrderedFunction(CodeGenModule &CGM, 5303 const CapturedStmt *S, 5304 SourceLocation Loc) { 5305 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 5306 CodeGenFunction::CGCapturedStmtInfo CapStmtInfo; 5307 CGF.CapturedStmtInfo = &CapStmtInfo; 5308 llvm::Function *Fn = CGF.GenerateOpenMPCapturedStmtFunction(*S, Loc); 5309 Fn->setDoesNotRecurse(); 5310 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 5311 Fn->addFnAttr(llvm::Attribute::AlwaysInline); 5312 return Fn; 5313 } 5314 5315 void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &S) { 5316 if (S.hasClausesOfKind<OMPDependClause>()) { 5317 assert(!S.hasAssociatedStmt() && 5318 "No associated statement must be in ordered depend construct."); 5319 for (const auto *DC : S.getClausesOfKind<OMPDependClause>()) 5320 CGM.getOpenMPRuntime().emitDoacrossOrdered(*this, DC); 5321 return; 5322 } 5323 const auto *C = S.getSingleClause<OMPSIMDClause>(); 5324 auto &&CodeGen = [&S, C, this](CodeGenFunction &CGF, 5325 PrePostActionTy &Action) { 5326 const CapturedStmt *CS = S.getInnermostCapturedStmt(); 5327 if (C) { 5328 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 5329 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 5330 llvm::Function *OutlinedFn = 5331 emitOutlinedOrderedFunction(CGM, CS, S.getBeginLoc()); 5332 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, S.getBeginLoc(), 5333 OutlinedFn, CapturedVars); 5334 } else { 5335 Action.Enter(CGF); 5336 CGF.EmitStmt(CS->getCapturedStmt()); 5337 } 5338 }; 5339 OMPLexicalScope Scope(*this, S, OMPD_unknown); 5340 CGM.getOpenMPRuntime().emitOrderedRegion(*this, CodeGen, S.getBeginLoc(), !C); 5341 } 5342 5343 static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val, 5344 QualType SrcType, QualType DestType, 5345 SourceLocation Loc) { 5346 assert(CGF.hasScalarEvaluationKind(DestType) && 5347 "DestType must have scalar evaluation kind."); 5348 assert(!Val.isAggregate() && "Must be a scalar or complex."); 5349 return Val.isScalar() ? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, 5350 DestType, Loc) 5351 : CGF.EmitComplexToScalarConversion( 5352 Val.getComplexVal(), SrcType, DestType, Loc); 5353 } 5354 5355 static CodeGenFunction::ComplexPairTy 5356 convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType, 5357 QualType DestType, SourceLocation Loc) { 5358 assert(CGF.getEvaluationKind(DestType) == TEK_Complex && 5359 "DestType must have complex evaluation kind."); 5360 CodeGenFunction::ComplexPairTy ComplexVal; 5361 if (Val.isScalar()) { 5362 // Convert the input element to the element type of the complex. 5363 QualType DestElementType = 5364 DestType->castAs<ComplexType>()->getElementType(); 5365 llvm::Value *ScalarVal = CGF.EmitScalarConversion( 5366 Val.getScalarVal(), SrcType, DestElementType, Loc); 5367 ComplexVal = CodeGenFunction::ComplexPairTy( 5368 ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType())); 5369 } else { 5370 assert(Val.isComplex() && "Must be a scalar or complex."); 5371 QualType SrcElementType = SrcType->castAs<ComplexType>()->getElementType(); 5372 QualType DestElementType = 5373 DestType->castAs<ComplexType>()->getElementType(); 5374 ComplexVal.first = CGF.EmitScalarConversion( 5375 Val.getComplexVal().first, SrcElementType, DestElementType, Loc); 5376 ComplexVal.second = CGF.EmitScalarConversion( 5377 Val.getComplexVal().second, SrcElementType, DestElementType, Loc); 5378 } 5379 return ComplexVal; 5380 } 5381 5382 static void emitSimpleAtomicStore(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5383 LValue LVal, RValue RVal) { 5384 if (LVal.isGlobalReg()) 5385 CGF.EmitStoreThroughGlobalRegLValue(RVal, LVal); 5386 else 5387 CGF.EmitAtomicStore(RVal, LVal, AO, LVal.isVolatile(), /*isInit=*/false); 5388 } 5389 5390 static RValue emitSimpleAtomicLoad(CodeGenFunction &CGF, 5391 llvm::AtomicOrdering AO, LValue LVal, 5392 SourceLocation Loc) { 5393 if (LVal.isGlobalReg()) 5394 return CGF.EmitLoadOfLValue(LVal, Loc); 5395 return CGF.EmitAtomicLoad( 5396 LVal, Loc, llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO), 5397 LVal.isVolatile()); 5398 } 5399 5400 void CodeGenFunction::emitOMPSimpleStore(LValue LVal, RValue RVal, 5401 QualType RValTy, SourceLocation Loc) { 5402 switch (getEvaluationKind(LVal.getType())) { 5403 case TEK_Scalar: 5404 EmitStoreThroughLValue(RValue::get(convertToScalarValue( 5405 *this, RVal, RValTy, LVal.getType(), Loc)), 5406 LVal); 5407 break; 5408 case TEK_Complex: 5409 EmitStoreOfComplex( 5410 convertToComplexValue(*this, RVal, RValTy, LVal.getType(), Loc), LVal, 5411 /*isInit=*/false); 5412 break; 5413 case TEK_Aggregate: 5414 llvm_unreachable("Must be a scalar or complex."); 5415 } 5416 } 5417 5418 static void emitOMPAtomicReadExpr(CodeGenFunction &CGF, llvm::AtomicOrdering AO, 5419 const Expr *X, const Expr *V, 5420 SourceLocation Loc) { 5421 // v = x; 5422 assert(V->isLValue() && "V of 'omp atomic read' is not lvalue"); 5423 assert(X->isLValue() && "X of 'omp atomic read' is not lvalue"); 5424 LValue XLValue = CGF.EmitLValue(X); 5425 LValue VLValue = CGF.EmitLValue(V); 5426 RValue Res = emitSimpleAtomicLoad(CGF, AO, XLValue, Loc); 5427 // OpenMP, 2.17.7, atomic Construct 5428 // If the read or capture clause is specified and the acquire, acq_rel, or 5429 // seq_cst clause is specified then the strong flush on exit from the atomic 5430 // operation is also an acquire flush. 5431 switch (AO) { 5432 case llvm::AtomicOrdering::Acquire: 5433 case llvm::AtomicOrdering::AcquireRelease: 5434 case llvm::AtomicOrdering::SequentiallyConsistent: 5435 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5436 llvm::AtomicOrdering::Acquire); 5437 break; 5438 case llvm::AtomicOrdering::Monotonic: 5439 case llvm::AtomicOrdering::Release: 5440 break; 5441 case llvm::AtomicOrdering::NotAtomic: 5442 case llvm::AtomicOrdering::Unordered: 5443 llvm_unreachable("Unexpected ordering."); 5444 } 5445 CGF.emitOMPSimpleStore(VLValue, Res, X->getType().getNonReferenceType(), Loc); 5446 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5447 } 5448 5449 static void emitOMPAtomicWriteExpr(CodeGenFunction &CGF, 5450 llvm::AtomicOrdering AO, const Expr *X, 5451 const Expr *E, SourceLocation Loc) { 5452 // x = expr; 5453 assert(X->isLValue() && "X of 'omp atomic write' is not lvalue"); 5454 emitSimpleAtomicStore(CGF, AO, CGF.EmitLValue(X), CGF.EmitAnyExpr(E)); 5455 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5456 // OpenMP, 2.17.7, atomic Construct 5457 // If the write, update, or capture clause is specified and the release, 5458 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5459 // the atomic operation is also a release flush. 5460 switch (AO) { 5461 case llvm::AtomicOrdering::Release: 5462 case llvm::AtomicOrdering::AcquireRelease: 5463 case llvm::AtomicOrdering::SequentiallyConsistent: 5464 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5465 llvm::AtomicOrdering::Release); 5466 break; 5467 case llvm::AtomicOrdering::Acquire: 5468 case llvm::AtomicOrdering::Monotonic: 5469 break; 5470 case llvm::AtomicOrdering::NotAtomic: 5471 case llvm::AtomicOrdering::Unordered: 5472 llvm_unreachable("Unexpected ordering."); 5473 } 5474 } 5475 5476 static std::pair<bool, RValue> emitOMPAtomicRMW(CodeGenFunction &CGF, LValue X, 5477 RValue Update, 5478 BinaryOperatorKind BO, 5479 llvm::AtomicOrdering AO, 5480 bool IsXLHSInRHSPart) { 5481 ASTContext &Context = CGF.getContext(); 5482 // Allow atomicrmw only if 'x' and 'update' are integer values, lvalue for 'x' 5483 // expression is simple and atomic is allowed for the given type for the 5484 // target platform. 5485 if (BO == BO_Comma || !Update.isScalar() || 5486 !Update.getScalarVal()->getType()->isIntegerTy() || !X.isSimple() || 5487 (!isa<llvm::ConstantInt>(Update.getScalarVal()) && 5488 (Update.getScalarVal()->getType() != 5489 X.getAddress(CGF).getElementType())) || 5490 !X.getAddress(CGF).getElementType()->isIntegerTy() || 5491 !Context.getTargetInfo().hasBuiltinAtomic( 5492 Context.getTypeSize(X.getType()), Context.toBits(X.getAlignment()))) 5493 return std::make_pair(false, RValue::get(nullptr)); 5494 5495 llvm::AtomicRMWInst::BinOp RMWOp; 5496 switch (BO) { 5497 case BO_Add: 5498 RMWOp = llvm::AtomicRMWInst::Add; 5499 break; 5500 case BO_Sub: 5501 if (!IsXLHSInRHSPart) 5502 return std::make_pair(false, RValue::get(nullptr)); 5503 RMWOp = llvm::AtomicRMWInst::Sub; 5504 break; 5505 case BO_And: 5506 RMWOp = llvm::AtomicRMWInst::And; 5507 break; 5508 case BO_Or: 5509 RMWOp = llvm::AtomicRMWInst::Or; 5510 break; 5511 case BO_Xor: 5512 RMWOp = llvm::AtomicRMWInst::Xor; 5513 break; 5514 case BO_LT: 5515 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5516 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Min 5517 : llvm::AtomicRMWInst::Max) 5518 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMin 5519 : llvm::AtomicRMWInst::UMax); 5520 break; 5521 case BO_GT: 5522 RMWOp = X.getType()->hasSignedIntegerRepresentation() 5523 ? (IsXLHSInRHSPart ? llvm::AtomicRMWInst::Max 5524 : llvm::AtomicRMWInst::Min) 5525 : (IsXLHSInRHSPart ? llvm::AtomicRMWInst::UMax 5526 : llvm::AtomicRMWInst::UMin); 5527 break; 5528 case BO_Assign: 5529 RMWOp = llvm::AtomicRMWInst::Xchg; 5530 break; 5531 case BO_Mul: 5532 case BO_Div: 5533 case BO_Rem: 5534 case BO_Shl: 5535 case BO_Shr: 5536 case BO_LAnd: 5537 case BO_LOr: 5538 return std::make_pair(false, RValue::get(nullptr)); 5539 case BO_PtrMemD: 5540 case BO_PtrMemI: 5541 case BO_LE: 5542 case BO_GE: 5543 case BO_EQ: 5544 case BO_NE: 5545 case BO_Cmp: 5546 case BO_AddAssign: 5547 case BO_SubAssign: 5548 case BO_AndAssign: 5549 case BO_OrAssign: 5550 case BO_XorAssign: 5551 case BO_MulAssign: 5552 case BO_DivAssign: 5553 case BO_RemAssign: 5554 case BO_ShlAssign: 5555 case BO_ShrAssign: 5556 case BO_Comma: 5557 llvm_unreachable("Unsupported atomic update operation"); 5558 } 5559 llvm::Value *UpdateVal = Update.getScalarVal(); 5560 if (auto *IC = dyn_cast<llvm::ConstantInt>(UpdateVal)) { 5561 UpdateVal = CGF.Builder.CreateIntCast( 5562 IC, X.getAddress(CGF).getElementType(), 5563 X.getType()->hasSignedIntegerRepresentation()); 5564 } 5565 llvm::Value *Res = 5566 CGF.Builder.CreateAtomicRMW(RMWOp, X.getPointer(CGF), UpdateVal, AO); 5567 return std::make_pair(true, RValue::get(Res)); 5568 } 5569 5570 std::pair<bool, RValue> CodeGenFunction::EmitOMPAtomicSimpleUpdateExpr( 5571 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 5572 llvm::AtomicOrdering AO, SourceLocation Loc, 5573 const llvm::function_ref<RValue(RValue)> CommonGen) { 5574 // Update expressions are allowed to have the following forms: 5575 // x binop= expr; -> xrval + expr; 5576 // x++, ++x -> xrval + 1; 5577 // x--, --x -> xrval - 1; 5578 // x = x binop expr; -> xrval binop expr 5579 // x = expr Op x; - > expr binop xrval; 5580 auto Res = emitOMPAtomicRMW(*this, X, E, BO, AO, IsXLHSInRHSPart); 5581 if (!Res.first) { 5582 if (X.isGlobalReg()) { 5583 // Emit an update expression: 'xrval' binop 'expr' or 'expr' binop 5584 // 'xrval'. 5585 EmitStoreThroughLValue(CommonGen(EmitLoadOfLValue(X, Loc)), X); 5586 } else { 5587 // Perform compare-and-swap procedure. 5588 EmitAtomicUpdate(X, AO, CommonGen, X.getType().isVolatileQualified()); 5589 } 5590 } 5591 return Res; 5592 } 5593 5594 static void emitOMPAtomicUpdateExpr(CodeGenFunction &CGF, 5595 llvm::AtomicOrdering AO, const Expr *X, 5596 const Expr *E, const Expr *UE, 5597 bool IsXLHSInRHSPart, SourceLocation Loc) { 5598 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5599 "Update expr in 'atomic update' must be a binary operator."); 5600 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5601 // Update expressions are allowed to have the following forms: 5602 // x binop= expr; -> xrval + expr; 5603 // x++, ++x -> xrval + 1; 5604 // x--, --x -> xrval - 1; 5605 // x = x binop expr; -> xrval binop expr 5606 // x = expr Op x; - > expr binop xrval; 5607 assert(X->isLValue() && "X of 'omp atomic update' is not lvalue"); 5608 LValue XLValue = CGF.EmitLValue(X); 5609 RValue ExprRValue = CGF.EmitAnyExpr(E); 5610 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5611 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5612 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5613 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5614 auto &&Gen = [&CGF, UE, ExprRValue, XRValExpr, ERValExpr](RValue XRValue) { 5615 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5616 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5617 return CGF.EmitAnyExpr(UE); 5618 }; 5619 (void)CGF.EmitOMPAtomicSimpleUpdateExpr( 5620 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5621 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5622 // OpenMP, 2.17.7, atomic Construct 5623 // If the write, update, or capture clause is specified and the release, 5624 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5625 // the atomic operation is also a release flush. 5626 switch (AO) { 5627 case llvm::AtomicOrdering::Release: 5628 case llvm::AtomicOrdering::AcquireRelease: 5629 case llvm::AtomicOrdering::SequentiallyConsistent: 5630 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5631 llvm::AtomicOrdering::Release); 5632 break; 5633 case llvm::AtomicOrdering::Acquire: 5634 case llvm::AtomicOrdering::Monotonic: 5635 break; 5636 case llvm::AtomicOrdering::NotAtomic: 5637 case llvm::AtomicOrdering::Unordered: 5638 llvm_unreachable("Unexpected ordering."); 5639 } 5640 } 5641 5642 static RValue convertToType(CodeGenFunction &CGF, RValue Value, 5643 QualType SourceType, QualType ResType, 5644 SourceLocation Loc) { 5645 switch (CGF.getEvaluationKind(ResType)) { 5646 case TEK_Scalar: 5647 return RValue::get( 5648 convertToScalarValue(CGF, Value, SourceType, ResType, Loc)); 5649 case TEK_Complex: { 5650 auto Res = convertToComplexValue(CGF, Value, SourceType, ResType, Loc); 5651 return RValue::getComplex(Res.first, Res.second); 5652 } 5653 case TEK_Aggregate: 5654 break; 5655 } 5656 llvm_unreachable("Must be a scalar or complex."); 5657 } 5658 5659 static void emitOMPAtomicCaptureExpr(CodeGenFunction &CGF, 5660 llvm::AtomicOrdering AO, 5661 bool IsPostfixUpdate, const Expr *V, 5662 const Expr *X, const Expr *E, 5663 const Expr *UE, bool IsXLHSInRHSPart, 5664 SourceLocation Loc) { 5665 assert(X->isLValue() && "X of 'omp atomic capture' is not lvalue"); 5666 assert(V->isLValue() && "V of 'omp atomic capture' is not lvalue"); 5667 RValue NewVVal; 5668 LValue VLValue = CGF.EmitLValue(V); 5669 LValue XLValue = CGF.EmitLValue(X); 5670 RValue ExprRValue = CGF.EmitAnyExpr(E); 5671 QualType NewVValType; 5672 if (UE) { 5673 // 'x' is updated with some additional value. 5674 assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) && 5675 "Update expr in 'atomic capture' must be a binary operator."); 5676 const auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts()); 5677 // Update expressions are allowed to have the following forms: 5678 // x binop= expr; -> xrval + expr; 5679 // x++, ++x -> xrval + 1; 5680 // x--, --x -> xrval - 1; 5681 // x = x binop expr; -> xrval binop expr 5682 // x = expr Op x; - > expr binop xrval; 5683 const auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts()); 5684 const auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts()); 5685 const OpaqueValueExpr *XRValExpr = IsXLHSInRHSPart ? LHS : RHS; 5686 NewVValType = XRValExpr->getType(); 5687 const OpaqueValueExpr *ERValExpr = IsXLHSInRHSPart ? RHS : LHS; 5688 auto &&Gen = [&CGF, &NewVVal, UE, ExprRValue, XRValExpr, ERValExpr, 5689 IsPostfixUpdate](RValue XRValue) { 5690 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5691 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRValue); 5692 RValue Res = CGF.EmitAnyExpr(UE); 5693 NewVVal = IsPostfixUpdate ? XRValue : Res; 5694 return Res; 5695 }; 5696 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5697 XLValue, ExprRValue, BOUE->getOpcode(), IsXLHSInRHSPart, AO, Loc, Gen); 5698 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5699 if (Res.first) { 5700 // 'atomicrmw' instruction was generated. 5701 if (IsPostfixUpdate) { 5702 // Use old value from 'atomicrmw'. 5703 NewVVal = Res.second; 5704 } else { 5705 // 'atomicrmw' does not provide new value, so evaluate it using old 5706 // value of 'x'. 5707 CodeGenFunction::OpaqueValueMapping MapExpr(CGF, ERValExpr, ExprRValue); 5708 CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, Res.second); 5709 NewVVal = CGF.EmitAnyExpr(UE); 5710 } 5711 } 5712 } else { 5713 // 'x' is simply rewritten with some 'expr'. 5714 NewVValType = X->getType().getNonReferenceType(); 5715 ExprRValue = convertToType(CGF, ExprRValue, E->getType(), 5716 X->getType().getNonReferenceType(), Loc); 5717 auto &&Gen = [&NewVVal, ExprRValue](RValue XRValue) { 5718 NewVVal = XRValue; 5719 return ExprRValue; 5720 }; 5721 // Try to perform atomicrmw xchg, otherwise simple exchange. 5722 auto Res = CGF.EmitOMPAtomicSimpleUpdateExpr( 5723 XLValue, ExprRValue, /*BO=*/BO_Assign, /*IsXLHSInRHSPart=*/false, AO, 5724 Loc, Gen); 5725 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, X); 5726 if (Res.first) { 5727 // 'atomicrmw' instruction was generated. 5728 NewVVal = IsPostfixUpdate ? Res.second : ExprRValue; 5729 } 5730 } 5731 // Emit post-update store to 'v' of old/new 'x' value. 5732 CGF.emitOMPSimpleStore(VLValue, NewVVal, NewVValType, Loc); 5733 CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, V); 5734 // OpenMP 5.1 removes the required flush for capture clause. 5735 if (CGF.CGM.getLangOpts().OpenMP < 51) { 5736 // OpenMP, 2.17.7, atomic Construct 5737 // If the write, update, or capture clause is specified and the release, 5738 // acq_rel, or seq_cst clause is specified then the strong flush on entry to 5739 // the atomic operation is also a release flush. 5740 // If the read or capture clause is specified and the acquire, acq_rel, or 5741 // seq_cst clause is specified then the strong flush on exit from the atomic 5742 // operation is also an acquire flush. 5743 switch (AO) { 5744 case llvm::AtomicOrdering::Release: 5745 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5746 llvm::AtomicOrdering::Release); 5747 break; 5748 case llvm::AtomicOrdering::Acquire: 5749 CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc, 5750 llvm::AtomicOrdering::Acquire); 5751 break; 5752 case llvm::AtomicOrdering::AcquireRelease: 5753 case llvm::AtomicOrdering::SequentiallyConsistent: 5754 CGF.CGM.getOpenMPRuntime().emitFlush( 5755 CGF, llvm::None, Loc, llvm::AtomicOrdering::AcquireRelease); 5756 break; 5757 case llvm::AtomicOrdering::Monotonic: 5758 break; 5759 case llvm::AtomicOrdering::NotAtomic: 5760 case llvm::AtomicOrdering::Unordered: 5761 llvm_unreachable("Unexpected ordering."); 5762 } 5763 } 5764 } 5765 5766 static void emitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind, 5767 llvm::AtomicOrdering AO, bool IsPostfixUpdate, 5768 const Expr *X, const Expr *V, const Expr *E, 5769 const Expr *UE, bool IsXLHSInRHSPart, 5770 SourceLocation Loc) { 5771 switch (Kind) { 5772 case OMPC_read: 5773 emitOMPAtomicReadExpr(CGF, AO, X, V, Loc); 5774 break; 5775 case OMPC_write: 5776 emitOMPAtomicWriteExpr(CGF, AO, X, E, Loc); 5777 break; 5778 case OMPC_unknown: 5779 case OMPC_update: 5780 emitOMPAtomicUpdateExpr(CGF, AO, X, E, UE, IsXLHSInRHSPart, Loc); 5781 break; 5782 case OMPC_capture: 5783 emitOMPAtomicCaptureExpr(CGF, AO, IsPostfixUpdate, V, X, E, UE, 5784 IsXLHSInRHSPart, Loc); 5785 break; 5786 case OMPC_if: 5787 case OMPC_final: 5788 case OMPC_num_threads: 5789 case OMPC_private: 5790 case OMPC_firstprivate: 5791 case OMPC_lastprivate: 5792 case OMPC_reduction: 5793 case OMPC_task_reduction: 5794 case OMPC_in_reduction: 5795 case OMPC_safelen: 5796 case OMPC_simdlen: 5797 case OMPC_sizes: 5798 case OMPC_full: 5799 case OMPC_partial: 5800 case OMPC_allocator: 5801 case OMPC_allocate: 5802 case OMPC_collapse: 5803 case OMPC_default: 5804 case OMPC_seq_cst: 5805 case OMPC_acq_rel: 5806 case OMPC_acquire: 5807 case OMPC_release: 5808 case OMPC_relaxed: 5809 case OMPC_shared: 5810 case OMPC_linear: 5811 case OMPC_aligned: 5812 case OMPC_copyin: 5813 case OMPC_copyprivate: 5814 case OMPC_flush: 5815 case OMPC_depobj: 5816 case OMPC_proc_bind: 5817 case OMPC_schedule: 5818 case OMPC_ordered: 5819 case OMPC_nowait: 5820 case OMPC_untied: 5821 case OMPC_threadprivate: 5822 case OMPC_depend: 5823 case OMPC_mergeable: 5824 case OMPC_device: 5825 case OMPC_threads: 5826 case OMPC_simd: 5827 case OMPC_map: 5828 case OMPC_num_teams: 5829 case OMPC_thread_limit: 5830 case OMPC_priority: 5831 case OMPC_grainsize: 5832 case OMPC_nogroup: 5833 case OMPC_num_tasks: 5834 case OMPC_hint: 5835 case OMPC_dist_schedule: 5836 case OMPC_defaultmap: 5837 case OMPC_uniform: 5838 case OMPC_to: 5839 case OMPC_from: 5840 case OMPC_use_device_ptr: 5841 case OMPC_use_device_addr: 5842 case OMPC_is_device_ptr: 5843 case OMPC_unified_address: 5844 case OMPC_unified_shared_memory: 5845 case OMPC_reverse_offload: 5846 case OMPC_dynamic_allocators: 5847 case OMPC_atomic_default_mem_order: 5848 case OMPC_device_type: 5849 case OMPC_match: 5850 case OMPC_nontemporal: 5851 case OMPC_order: 5852 case OMPC_destroy: 5853 case OMPC_detach: 5854 case OMPC_inclusive: 5855 case OMPC_exclusive: 5856 case OMPC_uses_allocators: 5857 case OMPC_affinity: 5858 case OMPC_init: 5859 case OMPC_inbranch: 5860 case OMPC_notinbranch: 5861 case OMPC_link: 5862 case OMPC_use: 5863 case OMPC_novariants: 5864 case OMPC_nocontext: 5865 case OMPC_filter: 5866 llvm_unreachable("Clause is not allowed in 'omp atomic'."); 5867 } 5868 } 5869 5870 void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) { 5871 llvm::AtomicOrdering AO = llvm::AtomicOrdering::Monotonic; 5872 bool MemOrderingSpecified = false; 5873 if (S.getSingleClause<OMPSeqCstClause>()) { 5874 AO = llvm::AtomicOrdering::SequentiallyConsistent; 5875 MemOrderingSpecified = true; 5876 } else if (S.getSingleClause<OMPAcqRelClause>()) { 5877 AO = llvm::AtomicOrdering::AcquireRelease; 5878 MemOrderingSpecified = true; 5879 } else if (S.getSingleClause<OMPAcquireClause>()) { 5880 AO = llvm::AtomicOrdering::Acquire; 5881 MemOrderingSpecified = true; 5882 } else if (S.getSingleClause<OMPReleaseClause>()) { 5883 AO = llvm::AtomicOrdering::Release; 5884 MemOrderingSpecified = true; 5885 } else if (S.getSingleClause<OMPRelaxedClause>()) { 5886 AO = llvm::AtomicOrdering::Monotonic; 5887 MemOrderingSpecified = true; 5888 } 5889 OpenMPClauseKind Kind = OMPC_unknown; 5890 for (const OMPClause *C : S.clauses()) { 5891 // Find first clause (skip seq_cst|acq_rel|aqcuire|release|relaxed clause, 5892 // if it is first). 5893 if (C->getClauseKind() != OMPC_seq_cst && 5894 C->getClauseKind() != OMPC_acq_rel && 5895 C->getClauseKind() != OMPC_acquire && 5896 C->getClauseKind() != OMPC_release && 5897 C->getClauseKind() != OMPC_relaxed && C->getClauseKind() != OMPC_hint) { 5898 Kind = C->getClauseKind(); 5899 break; 5900 } 5901 } 5902 if (!MemOrderingSpecified) { 5903 llvm::AtomicOrdering DefaultOrder = 5904 CGM.getOpenMPRuntime().getDefaultMemoryOrdering(); 5905 if (DefaultOrder == llvm::AtomicOrdering::Monotonic || 5906 DefaultOrder == llvm::AtomicOrdering::SequentiallyConsistent || 5907 (DefaultOrder == llvm::AtomicOrdering::AcquireRelease && 5908 Kind == OMPC_capture)) { 5909 AO = DefaultOrder; 5910 } else if (DefaultOrder == llvm::AtomicOrdering::AcquireRelease) { 5911 if (Kind == OMPC_unknown || Kind == OMPC_update || Kind == OMPC_write) { 5912 AO = llvm::AtomicOrdering::Release; 5913 } else if (Kind == OMPC_read) { 5914 assert(Kind == OMPC_read && "Unexpected atomic kind."); 5915 AO = llvm::AtomicOrdering::Acquire; 5916 } 5917 } 5918 } 5919 5920 LexicalScope Scope(*this, S.getSourceRange()); 5921 EmitStopPoint(S.getAssociatedStmt()); 5922 emitOMPAtomicExpr(*this, Kind, AO, S.isPostfixUpdate(), S.getX(), S.getV(), 5923 S.getExpr(), S.getUpdateExpr(), S.isXLHSInRHSPart(), 5924 S.getBeginLoc()); 5925 } 5926 5927 static void emitCommonOMPTargetDirective(CodeGenFunction &CGF, 5928 const OMPExecutableDirective &S, 5929 const RegionCodeGenTy &CodeGen) { 5930 assert(isOpenMPTargetExecutionDirective(S.getDirectiveKind())); 5931 CodeGenModule &CGM = CGF.CGM; 5932 5933 // On device emit this construct as inlined code. 5934 if (CGM.getLangOpts().OpenMPIsDevice) { 5935 OMPLexicalScope Scope(CGF, S, OMPD_target); 5936 CGM.getOpenMPRuntime().emitInlinedDirective( 5937 CGF, OMPD_target, [&S](CodeGenFunction &CGF, PrePostActionTy &) { 5938 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 5939 }); 5940 return; 5941 } 5942 5943 auto LPCRegion = 5944 CGOpenMPRuntime::LastprivateConditionalRAII::disable(CGF, S); 5945 llvm::Function *Fn = nullptr; 5946 llvm::Constant *FnID = nullptr; 5947 5948 const Expr *IfCond = nullptr; 5949 // Check for the at most one if clause associated with the target region. 5950 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 5951 if (C->getNameModifier() == OMPD_unknown || 5952 C->getNameModifier() == OMPD_target) { 5953 IfCond = C->getCondition(); 5954 break; 5955 } 5956 } 5957 5958 // Check if we have any device clause associated with the directive. 5959 llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device( 5960 nullptr, OMPC_DEVICE_unknown); 5961 if (auto *C = S.getSingleClause<OMPDeviceClause>()) 5962 Device.setPointerAndInt(C->getDevice(), C->getModifier()); 5963 5964 // Check if we have an if clause whose conditional always evaluates to false 5965 // or if we do not have any targets specified. If so the target region is not 5966 // an offload entry point. 5967 bool IsOffloadEntry = true; 5968 if (IfCond) { 5969 bool Val; 5970 if (CGF.ConstantFoldsToSimpleInteger(IfCond, Val) && !Val) 5971 IsOffloadEntry = false; 5972 } 5973 if (CGM.getLangOpts().OMPTargetTriples.empty()) 5974 IsOffloadEntry = false; 5975 5976 assert(CGF.CurFuncDecl && "No parent declaration for target region!"); 5977 StringRef ParentName; 5978 // In case we have Ctors/Dtors we use the complete type variant to produce 5979 // the mangling of the device outlined kernel. 5980 if (const auto *D = dyn_cast<CXXConstructorDecl>(CGF.CurFuncDecl)) 5981 ParentName = CGM.getMangledName(GlobalDecl(D, Ctor_Complete)); 5982 else if (const auto *D = dyn_cast<CXXDestructorDecl>(CGF.CurFuncDecl)) 5983 ParentName = CGM.getMangledName(GlobalDecl(D, Dtor_Complete)); 5984 else 5985 ParentName = 5986 CGM.getMangledName(GlobalDecl(cast<FunctionDecl>(CGF.CurFuncDecl))); 5987 5988 // Emit target region as a standalone region. 5989 CGM.getOpenMPRuntime().emitTargetOutlinedFunction(S, ParentName, Fn, FnID, 5990 IsOffloadEntry, CodeGen); 5991 OMPLexicalScope Scope(CGF, S, OMPD_task); 5992 auto &&SizeEmitter = 5993 [IsOffloadEntry](CodeGenFunction &CGF, 5994 const OMPLoopDirective &D) -> llvm::Value * { 5995 if (IsOffloadEntry) { 5996 OMPLoopScope(CGF, D); 5997 // Emit calculation of the iterations count. 5998 llvm::Value *NumIterations = CGF.EmitScalarExpr(D.getNumIterations()); 5999 NumIterations = CGF.Builder.CreateIntCast(NumIterations, CGF.Int64Ty, 6000 /*isSigned=*/false); 6001 return NumIterations; 6002 } 6003 return nullptr; 6004 }; 6005 CGM.getOpenMPRuntime().emitTargetCall(CGF, S, Fn, FnID, IfCond, Device, 6006 SizeEmitter); 6007 } 6008 6009 static void emitTargetRegion(CodeGenFunction &CGF, const OMPTargetDirective &S, 6010 PrePostActionTy &Action) { 6011 Action.Enter(CGF); 6012 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6013 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6014 CGF.EmitOMPPrivateClause(S, PrivateScope); 6015 (void)PrivateScope.Privatize(); 6016 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6017 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6018 6019 CGF.EmitStmt(S.getCapturedStmt(OMPD_target)->getCapturedStmt()); 6020 CGF.EnsureInsertPoint(); 6021 } 6022 6023 void CodeGenFunction::EmitOMPTargetDeviceFunction(CodeGenModule &CGM, 6024 StringRef ParentName, 6025 const OMPTargetDirective &S) { 6026 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6027 emitTargetRegion(CGF, S, Action); 6028 }; 6029 llvm::Function *Fn; 6030 llvm::Constant *Addr; 6031 // Emit target region as a standalone region. 6032 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6033 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6034 assert(Fn && Addr && "Target device function emission failed."); 6035 } 6036 6037 void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &S) { 6038 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6039 emitTargetRegion(CGF, S, Action); 6040 }; 6041 emitCommonOMPTargetDirective(*this, S, CodeGen); 6042 } 6043 6044 static void emitCommonOMPTeamsDirective(CodeGenFunction &CGF, 6045 const OMPExecutableDirective &S, 6046 OpenMPDirectiveKind InnermostKind, 6047 const RegionCodeGenTy &CodeGen) { 6048 const CapturedStmt *CS = S.getCapturedStmt(OMPD_teams); 6049 llvm::Function *OutlinedFn = 6050 CGF.CGM.getOpenMPRuntime().emitTeamsOutlinedFunction( 6051 S, *CS->getCapturedDecl()->param_begin(), InnermostKind, CodeGen); 6052 6053 const auto *NT = S.getSingleClause<OMPNumTeamsClause>(); 6054 const auto *TL = S.getSingleClause<OMPThreadLimitClause>(); 6055 if (NT || TL) { 6056 const Expr *NumTeams = NT ? NT->getNumTeams() : nullptr; 6057 const Expr *ThreadLimit = TL ? TL->getThreadLimit() : nullptr; 6058 6059 CGF.CGM.getOpenMPRuntime().emitNumTeamsClause(CGF, NumTeams, ThreadLimit, 6060 S.getBeginLoc()); 6061 } 6062 6063 OMPTeamsScope Scope(CGF, S); 6064 llvm::SmallVector<llvm::Value *, 16> CapturedVars; 6065 CGF.GenerateOpenMPCapturedVars(*CS, CapturedVars); 6066 CGF.CGM.getOpenMPRuntime().emitTeamsCall(CGF, S, S.getBeginLoc(), OutlinedFn, 6067 CapturedVars); 6068 } 6069 6070 void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &S) { 6071 // Emit teams region as a standalone region. 6072 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6073 Action.Enter(CGF); 6074 OMPPrivateScope PrivateScope(CGF); 6075 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6076 CGF.EmitOMPPrivateClause(S, PrivateScope); 6077 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6078 (void)PrivateScope.Privatize(); 6079 CGF.EmitStmt(S.getCapturedStmt(OMPD_teams)->getCapturedStmt()); 6080 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6081 }; 6082 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6083 emitPostUpdateForReductionClause(*this, S, 6084 [](CodeGenFunction &) { return nullptr; }); 6085 } 6086 6087 static void emitTargetTeamsRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6088 const OMPTargetTeamsDirective &S) { 6089 auto *CS = S.getCapturedStmt(OMPD_teams); 6090 Action.Enter(CGF); 6091 // Emit teams region as a standalone region. 6092 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6093 Action.Enter(CGF); 6094 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6095 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6096 CGF.EmitOMPPrivateClause(S, PrivateScope); 6097 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6098 (void)PrivateScope.Privatize(); 6099 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6100 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6101 CGF.EmitStmt(CS->getCapturedStmt()); 6102 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6103 }; 6104 emitCommonOMPTeamsDirective(CGF, S, OMPD_teams, CodeGen); 6105 emitPostUpdateForReductionClause(CGF, S, 6106 [](CodeGenFunction &) { return nullptr; }); 6107 } 6108 6109 void CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( 6110 CodeGenModule &CGM, StringRef ParentName, 6111 const OMPTargetTeamsDirective &S) { 6112 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6113 emitTargetTeamsRegion(CGF, Action, S); 6114 }; 6115 llvm::Function *Fn; 6116 llvm::Constant *Addr; 6117 // Emit target region as a standalone region. 6118 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6119 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6120 assert(Fn && Addr && "Target device function emission failed."); 6121 } 6122 6123 void CodeGenFunction::EmitOMPTargetTeamsDirective( 6124 const OMPTargetTeamsDirective &S) { 6125 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6126 emitTargetTeamsRegion(CGF, Action, S); 6127 }; 6128 emitCommonOMPTargetDirective(*this, S, CodeGen); 6129 } 6130 6131 static void 6132 emitTargetTeamsDistributeRegion(CodeGenFunction &CGF, PrePostActionTy &Action, 6133 const OMPTargetTeamsDistributeDirective &S) { 6134 Action.Enter(CGF); 6135 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6136 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6137 }; 6138 6139 // Emit teams region as a standalone region. 6140 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6141 PrePostActionTy &Action) { 6142 Action.Enter(CGF); 6143 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6144 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6145 (void)PrivateScope.Privatize(); 6146 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6147 CodeGenDistribute); 6148 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6149 }; 6150 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute, CodeGen); 6151 emitPostUpdateForReductionClause(CGF, S, 6152 [](CodeGenFunction &) { return nullptr; }); 6153 } 6154 6155 void CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( 6156 CodeGenModule &CGM, StringRef ParentName, 6157 const OMPTargetTeamsDistributeDirective &S) { 6158 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6159 emitTargetTeamsDistributeRegion(CGF, Action, S); 6160 }; 6161 llvm::Function *Fn; 6162 llvm::Constant *Addr; 6163 // Emit target region as a standalone region. 6164 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6165 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6166 assert(Fn && Addr && "Target device function emission failed."); 6167 } 6168 6169 void CodeGenFunction::EmitOMPTargetTeamsDistributeDirective( 6170 const OMPTargetTeamsDistributeDirective &S) { 6171 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6172 emitTargetTeamsDistributeRegion(CGF, Action, S); 6173 }; 6174 emitCommonOMPTargetDirective(*this, S, CodeGen); 6175 } 6176 6177 static void emitTargetTeamsDistributeSimdRegion( 6178 CodeGenFunction &CGF, PrePostActionTy &Action, 6179 const OMPTargetTeamsDistributeSimdDirective &S) { 6180 Action.Enter(CGF); 6181 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6182 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6183 }; 6184 6185 // Emit teams region as a standalone region. 6186 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6187 PrePostActionTy &Action) { 6188 Action.Enter(CGF); 6189 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6190 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6191 (void)PrivateScope.Privatize(); 6192 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6193 CodeGenDistribute); 6194 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6195 }; 6196 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_simd, CodeGen); 6197 emitPostUpdateForReductionClause(CGF, S, 6198 [](CodeGenFunction &) { return nullptr; }); 6199 } 6200 6201 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( 6202 CodeGenModule &CGM, StringRef ParentName, 6203 const OMPTargetTeamsDistributeSimdDirective &S) { 6204 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6205 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6206 }; 6207 llvm::Function *Fn; 6208 llvm::Constant *Addr; 6209 // Emit target region as a standalone region. 6210 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6211 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6212 assert(Fn && Addr && "Target device function emission failed."); 6213 } 6214 6215 void CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDirective( 6216 const OMPTargetTeamsDistributeSimdDirective &S) { 6217 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6218 emitTargetTeamsDistributeSimdRegion(CGF, Action, S); 6219 }; 6220 emitCommonOMPTargetDirective(*this, S, CodeGen); 6221 } 6222 6223 void CodeGenFunction::EmitOMPTeamsDistributeDirective( 6224 const OMPTeamsDistributeDirective &S) { 6225 6226 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6227 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6228 }; 6229 6230 // Emit teams region as a standalone region. 6231 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6232 PrePostActionTy &Action) { 6233 Action.Enter(CGF); 6234 OMPPrivateScope PrivateScope(CGF); 6235 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6236 (void)PrivateScope.Privatize(); 6237 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6238 CodeGenDistribute); 6239 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6240 }; 6241 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute, CodeGen); 6242 emitPostUpdateForReductionClause(*this, S, 6243 [](CodeGenFunction &) { return nullptr; }); 6244 } 6245 6246 void CodeGenFunction::EmitOMPTeamsDistributeSimdDirective( 6247 const OMPTeamsDistributeSimdDirective &S) { 6248 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6249 CGF.EmitOMPDistributeLoop(S, emitOMPLoopBodyWithStopPoint, S.getInc()); 6250 }; 6251 6252 // Emit teams region as a standalone region. 6253 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6254 PrePostActionTy &Action) { 6255 Action.Enter(CGF); 6256 OMPPrivateScope PrivateScope(CGF); 6257 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6258 (void)PrivateScope.Privatize(); 6259 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_simd, 6260 CodeGenDistribute); 6261 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6262 }; 6263 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_simd, CodeGen); 6264 emitPostUpdateForReductionClause(*this, S, 6265 [](CodeGenFunction &) { return nullptr; }); 6266 } 6267 6268 void CodeGenFunction::EmitOMPTeamsDistributeParallelForDirective( 6269 const OMPTeamsDistributeParallelForDirective &S) { 6270 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6271 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6272 S.getDistInc()); 6273 }; 6274 6275 // Emit teams region as a standalone region. 6276 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6277 PrePostActionTy &Action) { 6278 Action.Enter(CGF); 6279 OMPPrivateScope PrivateScope(CGF); 6280 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6281 (void)PrivateScope.Privatize(); 6282 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_distribute, 6283 CodeGenDistribute); 6284 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6285 }; 6286 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for, CodeGen); 6287 emitPostUpdateForReductionClause(*this, S, 6288 [](CodeGenFunction &) { return nullptr; }); 6289 } 6290 6291 void CodeGenFunction::EmitOMPTeamsDistributeParallelForSimdDirective( 6292 const OMPTeamsDistributeParallelForSimdDirective &S) { 6293 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6294 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6295 S.getDistInc()); 6296 }; 6297 6298 // Emit teams region as a standalone region. 6299 auto &&CodeGen = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6300 PrePostActionTy &Action) { 6301 Action.Enter(CGF); 6302 OMPPrivateScope PrivateScope(CGF); 6303 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6304 (void)PrivateScope.Privatize(); 6305 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6306 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6307 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6308 }; 6309 emitCommonOMPTeamsDirective(*this, S, OMPD_distribute_parallel_for_simd, 6310 CodeGen); 6311 emitPostUpdateForReductionClause(*this, S, 6312 [](CodeGenFunction &) { return nullptr; }); 6313 } 6314 6315 static void emitTargetTeamsDistributeParallelForRegion( 6316 CodeGenFunction &CGF, const OMPTargetTeamsDistributeParallelForDirective &S, 6317 PrePostActionTy &Action) { 6318 Action.Enter(CGF); 6319 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6320 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6321 S.getDistInc()); 6322 }; 6323 6324 // Emit teams region as a standalone region. 6325 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6326 PrePostActionTy &Action) { 6327 Action.Enter(CGF); 6328 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6329 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6330 (void)PrivateScope.Privatize(); 6331 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6332 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6333 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6334 }; 6335 6336 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for, 6337 CodeGenTeams); 6338 emitPostUpdateForReductionClause(CGF, S, 6339 [](CodeGenFunction &) { return nullptr; }); 6340 } 6341 6342 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( 6343 CodeGenModule &CGM, StringRef ParentName, 6344 const OMPTargetTeamsDistributeParallelForDirective &S) { 6345 // Emit SPMD target teams distribute parallel for region as a standalone 6346 // region. 6347 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6348 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6349 }; 6350 llvm::Function *Fn; 6351 llvm::Constant *Addr; 6352 // Emit target region as a standalone region. 6353 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6354 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6355 assert(Fn && Addr && "Target device function emission failed."); 6356 } 6357 6358 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDirective( 6359 const OMPTargetTeamsDistributeParallelForDirective &S) { 6360 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6361 emitTargetTeamsDistributeParallelForRegion(CGF, S, Action); 6362 }; 6363 emitCommonOMPTargetDirective(*this, S, CodeGen); 6364 } 6365 6366 static void emitTargetTeamsDistributeParallelForSimdRegion( 6367 CodeGenFunction &CGF, 6368 const OMPTargetTeamsDistributeParallelForSimdDirective &S, 6369 PrePostActionTy &Action) { 6370 Action.Enter(CGF); 6371 auto &&CodeGenDistribute = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6372 CGF.EmitOMPDistributeLoop(S, emitInnerParallelForWhenCombined, 6373 S.getDistInc()); 6374 }; 6375 6376 // Emit teams region as a standalone region. 6377 auto &&CodeGenTeams = [&S, &CodeGenDistribute](CodeGenFunction &CGF, 6378 PrePostActionTy &Action) { 6379 Action.Enter(CGF); 6380 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6381 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6382 (void)PrivateScope.Privatize(); 6383 CGF.CGM.getOpenMPRuntime().emitInlinedDirective( 6384 CGF, OMPD_distribute, CodeGenDistribute, /*HasCancel=*/false); 6385 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_teams); 6386 }; 6387 6388 emitCommonOMPTeamsDirective(CGF, S, OMPD_distribute_parallel_for_simd, 6389 CodeGenTeams); 6390 emitPostUpdateForReductionClause(CGF, S, 6391 [](CodeGenFunction &) { return nullptr; }); 6392 } 6393 6394 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( 6395 CodeGenModule &CGM, StringRef ParentName, 6396 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6397 // Emit SPMD target teams distribute parallel for simd region as a standalone 6398 // region. 6399 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6400 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6401 }; 6402 llvm::Function *Fn; 6403 llvm::Constant *Addr; 6404 // Emit target region as a standalone region. 6405 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6406 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6407 assert(Fn && Addr && "Target device function emission failed."); 6408 } 6409 6410 void CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForSimdDirective( 6411 const OMPTargetTeamsDistributeParallelForSimdDirective &S) { 6412 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6413 emitTargetTeamsDistributeParallelForSimdRegion(CGF, S, Action); 6414 }; 6415 emitCommonOMPTargetDirective(*this, S, CodeGen); 6416 } 6417 6418 void CodeGenFunction::EmitOMPCancellationPointDirective( 6419 const OMPCancellationPointDirective &S) { 6420 CGM.getOpenMPRuntime().emitCancellationPointCall(*this, S.getBeginLoc(), 6421 S.getCancelRegion()); 6422 } 6423 6424 void CodeGenFunction::EmitOMPCancelDirective(const OMPCancelDirective &S) { 6425 const Expr *IfCond = nullptr; 6426 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6427 if (C->getNameModifier() == OMPD_unknown || 6428 C->getNameModifier() == OMPD_cancel) { 6429 IfCond = C->getCondition(); 6430 break; 6431 } 6432 } 6433 if (CGM.getLangOpts().OpenMPIRBuilder) { 6434 llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder(); 6435 // TODO: This check is necessary as we only generate `omp parallel` through 6436 // the OpenMPIRBuilder for now. 6437 if (S.getCancelRegion() == OMPD_parallel || 6438 S.getCancelRegion() == OMPD_sections || 6439 S.getCancelRegion() == OMPD_section) { 6440 llvm::Value *IfCondition = nullptr; 6441 if (IfCond) 6442 IfCondition = EmitScalarExpr(IfCond, 6443 /*IgnoreResultAssign=*/true); 6444 return Builder.restoreIP( 6445 OMPBuilder.createCancel(Builder, IfCondition, S.getCancelRegion())); 6446 } 6447 } 6448 6449 CGM.getOpenMPRuntime().emitCancelCall(*this, S.getBeginLoc(), IfCond, 6450 S.getCancelRegion()); 6451 } 6452 6453 CodeGenFunction::JumpDest 6454 CodeGenFunction::getOMPCancelDestination(OpenMPDirectiveKind Kind) { 6455 if (Kind == OMPD_parallel || Kind == OMPD_task || 6456 Kind == OMPD_target_parallel || Kind == OMPD_taskloop || 6457 Kind == OMPD_master_taskloop || Kind == OMPD_parallel_master_taskloop) 6458 return ReturnBlock; 6459 assert(Kind == OMPD_for || Kind == OMPD_section || Kind == OMPD_sections || 6460 Kind == OMPD_parallel_sections || Kind == OMPD_parallel_for || 6461 Kind == OMPD_distribute_parallel_for || 6462 Kind == OMPD_target_parallel_for || 6463 Kind == OMPD_teams_distribute_parallel_for || 6464 Kind == OMPD_target_teams_distribute_parallel_for); 6465 return OMPCancelStack.getExitBlock(); 6466 } 6467 6468 void CodeGenFunction::EmitOMPUseDevicePtrClause( 6469 const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, 6470 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6471 auto OrigVarIt = C.varlist_begin(); 6472 auto InitIt = C.inits().begin(); 6473 for (const Expr *PvtVarIt : C.private_copies()) { 6474 const auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*OrigVarIt)->getDecl()); 6475 const auto *InitVD = cast<VarDecl>(cast<DeclRefExpr>(*InitIt)->getDecl()); 6476 const auto *PvtVD = cast<VarDecl>(cast<DeclRefExpr>(PvtVarIt)->getDecl()); 6477 6478 // In order to identify the right initializer we need to match the 6479 // declaration used by the mapping logic. In some cases we may get 6480 // OMPCapturedExprDecl that refers to the original declaration. 6481 const ValueDecl *MatchingVD = OrigVD; 6482 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6483 // OMPCapturedExprDecl are used to privative fields of the current 6484 // structure. 6485 const auto *ME = cast<MemberExpr>(OED->getInit()); 6486 assert(isa<CXXThisExpr>(ME->getBase()) && 6487 "Base should be the current struct!"); 6488 MatchingVD = ME->getMemberDecl(); 6489 } 6490 6491 // If we don't have information about the current list item, move on to 6492 // the next one. 6493 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6494 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6495 continue; 6496 6497 bool IsRegistered = PrivateScope.addPrivate(OrigVD, [this, OrigVD, 6498 InitAddrIt, InitVD, 6499 PvtVD]() { 6500 // Initialize the temporary initialization variable with the address we 6501 // get from the runtime library. We have to cast the source address 6502 // because it is always a void *. References are materialized in the 6503 // privatization scope, so the initialization here disregards the fact 6504 // the original variable is a reference. 6505 QualType AddrQTy = 6506 getContext().getPointerType(OrigVD->getType().getNonReferenceType()); 6507 llvm::Type *AddrTy = ConvertTypeForMem(AddrQTy); 6508 Address InitAddr = Builder.CreateBitCast(InitAddrIt->second, AddrTy); 6509 setAddrOfLocalVar(InitVD, InitAddr); 6510 6511 // Emit private declaration, it will be initialized by the value we 6512 // declaration we just added to the local declarations map. 6513 EmitDecl(*PvtVD); 6514 6515 // The initialization variables reached its purpose in the emission 6516 // of the previous declaration, so we don't need it anymore. 6517 LocalDeclMap.erase(InitVD); 6518 6519 // Return the address of the private variable. 6520 return GetAddrOfLocalVar(PvtVD); 6521 }); 6522 assert(IsRegistered && "firstprivate var already registered as private"); 6523 // Silence the warning about unused variable. 6524 (void)IsRegistered; 6525 6526 ++OrigVarIt; 6527 ++InitIt; 6528 } 6529 } 6530 6531 static const VarDecl *getBaseDecl(const Expr *Ref) { 6532 const Expr *Base = Ref->IgnoreParenImpCasts(); 6533 while (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Base)) 6534 Base = OASE->getBase()->IgnoreParenImpCasts(); 6535 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Base)) 6536 Base = ASE->getBase()->IgnoreParenImpCasts(); 6537 return cast<VarDecl>(cast<DeclRefExpr>(Base)->getDecl()); 6538 } 6539 6540 void CodeGenFunction::EmitOMPUseDeviceAddrClause( 6541 const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, 6542 const llvm::DenseMap<const ValueDecl *, Address> &CaptureDeviceAddrMap) { 6543 llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed; 6544 for (const Expr *Ref : C.varlists()) { 6545 const VarDecl *OrigVD = getBaseDecl(Ref); 6546 if (!Processed.insert(OrigVD).second) 6547 continue; 6548 // In order to identify the right initializer we need to match the 6549 // declaration used by the mapping logic. In some cases we may get 6550 // OMPCapturedExprDecl that refers to the original declaration. 6551 const ValueDecl *MatchingVD = OrigVD; 6552 if (const auto *OED = dyn_cast<OMPCapturedExprDecl>(MatchingVD)) { 6553 // OMPCapturedExprDecl are used to privative fields of the current 6554 // structure. 6555 const auto *ME = cast<MemberExpr>(OED->getInit()); 6556 assert(isa<CXXThisExpr>(ME->getBase()) && 6557 "Base should be the current struct!"); 6558 MatchingVD = ME->getMemberDecl(); 6559 } 6560 6561 // If we don't have information about the current list item, move on to 6562 // the next one. 6563 auto InitAddrIt = CaptureDeviceAddrMap.find(MatchingVD); 6564 if (InitAddrIt == CaptureDeviceAddrMap.end()) 6565 continue; 6566 6567 Address PrivAddr = InitAddrIt->getSecond(); 6568 // For declrefs and variable length array need to load the pointer for 6569 // correct mapping, since the pointer to the data was passed to the runtime. 6570 if (isa<DeclRefExpr>(Ref->IgnoreParenImpCasts()) || 6571 MatchingVD->getType()->isArrayType()) 6572 PrivAddr = 6573 EmitLoadOfPointer(PrivAddr, getContext() 6574 .getPointerType(OrigVD->getType()) 6575 ->castAs<PointerType>()); 6576 llvm::Type *RealTy = 6577 ConvertTypeForMem(OrigVD->getType().getNonReferenceType()) 6578 ->getPointerTo(); 6579 PrivAddr = Builder.CreatePointerBitCastOrAddrSpaceCast(PrivAddr, RealTy); 6580 6581 (void)PrivateScope.addPrivate(OrigVD, [PrivAddr]() { return PrivAddr; }); 6582 } 6583 } 6584 6585 // Generate the instructions for '#pragma omp target data' directive. 6586 void CodeGenFunction::EmitOMPTargetDataDirective( 6587 const OMPTargetDataDirective &S) { 6588 CGOpenMPRuntime::TargetDataInfo Info(/*RequiresDevicePointerInfo=*/true, 6589 /*SeparateBeginEndCalls=*/true); 6590 6591 // Create a pre/post action to signal the privatization of the device pointer. 6592 // This action can be replaced by the OpenMP runtime code generation to 6593 // deactivate privatization. 6594 bool PrivatizeDevicePointers = false; 6595 class DevicePointerPrivActionTy : public PrePostActionTy { 6596 bool &PrivatizeDevicePointers; 6597 6598 public: 6599 explicit DevicePointerPrivActionTy(bool &PrivatizeDevicePointers) 6600 : PrePostActionTy(), PrivatizeDevicePointers(PrivatizeDevicePointers) {} 6601 void Enter(CodeGenFunction &CGF) override { 6602 PrivatizeDevicePointers = true; 6603 } 6604 }; 6605 DevicePointerPrivActionTy PrivAction(PrivatizeDevicePointers); 6606 6607 auto &&CodeGen = [&S, &Info, &PrivatizeDevicePointers]( 6608 CodeGenFunction &CGF, PrePostActionTy &Action) { 6609 auto &&InnermostCodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6610 CGF.EmitStmt(S.getInnermostCapturedStmt()->getCapturedStmt()); 6611 }; 6612 6613 // Codegen that selects whether to generate the privatization code or not. 6614 auto &&PrivCodeGen = [&S, &Info, &PrivatizeDevicePointers, 6615 &InnermostCodeGen](CodeGenFunction &CGF, 6616 PrePostActionTy &Action) { 6617 RegionCodeGenTy RCG(InnermostCodeGen); 6618 PrivatizeDevicePointers = false; 6619 6620 // Call the pre-action to change the status of PrivatizeDevicePointers if 6621 // needed. 6622 Action.Enter(CGF); 6623 6624 if (PrivatizeDevicePointers) { 6625 OMPPrivateScope PrivateScope(CGF); 6626 // Emit all instances of the use_device_ptr clause. 6627 for (const auto *C : S.getClausesOfKind<OMPUseDevicePtrClause>()) 6628 CGF.EmitOMPUseDevicePtrClause(*C, PrivateScope, 6629 Info.CaptureDeviceAddrMap); 6630 for (const auto *C : S.getClausesOfKind<OMPUseDeviceAddrClause>()) 6631 CGF.EmitOMPUseDeviceAddrClause(*C, PrivateScope, 6632 Info.CaptureDeviceAddrMap); 6633 (void)PrivateScope.Privatize(); 6634 RCG(CGF); 6635 } else { 6636 OMPLexicalScope Scope(CGF, S, OMPD_unknown); 6637 RCG(CGF); 6638 } 6639 }; 6640 6641 // Forward the provided action to the privatization codegen. 6642 RegionCodeGenTy PrivRCG(PrivCodeGen); 6643 PrivRCG.setAction(Action); 6644 6645 // Notwithstanding the body of the region is emitted as inlined directive, 6646 // we don't use an inline scope as changes in the references inside the 6647 // region are expected to be visible outside, so we do not privative them. 6648 OMPLexicalScope Scope(CGF, S); 6649 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_target_data, 6650 PrivRCG); 6651 }; 6652 6653 RegionCodeGenTy RCG(CodeGen); 6654 6655 // If we don't have target devices, don't bother emitting the data mapping 6656 // code. 6657 if (CGM.getLangOpts().OMPTargetTriples.empty()) { 6658 RCG(*this); 6659 return; 6660 } 6661 6662 // Check if we have any if clause associated with the directive. 6663 const Expr *IfCond = nullptr; 6664 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6665 IfCond = C->getCondition(); 6666 6667 // Check if we have any device clause associated with the directive. 6668 const Expr *Device = nullptr; 6669 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6670 Device = C->getDevice(); 6671 6672 // Set the action to signal privatization of device pointers. 6673 RCG.setAction(PrivAction); 6674 6675 // Emit region code. 6676 CGM.getOpenMPRuntime().emitTargetDataCalls(*this, S, IfCond, Device, RCG, 6677 Info); 6678 } 6679 6680 void CodeGenFunction::EmitOMPTargetEnterDataDirective( 6681 const OMPTargetEnterDataDirective &S) { 6682 // If we don't have target devices, don't bother emitting the data mapping 6683 // code. 6684 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6685 return; 6686 6687 // Check if we have any if clause associated with the directive. 6688 const Expr *IfCond = nullptr; 6689 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6690 IfCond = C->getCondition(); 6691 6692 // Check if we have any device clause associated with the directive. 6693 const Expr *Device = nullptr; 6694 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6695 Device = C->getDevice(); 6696 6697 OMPLexicalScope Scope(*this, S, OMPD_task); 6698 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6699 } 6700 6701 void CodeGenFunction::EmitOMPTargetExitDataDirective( 6702 const OMPTargetExitDataDirective &S) { 6703 // If we don't have target devices, don't bother emitting the data mapping 6704 // code. 6705 if (CGM.getLangOpts().OMPTargetTriples.empty()) 6706 return; 6707 6708 // Check if we have any if clause associated with the directive. 6709 const Expr *IfCond = nullptr; 6710 if (const auto *C = S.getSingleClause<OMPIfClause>()) 6711 IfCond = C->getCondition(); 6712 6713 // Check if we have any device clause associated with the directive. 6714 const Expr *Device = nullptr; 6715 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 6716 Device = C->getDevice(); 6717 6718 OMPLexicalScope Scope(*this, S, OMPD_task); 6719 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 6720 } 6721 6722 static void emitTargetParallelRegion(CodeGenFunction &CGF, 6723 const OMPTargetParallelDirective &S, 6724 PrePostActionTy &Action) { 6725 // Get the captured statement associated with the 'parallel' region. 6726 const CapturedStmt *CS = S.getCapturedStmt(OMPD_parallel); 6727 Action.Enter(CGF); 6728 auto &&CodeGen = [&S, CS](CodeGenFunction &CGF, PrePostActionTy &Action) { 6729 Action.Enter(CGF); 6730 CodeGenFunction::OMPPrivateScope PrivateScope(CGF); 6731 (void)CGF.EmitOMPFirstprivateClause(S, PrivateScope); 6732 CGF.EmitOMPPrivateClause(S, PrivateScope); 6733 CGF.EmitOMPReductionClauseInit(S, PrivateScope); 6734 (void)PrivateScope.Privatize(); 6735 if (isOpenMPTargetExecutionDirective(S.getDirectiveKind())) 6736 CGF.CGM.getOpenMPRuntime().adjustTargetSpecificDataForLambdas(CGF, S); 6737 // TODO: Add support for clauses. 6738 CGF.EmitStmt(CS->getCapturedStmt()); 6739 CGF.EmitOMPReductionClauseFinal(S, /*ReductionKind=*/OMPD_parallel); 6740 }; 6741 emitCommonOMPParallelDirective(CGF, S, OMPD_parallel, CodeGen, 6742 emitEmptyBoundParameters); 6743 emitPostUpdateForReductionClause(CGF, S, 6744 [](CodeGenFunction &) { return nullptr; }); 6745 } 6746 6747 void CodeGenFunction::EmitOMPTargetParallelDeviceFunction( 6748 CodeGenModule &CGM, StringRef ParentName, 6749 const OMPTargetParallelDirective &S) { 6750 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6751 emitTargetParallelRegion(CGF, S, Action); 6752 }; 6753 llvm::Function *Fn; 6754 llvm::Constant *Addr; 6755 // Emit target region as a standalone region. 6756 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6757 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6758 assert(Fn && Addr && "Target device function emission failed."); 6759 } 6760 6761 void CodeGenFunction::EmitOMPTargetParallelDirective( 6762 const OMPTargetParallelDirective &S) { 6763 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6764 emitTargetParallelRegion(CGF, S, Action); 6765 }; 6766 emitCommonOMPTargetDirective(*this, S, CodeGen); 6767 } 6768 6769 static void emitTargetParallelForRegion(CodeGenFunction &CGF, 6770 const OMPTargetParallelForDirective &S, 6771 PrePostActionTy &Action) { 6772 Action.Enter(CGF); 6773 // Emit directive as a combined directive that consists of two implicit 6774 // directives: 'parallel' with 'for' directive. 6775 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6776 Action.Enter(CGF); 6777 CodeGenFunction::OMPCancelStackRAII CancelRegion( 6778 CGF, OMPD_target_parallel_for, S.hasCancel()); 6779 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6780 emitDispatchForLoopBounds); 6781 }; 6782 emitCommonOMPParallelDirective(CGF, S, OMPD_for, CodeGen, 6783 emitEmptyBoundParameters); 6784 } 6785 6786 void CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( 6787 CodeGenModule &CGM, StringRef ParentName, 6788 const OMPTargetParallelForDirective &S) { 6789 // Emit SPMD target parallel for region as a standalone region. 6790 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6791 emitTargetParallelForRegion(CGF, S, Action); 6792 }; 6793 llvm::Function *Fn; 6794 llvm::Constant *Addr; 6795 // Emit target region as a standalone region. 6796 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6797 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6798 assert(Fn && Addr && "Target device function emission failed."); 6799 } 6800 6801 void CodeGenFunction::EmitOMPTargetParallelForDirective( 6802 const OMPTargetParallelForDirective &S) { 6803 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6804 emitTargetParallelForRegion(CGF, S, Action); 6805 }; 6806 emitCommonOMPTargetDirective(*this, S, CodeGen); 6807 } 6808 6809 static void 6810 emitTargetParallelForSimdRegion(CodeGenFunction &CGF, 6811 const OMPTargetParallelForSimdDirective &S, 6812 PrePostActionTy &Action) { 6813 Action.Enter(CGF); 6814 // Emit directive as a combined directive that consists of two implicit 6815 // directives: 'parallel' with 'for' directive. 6816 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6817 Action.Enter(CGF); 6818 CGF.EmitOMPWorksharingLoop(S, S.getEnsureUpperBound(), emitForLoopBounds, 6819 emitDispatchForLoopBounds); 6820 }; 6821 emitCommonOMPParallelDirective(CGF, S, OMPD_simd, CodeGen, 6822 emitEmptyBoundParameters); 6823 } 6824 6825 void CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( 6826 CodeGenModule &CGM, StringRef ParentName, 6827 const OMPTargetParallelForSimdDirective &S) { 6828 // Emit SPMD target parallel for region as a standalone region. 6829 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6830 emitTargetParallelForSimdRegion(CGF, S, Action); 6831 }; 6832 llvm::Function *Fn; 6833 llvm::Constant *Addr; 6834 // Emit target region as a standalone region. 6835 CGM.getOpenMPRuntime().emitTargetOutlinedFunction( 6836 S, ParentName, Fn, Addr, /*IsOffloadEntry=*/true, CodeGen); 6837 assert(Fn && Addr && "Target device function emission failed."); 6838 } 6839 6840 void CodeGenFunction::EmitOMPTargetParallelForSimdDirective( 6841 const OMPTargetParallelForSimdDirective &S) { 6842 auto &&CodeGen = [&S](CodeGenFunction &CGF, PrePostActionTy &Action) { 6843 emitTargetParallelForSimdRegion(CGF, S, Action); 6844 }; 6845 emitCommonOMPTargetDirective(*this, S, CodeGen); 6846 } 6847 6848 /// Emit a helper variable and return corresponding lvalue. 6849 static void mapParam(CodeGenFunction &CGF, const DeclRefExpr *Helper, 6850 const ImplicitParamDecl *PVD, 6851 CodeGenFunction::OMPPrivateScope &Privates) { 6852 const auto *VDecl = cast<VarDecl>(Helper->getDecl()); 6853 Privates.addPrivate(VDecl, 6854 [&CGF, PVD]() { return CGF.GetAddrOfLocalVar(PVD); }); 6855 } 6856 6857 void CodeGenFunction::EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S) { 6858 assert(isOpenMPTaskLoopDirective(S.getDirectiveKind())); 6859 // Emit outlined function for task construct. 6860 const CapturedStmt *CS = S.getCapturedStmt(OMPD_taskloop); 6861 Address CapturedStruct = Address::invalid(); 6862 { 6863 OMPLexicalScope Scope(*this, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6864 CapturedStruct = GenerateCapturedStmtArgument(*CS); 6865 } 6866 QualType SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl()); 6867 const Expr *IfCond = nullptr; 6868 for (const auto *C : S.getClausesOfKind<OMPIfClause>()) { 6869 if (C->getNameModifier() == OMPD_unknown || 6870 C->getNameModifier() == OMPD_taskloop) { 6871 IfCond = C->getCondition(); 6872 break; 6873 } 6874 } 6875 6876 OMPTaskDataTy Data; 6877 // Check if taskloop must be emitted without taskgroup. 6878 Data.Nogroup = S.getSingleClause<OMPNogroupClause>(); 6879 // TODO: Check if we should emit tied or untied task. 6880 Data.Tied = true; 6881 // Set scheduling for taskloop 6882 if (const auto* Clause = S.getSingleClause<OMPGrainsizeClause>()) { 6883 // grainsize clause 6884 Data.Schedule.setInt(/*IntVal=*/false); 6885 Data.Schedule.setPointer(EmitScalarExpr(Clause->getGrainsize())); 6886 } else if (const auto* Clause = S.getSingleClause<OMPNumTasksClause>()) { 6887 // num_tasks clause 6888 Data.Schedule.setInt(/*IntVal=*/true); 6889 Data.Schedule.setPointer(EmitScalarExpr(Clause->getNumTasks())); 6890 } 6891 6892 auto &&BodyGen = [CS, &S](CodeGenFunction &CGF, PrePostActionTy &) { 6893 // if (PreCond) { 6894 // for (IV in 0..LastIteration) BODY; 6895 // <Final counter/linear vars updates>; 6896 // } 6897 // 6898 6899 // Emit: if (PreCond) - begin. 6900 // If the condition constant folds and can be elided, avoid emitting the 6901 // whole loop. 6902 bool CondConstant; 6903 llvm::BasicBlock *ContBlock = nullptr; 6904 OMPLoopScope PreInitScope(CGF, S); 6905 if (CGF.ConstantFoldsToSimpleInteger(S.getPreCond(), CondConstant)) { 6906 if (!CondConstant) 6907 return; 6908 } else { 6909 llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("taskloop.if.then"); 6910 ContBlock = CGF.createBasicBlock("taskloop.if.end"); 6911 emitPreCond(CGF, S, S.getPreCond(), ThenBlock, ContBlock, 6912 CGF.getProfileCount(&S)); 6913 CGF.EmitBlock(ThenBlock); 6914 CGF.incrementProfileCounter(&S); 6915 } 6916 6917 (void)CGF.EmitOMPLinearClauseInit(S); 6918 6919 OMPPrivateScope LoopScope(CGF); 6920 // Emit helper vars inits. 6921 enum { LowerBound = 5, UpperBound, Stride, LastIter }; 6922 auto *I = CS->getCapturedDecl()->param_begin(); 6923 auto *LBP = std::next(I, LowerBound); 6924 auto *UBP = std::next(I, UpperBound); 6925 auto *STP = std::next(I, Stride); 6926 auto *LIP = std::next(I, LastIter); 6927 mapParam(CGF, cast<DeclRefExpr>(S.getLowerBoundVariable()), *LBP, 6928 LoopScope); 6929 mapParam(CGF, cast<DeclRefExpr>(S.getUpperBoundVariable()), *UBP, 6930 LoopScope); 6931 mapParam(CGF, cast<DeclRefExpr>(S.getStrideVariable()), *STP, LoopScope); 6932 mapParam(CGF, cast<DeclRefExpr>(S.getIsLastIterVariable()), *LIP, 6933 LoopScope); 6934 CGF.EmitOMPPrivateLoopCounters(S, LoopScope); 6935 CGF.EmitOMPLinearClause(S, LoopScope); 6936 bool HasLastprivateClause = CGF.EmitOMPLastprivateClauseInit(S, LoopScope); 6937 (void)LoopScope.Privatize(); 6938 // Emit the loop iteration variable. 6939 const Expr *IVExpr = S.getIterationVariable(); 6940 const auto *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl()); 6941 CGF.EmitVarDecl(*IVDecl); 6942 CGF.EmitIgnoredExpr(S.getInit()); 6943 6944 // Emit the iterations count variable. 6945 // If it is not a variable, Sema decided to calculate iterations count on 6946 // each iteration (e.g., it is foldable into a constant). 6947 if (const auto *LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) { 6948 CGF.EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl())); 6949 // Emit calculation of the iterations count. 6950 CGF.EmitIgnoredExpr(S.getCalcLastIteration()); 6951 } 6952 6953 { 6954 OMPLexicalScope Scope(CGF, S, OMPD_taskloop, /*EmitPreInitStmt=*/false); 6955 emitCommonSimdLoop( 6956 CGF, S, 6957 [&S](CodeGenFunction &CGF, PrePostActionTy &) { 6958 if (isOpenMPSimdDirective(S.getDirectiveKind())) 6959 CGF.EmitOMPSimdInit(S); 6960 }, 6961 [&S, &LoopScope](CodeGenFunction &CGF, PrePostActionTy &) { 6962 CGF.EmitOMPInnerLoop( 6963 S, LoopScope.requiresCleanups(), S.getCond(), S.getInc(), 6964 [&S](CodeGenFunction &CGF) { 6965 emitOMPLoopBodyWithStopPoint(CGF, S, 6966 CodeGenFunction::JumpDest()); 6967 }, 6968 [](CodeGenFunction &) {}); 6969 }); 6970 } 6971 // Emit: if (PreCond) - end. 6972 if (ContBlock) { 6973 CGF.EmitBranch(ContBlock); 6974 CGF.EmitBlock(ContBlock, true); 6975 } 6976 // Emit final copy of the lastprivate variables if IsLastIter != 0. 6977 if (HasLastprivateClause) { 6978 CGF.EmitOMPLastprivateClauseFinal( 6979 S, isOpenMPSimdDirective(S.getDirectiveKind()), 6980 CGF.Builder.CreateIsNotNull(CGF.EmitLoadOfScalar( 6981 CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6982 (*LIP)->getType(), S.getBeginLoc()))); 6983 } 6984 CGF.EmitOMPLinearClauseFinal(S, [LIP, &S](CodeGenFunction &CGF) { 6985 return CGF.Builder.CreateIsNotNull( 6986 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(*LIP), /*Volatile=*/false, 6987 (*LIP)->getType(), S.getBeginLoc())); 6988 }); 6989 }; 6990 auto &&TaskGen = [&S, SharedsTy, CapturedStruct, 6991 IfCond](CodeGenFunction &CGF, llvm::Function *OutlinedFn, 6992 const OMPTaskDataTy &Data) { 6993 auto &&CodeGen = [&S, OutlinedFn, SharedsTy, CapturedStruct, IfCond, 6994 &Data](CodeGenFunction &CGF, PrePostActionTy &) { 6995 OMPLoopScope PreInitScope(CGF, S); 6996 CGF.CGM.getOpenMPRuntime().emitTaskLoopCall(CGF, S.getBeginLoc(), S, 6997 OutlinedFn, SharedsTy, 6998 CapturedStruct, IfCond, Data); 6999 }; 7000 CGF.CGM.getOpenMPRuntime().emitInlinedDirective(CGF, OMPD_taskloop, 7001 CodeGen); 7002 }; 7003 if (Data.Nogroup) { 7004 EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, Data); 7005 } else { 7006 CGM.getOpenMPRuntime().emitTaskgroupRegion( 7007 *this, 7008 [&S, &BodyGen, &TaskGen, &Data](CodeGenFunction &CGF, 7009 PrePostActionTy &Action) { 7010 Action.Enter(CGF); 7011 CGF.EmitOMPTaskBasedDirective(S, OMPD_taskloop, BodyGen, TaskGen, 7012 Data); 7013 }, 7014 S.getBeginLoc()); 7015 } 7016 } 7017 7018 void CodeGenFunction::EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S) { 7019 auto LPCRegion = 7020 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7021 EmitOMPTaskLoopBasedDirective(S); 7022 } 7023 7024 void CodeGenFunction::EmitOMPTaskLoopSimdDirective( 7025 const OMPTaskLoopSimdDirective &S) { 7026 auto LPCRegion = 7027 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7028 OMPLexicalScope Scope(*this, S); 7029 EmitOMPTaskLoopBasedDirective(S); 7030 } 7031 7032 void CodeGenFunction::EmitOMPMasterTaskLoopDirective( 7033 const OMPMasterTaskLoopDirective &S) { 7034 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7035 Action.Enter(CGF); 7036 EmitOMPTaskLoopBasedDirective(S); 7037 }; 7038 auto LPCRegion = 7039 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7040 OMPLexicalScope Scope(*this, S, llvm::None, /*EmitPreInitStmt=*/false); 7041 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7042 } 7043 7044 void CodeGenFunction::EmitOMPMasterTaskLoopSimdDirective( 7045 const OMPMasterTaskLoopSimdDirective &S) { 7046 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7047 Action.Enter(CGF); 7048 EmitOMPTaskLoopBasedDirective(S); 7049 }; 7050 auto LPCRegion = 7051 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7052 OMPLexicalScope Scope(*this, S); 7053 CGM.getOpenMPRuntime().emitMasterRegion(*this, CodeGen, S.getBeginLoc()); 7054 } 7055 7056 void CodeGenFunction::EmitOMPParallelMasterTaskLoopDirective( 7057 const OMPParallelMasterTaskLoopDirective &S) { 7058 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7059 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7060 PrePostActionTy &Action) { 7061 Action.Enter(CGF); 7062 CGF.EmitOMPTaskLoopBasedDirective(S); 7063 }; 7064 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7065 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7066 S.getBeginLoc()); 7067 }; 7068 auto LPCRegion = 7069 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7070 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop, CodeGen, 7071 emitEmptyBoundParameters); 7072 } 7073 7074 void CodeGenFunction::EmitOMPParallelMasterTaskLoopSimdDirective( 7075 const OMPParallelMasterTaskLoopSimdDirective &S) { 7076 auto &&CodeGen = [this, &S](CodeGenFunction &CGF, PrePostActionTy &Action) { 7077 auto &&TaskLoopCodeGen = [&S](CodeGenFunction &CGF, 7078 PrePostActionTy &Action) { 7079 Action.Enter(CGF); 7080 CGF.EmitOMPTaskLoopBasedDirective(S); 7081 }; 7082 OMPLexicalScope Scope(CGF, S, OMPD_parallel, /*EmitPreInitStmt=*/false); 7083 CGM.getOpenMPRuntime().emitMasterRegion(CGF, TaskLoopCodeGen, 7084 S.getBeginLoc()); 7085 }; 7086 auto LPCRegion = 7087 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, S); 7088 emitCommonOMPParallelDirective(*this, S, OMPD_master_taskloop_simd, CodeGen, 7089 emitEmptyBoundParameters); 7090 } 7091 7092 // Generate the instructions for '#pragma omp target update' directive. 7093 void CodeGenFunction::EmitOMPTargetUpdateDirective( 7094 const OMPTargetUpdateDirective &S) { 7095 // If we don't have target devices, don't bother emitting the data mapping 7096 // code. 7097 if (CGM.getLangOpts().OMPTargetTriples.empty()) 7098 return; 7099 7100 // Check if we have any if clause associated with the directive. 7101 const Expr *IfCond = nullptr; 7102 if (const auto *C = S.getSingleClause<OMPIfClause>()) 7103 IfCond = C->getCondition(); 7104 7105 // Check if we have any device clause associated with the directive. 7106 const Expr *Device = nullptr; 7107 if (const auto *C = S.getSingleClause<OMPDeviceClause>()) 7108 Device = C->getDevice(); 7109 7110 OMPLexicalScope Scope(*this, S, OMPD_task); 7111 CGM.getOpenMPRuntime().emitTargetDataStandAloneCall(*this, S, IfCond, Device); 7112 } 7113 7114 void CodeGenFunction::EmitSimpleOMPExecutableDirective( 7115 const OMPExecutableDirective &D) { 7116 if (const auto *SD = dyn_cast<OMPScanDirective>(&D)) { 7117 EmitOMPScanDirective(*SD); 7118 return; 7119 } 7120 if (!D.hasAssociatedStmt() || !D.getAssociatedStmt()) 7121 return; 7122 auto &&CodeGen = [&D](CodeGenFunction &CGF, PrePostActionTy &Action) { 7123 OMPPrivateScope GlobalsScope(CGF); 7124 if (isOpenMPTaskingDirective(D.getDirectiveKind())) { 7125 // Capture global firstprivates to avoid crash. 7126 for (const auto *C : D.getClausesOfKind<OMPFirstprivateClause>()) { 7127 for (const Expr *Ref : C->varlists()) { 7128 const auto *DRE = cast<DeclRefExpr>(Ref->IgnoreParenImpCasts()); 7129 if (!DRE) 7130 continue; 7131 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7132 if (!VD || VD->hasLocalStorage()) 7133 continue; 7134 if (!CGF.LocalDeclMap.count(VD)) { 7135 LValue GlobLVal = CGF.EmitLValue(Ref); 7136 GlobalsScope.addPrivate( 7137 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7138 } 7139 } 7140 } 7141 } 7142 if (isOpenMPSimdDirective(D.getDirectiveKind())) { 7143 (void)GlobalsScope.Privatize(); 7144 ParentLoopDirectiveForScanRegion ScanRegion(CGF, D); 7145 emitOMPSimdRegion(CGF, cast<OMPLoopDirective>(D), Action); 7146 } else { 7147 if (const auto *LD = dyn_cast<OMPLoopDirective>(&D)) { 7148 for (const Expr *E : LD->counters()) { 7149 const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); 7150 if (!VD->hasLocalStorage() && !CGF.LocalDeclMap.count(VD)) { 7151 LValue GlobLVal = CGF.EmitLValue(E); 7152 GlobalsScope.addPrivate( 7153 VD, [&GlobLVal, &CGF]() { return GlobLVal.getAddress(CGF); }); 7154 } 7155 if (isa<OMPCapturedExprDecl>(VD)) { 7156 // Emit only those that were not explicitly referenced in clauses. 7157 if (!CGF.LocalDeclMap.count(VD)) 7158 CGF.EmitVarDecl(*VD); 7159 } 7160 } 7161 for (const auto *C : D.getClausesOfKind<OMPOrderedClause>()) { 7162 if (!C->getNumForLoops()) 7163 continue; 7164 for (unsigned I = LD->getLoopsNumber(), 7165 E = C->getLoopNumIterations().size(); 7166 I < E; ++I) { 7167 if (const auto *VD = dyn_cast<OMPCapturedExprDecl>( 7168 cast<DeclRefExpr>(C->getLoopCounter(I))->getDecl())) { 7169 // Emit only those that were not explicitly referenced in clauses. 7170 if (!CGF.LocalDeclMap.count(VD)) 7171 CGF.EmitVarDecl(*VD); 7172 } 7173 } 7174 } 7175 } 7176 (void)GlobalsScope.Privatize(); 7177 CGF.EmitStmt(D.getInnermostCapturedStmt()->getCapturedStmt()); 7178 } 7179 }; 7180 if (D.getDirectiveKind() == OMPD_atomic || 7181 D.getDirectiveKind() == OMPD_critical || 7182 D.getDirectiveKind() == OMPD_section || 7183 D.getDirectiveKind() == OMPD_master || 7184 D.getDirectiveKind() == OMPD_masked) { 7185 EmitStmt(D.getAssociatedStmt()); 7186 } else { 7187 auto LPCRegion = 7188 CGOpenMPRuntime::LastprivateConditionalRAII::disable(*this, D); 7189 OMPSimdLexicalScope Scope(*this, D); 7190 CGM.getOpenMPRuntime().emitInlinedDirective( 7191 *this, 7192 isOpenMPSimdDirective(D.getDirectiveKind()) ? OMPD_simd 7193 : D.getDirectiveKind(), 7194 CodeGen); 7195 } 7196 // Check for outer lastprivate conditional update. 7197 checkForLastprivateConditionalUpdate(*this, D); 7198 } 7199