1 //===---- CGObjC.cpp - Emit LLVM Code for Objective-C ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Objective-C code as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/StmtObjC.h" 23 #include "clang/Basic/Diagnostic.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/CodeGen/CodeGenABITypes.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/Analysis/ObjCARCUtil.h" 28 #include "llvm/BinaryFormat/MachO.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include <optional> 33 using namespace clang; 34 using namespace CodeGen; 35 36 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult; 37 static TryEmitResult 38 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e); 39 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, 40 QualType ET, 41 RValue Result); 42 43 /// Given the address of a variable of pointer type, find the correct 44 /// null to store into it. 45 static llvm::Constant *getNullForVariable(Address addr) { 46 llvm::Type *type = addr.getElementType(); 47 return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type)); 48 } 49 50 /// Emits an instance of NSConstantString representing the object. 51 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E) 52 { 53 llvm::Constant *C = 54 CGM.getObjCRuntime().GenerateConstantString(E->getString()).getPointer(); 55 // FIXME: This bitcast should just be made an invariant on the Runtime. 56 return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); 57 } 58 59 /// EmitObjCBoxedExpr - This routine generates code to call 60 /// the appropriate expression boxing method. This will either be 61 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:], 62 /// or [NSValue valueWithBytes:objCType:]. 63 /// 64 llvm::Value * 65 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) { 66 // Generate the correct selector for this literal's concrete type. 67 // Get the method. 68 const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod(); 69 const Expr *SubExpr = E->getSubExpr(); 70 71 if (E->isExpressibleAsConstantInitializer()) { 72 ConstantEmitter ConstEmitter(CGM); 73 return ConstEmitter.tryEmitAbstract(E, E->getType()); 74 } 75 76 assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method"); 77 Selector Sel = BoxingMethod->getSelector(); 78 79 // Generate a reference to the class pointer, which will be the receiver. 80 // Assumes that the method was introduced in the class that should be 81 // messaged (avoids pulling it out of the result type). 82 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 83 const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface(); 84 llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl); 85 86 CallArgList Args; 87 const ParmVarDecl *ArgDecl = *BoxingMethod->param_begin(); 88 QualType ArgQT = ArgDecl->getType().getUnqualifiedType(); 89 90 // ObjCBoxedExpr supports boxing of structs and unions 91 // via [NSValue valueWithBytes:objCType:] 92 const QualType ValueType(SubExpr->getType().getCanonicalType()); 93 if (ValueType->isObjCBoxableRecordType()) { 94 // Emit CodeGen for first parameter 95 // and cast value to correct type 96 Address Temporary = CreateMemTemp(SubExpr->getType()); 97 EmitAnyExprToMem(SubExpr, Temporary, Qualifiers(), /*isInit*/ true); 98 llvm::Value *BitCast = 99 Builder.CreateBitCast(Temporary.getPointer(), ConvertType(ArgQT)); 100 Args.add(RValue::get(BitCast), ArgQT); 101 102 // Create char array to store type encoding 103 std::string Str; 104 getContext().getObjCEncodingForType(ValueType, Str); 105 llvm::Constant *GV = CGM.GetAddrOfConstantCString(Str).getPointer(); 106 107 // Cast type encoding to correct type 108 const ParmVarDecl *EncodingDecl = BoxingMethod->parameters()[1]; 109 QualType EncodingQT = EncodingDecl->getType().getUnqualifiedType(); 110 llvm::Value *Cast = Builder.CreateBitCast(GV, ConvertType(EncodingQT)); 111 112 Args.add(RValue::get(Cast), EncodingQT); 113 } else { 114 Args.add(EmitAnyExpr(SubExpr), ArgQT); 115 } 116 117 RValue result = Runtime.GenerateMessageSend( 118 *this, ReturnValueSlot(), BoxingMethod->getReturnType(), Sel, Receiver, 119 Args, ClassDecl, BoxingMethod); 120 return Builder.CreateBitCast(result.getScalarVal(), 121 ConvertType(E->getType())); 122 } 123 124 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E, 125 const ObjCMethodDecl *MethodWithObjects) { 126 ASTContext &Context = CGM.getContext(); 127 const ObjCDictionaryLiteral *DLE = nullptr; 128 const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E); 129 if (!ALE) 130 DLE = cast<ObjCDictionaryLiteral>(E); 131 132 // Optimize empty collections by referencing constants, when available. 133 uint64_t NumElements = 134 ALE ? ALE->getNumElements() : DLE->getNumElements(); 135 if (NumElements == 0 && CGM.getLangOpts().ObjCRuntime.hasEmptyCollections()) { 136 StringRef ConstantName = ALE ? "__NSArray0__" : "__NSDictionary0__"; 137 QualType IdTy(CGM.getContext().getObjCIdType()); 138 llvm::Constant *Constant = 139 CGM.CreateRuntimeVariable(ConvertType(IdTy), ConstantName); 140 LValue LV = MakeNaturalAlignAddrLValue(Constant, IdTy); 141 llvm::Value *Ptr = EmitLoadOfScalar(LV, E->getBeginLoc()); 142 cast<llvm::LoadInst>(Ptr)->setMetadata( 143 CGM.getModule().getMDKindID("invariant.load"), 144 llvm::MDNode::get(getLLVMContext(), std::nullopt)); 145 return Builder.CreateBitCast(Ptr, ConvertType(E->getType())); 146 } 147 148 // Compute the type of the array we're initializing. 149 llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()), 150 NumElements); 151 QualType ElementType = Context.getObjCIdType().withConst(); 152 QualType ElementArrayType 153 = Context.getConstantArrayType(ElementType, APNumElements, nullptr, 154 ArrayType::Normal, /*IndexTypeQuals=*/0); 155 156 // Allocate the temporary array(s). 157 Address Objects = CreateMemTemp(ElementArrayType, "objects"); 158 Address Keys = Address::invalid(); 159 if (DLE) 160 Keys = CreateMemTemp(ElementArrayType, "keys"); 161 162 // In ARC, we may need to do extra work to keep all the keys and 163 // values alive until after the call. 164 SmallVector<llvm::Value *, 16> NeededObjects; 165 bool TrackNeededObjects = 166 (getLangOpts().ObjCAutoRefCount && 167 CGM.getCodeGenOpts().OptimizationLevel != 0); 168 169 // Perform the actual initialialization of the array(s). 170 for (uint64_t i = 0; i < NumElements; i++) { 171 if (ALE) { 172 // Emit the element and store it to the appropriate array slot. 173 const Expr *Rhs = ALE->getElement(i); 174 LValue LV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 175 ElementType, AlignmentSource::Decl); 176 177 llvm::Value *value = EmitScalarExpr(Rhs); 178 EmitStoreThroughLValue(RValue::get(value), LV, true); 179 if (TrackNeededObjects) { 180 NeededObjects.push_back(value); 181 } 182 } else { 183 // Emit the key and store it to the appropriate array slot. 184 const Expr *Key = DLE->getKeyValueElement(i).Key; 185 LValue KeyLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Keys, i), 186 ElementType, AlignmentSource::Decl); 187 llvm::Value *keyValue = EmitScalarExpr(Key); 188 EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true); 189 190 // Emit the value and store it to the appropriate array slot. 191 const Expr *Value = DLE->getKeyValueElement(i).Value; 192 LValue ValueLV = MakeAddrLValue(Builder.CreateConstArrayGEP(Objects, i), 193 ElementType, AlignmentSource::Decl); 194 llvm::Value *valueValue = EmitScalarExpr(Value); 195 EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true); 196 if (TrackNeededObjects) { 197 NeededObjects.push_back(keyValue); 198 NeededObjects.push_back(valueValue); 199 } 200 } 201 } 202 203 // Generate the argument list. 204 CallArgList Args; 205 ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin(); 206 const ParmVarDecl *argDecl = *PI++; 207 QualType ArgQT = argDecl->getType().getUnqualifiedType(); 208 Args.add(RValue::get(Objects.getPointer()), ArgQT); 209 if (DLE) { 210 argDecl = *PI++; 211 ArgQT = argDecl->getType().getUnqualifiedType(); 212 Args.add(RValue::get(Keys.getPointer()), ArgQT); 213 } 214 argDecl = *PI; 215 ArgQT = argDecl->getType().getUnqualifiedType(); 216 llvm::Value *Count = 217 llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements); 218 Args.add(RValue::get(Count), ArgQT); 219 220 // Generate a reference to the class pointer, which will be the receiver. 221 Selector Sel = MethodWithObjects->getSelector(); 222 QualType ResultType = E->getType(); 223 const ObjCObjectPointerType *InterfacePointerType 224 = ResultType->getAsObjCInterfacePointerType(); 225 ObjCInterfaceDecl *Class 226 = InterfacePointerType->getObjectType()->getInterface(); 227 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 228 llvm::Value *Receiver = Runtime.GetClass(*this, Class); 229 230 // Generate the message send. 231 RValue result = Runtime.GenerateMessageSend( 232 *this, ReturnValueSlot(), MethodWithObjects->getReturnType(), Sel, 233 Receiver, Args, Class, MethodWithObjects); 234 235 // The above message send needs these objects, but in ARC they are 236 // passed in a buffer that is essentially __unsafe_unretained. 237 // Therefore we must prevent the optimizer from releasing them until 238 // after the call. 239 if (TrackNeededObjects) { 240 EmitARCIntrinsicUse(NeededObjects); 241 } 242 243 return Builder.CreateBitCast(result.getScalarVal(), 244 ConvertType(E->getType())); 245 } 246 247 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) { 248 return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod()); 249 } 250 251 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral( 252 const ObjCDictionaryLiteral *E) { 253 return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod()); 254 } 255 256 /// Emit a selector. 257 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) { 258 // Untyped selector. 259 // Note that this implementation allows for non-constant strings to be passed 260 // as arguments to @selector(). Currently, the only thing preventing this 261 // behaviour is the type checking in the front end. 262 return CGM.getObjCRuntime().GetSelector(*this, E->getSelector()); 263 } 264 265 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) { 266 // FIXME: This should pass the Decl not the name. 267 return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol()); 268 } 269 270 /// Adjust the type of an Objective-C object that doesn't match up due 271 /// to type erasure at various points, e.g., related result types or the use 272 /// of parameterized classes. 273 static RValue AdjustObjCObjectType(CodeGenFunction &CGF, QualType ExpT, 274 RValue Result) { 275 if (!ExpT->isObjCRetainableType()) 276 return Result; 277 278 // If the converted types are the same, we're done. 279 llvm::Type *ExpLLVMTy = CGF.ConvertType(ExpT); 280 if (ExpLLVMTy == Result.getScalarVal()->getType()) 281 return Result; 282 283 // We have applied a substitution. Cast the rvalue appropriately. 284 return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(), 285 ExpLLVMTy)); 286 } 287 288 /// Decide whether to extend the lifetime of the receiver of a 289 /// returns-inner-pointer message. 290 static bool 291 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) { 292 switch (message->getReceiverKind()) { 293 294 // For a normal instance message, we should extend unless the 295 // receiver is loaded from a variable with precise lifetime. 296 case ObjCMessageExpr::Instance: { 297 const Expr *receiver = message->getInstanceReceiver(); 298 299 // Look through OVEs. 300 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 301 if (opaque->getSourceExpr()) 302 receiver = opaque->getSourceExpr()->IgnoreParens(); 303 } 304 305 const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver); 306 if (!ice || ice->getCastKind() != CK_LValueToRValue) return true; 307 receiver = ice->getSubExpr()->IgnoreParens(); 308 309 // Look through OVEs. 310 if (auto opaque = dyn_cast<OpaqueValueExpr>(receiver)) { 311 if (opaque->getSourceExpr()) 312 receiver = opaque->getSourceExpr()->IgnoreParens(); 313 } 314 315 // Only __strong variables. 316 if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 317 return true; 318 319 // All ivars and fields have precise lifetime. 320 if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver)) 321 return false; 322 323 // Otherwise, check for variables. 324 const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr()); 325 if (!declRef) return true; 326 const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl()); 327 if (!var) return true; 328 329 // All variables have precise lifetime except local variables with 330 // automatic storage duration that aren't specially marked. 331 return (var->hasLocalStorage() && 332 !var->hasAttr<ObjCPreciseLifetimeAttr>()); 333 } 334 335 case ObjCMessageExpr::Class: 336 case ObjCMessageExpr::SuperClass: 337 // It's never necessary for class objects. 338 return false; 339 340 case ObjCMessageExpr::SuperInstance: 341 // We generally assume that 'self' lives throughout a method call. 342 return false; 343 } 344 345 llvm_unreachable("invalid receiver kind"); 346 } 347 348 /// Given an expression of ObjC pointer type, check whether it was 349 /// immediately loaded from an ARC __weak l-value. 350 static const Expr *findWeakLValue(const Expr *E) { 351 assert(E->getType()->isObjCRetainableType()); 352 E = E->IgnoreParens(); 353 if (auto CE = dyn_cast<CastExpr>(E)) { 354 if (CE->getCastKind() == CK_LValueToRValue) { 355 if (CE->getSubExpr()->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 356 return CE->getSubExpr(); 357 } 358 } 359 360 return nullptr; 361 } 362 363 /// The ObjC runtime may provide entrypoints that are likely to be faster 364 /// than an ordinary message send of the appropriate selector. 365 /// 366 /// The entrypoints are guaranteed to be equivalent to just sending the 367 /// corresponding message. If the entrypoint is implemented naively as just a 368 /// message send, using it is a trade-off: it sacrifices a few cycles of 369 /// overhead to save a small amount of code. However, it's possible for 370 /// runtimes to detect and special-case classes that use "standard" 371 /// behavior; if that's dynamically a large proportion of all objects, using 372 /// the entrypoint will also be faster than using a message send. 373 /// 374 /// If the runtime does support a required entrypoint, then this method will 375 /// generate a call and return the resulting value. Otherwise it will return 376 /// std::nullopt and the caller can generate a msgSend instead. 377 static std::optional<llvm::Value *> tryGenerateSpecializedMessageSend( 378 CodeGenFunction &CGF, QualType ResultType, llvm::Value *Receiver, 379 const CallArgList &Args, Selector Sel, const ObjCMethodDecl *method, 380 bool isClassMessage) { 381 auto &CGM = CGF.CGM; 382 if (!CGM.getCodeGenOpts().ObjCConvertMessagesToRuntimeCalls) 383 return std::nullopt; 384 385 auto &Runtime = CGM.getLangOpts().ObjCRuntime; 386 switch (Sel.getMethodFamily()) { 387 case OMF_alloc: 388 if (isClassMessage && 389 Runtime.shouldUseRuntimeFunctionsForAlloc() && 390 ResultType->isObjCObjectPointerType()) { 391 // [Foo alloc] -> objc_alloc(Foo) or 392 // [self alloc] -> objc_alloc(self) 393 if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "alloc") 394 return CGF.EmitObjCAlloc(Receiver, CGF.ConvertType(ResultType)); 395 // [Foo allocWithZone:nil] -> objc_allocWithZone(Foo) or 396 // [self allocWithZone:nil] -> objc_allocWithZone(self) 397 if (Sel.isKeywordSelector() && Sel.getNumArgs() == 1 && 398 Args.size() == 1 && Args.front().getType()->isPointerType() && 399 Sel.getNameForSlot(0) == "allocWithZone") { 400 const llvm::Value* arg = Args.front().getKnownRValue().getScalarVal(); 401 if (isa<llvm::ConstantPointerNull>(arg)) 402 return CGF.EmitObjCAllocWithZone(Receiver, 403 CGF.ConvertType(ResultType)); 404 return std::nullopt; 405 } 406 } 407 break; 408 409 case OMF_autorelease: 410 if (ResultType->isObjCObjectPointerType() && 411 CGM.getLangOpts().getGC() == LangOptions::NonGC && 412 Runtime.shouldUseARCFunctionsForRetainRelease()) 413 return CGF.EmitObjCAutorelease(Receiver, CGF.ConvertType(ResultType)); 414 break; 415 416 case OMF_retain: 417 if (ResultType->isObjCObjectPointerType() && 418 CGM.getLangOpts().getGC() == LangOptions::NonGC && 419 Runtime.shouldUseARCFunctionsForRetainRelease()) 420 return CGF.EmitObjCRetainNonBlock(Receiver, CGF.ConvertType(ResultType)); 421 break; 422 423 case OMF_release: 424 if (ResultType->isVoidType() && 425 CGM.getLangOpts().getGC() == LangOptions::NonGC && 426 Runtime.shouldUseARCFunctionsForRetainRelease()) { 427 CGF.EmitObjCRelease(Receiver, ARCPreciseLifetime); 428 return nullptr; 429 } 430 break; 431 432 default: 433 break; 434 } 435 return std::nullopt; 436 } 437 438 CodeGen::RValue CGObjCRuntime::GeneratePossiblySpecializedMessageSend( 439 CodeGenFunction &CGF, ReturnValueSlot Return, QualType ResultType, 440 Selector Sel, llvm::Value *Receiver, const CallArgList &Args, 441 const ObjCInterfaceDecl *OID, const ObjCMethodDecl *Method, 442 bool isClassMessage) { 443 if (std::optional<llvm::Value *> SpecializedResult = 444 tryGenerateSpecializedMessageSend(CGF, ResultType, Receiver, Args, 445 Sel, Method, isClassMessage)) { 446 return RValue::get(*SpecializedResult); 447 } 448 return GenerateMessageSend(CGF, Return, ResultType, Sel, Receiver, Args, OID, 449 Method); 450 } 451 452 static void AppendFirstImpliedRuntimeProtocols( 453 const ObjCProtocolDecl *PD, 454 llvm::UniqueVector<const ObjCProtocolDecl *> &PDs) { 455 if (!PD->isNonRuntimeProtocol()) { 456 const auto *Can = PD->getCanonicalDecl(); 457 PDs.insert(Can); 458 return; 459 } 460 461 for (const auto *ParentPD : PD->protocols()) 462 AppendFirstImpliedRuntimeProtocols(ParentPD, PDs); 463 } 464 465 std::vector<const ObjCProtocolDecl *> 466 CGObjCRuntime::GetRuntimeProtocolList(ObjCProtocolDecl::protocol_iterator begin, 467 ObjCProtocolDecl::protocol_iterator end) { 468 std::vector<const ObjCProtocolDecl *> RuntimePds; 469 llvm::DenseSet<const ObjCProtocolDecl *> NonRuntimePDs; 470 471 for (; begin != end; ++begin) { 472 const auto *It = *begin; 473 const auto *Can = It->getCanonicalDecl(); 474 if (Can->isNonRuntimeProtocol()) 475 NonRuntimePDs.insert(Can); 476 else 477 RuntimePds.push_back(Can); 478 } 479 480 // If there are no non-runtime protocols then we can just stop now. 481 if (NonRuntimePDs.empty()) 482 return RuntimePds; 483 484 // Else we have to search through the non-runtime protocol's inheritancy 485 // hierarchy DAG stopping whenever a branch either finds a runtime protocol or 486 // a non-runtime protocol without any parents. These are the "first-implied" 487 // protocols from a non-runtime protocol. 488 llvm::UniqueVector<const ObjCProtocolDecl *> FirstImpliedProtos; 489 for (const auto *PD : NonRuntimePDs) 490 AppendFirstImpliedRuntimeProtocols(PD, FirstImpliedProtos); 491 492 // Walk the Runtime list to get all protocols implied via the inclusion of 493 // this protocol, e.g. all protocols it inherits from including itself. 494 llvm::DenseSet<const ObjCProtocolDecl *> AllImpliedProtocols; 495 for (const auto *PD : RuntimePds) { 496 const auto *Can = PD->getCanonicalDecl(); 497 AllImpliedProtocols.insert(Can); 498 Can->getImpliedProtocols(AllImpliedProtocols); 499 } 500 501 // Similar to above, walk the list of first-implied protocols to find the set 502 // all the protocols implied excluding the listed protocols themselves since 503 // they are not yet a part of the `RuntimePds` list. 504 for (const auto *PD : FirstImpliedProtos) { 505 PD->getImpliedProtocols(AllImpliedProtocols); 506 } 507 508 // From the first-implied list we have to finish building the final protocol 509 // list. If a protocol in the first-implied list was already implied via some 510 // inheritance path through some other protocols then it would be redundant to 511 // add it here and so we skip over it. 512 for (const auto *PD : FirstImpliedProtos) { 513 if (!AllImpliedProtocols.contains(PD)) { 514 RuntimePds.push_back(PD); 515 } 516 } 517 518 return RuntimePds; 519 } 520 521 /// Instead of '[[MyClass alloc] init]', try to generate 522 /// 'objc_alloc_init(MyClass)'. This provides a code size improvement on the 523 /// caller side, as well as the optimized objc_alloc. 524 static std::optional<llvm::Value *> 525 tryEmitSpecializedAllocInit(CodeGenFunction &CGF, const ObjCMessageExpr *OME) { 526 auto &Runtime = CGF.getLangOpts().ObjCRuntime; 527 if (!Runtime.shouldUseRuntimeFunctionForCombinedAllocInit()) 528 return std::nullopt; 529 530 // Match the exact pattern '[[MyClass alloc] init]'. 531 Selector Sel = OME->getSelector(); 532 if (OME->getReceiverKind() != ObjCMessageExpr::Instance || 533 !OME->getType()->isObjCObjectPointerType() || !Sel.isUnarySelector() || 534 Sel.getNameForSlot(0) != "init") 535 return std::nullopt; 536 537 // Okay, this is '[receiver init]', check if 'receiver' is '[cls alloc]' 538 // with 'cls' a Class. 539 auto *SubOME = 540 dyn_cast<ObjCMessageExpr>(OME->getInstanceReceiver()->IgnoreParenCasts()); 541 if (!SubOME) 542 return std::nullopt; 543 Selector SubSel = SubOME->getSelector(); 544 545 if (!SubOME->getType()->isObjCObjectPointerType() || 546 !SubSel.isUnarySelector() || SubSel.getNameForSlot(0) != "alloc") 547 return std::nullopt; 548 549 llvm::Value *Receiver = nullptr; 550 switch (SubOME->getReceiverKind()) { 551 case ObjCMessageExpr::Instance: 552 if (!SubOME->getInstanceReceiver()->getType()->isObjCClassType()) 553 return std::nullopt; 554 Receiver = CGF.EmitScalarExpr(SubOME->getInstanceReceiver()); 555 break; 556 557 case ObjCMessageExpr::Class: { 558 QualType ReceiverType = SubOME->getClassReceiver(); 559 const ObjCObjectType *ObjTy = ReceiverType->castAs<ObjCObjectType>(); 560 const ObjCInterfaceDecl *ID = ObjTy->getInterface(); 561 assert(ID && "null interface should be impossible here"); 562 Receiver = CGF.CGM.getObjCRuntime().GetClass(CGF, ID); 563 break; 564 } 565 case ObjCMessageExpr::SuperInstance: 566 case ObjCMessageExpr::SuperClass: 567 return std::nullopt; 568 } 569 570 return CGF.EmitObjCAllocInit(Receiver, CGF.ConvertType(OME->getType())); 571 } 572 573 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E, 574 ReturnValueSlot Return) { 575 // Only the lookup mechanism and first two arguments of the method 576 // implementation vary between runtimes. We can get the receiver and 577 // arguments in generic code. 578 579 bool isDelegateInit = E->isDelegateInitCall(); 580 581 const ObjCMethodDecl *method = E->getMethodDecl(); 582 583 // If the method is -retain, and the receiver's being loaded from 584 // a __weak variable, peephole the entire operation to objc_loadWeakRetained. 585 if (method && E->getReceiverKind() == ObjCMessageExpr::Instance && 586 method->getMethodFamily() == OMF_retain) { 587 if (auto lvalueExpr = findWeakLValue(E->getInstanceReceiver())) { 588 LValue lvalue = EmitLValue(lvalueExpr); 589 llvm::Value *result = EmitARCLoadWeakRetained(lvalue.getAddress(*this)); 590 return AdjustObjCObjectType(*this, E->getType(), RValue::get(result)); 591 } 592 } 593 594 if (std::optional<llvm::Value *> Val = tryEmitSpecializedAllocInit(*this, E)) 595 return AdjustObjCObjectType(*this, E->getType(), RValue::get(*Val)); 596 597 // We don't retain the receiver in delegate init calls, and this is 598 // safe because the receiver value is always loaded from 'self', 599 // which we zero out. We don't want to Block_copy block receivers, 600 // though. 601 bool retainSelf = 602 (!isDelegateInit && 603 CGM.getLangOpts().ObjCAutoRefCount && 604 method && 605 method->hasAttr<NSConsumesSelfAttr>()); 606 607 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 608 bool isSuperMessage = false; 609 bool isClassMessage = false; 610 ObjCInterfaceDecl *OID = nullptr; 611 // Find the receiver 612 QualType ReceiverType; 613 llvm::Value *Receiver = nullptr; 614 switch (E->getReceiverKind()) { 615 case ObjCMessageExpr::Instance: 616 ReceiverType = E->getInstanceReceiver()->getType(); 617 isClassMessage = ReceiverType->isObjCClassType(); 618 if (retainSelf) { 619 TryEmitResult ter = tryEmitARCRetainScalarExpr(*this, 620 E->getInstanceReceiver()); 621 Receiver = ter.getPointer(); 622 if (ter.getInt()) retainSelf = false; 623 } else 624 Receiver = EmitScalarExpr(E->getInstanceReceiver()); 625 break; 626 627 case ObjCMessageExpr::Class: { 628 ReceiverType = E->getClassReceiver(); 629 OID = ReceiverType->castAs<ObjCObjectType>()->getInterface(); 630 assert(OID && "Invalid Objective-C class message send"); 631 Receiver = Runtime.GetClass(*this, OID); 632 isClassMessage = true; 633 break; 634 } 635 636 case ObjCMessageExpr::SuperInstance: 637 ReceiverType = E->getSuperType(); 638 Receiver = LoadObjCSelf(); 639 isSuperMessage = true; 640 break; 641 642 case ObjCMessageExpr::SuperClass: 643 ReceiverType = E->getSuperType(); 644 Receiver = LoadObjCSelf(); 645 isSuperMessage = true; 646 isClassMessage = true; 647 break; 648 } 649 650 if (retainSelf) 651 Receiver = EmitARCRetainNonBlock(Receiver); 652 653 // In ARC, we sometimes want to "extend the lifetime" 654 // (i.e. retain+autorelease) of receivers of returns-inner-pointer 655 // messages. 656 if (getLangOpts().ObjCAutoRefCount && method && 657 method->hasAttr<ObjCReturnsInnerPointerAttr>() && 658 shouldExtendReceiverForInnerPointerMessage(E)) 659 Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver); 660 661 QualType ResultType = method ? method->getReturnType() : E->getType(); 662 663 CallArgList Args; 664 EmitCallArgs(Args, method, E->arguments(), /*AC*/AbstractCallee(method)); 665 666 // For delegate init calls in ARC, do an unsafe store of null into 667 // self. This represents the call taking direct ownership of that 668 // value. We have to do this after emitting the other call 669 // arguments because they might also reference self, but we don't 670 // have to worry about any of them modifying self because that would 671 // be an undefined read and write of an object in unordered 672 // expressions. 673 if (isDelegateInit) { 674 assert(getLangOpts().ObjCAutoRefCount && 675 "delegate init calls should only be marked in ARC"); 676 677 // Do an unsafe store of null into self. 678 Address selfAddr = 679 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 680 Builder.CreateStore(getNullForVariable(selfAddr), selfAddr); 681 } 682 683 RValue result; 684 if (isSuperMessage) { 685 // super is only valid in an Objective-C method 686 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 687 bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext()); 688 result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType, 689 E->getSelector(), 690 OMD->getClassInterface(), 691 isCategoryImpl, 692 Receiver, 693 isClassMessage, 694 Args, 695 method); 696 } else { 697 // Call runtime methods directly if we can. 698 result = Runtime.GeneratePossiblySpecializedMessageSend( 699 *this, Return, ResultType, E->getSelector(), Receiver, Args, OID, 700 method, isClassMessage); 701 } 702 703 // For delegate init calls in ARC, implicitly store the result of 704 // the call back into self. This takes ownership of the value. 705 if (isDelegateInit) { 706 Address selfAddr = 707 GetAddrOfLocalVar(cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()); 708 llvm::Value *newSelf = result.getScalarVal(); 709 710 // The delegate return type isn't necessarily a matching type; in 711 // fact, it's quite likely to be 'id'. 712 llvm::Type *selfTy = selfAddr.getElementType(); 713 newSelf = Builder.CreateBitCast(newSelf, selfTy); 714 715 Builder.CreateStore(newSelf, selfAddr); 716 } 717 718 return AdjustObjCObjectType(*this, E->getType(), result); 719 } 720 721 namespace { 722 struct FinishARCDealloc final : EHScopeStack::Cleanup { 723 void Emit(CodeGenFunction &CGF, Flags flags) override { 724 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl); 725 726 const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext()); 727 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 728 if (!iface->getSuperClass()) return; 729 730 bool isCategory = isa<ObjCCategoryImplDecl>(impl); 731 732 // Call [super dealloc] if we have a superclass. 733 llvm::Value *self = CGF.LoadObjCSelf(); 734 735 CallArgList args; 736 CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(), 737 CGF.getContext().VoidTy, 738 method->getSelector(), 739 iface, 740 isCategory, 741 self, 742 /*is class msg*/ false, 743 args, 744 method); 745 } 746 }; 747 } 748 749 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates 750 /// the LLVM function and sets the other context used by 751 /// CodeGenFunction. 752 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD, 753 const ObjCContainerDecl *CD) { 754 SourceLocation StartLoc = OMD->getBeginLoc(); 755 FunctionArgList args; 756 // Check if we should generate debug info for this method. 757 if (OMD->hasAttr<NoDebugAttr>()) 758 DebugInfo = nullptr; // disable debug info indefinitely for this function 759 760 llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD); 761 762 const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD); 763 if (OMD->isDirectMethod()) { 764 Fn->setVisibility(llvm::Function::HiddenVisibility); 765 CGM.SetLLVMFunctionAttributes(OMD, FI, Fn, /*IsThunk=*/false); 766 CGM.SetLLVMFunctionAttributesForDefinition(OMD, Fn); 767 } else { 768 CGM.SetInternalFunctionAttributes(OMD, Fn, FI); 769 } 770 771 args.push_back(OMD->getSelfDecl()); 772 if (!OMD->isDirectMethod()) 773 args.push_back(OMD->getCmdDecl()); 774 775 args.append(OMD->param_begin(), OMD->param_end()); 776 777 CurGD = OMD; 778 CurEHLocation = OMD->getEndLoc(); 779 780 StartFunction(OMD, OMD->getReturnType(), Fn, FI, args, 781 OMD->getLocation(), StartLoc); 782 783 if (OMD->isDirectMethod()) { 784 // This function is a direct call, it has to implement a nil check 785 // on entry. 786 // 787 // TODO: possibly have several entry points to elide the check 788 CGM.getObjCRuntime().GenerateDirectMethodPrologue(*this, Fn, OMD, CD); 789 } 790 791 // In ARC, certain methods get an extra cleanup. 792 if (CGM.getLangOpts().ObjCAutoRefCount && 793 OMD->isInstanceMethod() && 794 OMD->getSelector().isUnarySelector()) { 795 const IdentifierInfo *ident = 796 OMD->getSelector().getIdentifierInfoForSlot(0); 797 if (ident->isStr("dealloc")) 798 EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind()); 799 } 800 } 801 802 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 803 LValue lvalue, QualType type); 804 805 /// Generate an Objective-C method. An Objective-C method is a C function with 806 /// its pointer, name, and types registered in the class structure. 807 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) { 808 StartObjCMethod(OMD, OMD->getClassInterface()); 809 PGO.assignRegionCounters(GlobalDecl(OMD), CurFn); 810 assert(isa<CompoundStmt>(OMD->getBody())); 811 incrementProfileCounter(OMD->getBody()); 812 EmitCompoundStmtWithoutScope(*cast<CompoundStmt>(OMD->getBody())); 813 FinishFunction(OMD->getBodyRBrace()); 814 } 815 816 /// emitStructGetterCall - Call the runtime function to load a property 817 /// into the return value slot. 818 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar, 819 bool isAtomic, bool hasStrong) { 820 ASTContext &Context = CGF.getContext(); 821 822 llvm::Value *src = 823 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 824 .getPointer(CGF); 825 826 // objc_copyStruct (ReturnValue, &structIvar, 827 // sizeof (Type of Ivar), isAtomic, false); 828 CallArgList args; 829 830 llvm::Value *dest = 831 CGF.Builder.CreateBitCast(CGF.ReturnValue.getPointer(), CGF.VoidPtrTy); 832 args.add(RValue::get(dest), Context.VoidPtrTy); 833 834 src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy); 835 args.add(RValue::get(src), Context.VoidPtrTy); 836 837 CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType()); 838 args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType()); 839 args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy); 840 args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy); 841 842 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetGetStructFunction(); 843 CGCallee callee = CGCallee::forDirect(fn); 844 CGF.EmitCall(CGF.getTypes().arrangeBuiltinFunctionCall(Context.VoidTy, args), 845 callee, ReturnValueSlot(), args); 846 } 847 848 /// Determine whether the given architecture supports unaligned atomic 849 /// accesses. They don't have to be fast, just faster than a function 850 /// call and a mutex. 851 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) { 852 // FIXME: Allow unaligned atomic load/store on x86. (It is not 853 // currently supported by the backend.) 854 return false; 855 } 856 857 /// Return the maximum size that permits atomic accesses for the given 858 /// architecture. 859 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM, 860 llvm::Triple::ArchType arch) { 861 // ARM has 8-byte atomic accesses, but it's not clear whether we 862 // want to rely on them here. 863 864 // In the default case, just assume that any size up to a pointer is 865 // fine given adequate alignment. 866 return CharUnits::fromQuantity(CGM.PointerSizeInBytes); 867 } 868 869 namespace { 870 class PropertyImplStrategy { 871 public: 872 enum StrategyKind { 873 /// The 'native' strategy is to use the architecture's provided 874 /// reads and writes. 875 Native, 876 877 /// Use objc_setProperty and objc_getProperty. 878 GetSetProperty, 879 880 /// Use objc_setProperty for the setter, but use expression 881 /// evaluation for the getter. 882 SetPropertyAndExpressionGet, 883 884 /// Use objc_copyStruct. 885 CopyStruct, 886 887 /// The 'expression' strategy is to emit normal assignment or 888 /// lvalue-to-rvalue expressions. 889 Expression 890 }; 891 892 StrategyKind getKind() const { return StrategyKind(Kind); } 893 894 bool hasStrongMember() const { return HasStrong; } 895 bool isAtomic() const { return IsAtomic; } 896 bool isCopy() const { return IsCopy; } 897 898 CharUnits getIvarSize() const { return IvarSize; } 899 CharUnits getIvarAlignment() const { return IvarAlignment; } 900 901 PropertyImplStrategy(CodeGenModule &CGM, 902 const ObjCPropertyImplDecl *propImpl); 903 904 private: 905 unsigned Kind : 8; 906 unsigned IsAtomic : 1; 907 unsigned IsCopy : 1; 908 unsigned HasStrong : 1; 909 910 CharUnits IvarSize; 911 CharUnits IvarAlignment; 912 }; 913 } 914 915 /// Pick an implementation strategy for the given property synthesis. 916 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM, 917 const ObjCPropertyImplDecl *propImpl) { 918 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 919 ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind(); 920 921 IsCopy = (setterKind == ObjCPropertyDecl::Copy); 922 IsAtomic = prop->isAtomic(); 923 HasStrong = false; // doesn't matter here. 924 925 // Evaluate the ivar's size and alignment. 926 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 927 QualType ivarType = ivar->getType(); 928 auto TInfo = CGM.getContext().getTypeInfoInChars(ivarType); 929 IvarSize = TInfo.Width; 930 IvarAlignment = TInfo.Align; 931 932 // If we have a copy property, we always have to use setProperty. 933 // If the property is atomic we need to use getProperty, but in 934 // the nonatomic case we can just use expression. 935 if (IsCopy) { 936 Kind = IsAtomic ? GetSetProperty : SetPropertyAndExpressionGet; 937 return; 938 } 939 940 // Handle retain. 941 if (setterKind == ObjCPropertyDecl::Retain) { 942 // In GC-only, there's nothing special that needs to be done. 943 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) { 944 // fallthrough 945 946 // In ARC, if the property is non-atomic, use expression emission, 947 // which translates to objc_storeStrong. This isn't required, but 948 // it's slightly nicer. 949 } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) { 950 // Using standard expression emission for the setter is only 951 // acceptable if the ivar is __strong, which won't be true if 952 // the property is annotated with __attribute__((NSObject)). 953 // TODO: falling all the way back to objc_setProperty here is 954 // just laziness, though; we could still use objc_storeStrong 955 // if we hacked it right. 956 if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong) 957 Kind = Expression; 958 else 959 Kind = SetPropertyAndExpressionGet; 960 return; 961 962 // Otherwise, we need to at least use setProperty. However, if 963 // the property isn't atomic, we can use normal expression 964 // emission for the getter. 965 } else if (!IsAtomic) { 966 Kind = SetPropertyAndExpressionGet; 967 return; 968 969 // Otherwise, we have to use both setProperty and getProperty. 970 } else { 971 Kind = GetSetProperty; 972 return; 973 } 974 } 975 976 // If we're not atomic, just use expression accesses. 977 if (!IsAtomic) { 978 Kind = Expression; 979 return; 980 } 981 982 // Properties on bitfield ivars need to be emitted using expression 983 // accesses even if they're nominally atomic. 984 if (ivar->isBitField()) { 985 Kind = Expression; 986 return; 987 } 988 989 // GC-qualified or ARC-qualified ivars need to be emitted as 990 // expressions. This actually works out to being atomic anyway, 991 // except for ARC __strong, but that should trigger the above code. 992 if (ivarType.hasNonTrivialObjCLifetime() || 993 (CGM.getLangOpts().getGC() && 994 CGM.getContext().getObjCGCAttrKind(ivarType))) { 995 Kind = Expression; 996 return; 997 } 998 999 // Compute whether the ivar has strong members. 1000 if (CGM.getLangOpts().getGC()) 1001 if (const RecordType *recordType = ivarType->getAs<RecordType>()) 1002 HasStrong = recordType->getDecl()->hasObjectMember(); 1003 1004 // We can never access structs with object members with a native 1005 // access, because we need to use write barriers. This is what 1006 // objc_copyStruct is for. 1007 if (HasStrong) { 1008 Kind = CopyStruct; 1009 return; 1010 } 1011 1012 // Otherwise, this is target-dependent and based on the size and 1013 // alignment of the ivar. 1014 1015 // If the size of the ivar is not a power of two, give up. We don't 1016 // want to get into the business of doing compare-and-swaps. 1017 if (!IvarSize.isPowerOfTwo()) { 1018 Kind = CopyStruct; 1019 return; 1020 } 1021 1022 llvm::Triple::ArchType arch = 1023 CGM.getTarget().getTriple().getArch(); 1024 1025 // Most architectures require memory to fit within a single cache 1026 // line, so the alignment has to be at least the size of the access. 1027 // Otherwise we have to grab a lock. 1028 if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) { 1029 Kind = CopyStruct; 1030 return; 1031 } 1032 1033 // If the ivar's size exceeds the architecture's maximum atomic 1034 // access size, we have to use CopyStruct. 1035 if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) { 1036 Kind = CopyStruct; 1037 return; 1038 } 1039 1040 // Otherwise, we can use native loads and stores. 1041 Kind = Native; 1042 } 1043 1044 /// Generate an Objective-C property getter function. 1045 /// 1046 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1047 /// is illegal within a category. 1048 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP, 1049 const ObjCPropertyImplDecl *PID) { 1050 llvm::Constant *AtomicHelperFn = 1051 CodeGenFunction(CGM).GenerateObjCAtomicGetterCopyHelperFunction(PID); 1052 ObjCMethodDecl *OMD = PID->getGetterMethodDecl(); 1053 assert(OMD && "Invalid call to generate getter (empty method)"); 1054 StartObjCMethod(OMD, IMP->getClassInterface()); 1055 1056 generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn); 1057 1058 FinishFunction(OMD->getEndLoc()); 1059 } 1060 1061 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) { 1062 const Expr *getter = propImpl->getGetterCXXConstructor(); 1063 if (!getter) return true; 1064 1065 // Sema only makes only of these when the ivar has a C++ class type, 1066 // so the form is pretty constrained. 1067 1068 // If the property has a reference type, we might just be binding a 1069 // reference, in which case the result will be a gl-value. We should 1070 // treat this as a non-trivial operation. 1071 if (getter->isGLValue()) 1072 return false; 1073 1074 // If we selected a trivial copy-constructor, we're okay. 1075 if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter)) 1076 return (construct->getConstructor()->isTrivial()); 1077 1078 // The constructor might require cleanups (in which case it's never 1079 // trivial). 1080 assert(isa<ExprWithCleanups>(getter)); 1081 return false; 1082 } 1083 1084 /// emitCPPObjectAtomicGetterCall - Call the runtime function to 1085 /// copy the ivar into the resturn slot. 1086 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF, 1087 llvm::Value *returnAddr, 1088 ObjCIvarDecl *ivar, 1089 llvm::Constant *AtomicHelperFn) { 1090 // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar, 1091 // AtomicHelperFn); 1092 CallArgList args; 1093 1094 // The 1st argument is the return Slot. 1095 args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy); 1096 1097 // The 2nd argument is the address of the ivar. 1098 llvm::Value *ivarAddr = 1099 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1100 .getPointer(CGF); 1101 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1102 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1103 1104 // Third argument is the helper function. 1105 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1106 1107 llvm::FunctionCallee copyCppAtomicObjectFn = 1108 CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction(); 1109 CGCallee callee = CGCallee::forDirect(copyCppAtomicObjectFn); 1110 CGF.EmitCall( 1111 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1112 callee, ReturnValueSlot(), args); 1113 } 1114 1115 // emitCmdValueForGetterSetterBody - Handle emitting the load necessary for 1116 // the `_cmd` selector argument for getter/setter bodies. For direct methods, 1117 // this returns an undefined/poison value; this matches behavior prior to `_cmd` 1118 // being removed from the direct method ABI as the getter/setter caller would 1119 // never load one. For non-direct methods, this emits a load of the implicit 1120 // `_cmd` storage. 1121 static llvm::Value *emitCmdValueForGetterSetterBody(CodeGenFunction &CGF, 1122 ObjCMethodDecl *MD) { 1123 if (MD->isDirectMethod()) { 1124 // Direct methods do not have a `_cmd` argument. Emit an undefined/poison 1125 // value. This will be passed to objc_getProperty/objc_setProperty, which 1126 // has not appeared bothered by the `_cmd` argument being undefined before. 1127 llvm::Type *selType = CGF.ConvertType(CGF.getContext().getObjCSelType()); 1128 return llvm::PoisonValue::get(selType); 1129 } 1130 1131 return CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(MD->getCmdDecl()), "cmd"); 1132 } 1133 1134 void 1135 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1136 const ObjCPropertyImplDecl *propImpl, 1137 const ObjCMethodDecl *GetterMethodDecl, 1138 llvm::Constant *AtomicHelperFn) { 1139 1140 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1141 1142 if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 1143 if (!AtomicHelperFn) { 1144 LValue Src = 1145 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1146 LValue Dst = MakeAddrLValue(ReturnValue, ivar->getType()); 1147 callCStructCopyConstructor(Dst, Src); 1148 } else { 1149 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1150 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), ivar, 1151 AtomicHelperFn); 1152 } 1153 return; 1154 } 1155 1156 // If there's a non-trivial 'get' expression, we just have to emit that. 1157 if (!hasTrivialGetExpr(propImpl)) { 1158 if (!AtomicHelperFn) { 1159 auto *ret = ReturnStmt::Create(getContext(), SourceLocation(), 1160 propImpl->getGetterCXXConstructor(), 1161 /* NRVOCandidate=*/nullptr); 1162 EmitReturnStmt(*ret); 1163 } 1164 else { 1165 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1166 emitCPPObjectAtomicGetterCall(*this, ReturnValue.getPointer(), 1167 ivar, AtomicHelperFn); 1168 } 1169 return; 1170 } 1171 1172 const ObjCPropertyDecl *prop = propImpl->getPropertyDecl(); 1173 QualType propType = prop->getType(); 1174 ObjCMethodDecl *getterMethod = propImpl->getGetterMethodDecl(); 1175 1176 // Pick an implementation strategy. 1177 PropertyImplStrategy strategy(CGM, propImpl); 1178 switch (strategy.getKind()) { 1179 case PropertyImplStrategy::Native: { 1180 // We don't need to do anything for a zero-size struct. 1181 if (strategy.getIvarSize().isZero()) 1182 return; 1183 1184 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1185 1186 // Currently, all atomic accesses have to be through integer 1187 // types, so there's no point in trying to pick a prettier type. 1188 uint64_t ivarSize = getContext().toBits(strategy.getIvarSize()); 1189 llvm::Type *bitcastType = llvm::Type::getIntNTy(getLLVMContext(), ivarSize); 1190 1191 // Perform an atomic load. This does not impose ordering constraints. 1192 Address ivarAddr = LV.getAddress(*this); 1193 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1194 llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load"); 1195 load->setAtomic(llvm::AtomicOrdering::Unordered); 1196 1197 // Store that value into the return address. Doing this with a 1198 // bitcast is likely to produce some pretty ugly IR, but it's not 1199 // the *most* terrible thing in the world. 1200 llvm::Type *retTy = ConvertType(getterMethod->getReturnType()); 1201 uint64_t retTySize = CGM.getDataLayout().getTypeSizeInBits(retTy); 1202 llvm::Value *ivarVal = load; 1203 if (ivarSize > retTySize) { 1204 bitcastType = llvm::Type::getIntNTy(getLLVMContext(), retTySize); 1205 ivarVal = Builder.CreateTrunc(load, bitcastType); 1206 } 1207 Builder.CreateStore(ivarVal, 1208 Builder.CreateElementBitCast(ReturnValue, bitcastType)); 1209 1210 // Make sure we don't do an autorelease. 1211 AutoreleaseResult = false; 1212 return; 1213 } 1214 1215 case PropertyImplStrategy::GetSetProperty: { 1216 llvm::FunctionCallee getPropertyFn = 1217 CGM.getObjCRuntime().GetPropertyGetFunction(); 1218 if (!getPropertyFn) { 1219 CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy"); 1220 return; 1221 } 1222 CGCallee callee = CGCallee::forDirect(getPropertyFn); 1223 1224 // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true). 1225 // FIXME: Can't this be simpler? This might even be worse than the 1226 // corresponding gcc code. 1227 llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, getterMethod); 1228 llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1229 llvm::Value *ivarOffset = 1230 EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar); 1231 1232 CallArgList args; 1233 args.add(RValue::get(self), getContext().getObjCIdType()); 1234 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1235 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1236 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1237 getContext().BoolTy); 1238 1239 // FIXME: We shouldn't need to get the function info here, the 1240 // runtime already should have computed it to build the function. 1241 llvm::CallBase *CallInstruction; 1242 RValue RV = EmitCall(getTypes().arrangeBuiltinFunctionCall( 1243 getContext().getObjCIdType(), args), 1244 callee, ReturnValueSlot(), args, &CallInstruction); 1245 if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(CallInstruction)) 1246 call->setTailCall(); 1247 1248 // We need to fix the type here. Ivars with copy & retain are 1249 // always objects so we don't need to worry about complex or 1250 // aggregates. 1251 RV = RValue::get(Builder.CreateBitCast( 1252 RV.getScalarVal(), 1253 getTypes().ConvertType(getterMethod->getReturnType()))); 1254 1255 EmitReturnOfRValue(RV, propType); 1256 1257 // objc_getProperty does an autorelease, so we should suppress ours. 1258 AutoreleaseResult = false; 1259 1260 return; 1261 } 1262 1263 case PropertyImplStrategy::CopyStruct: 1264 emitStructGetterCall(*this, ivar, strategy.isAtomic(), 1265 strategy.hasStrongMember()); 1266 return; 1267 1268 case PropertyImplStrategy::Expression: 1269 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1270 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0); 1271 1272 QualType ivarType = ivar->getType(); 1273 switch (getEvaluationKind(ivarType)) { 1274 case TEK_Complex: { 1275 ComplexPairTy pair = EmitLoadOfComplex(LV, SourceLocation()); 1276 EmitStoreOfComplex(pair, MakeAddrLValue(ReturnValue, ivarType), 1277 /*init*/ true); 1278 return; 1279 } 1280 case TEK_Aggregate: { 1281 // The return value slot is guaranteed to not be aliased, but 1282 // that's not necessarily the same as "on the stack", so 1283 // we still potentially need objc_memmove_collectable. 1284 EmitAggregateCopy(/* Dest= */ MakeAddrLValue(ReturnValue, ivarType), 1285 /* Src= */ LV, ivarType, getOverlapForReturnValue()); 1286 return; 1287 } 1288 case TEK_Scalar: { 1289 llvm::Value *value; 1290 if (propType->isReferenceType()) { 1291 value = LV.getAddress(*this).getPointer(); 1292 } else { 1293 // We want to load and autoreleaseReturnValue ARC __weak ivars. 1294 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1295 if (getLangOpts().ObjCAutoRefCount) { 1296 value = emitARCRetainLoadOfScalar(*this, LV, ivarType); 1297 } else { 1298 value = EmitARCLoadWeak(LV.getAddress(*this)); 1299 } 1300 1301 // Otherwise we want to do a simple load, suppressing the 1302 // final autorelease. 1303 } else { 1304 value = EmitLoadOfLValue(LV, SourceLocation()).getScalarVal(); 1305 AutoreleaseResult = false; 1306 } 1307 1308 value = Builder.CreateBitCast( 1309 value, ConvertType(GetterMethodDecl->getReturnType())); 1310 } 1311 1312 EmitReturnOfRValue(RValue::get(value), propType); 1313 return; 1314 } 1315 } 1316 llvm_unreachable("bad evaluation kind"); 1317 } 1318 1319 } 1320 llvm_unreachable("bad @property implementation strategy!"); 1321 } 1322 1323 /// emitStructSetterCall - Call the runtime function to store the value 1324 /// from the first formal parameter into the given ivar. 1325 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD, 1326 ObjCIvarDecl *ivar) { 1327 // objc_copyStruct (&structIvar, &Arg, 1328 // sizeof (struct something), true, false); 1329 CallArgList args; 1330 1331 // The first argument is the address of the ivar. 1332 llvm::Value *ivarAddr = 1333 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1334 .getPointer(CGF); 1335 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1336 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1337 1338 // The second argument is the address of the parameter variable. 1339 ParmVarDecl *argVar = *OMD->param_begin(); 1340 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1341 argVar->getType().getNonReferenceType(), VK_LValue, 1342 SourceLocation()); 1343 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1344 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1345 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1346 1347 // The third argument is the sizeof the type. 1348 llvm::Value *size = 1349 CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType())); 1350 args.add(RValue::get(size), CGF.getContext().getSizeType()); 1351 1352 // The fourth argument is the 'isAtomic' flag. 1353 args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy); 1354 1355 // The fifth argument is the 'hasStrong' flag. 1356 // FIXME: should this really always be false? 1357 args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy); 1358 1359 llvm::FunctionCallee fn = CGF.CGM.getObjCRuntime().GetSetStructFunction(); 1360 CGCallee callee = CGCallee::forDirect(fn); 1361 CGF.EmitCall( 1362 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1363 callee, ReturnValueSlot(), args); 1364 } 1365 1366 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store 1367 /// the value from the first formal parameter into the given ivar, using 1368 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment. 1369 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF, 1370 ObjCMethodDecl *OMD, 1371 ObjCIvarDecl *ivar, 1372 llvm::Constant *AtomicHelperFn) { 1373 // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg, 1374 // AtomicHelperFn); 1375 CallArgList args; 1376 1377 // The first argument is the address of the ivar. 1378 llvm::Value *ivarAddr = 1379 CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(), ivar, 0) 1380 .getPointer(CGF); 1381 ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy); 1382 args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy); 1383 1384 // The second argument is the address of the parameter variable. 1385 ParmVarDecl *argVar = *OMD->param_begin(); 1386 DeclRefExpr argRef(CGF.getContext(), argVar, false, 1387 argVar->getType().getNonReferenceType(), VK_LValue, 1388 SourceLocation()); 1389 llvm::Value *argAddr = CGF.EmitLValue(&argRef).getPointer(CGF); 1390 argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy); 1391 args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy); 1392 1393 // Third argument is the helper function. 1394 args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy); 1395 1396 llvm::FunctionCallee fn = 1397 CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction(); 1398 CGCallee callee = CGCallee::forDirect(fn); 1399 CGF.EmitCall( 1400 CGF.getTypes().arrangeBuiltinFunctionCall(CGF.getContext().VoidTy, args), 1401 callee, ReturnValueSlot(), args); 1402 } 1403 1404 1405 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) { 1406 Expr *setter = PID->getSetterCXXAssignment(); 1407 if (!setter) return true; 1408 1409 // Sema only makes only of these when the ivar has a C++ class type, 1410 // so the form is pretty constrained. 1411 1412 // An operator call is trivial if the function it calls is trivial. 1413 // This also implies that there's nothing non-trivial going on with 1414 // the arguments, because operator= can only be trivial if it's a 1415 // synthesized assignment operator and therefore both parameters are 1416 // references. 1417 if (CallExpr *call = dyn_cast<CallExpr>(setter)) { 1418 if (const FunctionDecl *callee 1419 = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl())) 1420 if (callee->isTrivial()) 1421 return true; 1422 return false; 1423 } 1424 1425 assert(isa<ExprWithCleanups>(setter)); 1426 return false; 1427 } 1428 1429 static bool UseOptimizedSetter(CodeGenModule &CGM) { 1430 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) 1431 return false; 1432 return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter(); 1433 } 1434 1435 void 1436 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1437 const ObjCPropertyImplDecl *propImpl, 1438 llvm::Constant *AtomicHelperFn) { 1439 ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl(); 1440 ObjCMethodDecl *setterMethod = propImpl->getSetterMethodDecl(); 1441 1442 if (ivar->getType().isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 1443 ParmVarDecl *PVD = *setterMethod->param_begin(); 1444 if (!AtomicHelperFn) { 1445 // Call the move assignment operator instead of calling the copy 1446 // assignment operator and destructor. 1447 LValue Dst = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 1448 /*quals*/ 0); 1449 LValue Src = MakeAddrLValue(GetAddrOfLocalVar(PVD), ivar->getType()); 1450 callCStructMoveAssignmentOperator(Dst, Src); 1451 } else { 1452 // If atomic, assignment is called via a locking api. 1453 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, AtomicHelperFn); 1454 } 1455 // Decativate the destructor for the setter parameter. 1456 DeactivateCleanupBlock(CalleeDestructedParamCleanups[PVD], AllocaInsertPt); 1457 return; 1458 } 1459 1460 // Just use the setter expression if Sema gave us one and it's 1461 // non-trivial. 1462 if (!hasTrivialSetExpr(propImpl)) { 1463 if (!AtomicHelperFn) 1464 // If non-atomic, assignment is called directly. 1465 EmitStmt(propImpl->getSetterCXXAssignment()); 1466 else 1467 // If atomic, assignment is called via a locking api. 1468 emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar, 1469 AtomicHelperFn); 1470 return; 1471 } 1472 1473 PropertyImplStrategy strategy(CGM, propImpl); 1474 switch (strategy.getKind()) { 1475 case PropertyImplStrategy::Native: { 1476 // We don't need to do anything for a zero-size struct. 1477 if (strategy.getIvarSize().isZero()) 1478 return; 1479 1480 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1481 1482 LValue ivarLValue = 1483 EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0); 1484 Address ivarAddr = ivarLValue.getAddress(*this); 1485 1486 // Currently, all atomic accesses have to be through integer 1487 // types, so there's no point in trying to pick a prettier type. 1488 llvm::Type *bitcastType = 1489 llvm::Type::getIntNTy(getLLVMContext(), 1490 getContext().toBits(strategy.getIvarSize())); 1491 1492 // Cast both arguments to the chosen operation type. 1493 argAddr = Builder.CreateElementBitCast(argAddr, bitcastType); 1494 ivarAddr = Builder.CreateElementBitCast(ivarAddr, bitcastType); 1495 1496 // This bitcast load is likely to cause some nasty IR. 1497 llvm::Value *load = Builder.CreateLoad(argAddr); 1498 1499 // Perform an atomic store. There are no memory ordering requirements. 1500 llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr); 1501 store->setAtomic(llvm::AtomicOrdering::Unordered); 1502 return; 1503 } 1504 1505 case PropertyImplStrategy::GetSetProperty: 1506 case PropertyImplStrategy::SetPropertyAndExpressionGet: { 1507 1508 llvm::FunctionCallee setOptimizedPropertyFn = nullptr; 1509 llvm::FunctionCallee setPropertyFn = nullptr; 1510 if (UseOptimizedSetter(CGM)) { 1511 // 10.8 and iOS 6.0 code and GC is off 1512 setOptimizedPropertyFn = 1513 CGM.getObjCRuntime().GetOptimizedPropertySetFunction( 1514 strategy.isAtomic(), strategy.isCopy()); 1515 if (!setOptimizedPropertyFn) { 1516 CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI"); 1517 return; 1518 } 1519 } 1520 else { 1521 setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction(); 1522 if (!setPropertyFn) { 1523 CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy"); 1524 return; 1525 } 1526 } 1527 1528 // Emit objc_setProperty((id) self, _cmd, offset, arg, 1529 // <is-atomic>, <is-copy>). 1530 llvm::Value *cmd = emitCmdValueForGetterSetterBody(*this, setterMethod); 1531 llvm::Value *self = 1532 Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy); 1533 llvm::Value *ivarOffset = 1534 EmitIvarOffsetAsPointerDiff(classImpl->getClassInterface(), ivar); 1535 Address argAddr = GetAddrOfLocalVar(*setterMethod->param_begin()); 1536 llvm::Value *arg = Builder.CreateLoad(argAddr, "arg"); 1537 arg = Builder.CreateBitCast(arg, VoidPtrTy); 1538 1539 CallArgList args; 1540 args.add(RValue::get(self), getContext().getObjCIdType()); 1541 args.add(RValue::get(cmd), getContext().getObjCSelType()); 1542 if (setOptimizedPropertyFn) { 1543 args.add(RValue::get(arg), getContext().getObjCIdType()); 1544 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1545 CGCallee callee = CGCallee::forDirect(setOptimizedPropertyFn); 1546 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1547 callee, ReturnValueSlot(), args); 1548 } else { 1549 args.add(RValue::get(ivarOffset), getContext().getPointerDiffType()); 1550 args.add(RValue::get(arg), getContext().getObjCIdType()); 1551 args.add(RValue::get(Builder.getInt1(strategy.isAtomic())), 1552 getContext().BoolTy); 1553 args.add(RValue::get(Builder.getInt1(strategy.isCopy())), 1554 getContext().BoolTy); 1555 // FIXME: We shouldn't need to get the function info here, the runtime 1556 // already should have computed it to build the function. 1557 CGCallee callee = CGCallee::forDirect(setPropertyFn); 1558 EmitCall(getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, args), 1559 callee, ReturnValueSlot(), args); 1560 } 1561 1562 return; 1563 } 1564 1565 case PropertyImplStrategy::CopyStruct: 1566 emitStructSetterCall(*this, setterMethod, ivar); 1567 return; 1568 1569 case PropertyImplStrategy::Expression: 1570 break; 1571 } 1572 1573 // Otherwise, fake up some ASTs and emit a normal assignment. 1574 ValueDecl *selfDecl = setterMethod->getSelfDecl(); 1575 DeclRefExpr self(getContext(), selfDecl, false, selfDecl->getType(), 1576 VK_LValue, SourceLocation()); 1577 ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack, selfDecl->getType(), 1578 CK_LValueToRValue, &self, VK_PRValue, 1579 FPOptionsOverride()); 1580 ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(), 1581 SourceLocation(), SourceLocation(), 1582 &selfLoad, true, true); 1583 1584 ParmVarDecl *argDecl = *setterMethod->param_begin(); 1585 QualType argType = argDecl->getType().getNonReferenceType(); 1586 DeclRefExpr arg(getContext(), argDecl, false, argType, VK_LValue, 1587 SourceLocation()); 1588 ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack, 1589 argType.getUnqualifiedType(), CK_LValueToRValue, 1590 &arg, VK_PRValue, FPOptionsOverride()); 1591 1592 // The property type can differ from the ivar type in some situations with 1593 // Objective-C pointer types, we can always bit cast the RHS in these cases. 1594 // The following absurdity is just to ensure well-formed IR. 1595 CastKind argCK = CK_NoOp; 1596 if (ivarRef.getType()->isObjCObjectPointerType()) { 1597 if (argLoad.getType()->isObjCObjectPointerType()) 1598 argCK = CK_BitCast; 1599 else if (argLoad.getType()->isBlockPointerType()) 1600 argCK = CK_BlockPointerToObjCPointerCast; 1601 else 1602 argCK = CK_CPointerToObjCPointerCast; 1603 } else if (ivarRef.getType()->isBlockPointerType()) { 1604 if (argLoad.getType()->isBlockPointerType()) 1605 argCK = CK_BitCast; 1606 else 1607 argCK = CK_AnyPointerToBlockPointerCast; 1608 } else if (ivarRef.getType()->isPointerType()) { 1609 argCK = CK_BitCast; 1610 } else if (argLoad.getType()->isAtomicType() && 1611 !ivarRef.getType()->isAtomicType()) { 1612 argCK = CK_AtomicToNonAtomic; 1613 } else if (!argLoad.getType()->isAtomicType() && 1614 ivarRef.getType()->isAtomicType()) { 1615 argCK = CK_NonAtomicToAtomic; 1616 } 1617 ImplicitCastExpr argCast(ImplicitCastExpr::OnStack, ivarRef.getType(), argCK, 1618 &argLoad, VK_PRValue, FPOptionsOverride()); 1619 Expr *finalArg = &argLoad; 1620 if (!getContext().hasSameUnqualifiedType(ivarRef.getType(), 1621 argLoad.getType())) 1622 finalArg = &argCast; 1623 1624 BinaryOperator *assign = BinaryOperator::Create( 1625 getContext(), &ivarRef, finalArg, BO_Assign, ivarRef.getType(), 1626 VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride()); 1627 EmitStmt(assign); 1628 } 1629 1630 /// Generate an Objective-C property setter function. 1631 /// 1632 /// The given Decl must be an ObjCImplementationDecl. \@synthesize 1633 /// is illegal within a category. 1634 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP, 1635 const ObjCPropertyImplDecl *PID) { 1636 llvm::Constant *AtomicHelperFn = 1637 CodeGenFunction(CGM).GenerateObjCAtomicSetterCopyHelperFunction(PID); 1638 ObjCMethodDecl *OMD = PID->getSetterMethodDecl(); 1639 assert(OMD && "Invalid call to generate setter (empty method)"); 1640 StartObjCMethod(OMD, IMP->getClassInterface()); 1641 1642 generateObjCSetterBody(IMP, PID, AtomicHelperFn); 1643 1644 FinishFunction(OMD->getEndLoc()); 1645 } 1646 1647 namespace { 1648 struct DestroyIvar final : EHScopeStack::Cleanup { 1649 private: 1650 llvm::Value *addr; 1651 const ObjCIvarDecl *ivar; 1652 CodeGenFunction::Destroyer *destroyer; 1653 bool useEHCleanupForArray; 1654 public: 1655 DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar, 1656 CodeGenFunction::Destroyer *destroyer, 1657 bool useEHCleanupForArray) 1658 : addr(addr), ivar(ivar), destroyer(destroyer), 1659 useEHCleanupForArray(useEHCleanupForArray) {} 1660 1661 void Emit(CodeGenFunction &CGF, Flags flags) override { 1662 LValue lvalue 1663 = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0); 1664 CGF.emitDestroy(lvalue.getAddress(CGF), ivar->getType(), destroyer, 1665 flags.isForNormalCleanup() && useEHCleanupForArray); 1666 } 1667 }; 1668 } 1669 1670 /// Like CodeGenFunction::destroyARCStrong, but do it with a call. 1671 static void destroyARCStrongWithStore(CodeGenFunction &CGF, 1672 Address addr, 1673 QualType type) { 1674 llvm::Value *null = getNullForVariable(addr); 1675 CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 1676 } 1677 1678 static void emitCXXDestructMethod(CodeGenFunction &CGF, 1679 ObjCImplementationDecl *impl) { 1680 CodeGenFunction::RunCleanupsScope scope(CGF); 1681 1682 llvm::Value *self = CGF.LoadObjCSelf(); 1683 1684 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 1685 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 1686 ivar; ivar = ivar->getNextIvar()) { 1687 QualType type = ivar->getType(); 1688 1689 // Check whether the ivar is a destructible type. 1690 QualType::DestructionKind dtorKind = type.isDestructedType(); 1691 if (!dtorKind) continue; 1692 1693 CodeGenFunction::Destroyer *destroyer = nullptr; 1694 1695 // Use a call to objc_storeStrong to destroy strong ivars, for the 1696 // general benefit of the tools. 1697 if (dtorKind == QualType::DK_objc_strong_lifetime) { 1698 destroyer = destroyARCStrongWithStore; 1699 1700 // Otherwise use the default for the destruction kind. 1701 } else { 1702 destroyer = CGF.getDestroyer(dtorKind); 1703 } 1704 1705 CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind); 1706 1707 CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer, 1708 cleanupKind & EHCleanup); 1709 } 1710 1711 assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?"); 1712 } 1713 1714 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1715 ObjCMethodDecl *MD, 1716 bool ctor) { 1717 MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface()); 1718 StartObjCMethod(MD, IMP->getClassInterface()); 1719 1720 // Emit .cxx_construct. 1721 if (ctor) { 1722 // Suppress the final autorelease in ARC. 1723 AutoreleaseResult = false; 1724 1725 for (const auto *IvarInit : IMP->inits()) { 1726 FieldDecl *Field = IvarInit->getAnyMember(); 1727 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Field); 1728 LValue LV = EmitLValueForIvar(TypeOfSelfObject(), 1729 LoadObjCSelf(), Ivar, 0); 1730 EmitAggExpr(IvarInit->getInit(), 1731 AggValueSlot::forLValue(LV, *this, AggValueSlot::IsDestructed, 1732 AggValueSlot::DoesNotNeedGCBarriers, 1733 AggValueSlot::IsNotAliased, 1734 AggValueSlot::DoesNotOverlap)); 1735 } 1736 // constructor returns 'self'. 1737 CodeGenTypes &Types = CGM.getTypes(); 1738 QualType IdTy(CGM.getContext().getObjCIdType()); 1739 llvm::Value *SelfAsId = 1740 Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy)); 1741 EmitReturnOfRValue(RValue::get(SelfAsId), IdTy); 1742 1743 // Emit .cxx_destruct. 1744 } else { 1745 emitCXXDestructMethod(*this, IMP); 1746 } 1747 FinishFunction(); 1748 } 1749 1750 llvm::Value *CodeGenFunction::LoadObjCSelf() { 1751 VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl(); 1752 DeclRefExpr DRE(getContext(), Self, 1753 /*is enclosing local*/ (CurFuncDecl != CurCodeDecl), 1754 Self->getType(), VK_LValue, SourceLocation()); 1755 return EmitLoadOfScalar(EmitDeclRefLValue(&DRE), SourceLocation()); 1756 } 1757 1758 QualType CodeGenFunction::TypeOfSelfObject() { 1759 const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl); 1760 ImplicitParamDecl *selfDecl = OMD->getSelfDecl(); 1761 const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>( 1762 getContext().getCanonicalType(selfDecl->getType())); 1763 return PTy->getPointeeType(); 1764 } 1765 1766 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){ 1767 llvm::FunctionCallee EnumerationMutationFnPtr = 1768 CGM.getObjCRuntime().EnumerationMutationFunction(); 1769 if (!EnumerationMutationFnPtr) { 1770 CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime"); 1771 return; 1772 } 1773 CGCallee EnumerationMutationFn = 1774 CGCallee::forDirect(EnumerationMutationFnPtr); 1775 1776 CGDebugInfo *DI = getDebugInfo(); 1777 if (DI) 1778 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 1779 1780 RunCleanupsScope ForScope(*this); 1781 1782 // The local variable comes into scope immediately. 1783 AutoVarEmission variable = AutoVarEmission::invalid(); 1784 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) 1785 variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl())); 1786 1787 JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end"); 1788 1789 // Fast enumeration state. 1790 QualType StateTy = CGM.getObjCFastEnumerationStateType(); 1791 Address StatePtr = CreateMemTemp(StateTy, "state.ptr"); 1792 EmitNullInitialization(StatePtr, StateTy); 1793 1794 // Number of elements in the items array. 1795 static const unsigned NumItems = 16; 1796 1797 // Fetch the countByEnumeratingWithState:objects:count: selector. 1798 IdentifierInfo *II[] = { 1799 &CGM.getContext().Idents.get("countByEnumeratingWithState"), 1800 &CGM.getContext().Idents.get("objects"), 1801 &CGM.getContext().Idents.get("count") 1802 }; 1803 Selector FastEnumSel = 1804 CGM.getContext().Selectors.getSelector(std::size(II), &II[0]); 1805 1806 QualType ItemsTy = 1807 getContext().getConstantArrayType(getContext().getObjCIdType(), 1808 llvm::APInt(32, NumItems), nullptr, 1809 ArrayType::Normal, 0); 1810 Address ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr"); 1811 1812 // Emit the collection pointer. In ARC, we do a retain. 1813 llvm::Value *Collection; 1814 if (getLangOpts().ObjCAutoRefCount) { 1815 Collection = EmitARCRetainScalarExpr(S.getCollection()); 1816 1817 // Enter a cleanup to do the release. 1818 EmitObjCConsumeObject(S.getCollection()->getType(), Collection); 1819 } else { 1820 Collection = EmitScalarExpr(S.getCollection()); 1821 } 1822 1823 // The 'continue' label needs to appear within the cleanup for the 1824 // collection object. 1825 JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next"); 1826 1827 // Send it our message: 1828 CallArgList Args; 1829 1830 // The first argument is a temporary of the enumeration-state type. 1831 Args.add(RValue::get(StatePtr.getPointer()), 1832 getContext().getPointerType(StateTy)); 1833 1834 // The second argument is a temporary array with space for NumItems 1835 // pointers. We'll actually be loading elements from the array 1836 // pointer written into the control state; this buffer is so that 1837 // collections that *aren't* backed by arrays can still queue up 1838 // batches of elements. 1839 Args.add(RValue::get(ItemsPtr.getPointer()), 1840 getContext().getPointerType(ItemsTy)); 1841 1842 // The third argument is the capacity of that temporary array. 1843 llvm::Type *NSUIntegerTy = ConvertType(getContext().getNSUIntegerType()); 1844 llvm::Constant *Count = llvm::ConstantInt::get(NSUIntegerTy, NumItems); 1845 Args.add(RValue::get(Count), getContext().getNSUIntegerType()); 1846 1847 // Start the enumeration. 1848 RValue CountRV = 1849 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 1850 getContext().getNSUIntegerType(), 1851 FastEnumSel, Collection, Args); 1852 1853 // The initial number of objects that were returned in the buffer. 1854 llvm::Value *initialBufferLimit = CountRV.getScalarVal(); 1855 1856 llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty"); 1857 llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit"); 1858 1859 llvm::Value *zero = llvm::Constant::getNullValue(NSUIntegerTy); 1860 1861 // If the limit pointer was zero to begin with, the collection is 1862 // empty; skip all this. Set the branch weight assuming this has the same 1863 // probability of exiting the loop as any other loop exit. 1864 uint64_t EntryCount = getCurrentProfileCount(); 1865 Builder.CreateCondBr( 1866 Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"), EmptyBB, 1867 LoopInitBB, 1868 createProfileWeights(EntryCount, getProfileCount(S.getBody()))); 1869 1870 // Otherwise, initialize the loop. 1871 EmitBlock(LoopInitBB); 1872 1873 // Save the initial mutations value. This is the value at an 1874 // address that was written into the state object by 1875 // countByEnumeratingWithState:objects:count:. 1876 Address StateMutationsPtrPtr = 1877 Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr"); 1878 llvm::Value *StateMutationsPtr 1879 = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1880 1881 llvm::Type *UnsignedLongTy = ConvertType(getContext().UnsignedLongTy); 1882 llvm::Value *initialMutations = 1883 Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr, 1884 getPointerAlign(), "forcoll.initial-mutations"); 1885 1886 // Start looping. This is the point we return to whenever we have a 1887 // fresh, non-empty batch of objects. 1888 llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody"); 1889 EmitBlock(LoopBodyBB); 1890 1891 // The current index into the buffer. 1892 llvm::PHINode *index = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.index"); 1893 index->addIncoming(zero, LoopInitBB); 1894 1895 // The current buffer size. 1896 llvm::PHINode *count = Builder.CreatePHI(NSUIntegerTy, 3, "forcoll.count"); 1897 count->addIncoming(initialBufferLimit, LoopInitBB); 1898 1899 incrementProfileCounter(&S); 1900 1901 // Check whether the mutations value has changed from where it was 1902 // at start. StateMutationsPtr should actually be invariant between 1903 // refreshes. 1904 StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr"); 1905 llvm::Value *currentMutations 1906 = Builder.CreateAlignedLoad(UnsignedLongTy, StateMutationsPtr, 1907 getPointerAlign(), "statemutations"); 1908 1909 llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated"); 1910 llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated"); 1911 1912 Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations), 1913 WasNotMutatedBB, WasMutatedBB); 1914 1915 // If so, call the enumeration-mutation function. 1916 EmitBlock(WasMutatedBB); 1917 llvm::Type *ObjCIdType = ConvertType(getContext().getObjCIdType()); 1918 llvm::Value *V = 1919 Builder.CreateBitCast(Collection, ObjCIdType); 1920 CallArgList Args2; 1921 Args2.add(RValue::get(V), getContext().getObjCIdType()); 1922 // FIXME: We shouldn't need to get the function info here, the runtime already 1923 // should have computed it to build the function. 1924 EmitCall( 1925 CGM.getTypes().arrangeBuiltinFunctionCall(getContext().VoidTy, Args2), 1926 EnumerationMutationFn, ReturnValueSlot(), Args2); 1927 1928 // Otherwise, or if the mutation function returns, just continue. 1929 EmitBlock(WasNotMutatedBB); 1930 1931 // Initialize the element variable. 1932 RunCleanupsScope elementVariableScope(*this); 1933 bool elementIsVariable; 1934 LValue elementLValue; 1935 QualType elementType; 1936 if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) { 1937 // Initialize the variable, in case it's a __block variable or something. 1938 EmitAutoVarInit(variable); 1939 1940 const VarDecl *D = cast<VarDecl>(SD->getSingleDecl()); 1941 DeclRefExpr tempDRE(getContext(), const_cast<VarDecl *>(D), false, 1942 D->getType(), VK_LValue, SourceLocation()); 1943 elementLValue = EmitLValue(&tempDRE); 1944 elementType = D->getType(); 1945 elementIsVariable = true; 1946 1947 if (D->isARCPseudoStrong()) 1948 elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone); 1949 } else { 1950 elementLValue = LValue(); // suppress warning 1951 elementType = cast<Expr>(S.getElement())->getType(); 1952 elementIsVariable = false; 1953 } 1954 llvm::Type *convertedElementType = ConvertType(elementType); 1955 1956 // Fetch the buffer out of the enumeration state. 1957 // TODO: this pointer should actually be invariant between 1958 // refreshes, which would help us do certain loop optimizations. 1959 Address StateItemsPtr = 1960 Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr"); 1961 llvm::Value *EnumStateItems = 1962 Builder.CreateLoad(StateItemsPtr, "stateitems"); 1963 1964 // Fetch the value at the current index from the buffer. 1965 llvm::Value *CurrentItemPtr = Builder.CreateGEP( 1966 ObjCIdType, EnumStateItems, index, "currentitem.ptr"); 1967 llvm::Value *CurrentItem = 1968 Builder.CreateAlignedLoad(ObjCIdType, CurrentItemPtr, getPointerAlign()); 1969 1970 if (SanOpts.has(SanitizerKind::ObjCCast)) { 1971 // Before using an item from the collection, check that the implicit cast 1972 // from id to the element type is valid. This is done with instrumentation 1973 // roughly corresponding to: 1974 // 1975 // if (![item isKindOfClass:expectedCls]) { /* emit diagnostic */ } 1976 const ObjCObjectPointerType *ObjPtrTy = 1977 elementType->getAsObjCInterfacePointerType(); 1978 const ObjCInterfaceType *InterfaceTy = 1979 ObjPtrTy ? ObjPtrTy->getInterfaceType() : nullptr; 1980 if (InterfaceTy) { 1981 SanitizerScope SanScope(this); 1982 auto &C = CGM.getContext(); 1983 assert(InterfaceTy->getDecl() && "No decl for ObjC interface type"); 1984 Selector IsKindOfClassSel = GetUnarySelector("isKindOfClass", C); 1985 CallArgList IsKindOfClassArgs; 1986 llvm::Value *Cls = 1987 CGM.getObjCRuntime().GetClass(*this, InterfaceTy->getDecl()); 1988 IsKindOfClassArgs.add(RValue::get(Cls), C.getObjCClassType()); 1989 llvm::Value *IsClass = 1990 CGM.getObjCRuntime() 1991 .GenerateMessageSend(*this, ReturnValueSlot(), C.BoolTy, 1992 IsKindOfClassSel, CurrentItem, 1993 IsKindOfClassArgs) 1994 .getScalarVal(); 1995 llvm::Constant *StaticData[] = { 1996 EmitCheckSourceLocation(S.getBeginLoc()), 1997 EmitCheckTypeDescriptor(QualType(InterfaceTy, 0))}; 1998 EmitCheck({{IsClass, SanitizerKind::ObjCCast}}, 1999 SanitizerHandler::InvalidObjCCast, 2000 ArrayRef<llvm::Constant *>(StaticData), CurrentItem); 2001 } 2002 } 2003 2004 // Cast that value to the right type. 2005 CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType, 2006 "currentitem"); 2007 2008 // Make sure we have an l-value. Yes, this gets evaluated every 2009 // time through the loop. 2010 if (!elementIsVariable) { 2011 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 2012 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue); 2013 } else { 2014 EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue, 2015 /*isInit*/ true); 2016 } 2017 2018 // If we do have an element variable, this assignment is the end of 2019 // its initialization. 2020 if (elementIsVariable) 2021 EmitAutoVarCleanups(variable); 2022 2023 // Perform the loop body, setting up break and continue labels. 2024 BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody)); 2025 { 2026 RunCleanupsScope Scope(*this); 2027 EmitStmt(S.getBody()); 2028 } 2029 BreakContinueStack.pop_back(); 2030 2031 // Destroy the element variable now. 2032 elementVariableScope.ForceCleanup(); 2033 2034 // Check whether there are more elements. 2035 EmitBlock(AfterBody.getBlock()); 2036 2037 llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch"); 2038 2039 // First we check in the local buffer. 2040 llvm::Value *indexPlusOne = 2041 Builder.CreateAdd(index, llvm::ConstantInt::get(NSUIntegerTy, 1)); 2042 2043 // If we haven't overrun the buffer yet, we can continue. 2044 // Set the branch weights based on the simplifying assumption that this is 2045 // like a while-loop, i.e., ignoring that the false branch fetches more 2046 // elements and then returns to the loop. 2047 Builder.CreateCondBr( 2048 Builder.CreateICmpULT(indexPlusOne, count), LoopBodyBB, FetchMoreBB, 2049 createProfileWeights(getProfileCount(S.getBody()), EntryCount)); 2050 2051 index->addIncoming(indexPlusOne, AfterBody.getBlock()); 2052 count->addIncoming(count, AfterBody.getBlock()); 2053 2054 // Otherwise, we have to fetch more elements. 2055 EmitBlock(FetchMoreBB); 2056 2057 CountRV = 2058 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2059 getContext().getNSUIntegerType(), 2060 FastEnumSel, Collection, Args); 2061 2062 // If we got a zero count, we're done. 2063 llvm::Value *refetchCount = CountRV.getScalarVal(); 2064 2065 // (note that the message send might split FetchMoreBB) 2066 index->addIncoming(zero, Builder.GetInsertBlock()); 2067 count->addIncoming(refetchCount, Builder.GetInsertBlock()); 2068 2069 Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero), 2070 EmptyBB, LoopBodyBB); 2071 2072 // No more elements. 2073 EmitBlock(EmptyBB); 2074 2075 if (!elementIsVariable) { 2076 // If the element was not a declaration, set it to be null. 2077 2078 llvm::Value *null = llvm::Constant::getNullValue(convertedElementType); 2079 elementLValue = EmitLValue(cast<Expr>(S.getElement())); 2080 EmitStoreThroughLValue(RValue::get(null), elementLValue); 2081 } 2082 2083 if (DI) 2084 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 2085 2086 ForScope.ForceCleanup(); 2087 EmitBlock(LoopEnd.getBlock()); 2088 } 2089 2090 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) { 2091 CGM.getObjCRuntime().EmitTryStmt(*this, S); 2092 } 2093 2094 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) { 2095 CGM.getObjCRuntime().EmitThrowStmt(*this, S); 2096 } 2097 2098 void CodeGenFunction::EmitObjCAtSynchronizedStmt( 2099 const ObjCAtSynchronizedStmt &S) { 2100 CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S); 2101 } 2102 2103 namespace { 2104 struct CallObjCRelease final : EHScopeStack::Cleanup { 2105 CallObjCRelease(llvm::Value *object) : object(object) {} 2106 llvm::Value *object; 2107 2108 void Emit(CodeGenFunction &CGF, Flags flags) override { 2109 // Releases at the end of the full-expression are imprecise. 2110 CGF.EmitARCRelease(object, ARCImpreciseLifetime); 2111 } 2112 }; 2113 } 2114 2115 /// Produce the code for a CK_ARCConsumeObject. Does a primitive 2116 /// release at the end of the full-expression. 2117 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type, 2118 llvm::Value *object) { 2119 // If we're in a conditional branch, we need to make the cleanup 2120 // conditional. 2121 pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object); 2122 return object; 2123 } 2124 2125 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type, 2126 llvm::Value *value) { 2127 return EmitARCRetainAutorelease(type, value); 2128 } 2129 2130 /// Given a number of pointers, inform the optimizer that they're 2131 /// being intrinsically used up until this point in the program. 2132 void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) { 2133 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_use; 2134 if (!fn) 2135 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_use); 2136 2137 // This isn't really a "runtime" function, but as an intrinsic it 2138 // doesn't really matter as long as we align things up. 2139 EmitNounwindRuntimeCall(fn, values); 2140 } 2141 2142 /// Emit a call to "clang.arc.noop.use", which consumes the result of a call 2143 /// that has operand bundle "clang.arc.attachedcall". 2144 void CodeGenFunction::EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values) { 2145 llvm::Function *&fn = CGM.getObjCEntrypoints().clang_arc_noop_use; 2146 if (!fn) 2147 fn = CGM.getIntrinsic(llvm::Intrinsic::objc_clang_arc_noop_use); 2148 EmitNounwindRuntimeCall(fn, values); 2149 } 2150 2151 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, llvm::Value *RTF) { 2152 if (auto *F = dyn_cast<llvm::Function>(RTF)) { 2153 // If the target runtime doesn't naturally support ARC, emit weak 2154 // references to the runtime support library. We don't really 2155 // permit this to fail, but we need a particular relocation style. 2156 if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC() && 2157 !CGM.getTriple().isOSBinFormatCOFF()) { 2158 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2159 } 2160 } 2161 } 2162 2163 static void setARCRuntimeFunctionLinkage(CodeGenModule &CGM, 2164 llvm::FunctionCallee RTF) { 2165 setARCRuntimeFunctionLinkage(CGM, RTF.getCallee()); 2166 } 2167 2168 static llvm::Function *getARCIntrinsic(llvm::Intrinsic::ID IntID, 2169 CodeGenModule &CGM) { 2170 llvm::Function *fn = CGM.getIntrinsic(IntID); 2171 setARCRuntimeFunctionLinkage(CGM, fn); 2172 return fn; 2173 } 2174 2175 /// Perform an operation having the signature 2176 /// i8* (i8*) 2177 /// where a null input causes a no-op and returns null. 2178 static llvm::Value *emitARCValueOperation( 2179 CodeGenFunction &CGF, llvm::Value *value, llvm::Type *returnType, 2180 llvm::Function *&fn, llvm::Intrinsic::ID IntID, 2181 llvm::CallInst::TailCallKind tailKind = llvm::CallInst::TCK_None) { 2182 if (isa<llvm::ConstantPointerNull>(value)) 2183 return value; 2184 2185 if (!fn) 2186 fn = getARCIntrinsic(IntID, CGF.CGM); 2187 2188 // Cast the argument to 'id'. 2189 llvm::Type *origType = returnType ? returnType : value->getType(); 2190 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2191 2192 // Call the function. 2193 llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value); 2194 call->setTailCallKind(tailKind); 2195 2196 // Cast the result back to the original type. 2197 return CGF.Builder.CreateBitCast(call, origType); 2198 } 2199 2200 /// Perform an operation having the following signature: 2201 /// i8* (i8**) 2202 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF, Address addr, 2203 llvm::Function *&fn, 2204 llvm::Intrinsic::ID IntID) { 2205 if (!fn) 2206 fn = getARCIntrinsic(IntID, CGF.CGM); 2207 2208 // Cast the argument to 'id*'. 2209 llvm::Type *origType = addr.getElementType(); 2210 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8PtrTy); 2211 2212 // Call the function. 2213 llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr.getPointer()); 2214 2215 // Cast the result back to a dereference of the original type. 2216 if (origType != CGF.Int8PtrTy) 2217 result = CGF.Builder.CreateBitCast(result, origType); 2218 2219 return result; 2220 } 2221 2222 /// Perform an operation having the following signature: 2223 /// i8* (i8**, i8*) 2224 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF, Address addr, 2225 llvm::Value *value, 2226 llvm::Function *&fn, 2227 llvm::Intrinsic::ID IntID, 2228 bool ignored) { 2229 assert(addr.getElementType() == value->getType()); 2230 2231 if (!fn) 2232 fn = getARCIntrinsic(IntID, CGF.CGM); 2233 2234 llvm::Type *origType = value->getType(); 2235 2236 llvm::Value *args[] = { 2237 CGF.Builder.CreateBitCast(addr.getPointer(), CGF.Int8PtrPtrTy), 2238 CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy) 2239 }; 2240 llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args); 2241 2242 if (ignored) return nullptr; 2243 2244 return CGF.Builder.CreateBitCast(result, origType); 2245 } 2246 2247 /// Perform an operation having the following signature: 2248 /// void (i8**, i8**) 2249 static void emitARCCopyOperation(CodeGenFunction &CGF, Address dst, Address src, 2250 llvm::Function *&fn, 2251 llvm::Intrinsic::ID IntID) { 2252 assert(dst.getType() == src.getType()); 2253 2254 if (!fn) 2255 fn = getARCIntrinsic(IntID, CGF.CGM); 2256 2257 llvm::Value *args[] = { 2258 CGF.Builder.CreateBitCast(dst.getPointer(), CGF.Int8PtrPtrTy), 2259 CGF.Builder.CreateBitCast(src.getPointer(), CGF.Int8PtrPtrTy) 2260 }; 2261 CGF.EmitNounwindRuntimeCall(fn, args); 2262 } 2263 2264 /// Perform an operation having the signature 2265 /// i8* (i8*) 2266 /// where a null input causes a no-op and returns null. 2267 static llvm::Value *emitObjCValueOperation(CodeGenFunction &CGF, 2268 llvm::Value *value, 2269 llvm::Type *returnType, 2270 llvm::FunctionCallee &fn, 2271 StringRef fnName) { 2272 if (isa<llvm::ConstantPointerNull>(value)) 2273 return value; 2274 2275 if (!fn) { 2276 llvm::FunctionType *fnType = 2277 llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false); 2278 fn = CGF.CGM.CreateRuntimeFunction(fnType, fnName); 2279 2280 // We have Native ARC, so set nonlazybind attribute for performance 2281 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2282 if (fnName == "objc_retain") 2283 f->addFnAttr(llvm::Attribute::NonLazyBind); 2284 } 2285 2286 // Cast the argument to 'id'. 2287 llvm::Type *origType = returnType ? returnType : value->getType(); 2288 value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy); 2289 2290 // Call the function. 2291 llvm::CallBase *Inst = CGF.EmitCallOrInvoke(fn, value); 2292 2293 // Mark calls to objc_autorelease as tail on the assumption that methods 2294 // overriding autorelease do not touch anything on the stack. 2295 if (fnName == "objc_autorelease") 2296 if (auto *Call = dyn_cast<llvm::CallInst>(Inst)) 2297 Call->setTailCall(); 2298 2299 // Cast the result back to the original type. 2300 return CGF.Builder.CreateBitCast(Inst, origType); 2301 } 2302 2303 /// Produce the code to do a retain. Based on the type, calls one of: 2304 /// call i8* \@objc_retain(i8* %value) 2305 /// call i8* \@objc_retainBlock(i8* %value) 2306 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) { 2307 if (type->isBlockPointerType()) 2308 return EmitARCRetainBlock(value, /*mandatory*/ false); 2309 else 2310 return EmitARCRetainNonBlock(value); 2311 } 2312 2313 /// Retain the given object, with normal retain semantics. 2314 /// call i8* \@objc_retain(i8* %value) 2315 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) { 2316 return emitARCValueOperation(*this, value, nullptr, 2317 CGM.getObjCEntrypoints().objc_retain, 2318 llvm::Intrinsic::objc_retain); 2319 } 2320 2321 /// Retain the given block, with _Block_copy semantics. 2322 /// call i8* \@objc_retainBlock(i8* %value) 2323 /// 2324 /// \param mandatory - If false, emit the call with metadata 2325 /// indicating that it's okay for the optimizer to eliminate this call 2326 /// if it can prove that the block never escapes except down the stack. 2327 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value, 2328 bool mandatory) { 2329 llvm::Value *result 2330 = emitARCValueOperation(*this, value, nullptr, 2331 CGM.getObjCEntrypoints().objc_retainBlock, 2332 llvm::Intrinsic::objc_retainBlock); 2333 2334 // If the copy isn't mandatory, add !clang.arc.copy_on_escape to 2335 // tell the optimizer that it doesn't need to do this copy if the 2336 // block doesn't escape, where being passed as an argument doesn't 2337 // count as escaping. 2338 if (!mandatory && isa<llvm::Instruction>(result)) { 2339 llvm::CallInst *call 2340 = cast<llvm::CallInst>(result->stripPointerCasts()); 2341 assert(call->getCalledOperand() == 2342 CGM.getObjCEntrypoints().objc_retainBlock); 2343 2344 call->setMetadata("clang.arc.copy_on_escape", 2345 llvm::MDNode::get(Builder.getContext(), std::nullopt)); 2346 } 2347 2348 return result; 2349 } 2350 2351 static void emitAutoreleasedReturnValueMarker(CodeGenFunction &CGF) { 2352 // Fetch the void(void) inline asm which marks that we're going to 2353 // do something with the autoreleased return value. 2354 llvm::InlineAsm *&marker 2355 = CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker; 2356 if (!marker) { 2357 StringRef assembly 2358 = CGF.CGM.getTargetCodeGenInfo() 2359 .getARCRetainAutoreleasedReturnValueMarker(); 2360 2361 // If we have an empty assembly string, there's nothing to do. 2362 if (assembly.empty()) { 2363 2364 // Otherwise, at -O0, build an inline asm that we're going to call 2365 // in a moment. 2366 } else if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) { 2367 llvm::FunctionType *type = 2368 llvm::FunctionType::get(CGF.VoidTy, /*variadic*/false); 2369 2370 marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true); 2371 2372 // If we're at -O1 and above, we don't want to litter the code 2373 // with this marker yet, so leave a breadcrumb for the ARC 2374 // optimizer to pick up. 2375 } else { 2376 const char *retainRVMarkerKey = llvm::objcarc::getRVMarkerModuleFlagStr(); 2377 if (!CGF.CGM.getModule().getModuleFlag(retainRVMarkerKey)) { 2378 auto *str = llvm::MDString::get(CGF.getLLVMContext(), assembly); 2379 CGF.CGM.getModule().addModuleFlag(llvm::Module::Error, 2380 retainRVMarkerKey, str); 2381 } 2382 } 2383 } 2384 2385 // Call the marker asm if we made one, which we do only at -O0. 2386 if (marker) 2387 CGF.Builder.CreateCall(marker, std::nullopt, 2388 CGF.getBundlesForFunclet(marker)); 2389 } 2390 2391 static llvm::Value *emitOptimizedARCReturnCall(llvm::Value *value, 2392 bool IsRetainRV, 2393 CodeGenFunction &CGF) { 2394 emitAutoreleasedReturnValueMarker(CGF); 2395 2396 // Add operand bundle "clang.arc.attachedcall" to the call instead of emitting 2397 // retainRV or claimRV calls in the IR. We currently do this only when the 2398 // optimization level isn't -O0 since global-isel, which is currently run at 2399 // -O0, doesn't know about the operand bundle. 2400 ObjCEntrypoints &EPs = CGF.CGM.getObjCEntrypoints(); 2401 llvm::Function *&EP = IsRetainRV 2402 ? EPs.objc_retainAutoreleasedReturnValue 2403 : EPs.objc_unsafeClaimAutoreleasedReturnValue; 2404 llvm::Intrinsic::ID IID = 2405 IsRetainRV ? llvm::Intrinsic::objc_retainAutoreleasedReturnValue 2406 : llvm::Intrinsic::objc_unsafeClaimAutoreleasedReturnValue; 2407 EP = getARCIntrinsic(IID, CGF.CGM); 2408 2409 llvm::Triple::ArchType Arch = CGF.CGM.getTriple().getArch(); 2410 2411 // FIXME: Do this on all targets and at -O0 too. This can be enabled only if 2412 // the target backend knows how to handle the operand bundle. 2413 if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0 && 2414 (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::x86_64)) { 2415 llvm::Value *bundleArgs[] = {EP}; 2416 llvm::OperandBundleDef OB("clang.arc.attachedcall", bundleArgs); 2417 auto *oldCall = cast<llvm::CallBase>(value); 2418 llvm::CallBase *newCall = llvm::CallBase::addOperandBundle( 2419 oldCall, llvm::LLVMContext::OB_clang_arc_attachedcall, OB, oldCall); 2420 newCall->copyMetadata(*oldCall); 2421 oldCall->replaceAllUsesWith(newCall); 2422 oldCall->eraseFromParent(); 2423 CGF.EmitARCNoopIntrinsicUse(newCall); 2424 return newCall; 2425 } 2426 2427 bool isNoTail = 2428 CGF.CGM.getTargetCodeGenInfo().markARCOptimizedReturnCallsAsNoTail(); 2429 llvm::CallInst::TailCallKind tailKind = 2430 isNoTail ? llvm::CallInst::TCK_NoTail : llvm::CallInst::TCK_None; 2431 return emitARCValueOperation(CGF, value, nullptr, EP, IID, tailKind); 2432 } 2433 2434 /// Retain the given object which is the result of a function call. 2435 /// call i8* \@objc_retainAutoreleasedReturnValue(i8* %value) 2436 /// 2437 /// Yes, this function name is one character away from a different 2438 /// call with completely different semantics. 2439 llvm::Value * 2440 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) { 2441 return emitOptimizedARCReturnCall(value, true, *this); 2442 } 2443 2444 /// Claim a possibly-autoreleased return value at +0. This is only 2445 /// valid to do in contexts which do not rely on the retain to keep 2446 /// the object valid for all of its uses; for example, when 2447 /// the value is ignored, or when it is being assigned to an 2448 /// __unsafe_unretained variable. 2449 /// 2450 /// call i8* \@objc_unsafeClaimAutoreleasedReturnValue(i8* %value) 2451 llvm::Value * 2452 CodeGenFunction::EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value) { 2453 return emitOptimizedARCReturnCall(value, false, *this); 2454 } 2455 2456 /// Release the given object. 2457 /// call void \@objc_release(i8* %value) 2458 void CodeGenFunction::EmitARCRelease(llvm::Value *value, 2459 ARCPreciseLifetime_t precise) { 2460 if (isa<llvm::ConstantPointerNull>(value)) return; 2461 2462 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_release; 2463 if (!fn) 2464 fn = getARCIntrinsic(llvm::Intrinsic::objc_release, CGM); 2465 2466 // Cast the argument to 'id'. 2467 value = Builder.CreateBitCast(value, Int8PtrTy); 2468 2469 // Call objc_release. 2470 llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value); 2471 2472 if (precise == ARCImpreciseLifetime) { 2473 call->setMetadata("clang.imprecise_release", 2474 llvm::MDNode::get(Builder.getContext(), std::nullopt)); 2475 } 2476 } 2477 2478 /// Destroy a __strong variable. 2479 /// 2480 /// At -O0, emit a call to store 'null' into the address; 2481 /// instrumenting tools prefer this because the address is exposed, 2482 /// but it's relatively cumbersome to optimize. 2483 /// 2484 /// At -O1 and above, just load and call objc_release. 2485 /// 2486 /// call void \@objc_storeStrong(i8** %addr, i8* null) 2487 void CodeGenFunction::EmitARCDestroyStrong(Address addr, 2488 ARCPreciseLifetime_t precise) { 2489 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2490 llvm::Value *null = getNullForVariable(addr); 2491 EmitARCStoreStrongCall(addr, null, /*ignored*/ true); 2492 return; 2493 } 2494 2495 llvm::Value *value = Builder.CreateLoad(addr); 2496 EmitARCRelease(value, precise); 2497 } 2498 2499 /// Store into a strong object. Always calls this: 2500 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2501 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(Address addr, 2502 llvm::Value *value, 2503 bool ignored) { 2504 assert(addr.getElementType() == value->getType()); 2505 2506 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_storeStrong; 2507 if (!fn) 2508 fn = getARCIntrinsic(llvm::Intrinsic::objc_storeStrong, CGM); 2509 2510 llvm::Value *args[] = { 2511 Builder.CreateBitCast(addr.getPointer(), Int8PtrPtrTy), 2512 Builder.CreateBitCast(value, Int8PtrTy) 2513 }; 2514 EmitNounwindRuntimeCall(fn, args); 2515 2516 if (ignored) return nullptr; 2517 return value; 2518 } 2519 2520 /// Store into a strong object. Sometimes calls this: 2521 /// call void \@objc_storeStrong(i8** %addr, i8* %value) 2522 /// Other times, breaks it down into components. 2523 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst, 2524 llvm::Value *newValue, 2525 bool ignored) { 2526 QualType type = dst.getType(); 2527 bool isBlock = type->isBlockPointerType(); 2528 2529 // Use a store barrier at -O0 unless this is a block type or the 2530 // lvalue is inadequately aligned. 2531 if (shouldUseFusedARCCalls() && 2532 !isBlock && 2533 (dst.getAlignment().isZero() || 2534 dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) { 2535 return EmitARCStoreStrongCall(dst.getAddress(*this), newValue, ignored); 2536 } 2537 2538 // Otherwise, split it out. 2539 2540 // Retain the new value. 2541 newValue = EmitARCRetain(type, newValue); 2542 2543 // Read the old value. 2544 llvm::Value *oldValue = EmitLoadOfScalar(dst, SourceLocation()); 2545 2546 // Store. We do this before the release so that any deallocs won't 2547 // see the old value. 2548 EmitStoreOfScalar(newValue, dst); 2549 2550 // Finally, release the old value. 2551 EmitARCRelease(oldValue, dst.isARCPreciseLifetime()); 2552 2553 return newValue; 2554 } 2555 2556 /// Autorelease the given object. 2557 /// call i8* \@objc_autorelease(i8* %value) 2558 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) { 2559 return emitARCValueOperation(*this, value, nullptr, 2560 CGM.getObjCEntrypoints().objc_autorelease, 2561 llvm::Intrinsic::objc_autorelease); 2562 } 2563 2564 /// Autorelease the given object. 2565 /// call i8* \@objc_autoreleaseReturnValue(i8* %value) 2566 llvm::Value * 2567 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) { 2568 return emitARCValueOperation(*this, value, nullptr, 2569 CGM.getObjCEntrypoints().objc_autoreleaseReturnValue, 2570 llvm::Intrinsic::objc_autoreleaseReturnValue, 2571 llvm::CallInst::TCK_Tail); 2572 } 2573 2574 /// Do a fused retain/autorelease of the given object. 2575 /// call i8* \@objc_retainAutoreleaseReturnValue(i8* %value) 2576 llvm::Value * 2577 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) { 2578 return emitARCValueOperation(*this, value, nullptr, 2579 CGM.getObjCEntrypoints().objc_retainAutoreleaseReturnValue, 2580 llvm::Intrinsic::objc_retainAutoreleaseReturnValue, 2581 llvm::CallInst::TCK_Tail); 2582 } 2583 2584 /// Do a fused retain/autorelease of the given object. 2585 /// call i8* \@objc_retainAutorelease(i8* %value) 2586 /// or 2587 /// %retain = call i8* \@objc_retainBlock(i8* %value) 2588 /// call i8* \@objc_autorelease(i8* %retain) 2589 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type, 2590 llvm::Value *value) { 2591 if (!type->isBlockPointerType()) 2592 return EmitARCRetainAutoreleaseNonBlock(value); 2593 2594 if (isa<llvm::ConstantPointerNull>(value)) return value; 2595 2596 llvm::Type *origType = value->getType(); 2597 value = Builder.CreateBitCast(value, Int8PtrTy); 2598 value = EmitARCRetainBlock(value, /*mandatory*/ true); 2599 value = EmitARCAutorelease(value); 2600 return Builder.CreateBitCast(value, origType); 2601 } 2602 2603 /// Do a fused retain/autorelease of the given object. 2604 /// call i8* \@objc_retainAutorelease(i8* %value) 2605 llvm::Value * 2606 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) { 2607 return emitARCValueOperation(*this, value, nullptr, 2608 CGM.getObjCEntrypoints().objc_retainAutorelease, 2609 llvm::Intrinsic::objc_retainAutorelease); 2610 } 2611 2612 /// i8* \@objc_loadWeak(i8** %addr) 2613 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)). 2614 llvm::Value *CodeGenFunction::EmitARCLoadWeak(Address addr) { 2615 return emitARCLoadOperation(*this, addr, 2616 CGM.getObjCEntrypoints().objc_loadWeak, 2617 llvm::Intrinsic::objc_loadWeak); 2618 } 2619 2620 /// i8* \@objc_loadWeakRetained(i8** %addr) 2621 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(Address addr) { 2622 return emitARCLoadOperation(*this, addr, 2623 CGM.getObjCEntrypoints().objc_loadWeakRetained, 2624 llvm::Intrinsic::objc_loadWeakRetained); 2625 } 2626 2627 /// i8* \@objc_storeWeak(i8** %addr, i8* %value) 2628 /// Returns %value. 2629 llvm::Value *CodeGenFunction::EmitARCStoreWeak(Address addr, 2630 llvm::Value *value, 2631 bool ignored) { 2632 return emitARCStoreOperation(*this, addr, value, 2633 CGM.getObjCEntrypoints().objc_storeWeak, 2634 llvm::Intrinsic::objc_storeWeak, ignored); 2635 } 2636 2637 /// i8* \@objc_initWeak(i8** %addr, i8* %value) 2638 /// Returns %value. %addr is known to not have a current weak entry. 2639 /// Essentially equivalent to: 2640 /// *addr = nil; objc_storeWeak(addr, value); 2641 void CodeGenFunction::EmitARCInitWeak(Address addr, llvm::Value *value) { 2642 // If we're initializing to null, just write null to memory; no need 2643 // to get the runtime involved. But don't do this if optimization 2644 // is enabled, because accounting for this would make the optimizer 2645 // much more complicated. 2646 if (isa<llvm::ConstantPointerNull>(value) && 2647 CGM.getCodeGenOpts().OptimizationLevel == 0) { 2648 Builder.CreateStore(value, addr); 2649 return; 2650 } 2651 2652 emitARCStoreOperation(*this, addr, value, 2653 CGM.getObjCEntrypoints().objc_initWeak, 2654 llvm::Intrinsic::objc_initWeak, /*ignored*/ true); 2655 } 2656 2657 /// void \@objc_destroyWeak(i8** %addr) 2658 /// Essentially objc_storeWeak(addr, nil). 2659 void CodeGenFunction::EmitARCDestroyWeak(Address addr) { 2660 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_destroyWeak; 2661 if (!fn) 2662 fn = getARCIntrinsic(llvm::Intrinsic::objc_destroyWeak, CGM); 2663 2664 // Cast the argument to 'id*'. 2665 addr = Builder.CreateElementBitCast(addr, Int8PtrTy); 2666 2667 EmitNounwindRuntimeCall(fn, addr.getPointer()); 2668 } 2669 2670 /// void \@objc_moveWeak(i8** %dest, i8** %src) 2671 /// Disregards the current value in %dest. Leaves %src pointing to nothing. 2672 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)). 2673 void CodeGenFunction::EmitARCMoveWeak(Address dst, Address src) { 2674 emitARCCopyOperation(*this, dst, src, 2675 CGM.getObjCEntrypoints().objc_moveWeak, 2676 llvm::Intrinsic::objc_moveWeak); 2677 } 2678 2679 /// void \@objc_copyWeak(i8** %dest, i8** %src) 2680 /// Disregards the current value in %dest. Essentially 2681 /// objc_release(objc_initWeak(dest, objc_readWeakRetained(src))) 2682 void CodeGenFunction::EmitARCCopyWeak(Address dst, Address src) { 2683 emitARCCopyOperation(*this, dst, src, 2684 CGM.getObjCEntrypoints().objc_copyWeak, 2685 llvm::Intrinsic::objc_copyWeak); 2686 } 2687 2688 void CodeGenFunction::emitARCCopyAssignWeak(QualType Ty, Address DstAddr, 2689 Address SrcAddr) { 2690 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2691 Object = EmitObjCConsumeObject(Ty, Object); 2692 EmitARCStoreWeak(DstAddr, Object, false); 2693 } 2694 2695 void CodeGenFunction::emitARCMoveAssignWeak(QualType Ty, Address DstAddr, 2696 Address SrcAddr) { 2697 llvm::Value *Object = EmitARCLoadWeakRetained(SrcAddr); 2698 Object = EmitObjCConsumeObject(Ty, Object); 2699 EmitARCStoreWeak(DstAddr, Object, false); 2700 EmitARCDestroyWeak(SrcAddr); 2701 } 2702 2703 /// Produce the code to do a objc_autoreleasepool_push. 2704 /// call i8* \@objc_autoreleasePoolPush(void) 2705 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() { 2706 llvm::Function *&fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPush; 2707 if (!fn) 2708 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPush, CGM); 2709 2710 return EmitNounwindRuntimeCall(fn); 2711 } 2712 2713 /// Produce the code to do a primitive release. 2714 /// call void \@objc_autoreleasePoolPop(i8* %ptr) 2715 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) { 2716 assert(value->getType() == Int8PtrTy); 2717 2718 if (getInvokeDest()) { 2719 // Call the runtime method not the intrinsic if we are handling exceptions 2720 llvm::FunctionCallee &fn = 2721 CGM.getObjCEntrypoints().objc_autoreleasePoolPopInvoke; 2722 if (!fn) { 2723 llvm::FunctionType *fnType = 2724 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2725 fn = CGM.CreateRuntimeFunction(fnType, "objc_autoreleasePoolPop"); 2726 setARCRuntimeFunctionLinkage(CGM, fn); 2727 } 2728 2729 // objc_autoreleasePoolPop can throw. 2730 EmitRuntimeCallOrInvoke(fn, value); 2731 } else { 2732 llvm::FunctionCallee &fn = CGM.getObjCEntrypoints().objc_autoreleasePoolPop; 2733 if (!fn) 2734 fn = getARCIntrinsic(llvm::Intrinsic::objc_autoreleasePoolPop, CGM); 2735 2736 EmitRuntimeCall(fn, value); 2737 } 2738 } 2739 2740 /// Produce the code to do an MRR version objc_autoreleasepool_push. 2741 /// Which is: [[NSAutoreleasePool alloc] init]; 2742 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class. 2743 /// init is declared as: - (id) init; in its NSObject super class. 2744 /// 2745 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() { 2746 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 2747 llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this); 2748 // [NSAutoreleasePool alloc] 2749 IdentifierInfo *II = &CGM.getContext().Idents.get("alloc"); 2750 Selector AllocSel = getContext().Selectors.getSelector(0, &II); 2751 CallArgList Args; 2752 RValue AllocRV = 2753 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2754 getContext().getObjCIdType(), 2755 AllocSel, Receiver, Args); 2756 2757 // [Receiver init] 2758 Receiver = AllocRV.getScalarVal(); 2759 II = &CGM.getContext().Idents.get("init"); 2760 Selector InitSel = getContext().Selectors.getSelector(0, &II); 2761 RValue InitRV = 2762 Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 2763 getContext().getObjCIdType(), 2764 InitSel, Receiver, Args); 2765 return InitRV.getScalarVal(); 2766 } 2767 2768 /// Allocate the given objc object. 2769 /// call i8* \@objc_alloc(i8* %value) 2770 llvm::Value *CodeGenFunction::EmitObjCAlloc(llvm::Value *value, 2771 llvm::Type *resultType) { 2772 return emitObjCValueOperation(*this, value, resultType, 2773 CGM.getObjCEntrypoints().objc_alloc, 2774 "objc_alloc"); 2775 } 2776 2777 /// Allocate the given objc object. 2778 /// call i8* \@objc_allocWithZone(i8* %value) 2779 llvm::Value *CodeGenFunction::EmitObjCAllocWithZone(llvm::Value *value, 2780 llvm::Type *resultType) { 2781 return emitObjCValueOperation(*this, value, resultType, 2782 CGM.getObjCEntrypoints().objc_allocWithZone, 2783 "objc_allocWithZone"); 2784 } 2785 2786 llvm::Value *CodeGenFunction::EmitObjCAllocInit(llvm::Value *value, 2787 llvm::Type *resultType) { 2788 return emitObjCValueOperation(*this, value, resultType, 2789 CGM.getObjCEntrypoints().objc_alloc_init, 2790 "objc_alloc_init"); 2791 } 2792 2793 /// Produce the code to do a primitive release. 2794 /// [tmp drain]; 2795 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) { 2796 IdentifierInfo *II = &CGM.getContext().Idents.get("drain"); 2797 Selector DrainSel = getContext().Selectors.getSelector(0, &II); 2798 CallArgList Args; 2799 CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(), 2800 getContext().VoidTy, DrainSel, Arg, Args); 2801 } 2802 2803 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF, 2804 Address addr, 2805 QualType type) { 2806 CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime); 2807 } 2808 2809 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF, 2810 Address addr, 2811 QualType type) { 2812 CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime); 2813 } 2814 2815 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF, 2816 Address addr, 2817 QualType type) { 2818 CGF.EmitARCDestroyWeak(addr); 2819 } 2820 2821 void CodeGenFunction::emitARCIntrinsicUse(CodeGenFunction &CGF, Address addr, 2822 QualType type) { 2823 llvm::Value *value = CGF.Builder.CreateLoad(addr); 2824 CGF.EmitARCIntrinsicUse(value); 2825 } 2826 2827 /// Autorelease the given object. 2828 /// call i8* \@objc_autorelease(i8* %value) 2829 llvm::Value *CodeGenFunction::EmitObjCAutorelease(llvm::Value *value, 2830 llvm::Type *returnType) { 2831 return emitObjCValueOperation( 2832 *this, value, returnType, 2833 CGM.getObjCEntrypoints().objc_autoreleaseRuntimeFunction, 2834 "objc_autorelease"); 2835 } 2836 2837 /// Retain the given object, with normal retain semantics. 2838 /// call i8* \@objc_retain(i8* %value) 2839 llvm::Value *CodeGenFunction::EmitObjCRetainNonBlock(llvm::Value *value, 2840 llvm::Type *returnType) { 2841 return emitObjCValueOperation( 2842 *this, value, returnType, 2843 CGM.getObjCEntrypoints().objc_retainRuntimeFunction, "objc_retain"); 2844 } 2845 2846 /// Release the given object. 2847 /// call void \@objc_release(i8* %value) 2848 void CodeGenFunction::EmitObjCRelease(llvm::Value *value, 2849 ARCPreciseLifetime_t precise) { 2850 if (isa<llvm::ConstantPointerNull>(value)) return; 2851 2852 llvm::FunctionCallee &fn = 2853 CGM.getObjCEntrypoints().objc_releaseRuntimeFunction; 2854 if (!fn) { 2855 llvm::FunctionType *fnType = 2856 llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false); 2857 fn = CGM.CreateRuntimeFunction(fnType, "objc_release"); 2858 setARCRuntimeFunctionLinkage(CGM, fn); 2859 // We have Native ARC, so set nonlazybind attribute for performance 2860 if (llvm::Function *f = dyn_cast<llvm::Function>(fn.getCallee())) 2861 f->addFnAttr(llvm::Attribute::NonLazyBind); 2862 } 2863 2864 // Cast the argument to 'id'. 2865 value = Builder.CreateBitCast(value, Int8PtrTy); 2866 2867 // Call objc_release. 2868 llvm::CallBase *call = EmitCallOrInvoke(fn, value); 2869 2870 if (precise == ARCImpreciseLifetime) { 2871 call->setMetadata("clang.imprecise_release", 2872 llvm::MDNode::get(Builder.getContext(), std::nullopt)); 2873 } 2874 } 2875 2876 namespace { 2877 struct CallObjCAutoreleasePoolObject final : EHScopeStack::Cleanup { 2878 llvm::Value *Token; 2879 2880 CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2881 2882 void Emit(CodeGenFunction &CGF, Flags flags) override { 2883 CGF.EmitObjCAutoreleasePoolPop(Token); 2884 } 2885 }; 2886 struct CallObjCMRRAutoreleasePoolObject final : EHScopeStack::Cleanup { 2887 llvm::Value *Token; 2888 2889 CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {} 2890 2891 void Emit(CodeGenFunction &CGF, Flags flags) override { 2892 CGF.EmitObjCMRRAutoreleasePoolPop(Token); 2893 } 2894 }; 2895 } 2896 2897 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) { 2898 if (CGM.getLangOpts().ObjCAutoRefCount) 2899 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr); 2900 else 2901 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr); 2902 } 2903 2904 static bool shouldRetainObjCLifetime(Qualifiers::ObjCLifetime lifetime) { 2905 switch (lifetime) { 2906 case Qualifiers::OCL_None: 2907 case Qualifiers::OCL_ExplicitNone: 2908 case Qualifiers::OCL_Strong: 2909 case Qualifiers::OCL_Autoreleasing: 2910 return true; 2911 2912 case Qualifiers::OCL_Weak: 2913 return false; 2914 } 2915 2916 llvm_unreachable("impossible lifetime!"); 2917 } 2918 2919 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2920 LValue lvalue, 2921 QualType type) { 2922 llvm::Value *result; 2923 bool shouldRetain = shouldRetainObjCLifetime(type.getObjCLifetime()); 2924 if (shouldRetain) { 2925 result = CGF.EmitLoadOfLValue(lvalue, SourceLocation()).getScalarVal(); 2926 } else { 2927 assert(type.getObjCLifetime() == Qualifiers::OCL_Weak); 2928 result = CGF.EmitARCLoadWeakRetained(lvalue.getAddress(CGF)); 2929 } 2930 return TryEmitResult(result, !shouldRetain); 2931 } 2932 2933 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF, 2934 const Expr *e) { 2935 e = e->IgnoreParens(); 2936 QualType type = e->getType(); 2937 2938 // If we're loading retained from a __strong xvalue, we can avoid 2939 // an extra retain/release pair by zeroing out the source of this 2940 // "move" operation. 2941 if (e->isXValue() && 2942 !type.isConstQualified() && 2943 type.getObjCLifetime() == Qualifiers::OCL_Strong) { 2944 // Emit the lvalue. 2945 LValue lv = CGF.EmitLValue(e); 2946 2947 // Load the object pointer. 2948 llvm::Value *result = CGF.EmitLoadOfLValue(lv, 2949 SourceLocation()).getScalarVal(); 2950 2951 // Set the source pointer to NULL. 2952 CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress(CGF)), lv); 2953 2954 return TryEmitResult(result, true); 2955 } 2956 2957 // As a very special optimization, in ARC++, if the l-value is the 2958 // result of a non-volatile assignment, do a simple retain of the 2959 // result of the call to objc_storeWeak instead of reloading. 2960 if (CGF.getLangOpts().CPlusPlus && 2961 !type.isVolatileQualified() && 2962 type.getObjCLifetime() == Qualifiers::OCL_Weak && 2963 isa<BinaryOperator>(e) && 2964 cast<BinaryOperator>(e)->getOpcode() == BO_Assign) 2965 return TryEmitResult(CGF.EmitScalarExpr(e), false); 2966 2967 // Try to emit code for scalar constant instead of emitting LValue and 2968 // loading it because we are not guaranteed to have an l-value. One of such 2969 // cases is DeclRefExpr referencing non-odr-used constant-evaluated variable. 2970 if (const auto *decl_expr = dyn_cast<DeclRefExpr>(e)) { 2971 auto *DRE = const_cast<DeclRefExpr *>(decl_expr); 2972 if (CodeGenFunction::ConstantEmission constant = CGF.tryEmitAsConstant(DRE)) 2973 return TryEmitResult(CGF.emitScalarConstant(constant, DRE), 2974 !shouldRetainObjCLifetime(type.getObjCLifetime())); 2975 } 2976 2977 return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type); 2978 } 2979 2980 typedef llvm::function_ref<llvm::Value *(CodeGenFunction &CGF, 2981 llvm::Value *value)> 2982 ValueTransform; 2983 2984 /// Insert code immediately after a call. 2985 2986 // FIXME: We should find a way to emit the runtime call immediately 2987 // after the call is emitted to eliminate the need for this function. 2988 static llvm::Value *emitARCOperationAfterCall(CodeGenFunction &CGF, 2989 llvm::Value *value, 2990 ValueTransform doAfterCall, 2991 ValueTransform doFallback) { 2992 CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP(); 2993 auto *callBase = dyn_cast<llvm::CallBase>(value); 2994 2995 if (callBase && llvm::objcarc::hasAttachedCallOpBundle(callBase)) { 2996 // Fall back if the call base has operand bundle "clang.arc.attachedcall". 2997 value = doFallback(CGF, value); 2998 } else if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) { 2999 // Place the retain immediately following the call. 3000 CGF.Builder.SetInsertPoint(call->getParent(), 3001 ++llvm::BasicBlock::iterator(call)); 3002 value = doAfterCall(CGF, value); 3003 } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) { 3004 // Place the retain at the beginning of the normal destination block. 3005 llvm::BasicBlock *BB = invoke->getNormalDest(); 3006 CGF.Builder.SetInsertPoint(BB, BB->begin()); 3007 value = doAfterCall(CGF, value); 3008 3009 // Bitcasts can arise because of related-result returns. Rewrite 3010 // the operand. 3011 } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) { 3012 // Change the insert point to avoid emitting the fall-back call after the 3013 // bitcast. 3014 CGF.Builder.SetInsertPoint(bitcast->getParent(), bitcast->getIterator()); 3015 llvm::Value *operand = bitcast->getOperand(0); 3016 operand = emitARCOperationAfterCall(CGF, operand, doAfterCall, doFallback); 3017 bitcast->setOperand(0, operand); 3018 value = bitcast; 3019 } else { 3020 auto *phi = dyn_cast<llvm::PHINode>(value); 3021 if (phi && phi->getNumIncomingValues() == 2 && 3022 isa<llvm::ConstantPointerNull>(phi->getIncomingValue(1)) && 3023 isa<llvm::CallBase>(phi->getIncomingValue(0))) { 3024 // Handle phi instructions that are generated when it's necessary to check 3025 // whether the receiver of a message is null. 3026 llvm::Value *inVal = phi->getIncomingValue(0); 3027 inVal = emitARCOperationAfterCall(CGF, inVal, doAfterCall, doFallback); 3028 phi->setIncomingValue(0, inVal); 3029 value = phi; 3030 } else { 3031 // Generic fall-back case. 3032 // Retain using the non-block variant: we never need to do a copy 3033 // of a block that's been returned to us. 3034 value = doFallback(CGF, value); 3035 } 3036 } 3037 3038 CGF.Builder.restoreIP(ip); 3039 return value; 3040 } 3041 3042 /// Given that the given expression is some sort of call (which does 3043 /// not return retained), emit a retain following it. 3044 static llvm::Value *emitARCRetainCallResult(CodeGenFunction &CGF, 3045 const Expr *e) { 3046 llvm::Value *value = CGF.EmitScalarExpr(e); 3047 return emitARCOperationAfterCall(CGF, value, 3048 [](CodeGenFunction &CGF, llvm::Value *value) { 3049 return CGF.EmitARCRetainAutoreleasedReturnValue(value); 3050 }, 3051 [](CodeGenFunction &CGF, llvm::Value *value) { 3052 return CGF.EmitARCRetainNonBlock(value); 3053 }); 3054 } 3055 3056 /// Given that the given expression is some sort of call (which does 3057 /// not return retained), perform an unsafeClaim following it. 3058 static llvm::Value *emitARCUnsafeClaimCallResult(CodeGenFunction &CGF, 3059 const Expr *e) { 3060 llvm::Value *value = CGF.EmitScalarExpr(e); 3061 return emitARCOperationAfterCall(CGF, value, 3062 [](CodeGenFunction &CGF, llvm::Value *value) { 3063 return CGF.EmitARCUnsafeClaimAutoreleasedReturnValue(value); 3064 }, 3065 [](CodeGenFunction &CGF, llvm::Value *value) { 3066 return value; 3067 }); 3068 } 3069 3070 llvm::Value *CodeGenFunction::EmitARCReclaimReturnedObject(const Expr *E, 3071 bool allowUnsafeClaim) { 3072 if (allowUnsafeClaim && 3073 CGM.getLangOpts().ObjCRuntime.hasARCUnsafeClaimAutoreleasedReturnValue()) { 3074 return emitARCUnsafeClaimCallResult(*this, E); 3075 } else { 3076 llvm::Value *value = emitARCRetainCallResult(*this, E); 3077 return EmitObjCConsumeObject(E->getType(), value); 3078 } 3079 } 3080 3081 /// Determine whether it might be important to emit a separate 3082 /// objc_retain_block on the result of the given expression, or 3083 /// whether it's okay to just emit it in a +1 context. 3084 static bool shouldEmitSeparateBlockRetain(const Expr *e) { 3085 assert(e->getType()->isBlockPointerType()); 3086 e = e->IgnoreParens(); 3087 3088 // For future goodness, emit block expressions directly in +1 3089 // contexts if we can. 3090 if (isa<BlockExpr>(e)) 3091 return false; 3092 3093 if (const CastExpr *cast = dyn_cast<CastExpr>(e)) { 3094 switch (cast->getCastKind()) { 3095 // Emitting these operations in +1 contexts is goodness. 3096 case CK_LValueToRValue: 3097 case CK_ARCReclaimReturnedObject: 3098 case CK_ARCConsumeObject: 3099 case CK_ARCProduceObject: 3100 return false; 3101 3102 // These operations preserve a block type. 3103 case CK_NoOp: 3104 case CK_BitCast: 3105 return shouldEmitSeparateBlockRetain(cast->getSubExpr()); 3106 3107 // These operations are known to be bad (or haven't been considered). 3108 case CK_AnyPointerToBlockPointerCast: 3109 default: 3110 return true; 3111 } 3112 } 3113 3114 return true; 3115 } 3116 3117 namespace { 3118 /// A CRTP base class for emitting expressions of retainable object 3119 /// pointer type in ARC. 3120 template <typename Impl, typename Result> class ARCExprEmitter { 3121 protected: 3122 CodeGenFunction &CGF; 3123 Impl &asImpl() { return *static_cast<Impl*>(this); } 3124 3125 ARCExprEmitter(CodeGenFunction &CGF) : CGF(CGF) {} 3126 3127 public: 3128 Result visit(const Expr *e); 3129 Result visitCastExpr(const CastExpr *e); 3130 Result visitPseudoObjectExpr(const PseudoObjectExpr *e); 3131 Result visitBlockExpr(const BlockExpr *e); 3132 Result visitBinaryOperator(const BinaryOperator *e); 3133 Result visitBinAssign(const BinaryOperator *e); 3134 Result visitBinAssignUnsafeUnretained(const BinaryOperator *e); 3135 Result visitBinAssignAutoreleasing(const BinaryOperator *e); 3136 Result visitBinAssignWeak(const BinaryOperator *e); 3137 Result visitBinAssignStrong(const BinaryOperator *e); 3138 3139 // Minimal implementation: 3140 // Result visitLValueToRValue(const Expr *e) 3141 // Result visitConsumeObject(const Expr *e) 3142 // Result visitExtendBlockObject(const Expr *e) 3143 // Result visitReclaimReturnedObject(const Expr *e) 3144 // Result visitCall(const Expr *e) 3145 // Result visitExpr(const Expr *e) 3146 // 3147 // Result emitBitCast(Result result, llvm::Type *resultType) 3148 // llvm::Value *getValueOfResult(Result result) 3149 }; 3150 } 3151 3152 /// Try to emit a PseudoObjectExpr under special ARC rules. 3153 /// 3154 /// This massively duplicates emitPseudoObjectRValue. 3155 template <typename Impl, typename Result> 3156 Result 3157 ARCExprEmitter<Impl,Result>::visitPseudoObjectExpr(const PseudoObjectExpr *E) { 3158 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3159 3160 // Find the result expression. 3161 const Expr *resultExpr = E->getResultExpr(); 3162 assert(resultExpr); 3163 Result result; 3164 3165 for (PseudoObjectExpr::const_semantics_iterator 3166 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3167 const Expr *semantic = *i; 3168 3169 // If this semantic expression is an opaque value, bind it 3170 // to the result of its source expression. 3171 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3172 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3173 OVMA opaqueData; 3174 3175 // If this semantic is the result of the pseudo-object 3176 // expression, try to evaluate the source as +1. 3177 if (ov == resultExpr) { 3178 assert(!OVMA::shouldBindAsLValue(ov)); 3179 result = asImpl().visit(ov->getSourceExpr()); 3180 opaqueData = OVMA::bind(CGF, ov, 3181 RValue::get(asImpl().getValueOfResult(result))); 3182 3183 // Otherwise, just bind it. 3184 } else { 3185 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3186 } 3187 opaques.push_back(opaqueData); 3188 3189 // Otherwise, if the expression is the result, evaluate it 3190 // and remember the result. 3191 } else if (semantic == resultExpr) { 3192 result = asImpl().visit(semantic); 3193 3194 // Otherwise, evaluate the expression in an ignored context. 3195 } else { 3196 CGF.EmitIgnoredExpr(semantic); 3197 } 3198 } 3199 3200 // Unbind all the opaques now. 3201 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3202 opaques[i].unbind(CGF); 3203 3204 return result; 3205 } 3206 3207 template <typename Impl, typename Result> 3208 Result ARCExprEmitter<Impl, Result>::visitBlockExpr(const BlockExpr *e) { 3209 // The default implementation just forwards the expression to visitExpr. 3210 return asImpl().visitExpr(e); 3211 } 3212 3213 template <typename Impl, typename Result> 3214 Result ARCExprEmitter<Impl,Result>::visitCastExpr(const CastExpr *e) { 3215 switch (e->getCastKind()) { 3216 3217 // No-op casts don't change the type, so we just ignore them. 3218 case CK_NoOp: 3219 return asImpl().visit(e->getSubExpr()); 3220 3221 // These casts can change the type. 3222 case CK_CPointerToObjCPointerCast: 3223 case CK_BlockPointerToObjCPointerCast: 3224 case CK_AnyPointerToBlockPointerCast: 3225 case CK_BitCast: { 3226 llvm::Type *resultType = CGF.ConvertType(e->getType()); 3227 assert(e->getSubExpr()->getType()->hasPointerRepresentation()); 3228 Result result = asImpl().visit(e->getSubExpr()); 3229 return asImpl().emitBitCast(result, resultType); 3230 } 3231 3232 // Handle some casts specially. 3233 case CK_LValueToRValue: 3234 return asImpl().visitLValueToRValue(e->getSubExpr()); 3235 case CK_ARCConsumeObject: 3236 return asImpl().visitConsumeObject(e->getSubExpr()); 3237 case CK_ARCExtendBlockObject: 3238 return asImpl().visitExtendBlockObject(e->getSubExpr()); 3239 case CK_ARCReclaimReturnedObject: 3240 return asImpl().visitReclaimReturnedObject(e->getSubExpr()); 3241 3242 // Otherwise, use the default logic. 3243 default: 3244 return asImpl().visitExpr(e); 3245 } 3246 } 3247 3248 template <typename Impl, typename Result> 3249 Result 3250 ARCExprEmitter<Impl,Result>::visitBinaryOperator(const BinaryOperator *e) { 3251 switch (e->getOpcode()) { 3252 case BO_Comma: 3253 CGF.EmitIgnoredExpr(e->getLHS()); 3254 CGF.EnsureInsertPoint(); 3255 return asImpl().visit(e->getRHS()); 3256 3257 case BO_Assign: 3258 return asImpl().visitBinAssign(e); 3259 3260 default: 3261 return asImpl().visitExpr(e); 3262 } 3263 } 3264 3265 template <typename Impl, typename Result> 3266 Result ARCExprEmitter<Impl,Result>::visitBinAssign(const BinaryOperator *e) { 3267 switch (e->getLHS()->getType().getObjCLifetime()) { 3268 case Qualifiers::OCL_ExplicitNone: 3269 return asImpl().visitBinAssignUnsafeUnretained(e); 3270 3271 case Qualifiers::OCL_Weak: 3272 return asImpl().visitBinAssignWeak(e); 3273 3274 case Qualifiers::OCL_Autoreleasing: 3275 return asImpl().visitBinAssignAutoreleasing(e); 3276 3277 case Qualifiers::OCL_Strong: 3278 return asImpl().visitBinAssignStrong(e); 3279 3280 case Qualifiers::OCL_None: 3281 return asImpl().visitExpr(e); 3282 } 3283 llvm_unreachable("bad ObjC ownership qualifier"); 3284 } 3285 3286 /// The default rule for __unsafe_unretained emits the RHS recursively, 3287 /// stores into the unsafe variable, and propagates the result outward. 3288 template <typename Impl, typename Result> 3289 Result ARCExprEmitter<Impl,Result>:: 3290 visitBinAssignUnsafeUnretained(const BinaryOperator *e) { 3291 // Recursively emit the RHS. 3292 // For __block safety, do this before emitting the LHS. 3293 Result result = asImpl().visit(e->getRHS()); 3294 3295 // Perform the store. 3296 LValue lvalue = 3297 CGF.EmitCheckedLValue(e->getLHS(), CodeGenFunction::TCK_Store); 3298 CGF.EmitStoreThroughLValue(RValue::get(asImpl().getValueOfResult(result)), 3299 lvalue); 3300 3301 return result; 3302 } 3303 3304 template <typename Impl, typename Result> 3305 Result 3306 ARCExprEmitter<Impl,Result>::visitBinAssignAutoreleasing(const BinaryOperator *e) { 3307 return asImpl().visitExpr(e); 3308 } 3309 3310 template <typename Impl, typename Result> 3311 Result 3312 ARCExprEmitter<Impl,Result>::visitBinAssignWeak(const BinaryOperator *e) { 3313 return asImpl().visitExpr(e); 3314 } 3315 3316 template <typename Impl, typename Result> 3317 Result 3318 ARCExprEmitter<Impl,Result>::visitBinAssignStrong(const BinaryOperator *e) { 3319 return asImpl().visitExpr(e); 3320 } 3321 3322 /// The general expression-emission logic. 3323 template <typename Impl, typename Result> 3324 Result ARCExprEmitter<Impl,Result>::visit(const Expr *e) { 3325 // We should *never* see a nested full-expression here, because if 3326 // we fail to emit at +1, our caller must not retain after we close 3327 // out the full-expression. This isn't as important in the unsafe 3328 // emitter. 3329 assert(!isa<ExprWithCleanups>(e)); 3330 3331 // Look through parens, __extension__, generic selection, etc. 3332 e = e->IgnoreParens(); 3333 3334 // Handle certain kinds of casts. 3335 if (const CastExpr *ce = dyn_cast<CastExpr>(e)) { 3336 return asImpl().visitCastExpr(ce); 3337 3338 // Handle the comma operator. 3339 } else if (auto op = dyn_cast<BinaryOperator>(e)) { 3340 return asImpl().visitBinaryOperator(op); 3341 3342 // TODO: handle conditional operators here 3343 3344 // For calls and message sends, use the retained-call logic. 3345 // Delegate inits are a special case in that they're the only 3346 // returns-retained expression that *isn't* surrounded by 3347 // a consume. 3348 } else if (isa<CallExpr>(e) || 3349 (isa<ObjCMessageExpr>(e) && 3350 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) { 3351 return asImpl().visitCall(e); 3352 3353 // Look through pseudo-object expressions. 3354 } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 3355 return asImpl().visitPseudoObjectExpr(pseudo); 3356 } else if (auto *be = dyn_cast<BlockExpr>(e)) 3357 return asImpl().visitBlockExpr(be); 3358 3359 return asImpl().visitExpr(e); 3360 } 3361 3362 namespace { 3363 3364 /// An emitter for +1 results. 3365 struct ARCRetainExprEmitter : 3366 public ARCExprEmitter<ARCRetainExprEmitter, TryEmitResult> { 3367 3368 ARCRetainExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3369 3370 llvm::Value *getValueOfResult(TryEmitResult result) { 3371 return result.getPointer(); 3372 } 3373 3374 TryEmitResult emitBitCast(TryEmitResult result, llvm::Type *resultType) { 3375 llvm::Value *value = result.getPointer(); 3376 value = CGF.Builder.CreateBitCast(value, resultType); 3377 result.setPointer(value); 3378 return result; 3379 } 3380 3381 TryEmitResult visitLValueToRValue(const Expr *e) { 3382 return tryEmitARCRetainLoadOfScalar(CGF, e); 3383 } 3384 3385 /// For consumptions, just emit the subexpression and thus elide 3386 /// the retain/release pair. 3387 TryEmitResult visitConsumeObject(const Expr *e) { 3388 llvm::Value *result = CGF.EmitScalarExpr(e); 3389 return TryEmitResult(result, true); 3390 } 3391 3392 TryEmitResult visitBlockExpr(const BlockExpr *e) { 3393 TryEmitResult result = visitExpr(e); 3394 // Avoid the block-retain if this is a block literal that doesn't need to be 3395 // copied to the heap. 3396 if (CGF.CGM.getCodeGenOpts().ObjCAvoidHeapifyLocalBlocks && 3397 e->getBlockDecl()->canAvoidCopyToHeap()) 3398 result.setInt(true); 3399 return result; 3400 } 3401 3402 /// Block extends are net +0. Naively, we could just recurse on 3403 /// the subexpression, but actually we need to ensure that the 3404 /// value is copied as a block, so there's a little filter here. 3405 TryEmitResult visitExtendBlockObject(const Expr *e) { 3406 llvm::Value *result; // will be a +0 value 3407 3408 // If we can't safely assume the sub-expression will produce a 3409 // block-copied value, emit the sub-expression at +0. 3410 if (shouldEmitSeparateBlockRetain(e)) { 3411 result = CGF.EmitScalarExpr(e); 3412 3413 // Otherwise, try to emit the sub-expression at +1 recursively. 3414 } else { 3415 TryEmitResult subresult = asImpl().visit(e); 3416 3417 // If that produced a retained value, just use that. 3418 if (subresult.getInt()) { 3419 return subresult; 3420 } 3421 3422 // Otherwise it's +0. 3423 result = subresult.getPointer(); 3424 } 3425 3426 // Retain the object as a block. 3427 result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true); 3428 return TryEmitResult(result, true); 3429 } 3430 3431 /// For reclaims, emit the subexpression as a retained call and 3432 /// skip the consumption. 3433 TryEmitResult visitReclaimReturnedObject(const Expr *e) { 3434 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3435 return TryEmitResult(result, true); 3436 } 3437 3438 /// When we have an undecorated call, retroactively do a claim. 3439 TryEmitResult visitCall(const Expr *e) { 3440 llvm::Value *result = emitARCRetainCallResult(CGF, e); 3441 return TryEmitResult(result, true); 3442 } 3443 3444 // TODO: maybe special-case visitBinAssignWeak? 3445 3446 TryEmitResult visitExpr(const Expr *e) { 3447 // We didn't find an obvious production, so emit what we've got and 3448 // tell the caller that we didn't manage to retain. 3449 llvm::Value *result = CGF.EmitScalarExpr(e); 3450 return TryEmitResult(result, false); 3451 } 3452 }; 3453 } 3454 3455 static TryEmitResult 3456 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) { 3457 return ARCRetainExprEmitter(CGF).visit(e); 3458 } 3459 3460 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF, 3461 LValue lvalue, 3462 QualType type) { 3463 TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type); 3464 llvm::Value *value = result.getPointer(); 3465 if (!result.getInt()) 3466 value = CGF.EmitARCRetain(type, value); 3467 return value; 3468 } 3469 3470 /// EmitARCRetainScalarExpr - Semantically equivalent to 3471 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a 3472 /// best-effort attempt to peephole expressions that naturally produce 3473 /// retained objects. 3474 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) { 3475 // The retain needs to happen within the full-expression. 3476 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3477 RunCleanupsScope scope(*this); 3478 return EmitARCRetainScalarExpr(cleanups->getSubExpr()); 3479 } 3480 3481 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3482 llvm::Value *value = result.getPointer(); 3483 if (!result.getInt()) 3484 value = EmitARCRetain(e->getType(), value); 3485 return value; 3486 } 3487 3488 llvm::Value * 3489 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) { 3490 // The retain needs to happen within the full-expression. 3491 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3492 RunCleanupsScope scope(*this); 3493 return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr()); 3494 } 3495 3496 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e); 3497 llvm::Value *value = result.getPointer(); 3498 if (result.getInt()) 3499 value = EmitARCAutorelease(value); 3500 else 3501 value = EmitARCRetainAutorelease(e->getType(), value); 3502 return value; 3503 } 3504 3505 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) { 3506 llvm::Value *result; 3507 bool doRetain; 3508 3509 if (shouldEmitSeparateBlockRetain(e)) { 3510 result = EmitScalarExpr(e); 3511 doRetain = true; 3512 } else { 3513 TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e); 3514 result = subresult.getPointer(); 3515 doRetain = !subresult.getInt(); 3516 } 3517 3518 if (doRetain) 3519 result = EmitARCRetainBlock(result, /*mandatory*/ true); 3520 return EmitObjCConsumeObject(e->getType(), result); 3521 } 3522 3523 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) { 3524 // In ARC, retain and autorelease the expression. 3525 if (getLangOpts().ObjCAutoRefCount) { 3526 // Do so before running any cleanups for the full-expression. 3527 // EmitARCRetainAutoreleaseScalarExpr does this for us. 3528 return EmitARCRetainAutoreleaseScalarExpr(expr); 3529 } 3530 3531 // Otherwise, use the normal scalar-expression emission. The 3532 // exception machinery doesn't do anything special with the 3533 // exception like retaining it, so there's no safety associated with 3534 // only running cleanups after the throw has started, and when it 3535 // matters it tends to be substantially inferior code. 3536 return EmitScalarExpr(expr); 3537 } 3538 3539 namespace { 3540 3541 /// An emitter for assigning into an __unsafe_unretained context. 3542 struct ARCUnsafeUnretainedExprEmitter : 3543 public ARCExprEmitter<ARCUnsafeUnretainedExprEmitter, llvm::Value*> { 3544 3545 ARCUnsafeUnretainedExprEmitter(CodeGenFunction &CGF) : ARCExprEmitter(CGF) {} 3546 3547 llvm::Value *getValueOfResult(llvm::Value *value) { 3548 return value; 3549 } 3550 3551 llvm::Value *emitBitCast(llvm::Value *value, llvm::Type *resultType) { 3552 return CGF.Builder.CreateBitCast(value, resultType); 3553 } 3554 3555 llvm::Value *visitLValueToRValue(const Expr *e) { 3556 return CGF.EmitScalarExpr(e); 3557 } 3558 3559 /// For consumptions, just emit the subexpression and perform the 3560 /// consumption like normal. 3561 llvm::Value *visitConsumeObject(const Expr *e) { 3562 llvm::Value *value = CGF.EmitScalarExpr(e); 3563 return CGF.EmitObjCConsumeObject(e->getType(), value); 3564 } 3565 3566 /// No special logic for block extensions. (This probably can't 3567 /// actually happen in this emitter, though.) 3568 llvm::Value *visitExtendBlockObject(const Expr *e) { 3569 return CGF.EmitARCExtendBlockObject(e); 3570 } 3571 3572 /// For reclaims, perform an unsafeClaim if that's enabled. 3573 llvm::Value *visitReclaimReturnedObject(const Expr *e) { 3574 return CGF.EmitARCReclaimReturnedObject(e, /*unsafe*/ true); 3575 } 3576 3577 /// When we have an undecorated call, just emit it without adding 3578 /// the unsafeClaim. 3579 llvm::Value *visitCall(const Expr *e) { 3580 return CGF.EmitScalarExpr(e); 3581 } 3582 3583 /// Just do normal scalar emission in the default case. 3584 llvm::Value *visitExpr(const Expr *e) { 3585 return CGF.EmitScalarExpr(e); 3586 } 3587 }; 3588 } 3589 3590 static llvm::Value *emitARCUnsafeUnretainedScalarExpr(CodeGenFunction &CGF, 3591 const Expr *e) { 3592 return ARCUnsafeUnretainedExprEmitter(CGF).visit(e); 3593 } 3594 3595 /// EmitARCUnsafeUnretainedScalarExpr - Semantically equivalent to 3596 /// immediately releasing the resut of EmitARCRetainScalarExpr, but 3597 /// avoiding any spurious retains, including by performing reclaims 3598 /// with objc_unsafeClaimAutoreleasedReturnValue. 3599 llvm::Value *CodeGenFunction::EmitARCUnsafeUnretainedScalarExpr(const Expr *e) { 3600 // Look through full-expressions. 3601 if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) { 3602 RunCleanupsScope scope(*this); 3603 return emitARCUnsafeUnretainedScalarExpr(*this, cleanups->getSubExpr()); 3604 } 3605 3606 return emitARCUnsafeUnretainedScalarExpr(*this, e); 3607 } 3608 3609 std::pair<LValue,llvm::Value*> 3610 CodeGenFunction::EmitARCStoreUnsafeUnretained(const BinaryOperator *e, 3611 bool ignored) { 3612 // Evaluate the RHS first. If we're ignoring the result, assume 3613 // that we can emit at an unsafe +0. 3614 llvm::Value *value; 3615 if (ignored) { 3616 value = EmitARCUnsafeUnretainedScalarExpr(e->getRHS()); 3617 } else { 3618 value = EmitScalarExpr(e->getRHS()); 3619 } 3620 3621 // Emit the LHS and perform the store. 3622 LValue lvalue = EmitLValue(e->getLHS()); 3623 EmitStoreOfScalar(value, lvalue); 3624 3625 return std::pair<LValue,llvm::Value*>(std::move(lvalue), value); 3626 } 3627 3628 std::pair<LValue,llvm::Value*> 3629 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e, 3630 bool ignored) { 3631 // Evaluate the RHS first. 3632 TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS()); 3633 llvm::Value *value = result.getPointer(); 3634 3635 bool hasImmediateRetain = result.getInt(); 3636 3637 // If we didn't emit a retained object, and the l-value is of block 3638 // type, then we need to emit the block-retain immediately in case 3639 // it invalidates the l-value. 3640 if (!hasImmediateRetain && e->getType()->isBlockPointerType()) { 3641 value = EmitARCRetainBlock(value, /*mandatory*/ false); 3642 hasImmediateRetain = true; 3643 } 3644 3645 LValue lvalue = EmitLValue(e->getLHS()); 3646 3647 // If the RHS was emitted retained, expand this. 3648 if (hasImmediateRetain) { 3649 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, SourceLocation()); 3650 EmitStoreOfScalar(value, lvalue); 3651 EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime()); 3652 } else { 3653 value = EmitARCStoreStrong(lvalue, value, ignored); 3654 } 3655 3656 return std::pair<LValue,llvm::Value*>(lvalue, value); 3657 } 3658 3659 std::pair<LValue,llvm::Value*> 3660 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) { 3661 llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS()); 3662 LValue lvalue = EmitLValue(e->getLHS()); 3663 3664 EmitStoreOfScalar(value, lvalue); 3665 3666 return std::pair<LValue,llvm::Value*>(lvalue, value); 3667 } 3668 3669 void CodeGenFunction::EmitObjCAutoreleasePoolStmt( 3670 const ObjCAutoreleasePoolStmt &ARPS) { 3671 const Stmt *subStmt = ARPS.getSubStmt(); 3672 const CompoundStmt &S = cast<CompoundStmt>(*subStmt); 3673 3674 CGDebugInfo *DI = getDebugInfo(); 3675 if (DI) 3676 DI->EmitLexicalBlockStart(Builder, S.getLBracLoc()); 3677 3678 // Keep track of the current cleanup stack depth. 3679 RunCleanupsScope Scope(*this); 3680 if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) { 3681 llvm::Value *token = EmitObjCAutoreleasePoolPush(); 3682 EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token); 3683 } else { 3684 llvm::Value *token = EmitObjCMRRAutoreleasePoolPush(); 3685 EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token); 3686 } 3687 3688 for (const auto *I : S.body()) 3689 EmitStmt(I); 3690 3691 if (DI) 3692 DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc()); 3693 } 3694 3695 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 3696 /// make sure it survives garbage collection until this point. 3697 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) { 3698 // We just use an inline assembly. 3699 llvm::FunctionType *extenderType 3700 = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All); 3701 llvm::InlineAsm *extender = llvm::InlineAsm::get(extenderType, 3702 /* assembly */ "", 3703 /* constraints */ "r", 3704 /* side effects */ true); 3705 3706 object = Builder.CreateBitCast(object, VoidPtrTy); 3707 EmitNounwindRuntimeCall(extender, object); 3708 } 3709 3710 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with 3711 /// non-trivial copy assignment function, produce following helper function. 3712 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; } 3713 /// 3714 llvm::Constant * 3715 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction( 3716 const ObjCPropertyImplDecl *PID) { 3717 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3718 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3719 return nullptr; 3720 3721 QualType Ty = PID->getPropertyIvarDecl()->getType(); 3722 ASTContext &C = getContext(); 3723 3724 if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 3725 // Call the move assignment operator instead of calling the copy assignment 3726 // operator and destructor. 3727 CharUnits Alignment = C.getTypeAlignInChars(Ty); 3728 llvm::Constant *Fn = getNonTrivialCStructMoveAssignmentOperator( 3729 CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty); 3730 return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3731 } 3732 3733 if (!getLangOpts().CPlusPlus || 3734 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3735 return nullptr; 3736 if (!Ty->isRecordType()) 3737 return nullptr; 3738 llvm::Constant *HelperFn = nullptr; 3739 if (hasTrivialSetExpr(PID)) 3740 return nullptr; 3741 assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null"); 3742 if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty))) 3743 return HelperFn; 3744 3745 IdentifierInfo *II 3746 = &CGM.getContext().Idents.get("__assign_helper_atomic_property_"); 3747 3748 QualType ReturnTy = C.VoidTy; 3749 QualType DestTy = C.getPointerType(Ty); 3750 QualType SrcTy = Ty; 3751 SrcTy.addConst(); 3752 SrcTy = C.getPointerType(SrcTy); 3753 3754 SmallVector<QualType, 2> ArgTys; 3755 ArgTys.push_back(DestTy); 3756 ArgTys.push_back(SrcTy); 3757 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3758 3759 FunctionDecl *FD = FunctionDecl::Create( 3760 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3761 FunctionTy, nullptr, SC_Static, false, false, false); 3762 3763 FunctionArgList args; 3764 ParmVarDecl *Params[2]; 3765 ParmVarDecl *DstDecl = ParmVarDecl::Create( 3766 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy, 3767 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None, 3768 /*DefArg=*/nullptr); 3769 args.push_back(Params[0] = DstDecl); 3770 ParmVarDecl *SrcDecl = ParmVarDecl::Create( 3771 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy, 3772 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None, 3773 /*DefArg=*/nullptr); 3774 args.push_back(Params[1] = SrcDecl); 3775 FD->setParams(Params); 3776 3777 const CGFunctionInfo &FI = 3778 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3779 3780 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3781 3782 llvm::Function *Fn = 3783 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage, 3784 "__assign_helper_atomic_property_", 3785 &CGM.getModule()); 3786 3787 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3788 3789 StartFunction(FD, ReturnTy, Fn, FI, args); 3790 3791 DeclRefExpr DstExpr(C, DstDecl, false, DestTy, VK_PRValue, SourceLocation()); 3792 UnaryOperator *DST = UnaryOperator::Create( 3793 C, &DstExpr, UO_Deref, DestTy->getPointeeType(), VK_LValue, OK_Ordinary, 3794 SourceLocation(), false, FPOptionsOverride()); 3795 3796 DeclRefExpr SrcExpr(C, SrcDecl, false, SrcTy, VK_PRValue, SourceLocation()); 3797 UnaryOperator *SRC = UnaryOperator::Create( 3798 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3799 SourceLocation(), false, FPOptionsOverride()); 3800 3801 Expr *Args[2] = {DST, SRC}; 3802 CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment()); 3803 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 3804 C, OO_Equal, CalleeExp->getCallee(), Args, DestTy->getPointeeType(), 3805 VK_LValue, SourceLocation(), FPOptionsOverride()); 3806 3807 EmitStmt(TheCall); 3808 3809 FinishFunction(); 3810 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3811 CGM.setAtomicSetterHelperFnMap(Ty, HelperFn); 3812 return HelperFn; 3813 } 3814 3815 llvm::Constant *CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction( 3816 const ObjCPropertyImplDecl *PID) { 3817 const ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3818 if ((!(PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_atomic))) 3819 return nullptr; 3820 3821 QualType Ty = PD->getType(); 3822 ASTContext &C = getContext(); 3823 3824 if (Ty.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 3825 CharUnits Alignment = C.getTypeAlignInChars(Ty); 3826 llvm::Constant *Fn = getNonTrivialCStructCopyConstructor( 3827 CGM, Alignment, Alignment, Ty.isVolatileQualified(), Ty); 3828 return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3829 } 3830 3831 if (!getLangOpts().CPlusPlus || 3832 !getLangOpts().ObjCRuntime.hasAtomicCopyHelper()) 3833 return nullptr; 3834 if (!Ty->isRecordType()) 3835 return nullptr; 3836 llvm::Constant *HelperFn = nullptr; 3837 if (hasTrivialGetExpr(PID)) 3838 return nullptr; 3839 assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null"); 3840 if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty))) 3841 return HelperFn; 3842 3843 IdentifierInfo *II = 3844 &CGM.getContext().Idents.get("__copy_helper_atomic_property_"); 3845 3846 QualType ReturnTy = C.VoidTy; 3847 QualType DestTy = C.getPointerType(Ty); 3848 QualType SrcTy = Ty; 3849 SrcTy.addConst(); 3850 SrcTy = C.getPointerType(SrcTy); 3851 3852 SmallVector<QualType, 2> ArgTys; 3853 ArgTys.push_back(DestTy); 3854 ArgTys.push_back(SrcTy); 3855 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {}); 3856 3857 FunctionDecl *FD = FunctionDecl::Create( 3858 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, 3859 FunctionTy, nullptr, SC_Static, false, false, false); 3860 3861 FunctionArgList args; 3862 ParmVarDecl *Params[2]; 3863 ParmVarDecl *DstDecl = ParmVarDecl::Create( 3864 C, FD, SourceLocation(), SourceLocation(), nullptr, DestTy, 3865 C.getTrivialTypeSourceInfo(DestTy, SourceLocation()), SC_None, 3866 /*DefArg=*/nullptr); 3867 args.push_back(Params[0] = DstDecl); 3868 ParmVarDecl *SrcDecl = ParmVarDecl::Create( 3869 C, FD, SourceLocation(), SourceLocation(), nullptr, SrcTy, 3870 C.getTrivialTypeSourceInfo(SrcTy, SourceLocation()), SC_None, 3871 /*DefArg=*/nullptr); 3872 args.push_back(Params[1] = SrcDecl); 3873 FD->setParams(Params); 3874 3875 const CGFunctionInfo &FI = 3876 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args); 3877 3878 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI); 3879 3880 llvm::Function *Fn = llvm::Function::Create( 3881 LTy, llvm::GlobalValue::InternalLinkage, "__copy_helper_atomic_property_", 3882 &CGM.getModule()); 3883 3884 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); 3885 3886 StartFunction(FD, ReturnTy, Fn, FI, args); 3887 3888 DeclRefExpr SrcExpr(getContext(), SrcDecl, false, SrcTy, VK_PRValue, 3889 SourceLocation()); 3890 3891 UnaryOperator *SRC = UnaryOperator::Create( 3892 C, &SrcExpr, UO_Deref, SrcTy->getPointeeType(), VK_LValue, OK_Ordinary, 3893 SourceLocation(), false, FPOptionsOverride()); 3894 3895 CXXConstructExpr *CXXConstExpr = 3896 cast<CXXConstructExpr>(PID->getGetterCXXConstructor()); 3897 3898 SmallVector<Expr*, 4> ConstructorArgs; 3899 ConstructorArgs.push_back(SRC); 3900 ConstructorArgs.append(std::next(CXXConstExpr->arg_begin()), 3901 CXXConstExpr->arg_end()); 3902 3903 CXXConstructExpr *TheCXXConstructExpr = 3904 CXXConstructExpr::Create(C, Ty, SourceLocation(), 3905 CXXConstExpr->getConstructor(), 3906 CXXConstExpr->isElidable(), 3907 ConstructorArgs, 3908 CXXConstExpr->hadMultipleCandidates(), 3909 CXXConstExpr->isListInitialization(), 3910 CXXConstExpr->isStdInitListInitialization(), 3911 CXXConstExpr->requiresZeroInitialization(), 3912 CXXConstExpr->getConstructionKind(), 3913 SourceRange()); 3914 3915 DeclRefExpr DstExpr(getContext(), DstDecl, false, DestTy, VK_PRValue, 3916 SourceLocation()); 3917 3918 RValue DV = EmitAnyExpr(&DstExpr); 3919 CharUnits Alignment = 3920 getContext().getTypeAlignInChars(TheCXXConstructExpr->getType()); 3921 EmitAggExpr(TheCXXConstructExpr, 3922 AggValueSlot::forAddr( 3923 Address(DV.getScalarVal(), ConvertTypeForMem(Ty), Alignment), 3924 Qualifiers(), AggValueSlot::IsDestructed, 3925 AggValueSlot::DoesNotNeedGCBarriers, 3926 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); 3927 3928 FinishFunction(); 3929 HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy); 3930 CGM.setAtomicGetterHelperFnMap(Ty, HelperFn); 3931 return HelperFn; 3932 } 3933 3934 llvm::Value * 3935 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) { 3936 // Get selectors for retain/autorelease. 3937 IdentifierInfo *CopyID = &getContext().Idents.get("copy"); 3938 Selector CopySelector = 3939 getContext().Selectors.getNullarySelector(CopyID); 3940 IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease"); 3941 Selector AutoreleaseSelector = 3942 getContext().Selectors.getNullarySelector(AutoreleaseID); 3943 3944 // Emit calls to retain/autorelease. 3945 CGObjCRuntime &Runtime = CGM.getObjCRuntime(); 3946 llvm::Value *Val = Block; 3947 RValue Result; 3948 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3949 Ty, CopySelector, 3950 Val, CallArgList(), nullptr, nullptr); 3951 Val = Result.getScalarVal(); 3952 Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(), 3953 Ty, AutoreleaseSelector, 3954 Val, CallArgList(), nullptr, nullptr); 3955 Val = Result.getScalarVal(); 3956 return Val; 3957 } 3958 3959 static unsigned getBaseMachOPlatformID(const llvm::Triple &TT) { 3960 switch (TT.getOS()) { 3961 case llvm::Triple::Darwin: 3962 case llvm::Triple::MacOSX: 3963 return llvm::MachO::PLATFORM_MACOS; 3964 case llvm::Triple::IOS: 3965 return llvm::MachO::PLATFORM_IOS; 3966 case llvm::Triple::TvOS: 3967 return llvm::MachO::PLATFORM_TVOS; 3968 case llvm::Triple::WatchOS: 3969 return llvm::MachO::PLATFORM_WATCHOS; 3970 case llvm::Triple::DriverKit: 3971 return llvm::MachO::PLATFORM_DRIVERKIT; 3972 default: 3973 return /*Unknown platform*/ 0; 3974 } 3975 } 3976 3977 static llvm::Value *emitIsPlatformVersionAtLeast(CodeGenFunction &CGF, 3978 const VersionTuple &Version) { 3979 CodeGenModule &CGM = CGF.CGM; 3980 // Note: we intend to support multi-platform version checks, so reserve 3981 // the room for a dual platform checking invocation that will be 3982 // implemented in the future. 3983 llvm::SmallVector<llvm::Value *, 8> Args; 3984 3985 auto EmitArgs = [&](const VersionTuple &Version, const llvm::Triple &TT) { 3986 std::optional<unsigned> Min = Version.getMinor(), 3987 SMin = Version.getSubminor(); 3988 Args.push_back( 3989 llvm::ConstantInt::get(CGM.Int32Ty, getBaseMachOPlatformID(TT))); 3990 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor())); 3991 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0))); 3992 Args.push_back(llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))); 3993 }; 3994 3995 assert(!Version.empty() && "unexpected empty version"); 3996 EmitArgs(Version, CGM.getTarget().getTriple()); 3997 3998 if (!CGM.IsPlatformVersionAtLeastFn) { 3999 llvm::FunctionType *FTy = llvm::FunctionType::get( 4000 CGM.Int32Ty, {CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty, CGM.Int32Ty}, 4001 false); 4002 CGM.IsPlatformVersionAtLeastFn = 4003 CGM.CreateRuntimeFunction(FTy, "__isPlatformVersionAtLeast"); 4004 } 4005 4006 llvm::Value *Check = 4007 CGF.EmitNounwindRuntimeCall(CGM.IsPlatformVersionAtLeastFn, Args); 4008 return CGF.Builder.CreateICmpNE(Check, 4009 llvm::Constant::getNullValue(CGM.Int32Ty)); 4010 } 4011 4012 llvm::Value * 4013 CodeGenFunction::EmitBuiltinAvailable(const VersionTuple &Version) { 4014 // Darwin uses the new __isPlatformVersionAtLeast family of routines. 4015 if (CGM.getTarget().getTriple().isOSDarwin()) 4016 return emitIsPlatformVersionAtLeast(*this, Version); 4017 4018 if (!CGM.IsOSVersionAtLeastFn) { 4019 llvm::FunctionType *FTy = 4020 llvm::FunctionType::get(Int32Ty, {Int32Ty, Int32Ty, Int32Ty}, false); 4021 CGM.IsOSVersionAtLeastFn = 4022 CGM.CreateRuntimeFunction(FTy, "__isOSVersionAtLeast"); 4023 } 4024 4025 std::optional<unsigned> Min = Version.getMinor(), 4026 SMin = Version.getSubminor(); 4027 llvm::Value *Args[] = { 4028 llvm::ConstantInt::get(CGM.Int32Ty, Version.getMajor()), 4029 llvm::ConstantInt::get(CGM.Int32Ty, Min.value_or(0)), 4030 llvm::ConstantInt::get(CGM.Int32Ty, SMin.value_or(0))}; 4031 4032 llvm::Value *CallRes = 4033 EmitNounwindRuntimeCall(CGM.IsOSVersionAtLeastFn, Args); 4034 4035 return Builder.CreateICmpNE(CallRes, llvm::Constant::getNullValue(Int32Ty)); 4036 } 4037 4038 static bool isFoundationNeededForDarwinAvailabilityCheck( 4039 const llvm::Triple &TT, const VersionTuple &TargetVersion) { 4040 VersionTuple FoundationDroppedInVersion; 4041 switch (TT.getOS()) { 4042 case llvm::Triple::IOS: 4043 case llvm::Triple::TvOS: 4044 FoundationDroppedInVersion = VersionTuple(/*Major=*/13); 4045 break; 4046 case llvm::Triple::WatchOS: 4047 FoundationDroppedInVersion = VersionTuple(/*Major=*/6); 4048 break; 4049 case llvm::Triple::Darwin: 4050 case llvm::Triple::MacOSX: 4051 FoundationDroppedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/15); 4052 break; 4053 case llvm::Triple::DriverKit: 4054 // DriverKit doesn't need Foundation. 4055 return false; 4056 default: 4057 llvm_unreachable("Unexpected OS"); 4058 } 4059 return TargetVersion < FoundationDroppedInVersion; 4060 } 4061 4062 void CodeGenModule::emitAtAvailableLinkGuard() { 4063 if (!IsPlatformVersionAtLeastFn) 4064 return; 4065 // @available requires CoreFoundation only on Darwin. 4066 if (!Target.getTriple().isOSDarwin()) 4067 return; 4068 // @available doesn't need Foundation on macOS 10.15+, iOS/tvOS 13+, or 4069 // watchOS 6+. 4070 if (!isFoundationNeededForDarwinAvailabilityCheck( 4071 Target.getTriple(), Target.getPlatformMinVersion())) 4072 return; 4073 // Add -framework CoreFoundation to the linker commands. We still want to 4074 // emit the core foundation reference down below because otherwise if 4075 // CoreFoundation is not used in the code, the linker won't link the 4076 // framework. 4077 auto &Context = getLLVMContext(); 4078 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 4079 llvm::MDString::get(Context, "CoreFoundation")}; 4080 LinkerOptionsMetadata.push_back(llvm::MDNode::get(Context, Args)); 4081 // Emit a reference to a symbol from CoreFoundation to ensure that 4082 // CoreFoundation is linked into the final binary. 4083 llvm::FunctionType *FTy = 4084 llvm::FunctionType::get(Int32Ty, {VoidPtrTy}, false); 4085 llvm::FunctionCallee CFFunc = 4086 CreateRuntimeFunction(FTy, "CFBundleGetVersionNumber"); 4087 4088 llvm::FunctionType *CheckFTy = llvm::FunctionType::get(VoidTy, {}, false); 4089 llvm::FunctionCallee CFLinkCheckFuncRef = CreateRuntimeFunction( 4090 CheckFTy, "__clang_at_available_requires_core_foundation_framework", 4091 llvm::AttributeList(), /*Local=*/true); 4092 llvm::Function *CFLinkCheckFunc = 4093 cast<llvm::Function>(CFLinkCheckFuncRef.getCallee()->stripPointerCasts()); 4094 if (CFLinkCheckFunc->empty()) { 4095 CFLinkCheckFunc->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); 4096 CFLinkCheckFunc->setVisibility(llvm::GlobalValue::HiddenVisibility); 4097 CodeGenFunction CGF(*this); 4098 CGF.Builder.SetInsertPoint(CGF.createBasicBlock("", CFLinkCheckFunc)); 4099 CGF.EmitNounwindRuntimeCall(CFFunc, 4100 llvm::Constant::getNullValue(VoidPtrTy)); 4101 CGF.Builder.CreateUnreachable(); 4102 addCompilerUsedGlobal(CFLinkCheckFunc); 4103 } 4104 } 4105 4106 CGObjCRuntime::~CGObjCRuntime() {} 4107