1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Constant Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CGRecordLayout.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenModule.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/APValue.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/AST/StmtVisitor.h" 25 #include "clang/Basic/Builtins.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/Sequence.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalVariable.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 //===----------------------------------------------------------------------===// 36 // ConstantAggregateBuilder 37 //===----------------------------------------------------------------------===// 38 39 namespace { 40 class ConstExprEmitter; 41 42 struct ConstantAggregateBuilderUtils { 43 CodeGenModule &CGM; 44 45 ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {} 46 47 CharUnits getAlignment(const llvm::Constant *C) const { 48 return CharUnits::fromQuantity( 49 CGM.getDataLayout().getABITypeAlignment(C->getType())); 50 } 51 52 CharUnits getSize(llvm::Type *Ty) const { 53 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty)); 54 } 55 56 CharUnits getSize(const llvm::Constant *C) const { 57 return getSize(C->getType()); 58 } 59 60 llvm::Constant *getPadding(CharUnits PadSize) const { 61 llvm::Type *Ty = CGM.CharTy; 62 if (PadSize > CharUnits::One()) 63 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 64 return llvm::UndefValue::get(Ty); 65 } 66 67 llvm::Constant *getZeroes(CharUnits ZeroSize) const { 68 llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity()); 69 return llvm::ConstantAggregateZero::get(Ty); 70 } 71 }; 72 73 /// Incremental builder for an llvm::Constant* holding a struct or array 74 /// constant. 75 class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils { 76 /// The elements of the constant. These two arrays must have the same size; 77 /// Offsets[i] describes the offset of Elems[i] within the constant. The 78 /// elements are kept in increasing offset order, and we ensure that there 79 /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]). 80 /// 81 /// This may contain explicit padding elements (in order to create a 82 /// natural layout), but need not. Gaps between elements are implicitly 83 /// considered to be filled with undef. 84 llvm::SmallVector<llvm::Constant*, 32> Elems; 85 llvm::SmallVector<CharUnits, 32> Offsets; 86 87 /// The size of the constant (the maximum end offset of any added element). 88 /// May be larger than the end of Elems.back() if we split the last element 89 /// and removed some trailing undefs. 90 CharUnits Size = CharUnits::Zero(); 91 92 /// This is true only if laying out Elems in order as the elements of a 93 /// non-packed LLVM struct will give the correct layout. 94 bool NaturalLayout = true; 95 96 bool split(size_t Index, CharUnits Hint); 97 Optional<size_t> splitAt(CharUnits Pos); 98 99 static llvm::Constant *buildFrom(CodeGenModule &CGM, 100 ArrayRef<llvm::Constant *> Elems, 101 ArrayRef<CharUnits> Offsets, 102 CharUnits StartOffset, CharUnits Size, 103 bool NaturalLayout, llvm::Type *DesiredTy, 104 bool AllowOversized); 105 106 public: 107 ConstantAggregateBuilder(CodeGenModule &CGM) 108 : ConstantAggregateBuilderUtils(CGM) {} 109 110 /// Update or overwrite the value starting at \p Offset with \c C. 111 /// 112 /// \param AllowOverwrite If \c true, this constant might overwrite (part of) 113 /// a constant that has already been added. This flag is only used to 114 /// detect bugs. 115 bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite); 116 117 /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits. 118 bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite); 119 120 /// Attempt to condense the value starting at \p Offset to a constant of type 121 /// \p DesiredTy. 122 void condense(CharUnits Offset, llvm::Type *DesiredTy); 123 124 /// Produce a constant representing the entire accumulated value, ideally of 125 /// the specified type. If \p AllowOversized, the constant might be larger 126 /// than implied by \p DesiredTy (eg, if there is a flexible array member). 127 /// Otherwise, the constant will be of exactly the same size as \p DesiredTy 128 /// even if we can't represent it as that type. 129 llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const { 130 return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size, 131 NaturalLayout, DesiredTy, AllowOversized); 132 } 133 }; 134 135 template<typename Container, typename Range = std::initializer_list< 136 typename Container::value_type>> 137 static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) { 138 assert(BeginOff <= EndOff && "invalid replacement range"); 139 llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals); 140 } 141 142 bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset, 143 bool AllowOverwrite) { 144 // Common case: appending to a layout. 145 if (Offset >= Size) { 146 CharUnits Align = getAlignment(C); 147 CharUnits AlignedSize = Size.alignTo(Align); 148 if (AlignedSize > Offset || Offset.alignTo(Align) != Offset) 149 NaturalLayout = false; 150 else if (AlignedSize < Offset) { 151 Elems.push_back(getPadding(Offset - Size)); 152 Offsets.push_back(Size); 153 } 154 Elems.push_back(C); 155 Offsets.push_back(Offset); 156 Size = Offset + getSize(C); 157 return true; 158 } 159 160 // Uncommon case: constant overlaps what we've already created. 161 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 162 if (!FirstElemToReplace) 163 return false; 164 165 CharUnits CSize = getSize(C); 166 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize); 167 if (!LastElemToReplace) 168 return false; 169 170 assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) && 171 "unexpectedly overwriting field"); 172 173 replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C}); 174 replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset}); 175 Size = std::max(Size, Offset + CSize); 176 NaturalLayout = false; 177 return true; 178 } 179 180 bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits, 181 bool AllowOverwrite) { 182 const ASTContext &Context = CGM.getContext(); 183 const uint64_t CharWidth = CGM.getContext().getCharWidth(); 184 185 // Offset of where we want the first bit to go within the bits of the 186 // current char. 187 unsigned OffsetWithinChar = OffsetInBits % CharWidth; 188 189 // We split bit-fields up into individual bytes. Walk over the bytes and 190 // update them. 191 for (CharUnits OffsetInChars = 192 Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar); 193 /**/; ++OffsetInChars) { 194 // Number of bits we want to fill in this char. 195 unsigned WantedBits = 196 std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar); 197 198 // Get a char containing the bits we want in the right places. The other 199 // bits have unspecified values. 200 llvm::APInt BitsThisChar = Bits; 201 if (BitsThisChar.getBitWidth() < CharWidth) 202 BitsThisChar = BitsThisChar.zext(CharWidth); 203 if (CGM.getDataLayout().isBigEndian()) { 204 // Figure out how much to shift by. We may need to left-shift if we have 205 // less than one byte of Bits left. 206 int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar; 207 if (Shift > 0) 208 BitsThisChar.lshrInPlace(Shift); 209 else if (Shift < 0) 210 BitsThisChar = BitsThisChar.shl(-Shift); 211 } else { 212 BitsThisChar = BitsThisChar.shl(OffsetWithinChar); 213 } 214 if (BitsThisChar.getBitWidth() > CharWidth) 215 BitsThisChar = BitsThisChar.trunc(CharWidth); 216 217 if (WantedBits == CharWidth) { 218 // Got a full byte: just add it directly. 219 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 220 OffsetInChars, AllowOverwrite); 221 } else { 222 // Partial byte: update the existing integer if there is one. If we 223 // can't split out a 1-CharUnit range to update, then we can't add 224 // these bits and fail the entire constant emission. 225 llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars); 226 if (!FirstElemToUpdate) 227 return false; 228 llvm::Optional<size_t> LastElemToUpdate = 229 splitAt(OffsetInChars + CharUnits::One()); 230 if (!LastElemToUpdate) 231 return false; 232 assert(*LastElemToUpdate - *FirstElemToUpdate < 2 && 233 "should have at most one element covering one byte"); 234 235 // Figure out which bits we want and discard the rest. 236 llvm::APInt UpdateMask(CharWidth, 0); 237 if (CGM.getDataLayout().isBigEndian()) 238 UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits, 239 CharWidth - OffsetWithinChar); 240 else 241 UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits); 242 BitsThisChar &= UpdateMask; 243 244 if (*FirstElemToUpdate == *LastElemToUpdate || 245 Elems[*FirstElemToUpdate]->isNullValue() || 246 isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) { 247 // All existing bits are either zero or undef. 248 add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), 249 OffsetInChars, /*AllowOverwrite*/ true); 250 } else { 251 llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate]; 252 // In order to perform a partial update, we need the existing bitwise 253 // value, which we can only extract for a constant int. 254 auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate); 255 if (!CI) 256 return false; 257 // Because this is a 1-CharUnit range, the constant occupying it must 258 // be exactly one CharUnit wide. 259 assert(CI->getBitWidth() == CharWidth && "splitAt failed"); 260 assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) && 261 "unexpectedly overwriting bitfield"); 262 BitsThisChar |= (CI->getValue() & ~UpdateMask); 263 ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar); 264 } 265 } 266 267 // Stop if we've added all the bits. 268 if (WantedBits == Bits.getBitWidth()) 269 break; 270 271 // Remove the consumed bits from Bits. 272 if (!CGM.getDataLayout().isBigEndian()) 273 Bits.lshrInPlace(WantedBits); 274 Bits = Bits.trunc(Bits.getBitWidth() - WantedBits); 275 276 // The remanining bits go at the start of the following bytes. 277 OffsetWithinChar = 0; 278 } 279 280 return true; 281 } 282 283 /// Returns a position within Elems and Offsets such that all elements 284 /// before the returned index end before Pos and all elements at or after 285 /// the returned index begin at or after Pos. Splits elements as necessary 286 /// to ensure this. Returns None if we find something we can't split. 287 Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) { 288 if (Pos >= Size) 289 return Offsets.size(); 290 291 while (true) { 292 auto FirstAfterPos = llvm::upper_bound(Offsets, Pos); 293 if (FirstAfterPos == Offsets.begin()) 294 return 0; 295 296 // If we already have an element starting at Pos, we're done. 297 size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1; 298 if (Offsets[LastAtOrBeforePosIndex] == Pos) 299 return LastAtOrBeforePosIndex; 300 301 // We found an element starting before Pos. Check for overlap. 302 if (Offsets[LastAtOrBeforePosIndex] + 303 getSize(Elems[LastAtOrBeforePosIndex]) <= Pos) 304 return LastAtOrBeforePosIndex + 1; 305 306 // Try to decompose it into smaller constants. 307 if (!split(LastAtOrBeforePosIndex, Pos)) 308 return None; 309 } 310 } 311 312 /// Split the constant at index Index, if possible. Return true if we did. 313 /// Hint indicates the location at which we'd like to split, but may be 314 /// ignored. 315 bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) { 316 NaturalLayout = false; 317 llvm::Constant *C = Elems[Index]; 318 CharUnits Offset = Offsets[Index]; 319 320 if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) { 321 // Expand the sequence into its contained elements. 322 // FIXME: This assumes vector elements are byte-sized. 323 replace(Elems, Index, Index + 1, 324 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 325 [&](unsigned Op) { return CA->getOperand(Op); })); 326 if (isa<llvm::ArrayType>(CA->getType()) || 327 isa<llvm::VectorType>(CA->getType())) { 328 // Array or vector. 329 llvm::Type *ElemTy = 330 llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0); 331 CharUnits ElemSize = getSize(ElemTy); 332 replace( 333 Offsets, Index, Index + 1, 334 llvm::map_range(llvm::seq(0u, CA->getNumOperands()), 335 [&](unsigned Op) { return Offset + Op * ElemSize; })); 336 } else { 337 // Must be a struct. 338 auto *ST = cast<llvm::StructType>(CA->getType()); 339 const llvm::StructLayout *Layout = 340 CGM.getDataLayout().getStructLayout(ST); 341 replace(Offsets, Index, Index + 1, 342 llvm::map_range( 343 llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) { 344 return Offset + CharUnits::fromQuantity( 345 Layout->getElementOffset(Op)); 346 })); 347 } 348 return true; 349 } 350 351 if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) { 352 // Expand the sequence into its contained elements. 353 // FIXME: This assumes vector elements are byte-sized. 354 // FIXME: If possible, split into two ConstantDataSequentials at Hint. 355 CharUnits ElemSize = getSize(CDS->getElementType()); 356 replace(Elems, Index, Index + 1, 357 llvm::map_range(llvm::seq(0u, CDS->getNumElements()), 358 [&](unsigned Elem) { 359 return CDS->getElementAsConstant(Elem); 360 })); 361 replace(Offsets, Index, Index + 1, 362 llvm::map_range( 363 llvm::seq(0u, CDS->getNumElements()), 364 [&](unsigned Elem) { return Offset + Elem * ElemSize; })); 365 return true; 366 } 367 368 if (isa<llvm::ConstantAggregateZero>(C)) { 369 // Split into two zeros at the hinted offset. 370 CharUnits ElemSize = getSize(C); 371 assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split"); 372 replace(Elems, Index, Index + 1, 373 {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)}); 374 replace(Offsets, Index, Index + 1, {Offset, Hint}); 375 return true; 376 } 377 378 if (isa<llvm::UndefValue>(C)) { 379 // Drop undef; it doesn't contribute to the final layout. 380 replace(Elems, Index, Index + 1, {}); 381 replace(Offsets, Index, Index + 1, {}); 382 return true; 383 } 384 385 // FIXME: We could split a ConstantInt if the need ever arose. 386 // We don't need to do this to handle bit-fields because we always eagerly 387 // split them into 1-byte chunks. 388 389 return false; 390 } 391 392 static llvm::Constant * 393 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 394 llvm::Type *CommonElementType, unsigned ArrayBound, 395 SmallVectorImpl<llvm::Constant *> &Elements, 396 llvm::Constant *Filler); 397 398 llvm::Constant *ConstantAggregateBuilder::buildFrom( 399 CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems, 400 ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size, 401 bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) { 402 ConstantAggregateBuilderUtils Utils(CGM); 403 404 if (Elems.empty()) 405 return llvm::UndefValue::get(DesiredTy); 406 407 auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; }; 408 409 // If we want an array type, see if all the elements are the same type and 410 // appropriately spaced. 411 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) { 412 assert(!AllowOversized && "oversized array emission not supported"); 413 414 bool CanEmitArray = true; 415 llvm::Type *CommonType = Elems[0]->getType(); 416 llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType); 417 CharUnits ElemSize = Utils.getSize(ATy->getElementType()); 418 SmallVector<llvm::Constant*, 32> ArrayElements; 419 for (size_t I = 0; I != Elems.size(); ++I) { 420 // Skip zeroes; we'll use a zero value as our array filler. 421 if (Elems[I]->isNullValue()) 422 continue; 423 424 // All remaining elements must be the same type. 425 if (Elems[I]->getType() != CommonType || 426 Offset(I) % ElemSize != 0) { 427 CanEmitArray = false; 428 break; 429 } 430 ArrayElements.resize(Offset(I) / ElemSize + 1, Filler); 431 ArrayElements.back() = Elems[I]; 432 } 433 434 if (CanEmitArray) { 435 return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(), 436 ArrayElements, Filler); 437 } 438 439 // Can't emit as an array, carry on to emit as a struct. 440 } 441 442 // The size of the constant we plan to generate. This is usually just 443 // the size of the initialized type, but in AllowOversized mode (i.e. 444 // flexible array init), it can be larger. 445 CharUnits DesiredSize = Utils.getSize(DesiredTy); 446 if (Size > DesiredSize) { 447 assert(AllowOversized && "Elems are oversized"); 448 DesiredSize = Size; 449 } 450 451 // The natural alignment of an unpacked LLVM struct with the given elements. 452 CharUnits Align = CharUnits::One(); 453 for (llvm::Constant *C : Elems) 454 Align = std::max(Align, Utils.getAlignment(C)); 455 456 // The natural size of an unpacked LLVM struct with the given elements. 457 CharUnits AlignedSize = Size.alignTo(Align); 458 459 bool Packed = false; 460 ArrayRef<llvm::Constant*> UnpackedElems = Elems; 461 llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage; 462 if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) { 463 // The natural layout would be too big; force use of a packed layout. 464 NaturalLayout = false; 465 Packed = true; 466 } else if (DesiredSize > AlignedSize) { 467 // The natural layout would be too small. Add padding to fix it. (This 468 // is ignored if we choose a packed layout.) 469 UnpackedElemStorage.assign(Elems.begin(), Elems.end()); 470 UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size)); 471 UnpackedElems = UnpackedElemStorage; 472 } 473 474 // If we don't have a natural layout, insert padding as necessary. 475 // As we go, double-check to see if we can actually just emit Elems 476 // as a non-packed struct and do so opportunistically if possible. 477 llvm::SmallVector<llvm::Constant*, 32> PackedElems; 478 if (!NaturalLayout) { 479 CharUnits SizeSoFar = CharUnits::Zero(); 480 for (size_t I = 0; I != Elems.size(); ++I) { 481 CharUnits Align = Utils.getAlignment(Elems[I]); 482 CharUnits NaturalOffset = SizeSoFar.alignTo(Align); 483 CharUnits DesiredOffset = Offset(I); 484 assert(DesiredOffset >= SizeSoFar && "elements out of order"); 485 486 if (DesiredOffset != NaturalOffset) 487 Packed = true; 488 if (DesiredOffset != SizeSoFar) 489 PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar)); 490 PackedElems.push_back(Elems[I]); 491 SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]); 492 } 493 // If we're using the packed layout, pad it out to the desired size if 494 // necessary. 495 if (Packed) { 496 assert(SizeSoFar <= DesiredSize && 497 "requested size is too small for contents"); 498 if (SizeSoFar < DesiredSize) 499 PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar)); 500 } 501 } 502 503 llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements( 504 CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed); 505 506 // Pick the type to use. If the type is layout identical to the desired 507 // type then use it, otherwise use whatever the builder produced for us. 508 if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) { 509 if (DesiredSTy->isLayoutIdentical(STy)) 510 STy = DesiredSTy; 511 } 512 513 return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems); 514 } 515 516 void ConstantAggregateBuilder::condense(CharUnits Offset, 517 llvm::Type *DesiredTy) { 518 CharUnits Size = getSize(DesiredTy); 519 520 llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); 521 if (!FirstElemToReplace) 522 return; 523 size_t First = *FirstElemToReplace; 524 525 llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size); 526 if (!LastElemToReplace) 527 return; 528 size_t Last = *LastElemToReplace; 529 530 size_t Length = Last - First; 531 if (Length == 0) 532 return; 533 534 if (Length == 1 && Offsets[First] == Offset && 535 getSize(Elems[First]) == Size) { 536 // Re-wrap single element structs if necessary. Otherwise, leave any single 537 // element constant of the right size alone even if it has the wrong type. 538 auto *STy = dyn_cast<llvm::StructType>(DesiredTy); 539 if (STy && STy->getNumElements() == 1 && 540 STy->getElementType(0) == Elems[First]->getType()) 541 Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]); 542 return; 543 } 544 545 llvm::Constant *Replacement = buildFrom( 546 CGM, makeArrayRef(Elems).slice(First, Length), 547 makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy), 548 /*known to have natural layout=*/false, DesiredTy, false); 549 replace(Elems, First, Last, {Replacement}); 550 replace(Offsets, First, Last, {Offset}); 551 } 552 553 //===----------------------------------------------------------------------===// 554 // ConstStructBuilder 555 //===----------------------------------------------------------------------===// 556 557 class ConstStructBuilder { 558 CodeGenModule &CGM; 559 ConstantEmitter &Emitter; 560 ConstantAggregateBuilder &Builder; 561 CharUnits StartOffset; 562 563 public: 564 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 565 InitListExpr *ILE, QualType StructTy); 566 static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, 567 const APValue &Value, QualType ValTy); 568 static bool UpdateStruct(ConstantEmitter &Emitter, 569 ConstantAggregateBuilder &Const, CharUnits Offset, 570 InitListExpr *Updater); 571 572 private: 573 ConstStructBuilder(ConstantEmitter &Emitter, 574 ConstantAggregateBuilder &Builder, CharUnits StartOffset) 575 : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder), 576 StartOffset(StartOffset) {} 577 578 bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, 579 llvm::Constant *InitExpr, bool AllowOverwrite = false); 580 581 bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst, 582 bool AllowOverwrite = false); 583 584 bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 585 llvm::ConstantInt *InitExpr, bool AllowOverwrite = false); 586 587 bool Build(InitListExpr *ILE, bool AllowOverwrite); 588 bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 589 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 590 llvm::Constant *Finalize(QualType Ty); 591 }; 592 593 bool ConstStructBuilder::AppendField( 594 const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst, 595 bool AllowOverwrite) { 596 const ASTContext &Context = CGM.getContext(); 597 598 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 599 600 return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite); 601 } 602 603 bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars, 604 llvm::Constant *InitCst, 605 bool AllowOverwrite) { 606 return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite); 607 } 608 609 bool ConstStructBuilder::AppendBitField( 610 const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI, 611 bool AllowOverwrite) { 612 const CGRecordLayout &RL = 613 CGM.getTypes().getCGRecordLayout(Field->getParent()); 614 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 615 llvm::APInt FieldValue = CI->getValue(); 616 617 // Promote the size of FieldValue if necessary 618 // FIXME: This should never occur, but currently it can because initializer 619 // constants are cast to bool, and because clang is not enforcing bitfield 620 // width limits. 621 if (Info.Size > FieldValue.getBitWidth()) 622 FieldValue = FieldValue.zext(Info.Size); 623 624 // Truncate the size of FieldValue to the bit field size. 625 if (Info.Size < FieldValue.getBitWidth()) 626 FieldValue = FieldValue.trunc(Info.Size); 627 628 return Builder.addBits(FieldValue, 629 CGM.getContext().toBits(StartOffset) + FieldOffset, 630 AllowOverwrite); 631 } 632 633 static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter, 634 ConstantAggregateBuilder &Const, 635 CharUnits Offset, QualType Type, 636 InitListExpr *Updater) { 637 if (Type->isRecordType()) 638 return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater); 639 640 auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type); 641 if (!CAT) 642 return false; 643 QualType ElemType = CAT->getElementType(); 644 CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType); 645 llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType); 646 647 llvm::Constant *FillC = nullptr; 648 if (Expr *Filler = Updater->getArrayFiller()) { 649 if (!isa<NoInitExpr>(Filler)) { 650 FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType); 651 if (!FillC) 652 return false; 653 } 654 } 655 656 unsigned NumElementsToUpdate = 657 FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits(); 658 for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) { 659 Expr *Init = nullptr; 660 if (I < Updater->getNumInits()) 661 Init = Updater->getInit(I); 662 663 if (!Init && FillC) { 664 if (!Const.add(FillC, Offset, true)) 665 return false; 666 } else if (!Init || isa<NoInitExpr>(Init)) { 667 continue; 668 } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) { 669 if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType, 670 ChildILE)) 671 return false; 672 // Attempt to reduce the array element to a single constant if necessary. 673 Const.condense(Offset, ElemTy); 674 } else { 675 llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType); 676 if (!Const.add(Val, Offset, true)) 677 return false; 678 } 679 } 680 681 return true; 682 } 683 684 bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) { 685 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); 686 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 687 688 unsigned FieldNo = -1; 689 unsigned ElementNo = 0; 690 691 // Bail out if we have base classes. We could support these, but they only 692 // arise in C++1z where we will have already constant folded most interesting 693 // cases. FIXME: There are still a few more cases we can handle this way. 694 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 695 if (CXXRD->getNumBases()) 696 return false; 697 698 for (FieldDecl *Field : RD->fields()) { 699 ++FieldNo; 700 701 // If this is a union, skip all the fields that aren't being initialized. 702 if (RD->isUnion() && 703 !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field)) 704 continue; 705 706 // Don't emit anonymous bitfields. 707 if (Field->isUnnamedBitfield()) 708 continue; 709 710 // Get the initializer. A struct can include fields without initializers, 711 // we just use explicit null values for them. 712 Expr *Init = nullptr; 713 if (ElementNo < ILE->getNumInits()) 714 Init = ILE->getInit(ElementNo++); 715 if (Init && isa<NoInitExpr>(Init)) 716 continue; 717 718 // Zero-sized fields are not emitted, but their initializers may still 719 // prevent emission of this struct as a constant. 720 if (Field->isZeroSize(CGM.getContext())) { 721 if (Init->HasSideEffects(CGM.getContext())) 722 return false; 723 continue; 724 } 725 726 // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr 727 // represents additional overwriting of our current constant value, and not 728 // a new constant to emit independently. 729 if (AllowOverwrite && 730 (Field->getType()->isArrayType() || Field->getType()->isRecordType())) { 731 if (auto *SubILE = dyn_cast<InitListExpr>(Init)) { 732 CharUnits Offset = CGM.getContext().toCharUnitsFromBits( 733 Layout.getFieldOffset(FieldNo)); 734 if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset, 735 Field->getType(), SubILE)) 736 return false; 737 // If we split apart the field's value, try to collapse it down to a 738 // single value now. 739 Builder.condense(StartOffset + Offset, 740 CGM.getTypes().ConvertTypeForMem(Field->getType())); 741 continue; 742 } 743 } 744 745 llvm::Constant *EltInit = 746 Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType()) 747 : Emitter.emitNullForMemory(Field->getType()); 748 if (!EltInit) 749 return false; 750 751 if (!Field->isBitField()) { 752 // Handle non-bitfield members. 753 if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit, 754 AllowOverwrite)) 755 return false; 756 // After emitting a non-empty field with [[no_unique_address]], we may 757 // need to overwrite its tail padding. 758 if (Field->hasAttr<NoUniqueAddressAttr>()) 759 AllowOverwrite = true; 760 } else { 761 // Otherwise we have a bitfield. 762 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 763 if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI, 764 AllowOverwrite)) 765 return false; 766 } else { 767 // We are trying to initialize a bitfield with a non-trivial constant, 768 // this must require run-time code. 769 return false; 770 } 771 } 772 } 773 774 return true; 775 } 776 777 namespace { 778 struct BaseInfo { 779 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 780 : Decl(Decl), Offset(Offset), Index(Index) { 781 } 782 783 const CXXRecordDecl *Decl; 784 CharUnits Offset; 785 unsigned Index; 786 787 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 788 }; 789 } 790 791 bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 792 bool IsPrimaryBase, 793 const CXXRecordDecl *VTableClass, 794 CharUnits Offset) { 795 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 796 797 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 798 // Add a vtable pointer, if we need one and it hasn't already been added. 799 if (Layout.hasOwnVFPtr()) { 800 llvm::Constant *VTableAddressPoint = 801 CGM.getCXXABI().getVTableAddressPointForConstExpr( 802 BaseSubobject(CD, Offset), VTableClass); 803 if (!AppendBytes(Offset, VTableAddressPoint)) 804 return false; 805 } 806 807 // Accumulate and sort bases, in order to visit them in address order, which 808 // may not be the same as declaration order. 809 SmallVector<BaseInfo, 8> Bases; 810 Bases.reserve(CD->getNumBases()); 811 unsigned BaseNo = 0; 812 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 813 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 814 assert(!Base->isVirtual() && "should not have virtual bases here"); 815 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 816 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 817 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 818 } 819 llvm::stable_sort(Bases); 820 821 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 822 BaseInfo &Base = Bases[I]; 823 824 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 825 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 826 VTableClass, Offset + Base.Offset); 827 } 828 } 829 830 unsigned FieldNo = 0; 831 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 832 833 bool AllowOverwrite = false; 834 for (RecordDecl::field_iterator Field = RD->field_begin(), 835 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 836 // If this is a union, skip all the fields that aren't being initialized. 837 if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field)) 838 continue; 839 840 // Don't emit anonymous bitfields or zero-sized fields. 841 if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) 842 continue; 843 844 // Emit the value of the initializer. 845 const APValue &FieldValue = 846 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 847 llvm::Constant *EltInit = 848 Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); 849 if (!EltInit) 850 return false; 851 852 if (!Field->isBitField()) { 853 // Handle non-bitfield members. 854 if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 855 EltInit, AllowOverwrite)) 856 return false; 857 // After emitting a non-empty field with [[no_unique_address]], we may 858 // need to overwrite its tail padding. 859 if (Field->hasAttr<NoUniqueAddressAttr>()) 860 AllowOverwrite = true; 861 } else { 862 // Otherwise we have a bitfield. 863 if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 864 cast<llvm::ConstantInt>(EltInit), AllowOverwrite)) 865 return false; 866 } 867 } 868 869 return true; 870 } 871 872 llvm::Constant *ConstStructBuilder::Finalize(QualType Type) { 873 Type = Type.getNonReferenceType(); 874 RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); 875 llvm::Type *ValTy = CGM.getTypes().ConvertType(Type); 876 return Builder.build(ValTy, RD->hasFlexibleArrayMember()); 877 } 878 879 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 880 InitListExpr *ILE, 881 QualType ValTy) { 882 ConstantAggregateBuilder Const(Emitter.CGM); 883 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 884 885 if (!Builder.Build(ILE, /*AllowOverwrite*/false)) 886 return nullptr; 887 888 return Builder.Finalize(ValTy); 889 } 890 891 llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, 892 const APValue &Val, 893 QualType ValTy) { 894 ConstantAggregateBuilder Const(Emitter.CGM); 895 ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); 896 897 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 898 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 899 if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) 900 return nullptr; 901 902 return Builder.Finalize(ValTy); 903 } 904 905 bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter, 906 ConstantAggregateBuilder &Const, 907 CharUnits Offset, InitListExpr *Updater) { 908 return ConstStructBuilder(Emitter, Const, Offset) 909 .Build(Updater, /*AllowOverwrite*/ true); 910 } 911 912 //===----------------------------------------------------------------------===// 913 // ConstExprEmitter 914 //===----------------------------------------------------------------------===// 915 916 static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, 917 CodeGenFunction *CGF, 918 const CompoundLiteralExpr *E) { 919 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 920 if (llvm::GlobalVariable *Addr = 921 CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) 922 return ConstantAddress(Addr, Addr->getValueType(), Align); 923 924 LangAS addressSpace = E->getType().getAddressSpace(); 925 926 ConstantEmitter emitter(CGM, CGF); 927 llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), 928 addressSpace, E->getType()); 929 if (!C) { 930 assert(!E->isFileScope() && 931 "file-scope compound literal did not have constant initializer!"); 932 return ConstantAddress::invalid(); 933 } 934 935 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 936 CGM.isTypeConstant(E->getType(), true), 937 llvm::GlobalValue::InternalLinkage, 938 C, ".compoundliteral", nullptr, 939 llvm::GlobalVariable::NotThreadLocal, 940 CGM.getContext().getTargetAddressSpace(addressSpace)); 941 emitter.finalize(GV); 942 GV->setAlignment(Align.getAsAlign()); 943 CGM.setAddrOfConstantCompoundLiteral(E, GV); 944 return ConstantAddress(GV, GV->getValueType(), Align); 945 } 946 947 static llvm::Constant * 948 EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, 949 llvm::Type *CommonElementType, unsigned ArrayBound, 950 SmallVectorImpl<llvm::Constant *> &Elements, 951 llvm::Constant *Filler) { 952 // Figure out how long the initial prefix of non-zero elements is. 953 unsigned NonzeroLength = ArrayBound; 954 if (Elements.size() < NonzeroLength && Filler->isNullValue()) 955 NonzeroLength = Elements.size(); 956 if (NonzeroLength == Elements.size()) { 957 while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) 958 --NonzeroLength; 959 } 960 961 if (NonzeroLength == 0) 962 return llvm::ConstantAggregateZero::get(DesiredType); 963 964 // Add a zeroinitializer array filler if we have lots of trailing zeroes. 965 unsigned TrailingZeroes = ArrayBound - NonzeroLength; 966 if (TrailingZeroes >= 8) { 967 assert(Elements.size() >= NonzeroLength && 968 "missing initializer for non-zero element"); 969 970 // If all the elements had the same type up to the trailing zeroes, emit a 971 // struct of two arrays (the nonzero data and the zeroinitializer). 972 if (CommonElementType && NonzeroLength >= 8) { 973 llvm::Constant *Initial = llvm::ConstantArray::get( 974 llvm::ArrayType::get(CommonElementType, NonzeroLength), 975 makeArrayRef(Elements).take_front(NonzeroLength)); 976 Elements.resize(2); 977 Elements[0] = Initial; 978 } else { 979 Elements.resize(NonzeroLength + 1); 980 } 981 982 auto *FillerType = 983 CommonElementType ? CommonElementType : DesiredType->getElementType(); 984 FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); 985 Elements.back() = llvm::ConstantAggregateZero::get(FillerType); 986 CommonElementType = nullptr; 987 } else if (Elements.size() != ArrayBound) { 988 // Otherwise pad to the right size with the filler if necessary. 989 Elements.resize(ArrayBound, Filler); 990 if (Filler->getType() != CommonElementType) 991 CommonElementType = nullptr; 992 } 993 994 // If all elements have the same type, just emit an array constant. 995 if (CommonElementType) 996 return llvm::ConstantArray::get( 997 llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); 998 999 // We have mixed types. Use a packed struct. 1000 llvm::SmallVector<llvm::Type *, 16> Types; 1001 Types.reserve(Elements.size()); 1002 for (llvm::Constant *Elt : Elements) 1003 Types.push_back(Elt->getType()); 1004 llvm::StructType *SType = 1005 llvm::StructType::get(CGM.getLLVMContext(), Types, true); 1006 return llvm::ConstantStruct::get(SType, Elements); 1007 } 1008 1009 // This class only needs to handle arrays, structs and unions. Outside C++11 1010 // mode, we don't currently constant fold those types. All other types are 1011 // handled by constant folding. 1012 // 1013 // Constant folding is currently missing support for a few features supported 1014 // here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr. 1015 class ConstExprEmitter : 1016 public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { 1017 CodeGenModule &CGM; 1018 ConstantEmitter &Emitter; 1019 llvm::LLVMContext &VMContext; 1020 public: 1021 ConstExprEmitter(ConstantEmitter &emitter) 1022 : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { 1023 } 1024 1025 //===--------------------------------------------------------------------===// 1026 // Visitor Methods 1027 //===--------------------------------------------------------------------===// 1028 1029 llvm::Constant *VisitStmt(Stmt *S, QualType T) { 1030 return nullptr; 1031 } 1032 1033 llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) { 1034 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE)) 1035 return Result; 1036 return Visit(CE->getSubExpr(), T); 1037 } 1038 1039 llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { 1040 return Visit(PE->getSubExpr(), T); 1041 } 1042 1043 llvm::Constant * 1044 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, 1045 QualType T) { 1046 return Visit(PE->getReplacement(), T); 1047 } 1048 1049 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, 1050 QualType T) { 1051 return Visit(GE->getResultExpr(), T); 1052 } 1053 1054 llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { 1055 return Visit(CE->getChosenSubExpr(), T); 1056 } 1057 1058 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { 1059 return Visit(E->getInitializer(), T); 1060 } 1061 1062 llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { 1063 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 1064 CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); 1065 Expr *subExpr = E->getSubExpr(); 1066 1067 switch (E->getCastKind()) { 1068 case CK_ToUnion: { 1069 // GCC cast to union extension 1070 assert(E->getType()->isUnionType() && 1071 "Destination type is not union type!"); 1072 1073 auto field = E->getTargetUnionField(); 1074 1075 auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); 1076 if (!C) return nullptr; 1077 1078 auto destTy = ConvertType(destType); 1079 if (C->getType() == destTy) return C; 1080 1081 // Build a struct with the union sub-element as the first member, 1082 // and padded to the appropriate size. 1083 SmallVector<llvm::Constant*, 2> Elts; 1084 SmallVector<llvm::Type*, 2> Types; 1085 Elts.push_back(C); 1086 Types.push_back(C->getType()); 1087 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 1088 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); 1089 1090 assert(CurSize <= TotalSize && "Union size mismatch!"); 1091 if (unsigned NumPadBytes = TotalSize - CurSize) { 1092 llvm::Type *Ty = CGM.CharTy; 1093 if (NumPadBytes > 1) 1094 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 1095 1096 Elts.push_back(llvm::UndefValue::get(Ty)); 1097 Types.push_back(Ty); 1098 } 1099 1100 llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); 1101 return llvm::ConstantStruct::get(STy, Elts); 1102 } 1103 1104 case CK_AddressSpaceConversion: { 1105 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1106 if (!C) return nullptr; 1107 LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); 1108 LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); 1109 llvm::Type *destTy = ConvertType(E->getType()); 1110 return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, 1111 destAS, destTy); 1112 } 1113 1114 case CK_LValueToRValue: { 1115 // We don't really support doing lvalue-to-rvalue conversions here; any 1116 // interesting conversions should be done in Evaluate(). But as a 1117 // special case, allow compound literals to support the gcc extension 1118 // allowing "struct x {int x;} x = (struct x) {};". 1119 if (auto *E = dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens())) 1120 return Visit(E->getInitializer(), destType); 1121 return nullptr; 1122 } 1123 1124 case CK_AtomicToNonAtomic: 1125 case CK_NonAtomicToAtomic: 1126 case CK_NoOp: 1127 case CK_ConstructorConversion: 1128 return Visit(subExpr, destType); 1129 1130 case CK_IntToOCLSampler: 1131 llvm_unreachable("global sampler variables are not generated"); 1132 1133 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 1134 1135 case CK_BuiltinFnToFnPtr: 1136 llvm_unreachable("builtin functions are handled elsewhere"); 1137 1138 case CK_ReinterpretMemberPointer: 1139 case CK_DerivedToBaseMemberPointer: 1140 case CK_BaseToDerivedMemberPointer: { 1141 auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); 1142 if (!C) return nullptr; 1143 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 1144 } 1145 1146 // These will never be supported. 1147 case CK_ObjCObjectLValueCast: 1148 case CK_ARCProduceObject: 1149 case CK_ARCConsumeObject: 1150 case CK_ARCReclaimReturnedObject: 1151 case CK_ARCExtendBlockObject: 1152 case CK_CopyAndAutoreleaseBlockObject: 1153 return nullptr; 1154 1155 // These don't need to be handled here because Evaluate knows how to 1156 // evaluate them in the cases where they can be folded. 1157 case CK_BitCast: 1158 case CK_ToVoid: 1159 case CK_Dynamic: 1160 case CK_LValueBitCast: 1161 case CK_LValueToRValueBitCast: 1162 case CK_NullToMemberPointer: 1163 case CK_UserDefinedConversion: 1164 case CK_CPointerToObjCPointerCast: 1165 case CK_BlockPointerToObjCPointerCast: 1166 case CK_AnyPointerToBlockPointerCast: 1167 case CK_ArrayToPointerDecay: 1168 case CK_FunctionToPointerDecay: 1169 case CK_BaseToDerived: 1170 case CK_DerivedToBase: 1171 case CK_UncheckedDerivedToBase: 1172 case CK_MemberPointerToBoolean: 1173 case CK_VectorSplat: 1174 case CK_FloatingRealToComplex: 1175 case CK_FloatingComplexToReal: 1176 case CK_FloatingComplexToBoolean: 1177 case CK_FloatingComplexCast: 1178 case CK_FloatingComplexToIntegralComplex: 1179 case CK_IntegralRealToComplex: 1180 case CK_IntegralComplexToReal: 1181 case CK_IntegralComplexToBoolean: 1182 case CK_IntegralComplexCast: 1183 case CK_IntegralComplexToFloatingComplex: 1184 case CK_PointerToIntegral: 1185 case CK_PointerToBoolean: 1186 case CK_NullToPointer: 1187 case CK_IntegralCast: 1188 case CK_BooleanToSignedIntegral: 1189 case CK_IntegralToPointer: 1190 case CK_IntegralToBoolean: 1191 case CK_IntegralToFloating: 1192 case CK_FloatingToIntegral: 1193 case CK_FloatingToBoolean: 1194 case CK_FloatingCast: 1195 case CK_FloatingToFixedPoint: 1196 case CK_FixedPointToFloating: 1197 case CK_FixedPointCast: 1198 case CK_FixedPointToBoolean: 1199 case CK_FixedPointToIntegral: 1200 case CK_IntegralToFixedPoint: 1201 case CK_ZeroToOCLOpaqueType: 1202 case CK_MatrixCast: 1203 return nullptr; 1204 } 1205 llvm_unreachable("Invalid CastKind"); 1206 } 1207 1208 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { 1209 // No need for a DefaultInitExprScope: we don't handle 'this' in a 1210 // constant expression. 1211 return Visit(DIE->getExpr(), T); 1212 } 1213 1214 llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { 1215 return Visit(E->getSubExpr(), T); 1216 } 1217 1218 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, 1219 QualType T) { 1220 return Visit(E->getSubExpr(), T); 1221 } 1222 1223 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { 1224 auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); 1225 assert(CAT && "can't emit array init for non-constant-bound array"); 1226 unsigned NumInitElements = ILE->getNumInits(); 1227 unsigned NumElements = CAT->getSize().getZExtValue(); 1228 1229 // Initialising an array requires us to automatically 1230 // initialise any elements that have not been initialised explicitly 1231 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 1232 1233 QualType EltType = CAT->getElementType(); 1234 1235 // Initialize remaining array elements. 1236 llvm::Constant *fillC = nullptr; 1237 if (Expr *filler = ILE->getArrayFiller()) { 1238 fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); 1239 if (!fillC) 1240 return nullptr; 1241 } 1242 1243 // Copy initializer elements. 1244 SmallVector<llvm::Constant*, 16> Elts; 1245 if (fillC && fillC->isNullValue()) 1246 Elts.reserve(NumInitableElts + 1); 1247 else 1248 Elts.reserve(NumElements); 1249 1250 llvm::Type *CommonElementType = nullptr; 1251 for (unsigned i = 0; i < NumInitableElts; ++i) { 1252 Expr *Init = ILE->getInit(i); 1253 llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); 1254 if (!C) 1255 return nullptr; 1256 if (i == 0) 1257 CommonElementType = C->getType(); 1258 else if (C->getType() != CommonElementType) 1259 CommonElementType = nullptr; 1260 Elts.push_back(C); 1261 } 1262 1263 llvm::ArrayType *Desired = 1264 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType())); 1265 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 1266 fillC); 1267 } 1268 1269 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { 1270 return ConstStructBuilder::BuildStruct(Emitter, ILE, T); 1271 } 1272 1273 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, 1274 QualType T) { 1275 return CGM.EmitNullConstant(T); 1276 } 1277 1278 llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { 1279 if (ILE->isTransparent()) 1280 return Visit(ILE->getInit(0), T); 1281 1282 if (ILE->getType()->isArrayType()) 1283 return EmitArrayInitialization(ILE, T); 1284 1285 if (ILE->getType()->isRecordType()) 1286 return EmitRecordInitialization(ILE, T); 1287 1288 return nullptr; 1289 } 1290 1291 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, 1292 QualType destType) { 1293 auto C = Visit(E->getBase(), destType); 1294 if (!C) 1295 return nullptr; 1296 1297 ConstantAggregateBuilder Const(CGM); 1298 Const.add(C, CharUnits::Zero(), false); 1299 1300 if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType, 1301 E->getUpdater())) 1302 return nullptr; 1303 1304 llvm::Type *ValTy = CGM.getTypes().ConvertType(destType); 1305 bool HasFlexibleArray = false; 1306 if (auto *RT = destType->getAs<RecordType>()) 1307 HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember(); 1308 return Const.build(ValTy, HasFlexibleArray); 1309 } 1310 1311 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { 1312 if (!E->getConstructor()->isTrivial()) 1313 return nullptr; 1314 1315 // Only default and copy/move constructors can be trivial. 1316 if (E->getNumArgs()) { 1317 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 1318 assert(E->getConstructor()->isCopyOrMoveConstructor() && 1319 "trivial ctor has argument but isn't a copy/move ctor"); 1320 1321 Expr *Arg = E->getArg(0); 1322 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 1323 "argument to copy ctor is of wrong type"); 1324 1325 return Visit(Arg, Ty); 1326 } 1327 1328 return CGM.EmitNullConstant(Ty); 1329 } 1330 1331 llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { 1332 // This is a string literal initializing an array in an initializer. 1333 return CGM.GetConstantArrayFromStringLiteral(E); 1334 } 1335 1336 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { 1337 // This must be an @encode initializing an array in a static initializer. 1338 // Don't emit it as the address of the string, emit the string data itself 1339 // as an inline array. 1340 std::string Str; 1341 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1342 const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); 1343 1344 // Resize the string to the right size, adding zeros at the end, or 1345 // truncating as needed. 1346 Str.resize(CAT->getSize().getZExtValue(), '\0'); 1347 return llvm::ConstantDataArray::getString(VMContext, Str, false); 1348 } 1349 1350 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { 1351 return Visit(E->getSubExpr(), T); 1352 } 1353 1354 // Utility methods 1355 llvm::Type *ConvertType(QualType T) { 1356 return CGM.getTypes().ConvertType(T); 1357 } 1358 }; 1359 1360 } // end anonymous namespace. 1361 1362 llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, 1363 AbstractState saved) { 1364 Abstract = saved.OldValue; 1365 1366 assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && 1367 "created a placeholder while doing an abstract emission?"); 1368 1369 // No validation necessary for now. 1370 // No cleanup to do for now. 1371 return C; 1372 } 1373 1374 llvm::Constant * 1375 ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { 1376 auto state = pushAbstract(); 1377 auto C = tryEmitPrivateForVarInit(D); 1378 return validateAndPopAbstract(C, state); 1379 } 1380 1381 llvm::Constant * 1382 ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { 1383 auto state = pushAbstract(); 1384 auto C = tryEmitPrivate(E, destType); 1385 return validateAndPopAbstract(C, state); 1386 } 1387 1388 llvm::Constant * 1389 ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { 1390 auto state = pushAbstract(); 1391 auto C = tryEmitPrivate(value, destType); 1392 return validateAndPopAbstract(C, state); 1393 } 1394 1395 llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) { 1396 if (!CE->hasAPValueResult()) 1397 return nullptr; 1398 const Expr *Inner = CE->getSubExpr()->IgnoreImplicit(); 1399 QualType RetType; 1400 if (auto *Call = dyn_cast<CallExpr>(Inner)) 1401 RetType = Call->getCallReturnType(CGM.getContext()); 1402 else if (auto *Ctor = dyn_cast<CXXConstructExpr>(Inner)) 1403 RetType = Ctor->getType(); 1404 llvm::Constant *Res = 1405 emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType); 1406 return Res; 1407 } 1408 1409 llvm::Constant * 1410 ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { 1411 auto state = pushAbstract(); 1412 auto C = tryEmitPrivate(E, destType); 1413 C = validateAndPopAbstract(C, state); 1414 if (!C) { 1415 CGM.Error(E->getExprLoc(), 1416 "internal error: could not emit constant value \"abstractly\""); 1417 C = CGM.EmitNullConstant(destType); 1418 } 1419 return C; 1420 } 1421 1422 llvm::Constant * 1423 ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, 1424 QualType destType) { 1425 auto state = pushAbstract(); 1426 auto C = tryEmitPrivate(value, destType); 1427 C = validateAndPopAbstract(C, state); 1428 if (!C) { 1429 CGM.Error(loc, 1430 "internal error: could not emit constant value \"abstractly\""); 1431 C = CGM.EmitNullConstant(destType); 1432 } 1433 return C; 1434 } 1435 1436 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { 1437 initializeNonAbstract(D.getType().getAddressSpace()); 1438 return markIfFailed(tryEmitPrivateForVarInit(D)); 1439 } 1440 1441 llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, 1442 LangAS destAddrSpace, 1443 QualType destType) { 1444 initializeNonAbstract(destAddrSpace); 1445 return markIfFailed(tryEmitPrivateForMemory(E, destType)); 1446 } 1447 1448 llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, 1449 LangAS destAddrSpace, 1450 QualType destType) { 1451 initializeNonAbstract(destAddrSpace); 1452 auto C = tryEmitPrivateForMemory(value, destType); 1453 assert(C && "couldn't emit constant value non-abstractly?"); 1454 return C; 1455 } 1456 1457 llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { 1458 assert(!Abstract && "cannot get current address for abstract constant"); 1459 1460 1461 1462 // Make an obviously ill-formed global that should blow up compilation 1463 // if it survives. 1464 auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, 1465 llvm::GlobalValue::PrivateLinkage, 1466 /*init*/ nullptr, 1467 /*name*/ "", 1468 /*before*/ nullptr, 1469 llvm::GlobalVariable::NotThreadLocal, 1470 CGM.getContext().getTargetAddressSpace(DestAddressSpace)); 1471 1472 PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); 1473 1474 return global; 1475 } 1476 1477 void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, 1478 llvm::GlobalValue *placeholder) { 1479 assert(!PlaceholderAddresses.empty()); 1480 assert(PlaceholderAddresses.back().first == nullptr); 1481 assert(PlaceholderAddresses.back().second == placeholder); 1482 PlaceholderAddresses.back().first = signal; 1483 } 1484 1485 namespace { 1486 struct ReplacePlaceholders { 1487 CodeGenModule &CGM; 1488 1489 /// The base address of the global. 1490 llvm::Constant *Base; 1491 llvm::Type *BaseValueTy = nullptr; 1492 1493 /// The placeholder addresses that were registered during emission. 1494 llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; 1495 1496 /// The locations of the placeholder signals. 1497 llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; 1498 1499 /// The current index stack. We use a simple unsigned stack because 1500 /// we assume that placeholders will be relatively sparse in the 1501 /// initializer, but we cache the index values we find just in case. 1502 llvm::SmallVector<unsigned, 8> Indices; 1503 llvm::SmallVector<llvm::Constant*, 8> IndexValues; 1504 1505 ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, 1506 ArrayRef<std::pair<llvm::Constant*, 1507 llvm::GlobalVariable*>> addresses) 1508 : CGM(CGM), Base(base), 1509 PlaceholderAddresses(addresses.begin(), addresses.end()) { 1510 } 1511 1512 void replaceInInitializer(llvm::Constant *init) { 1513 // Remember the type of the top-most initializer. 1514 BaseValueTy = init->getType(); 1515 1516 // Initialize the stack. 1517 Indices.push_back(0); 1518 IndexValues.push_back(nullptr); 1519 1520 // Recurse into the initializer. 1521 findLocations(init); 1522 1523 // Check invariants. 1524 assert(IndexValues.size() == Indices.size() && "mismatch"); 1525 assert(Indices.size() == 1 && "didn't pop all indices"); 1526 1527 // Do the replacement; this basically invalidates 'init'. 1528 assert(Locations.size() == PlaceholderAddresses.size() && 1529 "missed a placeholder?"); 1530 1531 // We're iterating over a hashtable, so this would be a source of 1532 // non-determinism in compiler output *except* that we're just 1533 // messing around with llvm::Constant structures, which never itself 1534 // does anything that should be visible in compiler output. 1535 for (auto &entry : Locations) { 1536 assert(entry.first->getParent() == nullptr && "not a placeholder!"); 1537 entry.first->replaceAllUsesWith(entry.second); 1538 entry.first->eraseFromParent(); 1539 } 1540 } 1541 1542 private: 1543 void findLocations(llvm::Constant *init) { 1544 // Recurse into aggregates. 1545 if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { 1546 for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { 1547 Indices.push_back(i); 1548 IndexValues.push_back(nullptr); 1549 1550 findLocations(agg->getOperand(i)); 1551 1552 IndexValues.pop_back(); 1553 Indices.pop_back(); 1554 } 1555 return; 1556 } 1557 1558 // Otherwise, check for registered constants. 1559 while (true) { 1560 auto it = PlaceholderAddresses.find(init); 1561 if (it != PlaceholderAddresses.end()) { 1562 setLocation(it->second); 1563 break; 1564 } 1565 1566 // Look through bitcasts or other expressions. 1567 if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { 1568 init = expr->getOperand(0); 1569 } else { 1570 break; 1571 } 1572 } 1573 } 1574 1575 void setLocation(llvm::GlobalVariable *placeholder) { 1576 assert(Locations.find(placeholder) == Locations.end() && 1577 "already found location for placeholder!"); 1578 1579 // Lazily fill in IndexValues with the values from Indices. 1580 // We do this in reverse because we should always have a strict 1581 // prefix of indices from the start. 1582 assert(Indices.size() == IndexValues.size()); 1583 for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { 1584 if (IndexValues[i]) { 1585 #ifndef NDEBUG 1586 for (size_t j = 0; j != i + 1; ++j) { 1587 assert(IndexValues[j] && 1588 isa<llvm::ConstantInt>(IndexValues[j]) && 1589 cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() 1590 == Indices[j]); 1591 } 1592 #endif 1593 break; 1594 } 1595 1596 IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); 1597 } 1598 1599 // Form a GEP and then bitcast to the placeholder type so that the 1600 // replacement will succeed. 1601 llvm::Constant *location = 1602 llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, 1603 Base, IndexValues); 1604 location = llvm::ConstantExpr::getBitCast(location, 1605 placeholder->getType()); 1606 1607 Locations.insert({placeholder, location}); 1608 } 1609 }; 1610 } 1611 1612 void ConstantEmitter::finalize(llvm::GlobalVariable *global) { 1613 assert(InitializedNonAbstract && 1614 "finalizing emitter that was used for abstract emission?"); 1615 assert(!Finalized && "finalizing emitter multiple times"); 1616 assert(global->getInitializer()); 1617 1618 // Note that we might also be Failed. 1619 Finalized = true; 1620 1621 if (!PlaceholderAddresses.empty()) { 1622 ReplacePlaceholders(CGM, global, PlaceholderAddresses) 1623 .replaceInInitializer(global->getInitializer()); 1624 PlaceholderAddresses.clear(); // satisfy 1625 } 1626 } 1627 1628 ConstantEmitter::~ConstantEmitter() { 1629 assert((!InitializedNonAbstract || Finalized || Failed) && 1630 "not finalized after being initialized for non-abstract emission"); 1631 assert(PlaceholderAddresses.empty() && "unhandled placeholders"); 1632 } 1633 1634 static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { 1635 if (auto AT = type->getAs<AtomicType>()) { 1636 return CGM.getContext().getQualifiedType(AT->getValueType(), 1637 type.getQualifiers()); 1638 } 1639 return type; 1640 } 1641 1642 llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { 1643 // Make a quick check if variable can be default NULL initialized 1644 // and avoid going through rest of code which may do, for c++11, 1645 // initialization of memory to all NULLs. 1646 if (!D.hasLocalStorage()) { 1647 QualType Ty = CGM.getContext().getBaseElementType(D.getType()); 1648 if (Ty->isRecordType()) 1649 if (const CXXConstructExpr *E = 1650 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1651 const CXXConstructorDecl *CD = E->getConstructor(); 1652 if (CD->isTrivial() && CD->isDefaultConstructor()) 1653 return CGM.EmitNullConstant(D.getType()); 1654 } 1655 InConstantContext = true; 1656 } 1657 1658 QualType destType = D.getType(); 1659 1660 // Try to emit the initializer. Note that this can allow some things that 1661 // are not allowed by tryEmitPrivateForMemory alone. 1662 if (auto value = D.evaluateValue()) { 1663 return tryEmitPrivateForMemory(*value, destType); 1664 } 1665 1666 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1667 // reference is a constant expression, and the reference binds to a temporary, 1668 // then constant initialization is performed. ConstExprEmitter will 1669 // incorrectly emit a prvalue constant in this case, and the calling code 1670 // interprets that as the (pointer) value of the reference, rather than the 1671 // desired value of the referee. 1672 if (destType->isReferenceType()) 1673 return nullptr; 1674 1675 const Expr *E = D.getInit(); 1676 assert(E && "No initializer to emit"); 1677 1678 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1679 auto C = 1680 ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); 1681 return (C ? emitForMemory(C, destType) : nullptr); 1682 } 1683 1684 llvm::Constant * 1685 ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { 1686 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1687 auto C = tryEmitAbstract(E, nonMemoryDestType); 1688 return (C ? emitForMemory(C, destType) : nullptr); 1689 } 1690 1691 llvm::Constant * 1692 ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, 1693 QualType destType) { 1694 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1695 auto C = tryEmitAbstract(value, nonMemoryDestType); 1696 return (C ? emitForMemory(C, destType) : nullptr); 1697 } 1698 1699 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, 1700 QualType destType) { 1701 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1702 llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); 1703 return (C ? emitForMemory(C, destType) : nullptr); 1704 } 1705 1706 llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, 1707 QualType destType) { 1708 auto nonMemoryDestType = getNonMemoryType(CGM, destType); 1709 auto C = tryEmitPrivate(value, nonMemoryDestType); 1710 return (C ? emitForMemory(C, destType) : nullptr); 1711 } 1712 1713 llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, 1714 llvm::Constant *C, 1715 QualType destType) { 1716 // For an _Atomic-qualified constant, we may need to add tail padding. 1717 if (auto AT = destType->getAs<AtomicType>()) { 1718 QualType destValueType = AT->getValueType(); 1719 C = emitForMemory(CGM, C, destValueType); 1720 1721 uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); 1722 uint64_t outerSize = CGM.getContext().getTypeSize(destType); 1723 if (innerSize == outerSize) 1724 return C; 1725 1726 assert(innerSize < outerSize && "emitted over-large constant for atomic"); 1727 llvm::Constant *elts[] = { 1728 C, 1729 llvm::ConstantAggregateZero::get( 1730 llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) 1731 }; 1732 return llvm::ConstantStruct::getAnon(elts); 1733 } 1734 1735 // Zero-extend bool. 1736 if (C->getType()->isIntegerTy(1)) { 1737 llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); 1738 return llvm::ConstantExpr::getZExt(C, boolTy); 1739 } 1740 1741 return C; 1742 } 1743 1744 llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, 1745 QualType destType) { 1746 assert(!destType->isVoidType() && "can't emit a void constant"); 1747 1748 Expr::EvalResult Result; 1749 1750 bool Success = false; 1751 1752 if (destType->isReferenceType()) 1753 Success = E->EvaluateAsLValue(Result, CGM.getContext()); 1754 else 1755 Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext); 1756 1757 llvm::Constant *C; 1758 if (Success && !Result.HasSideEffects) 1759 C = tryEmitPrivate(Result.Val, destType); 1760 else 1761 C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); 1762 1763 return C; 1764 } 1765 1766 llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { 1767 return getTargetCodeGenInfo().getNullPointer(*this, T, QT); 1768 } 1769 1770 namespace { 1771 /// A struct which can be used to peephole certain kinds of finalization 1772 /// that normally happen during l-value emission. 1773 struct ConstantLValue { 1774 llvm::Constant *Value; 1775 bool HasOffsetApplied; 1776 1777 /*implicit*/ ConstantLValue(llvm::Constant *value, 1778 bool hasOffsetApplied = false) 1779 : Value(value), HasOffsetApplied(hasOffsetApplied) {} 1780 1781 /*implicit*/ ConstantLValue(ConstantAddress address) 1782 : ConstantLValue(address.getPointer()) {} 1783 }; 1784 1785 /// A helper class for emitting constant l-values. 1786 class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, 1787 ConstantLValue> { 1788 CodeGenModule &CGM; 1789 ConstantEmitter &Emitter; 1790 const APValue &Value; 1791 QualType DestType; 1792 1793 // Befriend StmtVisitorBase so that we don't have to expose Visit*. 1794 friend StmtVisitorBase; 1795 1796 public: 1797 ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, 1798 QualType destType) 1799 : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} 1800 1801 llvm::Constant *tryEmit(); 1802 1803 private: 1804 llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); 1805 ConstantLValue tryEmitBase(const APValue::LValueBase &base); 1806 1807 ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } 1808 ConstantLValue VisitConstantExpr(const ConstantExpr *E); 1809 ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); 1810 ConstantLValue VisitStringLiteral(const StringLiteral *E); 1811 ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E); 1812 ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); 1813 ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); 1814 ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); 1815 ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); 1816 ConstantLValue VisitCallExpr(const CallExpr *E); 1817 ConstantLValue VisitBlockExpr(const BlockExpr *E); 1818 ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); 1819 ConstantLValue VisitMaterializeTemporaryExpr( 1820 const MaterializeTemporaryExpr *E); 1821 1822 bool hasNonZeroOffset() const { 1823 return !Value.getLValueOffset().isZero(); 1824 } 1825 1826 /// Return the value offset. 1827 llvm::Constant *getOffset() { 1828 return llvm::ConstantInt::get(CGM.Int64Ty, 1829 Value.getLValueOffset().getQuantity()); 1830 } 1831 1832 /// Apply the value offset to the given constant. 1833 llvm::Constant *applyOffset(llvm::Constant *C) { 1834 if (!hasNonZeroOffset()) 1835 return C; 1836 1837 llvm::Type *origPtrTy = C->getType(); 1838 unsigned AS = origPtrTy->getPointerAddressSpace(); 1839 llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); 1840 C = llvm::ConstantExpr::getBitCast(C, charPtrTy); 1841 C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); 1842 C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); 1843 return C; 1844 } 1845 }; 1846 1847 } 1848 1849 llvm::Constant *ConstantLValueEmitter::tryEmit() { 1850 const APValue::LValueBase &base = Value.getLValueBase(); 1851 1852 // The destination type should be a pointer or reference 1853 // type, but it might also be a cast thereof. 1854 // 1855 // FIXME: the chain of casts required should be reflected in the APValue. 1856 // We need this in order to correctly handle things like a ptrtoint of a 1857 // non-zero null pointer and addrspace casts that aren't trivially 1858 // represented in LLVM IR. 1859 auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); 1860 assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); 1861 1862 // If there's no base at all, this is a null or absolute pointer, 1863 // possibly cast back to an integer type. 1864 if (!base) { 1865 return tryEmitAbsolute(destTy); 1866 } 1867 1868 // Otherwise, try to emit the base. 1869 ConstantLValue result = tryEmitBase(base); 1870 1871 // If that failed, we're done. 1872 llvm::Constant *value = result.Value; 1873 if (!value) return nullptr; 1874 1875 // Apply the offset if necessary and not already done. 1876 if (!result.HasOffsetApplied) { 1877 value = applyOffset(value); 1878 } 1879 1880 // Convert to the appropriate type; this could be an lvalue for 1881 // an integer. FIXME: performAddrSpaceCast 1882 if (isa<llvm::PointerType>(destTy)) 1883 return llvm::ConstantExpr::getPointerCast(value, destTy); 1884 1885 return llvm::ConstantExpr::getPtrToInt(value, destTy); 1886 } 1887 1888 /// Try to emit an absolute l-value, such as a null pointer or an integer 1889 /// bitcast to pointer type. 1890 llvm::Constant * 1891 ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { 1892 // If we're producing a pointer, this is easy. 1893 auto destPtrTy = cast<llvm::PointerType>(destTy); 1894 if (Value.isNullPointer()) { 1895 // FIXME: integer offsets from non-zero null pointers. 1896 return CGM.getNullPointer(destPtrTy, DestType); 1897 } 1898 1899 // Convert the integer to a pointer-sized integer before converting it 1900 // to a pointer. 1901 // FIXME: signedness depends on the original integer type. 1902 auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); 1903 llvm::Constant *C; 1904 C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, 1905 /*isSigned*/ false); 1906 C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); 1907 return C; 1908 } 1909 1910 ConstantLValue 1911 ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { 1912 // Handle values. 1913 if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { 1914 // The constant always points to the canonical declaration. We want to look 1915 // at properties of the most recent declaration at the point of emission. 1916 D = cast<ValueDecl>(D->getMostRecentDecl()); 1917 1918 if (D->hasAttr<WeakRefAttr>()) 1919 return CGM.GetWeakRefReference(D).getPointer(); 1920 1921 if (auto FD = dyn_cast<FunctionDecl>(D)) 1922 return CGM.GetAddrOfFunction(FD); 1923 1924 if (auto VD = dyn_cast<VarDecl>(D)) { 1925 // We can never refer to a variable with local storage. 1926 if (!VD->hasLocalStorage()) { 1927 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 1928 return CGM.GetAddrOfGlobalVar(VD); 1929 1930 if (VD->isLocalVarDecl()) { 1931 return CGM.getOrCreateStaticVarDecl( 1932 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); 1933 } 1934 } 1935 } 1936 1937 if (auto *GD = dyn_cast<MSGuidDecl>(D)) 1938 return CGM.GetAddrOfMSGuidDecl(GD); 1939 1940 if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) 1941 return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD); 1942 1943 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) 1944 return CGM.GetAddrOfTemplateParamObject(TPO); 1945 1946 return nullptr; 1947 } 1948 1949 // Handle typeid(T). 1950 if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) { 1951 llvm::Type *StdTypeInfoPtrTy = 1952 CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo(); 1953 llvm::Constant *TypeInfo = 1954 CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0)); 1955 if (TypeInfo->getType() != StdTypeInfoPtrTy) 1956 TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy); 1957 return TypeInfo; 1958 } 1959 1960 // Otherwise, it must be an expression. 1961 return Visit(base.get<const Expr*>()); 1962 } 1963 1964 ConstantLValue 1965 ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { 1966 if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E)) 1967 return Result; 1968 return Visit(E->getSubExpr()); 1969 } 1970 1971 ConstantLValue 1972 ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 1973 return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); 1974 } 1975 1976 ConstantLValue 1977 ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { 1978 return CGM.GetAddrOfConstantStringFromLiteral(E); 1979 } 1980 1981 ConstantLValue 1982 ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1983 return CGM.GetAddrOfConstantStringFromObjCEncode(E); 1984 } 1985 1986 static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, 1987 QualType T, 1988 CodeGenModule &CGM) { 1989 auto C = CGM.getObjCRuntime().GenerateConstantString(S); 1990 return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T)); 1991 } 1992 1993 ConstantLValue 1994 ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1995 return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM); 1996 } 1997 1998 ConstantLValue 1999 ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 2000 assert(E->isExpressibleAsConstantInitializer() && 2001 "this boxed expression can't be emitted as a compile-time constant"); 2002 auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts()); 2003 return emitConstantObjCStringLiteral(SL, E->getType(), CGM); 2004 } 2005 2006 ConstantLValue 2007 ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { 2008 return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName()); 2009 } 2010 2011 ConstantLValue 2012 ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { 2013 assert(Emitter.CGF && "Invalid address of label expression outside function"); 2014 llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); 2015 Ptr = llvm::ConstantExpr::getBitCast(Ptr, 2016 CGM.getTypes().ConvertType(E->getType())); 2017 return Ptr; 2018 } 2019 2020 ConstantLValue 2021 ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { 2022 unsigned builtin = E->getBuiltinCallee(); 2023 if (builtin == Builtin::BI__builtin_function_start) 2024 return CGM.GetFunctionStart( 2025 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())); 2026 if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && 2027 builtin != Builtin::BI__builtin___NSStringMakeConstantString) 2028 return nullptr; 2029 2030 auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); 2031 if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { 2032 return CGM.getObjCRuntime().GenerateConstantString(literal); 2033 } else { 2034 // FIXME: need to deal with UCN conversion issues. 2035 return CGM.GetAddrOfConstantCFString(literal); 2036 } 2037 } 2038 2039 ConstantLValue 2040 ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { 2041 StringRef functionName; 2042 if (auto CGF = Emitter.CGF) 2043 functionName = CGF->CurFn->getName(); 2044 else 2045 functionName = "global"; 2046 2047 return CGM.GetAddrOfGlobalBlock(E, functionName); 2048 } 2049 2050 ConstantLValue 2051 ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { 2052 QualType T; 2053 if (E->isTypeOperand()) 2054 T = E->getTypeOperand(CGM.getContext()); 2055 else 2056 T = E->getExprOperand()->getType(); 2057 return CGM.GetAddrOfRTTIDescriptor(T); 2058 } 2059 2060 ConstantLValue 2061 ConstantLValueEmitter::VisitMaterializeTemporaryExpr( 2062 const MaterializeTemporaryExpr *E) { 2063 assert(E->getStorageDuration() == SD_Static); 2064 SmallVector<const Expr *, 2> CommaLHSs; 2065 SmallVector<SubobjectAdjustment, 2> Adjustments; 2066 const Expr *Inner = 2067 E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 2068 return CGM.GetAddrOfGlobalTemporary(E, Inner); 2069 } 2070 2071 llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, 2072 QualType DestType) { 2073 switch (Value.getKind()) { 2074 case APValue::None: 2075 case APValue::Indeterminate: 2076 // Out-of-lifetime and indeterminate values can be modeled as 'undef'. 2077 return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType)); 2078 case APValue::LValue: 2079 return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); 2080 case APValue::Int: 2081 return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); 2082 case APValue::FixedPoint: 2083 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2084 Value.getFixedPoint().getValue()); 2085 case APValue::ComplexInt: { 2086 llvm::Constant *Complex[2]; 2087 2088 Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2089 Value.getComplexIntReal()); 2090 Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), 2091 Value.getComplexIntImag()); 2092 2093 // FIXME: the target may want to specify that this is packed. 2094 llvm::StructType *STy = 2095 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2096 return llvm::ConstantStruct::get(STy, Complex); 2097 } 2098 case APValue::Float: { 2099 const llvm::APFloat &Init = Value.getFloat(); 2100 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && 2101 !CGM.getContext().getLangOpts().NativeHalfType && 2102 CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 2103 return llvm::ConstantInt::get(CGM.getLLVMContext(), 2104 Init.bitcastToAPInt()); 2105 else 2106 return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); 2107 } 2108 case APValue::ComplexFloat: { 2109 llvm::Constant *Complex[2]; 2110 2111 Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2112 Value.getComplexFloatReal()); 2113 Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), 2114 Value.getComplexFloatImag()); 2115 2116 // FIXME: the target may want to specify that this is packed. 2117 llvm::StructType *STy = 2118 llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); 2119 return llvm::ConstantStruct::get(STy, Complex); 2120 } 2121 case APValue::Vector: { 2122 unsigned NumElts = Value.getVectorLength(); 2123 SmallVector<llvm::Constant *, 4> Inits(NumElts); 2124 2125 for (unsigned I = 0; I != NumElts; ++I) { 2126 const APValue &Elt = Value.getVectorElt(I); 2127 if (Elt.isInt()) 2128 Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); 2129 else if (Elt.isFloat()) 2130 Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); 2131 else 2132 llvm_unreachable("unsupported vector element type"); 2133 } 2134 return llvm::ConstantVector::get(Inits); 2135 } 2136 case APValue::AddrLabelDiff: { 2137 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 2138 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 2139 llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); 2140 llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); 2141 if (!LHS || !RHS) return nullptr; 2142 2143 // Compute difference 2144 llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); 2145 LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); 2146 RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); 2147 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 2148 2149 // LLVM is a bit sensitive about the exact format of the 2150 // address-of-label difference; make sure to truncate after 2151 // the subtraction. 2152 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 2153 } 2154 case APValue::Struct: 2155 case APValue::Union: 2156 return ConstStructBuilder::BuildStruct(*this, Value, DestType); 2157 case APValue::Array: { 2158 const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType); 2159 unsigned NumElements = Value.getArraySize(); 2160 unsigned NumInitElts = Value.getArrayInitializedElts(); 2161 2162 // Emit array filler, if there is one. 2163 llvm::Constant *Filler = nullptr; 2164 if (Value.hasArrayFiller()) { 2165 Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), 2166 ArrayTy->getElementType()); 2167 if (!Filler) 2168 return nullptr; 2169 } 2170 2171 // Emit initializer elements. 2172 SmallVector<llvm::Constant*, 16> Elts; 2173 if (Filler && Filler->isNullValue()) 2174 Elts.reserve(NumInitElts + 1); 2175 else 2176 Elts.reserve(NumElements); 2177 2178 llvm::Type *CommonElementType = nullptr; 2179 for (unsigned I = 0; I < NumInitElts; ++I) { 2180 llvm::Constant *C = tryEmitPrivateForMemory( 2181 Value.getArrayInitializedElt(I), ArrayTy->getElementType()); 2182 if (!C) return nullptr; 2183 2184 if (I == 0) 2185 CommonElementType = C->getType(); 2186 else if (C->getType() != CommonElementType) 2187 CommonElementType = nullptr; 2188 Elts.push_back(C); 2189 } 2190 2191 llvm::ArrayType *Desired = 2192 cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType)); 2193 return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, 2194 Filler); 2195 } 2196 case APValue::MemberPointer: 2197 return CGM.getCXXABI().EmitMemberPointer(Value, DestType); 2198 } 2199 llvm_unreachable("Unknown APValue kind"); 2200 } 2201 2202 llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( 2203 const CompoundLiteralExpr *E) { 2204 return EmittedCompoundLiterals.lookup(E); 2205 } 2206 2207 void CodeGenModule::setAddrOfConstantCompoundLiteral( 2208 const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { 2209 bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; 2210 (void)Ok; 2211 assert(Ok && "CLE has already been emitted!"); 2212 } 2213 2214 ConstantAddress 2215 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 2216 assert(E->isFileScope() && "not a file-scope compound literal expr"); 2217 return tryEmitGlobalCompoundLiteral(*this, nullptr, E); 2218 } 2219 2220 llvm::Constant * 2221 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 2222 // Member pointer constants always have a very particular form. 2223 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 2224 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 2225 2226 // A member function pointer. 2227 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 2228 return getCXXABI().EmitMemberFunctionPointer(method); 2229 2230 // Otherwise, a member data pointer. 2231 uint64_t fieldOffset = getContext().getFieldOffset(decl); 2232 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 2233 return getCXXABI().EmitMemberDataPointer(type, chars); 2234 } 2235 2236 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2237 llvm::Type *baseType, 2238 const CXXRecordDecl *base); 2239 2240 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 2241 const RecordDecl *record, 2242 bool asCompleteObject) { 2243 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 2244 llvm::StructType *structure = 2245 (asCompleteObject ? layout.getLLVMType() 2246 : layout.getBaseSubobjectLLVMType()); 2247 2248 unsigned numElements = structure->getNumElements(); 2249 std::vector<llvm::Constant *> elements(numElements); 2250 2251 auto CXXR = dyn_cast<CXXRecordDecl>(record); 2252 // Fill in all the bases. 2253 if (CXXR) { 2254 for (const auto &I : CXXR->bases()) { 2255 if (I.isVirtual()) { 2256 // Ignore virtual bases; if we're laying out for a complete 2257 // object, we'll lay these out later. 2258 continue; 2259 } 2260 2261 const CXXRecordDecl *base = 2262 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2263 2264 // Ignore empty bases. 2265 if (base->isEmpty() || 2266 CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() 2267 .isZero()) 2268 continue; 2269 2270 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 2271 llvm::Type *baseType = structure->getElementType(fieldIndex); 2272 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2273 } 2274 } 2275 2276 // Fill in all the fields. 2277 for (const auto *Field : record->fields()) { 2278 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 2279 // will fill in later.) 2280 if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) { 2281 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 2282 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 2283 } 2284 2285 // For unions, stop after the first named field. 2286 if (record->isUnion()) { 2287 if (Field->getIdentifier()) 2288 break; 2289 if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) 2290 if (FieldRD->findFirstNamedDataMember()) 2291 break; 2292 } 2293 } 2294 2295 // Fill in the virtual bases, if we're working with the complete object. 2296 if (CXXR && asCompleteObject) { 2297 for (const auto &I : CXXR->vbases()) { 2298 const CXXRecordDecl *base = 2299 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2300 2301 // Ignore empty bases. 2302 if (base->isEmpty()) 2303 continue; 2304 2305 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 2306 2307 // We might have already laid this field out. 2308 if (elements[fieldIndex]) continue; 2309 2310 llvm::Type *baseType = structure->getElementType(fieldIndex); 2311 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 2312 } 2313 } 2314 2315 // Now go through all other fields and zero them out. 2316 for (unsigned i = 0; i != numElements; ++i) { 2317 if (!elements[i]) 2318 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 2319 } 2320 2321 return llvm::ConstantStruct::get(structure, elements); 2322 } 2323 2324 /// Emit the null constant for a base subobject. 2325 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 2326 llvm::Type *baseType, 2327 const CXXRecordDecl *base) { 2328 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 2329 2330 // Just zero out bases that don't have any pointer to data members. 2331 if (baseLayout.isZeroInitializableAsBase()) 2332 return llvm::Constant::getNullValue(baseType); 2333 2334 // Otherwise, we can just use its null constant. 2335 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 2336 } 2337 2338 llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, 2339 QualType T) { 2340 return emitForMemory(CGM, CGM.EmitNullConstant(T), T); 2341 } 2342 2343 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 2344 if (T->getAs<PointerType>()) 2345 return getNullPointer( 2346 cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); 2347 2348 if (getTypes().isZeroInitializable(T)) 2349 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 2350 2351 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 2352 llvm::ArrayType *ATy = 2353 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 2354 2355 QualType ElementTy = CAT->getElementType(); 2356 2357 llvm::Constant *Element = 2358 ConstantEmitter::emitNullForMemory(*this, ElementTy); 2359 unsigned NumElements = CAT->getSize().getZExtValue(); 2360 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 2361 return llvm::ConstantArray::get(ATy, Array); 2362 } 2363 2364 if (const RecordType *RT = T->getAs<RecordType>()) 2365 return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); 2366 2367 assert(T->isMemberDataPointerType() && 2368 "Should only see pointers to data members here!"); 2369 2370 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 2371 } 2372 2373 llvm::Constant * 2374 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 2375 return ::EmitNullConstant(*this, Record, false); 2376 } 2377