1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with code generation of C++ expressions 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGDebugInfo.h" 16 #include "CGObjCRuntime.h" 17 #include "CodeGenFunction.h" 18 #include "ConstantEmitter.h" 19 #include "TargetInfo.h" 20 #include "clang/Basic/CodeGenOptions.h" 21 #include "clang/CodeGen/CGFunctionInfo.h" 22 #include "llvm/IR/Intrinsics.h" 23 24 using namespace clang; 25 using namespace CodeGen; 26 27 namespace { 28 struct MemberCallInfo { 29 RequiredArgs ReqArgs; 30 // Number of prefix arguments for the call. Ignores the `this` pointer. 31 unsigned PrefixSize; 32 }; 33 } 34 35 static MemberCallInfo 36 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD, 37 llvm::Value *This, llvm::Value *ImplicitParam, 38 QualType ImplicitParamTy, const CallExpr *CE, 39 CallArgList &Args, CallArgList *RtlArgs) { 40 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) || 41 isa<CXXOperatorCallExpr>(CE)); 42 assert(MD->isInstance() && 43 "Trying to emit a member or operator call expr on a static method!"); 44 45 // Push the this ptr. 46 const CXXRecordDecl *RD = 47 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(MD); 48 Args.add(RValue::get(This), CGF.getTypes().DeriveThisType(RD, MD)); 49 50 // If there is an implicit parameter (e.g. VTT), emit it. 51 if (ImplicitParam) { 52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy); 53 } 54 55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size()); 57 unsigned PrefixSize = Args.size() - 1; 58 59 // And the rest of the call args. 60 if (RtlArgs) { 61 // Special case: if the caller emitted the arguments right-to-left already 62 // (prior to emitting the *this argument), we're done. This happens for 63 // assignment operators. 64 Args.addFrom(*RtlArgs); 65 } else if (CE) { 66 // Special case: skip first argument of CXXOperatorCall (it is "this"). 67 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0; 68 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip), 69 CE->getDirectCallee()); 70 } else { 71 assert( 72 FPT->getNumParams() == 0 && 73 "No CallExpr specified for function with non-zero number of arguments"); 74 } 75 return {required, PrefixSize}; 76 } 77 78 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall( 79 const CXXMethodDecl *MD, const CGCallee &Callee, 80 ReturnValueSlot ReturnValue, 81 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy, 82 const CallExpr *CE, CallArgList *RtlArgs) { 83 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 84 CallArgList Args; 85 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall( 86 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs); 87 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall( 88 Args, FPT, CallInfo.ReqArgs, CallInfo.PrefixSize); 89 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, 90 CE && CE == MustTailCall, 91 CE ? CE->getExprLoc() : SourceLocation()); 92 } 93 94 RValue CodeGenFunction::EmitCXXDestructorCall( 95 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy, 96 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) { 97 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Dtor.getDecl()); 98 99 assert(!ThisTy.isNull()); 100 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() && 101 "Pointer/Object mixup"); 102 103 LangAS SrcAS = ThisTy.getAddressSpace(); 104 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace(); 105 if (SrcAS != DstAS) { 106 QualType DstTy = DtorDecl->getThisType(); 107 llvm::Type *NewType = CGM.getTypes().ConvertType(DstTy); 108 This = getTargetHooks().performAddrSpaceCast(*this, This, SrcAS, DstAS, 109 NewType); 110 } 111 112 CallArgList Args; 113 commonEmitCXXMemberOrOperatorCall(*this, DtorDecl, This, ImplicitParam, 114 ImplicitParamTy, CE, Args, nullptr); 115 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(Dtor), Callee, 116 ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall, 117 CE ? CE->getExprLoc() : SourceLocation{}); 118 } 119 120 RValue CodeGenFunction::EmitCXXPseudoDestructorExpr( 121 const CXXPseudoDestructorExpr *E) { 122 QualType DestroyedType = E->getDestroyedType(); 123 if (DestroyedType.hasStrongOrWeakObjCLifetime()) { 124 // Automatic Reference Counting: 125 // If the pseudo-expression names a retainable object with weak or 126 // strong lifetime, the object shall be released. 127 Expr *BaseExpr = E->getBase(); 128 Address BaseValue = Address::invalid(); 129 Qualifiers BaseQuals; 130 131 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 132 if (E->isArrow()) { 133 BaseValue = EmitPointerWithAlignment(BaseExpr); 134 const auto *PTy = BaseExpr->getType()->castAs<PointerType>(); 135 BaseQuals = PTy->getPointeeType().getQualifiers(); 136 } else { 137 LValue BaseLV = EmitLValue(BaseExpr); 138 BaseValue = BaseLV.getAddress(*this); 139 QualType BaseTy = BaseExpr->getType(); 140 BaseQuals = BaseTy.getQualifiers(); 141 } 142 143 switch (DestroyedType.getObjCLifetime()) { 144 case Qualifiers::OCL_None: 145 case Qualifiers::OCL_ExplicitNone: 146 case Qualifiers::OCL_Autoreleasing: 147 break; 148 149 case Qualifiers::OCL_Strong: 150 EmitARCRelease(Builder.CreateLoad(BaseValue, 151 DestroyedType.isVolatileQualified()), 152 ARCPreciseLifetime); 153 break; 154 155 case Qualifiers::OCL_Weak: 156 EmitARCDestroyWeak(BaseValue); 157 break; 158 } 159 } else { 160 // C++ [expr.pseudo]p1: 161 // The result shall only be used as the operand for the function call 162 // operator (), and the result of such a call has type void. The only 163 // effect is the evaluation of the postfix-expression before the dot or 164 // arrow. 165 EmitIgnoredExpr(E->getBase()); 166 } 167 168 return RValue::get(nullptr); 169 } 170 171 static CXXRecordDecl *getCXXRecord(const Expr *E) { 172 QualType T = E->getType(); 173 if (const PointerType *PTy = T->getAs<PointerType>()) 174 T = PTy->getPointeeType(); 175 const RecordType *Ty = T->castAs<RecordType>(); 176 return cast<CXXRecordDecl>(Ty->getDecl()); 177 } 178 179 // Note: This function also emit constructor calls to support a MSVC 180 // extensions allowing explicit constructor function call. 181 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE, 182 ReturnValueSlot ReturnValue) { 183 const Expr *callee = CE->getCallee()->IgnoreParens(); 184 185 if (isa<BinaryOperator>(callee)) 186 return EmitCXXMemberPointerCallExpr(CE, ReturnValue); 187 188 const MemberExpr *ME = cast<MemberExpr>(callee); 189 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl()); 190 191 if (MD->isStatic()) { 192 // The method is static, emit it as we would a regular call. 193 CGCallee callee = 194 CGCallee::forDirect(CGM.GetAddrOfFunction(MD), GlobalDecl(MD)); 195 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE, 196 ReturnValue); 197 } 198 199 bool HasQualifier = ME->hasQualifier(); 200 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr; 201 bool IsArrow = ME->isArrow(); 202 const Expr *Base = ME->getBase(); 203 204 return EmitCXXMemberOrOperatorMemberCallExpr( 205 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base); 206 } 207 208 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr( 209 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue, 210 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow, 211 const Expr *Base) { 212 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE)); 213 214 // Compute the object pointer. 215 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier; 216 217 const CXXMethodDecl *DevirtualizedMethod = nullptr; 218 if (CanUseVirtualCall && 219 MD->getDevirtualizedMethod(Base, getLangOpts().AppleKext)) { 220 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); 221 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl); 222 assert(DevirtualizedMethod); 223 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent(); 224 const Expr *Inner = Base->IgnoreParenBaseCasts(); 225 if (DevirtualizedMethod->getReturnType().getCanonicalType() != 226 MD->getReturnType().getCanonicalType()) 227 // If the return types are not the same, this might be a case where more 228 // code needs to run to compensate for it. For example, the derived 229 // method might return a type that inherits form from the return 230 // type of MD and has a prefix. 231 // For now we just avoid devirtualizing these covariant cases. 232 DevirtualizedMethod = nullptr; 233 else if (getCXXRecord(Inner) == DevirtualizedClass) 234 // If the class of the Inner expression is where the dynamic method 235 // is defined, build the this pointer from it. 236 Base = Inner; 237 else if (getCXXRecord(Base) != DevirtualizedClass) { 238 // If the method is defined in a class that is not the best dynamic 239 // one or the one of the full expression, we would have to build 240 // a derived-to-base cast to compute the correct this pointer, but 241 // we don't have support for that yet, so do a virtual call. 242 DevirtualizedMethod = nullptr; 243 } 244 } 245 246 bool TrivialForCodegen = 247 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion()); 248 bool TrivialAssignment = 249 TrivialForCodegen && 250 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && 251 !MD->getParent()->mayInsertExtraPadding(); 252 253 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment 254 // operator before the LHS. 255 CallArgList RtlArgStorage; 256 CallArgList *RtlArgs = nullptr; 257 LValue TrivialAssignmentRHS; 258 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(CE)) { 259 if (OCE->isAssignmentOp()) { 260 if (TrivialAssignment) { 261 TrivialAssignmentRHS = EmitLValue(CE->getArg(1)); 262 } else { 263 RtlArgs = &RtlArgStorage; 264 EmitCallArgs(*RtlArgs, MD->getType()->castAs<FunctionProtoType>(), 265 drop_begin(CE->arguments(), 1), CE->getDirectCallee(), 266 /*ParamsToSkip*/0, EvaluationOrder::ForceRightToLeft); 267 } 268 } 269 } 270 271 LValue This; 272 if (IsArrow) { 273 LValueBaseInfo BaseInfo; 274 TBAAAccessInfo TBAAInfo; 275 Address ThisValue = EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 276 This = MakeAddrLValue(ThisValue, Base->getType(), BaseInfo, TBAAInfo); 277 } else { 278 This = EmitLValue(Base); 279 } 280 281 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 282 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's 283 // constructing a new complete object of type Ctor. 284 assert(!RtlArgs); 285 assert(ReturnValue.isNull() && "Constructor shouldn't have return value"); 286 CallArgList Args; 287 commonEmitCXXMemberOrOperatorCall( 288 *this, Ctor, This.getPointer(*this), /*ImplicitParam=*/nullptr, 289 /*ImplicitParamTy=*/QualType(), CE, Args, nullptr); 290 291 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false, 292 /*Delegating=*/false, This.getAddress(*this), Args, 293 AggValueSlot::DoesNotOverlap, CE->getExprLoc(), 294 /*NewPointerIsChecked=*/false); 295 return RValue::get(nullptr); 296 } 297 298 if (TrivialForCodegen) { 299 if (isa<CXXDestructorDecl>(MD)) 300 return RValue::get(nullptr); 301 302 if (TrivialAssignment) { 303 // We don't like to generate the trivial copy/move assignment operator 304 // when it isn't necessary; just produce the proper effect here. 305 // It's important that we use the result of EmitLValue here rather than 306 // emitting call arguments, in order to preserve TBAA information from 307 // the RHS. 308 LValue RHS = isa<CXXOperatorCallExpr>(CE) 309 ? TrivialAssignmentRHS 310 : EmitLValue(*CE->arg_begin()); 311 EmitAggregateAssign(This, RHS, CE->getType()); 312 return RValue::get(This.getPointer(*this)); 313 } 314 315 assert(MD->getParent()->mayInsertExtraPadding() && 316 "unknown trivial member function"); 317 } 318 319 // Compute the function type we're calling. 320 const CXXMethodDecl *CalleeDecl = 321 DevirtualizedMethod ? DevirtualizedMethod : MD; 322 const CGFunctionInfo *FInfo = nullptr; 323 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) 324 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 325 GlobalDecl(Dtor, Dtor_Complete)); 326 else 327 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl); 328 329 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo); 330 331 // C++11 [class.mfct.non-static]p2: 332 // If a non-static member function of a class X is called for an object that 333 // is not of type X, or of a type derived from X, the behavior is undefined. 334 SourceLocation CallLoc; 335 ASTContext &C = getContext(); 336 if (CE) 337 CallLoc = CE->getExprLoc(); 338 339 SanitizerSet SkippedChecks; 340 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 341 auto *IOA = CMCE->getImplicitObjectArgument(); 342 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(IOA); 343 if (IsImplicitObjectCXXThis) 344 SkippedChecks.set(SanitizerKind::Alignment, true); 345 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(IOA)) 346 SkippedChecks.set(SanitizerKind::Null, true); 347 } 348 EmitTypeCheck(CodeGenFunction::TCK_MemberCall, CallLoc, 349 This.getPointer(*this), 350 C.getRecordType(CalleeDecl->getParent()), 351 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 352 353 // C++ [class.virtual]p12: 354 // Explicit qualification with the scope operator (5.1) suppresses the 355 // virtual call mechanism. 356 // 357 // We also don't emit a virtual call if the base expression has a record type 358 // because then we know what the type is. 359 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod; 360 361 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl)) { 362 assert(CE->arg_begin() == CE->arg_end() && 363 "Destructor shouldn't have explicit parameters"); 364 assert(ReturnValue.isNull() && "Destructor shouldn't have return value"); 365 if (UseVirtualCall) { 366 CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete, 367 This.getAddress(*this), 368 cast<CXXMemberCallExpr>(CE)); 369 } else { 370 GlobalDecl GD(Dtor, Dtor_Complete); 371 CGCallee Callee; 372 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier) 373 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty); 374 else if (!DevirtualizedMethod) 375 Callee = 376 CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD, FInfo, Ty), GD); 377 else { 378 Callee = CGCallee::forDirect(CGM.GetAddrOfFunction(GD, Ty), GD); 379 } 380 381 QualType ThisTy = 382 IsArrow ? Base->getType()->getPointeeType() : Base->getType(); 383 EmitCXXDestructorCall(GD, Callee, This.getPointer(*this), ThisTy, 384 /*ImplicitParam=*/nullptr, 385 /*ImplicitParamTy=*/QualType(), CE); 386 } 387 return RValue::get(nullptr); 388 } 389 390 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use 391 // 'CalleeDecl' instead. 392 393 CGCallee Callee; 394 if (UseVirtualCall) { 395 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(*this), Ty); 396 } else { 397 if (SanOpts.has(SanitizerKind::CFINVCall) && 398 MD->getParent()->isDynamicClass()) { 399 llvm::Value *VTable; 400 const CXXRecordDecl *RD; 401 std::tie(VTable, RD) = CGM.getCXXABI().LoadVTablePtr( 402 *this, This.getAddress(*this), CalleeDecl->getParent()); 403 EmitVTablePtrCheckForCall(RD, VTable, CFITCK_NVCall, CE->getBeginLoc()); 404 } 405 406 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier) 407 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty); 408 else if (!DevirtualizedMethod) 409 Callee = 410 CGCallee::forDirect(CGM.GetAddrOfFunction(MD, Ty), GlobalDecl(MD)); 411 else { 412 Callee = 413 CGCallee::forDirect(CGM.GetAddrOfFunction(DevirtualizedMethod, Ty), 414 GlobalDecl(DevirtualizedMethod)); 415 } 416 } 417 418 if (MD->isVirtual()) { 419 Address NewThisAddr = 420 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall( 421 *this, CalleeDecl, This.getAddress(*this), UseVirtualCall); 422 This.setAddress(NewThisAddr); 423 } 424 425 return EmitCXXMemberOrOperatorCall( 426 CalleeDecl, Callee, ReturnValue, This.getPointer(*this), 427 /*ImplicitParam=*/nullptr, QualType(), CE, RtlArgs); 428 } 429 430 RValue 431 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 432 ReturnValueSlot ReturnValue) { 433 const BinaryOperator *BO = 434 cast<BinaryOperator>(E->getCallee()->IgnoreParens()); 435 const Expr *BaseExpr = BO->getLHS(); 436 const Expr *MemFnExpr = BO->getRHS(); 437 438 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>(); 439 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>(); 440 const auto *RD = 441 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl()); 442 443 // Emit the 'this' pointer. 444 Address This = Address::invalid(); 445 if (BO->getOpcode() == BO_PtrMemI) 446 This = EmitPointerWithAlignment(BaseExpr); 447 else 448 This = EmitLValue(BaseExpr).getAddress(*this); 449 450 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(), 451 QualType(MPT->getClass(), 0)); 452 453 // Get the member function pointer. 454 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr); 455 456 // Ask the ABI to load the callee. Note that This is modified. 457 llvm::Value *ThisPtrForCall = nullptr; 458 CGCallee Callee = 459 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, 460 ThisPtrForCall, MemFnPtr, MPT); 461 462 CallArgList Args; 463 464 QualType ThisType = 465 getContext().getPointerType(getContext().getTagDeclType(RD)); 466 467 // Push the this ptr. 468 Args.add(RValue::get(ThisPtrForCall), ThisType); 469 470 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1); 471 472 // And the rest of the call args 473 EmitCallArgs(Args, FPT, E->arguments()); 474 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required, 475 /*PrefixSize=*/0), 476 Callee, ReturnValue, Args, nullptr, E == MustTailCall, 477 E->getExprLoc()); 478 } 479 480 RValue 481 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 482 const CXXMethodDecl *MD, 483 ReturnValueSlot ReturnValue) { 484 assert(MD->isInstance() && 485 "Trying to emit a member call expr on a static method!"); 486 return EmitCXXMemberOrOperatorMemberCallExpr( 487 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr, 488 /*IsArrow=*/false, E->getArg(0)); 489 } 490 491 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 492 ReturnValueSlot ReturnValue) { 493 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue); 494 } 495 496 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF, 497 Address DestPtr, 498 const CXXRecordDecl *Base) { 499 if (Base->isEmpty()) 500 return; 501 502 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty); 503 504 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base); 505 CharUnits NVSize = Layout.getNonVirtualSize(); 506 507 // We cannot simply zero-initialize the entire base sub-object if vbptrs are 508 // present, they are initialized by the most derived class before calling the 509 // constructor. 510 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores; 511 Stores.emplace_back(CharUnits::Zero(), NVSize); 512 513 // Each store is split by the existence of a vbptr. 514 CharUnits VBPtrWidth = CGF.getPointerSize(); 515 std::vector<CharUnits> VBPtrOffsets = 516 CGF.CGM.getCXXABI().getVBPtrOffsets(Base); 517 for (CharUnits VBPtrOffset : VBPtrOffsets) { 518 // Stop before we hit any virtual base pointers located in virtual bases. 519 if (VBPtrOffset >= NVSize) 520 break; 521 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val(); 522 CharUnits LastStoreOffset = LastStore.first; 523 CharUnits LastStoreSize = LastStore.second; 524 525 CharUnits SplitBeforeOffset = LastStoreOffset; 526 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset; 527 assert(!SplitBeforeSize.isNegative() && "negative store size!"); 528 if (!SplitBeforeSize.isZero()) 529 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize); 530 531 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth; 532 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset; 533 assert(!SplitAfterSize.isNegative() && "negative store size!"); 534 if (!SplitAfterSize.isZero()) 535 Stores.emplace_back(SplitAfterOffset, SplitAfterSize); 536 } 537 538 // If the type contains a pointer to data member we can't memset it to zero. 539 // Instead, create a null constant and copy it to the destination. 540 // TODO: there are other patterns besides zero that we can usefully memset, 541 // like -1, which happens to be the pattern used by member-pointers. 542 // TODO: isZeroInitializable can be over-conservative in the case where a 543 // virtual base contains a member pointer. 544 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base); 545 if (!NullConstantForBase->isNullValue()) { 546 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable( 547 CGF.CGM.getModule(), NullConstantForBase->getType(), 548 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, 549 NullConstantForBase, Twine()); 550 551 CharUnits Align = 552 std::max(Layout.getNonVirtualAlignment(), DestPtr.getAlignment()); 553 NullVariable->setAlignment(Align.getAsAlign()); 554 555 Address SrcPtr = 556 Address(CGF.EmitCastToVoidPtr(NullVariable), CGF.Int8Ty, Align); 557 558 // Get and call the appropriate llvm.memcpy overload. 559 for (std::pair<CharUnits, CharUnits> Store : Stores) { 560 CharUnits StoreOffset = Store.first; 561 CharUnits StoreSize = Store.second; 562 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 563 CGF.Builder.CreateMemCpy( 564 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 565 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset), 566 StoreSizeVal); 567 } 568 569 // Otherwise, just memset the whole thing to zero. This is legal 570 // because in LLVM, all default initializers (other than the ones we just 571 // handled above) are guaranteed to have a bit pattern of all zeros. 572 } else { 573 for (std::pair<CharUnits, CharUnits> Store : Stores) { 574 CharUnits StoreOffset = Store.first; 575 CharUnits StoreSize = Store.second; 576 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize); 577 CGF.Builder.CreateMemSet( 578 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset), 579 CGF.Builder.getInt8(0), StoreSizeVal); 580 } 581 } 582 } 583 584 void 585 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E, 586 AggValueSlot Dest) { 587 assert(!Dest.isIgnored() && "Must have a destination!"); 588 const CXXConstructorDecl *CD = E->getConstructor(); 589 590 // If we require zero initialization before (or instead of) calling the 591 // constructor, as can be the case with a non-user-provided default 592 // constructor, emit the zero initialization now, unless destination is 593 // already zeroed. 594 if (E->requiresZeroInitialization() && !Dest.isZeroed()) { 595 switch (E->getConstructionKind()) { 596 case CXXConstructExpr::CK_Delegating: 597 case CXXConstructExpr::CK_Complete: 598 EmitNullInitialization(Dest.getAddress(), E->getType()); 599 break; 600 case CXXConstructExpr::CK_VirtualBase: 601 case CXXConstructExpr::CK_NonVirtualBase: 602 EmitNullBaseClassInitialization(*this, Dest.getAddress(), 603 CD->getParent()); 604 break; 605 } 606 } 607 608 // If this is a call to a trivial default constructor, do nothing. 609 if (CD->isTrivial() && CD->isDefaultConstructor()) 610 return; 611 612 // Elide the constructor if we're constructing from a temporary. 613 if (getLangOpts().ElideConstructors && E->isElidable()) { 614 // FIXME: This only handles the simplest case, where the source object 615 // is passed directly as the first argument to the constructor. 616 // This should also handle stepping though implicit casts and 617 // conversion sequences which involve two steps, with a 618 // conversion operator followed by a converting constructor. 619 const Expr *SrcObj = E->getArg(0); 620 assert(SrcObj->isTemporaryObject(getContext(), CD->getParent())); 621 assert( 622 getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType())); 623 EmitAggExpr(SrcObj, Dest); 624 return; 625 } 626 627 if (const ArrayType *arrayType 628 = getContext().getAsArrayType(E->getType())) { 629 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E, 630 Dest.isSanitizerChecked()); 631 } else { 632 CXXCtorType Type = Ctor_Complete; 633 bool ForVirtualBase = false; 634 bool Delegating = false; 635 636 switch (E->getConstructionKind()) { 637 case CXXConstructExpr::CK_Delegating: 638 // We should be emitting a constructor; GlobalDecl will assert this 639 Type = CurGD.getCtorType(); 640 Delegating = true; 641 break; 642 643 case CXXConstructExpr::CK_Complete: 644 Type = Ctor_Complete; 645 break; 646 647 case CXXConstructExpr::CK_VirtualBase: 648 ForVirtualBase = true; 649 LLVM_FALLTHROUGH; 650 651 case CXXConstructExpr::CK_NonVirtualBase: 652 Type = Ctor_Base; 653 } 654 655 // Call the constructor. 656 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest, E); 657 } 658 } 659 660 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, 661 const Expr *Exp) { 662 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp)) 663 Exp = E->getSubExpr(); 664 assert(isa<CXXConstructExpr>(Exp) && 665 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr"); 666 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp); 667 const CXXConstructorDecl *CD = E->getConstructor(); 668 RunCleanupsScope Scope(*this); 669 670 // If we require zero initialization before (or instead of) calling the 671 // constructor, as can be the case with a non-user-provided default 672 // constructor, emit the zero initialization now. 673 // FIXME. Do I still need this for a copy ctor synthesis? 674 if (E->requiresZeroInitialization()) 675 EmitNullInitialization(Dest, E->getType()); 676 677 assert(!getContext().getAsConstantArrayType(E->getType()) 678 && "EmitSynthesizedCXXCopyCtor - Copied-in Array"); 679 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E); 680 } 681 682 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF, 683 const CXXNewExpr *E) { 684 if (!E->isArray()) 685 return CharUnits::Zero(); 686 687 // No cookie is required if the operator new[] being used is the 688 // reserved placement operator new[]. 689 if (E->getOperatorNew()->isReservedGlobalPlacementOperator()) 690 return CharUnits::Zero(); 691 692 return CGF.CGM.getCXXABI().GetArrayCookieSize(E); 693 } 694 695 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF, 696 const CXXNewExpr *e, 697 unsigned minElements, 698 llvm::Value *&numElements, 699 llvm::Value *&sizeWithoutCookie) { 700 QualType type = e->getAllocatedType(); 701 702 if (!e->isArray()) { 703 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 704 sizeWithoutCookie 705 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity()); 706 return sizeWithoutCookie; 707 } 708 709 // The width of size_t. 710 unsigned sizeWidth = CGF.SizeTy->getBitWidth(); 711 712 // Figure out the cookie size. 713 llvm::APInt cookieSize(sizeWidth, 714 CalculateCookiePadding(CGF, e).getQuantity()); 715 716 // Emit the array size expression. 717 // We multiply the size of all dimensions for NumElements. 718 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6. 719 numElements = 720 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType()); 721 if (!numElements) 722 numElements = CGF.EmitScalarExpr(*e->getArraySize()); 723 assert(isa<llvm::IntegerType>(numElements->getType())); 724 725 // The number of elements can be have an arbitrary integer type; 726 // essentially, we need to multiply it by a constant factor, add a 727 // cookie size, and verify that the result is representable as a 728 // size_t. That's just a gloss, though, and it's wrong in one 729 // important way: if the count is negative, it's an error even if 730 // the cookie size would bring the total size >= 0. 731 bool isSigned 732 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType(); 733 llvm::IntegerType *numElementsType 734 = cast<llvm::IntegerType>(numElements->getType()); 735 unsigned numElementsWidth = numElementsType->getBitWidth(); 736 737 // Compute the constant factor. 738 llvm::APInt arraySizeMultiplier(sizeWidth, 1); 739 while (const ConstantArrayType *CAT 740 = CGF.getContext().getAsConstantArrayType(type)) { 741 type = CAT->getElementType(); 742 arraySizeMultiplier *= CAT->getSize(); 743 } 744 745 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type); 746 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity()); 747 typeSizeMultiplier *= arraySizeMultiplier; 748 749 // This will be a size_t. 750 llvm::Value *size; 751 752 // If someone is doing 'new int[42]' there is no need to do a dynamic check. 753 // Don't bloat the -O0 code. 754 if (llvm::ConstantInt *numElementsC = 755 dyn_cast<llvm::ConstantInt>(numElements)) { 756 const llvm::APInt &count = numElementsC->getValue(); 757 758 bool hasAnyOverflow = false; 759 760 // If 'count' was a negative number, it's an overflow. 761 if (isSigned && count.isNegative()) 762 hasAnyOverflow = true; 763 764 // We want to do all this arithmetic in size_t. If numElements is 765 // wider than that, check whether it's already too big, and if so, 766 // overflow. 767 else if (numElementsWidth > sizeWidth && 768 numElementsWidth - sizeWidth > count.countLeadingZeros()) 769 hasAnyOverflow = true; 770 771 // Okay, compute a count at the right width. 772 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth); 773 774 // If there is a brace-initializer, we cannot allocate fewer elements than 775 // there are initializers. If we do, that's treated like an overflow. 776 if (adjustedCount.ult(minElements)) 777 hasAnyOverflow = true; 778 779 // Scale numElements by that. This might overflow, but we don't 780 // care because it only overflows if allocationSize does, too, and 781 // if that overflows then we shouldn't use this. 782 numElements = llvm::ConstantInt::get(CGF.SizeTy, 783 adjustedCount * arraySizeMultiplier); 784 785 // Compute the size before cookie, and track whether it overflowed. 786 bool overflow; 787 llvm::APInt allocationSize 788 = adjustedCount.umul_ov(typeSizeMultiplier, overflow); 789 hasAnyOverflow |= overflow; 790 791 // Add in the cookie, and check whether it's overflowed. 792 if (cookieSize != 0) { 793 // Save the current size without a cookie. This shouldn't be 794 // used if there was overflow. 795 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 796 797 allocationSize = allocationSize.uadd_ov(cookieSize, overflow); 798 hasAnyOverflow |= overflow; 799 } 800 801 // On overflow, produce a -1 so operator new will fail. 802 if (hasAnyOverflow) { 803 size = llvm::Constant::getAllOnesValue(CGF.SizeTy); 804 } else { 805 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize); 806 } 807 808 // Otherwise, we might need to use the overflow intrinsics. 809 } else { 810 // There are up to five conditions we need to test for: 811 // 1) if isSigned, we need to check whether numElements is negative; 812 // 2) if numElementsWidth > sizeWidth, we need to check whether 813 // numElements is larger than something representable in size_t; 814 // 3) if minElements > 0, we need to check whether numElements is smaller 815 // than that. 816 // 4) we need to compute 817 // sizeWithoutCookie := numElements * typeSizeMultiplier 818 // and check whether it overflows; and 819 // 5) if we need a cookie, we need to compute 820 // size := sizeWithoutCookie + cookieSize 821 // and check whether it overflows. 822 823 llvm::Value *hasOverflow = nullptr; 824 825 // If numElementsWidth > sizeWidth, then one way or another, we're 826 // going to have to do a comparison for (2), and this happens to 827 // take care of (1), too. 828 if (numElementsWidth > sizeWidth) { 829 llvm::APInt threshold(numElementsWidth, 1); 830 threshold <<= sizeWidth; 831 832 llvm::Value *thresholdV 833 = llvm::ConstantInt::get(numElementsType, threshold); 834 835 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV); 836 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy); 837 838 // Otherwise, if we're signed, we want to sext up to size_t. 839 } else if (isSigned) { 840 if (numElementsWidth < sizeWidth) 841 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy); 842 843 // If there's a non-1 type size multiplier, then we can do the 844 // signedness check at the same time as we do the multiply 845 // because a negative number times anything will cause an 846 // unsigned overflow. Otherwise, we have to do it here. But at least 847 // in this case, we can subsume the >= minElements check. 848 if (typeSizeMultiplier == 1) 849 hasOverflow = CGF.Builder.CreateICmpSLT(numElements, 850 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 851 852 // Otherwise, zext up to size_t if necessary. 853 } else if (numElementsWidth < sizeWidth) { 854 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy); 855 } 856 857 assert(numElements->getType() == CGF.SizeTy); 858 859 if (minElements) { 860 // Don't allow allocation of fewer elements than we have initializers. 861 if (!hasOverflow) { 862 hasOverflow = CGF.Builder.CreateICmpULT(numElements, 863 llvm::ConstantInt::get(CGF.SizeTy, minElements)); 864 } else if (numElementsWidth > sizeWidth) { 865 // The other existing overflow subsumes this check. 866 // We do an unsigned comparison, since any signed value < -1 is 867 // taken care of either above or below. 868 hasOverflow = CGF.Builder.CreateOr(hasOverflow, 869 CGF.Builder.CreateICmpULT(numElements, 870 llvm::ConstantInt::get(CGF.SizeTy, minElements))); 871 } 872 } 873 874 size = numElements; 875 876 // Multiply by the type size if necessary. This multiplier 877 // includes all the factors for nested arrays. 878 // 879 // This step also causes numElements to be scaled up by the 880 // nested-array factor if necessary. Overflow on this computation 881 // can be ignored because the result shouldn't be used if 882 // allocation fails. 883 if (typeSizeMultiplier != 1) { 884 llvm::Function *umul_with_overflow 885 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy); 886 887 llvm::Value *tsmV = 888 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier); 889 llvm::Value *result = 890 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV}); 891 892 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 893 if (hasOverflow) 894 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 895 else 896 hasOverflow = overflowed; 897 898 size = CGF.Builder.CreateExtractValue(result, 0); 899 900 // Also scale up numElements by the array size multiplier. 901 if (arraySizeMultiplier != 1) { 902 // If the base element type size is 1, then we can re-use the 903 // multiply we just did. 904 if (typeSize.isOne()) { 905 assert(arraySizeMultiplier == typeSizeMultiplier); 906 numElements = size; 907 908 // Otherwise we need a separate multiply. 909 } else { 910 llvm::Value *asmV = 911 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier); 912 numElements = CGF.Builder.CreateMul(numElements, asmV); 913 } 914 } 915 } else { 916 // numElements doesn't need to be scaled. 917 assert(arraySizeMultiplier == 1); 918 } 919 920 // Add in the cookie size if necessary. 921 if (cookieSize != 0) { 922 sizeWithoutCookie = size; 923 924 llvm::Function *uadd_with_overflow 925 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy); 926 927 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize); 928 llvm::Value *result = 929 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV}); 930 931 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1); 932 if (hasOverflow) 933 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed); 934 else 935 hasOverflow = overflowed; 936 937 size = CGF.Builder.CreateExtractValue(result, 0); 938 } 939 940 // If we had any possibility of dynamic overflow, make a select to 941 // overwrite 'size' with an all-ones value, which should cause 942 // operator new to throw. 943 if (hasOverflow) 944 size = CGF.Builder.CreateSelect(hasOverflow, 945 llvm::Constant::getAllOnesValue(CGF.SizeTy), 946 size); 947 } 948 949 if (cookieSize == 0) 950 sizeWithoutCookie = size; 951 else 952 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?"); 953 954 return size; 955 } 956 957 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init, 958 QualType AllocType, Address NewPtr, 959 AggValueSlot::Overlap_t MayOverlap) { 960 // FIXME: Refactor with EmitExprAsInit. 961 switch (CGF.getEvaluationKind(AllocType)) { 962 case TEK_Scalar: 963 CGF.EmitScalarInit(Init, nullptr, 964 CGF.MakeAddrLValue(NewPtr, AllocType), false); 965 return; 966 case TEK_Complex: 967 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType), 968 /*isInit*/ true); 969 return; 970 case TEK_Aggregate: { 971 AggValueSlot Slot 972 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(), 973 AggValueSlot::IsDestructed, 974 AggValueSlot::DoesNotNeedGCBarriers, 975 AggValueSlot::IsNotAliased, 976 MayOverlap, AggValueSlot::IsNotZeroed, 977 AggValueSlot::IsSanitizerChecked); 978 CGF.EmitAggExpr(Init, Slot); 979 return; 980 } 981 } 982 llvm_unreachable("bad evaluation kind"); 983 } 984 985 void CodeGenFunction::EmitNewArrayInitializer( 986 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy, 987 Address BeginPtr, llvm::Value *NumElements, 988 llvm::Value *AllocSizeWithoutCookie) { 989 // If we have a type with trivial initialization and no initializer, 990 // there's nothing to do. 991 if (!E->hasInitializer()) 992 return; 993 994 Address CurPtr = BeginPtr; 995 996 unsigned InitListElements = 0; 997 998 const Expr *Init = E->getInitializer(); 999 Address EndOfInit = Address::invalid(); 1000 QualType::DestructionKind DtorKind = ElementType.isDestructedType(); 1001 EHScopeStack::stable_iterator Cleanup; 1002 llvm::Instruction *CleanupDominator = nullptr; 1003 1004 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType); 1005 CharUnits ElementAlign = 1006 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize); 1007 1008 // Attempt to perform zero-initialization using memset. 1009 auto TryMemsetInitialization = [&]() -> bool { 1010 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI, 1011 // we can initialize with a memset to -1. 1012 if (!CGM.getTypes().isZeroInitializable(ElementType)) 1013 return false; 1014 1015 // Optimization: since zero initialization will just set the memory 1016 // to all zeroes, generate a single memset to do it in one shot. 1017 1018 // Subtract out the size of any elements we've already initialized. 1019 auto *RemainingSize = AllocSizeWithoutCookie; 1020 if (InitListElements) { 1021 // We know this can't overflow; we check this when doing the allocation. 1022 auto *InitializedSize = llvm::ConstantInt::get( 1023 RemainingSize->getType(), 1024 getContext().getTypeSizeInChars(ElementType).getQuantity() * 1025 InitListElements); 1026 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize); 1027 } 1028 1029 // Create the memset. 1030 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false); 1031 return true; 1032 }; 1033 1034 // If the initializer is an initializer list, first do the explicit elements. 1035 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 1036 // Initializing from a (braced) string literal is a special case; the init 1037 // list element does not initialize a (single) array element. 1038 if (ILE->isStringLiteralInit()) { 1039 // Initialize the initial portion of length equal to that of the string 1040 // literal. The allocation must be for at least this much; we emitted a 1041 // check for that earlier. 1042 AggValueSlot Slot = 1043 AggValueSlot::forAddr(CurPtr, ElementType.getQualifiers(), 1044 AggValueSlot::IsDestructed, 1045 AggValueSlot::DoesNotNeedGCBarriers, 1046 AggValueSlot::IsNotAliased, 1047 AggValueSlot::DoesNotOverlap, 1048 AggValueSlot::IsNotZeroed, 1049 AggValueSlot::IsSanitizerChecked); 1050 EmitAggExpr(ILE->getInit(0), Slot); 1051 1052 // Move past these elements. 1053 InitListElements = 1054 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1055 ->getSize().getZExtValue(); 1056 CurPtr = Builder.CreateConstInBoundsGEP( 1057 CurPtr, InitListElements, "string.init.end"); 1058 1059 // Zero out the rest, if any remain. 1060 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1061 if (!ConstNum || !ConstNum->equalsInt(InitListElements)) { 1062 bool OK = TryMemsetInitialization(); 1063 (void)OK; 1064 assert(OK && "couldn't memset character type?"); 1065 } 1066 return; 1067 } 1068 1069 InitListElements = ILE->getNumInits(); 1070 1071 // If this is a multi-dimensional array new, we will initialize multiple 1072 // elements with each init list element. 1073 QualType AllocType = E->getAllocatedType(); 1074 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>( 1075 AllocType->getAsArrayTypeUnsafe())) { 1076 ElementTy = ConvertTypeForMem(AllocType); 1077 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy); 1078 InitListElements *= getContext().getConstantArrayElementCount(CAT); 1079 } 1080 1081 // Enter a partial-destruction Cleanup if necessary. 1082 if (needsEHCleanup(DtorKind)) { 1083 // In principle we could tell the Cleanup where we are more 1084 // directly, but the control flow can get so varied here that it 1085 // would actually be quite complex. Therefore we go through an 1086 // alloca. 1087 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(), 1088 "array.init.end"); 1089 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit); 1090 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit, 1091 ElementType, ElementAlign, 1092 getDestroyer(DtorKind)); 1093 Cleanup = EHStack.stable_begin(); 1094 } 1095 1096 CharUnits StartAlign = CurPtr.getAlignment(); 1097 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) { 1098 // Tell the cleanup that it needs to destroy up to this 1099 // element. TODO: some of these stores can be trivially 1100 // observed to be unnecessary. 1101 if (EndOfInit.isValid()) { 1102 auto FinishedPtr = 1103 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType()); 1104 Builder.CreateStore(FinishedPtr, EndOfInit); 1105 } 1106 // FIXME: If the last initializer is an incomplete initializer list for 1107 // an array, and we have an array filler, we can fold together the two 1108 // initialization loops. 1109 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), 1110 ILE->getInit(i)->getType(), CurPtr, 1111 AggValueSlot::DoesNotOverlap); 1112 CurPtr = Address(Builder.CreateInBoundsGEP( 1113 CurPtr.getElementType(), CurPtr.getPointer(), 1114 Builder.getSize(1), "array.exp.next"), 1115 CurPtr.getElementType(), 1116 StartAlign.alignmentAtOffset((i + 1) * ElementSize)); 1117 } 1118 1119 // The remaining elements are filled with the array filler expression. 1120 Init = ILE->getArrayFiller(); 1121 1122 // Extract the initializer for the individual array elements by pulling 1123 // out the array filler from all the nested initializer lists. This avoids 1124 // generating a nested loop for the initialization. 1125 while (Init && Init->getType()->isConstantArrayType()) { 1126 auto *SubILE = dyn_cast<InitListExpr>(Init); 1127 if (!SubILE) 1128 break; 1129 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?"); 1130 Init = SubILE->getArrayFiller(); 1131 } 1132 1133 // Switch back to initializing one base element at a time. 1134 CurPtr = Builder.CreateElementBitCast(CurPtr, BeginPtr.getElementType()); 1135 } 1136 1137 // If all elements have already been initialized, skip any further 1138 // initialization. 1139 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements); 1140 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) { 1141 // If there was a Cleanup, deactivate it. 1142 if (CleanupDominator) 1143 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1144 return; 1145 } 1146 1147 assert(Init && "have trailing elements to initialize but no initializer"); 1148 1149 // If this is a constructor call, try to optimize it out, and failing that 1150 // emit a single loop to initialize all remaining elements. 1151 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 1152 CXXConstructorDecl *Ctor = CCE->getConstructor(); 1153 if (Ctor->isTrivial()) { 1154 // If new expression did not specify value-initialization, then there 1155 // is no initialization. 1156 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty()) 1157 return; 1158 1159 if (TryMemsetInitialization()) 1160 return; 1161 } 1162 1163 // Store the new Cleanup position for irregular Cleanups. 1164 // 1165 // FIXME: Share this cleanup with the constructor call emission rather than 1166 // having it create a cleanup of its own. 1167 if (EndOfInit.isValid()) 1168 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1169 1170 // Emit a constructor call loop to initialize the remaining elements. 1171 if (InitListElements) 1172 NumElements = Builder.CreateSub( 1173 NumElements, 1174 llvm::ConstantInt::get(NumElements->getType(), InitListElements)); 1175 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE, 1176 /*NewPointerIsChecked*/true, 1177 CCE->requiresZeroInitialization()); 1178 return; 1179 } 1180 1181 // If this is value-initialization, we can usually use memset. 1182 ImplicitValueInitExpr IVIE(ElementType); 1183 if (isa<ImplicitValueInitExpr>(Init)) { 1184 if (TryMemsetInitialization()) 1185 return; 1186 1187 // Switch to an ImplicitValueInitExpr for the element type. This handles 1188 // only one case: multidimensional array new of pointers to members. In 1189 // all other cases, we already have an initializer for the array element. 1190 Init = &IVIE; 1191 } 1192 1193 // At this point we should have found an initializer for the individual 1194 // elements of the array. 1195 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) && 1196 "got wrong type of element to initialize"); 1197 1198 // If we have an empty initializer list, we can usually use memset. 1199 if (auto *ILE = dyn_cast<InitListExpr>(Init)) 1200 if (ILE->getNumInits() == 0 && TryMemsetInitialization()) 1201 return; 1202 1203 // If we have a struct whose every field is value-initialized, we can 1204 // usually use memset. 1205 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 1206 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 1207 if (RType->getDecl()->isStruct()) { 1208 unsigned NumElements = 0; 1209 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl())) 1210 NumElements = CXXRD->getNumBases(); 1211 for (auto *Field : RType->getDecl()->fields()) 1212 if (!Field->isUnnamedBitfield()) 1213 ++NumElements; 1214 // FIXME: Recurse into nested InitListExprs. 1215 if (ILE->getNumInits() == NumElements) 1216 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1217 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i))) 1218 --NumElements; 1219 if (ILE->getNumInits() == NumElements && TryMemsetInitialization()) 1220 return; 1221 } 1222 } 1223 } 1224 1225 // Create the loop blocks. 1226 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock(); 1227 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop"); 1228 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end"); 1229 1230 // Find the end of the array, hoisted out of the loop. 1231 llvm::Value *EndPtr = 1232 Builder.CreateInBoundsGEP(BeginPtr.getElementType(), BeginPtr.getPointer(), 1233 NumElements, "array.end"); 1234 1235 // If the number of elements isn't constant, we have to now check if there is 1236 // anything left to initialize. 1237 if (!ConstNum) { 1238 llvm::Value *IsEmpty = 1239 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty"); 1240 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB); 1241 } 1242 1243 // Enter the loop. 1244 EmitBlock(LoopBB); 1245 1246 // Set up the current-element phi. 1247 llvm::PHINode *CurPtrPhi = 1248 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur"); 1249 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB); 1250 1251 CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign); 1252 1253 // Store the new Cleanup position for irregular Cleanups. 1254 if (EndOfInit.isValid()) 1255 Builder.CreateStore(CurPtr.getPointer(), EndOfInit); 1256 1257 // Enter a partial-destruction Cleanup if necessary. 1258 if (!CleanupDominator && needsEHCleanup(DtorKind)) { 1259 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(), 1260 ElementType, ElementAlign, 1261 getDestroyer(DtorKind)); 1262 Cleanup = EHStack.stable_begin(); 1263 CleanupDominator = Builder.CreateUnreachable(); 1264 } 1265 1266 // Emit the initializer into this element. 1267 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr, 1268 AggValueSlot::DoesNotOverlap); 1269 1270 // Leave the Cleanup if we entered one. 1271 if (CleanupDominator) { 1272 DeactivateCleanupBlock(Cleanup, CleanupDominator); 1273 CleanupDominator->eraseFromParent(); 1274 } 1275 1276 // Advance to the next element by adjusting the pointer type as necessary. 1277 llvm::Value *NextPtr = 1278 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1, 1279 "array.next"); 1280 1281 // Check whether we've gotten to the end of the array and, if so, 1282 // exit the loop. 1283 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend"); 1284 Builder.CreateCondBr(IsEnd, ContBB, LoopBB); 1285 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock()); 1286 1287 EmitBlock(ContBB); 1288 } 1289 1290 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E, 1291 QualType ElementType, llvm::Type *ElementTy, 1292 Address NewPtr, llvm::Value *NumElements, 1293 llvm::Value *AllocSizeWithoutCookie) { 1294 ApplyDebugLocation DL(CGF, E); 1295 if (E->isArray()) 1296 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements, 1297 AllocSizeWithoutCookie); 1298 else if (const Expr *Init = E->getInitializer()) 1299 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr, 1300 AggValueSlot::DoesNotOverlap); 1301 } 1302 1303 /// Emit a call to an operator new or operator delete function, as implicitly 1304 /// created by new-expressions and delete-expressions. 1305 static RValue EmitNewDeleteCall(CodeGenFunction &CGF, 1306 const FunctionDecl *CalleeDecl, 1307 const FunctionProtoType *CalleeType, 1308 const CallArgList &Args) { 1309 llvm::CallBase *CallOrInvoke; 1310 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(CalleeDecl); 1311 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(CalleeDecl)); 1312 RValue RV = 1313 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall( 1314 Args, CalleeType, /*ChainCall=*/false), 1315 Callee, ReturnValueSlot(), Args, &CallOrInvoke); 1316 1317 /// C++1y [expr.new]p10: 1318 /// [In a new-expression,] an implementation is allowed to omit a call 1319 /// to a replaceable global allocation function. 1320 /// 1321 /// We model such elidable calls with the 'builtin' attribute. 1322 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleePtr); 1323 if (CalleeDecl->isReplaceableGlobalAllocationFunction() && 1324 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) { 1325 CallOrInvoke->addFnAttr(llvm::Attribute::Builtin); 1326 } 1327 1328 return RV; 1329 } 1330 1331 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1332 const CallExpr *TheCall, 1333 bool IsDelete) { 1334 CallArgList Args; 1335 EmitCallArgs(Args, Type, TheCall->arguments()); 1336 // Find the allocation or deallocation function that we're calling. 1337 ASTContext &Ctx = getContext(); 1338 DeclarationName Name = Ctx.DeclarationNames 1339 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New); 1340 1341 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name)) 1342 if (auto *FD = dyn_cast<FunctionDecl>(Decl)) 1343 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0))) 1344 return EmitNewDeleteCall(*this, FD, Type, Args); 1345 llvm_unreachable("predeclared global operator new/delete is missing"); 1346 } 1347 1348 namespace { 1349 /// The parameters to pass to a usual operator delete. 1350 struct UsualDeleteParams { 1351 bool DestroyingDelete = false; 1352 bool Size = false; 1353 bool Alignment = false; 1354 }; 1355 } 1356 1357 static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) { 1358 UsualDeleteParams Params; 1359 1360 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); 1361 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end(); 1362 1363 // The first argument is always a void*. 1364 ++AI; 1365 1366 // The next parameter may be a std::destroying_delete_t. 1367 if (FD->isDestroyingOperatorDelete()) { 1368 Params.DestroyingDelete = true; 1369 assert(AI != AE); 1370 ++AI; 1371 } 1372 1373 // Figure out what other parameters we should be implicitly passing. 1374 if (AI != AE && (*AI)->isIntegerType()) { 1375 Params.Size = true; 1376 ++AI; 1377 } 1378 1379 if (AI != AE && (*AI)->isAlignValT()) { 1380 Params.Alignment = true; 1381 ++AI; 1382 } 1383 1384 assert(AI == AE && "unexpected usual deallocation function parameter"); 1385 return Params; 1386 } 1387 1388 namespace { 1389 /// A cleanup to call the given 'operator delete' function upon abnormal 1390 /// exit from a new expression. Templated on a traits type that deals with 1391 /// ensuring that the arguments dominate the cleanup if necessary. 1392 template<typename Traits> 1393 class CallDeleteDuringNew final : public EHScopeStack::Cleanup { 1394 /// Type used to hold llvm::Value*s. 1395 typedef typename Traits::ValueTy ValueTy; 1396 /// Type used to hold RValues. 1397 typedef typename Traits::RValueTy RValueTy; 1398 struct PlacementArg { 1399 RValueTy ArgValue; 1400 QualType ArgType; 1401 }; 1402 1403 unsigned NumPlacementArgs : 31; 1404 unsigned PassAlignmentToPlacementDelete : 1; 1405 const FunctionDecl *OperatorDelete; 1406 ValueTy Ptr; 1407 ValueTy AllocSize; 1408 CharUnits AllocAlign; 1409 1410 PlacementArg *getPlacementArgs() { 1411 return reinterpret_cast<PlacementArg *>(this + 1); 1412 } 1413 1414 public: 1415 static size_t getExtraSize(size_t NumPlacementArgs) { 1416 return NumPlacementArgs * sizeof(PlacementArg); 1417 } 1418 1419 CallDeleteDuringNew(size_t NumPlacementArgs, 1420 const FunctionDecl *OperatorDelete, ValueTy Ptr, 1421 ValueTy AllocSize, bool PassAlignmentToPlacementDelete, 1422 CharUnits AllocAlign) 1423 : NumPlacementArgs(NumPlacementArgs), 1424 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete), 1425 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize), 1426 AllocAlign(AllocAlign) {} 1427 1428 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) { 1429 assert(I < NumPlacementArgs && "index out of range"); 1430 getPlacementArgs()[I] = {Arg, Type}; 1431 } 1432 1433 void Emit(CodeGenFunction &CGF, Flags flags) override { 1434 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>(); 1435 CallArgList DeleteArgs; 1436 1437 // The first argument is always a void* (or C* for a destroying operator 1438 // delete for class type C). 1439 DeleteArgs.add(Traits::get(CGF, Ptr), FPT->getParamType(0)); 1440 1441 // Figure out what other parameters we should be implicitly passing. 1442 UsualDeleteParams Params; 1443 if (NumPlacementArgs) { 1444 // A placement deallocation function is implicitly passed an alignment 1445 // if the placement allocation function was, but is never passed a size. 1446 Params.Alignment = PassAlignmentToPlacementDelete; 1447 } else { 1448 // For a non-placement new-expression, 'operator delete' can take a 1449 // size and/or an alignment if it has the right parameters. 1450 Params = getUsualDeleteParams(OperatorDelete); 1451 } 1452 1453 assert(!Params.DestroyingDelete && 1454 "should not call destroying delete in a new-expression"); 1455 1456 // The second argument can be a std::size_t (for non-placement delete). 1457 if (Params.Size) 1458 DeleteArgs.add(Traits::get(CGF, AllocSize), 1459 CGF.getContext().getSizeType()); 1460 1461 // The next (second or third) argument can be a std::align_val_t, which 1462 // is an enum whose underlying type is std::size_t. 1463 // FIXME: Use the right type as the parameter type. Note that in a call 1464 // to operator delete(size_t, ...), we may not have it available. 1465 if (Params.Alignment) 1466 DeleteArgs.add(RValue::get(llvm::ConstantInt::get( 1467 CGF.SizeTy, AllocAlign.getQuantity())), 1468 CGF.getContext().getSizeType()); 1469 1470 // Pass the rest of the arguments, which must match exactly. 1471 for (unsigned I = 0; I != NumPlacementArgs; ++I) { 1472 auto Arg = getPlacementArgs()[I]; 1473 DeleteArgs.add(Traits::get(CGF, Arg.ArgValue), Arg.ArgType); 1474 } 1475 1476 // Call 'operator delete'. 1477 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs); 1478 } 1479 }; 1480 } 1481 1482 /// Enter a cleanup to call 'operator delete' if the initializer in a 1483 /// new-expression throws. 1484 static void EnterNewDeleteCleanup(CodeGenFunction &CGF, 1485 const CXXNewExpr *E, 1486 Address NewPtr, 1487 llvm::Value *AllocSize, 1488 CharUnits AllocAlign, 1489 const CallArgList &NewArgs) { 1490 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1; 1491 1492 // If we're not inside a conditional branch, then the cleanup will 1493 // dominate and we can do the easier (and more efficient) thing. 1494 if (!CGF.isInConditionalBranch()) { 1495 struct DirectCleanupTraits { 1496 typedef llvm::Value *ValueTy; 1497 typedef RValue RValueTy; 1498 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); } 1499 static RValue get(CodeGenFunction &, RValueTy V) { return V; } 1500 }; 1501 1502 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup; 1503 1504 DirectCleanup *Cleanup = CGF.EHStack 1505 .pushCleanupWithExtra<DirectCleanup>(EHCleanup, 1506 E->getNumPlacementArgs(), 1507 E->getOperatorDelete(), 1508 NewPtr.getPointer(), 1509 AllocSize, 1510 E->passAlignment(), 1511 AllocAlign); 1512 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1513 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1514 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty); 1515 } 1516 1517 return; 1518 } 1519 1520 // Otherwise, we need to save all this stuff. 1521 DominatingValue<RValue>::saved_type SavedNewPtr = 1522 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer())); 1523 DominatingValue<RValue>::saved_type SavedAllocSize = 1524 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize)); 1525 1526 struct ConditionalCleanupTraits { 1527 typedef DominatingValue<RValue>::saved_type ValueTy; 1528 typedef DominatingValue<RValue>::saved_type RValueTy; 1529 static RValue get(CodeGenFunction &CGF, ValueTy V) { 1530 return V.restore(CGF); 1531 } 1532 }; 1533 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup; 1534 1535 ConditionalCleanup *Cleanup = CGF.EHStack 1536 .pushCleanupWithExtra<ConditionalCleanup>(EHCleanup, 1537 E->getNumPlacementArgs(), 1538 E->getOperatorDelete(), 1539 SavedNewPtr, 1540 SavedAllocSize, 1541 E->passAlignment(), 1542 AllocAlign); 1543 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) { 1544 auto &Arg = NewArgs[I + NumNonPlacementArgs]; 1545 Cleanup->setPlacementArg( 1546 I, DominatingValue<RValue>::save(CGF, Arg.getRValue(CGF)), Arg.Ty); 1547 } 1548 1549 CGF.initFullExprCleanup(); 1550 } 1551 1552 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) { 1553 // The element type being allocated. 1554 QualType allocType = getContext().getBaseElementType(E->getAllocatedType()); 1555 1556 // 1. Build a call to the allocation function. 1557 FunctionDecl *allocator = E->getOperatorNew(); 1558 1559 // If there is a brace-initializer, cannot allocate fewer elements than inits. 1560 unsigned minElements = 0; 1561 if (E->isArray() && E->hasInitializer()) { 1562 const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()); 1563 if (ILE && ILE->isStringLiteralInit()) 1564 minElements = 1565 cast<ConstantArrayType>(ILE->getType()->getAsArrayTypeUnsafe()) 1566 ->getSize().getZExtValue(); 1567 else if (ILE) 1568 minElements = ILE->getNumInits(); 1569 } 1570 1571 llvm::Value *numElements = nullptr; 1572 llvm::Value *allocSizeWithoutCookie = nullptr; 1573 llvm::Value *allocSize = 1574 EmitCXXNewAllocSize(*this, E, minElements, numElements, 1575 allocSizeWithoutCookie); 1576 CharUnits allocAlign = getContext().getTypeAlignInChars(allocType); 1577 1578 // Emit the allocation call. If the allocator is a global placement 1579 // operator, just "inline" it directly. 1580 Address allocation = Address::invalid(); 1581 CallArgList allocatorArgs; 1582 if (allocator->isReservedGlobalPlacementOperator()) { 1583 assert(E->getNumPlacementArgs() == 1); 1584 const Expr *arg = *E->placement_arguments().begin(); 1585 1586 LValueBaseInfo BaseInfo; 1587 allocation = EmitPointerWithAlignment(arg, &BaseInfo); 1588 1589 // The pointer expression will, in many cases, be an opaque void*. 1590 // In these cases, discard the computed alignment and use the 1591 // formal alignment of the allocated type. 1592 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl) 1593 allocation = allocation.withAlignment(allocAlign); 1594 1595 // Set up allocatorArgs for the call to operator delete if it's not 1596 // the reserved global operator. 1597 if (E->getOperatorDelete() && 1598 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1599 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType()); 1600 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType()); 1601 } 1602 1603 } else { 1604 const FunctionProtoType *allocatorType = 1605 allocator->getType()->castAs<FunctionProtoType>(); 1606 unsigned ParamsToSkip = 0; 1607 1608 // The allocation size is the first argument. 1609 QualType sizeType = getContext().getSizeType(); 1610 allocatorArgs.add(RValue::get(allocSize), sizeType); 1611 ++ParamsToSkip; 1612 1613 if (allocSize != allocSizeWithoutCookie) { 1614 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI. 1615 allocAlign = std::max(allocAlign, cookieAlign); 1616 } 1617 1618 // The allocation alignment may be passed as the second argument. 1619 if (E->passAlignment()) { 1620 QualType AlignValT = sizeType; 1621 if (allocatorType->getNumParams() > 1) { 1622 AlignValT = allocatorType->getParamType(1); 1623 assert(getContext().hasSameUnqualifiedType( 1624 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(), 1625 sizeType) && 1626 "wrong type for alignment parameter"); 1627 ++ParamsToSkip; 1628 } else { 1629 // Corner case, passing alignment to 'operator new(size_t, ...)'. 1630 assert(allocator->isVariadic() && "can't pass alignment to allocator"); 1631 } 1632 allocatorArgs.add( 1633 RValue::get(llvm::ConstantInt::get(SizeTy, allocAlign.getQuantity())), 1634 AlignValT); 1635 } 1636 1637 // FIXME: Why do we not pass a CalleeDecl here? 1638 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(), 1639 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip); 1640 1641 RValue RV = 1642 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs); 1643 1644 // Set !heapallocsite metadata on the call to operator new. 1645 if (getDebugInfo()) 1646 if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal())) 1647 getDebugInfo()->addHeapAllocSiteMetadata(newCall, allocType, 1648 E->getExprLoc()); 1649 1650 // If this was a call to a global replaceable allocation function that does 1651 // not take an alignment argument, the allocator is known to produce 1652 // storage that's suitably aligned for any object that fits, up to a known 1653 // threshold. Otherwise assume it's suitably aligned for the allocated type. 1654 CharUnits allocationAlign = allocAlign; 1655 if (!E->passAlignment() && 1656 allocator->isReplaceableGlobalAllocationFunction()) { 1657 unsigned AllocatorAlign = llvm::PowerOf2Floor(std::min<uint64_t>( 1658 Target.getNewAlign(), getContext().getTypeSize(allocType))); 1659 allocationAlign = std::max( 1660 allocationAlign, getContext().toCharUnitsFromBits(AllocatorAlign)); 1661 } 1662 1663 allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign); 1664 } 1665 1666 // Emit a null check on the allocation result if the allocation 1667 // function is allowed to return null (because it has a non-throwing 1668 // exception spec or is the reserved placement new) and we have an 1669 // interesting initializer will be running sanitizers on the initialization. 1670 bool nullCheck = E->shouldNullCheckAllocation() && 1671 (!allocType.isPODType(getContext()) || E->hasInitializer() || 1672 sanitizePerformTypeCheck()); 1673 1674 llvm::BasicBlock *nullCheckBB = nullptr; 1675 llvm::BasicBlock *contBB = nullptr; 1676 1677 // The null-check means that the initializer is conditionally 1678 // evaluated. 1679 ConditionalEvaluation conditional(*this); 1680 1681 if (nullCheck) { 1682 conditional.begin(*this); 1683 1684 nullCheckBB = Builder.GetInsertBlock(); 1685 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull"); 1686 contBB = createBasicBlock("new.cont"); 1687 1688 llvm::Value *isNull = 1689 Builder.CreateIsNull(allocation.getPointer(), "new.isnull"); 1690 Builder.CreateCondBr(isNull, contBB, notNullBB); 1691 EmitBlock(notNullBB); 1692 } 1693 1694 // If there's an operator delete, enter a cleanup to call it if an 1695 // exception is thrown. 1696 EHScopeStack::stable_iterator operatorDeleteCleanup; 1697 llvm::Instruction *cleanupDominator = nullptr; 1698 if (E->getOperatorDelete() && 1699 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) { 1700 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocAlign, 1701 allocatorArgs); 1702 operatorDeleteCleanup = EHStack.stable_begin(); 1703 cleanupDominator = Builder.CreateUnreachable(); 1704 } 1705 1706 assert((allocSize == allocSizeWithoutCookie) == 1707 CalculateCookiePadding(*this, E).isZero()); 1708 if (allocSize != allocSizeWithoutCookie) { 1709 assert(E->isArray()); 1710 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation, 1711 numElements, 1712 E, allocType); 1713 } 1714 1715 llvm::Type *elementTy = ConvertTypeForMem(allocType); 1716 Address result = Builder.CreateElementBitCast(allocation, elementTy); 1717 1718 // Passing pointer through launder.invariant.group to avoid propagation of 1719 // vptrs information which may be included in previous type. 1720 // To not break LTO with different optimizations levels, we do it regardless 1721 // of optimization level. 1722 if (CGM.getCodeGenOpts().StrictVTablePointers && 1723 allocator->isReservedGlobalPlacementOperator()) 1724 result = Builder.CreateLaunderInvariantGroup(result); 1725 1726 // Emit sanitizer checks for pointer value now, so that in the case of an 1727 // array it was checked only once and not at each constructor call. We may 1728 // have already checked that the pointer is non-null. 1729 // FIXME: If we have an array cookie and a potentially-throwing allocator, 1730 // we'll null check the wrong pointer here. 1731 SanitizerSet SkippedChecks; 1732 SkippedChecks.set(SanitizerKind::Null, nullCheck); 1733 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, 1734 E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(), 1735 result.getPointer(), allocType, result.getAlignment(), 1736 SkippedChecks, numElements); 1737 1738 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements, 1739 allocSizeWithoutCookie); 1740 llvm::Value *resultPtr = result.getPointer(); 1741 if (E->isArray()) { 1742 // NewPtr is a pointer to the base element type. If we're 1743 // allocating an array of arrays, we'll need to cast back to the 1744 // array pointer type. 1745 llvm::Type *resultType = ConvertTypeForMem(E->getType()); 1746 if (resultPtr->getType() != resultType) 1747 resultPtr = Builder.CreateBitCast(resultPtr, resultType); 1748 } 1749 1750 // Deactivate the 'operator delete' cleanup if we finished 1751 // initialization. 1752 if (operatorDeleteCleanup.isValid()) { 1753 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator); 1754 cleanupDominator->eraseFromParent(); 1755 } 1756 1757 if (nullCheck) { 1758 conditional.end(*this); 1759 1760 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 1761 EmitBlock(contBB); 1762 1763 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2); 1764 PHI->addIncoming(resultPtr, notNullBB); 1765 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()), 1766 nullCheckBB); 1767 1768 resultPtr = PHI; 1769 } 1770 1771 return resultPtr; 1772 } 1773 1774 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD, 1775 llvm::Value *Ptr, QualType DeleteTy, 1776 llvm::Value *NumElements, 1777 CharUnits CookieSize) { 1778 assert((!NumElements && CookieSize.isZero()) || 1779 DeleteFD->getOverloadedOperator() == OO_Array_Delete); 1780 1781 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>(); 1782 CallArgList DeleteArgs; 1783 1784 auto Params = getUsualDeleteParams(DeleteFD); 1785 auto ParamTypeIt = DeleteFTy->param_type_begin(); 1786 1787 // Pass the pointer itself. 1788 QualType ArgTy = *ParamTypeIt++; 1789 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy)); 1790 DeleteArgs.add(RValue::get(DeletePtr), ArgTy); 1791 1792 // Pass the std::destroying_delete tag if present. 1793 llvm::AllocaInst *DestroyingDeleteTag = nullptr; 1794 if (Params.DestroyingDelete) { 1795 QualType DDTag = *ParamTypeIt++; 1796 llvm::Type *Ty = getTypes().ConvertType(DDTag); 1797 CharUnits Align = CGM.getNaturalTypeAlignment(DDTag); 1798 DestroyingDeleteTag = CreateTempAlloca(Ty, "destroying.delete.tag"); 1799 DestroyingDeleteTag->setAlignment(Align.getAsAlign()); 1800 DeleteArgs.add( 1801 RValue::getAggregate(Address(DestroyingDeleteTag, Ty, Align)), DDTag); 1802 } 1803 1804 // Pass the size if the delete function has a size_t parameter. 1805 if (Params.Size) { 1806 QualType SizeType = *ParamTypeIt++; 1807 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy); 1808 llvm::Value *Size = llvm::ConstantInt::get(ConvertType(SizeType), 1809 DeleteTypeSize.getQuantity()); 1810 1811 // For array new, multiply by the number of elements. 1812 if (NumElements) 1813 Size = Builder.CreateMul(Size, NumElements); 1814 1815 // If there is a cookie, add the cookie size. 1816 if (!CookieSize.isZero()) 1817 Size = Builder.CreateAdd( 1818 Size, llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity())); 1819 1820 DeleteArgs.add(RValue::get(Size), SizeType); 1821 } 1822 1823 // Pass the alignment if the delete function has an align_val_t parameter. 1824 if (Params.Alignment) { 1825 QualType AlignValType = *ParamTypeIt++; 1826 CharUnits DeleteTypeAlign = 1827 getContext().toCharUnitsFromBits(getContext().getTypeAlignIfKnown( 1828 DeleteTy, true /* NeedsPreferredAlignment */)); 1829 llvm::Value *Align = llvm::ConstantInt::get(ConvertType(AlignValType), 1830 DeleteTypeAlign.getQuantity()); 1831 DeleteArgs.add(RValue::get(Align), AlignValType); 1832 } 1833 1834 assert(ParamTypeIt == DeleteFTy->param_type_end() && 1835 "unknown parameter to usual delete function"); 1836 1837 // Emit the call to delete. 1838 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs); 1839 1840 // If call argument lowering didn't use the destroying_delete_t alloca, 1841 // remove it again. 1842 if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty()) 1843 DestroyingDeleteTag->eraseFromParent(); 1844 } 1845 1846 namespace { 1847 /// Calls the given 'operator delete' on a single object. 1848 struct CallObjectDelete final : EHScopeStack::Cleanup { 1849 llvm::Value *Ptr; 1850 const FunctionDecl *OperatorDelete; 1851 QualType ElementType; 1852 1853 CallObjectDelete(llvm::Value *Ptr, 1854 const FunctionDecl *OperatorDelete, 1855 QualType ElementType) 1856 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {} 1857 1858 void Emit(CodeGenFunction &CGF, Flags flags) override { 1859 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType); 1860 } 1861 }; 1862 } 1863 1864 void 1865 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1866 llvm::Value *CompletePtr, 1867 QualType ElementType) { 1868 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr, 1869 OperatorDelete, ElementType); 1870 } 1871 1872 /// Emit the code for deleting a single object with a destroying operator 1873 /// delete. If the element type has a non-virtual destructor, Ptr has already 1874 /// been converted to the type of the parameter of 'operator delete'. Otherwise 1875 /// Ptr points to an object of the static type. 1876 static void EmitDestroyingObjectDelete(CodeGenFunction &CGF, 1877 const CXXDeleteExpr *DE, Address Ptr, 1878 QualType ElementType) { 1879 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor(); 1880 if (Dtor && Dtor->isVirtual()) 1881 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1882 Dtor); 1883 else 1884 CGF.EmitDeleteCall(DE->getOperatorDelete(), Ptr.getPointer(), ElementType); 1885 } 1886 1887 /// Emit the code for deleting a single object. 1888 /// \return \c true if we started emitting UnconditionalDeleteBlock, \c false 1889 /// if not. 1890 static bool EmitObjectDelete(CodeGenFunction &CGF, 1891 const CXXDeleteExpr *DE, 1892 Address Ptr, 1893 QualType ElementType, 1894 llvm::BasicBlock *UnconditionalDeleteBlock) { 1895 // C++11 [expr.delete]p3: 1896 // If the static type of the object to be deleted is different from its 1897 // dynamic type, the static type shall be a base class of the dynamic type 1898 // of the object to be deleted and the static type shall have a virtual 1899 // destructor or the behavior is undefined. 1900 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, 1901 DE->getExprLoc(), Ptr.getPointer(), 1902 ElementType); 1903 1904 const FunctionDecl *OperatorDelete = DE->getOperatorDelete(); 1905 assert(!OperatorDelete->isDestroyingOperatorDelete()); 1906 1907 // Find the destructor for the type, if applicable. If the 1908 // destructor is virtual, we'll just emit the vcall and return. 1909 const CXXDestructorDecl *Dtor = nullptr; 1910 if (const RecordType *RT = ElementType->getAs<RecordType>()) { 1911 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1912 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) { 1913 Dtor = RD->getDestructor(); 1914 1915 if (Dtor->isVirtual()) { 1916 bool UseVirtualCall = true; 1917 const Expr *Base = DE->getArgument(); 1918 if (auto *DevirtualizedDtor = 1919 dyn_cast_or_null<const CXXDestructorDecl>( 1920 Dtor->getDevirtualizedMethod( 1921 Base, CGF.CGM.getLangOpts().AppleKext))) { 1922 UseVirtualCall = false; 1923 const CXXRecordDecl *DevirtualizedClass = 1924 DevirtualizedDtor->getParent(); 1925 if (declaresSameEntity(getCXXRecord(Base), DevirtualizedClass)) { 1926 // Devirtualized to the class of the base type (the type of the 1927 // whole expression). 1928 Dtor = DevirtualizedDtor; 1929 } else { 1930 // Devirtualized to some other type. Would need to cast the this 1931 // pointer to that type but we don't have support for that yet, so 1932 // do a virtual call. FIXME: handle the case where it is 1933 // devirtualized to the derived type (the type of the inner 1934 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr. 1935 UseVirtualCall = true; 1936 } 1937 } 1938 if (UseVirtualCall) { 1939 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType, 1940 Dtor); 1941 return false; 1942 } 1943 } 1944 } 1945 } 1946 1947 // Make sure that we call delete even if the dtor throws. 1948 // This doesn't have to a conditional cleanup because we're going 1949 // to pop it off in a second. 1950 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, 1951 Ptr.getPointer(), 1952 OperatorDelete, ElementType); 1953 1954 if (Dtor) 1955 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 1956 /*ForVirtualBase=*/false, 1957 /*Delegating=*/false, 1958 Ptr, ElementType); 1959 else if (auto Lifetime = ElementType.getObjCLifetime()) { 1960 switch (Lifetime) { 1961 case Qualifiers::OCL_None: 1962 case Qualifiers::OCL_ExplicitNone: 1963 case Qualifiers::OCL_Autoreleasing: 1964 break; 1965 1966 case Qualifiers::OCL_Strong: 1967 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime); 1968 break; 1969 1970 case Qualifiers::OCL_Weak: 1971 CGF.EmitARCDestroyWeak(Ptr); 1972 break; 1973 } 1974 } 1975 1976 // When optimizing for size, call 'operator delete' unconditionally. 1977 if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) { 1978 CGF.EmitBlock(UnconditionalDeleteBlock); 1979 CGF.PopCleanupBlock(); 1980 return true; 1981 } 1982 1983 CGF.PopCleanupBlock(); 1984 return false; 1985 } 1986 1987 namespace { 1988 /// Calls the given 'operator delete' on an array of objects. 1989 struct CallArrayDelete final : EHScopeStack::Cleanup { 1990 llvm::Value *Ptr; 1991 const FunctionDecl *OperatorDelete; 1992 llvm::Value *NumElements; 1993 QualType ElementType; 1994 CharUnits CookieSize; 1995 1996 CallArrayDelete(llvm::Value *Ptr, 1997 const FunctionDecl *OperatorDelete, 1998 llvm::Value *NumElements, 1999 QualType ElementType, 2000 CharUnits CookieSize) 2001 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements), 2002 ElementType(ElementType), CookieSize(CookieSize) {} 2003 2004 void Emit(CodeGenFunction &CGF, Flags flags) override { 2005 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements, 2006 CookieSize); 2007 } 2008 }; 2009 } 2010 2011 /// Emit the code for deleting an array of objects. 2012 static void EmitArrayDelete(CodeGenFunction &CGF, 2013 const CXXDeleteExpr *E, 2014 Address deletedPtr, 2015 QualType elementType) { 2016 llvm::Value *numElements = nullptr; 2017 llvm::Value *allocatedPtr = nullptr; 2018 CharUnits cookieSize; 2019 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType, 2020 numElements, allocatedPtr, cookieSize); 2021 2022 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer"); 2023 2024 // Make sure that we call delete even if one of the dtors throws. 2025 const FunctionDecl *operatorDelete = E->getOperatorDelete(); 2026 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup, 2027 allocatedPtr, operatorDelete, 2028 numElements, elementType, 2029 cookieSize); 2030 2031 // Destroy the elements. 2032 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) { 2033 assert(numElements && "no element count for a type with a destructor!"); 2034 2035 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2036 CharUnits elementAlign = 2037 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize); 2038 2039 llvm::Value *arrayBegin = deletedPtr.getPointer(); 2040 llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP( 2041 deletedPtr.getElementType(), arrayBegin, numElements, "delete.end"); 2042 2043 // Note that it is legal to allocate a zero-length array, and we 2044 // can never fold the check away because the length should always 2045 // come from a cookie. 2046 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign, 2047 CGF.getDestroyer(dtorKind), 2048 /*checkZeroLength*/ true, 2049 CGF.needsEHCleanup(dtorKind)); 2050 } 2051 2052 // Pop the cleanup block. 2053 CGF.PopCleanupBlock(); 2054 } 2055 2056 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) { 2057 const Expr *Arg = E->getArgument(); 2058 Address Ptr = EmitPointerWithAlignment(Arg); 2059 2060 // Null check the pointer. 2061 // 2062 // We could avoid this null check if we can determine that the object 2063 // destruction is trivial and doesn't require an array cookie; we can 2064 // unconditionally perform the operator delete call in that case. For now, we 2065 // assume that deleted pointers are null rarely enough that it's better to 2066 // keep the branch. This might be worth revisiting for a -O0 code size win. 2067 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull"); 2068 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end"); 2069 2070 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull"); 2071 2072 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull); 2073 EmitBlock(DeleteNotNull); 2074 2075 QualType DeleteTy = E->getDestroyedType(); 2076 2077 // A destroying operator delete overrides the entire operation of the 2078 // delete expression. 2079 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) { 2080 EmitDestroyingObjectDelete(*this, E, Ptr, DeleteTy); 2081 EmitBlock(DeleteEnd); 2082 return; 2083 } 2084 2085 // We might be deleting a pointer to array. If so, GEP down to the 2086 // first non-array element. 2087 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*) 2088 if (DeleteTy->isConstantArrayType()) { 2089 llvm::Value *Zero = Builder.getInt32(0); 2090 SmallVector<llvm::Value*,8> GEP; 2091 2092 GEP.push_back(Zero); // point at the outermost array 2093 2094 // For each layer of array type we're pointing at: 2095 while (const ConstantArrayType *Arr 2096 = getContext().getAsConstantArrayType(DeleteTy)) { 2097 // 1. Unpeel the array type. 2098 DeleteTy = Arr->getElementType(); 2099 2100 // 2. GEP to the first element of the array. 2101 GEP.push_back(Zero); 2102 } 2103 2104 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getElementType(), 2105 Ptr.getPointer(), GEP, "del.first"), 2106 ConvertTypeForMem(DeleteTy), Ptr.getAlignment()); 2107 } 2108 2109 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType()); 2110 2111 if (E->isArrayForm()) { 2112 EmitArrayDelete(*this, E, Ptr, DeleteTy); 2113 EmitBlock(DeleteEnd); 2114 } else { 2115 if (!EmitObjectDelete(*this, E, Ptr, DeleteTy, DeleteEnd)) 2116 EmitBlock(DeleteEnd); 2117 } 2118 } 2119 2120 static bool isGLValueFromPointerDeref(const Expr *E) { 2121 E = E->IgnoreParens(); 2122 2123 if (const auto *CE = dyn_cast<CastExpr>(E)) { 2124 if (!CE->getSubExpr()->isGLValue()) 2125 return false; 2126 return isGLValueFromPointerDeref(CE->getSubExpr()); 2127 } 2128 2129 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 2130 return isGLValueFromPointerDeref(OVE->getSourceExpr()); 2131 2132 if (const auto *BO = dyn_cast<BinaryOperator>(E)) 2133 if (BO->getOpcode() == BO_Comma) 2134 return isGLValueFromPointerDeref(BO->getRHS()); 2135 2136 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E)) 2137 return isGLValueFromPointerDeref(ACO->getTrueExpr()) || 2138 isGLValueFromPointerDeref(ACO->getFalseExpr()); 2139 2140 // C++11 [expr.sub]p1: 2141 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)) 2142 if (isa<ArraySubscriptExpr>(E)) 2143 return true; 2144 2145 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 2146 if (UO->getOpcode() == UO_Deref) 2147 return true; 2148 2149 return false; 2150 } 2151 2152 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E, 2153 llvm::Type *StdTypeInfoPtrTy) { 2154 // Get the vtable pointer. 2155 Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF); 2156 2157 QualType SrcRecordTy = E->getType(); 2158 2159 // C++ [class.cdtor]p4: 2160 // If the operand of typeid refers to the object under construction or 2161 // destruction and the static type of the operand is neither the constructor 2162 // or destructor’s class nor one of its bases, the behavior is undefined. 2163 CGF.EmitTypeCheck(CodeGenFunction::TCK_DynamicOperation, E->getExprLoc(), 2164 ThisPtr.getPointer(), SrcRecordTy); 2165 2166 // C++ [expr.typeid]p2: 2167 // If the glvalue expression is obtained by applying the unary * operator to 2168 // a pointer and the pointer is a null pointer value, the typeid expression 2169 // throws the std::bad_typeid exception. 2170 // 2171 // However, this paragraph's intent is not clear. We choose a very generous 2172 // interpretation which implores us to consider comma operators, conditional 2173 // operators, parentheses and other such constructs. 2174 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked( 2175 isGLValueFromPointerDeref(E), SrcRecordTy)) { 2176 llvm::BasicBlock *BadTypeidBlock = 2177 CGF.createBasicBlock("typeid.bad_typeid"); 2178 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end"); 2179 2180 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer()); 2181 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock); 2182 2183 CGF.EmitBlock(BadTypeidBlock); 2184 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF); 2185 CGF.EmitBlock(EndBlock); 2186 } 2187 2188 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr, 2189 StdTypeInfoPtrTy); 2190 } 2191 2192 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) { 2193 llvm::Type *StdTypeInfoPtrTy = 2194 ConvertType(E->getType())->getPointerTo(); 2195 2196 if (E->isTypeOperand()) { 2197 llvm::Constant *TypeInfo = 2198 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext())); 2199 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy); 2200 } 2201 2202 // C++ [expr.typeid]p2: 2203 // When typeid is applied to a glvalue expression whose type is a 2204 // polymorphic class type, the result refers to a std::type_info object 2205 // representing the type of the most derived object (that is, the dynamic 2206 // type) to which the glvalue refers. 2207 // If the operand is already most derived object, no need to look up vtable. 2208 if (E->isPotentiallyEvaluated() && !E->isMostDerived(getContext())) 2209 return EmitTypeidFromVTable(*this, E->getExprOperand(), 2210 StdTypeInfoPtrTy); 2211 2212 QualType OperandTy = E->getExprOperand()->getType(); 2213 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy), 2214 StdTypeInfoPtrTy); 2215 } 2216 2217 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF, 2218 QualType DestTy) { 2219 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 2220 if (DestTy->isPointerType()) 2221 return llvm::Constant::getNullValue(DestLTy); 2222 2223 /// C++ [expr.dynamic.cast]p9: 2224 /// A failed cast to reference type throws std::bad_cast 2225 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF)) 2226 return nullptr; 2227 2228 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end")); 2229 return llvm::UndefValue::get(DestLTy); 2230 } 2231 2232 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr, 2233 const CXXDynamicCastExpr *DCE) { 2234 CGM.EmitExplicitCastExprType(DCE, this); 2235 QualType DestTy = DCE->getTypeAsWritten(); 2236 2237 QualType SrcTy = DCE->getSubExpr()->getType(); 2238 2239 // C++ [expr.dynamic.cast]p7: 2240 // If T is "pointer to cv void," then the result is a pointer to the most 2241 // derived object pointed to by v. 2242 const PointerType *DestPTy = DestTy->getAs<PointerType>(); 2243 2244 bool isDynamicCastToVoid; 2245 QualType SrcRecordTy; 2246 QualType DestRecordTy; 2247 if (DestPTy) { 2248 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType(); 2249 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType(); 2250 DestRecordTy = DestPTy->getPointeeType(); 2251 } else { 2252 isDynamicCastToVoid = false; 2253 SrcRecordTy = SrcTy; 2254 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType(); 2255 } 2256 2257 // C++ [class.cdtor]p5: 2258 // If the operand of the dynamic_cast refers to the object under 2259 // construction or destruction and the static type of the operand is not a 2260 // pointer to or object of the constructor or destructor’s own class or one 2261 // of its bases, the dynamic_cast results in undefined behavior. 2262 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr.getPointer(), 2263 SrcRecordTy); 2264 2265 if (DCE->isAlwaysNull()) 2266 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy)) 2267 return T; 2268 2269 assert(SrcRecordTy->isRecordType() && "source type must be a record type!"); 2270 2271 // C++ [expr.dynamic.cast]p4: 2272 // If the value of v is a null pointer value in the pointer case, the result 2273 // is the null pointer value of type T. 2274 bool ShouldNullCheckSrcValue = 2275 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(), 2276 SrcRecordTy); 2277 2278 llvm::BasicBlock *CastNull = nullptr; 2279 llvm::BasicBlock *CastNotNull = nullptr; 2280 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end"); 2281 2282 if (ShouldNullCheckSrcValue) { 2283 CastNull = createBasicBlock("dynamic_cast.null"); 2284 CastNotNull = createBasicBlock("dynamic_cast.notnull"); 2285 2286 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer()); 2287 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 2288 EmitBlock(CastNotNull); 2289 } 2290 2291 llvm::Value *Value; 2292 if (isDynamicCastToVoid) { 2293 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy, 2294 DestTy); 2295 } else { 2296 assert(DestRecordTy->isRecordType() && 2297 "destination type must be a record type!"); 2298 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy, 2299 DestTy, DestRecordTy, CastEnd); 2300 CastNotNull = Builder.GetInsertBlock(); 2301 } 2302 2303 if (ShouldNullCheckSrcValue) { 2304 EmitBranch(CastEnd); 2305 2306 EmitBlock(CastNull); 2307 EmitBranch(CastEnd); 2308 } 2309 2310 EmitBlock(CastEnd); 2311 2312 if (ShouldNullCheckSrcValue) { 2313 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 2314 PHI->addIncoming(Value, CastNotNull); 2315 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 2316 2317 Value = PHI; 2318 } 2319 2320 return Value; 2321 } 2322