1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Aggregate Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGObjCRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "ConstantEmitter.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 //===----------------------------------------------------------------------===// 33 // Aggregate Expression Emitter 34 //===----------------------------------------------------------------------===// 35 36 namespace { 37 class AggExprEmitter : public StmtVisitor<AggExprEmitter> { 38 CodeGenFunction &CGF; 39 CGBuilderTy &Builder; 40 AggValueSlot Dest; 41 bool IsResultUnused; 42 43 AggValueSlot EnsureSlot(QualType T) { 44 if (!Dest.isIgnored()) return Dest; 45 return CGF.CreateAggTemp(T, "agg.tmp.ensured"); 46 } 47 void EnsureDest(QualType T) { 48 if (!Dest.isIgnored()) return; 49 Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured"); 50 } 51 52 // Calls `Fn` with a valid return value slot, potentially creating a temporary 53 // to do so. If a temporary is created, an appropriate copy into `Dest` will 54 // be emitted, as will lifetime markers. 55 // 56 // The given function should take a ReturnValueSlot, and return an RValue that 57 // points to said slot. 58 void withReturnValueSlot(const Expr *E, 59 llvm::function_ref<RValue(ReturnValueSlot)> Fn); 60 61 public: 62 AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) 63 : CGF(cgf), Builder(CGF.Builder), Dest(Dest), 64 IsResultUnused(IsResultUnused) { } 65 66 //===--------------------------------------------------------------------===// 67 // Utilities 68 //===--------------------------------------------------------------------===// 69 70 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 71 /// represents a value lvalue, this method emits the address of the lvalue, 72 /// then loads the result into DestPtr. 73 void EmitAggLoadOfLValue(const Expr *E); 74 75 enum ExprValueKind { 76 EVK_RValue, 77 EVK_NonRValue 78 }; 79 80 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 81 /// SrcIsRValue is true if source comes from an RValue. 82 void EmitFinalDestCopy(QualType type, const LValue &src, 83 ExprValueKind SrcValueKind = EVK_NonRValue); 84 void EmitFinalDestCopy(QualType type, RValue src); 85 void EmitCopy(QualType type, const AggValueSlot &dest, 86 const AggValueSlot &src); 87 88 void EmitMoveFromReturnSlot(const Expr *E, RValue Src); 89 90 void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 91 QualType ArrayQTy, InitListExpr *E); 92 93 AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { 94 if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) 95 return AggValueSlot::NeedsGCBarriers; 96 return AggValueSlot::DoesNotNeedGCBarriers; 97 } 98 99 bool TypeRequiresGCollection(QualType T); 100 101 //===--------------------------------------------------------------------===// 102 // Visitor Methods 103 //===--------------------------------------------------------------------===// 104 105 void Visit(Expr *E) { 106 ApplyDebugLocation DL(CGF, E); 107 StmtVisitor<AggExprEmitter>::Visit(E); 108 } 109 110 void VisitStmt(Stmt *S) { 111 CGF.ErrorUnsupported(S, "aggregate expression"); 112 } 113 void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); } 114 void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 115 Visit(GE->getResultExpr()); 116 } 117 void VisitCoawaitExpr(CoawaitExpr *E) { 118 CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused); 119 } 120 void VisitCoyieldExpr(CoyieldExpr *E) { 121 CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused); 122 } 123 void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); } 124 void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); } 125 void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 126 return Visit(E->getReplacement()); 127 } 128 129 void VisitConstantExpr(ConstantExpr *E) { 130 if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { 131 CGF.EmitAggregateStore(Result, Dest.getAddress(), 132 E->getType().isVolatileQualified()); 133 return; 134 } 135 return Visit(E->getSubExpr()); 136 } 137 138 // l-values. 139 void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } 140 void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } 141 void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } 142 void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } 143 void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); 144 void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 145 EmitAggLoadOfLValue(E); 146 } 147 void VisitPredefinedExpr(const PredefinedExpr *E) { 148 EmitAggLoadOfLValue(E); 149 } 150 151 // Operators. 152 void VisitCastExpr(CastExpr *E); 153 void VisitCallExpr(const CallExpr *E); 154 void VisitStmtExpr(const StmtExpr *E); 155 void VisitBinaryOperator(const BinaryOperator *BO); 156 void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); 157 void VisitBinAssign(const BinaryOperator *E); 158 void VisitBinComma(const BinaryOperator *E); 159 void VisitBinCmp(const BinaryOperator *E); 160 void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { 161 Visit(E->getSemanticForm()); 162 } 163 164 void VisitObjCMessageExpr(ObjCMessageExpr *E); 165 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 166 EmitAggLoadOfLValue(E); 167 } 168 169 void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); 170 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 171 void VisitChooseExpr(const ChooseExpr *CE); 172 void VisitInitListExpr(InitListExpr *E); 173 void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 174 llvm::Value *outerBegin = nullptr); 175 void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); 176 void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. 177 void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 178 CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); 179 Visit(DAE->getExpr()); 180 } 181 void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 182 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); 183 Visit(DIE->getExpr()); 184 } 185 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); 186 void VisitCXXConstructExpr(const CXXConstructExpr *E); 187 void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); 188 void VisitLambdaExpr(LambdaExpr *E); 189 void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); 190 void VisitExprWithCleanups(ExprWithCleanups *E); 191 void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); 192 void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } 193 void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); 194 void VisitOpaqueValueExpr(OpaqueValueExpr *E); 195 196 void VisitPseudoObjectExpr(PseudoObjectExpr *E) { 197 if (E->isGLValue()) { 198 LValue LV = CGF.EmitPseudoObjectLValue(E); 199 return EmitFinalDestCopy(E->getType(), LV); 200 } 201 202 CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType())); 203 } 204 205 void VisitVAArgExpr(VAArgExpr *E); 206 207 void EmitInitializationToLValue(Expr *E, LValue Address); 208 void EmitNullInitializationToLValue(LValue Address); 209 // case Expr::ChooseExprClass: 210 void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } 211 void VisitAtomicExpr(AtomicExpr *E) { 212 RValue Res = CGF.EmitAtomicExpr(E); 213 EmitFinalDestCopy(E->getType(), Res); 214 } 215 }; 216 } // end anonymous namespace. 217 218 //===----------------------------------------------------------------------===// 219 // Utilities 220 //===----------------------------------------------------------------------===// 221 222 /// EmitAggLoadOfLValue - Given an expression with aggregate type that 223 /// represents a value lvalue, this method emits the address of the lvalue, 224 /// then loads the result into DestPtr. 225 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { 226 LValue LV = CGF.EmitLValue(E); 227 228 // If the type of the l-value is atomic, then do an atomic load. 229 if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) { 230 CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest); 231 return; 232 } 233 234 EmitFinalDestCopy(E->getType(), LV); 235 } 236 237 /// True if the given aggregate type requires special GC API calls. 238 bool AggExprEmitter::TypeRequiresGCollection(QualType T) { 239 // Only record types have members that might require garbage collection. 240 const RecordType *RecordTy = T->getAs<RecordType>(); 241 if (!RecordTy) return false; 242 243 // Don't mess with non-trivial C++ types. 244 RecordDecl *Record = RecordTy->getDecl(); 245 if (isa<CXXRecordDecl>(Record) && 246 (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() || 247 !cast<CXXRecordDecl>(Record)->hasTrivialDestructor())) 248 return false; 249 250 // Check whether the type has an object member. 251 return Record->hasObjectMember(); 252 } 253 254 void AggExprEmitter::withReturnValueSlot( 255 const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { 256 QualType RetTy = E->getType(); 257 bool RequiresDestruction = 258 !Dest.isExternallyDestructed() && 259 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; 260 261 // If it makes no observable difference, save a memcpy + temporary. 262 // 263 // We need to always provide our own temporary if destruction is required. 264 // Otherwise, EmitCall will emit its own, notice that it's "unused", and end 265 // its lifetime before we have the chance to emit a proper destructor call. 266 bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || 267 (RequiresDestruction && !Dest.getAddress().isValid()); 268 269 Address RetAddr = Address::invalid(); 270 Address RetAllocaAddr = Address::invalid(); 271 272 EHScopeStack::stable_iterator LifetimeEndBlock; 273 llvm::Value *LifetimeSizePtr = nullptr; 274 llvm::IntrinsicInst *LifetimeStartInst = nullptr; 275 if (!UseTemp) { 276 RetAddr = Dest.getAddress(); 277 } else { 278 RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr); 279 uint64_t Size = 280 CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy)); 281 LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer()); 282 if (LifetimeSizePtr) { 283 LifetimeStartInst = 284 cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint())); 285 assert(LifetimeStartInst->getIntrinsicID() == 286 llvm::Intrinsic::lifetime_start && 287 "Last insertion wasn't a lifetime.start?"); 288 289 CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( 290 NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr); 291 LifetimeEndBlock = CGF.EHStack.stable_begin(); 292 } 293 } 294 295 RValue Src = 296 EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused, 297 Dest.isExternallyDestructed())); 298 299 if (!UseTemp) 300 return; 301 302 assert(Dest.getPointer() != Src.getAggregatePointer()); 303 EmitFinalDestCopy(E->getType(), Src); 304 305 if (!RequiresDestruction && LifetimeStartInst) { 306 // If there's no dtor to run, the copy was the last use of our temporary. 307 // Since we're not guaranteed to be in an ExprWithCleanups, clean up 308 // eagerly. 309 CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst); 310 CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer()); 311 } 312 } 313 314 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 315 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { 316 assert(src.isAggregate() && "value must be aggregate value!"); 317 LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type); 318 EmitFinalDestCopy(type, srcLV, EVK_RValue); 319 } 320 321 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. 322 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, 323 ExprValueKind SrcValueKind) { 324 // If Dest is ignored, then we're evaluating an aggregate expression 325 // in a context that doesn't care about the result. Note that loads 326 // from volatile l-values force the existence of a non-ignored 327 // destination. 328 if (Dest.isIgnored()) 329 return; 330 331 // Copy non-trivial C structs here. 332 LValue DstLV = CGF.MakeAddrLValue( 333 Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type); 334 335 if (SrcValueKind == EVK_RValue) { 336 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { 337 if (Dest.isPotentiallyAliased()) 338 CGF.callCStructMoveAssignmentOperator(DstLV, src); 339 else 340 CGF.callCStructMoveConstructor(DstLV, src); 341 return; 342 } 343 } else { 344 if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { 345 if (Dest.isPotentiallyAliased()) 346 CGF.callCStructCopyAssignmentOperator(DstLV, src); 347 else 348 CGF.callCStructCopyConstructor(DstLV, src); 349 return; 350 } 351 } 352 353 AggValueSlot srcAgg = AggValueSlot::forLValue( 354 src, CGF, AggValueSlot::IsDestructed, needsGC(type), 355 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 356 EmitCopy(type, Dest, srcAgg); 357 } 358 359 /// Perform a copy from the source into the destination. 360 /// 361 /// \param type - the type of the aggregate being copied; qualifiers are 362 /// ignored 363 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, 364 const AggValueSlot &src) { 365 if (dest.requiresGCollection()) { 366 CharUnits sz = dest.getPreferredSize(CGF.getContext(), type); 367 llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity()); 368 CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, 369 dest.getAddress(), 370 src.getAddress(), 371 size); 372 return; 373 } 374 375 // If the result of the assignment is used, copy the LHS there also. 376 // It's volatile if either side is. Use the minimum alignment of 377 // the two sides. 378 LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type); 379 LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type); 380 CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(), 381 dest.isVolatile() || src.isVolatile()); 382 } 383 384 /// Emit the initializer for a std::initializer_list initialized with a 385 /// real initializer list. 386 void 387 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { 388 // Emit an array containing the elements. The array is externally destructed 389 // if the std::initializer_list object is. 390 ASTContext &Ctx = CGF.getContext(); 391 LValue Array = CGF.EmitLValue(E->getSubExpr()); 392 assert(Array.isSimple() && "initializer_list array not a simple lvalue"); 393 Address ArrayPtr = Array.getAddress(CGF); 394 395 const ConstantArrayType *ArrayType = 396 Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); 397 assert(ArrayType && "std::initializer_list constructed from non-array"); 398 399 // FIXME: Perform the checks on the field types in SemaInit. 400 RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); 401 RecordDecl::field_iterator Field = Record->field_begin(); 402 if (Field == Record->field_end()) { 403 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 404 return; 405 } 406 407 // Start pointer. 408 if (!Field->getType()->isPointerType() || 409 !Ctx.hasSameType(Field->getType()->getPointeeType(), 410 ArrayType->getElementType())) { 411 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 412 return; 413 } 414 415 AggValueSlot Dest = EnsureSlot(E->getType()); 416 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 417 LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 418 llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0); 419 llvm::Value *IdxStart[] = { Zero, Zero }; 420 llvm::Value *ArrayStart = 421 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart"); 422 CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start); 423 ++Field; 424 425 if (Field == Record->field_end()) { 426 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 427 return; 428 } 429 430 llvm::Value *Size = Builder.getInt(ArrayType->getSize()); 431 LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field); 432 if (Field->getType()->isPointerType() && 433 Ctx.hasSameType(Field->getType()->getPointeeType(), 434 ArrayType->getElementType())) { 435 // End pointer. 436 llvm::Value *IdxEnd[] = { Zero, Size }; 437 llvm::Value *ArrayEnd = 438 Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend"); 439 CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength); 440 } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { 441 // Length. 442 CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength); 443 } else { 444 CGF.ErrorUnsupported(E, "weird std::initializer_list"); 445 return; 446 } 447 } 448 449 /// Determine if E is a trivial array filler, that is, one that is 450 /// equivalent to zero-initialization. 451 static bool isTrivialFiller(Expr *E) { 452 if (!E) 453 return true; 454 455 if (isa<ImplicitValueInitExpr>(E)) 456 return true; 457 458 if (auto *ILE = dyn_cast<InitListExpr>(E)) { 459 if (ILE->getNumInits()) 460 return false; 461 return isTrivialFiller(ILE->getArrayFiller()); 462 } 463 464 if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E)) 465 return Cons->getConstructor()->isDefaultConstructor() && 466 Cons->getConstructor()->isTrivial(); 467 468 // FIXME: Are there other cases where we can avoid emitting an initializer? 469 return false; 470 } 471 472 /// Emit initialization of an array from an initializer list. 473 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, 474 QualType ArrayQTy, InitListExpr *E) { 475 uint64_t NumInitElements = E->getNumInits(); 476 477 uint64_t NumArrayElements = AType->getNumElements(); 478 assert(NumInitElements <= NumArrayElements); 479 480 QualType elementType = 481 CGF.getContext().getAsArrayType(ArrayQTy)->getElementType(); 482 483 // DestPtr is an array*. Construct an elementType* by drilling 484 // down a level. 485 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 486 llvm::Value *indices[] = { zero, zero }; 487 llvm::Value *begin = 488 Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin"); 489 490 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 491 CharUnits elementAlign = 492 DestPtr.getAlignment().alignmentOfArrayElement(elementSize); 493 494 // Consider initializing the array by copying from a global. For this to be 495 // more efficient than per-element initialization, the size of the elements 496 // with explicit initializers should be large enough. 497 if (NumInitElements * elementSize.getQuantity() > 16 && 498 elementType.isTriviallyCopyableType(CGF.getContext())) { 499 CodeGen::CodeGenModule &CGM = CGF.CGM; 500 ConstantEmitter Emitter(CGF); 501 LangAS AS = ArrayQTy.getAddressSpace(); 502 if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) { 503 auto GV = new llvm::GlobalVariable( 504 CGM.getModule(), C->getType(), 505 CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true), 506 llvm::GlobalValue::PrivateLinkage, C, "constinit", 507 /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, 508 CGM.getContext().getTargetAddressSpace(AS)); 509 Emitter.finalize(GV); 510 CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy); 511 GV->setAlignment(Align.getAsAlign()); 512 EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align)); 513 return; 514 } 515 } 516 517 // Exception safety requires us to destroy all the 518 // already-constructed members if an initializer throws. 519 // For that, we'll need an EH cleanup. 520 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 521 Address endOfInit = Address::invalid(); 522 EHScopeStack::stable_iterator cleanup; 523 llvm::Instruction *cleanupDominator = nullptr; 524 if (CGF.needsEHCleanup(dtorKind)) { 525 // In principle we could tell the cleanup where we are more 526 // directly, but the control flow can get so varied here that it 527 // would actually be quite complex. Therefore we go through an 528 // alloca. 529 endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), 530 "arrayinit.endOfInit"); 531 cleanupDominator = Builder.CreateStore(begin, endOfInit); 532 CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType, 533 elementAlign, 534 CGF.getDestroyer(dtorKind)); 535 cleanup = CGF.EHStack.stable_begin(); 536 537 // Otherwise, remember that we didn't need a cleanup. 538 } else { 539 dtorKind = QualType::DK_none; 540 } 541 542 llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1); 543 544 // The 'current element to initialize'. The invariants on this 545 // variable are complicated. Essentially, after each iteration of 546 // the loop, it points to the last initialized element, except 547 // that it points to the beginning of the array before any 548 // elements have been initialized. 549 llvm::Value *element = begin; 550 551 // Emit the explicit initializers. 552 for (uint64_t i = 0; i != NumInitElements; ++i) { 553 // Advance to the next element. 554 if (i > 0) { 555 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element"); 556 557 // Tell the cleanup that it needs to destroy up to this 558 // element. TODO: some of these stores can be trivially 559 // observed to be unnecessary. 560 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 561 } 562 563 LValue elementLV = 564 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 565 EmitInitializationToLValue(E->getInit(i), elementLV); 566 } 567 568 // Check whether there's a non-trivial array-fill expression. 569 Expr *filler = E->getArrayFiller(); 570 bool hasTrivialFiller = isTrivialFiller(filler); 571 572 // Any remaining elements need to be zero-initialized, possibly 573 // using the filler expression. We can skip this if the we're 574 // emitting to zeroed memory. 575 if (NumInitElements != NumArrayElements && 576 !(Dest.isZeroed() && hasTrivialFiller && 577 CGF.getTypes().isZeroInitializable(elementType))) { 578 579 // Use an actual loop. This is basically 580 // do { *array++ = filler; } while (array != end); 581 582 // Advance to the start of the rest of the array. 583 if (NumInitElements) { 584 element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start"); 585 if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit); 586 } 587 588 // Compute the end of the array. 589 llvm::Value *end = Builder.CreateInBoundsGEP(begin, 590 llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements), 591 "arrayinit.end"); 592 593 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 594 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 595 596 // Jump into the body. 597 CGF.EmitBlock(bodyBB); 598 llvm::PHINode *currentElement = 599 Builder.CreatePHI(element->getType(), 2, "arrayinit.cur"); 600 currentElement->addIncoming(element, entryBB); 601 602 // Emit the actual filler expression. 603 { 604 // C++1z [class.temporary]p5: 605 // when a default constructor is called to initialize an element of 606 // an array with no corresponding initializer [...] the destruction of 607 // every temporary created in a default argument is sequenced before 608 // the construction of the next array element, if any 609 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 610 LValue elementLV = 611 CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType); 612 if (filler) 613 EmitInitializationToLValue(filler, elementLV); 614 else 615 EmitNullInitializationToLValue(elementLV); 616 } 617 618 // Move on to the next element. 619 llvm::Value *nextElement = 620 Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next"); 621 622 // Tell the EH cleanup that we finished with the last element. 623 if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit); 624 625 // Leave the loop if we're done. 626 llvm::Value *done = Builder.CreateICmpEQ(nextElement, end, 627 "arrayinit.done"); 628 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 629 Builder.CreateCondBr(done, endBB, bodyBB); 630 currentElement->addIncoming(nextElement, Builder.GetInsertBlock()); 631 632 CGF.EmitBlock(endBB); 633 } 634 635 // Leave the partial-array cleanup if we entered one. 636 if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator); 637 } 638 639 //===----------------------------------------------------------------------===// 640 // Visitor Methods 641 //===----------------------------------------------------------------------===// 642 643 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ 644 Visit(E->getSubExpr()); 645 } 646 647 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { 648 // If this is a unique OVE, just visit its source expression. 649 if (e->isUnique()) 650 Visit(e->getSourceExpr()); 651 else 652 EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); 653 } 654 655 void 656 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 657 if (Dest.isPotentiallyAliased() && 658 E->getType().isPODType(CGF.getContext())) { 659 // For a POD type, just emit a load of the lvalue + a copy, because our 660 // compound literal might alias the destination. 661 EmitAggLoadOfLValue(E); 662 return; 663 } 664 665 AggValueSlot Slot = EnsureSlot(E->getType()); 666 667 // Block-scope compound literals are destroyed at the end of the enclosing 668 // scope in C. 669 bool Destruct = 670 !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed(); 671 if (Destruct) 672 Slot.setExternallyDestructed(); 673 674 CGF.EmitAggExpr(E->getInitializer(), Slot); 675 676 if (Destruct) 677 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 678 CGF.pushLifetimeExtendedDestroy( 679 CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(), 680 CGF.getDestroyer(DtorKind), DtorKind & EHCleanup); 681 } 682 683 /// Attempt to look through various unimportant expressions to find a 684 /// cast of the given kind. 685 static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) { 686 op = op->IgnoreParenNoopCasts(ctx); 687 if (auto castE = dyn_cast<CastExpr>(op)) { 688 if (castE->getCastKind() == kind) 689 return castE->getSubExpr(); 690 } 691 return nullptr; 692 } 693 694 void AggExprEmitter::VisitCastExpr(CastExpr *E) { 695 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 696 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 697 switch (E->getCastKind()) { 698 case CK_Dynamic: { 699 // FIXME: Can this actually happen? We have no test coverage for it. 700 assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?"); 701 LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(), 702 CodeGenFunction::TCK_Load); 703 // FIXME: Do we also need to handle property references here? 704 if (LV.isSimple()) 705 CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E)); 706 else 707 CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast"); 708 709 if (!Dest.isIgnored()) 710 CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination"); 711 break; 712 } 713 714 case CK_ToUnion: { 715 // Evaluate even if the destination is ignored. 716 if (Dest.isIgnored()) { 717 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 718 /*ignoreResult=*/true); 719 break; 720 } 721 722 // GCC union extension 723 QualType Ty = E->getSubExpr()->getType(); 724 Address CastPtr = 725 Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty)); 726 EmitInitializationToLValue(E->getSubExpr(), 727 CGF.MakeAddrLValue(CastPtr, Ty)); 728 break; 729 } 730 731 case CK_LValueToRValueBitCast: { 732 if (Dest.isIgnored()) { 733 CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(), 734 /*ignoreResult=*/true); 735 break; 736 } 737 738 LValue SourceLV = CGF.EmitLValue(E->getSubExpr()); 739 Address SourceAddress = 740 Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty); 741 Address DestAddress = 742 Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty); 743 llvm::Value *SizeVal = llvm::ConstantInt::get( 744 CGF.SizeTy, 745 CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity()); 746 Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal); 747 break; 748 } 749 750 case CK_DerivedToBase: 751 case CK_BaseToDerived: 752 case CK_UncheckedDerivedToBase: { 753 llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " 754 "should have been unpacked before we got here"); 755 } 756 757 case CK_NonAtomicToAtomic: 758 case CK_AtomicToNonAtomic: { 759 bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); 760 761 // Determine the atomic and value types. 762 QualType atomicType = E->getSubExpr()->getType(); 763 QualType valueType = E->getType(); 764 if (isToAtomic) std::swap(atomicType, valueType); 765 766 assert(atomicType->isAtomicType()); 767 assert(CGF.getContext().hasSameUnqualifiedType(valueType, 768 atomicType->castAs<AtomicType>()->getValueType())); 769 770 // Just recurse normally if we're ignoring the result or the 771 // atomic type doesn't change representation. 772 if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) { 773 return Visit(E->getSubExpr()); 774 } 775 776 CastKind peepholeTarget = 777 (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); 778 779 // These two cases are reverses of each other; try to peephole them. 780 if (Expr *op = 781 findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) { 782 assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), 783 E->getType()) && 784 "peephole significantly changed types?"); 785 return Visit(op); 786 } 787 788 // If we're converting an r-value of non-atomic type to an r-value 789 // of atomic type, just emit directly into the relevant sub-object. 790 if (isToAtomic) { 791 AggValueSlot valueDest = Dest; 792 if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) { 793 // Zero-initialize. (Strictly speaking, we only need to initialize 794 // the padding at the end, but this is simpler.) 795 if (!Dest.isZeroed()) 796 CGF.EmitNullInitialization(Dest.getAddress(), atomicType); 797 798 // Build a GEP to refer to the subobject. 799 Address valueAddr = 800 CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0); 801 valueDest = AggValueSlot::forAddr(valueAddr, 802 valueDest.getQualifiers(), 803 valueDest.isExternallyDestructed(), 804 valueDest.requiresGCollection(), 805 valueDest.isPotentiallyAliased(), 806 AggValueSlot::DoesNotOverlap, 807 AggValueSlot::IsZeroed); 808 } 809 810 CGF.EmitAggExpr(E->getSubExpr(), valueDest); 811 return; 812 } 813 814 // Otherwise, we're converting an atomic type to a non-atomic type. 815 // Make an atomic temporary, emit into that, and then copy the value out. 816 AggValueSlot atomicSlot = 817 CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp"); 818 CGF.EmitAggExpr(E->getSubExpr(), atomicSlot); 819 820 Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0); 821 RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile()); 822 return EmitFinalDestCopy(valueType, rvalue); 823 } 824 case CK_AddressSpaceConversion: 825 return Visit(E->getSubExpr()); 826 827 case CK_LValueToRValue: 828 // If we're loading from a volatile type, force the destination 829 // into existence. 830 if (E->getSubExpr()->getType().isVolatileQualified()) { 831 bool Destruct = 832 !Dest.isExternallyDestructed() && 833 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; 834 if (Destruct) 835 Dest.setExternallyDestructed(); 836 EnsureDest(E->getType()); 837 Visit(E->getSubExpr()); 838 839 if (Destruct) 840 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 841 E->getType()); 842 843 return; 844 } 845 846 LLVM_FALLTHROUGH; 847 848 849 case CK_NoOp: 850 case CK_UserDefinedConversion: 851 case CK_ConstructorConversion: 852 assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), 853 E->getType()) && 854 "Implicit cast types must be compatible"); 855 Visit(E->getSubExpr()); 856 break; 857 858 case CK_LValueBitCast: 859 llvm_unreachable("should not be emitting lvalue bitcast as rvalue"); 860 861 case CK_Dependent: 862 case CK_BitCast: 863 case CK_ArrayToPointerDecay: 864 case CK_FunctionToPointerDecay: 865 case CK_NullToPointer: 866 case CK_NullToMemberPointer: 867 case CK_BaseToDerivedMemberPointer: 868 case CK_DerivedToBaseMemberPointer: 869 case CK_MemberPointerToBoolean: 870 case CK_ReinterpretMemberPointer: 871 case CK_IntegralToPointer: 872 case CK_PointerToIntegral: 873 case CK_PointerToBoolean: 874 case CK_ToVoid: 875 case CK_VectorSplat: 876 case CK_IntegralCast: 877 case CK_BooleanToSignedIntegral: 878 case CK_IntegralToBoolean: 879 case CK_IntegralToFloating: 880 case CK_FloatingToIntegral: 881 case CK_FloatingToBoolean: 882 case CK_FloatingCast: 883 case CK_CPointerToObjCPointerCast: 884 case CK_BlockPointerToObjCPointerCast: 885 case CK_AnyPointerToBlockPointerCast: 886 case CK_ObjCObjectLValueCast: 887 case CK_FloatingRealToComplex: 888 case CK_FloatingComplexToReal: 889 case CK_FloatingComplexToBoolean: 890 case CK_FloatingComplexCast: 891 case CK_FloatingComplexToIntegralComplex: 892 case CK_IntegralRealToComplex: 893 case CK_IntegralComplexToReal: 894 case CK_IntegralComplexToBoolean: 895 case CK_IntegralComplexCast: 896 case CK_IntegralComplexToFloatingComplex: 897 case CK_ARCProduceObject: 898 case CK_ARCConsumeObject: 899 case CK_ARCReclaimReturnedObject: 900 case CK_ARCExtendBlockObject: 901 case CK_CopyAndAutoreleaseBlockObject: 902 case CK_BuiltinFnToFnPtr: 903 case CK_ZeroToOCLOpaqueType: 904 905 case CK_IntToOCLSampler: 906 case CK_FloatingToFixedPoint: 907 case CK_FixedPointToFloating: 908 case CK_FixedPointCast: 909 case CK_FixedPointToBoolean: 910 case CK_FixedPointToIntegral: 911 case CK_IntegralToFixedPoint: 912 llvm_unreachable("cast kind invalid for aggregate types"); 913 } 914 } 915 916 void AggExprEmitter::VisitCallExpr(const CallExpr *E) { 917 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) { 918 EmitAggLoadOfLValue(E); 919 return; 920 } 921 922 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 923 return CGF.EmitCallExpr(E, Slot); 924 }); 925 } 926 927 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { 928 withReturnValueSlot(E, [&](ReturnValueSlot Slot) { 929 return CGF.EmitObjCMessageExpr(E, Slot); 930 }); 931 } 932 933 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { 934 CGF.EmitIgnoredExpr(E->getLHS()); 935 Visit(E->getRHS()); 936 } 937 938 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { 939 CodeGenFunction::StmtExprEvaluation eval(CGF); 940 CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest); 941 } 942 943 enum CompareKind { 944 CK_Less, 945 CK_Greater, 946 CK_Equal, 947 }; 948 949 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, 950 const BinaryOperator *E, llvm::Value *LHS, 951 llvm::Value *RHS, CompareKind Kind, 952 const char *NameSuffix = "") { 953 QualType ArgTy = E->getLHS()->getType(); 954 if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) 955 ArgTy = CT->getElementType(); 956 957 if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { 958 assert(Kind == CK_Equal && 959 "member pointers may only be compared for equality"); 960 return CGF.CGM.getCXXABI().EmitMemberPointerComparison( 961 CGF, LHS, RHS, MPT, /*IsInequality*/ false); 962 } 963 964 // Compute the comparison instructions for the specified comparison kind. 965 struct CmpInstInfo { 966 const char *Name; 967 llvm::CmpInst::Predicate FCmp; 968 llvm::CmpInst::Predicate SCmp; 969 llvm::CmpInst::Predicate UCmp; 970 }; 971 CmpInstInfo InstInfo = [&]() -> CmpInstInfo { 972 using FI = llvm::FCmpInst; 973 using II = llvm::ICmpInst; 974 switch (Kind) { 975 case CK_Less: 976 return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT}; 977 case CK_Greater: 978 return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT}; 979 case CK_Equal: 980 return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ}; 981 } 982 llvm_unreachable("Unrecognised CompareKind enum"); 983 }(); 984 985 if (ArgTy->hasFloatingRepresentation()) 986 return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS, 987 llvm::Twine(InstInfo.Name) + NameSuffix); 988 if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { 989 auto Inst = 990 ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; 991 return Builder.CreateICmp(Inst, LHS, RHS, 992 llvm::Twine(InstInfo.Name) + NameSuffix); 993 } 994 995 llvm_unreachable("unsupported aggregate binary expression should have " 996 "already been handled"); 997 } 998 999 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { 1000 using llvm::BasicBlock; 1001 using llvm::PHINode; 1002 using llvm::Value; 1003 assert(CGF.getContext().hasSameType(E->getLHS()->getType(), 1004 E->getRHS()->getType())); 1005 const ComparisonCategoryInfo &CmpInfo = 1006 CGF.getContext().CompCategories.getInfoForType(E->getType()); 1007 assert(CmpInfo.Record->isTriviallyCopyable() && 1008 "cannot copy non-trivially copyable aggregate"); 1009 1010 QualType ArgTy = E->getLHS()->getType(); 1011 1012 if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && 1013 !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && 1014 !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { 1015 return CGF.ErrorUnsupported(E, "aggregate three-way comparison"); 1016 } 1017 bool IsComplex = ArgTy->isAnyComplexType(); 1018 1019 // Evaluate the operands to the expression and extract their values. 1020 auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { 1021 RValue RV = CGF.EmitAnyExpr(E); 1022 if (RV.isScalar()) 1023 return {RV.getScalarVal(), nullptr}; 1024 if (RV.isAggregate()) 1025 return {RV.getAggregatePointer(), nullptr}; 1026 assert(RV.isComplex()); 1027 return RV.getComplexVal(); 1028 }; 1029 auto LHSValues = EmitOperand(E->getLHS()), 1030 RHSValues = EmitOperand(E->getRHS()); 1031 1032 auto EmitCmp = [&](CompareKind K) { 1033 Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first, 1034 K, IsComplex ? ".r" : ""); 1035 if (!IsComplex) 1036 return Cmp; 1037 assert(K == CompareKind::CK_Equal); 1038 Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second, 1039 RHSValues.second, K, ".i"); 1040 return Builder.CreateAnd(Cmp, CmpImag, "and.eq"); 1041 }; 1042 auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { 1043 return Builder.getInt(VInfo->getIntValue()); 1044 }; 1045 1046 Value *Select; 1047 if (ArgTy->isNullPtrType()) { 1048 Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); 1049 } else if (!CmpInfo.isPartial()) { 1050 Value *SelectOne = 1051 Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), 1052 EmitCmpRes(CmpInfo.getGreater()), "sel.lt"); 1053 Select = Builder.CreateSelect(EmitCmp(CK_Equal), 1054 EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1055 SelectOne, "sel.eq"); 1056 } else { 1057 Value *SelectEq = Builder.CreateSelect( 1058 EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()), 1059 EmitCmpRes(CmpInfo.getUnordered()), "sel.eq"); 1060 Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater), 1061 EmitCmpRes(CmpInfo.getGreater()), 1062 SelectEq, "sel.gt"); 1063 Select = Builder.CreateSelect( 1064 EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt"); 1065 } 1066 // Create the return value in the destination slot. 1067 EnsureDest(E->getType()); 1068 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1069 1070 // Emit the address of the first (and only) field in the comparison category 1071 // type, and initialize it from the constant integer value selected above. 1072 LValue FieldLV = CGF.EmitLValueForFieldInitialization( 1073 DestLV, *CmpInfo.Record->field_begin()); 1074 CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true); 1075 1076 // All done! The result is in the Dest slot. 1077 } 1078 1079 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { 1080 if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) 1081 VisitPointerToDataMemberBinaryOperator(E); 1082 else 1083 CGF.ErrorUnsupported(E, "aggregate binary expression"); 1084 } 1085 1086 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( 1087 const BinaryOperator *E) { 1088 LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); 1089 EmitFinalDestCopy(E->getType(), LV); 1090 } 1091 1092 /// Is the value of the given expression possibly a reference to or 1093 /// into a __block variable? 1094 static bool isBlockVarRef(const Expr *E) { 1095 // Make sure we look through parens. 1096 E = E->IgnoreParens(); 1097 1098 // Check for a direct reference to a __block variable. 1099 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 1100 const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); 1101 return (var && var->hasAttr<BlocksAttr>()); 1102 } 1103 1104 // More complicated stuff. 1105 1106 // Binary operators. 1107 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) { 1108 // For an assignment or pointer-to-member operation, just care 1109 // about the LHS. 1110 if (op->isAssignmentOp() || op->isPtrMemOp()) 1111 return isBlockVarRef(op->getLHS()); 1112 1113 // For a comma, just care about the RHS. 1114 if (op->getOpcode() == BO_Comma) 1115 return isBlockVarRef(op->getRHS()); 1116 1117 // FIXME: pointer arithmetic? 1118 return false; 1119 1120 // Check both sides of a conditional operator. 1121 } else if (const AbstractConditionalOperator *op 1122 = dyn_cast<AbstractConditionalOperator>(E)) { 1123 return isBlockVarRef(op->getTrueExpr()) 1124 || isBlockVarRef(op->getFalseExpr()); 1125 1126 // OVEs are required to support BinaryConditionalOperators. 1127 } else if (const OpaqueValueExpr *op 1128 = dyn_cast<OpaqueValueExpr>(E)) { 1129 if (const Expr *src = op->getSourceExpr()) 1130 return isBlockVarRef(src); 1131 1132 // Casts are necessary to get things like (*(int*)&var) = foo(). 1133 // We don't really care about the kind of cast here, except 1134 // we don't want to look through l2r casts, because it's okay 1135 // to get the *value* in a __block variable. 1136 } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) { 1137 if (cast->getCastKind() == CK_LValueToRValue) 1138 return false; 1139 return isBlockVarRef(cast->getSubExpr()); 1140 1141 // Handle unary operators. Again, just aggressively look through 1142 // it, ignoring the operation. 1143 } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) { 1144 return isBlockVarRef(uop->getSubExpr()); 1145 1146 // Look into the base of a field access. 1147 } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) { 1148 return isBlockVarRef(mem->getBase()); 1149 1150 // Look into the base of a subscript. 1151 } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) { 1152 return isBlockVarRef(sub->getBase()); 1153 } 1154 1155 return false; 1156 } 1157 1158 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { 1159 // For an assignment to work, the value on the right has 1160 // to be compatible with the value on the left. 1161 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 1162 E->getRHS()->getType()) 1163 && "Invalid assignment"); 1164 1165 // If the LHS might be a __block variable, and the RHS can 1166 // potentially cause a block copy, we need to evaluate the RHS first 1167 // so that the assignment goes the right place. 1168 // This is pretty semantically fragile. 1169 if (isBlockVarRef(E->getLHS()) && 1170 E->getRHS()->HasSideEffects(CGF.getContext())) { 1171 // Ensure that we have a destination, and evaluate the RHS into that. 1172 EnsureDest(E->getRHS()->getType()); 1173 Visit(E->getRHS()); 1174 1175 // Now emit the LHS and copy into it. 1176 LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 1177 1178 // That copy is an atomic copy if the LHS is atomic. 1179 if (LHS.getType()->isAtomicType() || 1180 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1181 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1182 return; 1183 } 1184 1185 EmitCopy(E->getLHS()->getType(), 1186 AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed, 1187 needsGC(E->getLHS()->getType()), 1188 AggValueSlot::IsAliased, 1189 AggValueSlot::MayOverlap), 1190 Dest); 1191 return; 1192 } 1193 1194 LValue LHS = CGF.EmitLValue(E->getLHS()); 1195 1196 // If we have an atomic type, evaluate into the destination and then 1197 // do an atomic copy. 1198 if (LHS.getType()->isAtomicType() || 1199 CGF.LValueIsSuitableForInlineAtomic(LHS)) { 1200 EnsureDest(E->getRHS()->getType()); 1201 Visit(E->getRHS()); 1202 CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false); 1203 return; 1204 } 1205 1206 // Codegen the RHS so that it stores directly into the LHS. 1207 AggValueSlot LHSSlot = AggValueSlot::forLValue( 1208 LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()), 1209 AggValueSlot::IsAliased, AggValueSlot::MayOverlap); 1210 // A non-volatile aggregate destination might have volatile member. 1211 if (!LHSSlot.isVolatile() && 1212 CGF.hasVolatileMember(E->getLHS()->getType())) 1213 LHSSlot.setVolatile(true); 1214 1215 CGF.EmitAggExpr(E->getRHS(), LHSSlot); 1216 1217 // Copy into the destination if the assignment isn't ignored. 1218 EmitFinalDestCopy(E->getType(), LHS); 1219 1220 if (!Dest.isIgnored() && !Dest.isExternallyDestructed() && 1221 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 1222 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 1223 E->getType()); 1224 } 1225 1226 void AggExprEmitter:: 1227 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 1228 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 1229 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 1230 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 1231 1232 // Bind the common expression if necessary. 1233 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 1234 1235 CodeGenFunction::ConditionalEvaluation eval(CGF); 1236 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 1237 CGF.getProfileCount(E)); 1238 1239 // Save whether the destination's lifetime is externally managed. 1240 bool isExternallyDestructed = Dest.isExternallyDestructed(); 1241 bool destructNonTrivialCStruct = 1242 !isExternallyDestructed && 1243 E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; 1244 isExternallyDestructed |= destructNonTrivialCStruct; 1245 Dest.setExternallyDestructed(isExternallyDestructed); 1246 1247 eval.begin(CGF); 1248 CGF.EmitBlock(LHSBlock); 1249 CGF.incrementProfileCounter(E); 1250 Visit(E->getTrueExpr()); 1251 eval.end(CGF); 1252 1253 assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!"); 1254 CGF.Builder.CreateBr(ContBlock); 1255 1256 // If the result of an agg expression is unused, then the emission 1257 // of the LHS might need to create a destination slot. That's fine 1258 // with us, and we can safely emit the RHS into the same slot, but 1259 // we shouldn't claim that it's already being destructed. 1260 Dest.setExternallyDestructed(isExternallyDestructed); 1261 1262 eval.begin(CGF); 1263 CGF.EmitBlock(RHSBlock); 1264 Visit(E->getFalseExpr()); 1265 eval.end(CGF); 1266 1267 if (destructNonTrivialCStruct) 1268 CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), 1269 E->getType()); 1270 1271 CGF.EmitBlock(ContBlock); 1272 } 1273 1274 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { 1275 Visit(CE->getChosenSubExpr()); 1276 } 1277 1278 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 1279 Address ArgValue = Address::invalid(); 1280 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 1281 1282 // If EmitVAArg fails, emit an error. 1283 if (!ArgPtr.isValid()) { 1284 CGF.ErrorUnsupported(VE, "aggregate va_arg expression"); 1285 return; 1286 } 1287 1288 EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); 1289 } 1290 1291 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1292 // Ensure that we have a slot, but if we already do, remember 1293 // whether it was externally destructed. 1294 bool wasExternallyDestructed = Dest.isExternallyDestructed(); 1295 EnsureDest(E->getType()); 1296 1297 // We're going to push a destructor if there isn't already one. 1298 Dest.setExternallyDestructed(); 1299 1300 Visit(E->getSubExpr()); 1301 1302 // Push that destructor we promised. 1303 if (!wasExternallyDestructed) 1304 CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress()); 1305 } 1306 1307 void 1308 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { 1309 AggValueSlot Slot = EnsureSlot(E->getType()); 1310 CGF.EmitCXXConstructExpr(E, Slot); 1311 } 1312 1313 void AggExprEmitter::VisitCXXInheritedCtorInitExpr( 1314 const CXXInheritedCtorInitExpr *E) { 1315 AggValueSlot Slot = EnsureSlot(E->getType()); 1316 CGF.EmitInheritedCXXConstructorCall( 1317 E->getConstructor(), E->constructsVBase(), Slot.getAddress(), 1318 E->inheritedFromVBase(), E); 1319 } 1320 1321 void 1322 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { 1323 AggValueSlot Slot = EnsureSlot(E->getType()); 1324 LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType()); 1325 1326 // We'll need to enter cleanup scopes in case any of the element 1327 // initializers throws an exception. 1328 SmallVector<EHScopeStack::stable_iterator, 16> Cleanups; 1329 llvm::Instruction *CleanupDominator = nullptr; 1330 1331 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); 1332 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), 1333 e = E->capture_init_end(); 1334 i != e; ++i, ++CurField) { 1335 // Emit initialization 1336 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 1337 if (CurField->hasCapturedVLAType()) { 1338 CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 1339 continue; 1340 } 1341 1342 EmitInitializationToLValue(*i, LV); 1343 1344 // Push a destructor if necessary. 1345 if (QualType::DestructionKind DtorKind = 1346 CurField->getType().isDestructedType()) { 1347 assert(LV.isSimple()); 1348 if (CGF.needsEHCleanup(DtorKind)) { 1349 if (!CleanupDominator) 1350 CleanupDominator = CGF.Builder.CreateAlignedLoad( 1351 CGF.Int8Ty, 1352 llvm::Constant::getNullValue(CGF.Int8PtrTy), 1353 CharUnits::One()); // placeholder 1354 1355 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(), 1356 CGF.getDestroyer(DtorKind), false); 1357 Cleanups.push_back(CGF.EHStack.stable_begin()); 1358 } 1359 } 1360 } 1361 1362 // Deactivate all the partial cleanups in reverse order, which 1363 // generally means popping them. 1364 for (unsigned i = Cleanups.size(); i != 0; --i) 1365 CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator); 1366 1367 // Destroy the placeholder if we made one. 1368 if (CleanupDominator) 1369 CleanupDominator->eraseFromParent(); 1370 } 1371 1372 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1373 CodeGenFunction::RunCleanupsScope cleanups(CGF); 1374 Visit(E->getSubExpr()); 1375 } 1376 1377 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 1378 QualType T = E->getType(); 1379 AggValueSlot Slot = EnsureSlot(T); 1380 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1381 } 1382 1383 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 1384 QualType T = E->getType(); 1385 AggValueSlot Slot = EnsureSlot(T); 1386 EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T)); 1387 } 1388 1389 /// Determine whether the given cast kind is known to always convert values 1390 /// with all zero bits in their value representation to values with all zero 1391 /// bits in their value representation. 1392 static bool castPreservesZero(const CastExpr *CE) { 1393 switch (CE->getCastKind()) { 1394 // No-ops. 1395 case CK_NoOp: 1396 case CK_UserDefinedConversion: 1397 case CK_ConstructorConversion: 1398 case CK_BitCast: 1399 case CK_ToUnion: 1400 case CK_ToVoid: 1401 // Conversions between (possibly-complex) integral, (possibly-complex) 1402 // floating-point, and bool. 1403 case CK_BooleanToSignedIntegral: 1404 case CK_FloatingCast: 1405 case CK_FloatingComplexCast: 1406 case CK_FloatingComplexToBoolean: 1407 case CK_FloatingComplexToIntegralComplex: 1408 case CK_FloatingComplexToReal: 1409 case CK_FloatingRealToComplex: 1410 case CK_FloatingToBoolean: 1411 case CK_FloatingToIntegral: 1412 case CK_IntegralCast: 1413 case CK_IntegralComplexCast: 1414 case CK_IntegralComplexToBoolean: 1415 case CK_IntegralComplexToFloatingComplex: 1416 case CK_IntegralComplexToReal: 1417 case CK_IntegralRealToComplex: 1418 case CK_IntegralToBoolean: 1419 case CK_IntegralToFloating: 1420 // Reinterpreting integers as pointers and vice versa. 1421 case CK_IntegralToPointer: 1422 case CK_PointerToIntegral: 1423 // Language extensions. 1424 case CK_VectorSplat: 1425 case CK_NonAtomicToAtomic: 1426 case CK_AtomicToNonAtomic: 1427 return true; 1428 1429 case CK_BaseToDerivedMemberPointer: 1430 case CK_DerivedToBaseMemberPointer: 1431 case CK_MemberPointerToBoolean: 1432 case CK_NullToMemberPointer: 1433 case CK_ReinterpretMemberPointer: 1434 // FIXME: ABI-dependent. 1435 return false; 1436 1437 case CK_AnyPointerToBlockPointerCast: 1438 case CK_BlockPointerToObjCPointerCast: 1439 case CK_CPointerToObjCPointerCast: 1440 case CK_ObjCObjectLValueCast: 1441 case CK_IntToOCLSampler: 1442 case CK_ZeroToOCLOpaqueType: 1443 // FIXME: Check these. 1444 return false; 1445 1446 case CK_FixedPointCast: 1447 case CK_FixedPointToBoolean: 1448 case CK_FixedPointToFloating: 1449 case CK_FixedPointToIntegral: 1450 case CK_FloatingToFixedPoint: 1451 case CK_IntegralToFixedPoint: 1452 // FIXME: Do all fixed-point types represent zero as all 0 bits? 1453 return false; 1454 1455 case CK_AddressSpaceConversion: 1456 case CK_BaseToDerived: 1457 case CK_DerivedToBase: 1458 case CK_Dynamic: 1459 case CK_NullToPointer: 1460 case CK_PointerToBoolean: 1461 // FIXME: Preserves zeroes only if zero pointers and null pointers have the 1462 // same representation in all involved address spaces. 1463 return false; 1464 1465 case CK_ARCConsumeObject: 1466 case CK_ARCExtendBlockObject: 1467 case CK_ARCProduceObject: 1468 case CK_ARCReclaimReturnedObject: 1469 case CK_CopyAndAutoreleaseBlockObject: 1470 case CK_ArrayToPointerDecay: 1471 case CK_FunctionToPointerDecay: 1472 case CK_BuiltinFnToFnPtr: 1473 case CK_Dependent: 1474 case CK_LValueBitCast: 1475 case CK_LValueToRValue: 1476 case CK_LValueToRValueBitCast: 1477 case CK_UncheckedDerivedToBase: 1478 return false; 1479 } 1480 llvm_unreachable("Unhandled clang::CastKind enum"); 1481 } 1482 1483 /// isSimpleZero - If emitting this value will obviously just cause a store of 1484 /// zero to memory, return true. This can return false if uncertain, so it just 1485 /// handles simple cases. 1486 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { 1487 E = E->IgnoreParens(); 1488 while (auto *CE = dyn_cast<CastExpr>(E)) { 1489 if (!castPreservesZero(CE)) 1490 break; 1491 E = CE->getSubExpr()->IgnoreParens(); 1492 } 1493 1494 // 0 1495 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) 1496 return IL->getValue() == 0; 1497 // +0.0 1498 if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E)) 1499 return FL->getValue().isPosZero(); 1500 // int() 1501 if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) && 1502 CGF.getTypes().isZeroInitializable(E->getType())) 1503 return true; 1504 // (int*)0 - Null pointer expressions. 1505 if (const CastExpr *ICE = dyn_cast<CastExpr>(E)) 1506 return ICE->getCastKind() == CK_NullToPointer && 1507 CGF.getTypes().isPointerZeroInitializable(E->getType()) && 1508 !E->HasSideEffects(CGF.getContext()); 1509 // '\0' 1510 if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) 1511 return CL->getValue() == 0; 1512 1513 // Otherwise, hard case: conservatively return false. 1514 return false; 1515 } 1516 1517 1518 void 1519 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { 1520 QualType type = LV.getType(); 1521 // FIXME: Ignore result? 1522 // FIXME: Are initializers affected by volatile? 1523 if (Dest.isZeroed() && isSimpleZero(E, CGF)) { 1524 // Storing "i32 0" to a zero'd memory location is a noop. 1525 return; 1526 } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) { 1527 return EmitNullInitializationToLValue(LV); 1528 } else if (isa<NoInitExpr>(E)) { 1529 // Do nothing. 1530 return; 1531 } else if (type->isReferenceType()) { 1532 RValue RV = CGF.EmitReferenceBindingToExpr(E); 1533 return CGF.EmitStoreThroughLValue(RV, LV); 1534 } 1535 1536 switch (CGF.getEvaluationKind(type)) { 1537 case TEK_Complex: 1538 CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true); 1539 return; 1540 case TEK_Aggregate: 1541 CGF.EmitAggExpr( 1542 E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed, 1543 AggValueSlot::DoesNotNeedGCBarriers, 1544 AggValueSlot::IsNotAliased, 1545 AggValueSlot::MayOverlap, Dest.isZeroed())); 1546 return; 1547 case TEK_Scalar: 1548 if (LV.isSimple()) { 1549 CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false); 1550 } else { 1551 CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV); 1552 } 1553 return; 1554 } 1555 llvm_unreachable("bad evaluation kind"); 1556 } 1557 1558 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { 1559 QualType type = lv.getType(); 1560 1561 // If the destination slot is already zeroed out before the aggregate is 1562 // copied into it, we don't have to emit any zeros here. 1563 if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type)) 1564 return; 1565 1566 if (CGF.hasScalarEvaluationKind(type)) { 1567 // For non-aggregates, we can store the appropriate null constant. 1568 llvm::Value *null = CGF.CGM.EmitNullConstant(type); 1569 // Note that the following is not equivalent to 1570 // EmitStoreThroughBitfieldLValue for ARC types. 1571 if (lv.isBitField()) { 1572 CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv); 1573 } else { 1574 assert(lv.isSimple()); 1575 CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true); 1576 } 1577 } else { 1578 // There's a potential optimization opportunity in combining 1579 // memsets; that would be easy for arrays, but relatively 1580 // difficult for structures with the current code. 1581 CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType()); 1582 } 1583 } 1584 1585 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { 1586 #if 0 1587 // FIXME: Assess perf here? Figure out what cases are worth optimizing here 1588 // (Length of globals? Chunks of zeroed-out space?). 1589 // 1590 // If we can, prefer a copy from a global; this is a lot less code for long 1591 // globals, and it's easier for the current optimizers to analyze. 1592 if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) { 1593 llvm::GlobalVariable* GV = 1594 new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, 1595 llvm::GlobalValue::InternalLinkage, C, ""); 1596 EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType())); 1597 return; 1598 } 1599 #endif 1600 if (E->hadArrayRangeDesignator()) 1601 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1602 1603 if (E->isTransparent()) 1604 return Visit(E->getInit(0)); 1605 1606 AggValueSlot Dest = EnsureSlot(E->getType()); 1607 1608 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1609 1610 // Handle initialization of an array. 1611 if (E->getType()->isArrayType()) { 1612 auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType()); 1613 EmitArrayInit(Dest.getAddress(), AType, E->getType(), E); 1614 return; 1615 } 1616 1617 assert(E->getType()->isRecordType() && "Only support structs/unions here!"); 1618 1619 // Do struct initialization; this code just sets each individual member 1620 // to the approprate value. This makes bitfield support automatic; 1621 // the disadvantage is that the generated code is more difficult for 1622 // the optimizer, especially with bitfields. 1623 unsigned NumInitElements = E->getNumInits(); 1624 RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl(); 1625 1626 // We'll need to enter cleanup scopes in case any of the element 1627 // initializers throws an exception. 1628 SmallVector<EHScopeStack::stable_iterator, 16> cleanups; 1629 llvm::Instruction *cleanupDominator = nullptr; 1630 auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) { 1631 cleanups.push_back(cleanup); 1632 if (!cleanupDominator) // create placeholder once needed 1633 cleanupDominator = CGF.Builder.CreateAlignedLoad( 1634 CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy), 1635 CharUnits::One()); 1636 }; 1637 1638 unsigned curInitIndex = 0; 1639 1640 // Emit initialization of base classes. 1641 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) { 1642 assert(E->getNumInits() >= CXXRD->getNumBases() && 1643 "missing initializer for base class"); 1644 for (auto &Base : CXXRD->bases()) { 1645 assert(!Base.isVirtual() && "should not see vbases here"); 1646 auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); 1647 Address V = CGF.GetAddressOfDirectBaseInCompleteClass( 1648 Dest.getAddress(), CXXRD, BaseRD, 1649 /*isBaseVirtual*/ false); 1650 AggValueSlot AggSlot = AggValueSlot::forAddr( 1651 V, Qualifiers(), 1652 AggValueSlot::IsDestructed, 1653 AggValueSlot::DoesNotNeedGCBarriers, 1654 AggValueSlot::IsNotAliased, 1655 CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual())); 1656 CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot); 1657 1658 if (QualType::DestructionKind dtorKind = 1659 Base.getType().isDestructedType()) { 1660 CGF.pushDestroy(dtorKind, V, Base.getType()); 1661 addCleanup(CGF.EHStack.stable_begin()); 1662 } 1663 } 1664 } 1665 1666 // Prepare a 'this' for CXXDefaultInitExprs. 1667 CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); 1668 1669 if (record->isUnion()) { 1670 // Only initialize one field of a union. The field itself is 1671 // specified by the initializer list. 1672 if (!E->getInitializedFieldInUnion()) { 1673 // Empty union; we have nothing to do. 1674 1675 #ifndef NDEBUG 1676 // Make sure that it's really an empty and not a failure of 1677 // semantic analysis. 1678 for (const auto *Field : record->fields()) 1679 assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); 1680 #endif 1681 return; 1682 } 1683 1684 // FIXME: volatility 1685 FieldDecl *Field = E->getInitializedFieldInUnion(); 1686 1687 LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field); 1688 if (NumInitElements) { 1689 // Store the initializer into the field 1690 EmitInitializationToLValue(E->getInit(0), FieldLoc); 1691 } else { 1692 // Default-initialize to null. 1693 EmitNullInitializationToLValue(FieldLoc); 1694 } 1695 1696 return; 1697 } 1698 1699 // Here we iterate over the fields; this makes it simpler to both 1700 // default-initialize fields and skip over unnamed fields. 1701 for (const auto *field : record->fields()) { 1702 // We're done once we hit the flexible array member. 1703 if (field->getType()->isIncompleteArrayType()) 1704 break; 1705 1706 // Always skip anonymous bitfields. 1707 if (field->isUnnamedBitfield()) 1708 continue; 1709 1710 // We're done if we reach the end of the explicit initializers, we 1711 // have a zeroed object, and the rest of the fields are 1712 // zero-initializable. 1713 if (curInitIndex == NumInitElements && Dest.isZeroed() && 1714 CGF.getTypes().isZeroInitializable(E->getType())) 1715 break; 1716 1717 1718 LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field); 1719 // We never generate write-barries for initialized fields. 1720 LV.setNonGC(true); 1721 1722 if (curInitIndex < NumInitElements) { 1723 // Store the initializer into the field. 1724 EmitInitializationToLValue(E->getInit(curInitIndex++), LV); 1725 } else { 1726 // We're out of initializers; default-initialize to null 1727 EmitNullInitializationToLValue(LV); 1728 } 1729 1730 // Push a destructor if necessary. 1731 // FIXME: if we have an array of structures, all explicitly 1732 // initialized, we can end up pushing a linear number of cleanups. 1733 bool pushedCleanup = false; 1734 if (QualType::DestructionKind dtorKind 1735 = field->getType().isDestructedType()) { 1736 assert(LV.isSimple()); 1737 if (CGF.needsEHCleanup(dtorKind)) { 1738 CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(), 1739 CGF.getDestroyer(dtorKind), false); 1740 addCleanup(CGF.EHStack.stable_begin()); 1741 pushedCleanup = true; 1742 } 1743 } 1744 1745 // If the GEP didn't get used because of a dead zero init or something 1746 // else, clean it up for -O0 builds and general tidiness. 1747 if (!pushedCleanup && LV.isSimple()) 1748 if (llvm::GetElementPtrInst *GEP = 1749 dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF))) 1750 if (GEP->use_empty()) 1751 GEP->eraseFromParent(); 1752 } 1753 1754 // Deactivate all the partial cleanups in reverse order, which 1755 // generally means popping them. 1756 assert((cleanupDominator || cleanups.empty()) && 1757 "Missing cleanupDominator before deactivating cleanup blocks"); 1758 for (unsigned i = cleanups.size(); i != 0; --i) 1759 CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator); 1760 1761 // Destroy the placeholder if we made one. 1762 if (cleanupDominator) 1763 cleanupDominator->eraseFromParent(); 1764 } 1765 1766 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, 1767 llvm::Value *outerBegin) { 1768 // Emit the common subexpression. 1769 CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); 1770 1771 Address destPtr = EnsureSlot(E->getType()).getAddress(); 1772 uint64_t numElements = E->getArraySize().getZExtValue(); 1773 1774 if (!numElements) 1775 return; 1776 1777 // destPtr is an array*. Construct an elementType* by drilling down a level. 1778 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 1779 llvm::Value *indices[] = {zero, zero}; 1780 llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices, 1781 "arrayinit.begin"); 1782 1783 // Prepare to special-case multidimensional array initialization: we avoid 1784 // emitting multiple destructor loops in that case. 1785 if (!outerBegin) 1786 outerBegin = begin; 1787 ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr()); 1788 1789 QualType elementType = 1790 CGF.getContext().getAsArrayType(E->getType())->getElementType(); 1791 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType); 1792 CharUnits elementAlign = 1793 destPtr.getAlignment().alignmentOfArrayElement(elementSize); 1794 1795 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1796 llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body"); 1797 1798 // Jump into the body. 1799 CGF.EmitBlock(bodyBB); 1800 llvm::PHINode *index = 1801 Builder.CreatePHI(zero->getType(), 2, "arrayinit.index"); 1802 index->addIncoming(zero, entryBB); 1803 llvm::Value *element = Builder.CreateInBoundsGEP(begin, index); 1804 1805 // Prepare for a cleanup. 1806 QualType::DestructionKind dtorKind = elementType.isDestructedType(); 1807 EHScopeStack::stable_iterator cleanup; 1808 if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) { 1809 if (outerBegin->getType() != element->getType()) 1810 outerBegin = Builder.CreateBitCast(outerBegin, element->getType()); 1811 CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType, 1812 elementAlign, 1813 CGF.getDestroyer(dtorKind)); 1814 cleanup = CGF.EHStack.stable_begin(); 1815 } else { 1816 dtorKind = QualType::DK_none; 1817 } 1818 1819 // Emit the actual filler expression. 1820 { 1821 // Temporaries created in an array initialization loop are destroyed 1822 // at the end of each iteration. 1823 CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); 1824 CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); 1825 LValue elementLV = 1826 CGF.MakeAddrLValue(Address(element, elementAlign), elementType); 1827 1828 if (InnerLoop) { 1829 // If the subexpression is an ArrayInitLoopExpr, share its cleanup. 1830 auto elementSlot = AggValueSlot::forLValue( 1831 elementLV, CGF, AggValueSlot::IsDestructed, 1832 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, 1833 AggValueSlot::DoesNotOverlap); 1834 AggExprEmitter(CGF, elementSlot, false) 1835 .VisitArrayInitLoopExpr(InnerLoop, outerBegin); 1836 } else 1837 EmitInitializationToLValue(E->getSubExpr(), elementLV); 1838 } 1839 1840 // Move on to the next element. 1841 llvm::Value *nextIndex = Builder.CreateNUWAdd( 1842 index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next"); 1843 index->addIncoming(nextIndex, Builder.GetInsertBlock()); 1844 1845 // Leave the loop if we're done. 1846 llvm::Value *done = Builder.CreateICmpEQ( 1847 nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements), 1848 "arrayinit.done"); 1849 llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end"); 1850 Builder.CreateCondBr(done, endBB, bodyBB); 1851 1852 CGF.EmitBlock(endBB); 1853 1854 // Leave the partial-array cleanup if we entered one. 1855 if (dtorKind) 1856 CGF.DeactivateCleanupBlock(cleanup, index); 1857 } 1858 1859 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 1860 AggValueSlot Dest = EnsureSlot(E->getType()); 1861 1862 LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); 1863 EmitInitializationToLValue(E->getBase(), DestLV); 1864 VisitInitListExpr(E->getUpdater()); 1865 } 1866 1867 //===----------------------------------------------------------------------===// 1868 // Entry Points into this File 1869 //===----------------------------------------------------------------------===// 1870 1871 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of 1872 /// non-zero bytes that will be stored when outputting the initializer for the 1873 /// specified initializer expression. 1874 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { 1875 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) 1876 E = MTE->getSubExpr(); 1877 E = E->IgnoreParenNoopCasts(CGF.getContext()); 1878 1879 // 0 and 0.0 won't require any non-zero stores! 1880 if (isSimpleZero(E, CGF)) return CharUnits::Zero(); 1881 1882 // If this is an initlist expr, sum up the size of sizes of the (present) 1883 // elements. If this is something weird, assume the whole thing is non-zero. 1884 const InitListExpr *ILE = dyn_cast<InitListExpr>(E); 1885 while (ILE && ILE->isTransparent()) 1886 ILE = dyn_cast<InitListExpr>(ILE->getInit(0)); 1887 if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) 1888 return CGF.getContext().getTypeSizeInChars(E->getType()); 1889 1890 // InitListExprs for structs have to be handled carefully. If there are 1891 // reference members, we need to consider the size of the reference, not the 1892 // referencee. InitListExprs for unions and arrays can't have references. 1893 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 1894 if (!RT->isUnionType()) { 1895 RecordDecl *SD = RT->getDecl(); 1896 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1897 1898 unsigned ILEElement = 0; 1899 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD)) 1900 while (ILEElement != CXXRD->getNumBases()) 1901 NumNonZeroBytes += 1902 GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF); 1903 for (const auto *Field : SD->fields()) { 1904 // We're done once we hit the flexible array member or run out of 1905 // InitListExpr elements. 1906 if (Field->getType()->isIncompleteArrayType() || 1907 ILEElement == ILE->getNumInits()) 1908 break; 1909 if (Field->isUnnamedBitfield()) 1910 continue; 1911 1912 const Expr *E = ILE->getInit(ILEElement++); 1913 1914 // Reference values are always non-null and have the width of a pointer. 1915 if (Field->getType()->isReferenceType()) 1916 NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( 1917 CGF.getTarget().getPointerWidth(0)); 1918 else 1919 NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); 1920 } 1921 1922 return NumNonZeroBytes; 1923 } 1924 } 1925 1926 // FIXME: This overestimates the number of non-zero bytes for bit-fields. 1927 CharUnits NumNonZeroBytes = CharUnits::Zero(); 1928 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) 1929 NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF); 1930 return NumNonZeroBytes; 1931 } 1932 1933 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of 1934 /// zeros in it, emit a memset and avoid storing the individual zeros. 1935 /// 1936 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, 1937 CodeGenFunction &CGF) { 1938 // If the slot is already known to be zeroed, nothing to do. Don't mess with 1939 // volatile stores. 1940 if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) 1941 return; 1942 1943 // C++ objects with a user-declared constructor don't need zero'ing. 1944 if (CGF.getLangOpts().CPlusPlus) 1945 if (const RecordType *RT = CGF.getContext() 1946 .getBaseElementType(E->getType())->getAs<RecordType>()) { 1947 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1948 if (RD->hasUserDeclaredConstructor()) 1949 return; 1950 } 1951 1952 // If the type is 16-bytes or smaller, prefer individual stores over memset. 1953 CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType()); 1954 if (Size <= CharUnits::fromQuantity(16)) 1955 return; 1956 1957 // Check to see if over 3/4 of the initializer are known to be zero. If so, 1958 // we prefer to emit memset + individual stores for the rest. 1959 CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); 1960 if (NumNonZeroBytes*4 > Size) 1961 return; 1962 1963 // Okay, it seems like a good idea to use an initial memset, emit the call. 1964 llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity()); 1965 1966 Address Loc = Slot.getAddress(); 1967 Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty); 1968 CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false); 1969 1970 // Tell the AggExprEmitter that the slot is known zero. 1971 Slot.setZeroed(); 1972 } 1973 1974 1975 1976 1977 /// EmitAggExpr - Emit the computation of the specified expression of aggregate 1978 /// type. The result is computed into DestPtr. Note that if DestPtr is null, 1979 /// the value of the aggregate expression is not needed. If VolatileDest is 1980 /// true, DestPtr cannot be 0. 1981 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { 1982 assert(E && hasAggregateEvaluationKind(E->getType()) && 1983 "Invalid aggregate expression to emit"); 1984 assert((Slot.getAddress().isValid() || Slot.isIgnored()) && 1985 "slot has bits but no address"); 1986 1987 // Optimize the slot if possible. 1988 CheckAggExprForMemSetUse(Slot, E, *this); 1989 1990 AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E)); 1991 } 1992 1993 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { 1994 assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!"); 1995 Address Temp = CreateMemTemp(E->getType()); 1996 LValue LV = MakeAddrLValue(Temp, E->getType()); 1997 EmitAggExpr(E, AggValueSlot::forLValue( 1998 LV, *this, AggValueSlot::IsNotDestructed, 1999 AggValueSlot::DoesNotNeedGCBarriers, 2000 AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); 2001 return LV; 2002 } 2003 2004 AggValueSlot::Overlap_t 2005 CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) { 2006 if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType()) 2007 return AggValueSlot::DoesNotOverlap; 2008 2009 // If the field lies entirely within the enclosing class's nvsize, its tail 2010 // padding cannot overlap any already-initialized object. (The only subobjects 2011 // with greater addresses that might already be initialized are vbases.) 2012 const RecordDecl *ClassRD = FD->getParent(); 2013 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD); 2014 if (Layout.getFieldOffset(FD->getFieldIndex()) + 2015 getContext().getTypeSize(FD->getType()) <= 2016 (uint64_t)getContext().toBits(Layout.getNonVirtualSize())) 2017 return AggValueSlot::DoesNotOverlap; 2018 2019 // The tail padding may contain values we need to preserve. 2020 return AggValueSlot::MayOverlap; 2021 } 2022 2023 AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit( 2024 const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { 2025 // If the most-derived object is a field declared with [[no_unique_address]], 2026 // the tail padding of any virtual base could be reused for other subobjects 2027 // of that field's class. 2028 if (IsVirtual) 2029 return AggValueSlot::MayOverlap; 2030 2031 // If the base class is laid out entirely within the nvsize of the derived 2032 // class, its tail padding cannot yet be initialized, so we can issue 2033 // stores at the full width of the base class. 2034 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2035 if (Layout.getBaseClassOffset(BaseRD) + 2036 getContext().getASTRecordLayout(BaseRD).getSize() <= 2037 Layout.getNonVirtualSize()) 2038 return AggValueSlot::DoesNotOverlap; 2039 2040 // The tail padding may contain values we need to preserve. 2041 return AggValueSlot::MayOverlap; 2042 } 2043 2044 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, 2045 AggValueSlot::Overlap_t MayOverlap, 2046 bool isVolatile) { 2047 assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex"); 2048 2049 Address DestPtr = Dest.getAddress(*this); 2050 Address SrcPtr = Src.getAddress(*this); 2051 2052 if (getLangOpts().CPlusPlus) { 2053 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2054 CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl()); 2055 assert((Record->hasTrivialCopyConstructor() || 2056 Record->hasTrivialCopyAssignment() || 2057 Record->hasTrivialMoveConstructor() || 2058 Record->hasTrivialMoveAssignment() || 2059 Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) && 2060 "Trying to aggregate-copy a type without a trivial copy/move " 2061 "constructor or assignment operator"); 2062 // Ignore empty classes in C++. 2063 if (Record->isEmpty()) 2064 return; 2065 } 2066 } 2067 2068 if (getLangOpts().CUDAIsDevice) { 2069 if (Ty->isCUDADeviceBuiltinSurfaceType()) { 2070 if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest, 2071 Src)) 2072 return; 2073 } else if (Ty->isCUDADeviceBuiltinTextureType()) { 2074 if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest, 2075 Src)) 2076 return; 2077 } 2078 } 2079 2080 // Aggregate assignment turns into llvm.memcpy. This is almost valid per 2081 // C99 6.5.16.1p3, which states "If the value being stored in an object is 2082 // read from another object that overlaps in anyway the storage of the first 2083 // object, then the overlap shall be exact and the two objects shall have 2084 // qualified or unqualified versions of a compatible type." 2085 // 2086 // memcpy is not defined if the source and destination pointers are exactly 2087 // equal, but other compilers do this optimization, and almost every memcpy 2088 // implementation handles this case safely. If there is a libc that does not 2089 // safely handle this, we can add a target hook. 2090 2091 // Get data size info for this aggregate. Don't copy the tail padding if this 2092 // might be a potentially-overlapping subobject, since the tail padding might 2093 // be occupied by a different object. Otherwise, copying it is fine. 2094 TypeInfoChars TypeInfo; 2095 if (MayOverlap) 2096 TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty); 2097 else 2098 TypeInfo = getContext().getTypeInfoInChars(Ty); 2099 2100 llvm::Value *SizeVal = nullptr; 2101 if (TypeInfo.Width.isZero()) { 2102 // But note that getTypeInfo returns 0 for a VLA. 2103 if (auto *VAT = dyn_cast_or_null<VariableArrayType>( 2104 getContext().getAsArrayType(Ty))) { 2105 QualType BaseEltTy; 2106 SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); 2107 TypeInfo = getContext().getTypeInfoInChars(BaseEltTy); 2108 assert(!TypeInfo.Width.isZero()); 2109 SizeVal = Builder.CreateNUWMul( 2110 SizeVal, 2111 llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity())); 2112 } 2113 } 2114 if (!SizeVal) { 2115 SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.Width.getQuantity()); 2116 } 2117 2118 // FIXME: If we have a volatile struct, the optimizer can remove what might 2119 // appear to be `extra' memory ops: 2120 // 2121 // volatile struct { int i; } a, b; 2122 // 2123 // int main() { 2124 // a = b; 2125 // a = b; 2126 // } 2127 // 2128 // we need to use a different call here. We use isVolatile to indicate when 2129 // either the source or the destination is volatile. 2130 2131 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 2132 SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty); 2133 2134 // Don't do any of the memmove_collectable tests if GC isn't set. 2135 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { 2136 // fall through 2137 } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 2138 RecordDecl *Record = RecordTy->getDecl(); 2139 if (Record->hasObjectMember()) { 2140 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2141 SizeVal); 2142 return; 2143 } 2144 } else if (Ty->isArrayType()) { 2145 QualType BaseType = getContext().getBaseElementType(Ty); 2146 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { 2147 if (RecordTy->getDecl()->hasObjectMember()) { 2148 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 2149 SizeVal); 2150 return; 2151 } 2152 } 2153 } 2154 2155 auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile); 2156 2157 // Determine the metadata to describe the position of any padding in this 2158 // memcpy, as well as the TBAA tags for the members of the struct, in case 2159 // the optimizer wishes to expand it in to scalar memory operations. 2160 if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty)) 2161 Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag); 2162 2163 if (CGM.getCodeGenOpts().NewStructPathTBAA) { 2164 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( 2165 Dest.getTBAAInfo(), Src.getTBAAInfo()); 2166 CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); 2167 } 2168 } 2169