1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "llvm/ADT/Hashing.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/MatrixBuilder.h" 39 #include "llvm/Support/ConvertUTF.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Path.h" 42 #include "llvm/Support/SaveAndRestore.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 #include <optional> 46 #include <string> 47 48 using namespace clang; 49 using namespace CodeGen; 50 51 //===--------------------------------------------------------------------===// 52 // Miscellaneous Helper Methods 53 //===--------------------------------------------------------------------===// 54 55 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 56 unsigned addressSpace = 57 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 58 59 llvm::PointerType *destType = Int8PtrTy; 60 if (addressSpace) 61 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 62 63 if (value->getType() == destType) return value; 64 return Builder.CreateBitCast(value, destType); 65 } 66 67 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 68 /// block. 69 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 70 CharUnits Align, 71 const Twine &Name, 72 llvm::Value *ArraySize) { 73 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 74 Alloca->setAlignment(Align.getAsAlign()); 75 return Address(Alloca, Ty, Align); 76 } 77 78 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 79 /// block. The alloca is casted to default address space if necessary. 80 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 81 const Twine &Name, 82 llvm::Value *ArraySize, 83 Address *AllocaAddr) { 84 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 85 if (AllocaAddr) 86 *AllocaAddr = Alloca; 87 llvm::Value *V = Alloca.getPointer(); 88 // Alloca always returns a pointer in alloca address space, which may 89 // be different from the type defined by the language. For example, 90 // in C++ the auto variables are in the default address space. Therefore 91 // cast alloca to the default address space when necessary. 92 if (getASTAllocaAddressSpace() != LangAS::Default) { 93 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 94 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 95 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 96 // otherwise alloca is inserted at the current insertion point of the 97 // builder. 98 if (!ArraySize) 99 Builder.SetInsertPoint(getPostAllocaInsertPoint()); 100 V = getTargetHooks().performAddrSpaceCast( 101 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 102 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 103 } 104 105 return Address(V, Ty, Align); 106 } 107 108 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 109 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 110 /// insertion point of the builder. 111 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 112 const Twine &Name, 113 llvm::Value *ArraySize) { 114 if (ArraySize) 115 return Builder.CreateAlloca(Ty, ArraySize, Name); 116 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 117 ArraySize, Name, AllocaInsertPt); 118 } 119 120 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 121 /// default alignment of the corresponding LLVM type, which is *not* 122 /// guaranteed to be related in any way to the expected alignment of 123 /// an AST type that might have been lowered to Ty. 124 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 125 const Twine &Name) { 126 CharUnits Align = 127 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlign(Ty)); 128 return CreateTempAlloca(Ty, Align, Name); 129 } 130 131 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 132 CharUnits Align = getContext().getTypeAlignInChars(Ty); 133 return CreateTempAlloca(ConvertType(Ty), Align, Name); 134 } 135 136 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 137 Address *Alloca) { 138 // FIXME: Should we prefer the preferred type alignment here? 139 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 140 } 141 142 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 143 const Twine &Name, Address *Alloca) { 144 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 145 /*ArraySize=*/nullptr, Alloca); 146 147 if (Ty->isConstantMatrixType()) { 148 auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType()); 149 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 150 ArrayTy->getNumElements()); 151 152 Result = Address( 153 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()), 154 VectorTy, Result.getAlignment()); 155 } 156 return Result; 157 } 158 159 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 160 const Twine &Name) { 161 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 162 } 163 164 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 165 const Twine &Name) { 166 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 167 Name); 168 } 169 170 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 171 /// expression and compare the result against zero, returning an Int1Ty value. 172 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 173 PGO.setCurrentStmt(E); 174 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 175 llvm::Value *MemPtr = EmitScalarExpr(E); 176 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 177 } 178 179 QualType BoolTy = getContext().BoolTy; 180 SourceLocation Loc = E->getExprLoc(); 181 CGFPOptionsRAII FPOptsRAII(*this, E); 182 if (!E->getType()->isAnyComplexType()) 183 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 184 185 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 186 Loc); 187 } 188 189 /// EmitIgnoredExpr - Emit code to compute the specified expression, 190 /// ignoring the result. 191 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 192 if (E->isPRValue()) 193 return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true); 194 195 // if this is a bitfield-resulting conditional operator, we can special case 196 // emit this. The normal 'EmitLValue' version of this is particularly 197 // difficult to codegen for, since creating a single "LValue" for two 198 // different sized arguments here is not particularly doable. 199 if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>( 200 E->IgnoreParenNoopCasts(getContext()))) { 201 if (CondOp->getObjectKind() == OK_BitField) 202 return EmitIgnoredConditionalOperator(CondOp); 203 } 204 205 // Just emit it as an l-value and drop the result. 206 EmitLValue(E); 207 } 208 209 /// EmitAnyExpr - Emit code to compute the specified expression which 210 /// can have any type. The result is returned as an RValue struct. 211 /// If this is an aggregate expression, AggSlot indicates where the 212 /// result should be returned. 213 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 214 AggValueSlot aggSlot, 215 bool ignoreResult) { 216 switch (getEvaluationKind(E->getType())) { 217 case TEK_Scalar: 218 return RValue::get(EmitScalarExpr(E, ignoreResult)); 219 case TEK_Complex: 220 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 221 case TEK_Aggregate: 222 if (!ignoreResult && aggSlot.isIgnored()) 223 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 224 EmitAggExpr(E, aggSlot); 225 return aggSlot.asRValue(); 226 } 227 llvm_unreachable("bad evaluation kind"); 228 } 229 230 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 231 /// always be accessible even if no aggregate location is provided. 232 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 233 AggValueSlot AggSlot = AggValueSlot::ignored(); 234 235 if (hasAggregateEvaluationKind(E->getType())) 236 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 237 return EmitAnyExpr(E, AggSlot); 238 } 239 240 /// EmitAnyExprToMem - Evaluate an expression into a given memory 241 /// location. 242 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 243 Address Location, 244 Qualifiers Quals, 245 bool IsInit) { 246 // FIXME: This function should take an LValue as an argument. 247 switch (getEvaluationKind(E->getType())) { 248 case TEK_Complex: 249 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 250 /*isInit*/ false); 251 return; 252 253 case TEK_Aggregate: { 254 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 255 AggValueSlot::IsDestructed_t(IsInit), 256 AggValueSlot::DoesNotNeedGCBarriers, 257 AggValueSlot::IsAliased_t(!IsInit), 258 AggValueSlot::MayOverlap)); 259 return; 260 } 261 262 case TEK_Scalar: { 263 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 264 LValue LV = MakeAddrLValue(Location, E->getType()); 265 EmitStoreThroughLValue(RV, LV); 266 return; 267 } 268 } 269 llvm_unreachable("bad evaluation kind"); 270 } 271 272 static void 273 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 274 const Expr *E, Address ReferenceTemporary) { 275 // Objective-C++ ARC: 276 // If we are binding a reference to a temporary that has ownership, we 277 // need to perform retain/release operations on the temporary. 278 // 279 // FIXME: This should be looking at E, not M. 280 if (auto Lifetime = M->getType().getObjCLifetime()) { 281 switch (Lifetime) { 282 case Qualifiers::OCL_None: 283 case Qualifiers::OCL_ExplicitNone: 284 // Carry on to normal cleanup handling. 285 break; 286 287 case Qualifiers::OCL_Autoreleasing: 288 // Nothing to do; cleaned up by an autorelease pool. 289 return; 290 291 case Qualifiers::OCL_Strong: 292 case Qualifiers::OCL_Weak: 293 switch (StorageDuration Duration = M->getStorageDuration()) { 294 case SD_Static: 295 // Note: we intentionally do not register a cleanup to release 296 // the object on program termination. 297 return; 298 299 case SD_Thread: 300 // FIXME: We should probably register a cleanup in this case. 301 return; 302 303 case SD_Automatic: 304 case SD_FullExpression: 305 CodeGenFunction::Destroyer *Destroy; 306 CleanupKind CleanupKind; 307 if (Lifetime == Qualifiers::OCL_Strong) { 308 const ValueDecl *VD = M->getExtendingDecl(); 309 bool Precise = 310 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 311 CleanupKind = CGF.getARCCleanupKind(); 312 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 313 : &CodeGenFunction::destroyARCStrongImprecise; 314 } else { 315 // __weak objects always get EH cleanups; otherwise, exceptions 316 // could cause really nasty crashes instead of mere leaks. 317 CleanupKind = NormalAndEHCleanup; 318 Destroy = &CodeGenFunction::destroyARCWeak; 319 } 320 if (Duration == SD_FullExpression) 321 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 322 M->getType(), *Destroy, 323 CleanupKind & EHCleanup); 324 else 325 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 326 M->getType(), 327 *Destroy, CleanupKind & EHCleanup); 328 return; 329 330 case SD_Dynamic: 331 llvm_unreachable("temporary cannot have dynamic storage duration"); 332 } 333 llvm_unreachable("unknown storage duration"); 334 } 335 } 336 337 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 338 if (const RecordType *RT = 339 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 340 // Get the destructor for the reference temporary. 341 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 342 if (!ClassDecl->hasTrivialDestructor()) 343 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 344 } 345 346 if (!ReferenceTemporaryDtor) 347 return; 348 349 // Call the destructor for the temporary. 350 switch (M->getStorageDuration()) { 351 case SD_Static: 352 case SD_Thread: { 353 llvm::FunctionCallee CleanupFn; 354 llvm::Constant *CleanupArg; 355 if (E->getType()->isArrayType()) { 356 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 357 ReferenceTemporary, E->getType(), 358 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 359 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 360 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 361 } else { 362 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 363 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 364 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 365 } 366 CGF.CGM.getCXXABI().registerGlobalDtor( 367 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 368 break; 369 } 370 371 case SD_FullExpression: 372 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 373 CodeGenFunction::destroyCXXObject, 374 CGF.getLangOpts().Exceptions); 375 break; 376 377 case SD_Automatic: 378 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 379 ReferenceTemporary, E->getType(), 380 CodeGenFunction::destroyCXXObject, 381 CGF.getLangOpts().Exceptions); 382 break; 383 384 case SD_Dynamic: 385 llvm_unreachable("temporary cannot have dynamic storage duration"); 386 } 387 } 388 389 static Address createReferenceTemporary(CodeGenFunction &CGF, 390 const MaterializeTemporaryExpr *M, 391 const Expr *Inner, 392 Address *Alloca = nullptr) { 393 auto &TCG = CGF.getTargetHooks(); 394 switch (M->getStorageDuration()) { 395 case SD_FullExpression: 396 case SD_Automatic: { 397 // If we have a constant temporary array or record try to promote it into a 398 // constant global under the same rules a normal constant would've been 399 // promoted. This is easier on the optimizer and generally emits fewer 400 // instructions. 401 QualType Ty = Inner->getType(); 402 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 403 (Ty->isArrayType() || Ty->isRecordType()) && 404 CGF.CGM.isTypeConstant(Ty, true)) 405 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 406 auto AS = CGF.CGM.GetGlobalConstantAddressSpace(); 407 auto *GV = new llvm::GlobalVariable( 408 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 409 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 410 llvm::GlobalValue::NotThreadLocal, 411 CGF.getContext().getTargetAddressSpace(AS)); 412 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 413 GV->setAlignment(alignment.getAsAlign()); 414 llvm::Constant *C = GV; 415 if (AS != LangAS::Default) 416 C = TCG.performAddrSpaceCast( 417 CGF.CGM, GV, AS, LangAS::Default, 418 GV->getValueType()->getPointerTo( 419 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 420 // FIXME: Should we put the new global into a COMDAT? 421 return Address(C, GV->getValueType(), alignment); 422 } 423 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 424 } 425 case SD_Thread: 426 case SD_Static: 427 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 428 429 case SD_Dynamic: 430 llvm_unreachable("temporary can't have dynamic storage duration"); 431 } 432 llvm_unreachable("unknown storage duration"); 433 } 434 435 /// Helper method to check if the underlying ABI is AAPCS 436 static bool isAAPCS(const TargetInfo &TargetInfo) { 437 return TargetInfo.getABI().startswith("aapcs"); 438 } 439 440 LValue CodeGenFunction:: 441 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 442 const Expr *E = M->getSubExpr(); 443 444 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 445 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 446 "Reference should never be pseudo-strong!"); 447 448 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 449 // as that will cause the lifetime adjustment to be lost for ARC 450 auto ownership = M->getType().getObjCLifetime(); 451 if (ownership != Qualifiers::OCL_None && 452 ownership != Qualifiers::OCL_ExplicitNone) { 453 Address Object = createReferenceTemporary(*this, M, E); 454 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 455 llvm::Type *Ty = ConvertTypeForMem(E->getType()); 456 Object = Address(llvm::ConstantExpr::getBitCast( 457 Var, Ty->getPointerTo(Object.getAddressSpace())), 458 Ty, Object.getAlignment()); 459 460 // createReferenceTemporary will promote the temporary to a global with a 461 // constant initializer if it can. It can only do this to a value of 462 // ARC-manageable type if the value is global and therefore "immune" to 463 // ref-counting operations. Therefore we have no need to emit either a 464 // dynamic initialization or a cleanup and we can just return the address 465 // of the temporary. 466 if (Var->hasInitializer()) 467 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 468 469 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 470 } 471 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 472 AlignmentSource::Decl); 473 474 switch (getEvaluationKind(E->getType())) { 475 default: llvm_unreachable("expected scalar or aggregate expression"); 476 case TEK_Scalar: 477 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 478 break; 479 case TEK_Aggregate: { 480 EmitAggExpr(E, AggValueSlot::forAddr(Object, 481 E->getType().getQualifiers(), 482 AggValueSlot::IsDestructed, 483 AggValueSlot::DoesNotNeedGCBarriers, 484 AggValueSlot::IsNotAliased, 485 AggValueSlot::DoesNotOverlap)); 486 break; 487 } 488 } 489 490 pushTemporaryCleanup(*this, M, E, Object); 491 return RefTempDst; 492 } 493 494 SmallVector<const Expr *, 2> CommaLHSs; 495 SmallVector<SubobjectAdjustment, 2> Adjustments; 496 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 497 498 for (const auto &Ignored : CommaLHSs) 499 EmitIgnoredExpr(Ignored); 500 501 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 502 if (opaque->getType()->isRecordType()) { 503 assert(Adjustments.empty()); 504 return EmitOpaqueValueLValue(opaque); 505 } 506 } 507 508 // Create and initialize the reference temporary. 509 Address Alloca = Address::invalid(); 510 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 511 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 512 Object.getPointer()->stripPointerCasts())) { 513 llvm::Type *TemporaryType = ConvertTypeForMem(E->getType()); 514 Object = Address(llvm::ConstantExpr::getBitCast( 515 cast<llvm::Constant>(Object.getPointer()), 516 TemporaryType->getPointerTo()), 517 TemporaryType, 518 Object.getAlignment()); 519 // If the temporary is a global and has a constant initializer or is a 520 // constant temporary that we promoted to a global, we may have already 521 // initialized it. 522 if (!Var->hasInitializer()) { 523 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 524 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 525 } 526 } else { 527 switch (M->getStorageDuration()) { 528 case SD_Automatic: 529 if (auto *Size = EmitLifetimeStart( 530 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 531 Alloca.getPointer())) { 532 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 533 Alloca, Size); 534 } 535 break; 536 537 case SD_FullExpression: { 538 if (!ShouldEmitLifetimeMarkers) 539 break; 540 541 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 542 // marker. Instead, start the lifetime of a conditional temporary earlier 543 // so that it's unconditional. Don't do this with sanitizers which need 544 // more precise lifetime marks. 545 ConditionalEvaluation *OldConditional = nullptr; 546 CGBuilderTy::InsertPoint OldIP; 547 if (isInConditionalBranch() && !E->getType().isDestructedType() && 548 !SanOpts.has(SanitizerKind::HWAddress) && 549 !SanOpts.has(SanitizerKind::Memory) && 550 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 551 OldConditional = OutermostConditional; 552 OutermostConditional = nullptr; 553 554 OldIP = Builder.saveIP(); 555 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 556 Builder.restoreIP(CGBuilderTy::InsertPoint( 557 Block, llvm::BasicBlock::iterator(Block->back()))); 558 } 559 560 if (auto *Size = EmitLifetimeStart( 561 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 562 Alloca.getPointer())) { 563 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 564 Size); 565 } 566 567 if (OldConditional) { 568 OutermostConditional = OldConditional; 569 Builder.restoreIP(OldIP); 570 } 571 break; 572 } 573 574 default: 575 break; 576 } 577 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 578 } 579 pushTemporaryCleanup(*this, M, E, Object); 580 581 // Perform derived-to-base casts and/or field accesses, to get from the 582 // temporary object we created (and, potentially, for which we extended 583 // the lifetime) to the subobject we're binding the reference to. 584 for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) { 585 switch (Adjustment.Kind) { 586 case SubobjectAdjustment::DerivedToBaseAdjustment: 587 Object = 588 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 589 Adjustment.DerivedToBase.BasePath->path_begin(), 590 Adjustment.DerivedToBase.BasePath->path_end(), 591 /*NullCheckValue=*/ false, E->getExprLoc()); 592 break; 593 594 case SubobjectAdjustment::FieldAdjustment: { 595 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 596 LV = EmitLValueForField(LV, Adjustment.Field); 597 assert(LV.isSimple() && 598 "materialized temporary field is not a simple lvalue"); 599 Object = LV.getAddress(*this); 600 break; 601 } 602 603 case SubobjectAdjustment::MemberPointerAdjustment: { 604 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 605 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 606 Adjustment.Ptr.MPT); 607 break; 608 } 609 } 610 } 611 612 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 613 } 614 615 RValue 616 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 617 // Emit the expression as an lvalue. 618 LValue LV = EmitLValue(E); 619 assert(LV.isSimple()); 620 llvm::Value *Value = LV.getPointer(*this); 621 622 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 623 // C++11 [dcl.ref]p5 (as amended by core issue 453): 624 // If a glvalue to which a reference is directly bound designates neither 625 // an existing object or function of an appropriate type nor a region of 626 // storage of suitable size and alignment to contain an object of the 627 // reference's type, the behavior is undefined. 628 QualType Ty = E->getType(); 629 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 630 } 631 632 return RValue::get(Value); 633 } 634 635 636 /// getAccessedFieldNo - Given an encoded value and a result number, return the 637 /// input field number being accessed. 638 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 639 const llvm::Constant *Elts) { 640 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 641 ->getZExtValue(); 642 } 643 644 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 645 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 646 llvm::Value *High) { 647 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 648 llvm::Value *K47 = Builder.getInt64(47); 649 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 650 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 651 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 652 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 653 return Builder.CreateMul(B1, KMul); 654 } 655 656 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 657 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 658 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 659 } 660 661 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 662 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 663 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 664 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 665 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 666 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 667 } 668 669 bool CodeGenFunction::sanitizePerformTypeCheck() const { 670 return SanOpts.has(SanitizerKind::Null) || 671 SanOpts.has(SanitizerKind::Alignment) || 672 SanOpts.has(SanitizerKind::ObjectSize) || 673 SanOpts.has(SanitizerKind::Vptr); 674 } 675 676 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 677 llvm::Value *Ptr, QualType Ty, 678 CharUnits Alignment, 679 SanitizerSet SkippedChecks, 680 llvm::Value *ArraySize) { 681 if (!sanitizePerformTypeCheck()) 682 return; 683 684 // Don't check pointers outside the default address space. The null check 685 // isn't correct, the object-size check isn't supported by LLVM, and we can't 686 // communicate the addresses to the runtime handler for the vptr check. 687 if (Ptr->getType()->getPointerAddressSpace()) 688 return; 689 690 // Don't check pointers to volatile data. The behavior here is implementation- 691 // defined. 692 if (Ty.isVolatileQualified()) 693 return; 694 695 SanitizerScope SanScope(this); 696 697 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 698 llvm::BasicBlock *Done = nullptr; 699 700 // Quickly determine whether we have a pointer to an alloca. It's possible 701 // to skip null checks, and some alignment checks, for these pointers. This 702 // can reduce compile-time significantly. 703 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 704 705 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 706 llvm::Value *IsNonNull = nullptr; 707 bool IsGuaranteedNonNull = 708 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 709 bool AllowNullPointers = isNullPointerAllowed(TCK); 710 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 711 !IsGuaranteedNonNull) { 712 // The glvalue must not be an empty glvalue. 713 IsNonNull = Builder.CreateIsNotNull(Ptr); 714 715 // The IR builder can constant-fold the null check if the pointer points to 716 // a constant. 717 IsGuaranteedNonNull = IsNonNull == True; 718 719 // Skip the null check if the pointer is known to be non-null. 720 if (!IsGuaranteedNonNull) { 721 if (AllowNullPointers) { 722 // When performing pointer casts, it's OK if the value is null. 723 // Skip the remaining checks in that case. 724 Done = createBasicBlock("null"); 725 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 726 Builder.CreateCondBr(IsNonNull, Rest, Done); 727 EmitBlock(Rest); 728 } else { 729 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 730 } 731 } 732 } 733 734 if (SanOpts.has(SanitizerKind::ObjectSize) && 735 !SkippedChecks.has(SanitizerKind::ObjectSize) && 736 !Ty->isIncompleteType()) { 737 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 738 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 739 if (ArraySize) 740 Size = Builder.CreateMul(Size, ArraySize); 741 742 // Degenerate case: new X[0] does not need an objectsize check. 743 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 744 if (!ConstantSize || !ConstantSize->isNullValue()) { 745 // The glvalue must refer to a large enough storage region. 746 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 747 // to check this. 748 // FIXME: Get object address space 749 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 750 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 751 llvm::Value *Min = Builder.getFalse(); 752 llvm::Value *NullIsUnknown = Builder.getFalse(); 753 llvm::Value *Dynamic = Builder.getFalse(); 754 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 755 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 756 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 757 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 758 } 759 } 760 761 llvm::MaybeAlign AlignVal; 762 llvm::Value *PtrAsInt = nullptr; 763 764 if (SanOpts.has(SanitizerKind::Alignment) && 765 !SkippedChecks.has(SanitizerKind::Alignment)) { 766 AlignVal = Alignment.getAsMaybeAlign(); 767 if (!Ty->isIncompleteType() && !AlignVal) 768 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr, 769 /*ForPointeeType=*/true) 770 .getAsMaybeAlign(); 771 772 // The glvalue must be suitably aligned. 773 if (AlignVal && *AlignVal > llvm::Align(1) && 774 (!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) { 775 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 776 llvm::Value *Align = Builder.CreateAnd( 777 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1)); 778 llvm::Value *Aligned = 779 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 780 if (Aligned != True) 781 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 782 } 783 } 784 785 if (Checks.size() > 0) { 786 llvm::Constant *StaticData[] = { 787 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 788 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1), 789 llvm::ConstantInt::get(Int8Ty, TCK)}; 790 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 791 PtrAsInt ? PtrAsInt : Ptr); 792 } 793 794 // If possible, check that the vptr indicates that there is a subobject of 795 // type Ty at offset zero within this object. 796 // 797 // C++11 [basic.life]p5,6: 798 // [For storage which does not refer to an object within its lifetime] 799 // The program has undefined behavior if: 800 // -- the [pointer or glvalue] is used to access a non-static data member 801 // or call a non-static member function 802 if (SanOpts.has(SanitizerKind::Vptr) && 803 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 804 // Ensure that the pointer is non-null before loading it. If there is no 805 // compile-time guarantee, reuse the run-time null check or emit a new one. 806 if (!IsGuaranteedNonNull) { 807 if (!IsNonNull) 808 IsNonNull = Builder.CreateIsNotNull(Ptr); 809 if (!Done) 810 Done = createBasicBlock("vptr.null"); 811 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 812 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 813 EmitBlock(VptrNotNull); 814 } 815 816 // Compute a hash of the mangled name of the type. 817 // 818 // FIXME: This is not guaranteed to be deterministic! Move to a 819 // fingerprinting mechanism once LLVM provides one. For the time 820 // being the implementation happens to be deterministic. 821 SmallString<64> MangledName; 822 llvm::raw_svector_ostream Out(MangledName); 823 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 824 Out); 825 826 // Contained in NoSanitizeList based on the mangled type. 827 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr, 828 Out.str())) { 829 llvm::hash_code TypeHash = hash_value(Out.str()); 830 831 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 832 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 833 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 834 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), IntPtrTy, 835 getPointerAlign()); 836 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 837 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 838 839 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 840 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 841 842 // Look the hash up in our cache. 843 const int CacheSize = 128; 844 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 845 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 846 "__ubsan_vptr_type_cache"); 847 llvm::Value *Slot = Builder.CreateAnd(Hash, 848 llvm::ConstantInt::get(IntPtrTy, 849 CacheSize-1)); 850 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 851 llvm::Value *CacheVal = Builder.CreateAlignedLoad( 852 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices), 853 getPointerAlign()); 854 855 // If the hash isn't in the cache, call a runtime handler to perform the 856 // hard work of checking whether the vptr is for an object of the right 857 // type. This will either fill in the cache and return, or produce a 858 // diagnostic. 859 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 860 llvm::Constant *StaticData[] = { 861 EmitCheckSourceLocation(Loc), 862 EmitCheckTypeDescriptor(Ty), 863 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 864 llvm::ConstantInt::get(Int8Ty, TCK) 865 }; 866 llvm::Value *DynamicData[] = { Ptr, Hash }; 867 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 868 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 869 DynamicData); 870 } 871 } 872 873 if (Done) { 874 Builder.CreateBr(Done); 875 EmitBlock(Done); 876 } 877 } 878 879 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 880 QualType EltTy) { 881 ASTContext &C = getContext(); 882 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 883 if (!EltSize) 884 return nullptr; 885 886 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 887 if (!ArrayDeclRef) 888 return nullptr; 889 890 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 891 if (!ParamDecl) 892 return nullptr; 893 894 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 895 if (!POSAttr) 896 return nullptr; 897 898 // Don't load the size if it's a lower bound. 899 int POSType = POSAttr->getType(); 900 if (POSType != 0 && POSType != 1) 901 return nullptr; 902 903 // Find the implicit size parameter. 904 auto PassedSizeIt = SizeArguments.find(ParamDecl); 905 if (PassedSizeIt == SizeArguments.end()) 906 return nullptr; 907 908 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 909 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 910 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 911 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 912 C.getSizeType(), E->getExprLoc()); 913 llvm::Value *SizeOfElement = 914 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 915 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 916 } 917 918 /// If Base is known to point to the start of an array, return the length of 919 /// that array. Return 0 if the length cannot be determined. 920 static llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF, 921 const Expr *Base, 922 QualType &IndexedType, 923 LangOptions::StrictFlexArraysLevelKind 924 StrictFlexArraysLevel) { 925 // For the vector indexing extension, the bound is the number of elements. 926 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 927 IndexedType = Base->getType(); 928 return CGF.Builder.getInt32(VT->getNumElements()); 929 } 930 931 Base = Base->IgnoreParens(); 932 933 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 934 if (CE->getCastKind() == CK_ArrayToPointerDecay && 935 !CE->getSubExpr()->isFlexibleArrayMemberLike(CGF.getContext(), 936 StrictFlexArraysLevel)) { 937 IndexedType = CE->getSubExpr()->getType(); 938 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 939 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 940 return CGF.Builder.getInt(CAT->getSize()); 941 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 942 return CGF.getVLASize(VAT).NumElts; 943 // Ignore pass_object_size here. It's not applicable on decayed pointers. 944 } 945 } 946 947 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 948 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 949 IndexedType = Base->getType(); 950 return POS; 951 } 952 953 return nullptr; 954 } 955 956 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 957 llvm::Value *Index, QualType IndexType, 958 bool Accessed) { 959 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 960 "should not be called unless adding bounds checks"); 961 SanitizerScope SanScope(this); 962 963 const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel = 964 getLangOpts().getStrictFlexArraysLevel(); 965 966 QualType IndexedType; 967 llvm::Value *Bound = 968 getArrayIndexingBound(*this, Base, IndexedType, StrictFlexArraysLevel); 969 if (!Bound) 970 return; 971 972 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 973 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 974 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 975 976 llvm::Constant *StaticData[] = { 977 EmitCheckSourceLocation(E->getExprLoc()), 978 EmitCheckTypeDescriptor(IndexedType), 979 EmitCheckTypeDescriptor(IndexType) 980 }; 981 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 982 : Builder.CreateICmpULE(IndexVal, BoundVal); 983 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 984 SanitizerHandler::OutOfBounds, StaticData, Index); 985 } 986 987 988 CodeGenFunction::ComplexPairTy CodeGenFunction:: 989 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 990 bool isInc, bool isPre) { 991 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 992 993 llvm::Value *NextVal; 994 if (isa<llvm::IntegerType>(InVal.first->getType())) { 995 uint64_t AmountVal = isInc ? 1 : -1; 996 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 997 998 // Add the inc/dec to the real part. 999 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1000 } else { 1001 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1002 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1003 if (!isInc) 1004 FVal.changeSign(); 1005 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1006 1007 // Add the inc/dec to the real part. 1008 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1009 } 1010 1011 ComplexPairTy IncVal(NextVal, InVal.second); 1012 1013 // Store the updated result through the lvalue. 1014 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1015 if (getLangOpts().OpenMP) 1016 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1017 E->getSubExpr()); 1018 1019 // If this is a postinc, return the value read from memory, otherwise use the 1020 // updated value. 1021 return isPre ? IncVal : InVal; 1022 } 1023 1024 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1025 CodeGenFunction *CGF) { 1026 // Bind VLAs in the cast type. 1027 if (CGF && E->getType()->isVariablyModifiedType()) 1028 CGF->EmitVariablyModifiedType(E->getType()); 1029 1030 if (CGDebugInfo *DI = getModuleDebugInfo()) 1031 DI->EmitExplicitCastType(E->getType()); 1032 } 1033 1034 //===----------------------------------------------------------------------===// 1035 // LValue Expression Emission 1036 //===----------------------------------------------------------------------===// 1037 1038 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1039 /// derive a more accurate bound on the alignment of the pointer. 1040 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1041 LValueBaseInfo *BaseInfo, 1042 TBAAAccessInfo *TBAAInfo) { 1043 // We allow this with ObjC object pointers because of fragile ABIs. 1044 assert(E->getType()->isPointerType() || 1045 E->getType()->isObjCObjectPointerType()); 1046 E = E->IgnoreParens(); 1047 1048 // Casts: 1049 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1050 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1051 CGM.EmitExplicitCastExprType(ECE, this); 1052 1053 switch (CE->getCastKind()) { 1054 // Non-converting casts (but not C's implicit conversion from void*). 1055 case CK_BitCast: 1056 case CK_NoOp: 1057 case CK_AddressSpaceConversion: 1058 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1059 if (PtrTy->getPointeeType()->isVoidType()) 1060 break; 1061 1062 LValueBaseInfo InnerBaseInfo; 1063 TBAAAccessInfo InnerTBAAInfo; 1064 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1065 &InnerBaseInfo, 1066 &InnerTBAAInfo); 1067 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1068 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1069 1070 if (isa<ExplicitCastExpr>(CE)) { 1071 LValueBaseInfo TargetTypeBaseInfo; 1072 TBAAAccessInfo TargetTypeTBAAInfo; 1073 CharUnits Align = CGM.getNaturalPointeeTypeAlignment( 1074 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo); 1075 if (TBAAInfo) 1076 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1077 TargetTypeTBAAInfo); 1078 // If the source l-value is opaque, honor the alignment of the 1079 // casted-to type. 1080 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1081 if (BaseInfo) 1082 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1083 Addr = Address(Addr.getPointer(), Addr.getElementType(), Align); 1084 } 1085 } 1086 1087 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1088 CE->getCastKind() == CK_BitCast) { 1089 if (auto PT = E->getType()->getAs<PointerType>()) 1090 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr, 1091 /*MayBeNull=*/true, 1092 CodeGenFunction::CFITCK_UnrelatedCast, 1093 CE->getBeginLoc()); 1094 } 1095 1096 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType()); 1097 Addr = Builder.CreateElementBitCast(Addr, ElemTy); 1098 if (CE->getCastKind() == CK_AddressSpaceConversion) 1099 Addr = Builder.CreateAddrSpaceCast(Addr, ConvertType(E->getType())); 1100 return Addr; 1101 } 1102 break; 1103 1104 // Array-to-pointer decay. 1105 case CK_ArrayToPointerDecay: 1106 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1107 1108 // Derived-to-base conversions. 1109 case CK_UncheckedDerivedToBase: 1110 case CK_DerivedToBase: { 1111 // TODO: Support accesses to members of base classes in TBAA. For now, we 1112 // conservatively pretend that the complete object is of the base class 1113 // type. 1114 if (TBAAInfo) 1115 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1116 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1117 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1118 return GetAddressOfBaseClass(Addr, Derived, 1119 CE->path_begin(), CE->path_end(), 1120 ShouldNullCheckClassCastValue(CE), 1121 CE->getExprLoc()); 1122 } 1123 1124 // TODO: Is there any reason to treat base-to-derived conversions 1125 // specially? 1126 default: 1127 break; 1128 } 1129 } 1130 1131 // Unary &. 1132 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1133 if (UO->getOpcode() == UO_AddrOf) { 1134 LValue LV = EmitLValue(UO->getSubExpr()); 1135 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1136 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1137 return LV.getAddress(*this); 1138 } 1139 } 1140 1141 // std::addressof and variants. 1142 if (auto *Call = dyn_cast<CallExpr>(E)) { 1143 switch (Call->getBuiltinCallee()) { 1144 default: 1145 break; 1146 case Builtin::BIaddressof: 1147 case Builtin::BI__addressof: 1148 case Builtin::BI__builtin_addressof: { 1149 LValue LV = EmitLValue(Call->getArg(0)); 1150 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1151 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1152 return LV.getAddress(*this); 1153 } 1154 } 1155 } 1156 1157 // TODO: conditional operators, comma. 1158 1159 // Otherwise, use the alignment of the type. 1160 CharUnits Align = 1161 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); 1162 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType()); 1163 return Address(EmitScalarExpr(E), ElemTy, Align); 1164 } 1165 1166 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) { 1167 llvm::Value *V = RV.getScalarVal(); 1168 if (auto MPT = T->getAs<MemberPointerType>()) 1169 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT); 1170 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 1171 } 1172 1173 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1174 if (Ty->isVoidType()) 1175 return RValue::get(nullptr); 1176 1177 switch (getEvaluationKind(Ty)) { 1178 case TEK_Complex: { 1179 llvm::Type *EltTy = 1180 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1181 llvm::Value *U = llvm::UndefValue::get(EltTy); 1182 return RValue::getComplex(std::make_pair(U, U)); 1183 } 1184 1185 // If this is a use of an undefined aggregate type, the aggregate must have an 1186 // identifiable address. Just because the contents of the value are undefined 1187 // doesn't mean that the address can't be taken and compared. 1188 case TEK_Aggregate: { 1189 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1190 return RValue::getAggregate(DestPtr); 1191 } 1192 1193 case TEK_Scalar: 1194 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1195 } 1196 llvm_unreachable("bad evaluation kind"); 1197 } 1198 1199 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1200 const char *Name) { 1201 ErrorUnsupported(E, Name); 1202 return GetUndefRValue(E->getType()); 1203 } 1204 1205 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1206 const char *Name) { 1207 ErrorUnsupported(E, Name); 1208 llvm::Type *ElTy = ConvertType(E->getType()); 1209 llvm::Type *Ty = llvm::PointerType::getUnqual(ElTy); 1210 return MakeAddrLValue( 1211 Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType()); 1212 } 1213 1214 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1215 const Expr *Base = Obj; 1216 while (!isa<CXXThisExpr>(Base)) { 1217 // The result of a dynamic_cast can be null. 1218 if (isa<CXXDynamicCastExpr>(Base)) 1219 return false; 1220 1221 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1222 Base = CE->getSubExpr(); 1223 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1224 Base = PE->getSubExpr(); 1225 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1226 if (UO->getOpcode() == UO_Extension) 1227 Base = UO->getSubExpr(); 1228 else 1229 return false; 1230 } else { 1231 return false; 1232 } 1233 } 1234 return true; 1235 } 1236 1237 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1238 LValue LV; 1239 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1240 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1241 else 1242 LV = EmitLValue(E); 1243 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1244 SanitizerSet SkippedChecks; 1245 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1246 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1247 if (IsBaseCXXThis) 1248 SkippedChecks.set(SanitizerKind::Alignment, true); 1249 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1250 SkippedChecks.set(SanitizerKind::Null, true); 1251 } 1252 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1253 LV.getAlignment(), SkippedChecks); 1254 } 1255 return LV; 1256 } 1257 1258 /// EmitLValue - Emit code to compute a designator that specifies the location 1259 /// of the expression. 1260 /// 1261 /// This can return one of two things: a simple address or a bitfield reference. 1262 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1263 /// an LLVM pointer type. 1264 /// 1265 /// If this returns a bitfield reference, nothing about the pointee type of the 1266 /// LLVM value is known: For example, it may not be a pointer to an integer. 1267 /// 1268 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1269 /// this method guarantees that the returned pointer type will point to an LLVM 1270 /// type of the same size of the lvalue's type. If the lvalue has a variable 1271 /// length type, this is not possible. 1272 /// 1273 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1274 ApplyDebugLocation DL(*this, E); 1275 switch (E->getStmtClass()) { 1276 default: return EmitUnsupportedLValue(E, "l-value expression"); 1277 1278 case Expr::ObjCPropertyRefExprClass: 1279 llvm_unreachable("cannot emit a property reference directly"); 1280 1281 case Expr::ObjCSelectorExprClass: 1282 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1283 case Expr::ObjCIsaExprClass: 1284 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1285 case Expr::BinaryOperatorClass: 1286 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1287 case Expr::CompoundAssignOperatorClass: { 1288 QualType Ty = E->getType(); 1289 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1290 Ty = AT->getValueType(); 1291 if (!Ty->isAnyComplexType()) 1292 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1293 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1294 } 1295 case Expr::CallExprClass: 1296 case Expr::CXXMemberCallExprClass: 1297 case Expr::CXXOperatorCallExprClass: 1298 case Expr::UserDefinedLiteralClass: 1299 return EmitCallExprLValue(cast<CallExpr>(E)); 1300 case Expr::CXXRewrittenBinaryOperatorClass: 1301 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1302 case Expr::VAArgExprClass: 1303 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1304 case Expr::DeclRefExprClass: 1305 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1306 case Expr::ConstantExprClass: { 1307 const ConstantExpr *CE = cast<ConstantExpr>(E); 1308 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) { 1309 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit()) 1310 ->getCallReturnType(getContext()) 1311 ->getPointeeType(); 1312 return MakeNaturalAlignAddrLValue(Result, RetType); 1313 } 1314 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1315 } 1316 case Expr::ParenExprClass: 1317 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1318 case Expr::GenericSelectionExprClass: 1319 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1320 case Expr::PredefinedExprClass: 1321 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1322 case Expr::StringLiteralClass: 1323 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1324 case Expr::ObjCEncodeExprClass: 1325 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1326 case Expr::PseudoObjectExprClass: 1327 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1328 case Expr::InitListExprClass: 1329 return EmitInitListLValue(cast<InitListExpr>(E)); 1330 case Expr::CXXTemporaryObjectExprClass: 1331 case Expr::CXXConstructExprClass: 1332 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1333 case Expr::CXXBindTemporaryExprClass: 1334 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1335 case Expr::CXXUuidofExprClass: 1336 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1337 case Expr::LambdaExprClass: 1338 return EmitAggExprToLValue(E); 1339 1340 case Expr::ExprWithCleanupsClass: { 1341 const auto *cleanups = cast<ExprWithCleanups>(E); 1342 RunCleanupsScope Scope(*this); 1343 LValue LV = EmitLValue(cleanups->getSubExpr()); 1344 if (LV.isSimple()) { 1345 // Defend against branches out of gnu statement expressions surrounded by 1346 // cleanups. 1347 Address Addr = LV.getAddress(*this); 1348 llvm::Value *V = Addr.getPointer(); 1349 Scope.ForceCleanup({&V}); 1350 return LValue::MakeAddr(Addr.withPointer(V), LV.getType(), getContext(), 1351 LV.getBaseInfo(), LV.getTBAAInfo()); 1352 } 1353 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1354 // bitfield lvalue or some other non-simple lvalue? 1355 return LV; 1356 } 1357 1358 case Expr::CXXDefaultArgExprClass: { 1359 auto *DAE = cast<CXXDefaultArgExpr>(E); 1360 CXXDefaultArgExprScope Scope(*this, DAE); 1361 return EmitLValue(DAE->getExpr()); 1362 } 1363 case Expr::CXXDefaultInitExprClass: { 1364 auto *DIE = cast<CXXDefaultInitExpr>(E); 1365 CXXDefaultInitExprScope Scope(*this, DIE); 1366 return EmitLValue(DIE->getExpr()); 1367 } 1368 case Expr::CXXTypeidExprClass: 1369 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1370 1371 case Expr::ObjCMessageExprClass: 1372 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1373 case Expr::ObjCIvarRefExprClass: 1374 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1375 case Expr::StmtExprClass: 1376 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1377 case Expr::UnaryOperatorClass: 1378 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1379 case Expr::ArraySubscriptExprClass: 1380 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1381 case Expr::MatrixSubscriptExprClass: 1382 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E)); 1383 case Expr::OMPArraySectionExprClass: 1384 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1385 case Expr::ExtVectorElementExprClass: 1386 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1387 case Expr::CXXThisExprClass: 1388 return MakeAddrLValue(LoadCXXThisAddress(), E->getType()); 1389 case Expr::MemberExprClass: 1390 return EmitMemberExpr(cast<MemberExpr>(E)); 1391 case Expr::CompoundLiteralExprClass: 1392 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1393 case Expr::ConditionalOperatorClass: 1394 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1395 case Expr::BinaryConditionalOperatorClass: 1396 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1397 case Expr::ChooseExprClass: 1398 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1399 case Expr::OpaqueValueExprClass: 1400 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1401 case Expr::SubstNonTypeTemplateParmExprClass: 1402 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1403 case Expr::ImplicitCastExprClass: 1404 case Expr::CStyleCastExprClass: 1405 case Expr::CXXFunctionalCastExprClass: 1406 case Expr::CXXStaticCastExprClass: 1407 case Expr::CXXDynamicCastExprClass: 1408 case Expr::CXXReinterpretCastExprClass: 1409 case Expr::CXXConstCastExprClass: 1410 case Expr::CXXAddrspaceCastExprClass: 1411 case Expr::ObjCBridgedCastExprClass: 1412 return EmitCastLValue(cast<CastExpr>(E)); 1413 1414 case Expr::MaterializeTemporaryExprClass: 1415 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1416 1417 case Expr::CoawaitExprClass: 1418 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1419 case Expr::CoyieldExprClass: 1420 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1421 } 1422 } 1423 1424 /// Given an object of the given canonical type, can we safely copy a 1425 /// value out of it based on its initializer? 1426 static bool isConstantEmittableObjectType(QualType type) { 1427 assert(type.isCanonical()); 1428 assert(!type->isReferenceType()); 1429 1430 // Must be const-qualified but non-volatile. 1431 Qualifiers qs = type.getLocalQualifiers(); 1432 if (!qs.hasConst() || qs.hasVolatile()) return false; 1433 1434 // Otherwise, all object types satisfy this except C++ classes with 1435 // mutable subobjects or non-trivial copy/destroy behavior. 1436 if (const auto *RT = dyn_cast<RecordType>(type)) 1437 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1438 if (RD->hasMutableFields() || !RD->isTrivial()) 1439 return false; 1440 1441 return true; 1442 } 1443 1444 /// Can we constant-emit a load of a reference to a variable of the 1445 /// given type? This is different from predicates like 1446 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1447 /// in situations that don't necessarily satisfy the language's rules 1448 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1449 /// to do this with const float variables even if those variables 1450 /// aren't marked 'constexpr'. 1451 enum ConstantEmissionKind { 1452 CEK_None, 1453 CEK_AsReferenceOnly, 1454 CEK_AsValueOrReference, 1455 CEK_AsValueOnly 1456 }; 1457 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1458 type = type.getCanonicalType(); 1459 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1460 if (isConstantEmittableObjectType(ref->getPointeeType())) 1461 return CEK_AsValueOrReference; 1462 return CEK_AsReferenceOnly; 1463 } 1464 if (isConstantEmittableObjectType(type)) 1465 return CEK_AsValueOnly; 1466 return CEK_None; 1467 } 1468 1469 /// Try to emit a reference to the given value without producing it as 1470 /// an l-value. This is just an optimization, but it avoids us needing 1471 /// to emit global copies of variables if they're named without triggering 1472 /// a formal use in a context where we can't emit a direct reference to them, 1473 /// for instance if a block or lambda or a member of a local class uses a 1474 /// const int variable or constexpr variable from an enclosing function. 1475 CodeGenFunction::ConstantEmission 1476 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1477 ValueDecl *value = refExpr->getDecl(); 1478 1479 // The value needs to be an enum constant or a constant variable. 1480 ConstantEmissionKind CEK; 1481 if (isa<ParmVarDecl>(value)) { 1482 CEK = CEK_None; 1483 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1484 CEK = checkVarTypeForConstantEmission(var->getType()); 1485 } else if (isa<EnumConstantDecl>(value)) { 1486 CEK = CEK_AsValueOnly; 1487 } else { 1488 CEK = CEK_None; 1489 } 1490 if (CEK == CEK_None) return ConstantEmission(); 1491 1492 Expr::EvalResult result; 1493 bool resultIsReference; 1494 QualType resultType; 1495 1496 // It's best to evaluate all the way as an r-value if that's permitted. 1497 if (CEK != CEK_AsReferenceOnly && 1498 refExpr->EvaluateAsRValue(result, getContext())) { 1499 resultIsReference = false; 1500 resultType = refExpr->getType(); 1501 1502 // Otherwise, try to evaluate as an l-value. 1503 } else if (CEK != CEK_AsValueOnly && 1504 refExpr->EvaluateAsLValue(result, getContext())) { 1505 resultIsReference = true; 1506 resultType = value->getType(); 1507 1508 // Failure. 1509 } else { 1510 return ConstantEmission(); 1511 } 1512 1513 // In any case, if the initializer has side-effects, abandon ship. 1514 if (result.HasSideEffects) 1515 return ConstantEmission(); 1516 1517 // In CUDA/HIP device compilation, a lambda may capture a reference variable 1518 // referencing a global host variable by copy. In this case the lambda should 1519 // make a copy of the value of the global host variable. The DRE of the 1520 // captured reference variable cannot be emitted as load from the host 1521 // global variable as compile time constant, since the host variable is not 1522 // accessible on device. The DRE of the captured reference variable has to be 1523 // loaded from captures. 1524 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() && 1525 refExpr->refersToEnclosingVariableOrCapture()) { 1526 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl); 1527 if (MD && MD->getParent()->isLambda() && 1528 MD->getOverloadedOperator() == OO_Call) { 1529 const APValue::LValueBase &base = result.Val.getLValueBase(); 1530 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) { 1531 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) { 1532 if (!VD->hasAttr<CUDADeviceAttr>()) { 1533 return ConstantEmission(); 1534 } 1535 } 1536 } 1537 } 1538 } 1539 1540 // Emit as a constant. 1541 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1542 result.Val, resultType); 1543 1544 // Make sure we emit a debug reference to the global variable. 1545 // This should probably fire even for 1546 if (isa<VarDecl>(value)) { 1547 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1548 EmitDeclRefExprDbgValue(refExpr, result.Val); 1549 } else { 1550 assert(isa<EnumConstantDecl>(value)); 1551 EmitDeclRefExprDbgValue(refExpr, result.Val); 1552 } 1553 1554 // If we emitted a reference constant, we need to dereference that. 1555 if (resultIsReference) 1556 return ConstantEmission::forReference(C); 1557 1558 return ConstantEmission::forValue(C); 1559 } 1560 1561 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1562 const MemberExpr *ME) { 1563 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1564 // Try to emit static variable member expressions as DREs. 1565 return DeclRefExpr::Create( 1566 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1567 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1568 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1569 } 1570 return nullptr; 1571 } 1572 1573 CodeGenFunction::ConstantEmission 1574 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1575 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1576 return tryEmitAsConstant(DRE); 1577 return ConstantEmission(); 1578 } 1579 1580 llvm::Value *CodeGenFunction::emitScalarConstant( 1581 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1582 assert(Constant && "not a constant"); 1583 if (Constant.isReference()) 1584 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1585 E->getExprLoc()) 1586 .getScalarVal(); 1587 return Constant.getValue(); 1588 } 1589 1590 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1591 SourceLocation Loc) { 1592 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1593 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1594 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1595 } 1596 1597 static bool hasBooleanRepresentation(QualType Ty) { 1598 if (Ty->isBooleanType()) 1599 return true; 1600 1601 if (const EnumType *ET = Ty->getAs<EnumType>()) 1602 return ET->getDecl()->getIntegerType()->isBooleanType(); 1603 1604 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1605 return hasBooleanRepresentation(AT->getValueType()); 1606 1607 return false; 1608 } 1609 1610 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1611 llvm::APInt &Min, llvm::APInt &End, 1612 bool StrictEnums, bool IsBool) { 1613 const EnumType *ET = Ty->getAs<EnumType>(); 1614 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1615 ET && !ET->getDecl()->isFixed(); 1616 if (!IsBool && !IsRegularCPlusPlusEnum) 1617 return false; 1618 1619 if (IsBool) { 1620 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1621 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1622 } else { 1623 const EnumDecl *ED = ET->getDecl(); 1624 ED->getValueRange(End, Min); 1625 } 1626 return true; 1627 } 1628 1629 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1630 llvm::APInt Min, End; 1631 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1632 hasBooleanRepresentation(Ty))) 1633 return nullptr; 1634 1635 llvm::MDBuilder MDHelper(getLLVMContext()); 1636 return MDHelper.createRange(Min, End); 1637 } 1638 1639 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1640 SourceLocation Loc) { 1641 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1642 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1643 if (!HasBoolCheck && !HasEnumCheck) 1644 return false; 1645 1646 bool IsBool = hasBooleanRepresentation(Ty) || 1647 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1648 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1649 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1650 if (!NeedsBoolCheck && !NeedsEnumCheck) 1651 return false; 1652 1653 // Single-bit booleans don't need to be checked. Special-case this to avoid 1654 // a bit width mismatch when handling bitfield values. This is handled by 1655 // EmitFromMemory for the non-bitfield case. 1656 if (IsBool && 1657 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1658 return false; 1659 1660 llvm::APInt Min, End; 1661 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1662 return true; 1663 1664 auto &Ctx = getLLVMContext(); 1665 SanitizerScope SanScope(this); 1666 llvm::Value *Check; 1667 --End; 1668 if (!Min) { 1669 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1670 } else { 1671 llvm::Value *Upper = 1672 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1673 llvm::Value *Lower = 1674 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1675 Check = Builder.CreateAnd(Upper, Lower); 1676 } 1677 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1678 EmitCheckTypeDescriptor(Ty)}; 1679 SanitizerMask Kind = 1680 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1681 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1682 StaticArgs, EmitCheckValue(Value)); 1683 return true; 1684 } 1685 1686 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1687 QualType Ty, 1688 SourceLocation Loc, 1689 LValueBaseInfo BaseInfo, 1690 TBAAAccessInfo TBAAInfo, 1691 bool isNontemporal) { 1692 if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer())) 1693 if (GV->isThreadLocal()) 1694 Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV)); 1695 1696 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) { 1697 // Boolean vectors use `iN` as storage type. 1698 if (ClangVecTy->isExtVectorBoolType()) { 1699 llvm::Type *ValTy = ConvertType(Ty); 1700 unsigned ValNumElems = 1701 cast<llvm::FixedVectorType>(ValTy)->getNumElements(); 1702 // Load the `iP` storage object (P is the padded vector size). 1703 auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits"); 1704 const auto *RawIntTy = RawIntV->getType(); 1705 assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors"); 1706 // Bitcast iP --> <P x i1>. 1707 auto *PaddedVecTy = llvm::FixedVectorType::get( 1708 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits()); 1709 llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy); 1710 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size). 1711 V = emitBoolVecConversion(V, ValNumElems, "extractvec"); 1712 1713 return EmitFromMemory(V, Ty); 1714 } 1715 1716 // Handle vectors of size 3 like size 4 for better performance. 1717 const llvm::Type *EltTy = Addr.getElementType(); 1718 const auto *VTy = cast<llvm::FixedVectorType>(EltTy); 1719 1720 if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) { 1721 1722 // Bitcast to vec4 type. 1723 llvm::VectorType *vec4Ty = 1724 llvm::FixedVectorType::get(VTy->getElementType(), 4); 1725 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1726 // Now load value. 1727 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1728 1729 // Shuffle vector to get vec3. 1730 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec"); 1731 return EmitFromMemory(V, Ty); 1732 } 1733 } 1734 1735 // Atomic operations have to be done on integral types. 1736 LValue AtomicLValue = 1737 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1738 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1739 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1740 } 1741 1742 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1743 if (isNontemporal) { 1744 llvm::MDNode *Node = llvm::MDNode::get( 1745 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1746 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1747 } 1748 1749 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1750 1751 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1752 // In order to prevent the optimizer from throwing away the check, don't 1753 // attach range metadata to the load. 1754 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1755 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) { 1756 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1757 Load->setMetadata(llvm::LLVMContext::MD_noundef, 1758 llvm::MDNode::get(getLLVMContext(), std::nullopt)); 1759 } 1760 1761 return EmitFromMemory(Load, Ty); 1762 } 1763 1764 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1765 // Bool has a different representation in memory than in registers. 1766 if (hasBooleanRepresentation(Ty)) { 1767 // This should really always be an i1, but sometimes it's already 1768 // an i8, and it's awkward to track those cases down. 1769 if (Value->getType()->isIntegerTy(1)) 1770 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1771 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1772 "wrong value rep of bool"); 1773 } 1774 1775 return Value; 1776 } 1777 1778 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1779 // Bool has a different representation in memory than in registers. 1780 if (hasBooleanRepresentation(Ty)) { 1781 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1782 "wrong value rep of bool"); 1783 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1784 } 1785 if (Ty->isExtVectorBoolType()) { 1786 const auto *RawIntTy = Value->getType(); 1787 // Bitcast iP --> <P x i1>. 1788 auto *PaddedVecTy = llvm::FixedVectorType::get( 1789 Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits()); 1790 auto *V = Builder.CreateBitCast(Value, PaddedVecTy); 1791 // Shuffle <P x i1> --> <N x i1> (N is the actual bit size). 1792 llvm::Type *ValTy = ConvertType(Ty); 1793 unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements(); 1794 return emitBoolVecConversion(V, ValNumElems, "extractvec"); 1795 } 1796 1797 return Value; 1798 } 1799 1800 // Convert the pointer of \p Addr to a pointer to a vector (the value type of 1801 // MatrixType), if it points to a array (the memory type of MatrixType). 1802 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF, 1803 bool IsVector = true) { 1804 auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType()); 1805 if (ArrayTy && IsVector) { 1806 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 1807 ArrayTy->getNumElements()); 1808 1809 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy)); 1810 } 1811 auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType()); 1812 if (VectorTy && !IsVector) { 1813 auto *ArrayTy = llvm::ArrayType::get( 1814 VectorTy->getElementType(), 1815 cast<llvm::FixedVectorType>(VectorTy)->getNumElements()); 1816 1817 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy)); 1818 } 1819 1820 return Addr; 1821 } 1822 1823 // Emit a store of a matrix LValue. This may require casting the original 1824 // pointer to memory address (ArrayType) to a pointer to the value type 1825 // (VectorType). 1826 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue, 1827 bool isInit, CodeGenFunction &CGF) { 1828 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF, 1829 value->getType()->isVectorTy()); 1830 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(), 1831 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit, 1832 lvalue.isNontemporal()); 1833 } 1834 1835 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1836 bool Volatile, QualType Ty, 1837 LValueBaseInfo BaseInfo, 1838 TBAAAccessInfo TBAAInfo, 1839 bool isInit, bool isNontemporal) { 1840 if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer())) 1841 if (GV->isThreadLocal()) 1842 Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV)); 1843 1844 llvm::Type *SrcTy = Value->getType(); 1845 if (const auto *ClangVecTy = Ty->getAs<VectorType>()) { 1846 auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy); 1847 if (VecTy && ClangVecTy->isExtVectorBoolType()) { 1848 auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType()); 1849 // Expand to the memory bit width. 1850 unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits(); 1851 // <N x i1> --> <P x i1>. 1852 Value = emitBoolVecConversion(Value, MemNumElems, "insertvec"); 1853 // <P x i1> --> iP. 1854 Value = Builder.CreateBitCast(Value, MemIntTy); 1855 } else if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1856 // Handle vec3 special. 1857 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) { 1858 // Our source is a vec3, do a shuffle vector to make it a vec4. 1859 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1}, 1860 "extractVec"); 1861 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4); 1862 } 1863 if (Addr.getElementType() != SrcTy) { 1864 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1865 } 1866 } 1867 } 1868 1869 Value = EmitToMemory(Value, Ty); 1870 1871 LValue AtomicLValue = 1872 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1873 if (Ty->isAtomicType() || 1874 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1875 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1876 return; 1877 } 1878 1879 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1880 if (isNontemporal) { 1881 llvm::MDNode *Node = 1882 llvm::MDNode::get(Store->getContext(), 1883 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1884 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1885 } 1886 1887 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1888 } 1889 1890 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1891 bool isInit) { 1892 if (lvalue.getType()->isConstantMatrixType()) { 1893 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this); 1894 return; 1895 } 1896 1897 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1898 lvalue.getType(), lvalue.getBaseInfo(), 1899 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1900 } 1901 1902 // Emit a load of a LValue of matrix type. This may require casting the pointer 1903 // to memory address (ArrayType) to a pointer to the value type (VectorType). 1904 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc, 1905 CodeGenFunction &CGF) { 1906 assert(LV.getType()->isConstantMatrixType()); 1907 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF); 1908 LV.setAddress(Addr); 1909 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc)); 1910 } 1911 1912 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1913 /// method emits the address of the lvalue, then loads the result as an rvalue, 1914 /// returning the rvalue. 1915 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1916 if (LV.isObjCWeak()) { 1917 // load of a __weak object. 1918 Address AddrWeakObj = LV.getAddress(*this); 1919 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1920 AddrWeakObj)); 1921 } 1922 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1923 // In MRC mode, we do a load+autorelease. 1924 if (!getLangOpts().ObjCAutoRefCount) { 1925 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1926 } 1927 1928 // In ARC mode, we load retained and then consume the value. 1929 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1930 Object = EmitObjCConsumeObject(LV.getType(), Object); 1931 return RValue::get(Object); 1932 } 1933 1934 if (LV.isSimple()) { 1935 assert(!LV.getType()->isFunctionType()); 1936 1937 if (LV.getType()->isConstantMatrixType()) 1938 return EmitLoadOfMatrixLValue(LV, Loc, *this); 1939 1940 // Everything needs a load. 1941 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1942 } 1943 1944 if (LV.isVectorElt()) { 1945 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1946 LV.isVolatileQualified()); 1947 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1948 "vecext")); 1949 } 1950 1951 // If this is a reference to a subset of the elements of a vector, either 1952 // shuffle the input or extract/insert them as appropriate. 1953 if (LV.isExtVectorElt()) { 1954 return EmitLoadOfExtVectorElementLValue(LV); 1955 } 1956 1957 // Global Register variables always invoke intrinsics 1958 if (LV.isGlobalReg()) 1959 return EmitLoadOfGlobalRegLValue(LV); 1960 1961 if (LV.isMatrixElt()) { 1962 llvm::Value *Idx = LV.getMatrixIdx(); 1963 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 1964 const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>(); 1965 llvm::MatrixBuilder MB(Builder); 1966 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 1967 } 1968 llvm::LoadInst *Load = 1969 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified()); 1970 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext")); 1971 } 1972 1973 assert(LV.isBitField() && "Unknown LValue type!"); 1974 return EmitLoadOfBitfieldLValue(LV, Loc); 1975 } 1976 1977 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1978 SourceLocation Loc) { 1979 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1980 1981 // Get the output type. 1982 llvm::Type *ResLTy = ConvertType(LV.getType()); 1983 1984 Address Ptr = LV.getBitFieldAddress(); 1985 llvm::Value *Val = 1986 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1987 1988 bool UseVolatile = LV.isVolatileQualified() && 1989 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 1990 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 1991 const unsigned StorageSize = 1992 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 1993 if (Info.IsSigned) { 1994 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize); 1995 unsigned HighBits = StorageSize - Offset - Info.Size; 1996 if (HighBits) 1997 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1998 if (Offset + HighBits) 1999 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr"); 2000 } else { 2001 if (Offset) 2002 Val = Builder.CreateLShr(Val, Offset, "bf.lshr"); 2003 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize) 2004 Val = Builder.CreateAnd( 2005 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear"); 2006 } 2007 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 2008 EmitScalarRangeCheck(Val, LV.getType(), Loc); 2009 return RValue::get(Val); 2010 } 2011 2012 // If this is a reference to a subset of the elements of a vector, create an 2013 // appropriate shufflevector. 2014 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 2015 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 2016 LV.isVolatileQualified()); 2017 2018 const llvm::Constant *Elts = LV.getExtVectorElts(); 2019 2020 // If the result of the expression is a non-vector type, we must be extracting 2021 // a single element. Just codegen as an extractelement. 2022 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 2023 if (!ExprVT) { 2024 unsigned InIdx = getAccessedFieldNo(0, Elts); 2025 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2026 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 2027 } 2028 2029 // Always use shuffle vector to try to retain the original program structure 2030 unsigned NumResultElts = ExprVT->getNumElements(); 2031 2032 SmallVector<int, 4> Mask; 2033 for (unsigned i = 0; i != NumResultElts; ++i) 2034 Mask.push_back(getAccessedFieldNo(i, Elts)); 2035 2036 Vec = Builder.CreateShuffleVector(Vec, Mask); 2037 return RValue::get(Vec); 2038 } 2039 2040 /// Generates lvalue for partial ext_vector access. 2041 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 2042 Address VectorAddress = LV.getExtVectorAddress(); 2043 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 2044 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 2045 2046 Address CastToPointerElement = 2047 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 2048 "conv.ptr.element"); 2049 2050 const llvm::Constant *Elts = LV.getExtVectorElts(); 2051 unsigned ix = getAccessedFieldNo(0, Elts); 2052 2053 Address VectorBasePtrPlusIx = 2054 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 2055 "vector.elt"); 2056 2057 return VectorBasePtrPlusIx; 2058 } 2059 2060 /// Load of global gamed gegisters are always calls to intrinsics. 2061 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 2062 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 2063 "Bad type for register variable"); 2064 llvm::MDNode *RegName = cast<llvm::MDNode>( 2065 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 2066 2067 // We accept integer and pointer types only 2068 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 2069 llvm::Type *Ty = OrigTy; 2070 if (OrigTy->isPointerTy()) 2071 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2072 llvm::Type *Types[] = { Ty }; 2073 2074 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 2075 llvm::Value *Call = Builder.CreateCall( 2076 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 2077 if (OrigTy->isPointerTy()) 2078 Call = Builder.CreateIntToPtr(Call, OrigTy); 2079 return RValue::get(Call); 2080 } 2081 2082 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2083 /// lvalue, where both are guaranteed to the have the same type, and that type 2084 /// is 'Ty'. 2085 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 2086 bool isInit) { 2087 if (!Dst.isSimple()) { 2088 if (Dst.isVectorElt()) { 2089 // Read/modify/write the vector, inserting the new element. 2090 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 2091 Dst.isVolatileQualified()); 2092 auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType()); 2093 if (IRStoreTy) { 2094 auto *IRVecTy = llvm::FixedVectorType::get( 2095 Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits()); 2096 Vec = Builder.CreateBitCast(Vec, IRVecTy); 2097 // iN --> <N x i1>. 2098 } 2099 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2100 Dst.getVectorIdx(), "vecins"); 2101 if (IRStoreTy) { 2102 // <N x i1> --> <iN>. 2103 Vec = Builder.CreateBitCast(Vec, IRStoreTy); 2104 } 2105 Builder.CreateStore(Vec, Dst.getVectorAddress(), 2106 Dst.isVolatileQualified()); 2107 return; 2108 } 2109 2110 // If this is an update of extended vector elements, insert them as 2111 // appropriate. 2112 if (Dst.isExtVectorElt()) 2113 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 2114 2115 if (Dst.isGlobalReg()) 2116 return EmitStoreThroughGlobalRegLValue(Src, Dst); 2117 2118 if (Dst.isMatrixElt()) { 2119 llvm::Value *Idx = Dst.getMatrixIdx(); 2120 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 2121 const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>(); 2122 llvm::MatrixBuilder MB(Builder); 2123 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 2124 } 2125 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress()); 2126 llvm::Value *Vec = 2127 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins"); 2128 Builder.CreateStore(Vec, Dst.getMatrixAddress(), 2129 Dst.isVolatileQualified()); 2130 return; 2131 } 2132 2133 assert(Dst.isBitField() && "Unknown LValue type"); 2134 return EmitStoreThroughBitfieldLValue(Src, Dst); 2135 } 2136 2137 // There's special magic for assigning into an ARC-qualified l-value. 2138 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 2139 switch (Lifetime) { 2140 case Qualifiers::OCL_None: 2141 llvm_unreachable("present but none"); 2142 2143 case Qualifiers::OCL_ExplicitNone: 2144 // nothing special 2145 break; 2146 2147 case Qualifiers::OCL_Strong: 2148 if (isInit) { 2149 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 2150 break; 2151 } 2152 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 2153 return; 2154 2155 case Qualifiers::OCL_Weak: 2156 if (isInit) 2157 // Initialize and then skip the primitive store. 2158 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 2159 else 2160 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 2161 /*ignore*/ true); 2162 return; 2163 2164 case Qualifiers::OCL_Autoreleasing: 2165 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2166 Src.getScalarVal())); 2167 // fall into the normal path 2168 break; 2169 } 2170 } 2171 2172 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2173 // load of a __weak object. 2174 Address LvalueDst = Dst.getAddress(*this); 2175 llvm::Value *src = Src.getScalarVal(); 2176 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2177 return; 2178 } 2179 2180 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2181 // load of a __strong object. 2182 Address LvalueDst = Dst.getAddress(*this); 2183 llvm::Value *src = Src.getScalarVal(); 2184 if (Dst.isObjCIvar()) { 2185 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2186 llvm::Type *ResultType = IntPtrTy; 2187 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2188 llvm::Value *RHS = dst.getPointer(); 2189 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2190 llvm::Value *LHS = 2191 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2192 "sub.ptr.lhs.cast"); 2193 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2194 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2195 BytesBetween); 2196 } else if (Dst.isGlobalObjCRef()) { 2197 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2198 Dst.isThreadLocalRef()); 2199 } 2200 else 2201 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2202 return; 2203 } 2204 2205 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2206 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2207 } 2208 2209 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2210 llvm::Value **Result) { 2211 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2212 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2213 Address Ptr = Dst.getBitFieldAddress(); 2214 2215 // Get the source value, truncated to the width of the bit-field. 2216 llvm::Value *SrcVal = Src.getScalarVal(); 2217 2218 // Cast the source to the storage type and shift it into place. 2219 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2220 /*isSigned=*/false); 2221 llvm::Value *MaskedVal = SrcVal; 2222 2223 const bool UseVolatile = 2224 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() && 2225 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2226 const unsigned StorageSize = 2227 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2228 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2229 // See if there are other bits in the bitfield's storage we'll need to load 2230 // and mask together with source before storing. 2231 if (StorageSize != Info.Size) { 2232 assert(StorageSize > Info.Size && "Invalid bitfield size."); 2233 llvm::Value *Val = 2234 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2235 2236 // Mask the source value as needed. 2237 if (!hasBooleanRepresentation(Dst.getType())) 2238 SrcVal = Builder.CreateAnd( 2239 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), 2240 "bf.value"); 2241 MaskedVal = SrcVal; 2242 if (Offset) 2243 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl"); 2244 2245 // Mask out the original value. 2246 Val = Builder.CreateAnd( 2247 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size), 2248 "bf.clear"); 2249 2250 // Or together the unchanged values and the source value. 2251 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2252 } else { 2253 assert(Offset == 0); 2254 // According to the AACPS: 2255 // When a volatile bit-field is written, and its container does not overlap 2256 // with any non-bit-field member, its container must be read exactly once 2257 // and written exactly once using the access width appropriate to the type 2258 // of the container. The two accesses are not atomic. 2259 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2260 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2261 Builder.CreateLoad(Ptr, true, "bf.load"); 2262 } 2263 2264 // Write the new value back out. 2265 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2266 2267 // Return the new value of the bit-field, if requested. 2268 if (Result) { 2269 llvm::Value *ResultVal = MaskedVal; 2270 2271 // Sign extend the value if needed. 2272 if (Info.IsSigned) { 2273 assert(Info.Size <= StorageSize); 2274 unsigned HighBits = StorageSize - Info.Size; 2275 if (HighBits) { 2276 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2277 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2278 } 2279 } 2280 2281 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2282 "bf.result.cast"); 2283 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2284 } 2285 } 2286 2287 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2288 LValue Dst) { 2289 // This access turns into a read/modify/write of the vector. Load the input 2290 // value now. 2291 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2292 Dst.isVolatileQualified()); 2293 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2294 2295 llvm::Value *SrcVal = Src.getScalarVal(); 2296 2297 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2298 unsigned NumSrcElts = VTy->getNumElements(); 2299 unsigned NumDstElts = 2300 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements(); 2301 if (NumDstElts == NumSrcElts) { 2302 // Use shuffle vector is the src and destination are the same number of 2303 // elements and restore the vector mask since it is on the side it will be 2304 // stored. 2305 SmallVector<int, 4> Mask(NumDstElts); 2306 for (unsigned i = 0; i != NumSrcElts; ++i) 2307 Mask[getAccessedFieldNo(i, Elts)] = i; 2308 2309 Vec = Builder.CreateShuffleVector(SrcVal, Mask); 2310 } else if (NumDstElts > NumSrcElts) { 2311 // Extended the source vector to the same length and then shuffle it 2312 // into the destination. 2313 // FIXME: since we're shuffling with undef, can we just use the indices 2314 // into that? This could be simpler. 2315 SmallVector<int, 4> ExtMask; 2316 for (unsigned i = 0; i != NumSrcElts; ++i) 2317 ExtMask.push_back(i); 2318 ExtMask.resize(NumDstElts, -1); 2319 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask); 2320 // build identity 2321 SmallVector<int, 4> Mask; 2322 for (unsigned i = 0; i != NumDstElts; ++i) 2323 Mask.push_back(i); 2324 2325 // When the vector size is odd and .odd or .hi is used, the last element 2326 // of the Elts constant array will be one past the size of the vector. 2327 // Ignore the last element here, if it is greater than the mask size. 2328 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2329 NumSrcElts--; 2330 2331 // modify when what gets shuffled in 2332 for (unsigned i = 0; i != NumSrcElts; ++i) 2333 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 2334 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 2335 } else { 2336 // We should never shorten the vector 2337 llvm_unreachable("unexpected shorten vector length"); 2338 } 2339 } else { 2340 // If the Src is a scalar (not a vector) it must be updating one element. 2341 unsigned InIdx = getAccessedFieldNo(0, Elts); 2342 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2343 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2344 } 2345 2346 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2347 Dst.isVolatileQualified()); 2348 } 2349 2350 /// Store of global named registers are always calls to intrinsics. 2351 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2352 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2353 "Bad type for register variable"); 2354 llvm::MDNode *RegName = cast<llvm::MDNode>( 2355 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2356 assert(RegName && "Register LValue is not metadata"); 2357 2358 // We accept integer and pointer types only 2359 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2360 llvm::Type *Ty = OrigTy; 2361 if (OrigTy->isPointerTy()) 2362 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2363 llvm::Type *Types[] = { Ty }; 2364 2365 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2366 llvm::Value *Value = Src.getScalarVal(); 2367 if (OrigTy->isPointerTy()) 2368 Value = Builder.CreatePtrToInt(Value, Ty); 2369 Builder.CreateCall( 2370 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2371 } 2372 2373 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2374 // generating write-barries API. It is currently a global, ivar, 2375 // or neither. 2376 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2377 LValue &LV, 2378 bool IsMemberAccess=false) { 2379 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2380 return; 2381 2382 if (isa<ObjCIvarRefExpr>(E)) { 2383 QualType ExpTy = E->getType(); 2384 if (IsMemberAccess && ExpTy->isPointerType()) { 2385 // If ivar is a structure pointer, assigning to field of 2386 // this struct follows gcc's behavior and makes it a non-ivar 2387 // writer-barrier conservatively. 2388 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2389 if (ExpTy->isRecordType()) { 2390 LV.setObjCIvar(false); 2391 return; 2392 } 2393 } 2394 LV.setObjCIvar(true); 2395 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2396 LV.setBaseIvarExp(Exp->getBase()); 2397 LV.setObjCArray(E->getType()->isArrayType()); 2398 return; 2399 } 2400 2401 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2402 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2403 if (VD->hasGlobalStorage()) { 2404 LV.setGlobalObjCRef(true); 2405 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2406 } 2407 } 2408 LV.setObjCArray(E->getType()->isArrayType()); 2409 return; 2410 } 2411 2412 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2413 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2414 return; 2415 } 2416 2417 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2418 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2419 if (LV.isObjCIvar()) { 2420 // If cast is to a structure pointer, follow gcc's behavior and make it 2421 // a non-ivar write-barrier. 2422 QualType ExpTy = E->getType(); 2423 if (ExpTy->isPointerType()) 2424 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2425 if (ExpTy->isRecordType()) 2426 LV.setObjCIvar(false); 2427 } 2428 return; 2429 } 2430 2431 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2432 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2433 return; 2434 } 2435 2436 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2437 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2438 return; 2439 } 2440 2441 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2442 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2443 return; 2444 } 2445 2446 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2447 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2448 return; 2449 } 2450 2451 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2452 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2453 if (LV.isObjCIvar() && !LV.isObjCArray()) 2454 // Using array syntax to assigning to what an ivar points to is not 2455 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2456 LV.setObjCIvar(false); 2457 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2458 // Using array syntax to assigning to what global points to is not 2459 // same as assigning to the global itself. {id *G;} G[i] = 0; 2460 LV.setGlobalObjCRef(false); 2461 return; 2462 } 2463 2464 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2465 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2466 // We don't know if member is an 'ivar', but this flag is looked at 2467 // only in the context of LV.isObjCIvar(). 2468 LV.setObjCArray(E->getType()->isArrayType()); 2469 return; 2470 } 2471 } 2472 2473 static llvm::Value * 2474 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2475 llvm::Value *V, llvm::Type *IRType, 2476 StringRef Name = StringRef()) { 2477 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2478 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2479 } 2480 2481 static LValue EmitThreadPrivateVarDeclLValue( 2482 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2483 llvm::Type *RealVarTy, SourceLocation Loc) { 2484 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) 2485 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 2486 CGF, VD, Addr, Loc); 2487 else 2488 Addr = 2489 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2490 2491 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2492 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2493 } 2494 2495 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2496 const VarDecl *VD, QualType T) { 2497 std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2498 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2499 // Return an invalid address if variable is MT_To (or MT_Enter starting with 2500 // OpenMP 5.2) and unified memory is not enabled. For all other cases: MT_Link 2501 // and MT_To (or MT_Enter) with unified memory, return a valid address. 2502 if (!Res || ((*Res == OMPDeclareTargetDeclAttr::MT_To || 2503 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 2504 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2505 return Address::invalid(); 2506 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2507 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 2508 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 2509 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2510 "Expected link clause OR to clause with unified memory enabled."); 2511 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2512 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2513 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2514 } 2515 2516 Address 2517 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2518 LValueBaseInfo *PointeeBaseInfo, 2519 TBAAAccessInfo *PointeeTBAAInfo) { 2520 llvm::LoadInst *Load = 2521 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2522 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2523 2524 QualType PointeeType = RefLVal.getType()->getPointeeType(); 2525 CharUnits Align = CGM.getNaturalTypeAlignment( 2526 PointeeType, PointeeBaseInfo, PointeeTBAAInfo, 2527 /* forPointeeType= */ true); 2528 return Address(Load, ConvertTypeForMem(PointeeType), Align); 2529 } 2530 2531 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2532 LValueBaseInfo PointeeBaseInfo; 2533 TBAAAccessInfo PointeeTBAAInfo; 2534 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2535 &PointeeTBAAInfo); 2536 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2537 PointeeBaseInfo, PointeeTBAAInfo); 2538 } 2539 2540 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2541 const PointerType *PtrTy, 2542 LValueBaseInfo *BaseInfo, 2543 TBAAAccessInfo *TBAAInfo) { 2544 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2545 return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()), 2546 CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo, 2547 TBAAInfo, 2548 /*forPointeeType=*/true)); 2549 } 2550 2551 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2552 const PointerType *PtrTy) { 2553 LValueBaseInfo BaseInfo; 2554 TBAAAccessInfo TBAAInfo; 2555 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2556 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2557 } 2558 2559 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2560 const Expr *E, const VarDecl *VD) { 2561 QualType T = E->getType(); 2562 2563 // If it's thread_local, emit a call to its wrapper function instead. 2564 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2565 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2566 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2567 // Check if the variable is marked as declare target with link clause in 2568 // device codegen. 2569 if (CGF.getLangOpts().OpenMPIsDevice) { 2570 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2571 if (Addr.isValid()) 2572 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2573 } 2574 2575 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2576 2577 if (VD->getTLSKind() != VarDecl::TLS_None) 2578 V = CGF.Builder.CreateThreadLocalAddress(V); 2579 2580 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2581 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2582 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2583 Address Addr(V, RealVarTy, Alignment); 2584 // Emit reference to the private copy of the variable if it is an OpenMP 2585 // threadprivate variable. 2586 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2587 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2588 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2589 E->getExprLoc()); 2590 } 2591 LValue LV = VD->getType()->isReferenceType() ? 2592 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2593 AlignmentSource::Decl) : 2594 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2595 setObjCGCLValueClass(CGF.getContext(), E, LV); 2596 return LV; 2597 } 2598 2599 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2600 GlobalDecl GD) { 2601 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2602 if (FD->hasAttr<WeakRefAttr>()) { 2603 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2604 return aliasee.getPointer(); 2605 } 2606 2607 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2608 if (!FD->hasPrototype()) { 2609 if (const FunctionProtoType *Proto = 2610 FD->getType()->getAs<FunctionProtoType>()) { 2611 // Ugly case: for a K&R-style definition, the type of the definition 2612 // isn't the same as the type of a use. Correct for this with a 2613 // bitcast. 2614 QualType NoProtoType = 2615 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2616 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2617 V = llvm::ConstantExpr::getBitCast(V, 2618 CGM.getTypes().ConvertType(NoProtoType)); 2619 } 2620 } 2621 return V; 2622 } 2623 2624 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2625 GlobalDecl GD) { 2626 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2627 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2628 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2629 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2630 AlignmentSource::Decl); 2631 } 2632 2633 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2634 llvm::Value *ThisValue) { 2635 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2636 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2637 return CGF.EmitLValueForField(LV, FD); 2638 } 2639 2640 /// Named Registers are named metadata pointing to the register name 2641 /// which will be read from/written to as an argument to the intrinsic 2642 /// @llvm.read/write_register. 2643 /// So far, only the name is being passed down, but other options such as 2644 /// register type, allocation type or even optimization options could be 2645 /// passed down via the metadata node. 2646 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2647 SmallString<64> Name("llvm.named.register."); 2648 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2649 assert(Asm->getLabel().size() < 64-Name.size() && 2650 "Register name too big"); 2651 Name.append(Asm->getLabel()); 2652 llvm::NamedMDNode *M = 2653 CGM.getModule().getOrInsertNamedMetadata(Name); 2654 if (M->getNumOperands() == 0) { 2655 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2656 Asm->getLabel()); 2657 llvm::Metadata *Ops[] = {Str}; 2658 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2659 } 2660 2661 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2662 2663 llvm::Value *Ptr = 2664 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2665 return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType()); 2666 } 2667 2668 /// Determine whether we can emit a reference to \p VD from the current 2669 /// context, despite not necessarily having seen an odr-use of the variable in 2670 /// this context. 2671 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2672 const DeclRefExpr *E, 2673 const VarDecl *VD, 2674 bool IsConstant) { 2675 // For a variable declared in an enclosing scope, do not emit a spurious 2676 // reference even if we have a capture, as that will emit an unwarranted 2677 // reference to our capture state, and will likely generate worse code than 2678 // emitting a local copy. 2679 if (E->refersToEnclosingVariableOrCapture()) 2680 return false; 2681 2682 // For a local declaration declared in this function, we can always reference 2683 // it even if we don't have an odr-use. 2684 if (VD->hasLocalStorage()) { 2685 return VD->getDeclContext() == 2686 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2687 } 2688 2689 // For a global declaration, we can emit a reference to it if we know 2690 // for sure that we are able to emit a definition of it. 2691 VD = VD->getDefinition(CGF.getContext()); 2692 if (!VD) 2693 return false; 2694 2695 // Don't emit a spurious reference if it might be to a variable that only 2696 // exists on a different device / target. 2697 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2698 // cross-target reference. 2699 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2700 CGF.getLangOpts().OpenCL) { 2701 return false; 2702 } 2703 2704 // We can emit a spurious reference only if the linkage implies that we'll 2705 // be emitting a non-interposable symbol that will be retained until link 2706 // time. 2707 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2708 case llvm::GlobalValue::ExternalLinkage: 2709 case llvm::GlobalValue::LinkOnceODRLinkage: 2710 case llvm::GlobalValue::WeakODRLinkage: 2711 case llvm::GlobalValue::InternalLinkage: 2712 case llvm::GlobalValue::PrivateLinkage: 2713 return true; 2714 default: 2715 return false; 2716 } 2717 } 2718 2719 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2720 const NamedDecl *ND = E->getDecl(); 2721 QualType T = E->getType(); 2722 2723 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2724 "should not emit an unevaluated operand"); 2725 2726 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2727 // Global Named registers access via intrinsics only 2728 if (VD->getStorageClass() == SC_Register && 2729 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2730 return EmitGlobalNamedRegister(VD, CGM); 2731 2732 // If this DeclRefExpr does not constitute an odr-use of the variable, 2733 // we're not permitted to emit a reference to it in general, and it might 2734 // not be captured if capture would be necessary for a use. Emit the 2735 // constant value directly instead. 2736 if (E->isNonOdrUse() == NOUR_Constant && 2737 (VD->getType()->isReferenceType() || 2738 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2739 VD->getAnyInitializer(VD); 2740 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2741 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2742 assert(Val && "failed to emit constant expression"); 2743 2744 Address Addr = Address::invalid(); 2745 if (!VD->getType()->isReferenceType()) { 2746 // Spill the constant value to a global. 2747 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2748 getContext().getDeclAlign(VD)); 2749 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2750 auto *PTy = llvm::PointerType::get( 2751 VarTy, getTypes().getTargetAddressSpace(VD->getType())); 2752 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy); 2753 } else { 2754 // Should we be using the alignment of the constant pointer we emitted? 2755 CharUnits Alignment = 2756 CGM.getNaturalTypeAlignment(E->getType(), 2757 /* BaseInfo= */ nullptr, 2758 /* TBAAInfo= */ nullptr, 2759 /* forPointeeType= */ true); 2760 Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment); 2761 } 2762 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2763 } 2764 2765 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2766 2767 // Check for captured variables. 2768 if (E->refersToEnclosingVariableOrCapture()) { 2769 VD = VD->getCanonicalDecl(); 2770 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2771 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2772 if (CapturedStmtInfo) { 2773 auto I = LocalDeclMap.find(VD); 2774 if (I != LocalDeclMap.end()) { 2775 LValue CapLVal; 2776 if (VD->getType()->isReferenceType()) 2777 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2778 AlignmentSource::Decl); 2779 else 2780 CapLVal = MakeAddrLValue(I->second, T); 2781 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2782 // in simd context. 2783 if (getLangOpts().OpenMP && 2784 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2785 CapLVal.setNontemporal(/*Value=*/true); 2786 return CapLVal; 2787 } 2788 LValue CapLVal = 2789 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2790 CapturedStmtInfo->getContextValue()); 2791 Address LValueAddress = CapLVal.getAddress(*this); 2792 CapLVal = MakeAddrLValue( 2793 Address(LValueAddress.getPointer(), LValueAddress.getElementType(), 2794 getContext().getDeclAlign(VD)), 2795 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2796 CapLVal.getTBAAInfo()); 2797 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2798 // in simd context. 2799 if (getLangOpts().OpenMP && 2800 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2801 CapLVal.setNontemporal(/*Value=*/true); 2802 return CapLVal; 2803 } 2804 2805 assert(isa<BlockDecl>(CurCodeDecl)); 2806 Address addr = GetAddrOfBlockDecl(VD); 2807 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2808 } 2809 } 2810 2811 // FIXME: We should be able to assert this for FunctionDecls as well! 2812 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2813 // those with a valid source location. 2814 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2815 !E->getLocation().isValid()) && 2816 "Should not use decl without marking it used!"); 2817 2818 if (ND->hasAttr<WeakRefAttr>()) { 2819 const auto *VD = cast<ValueDecl>(ND); 2820 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2821 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2822 } 2823 2824 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2825 // Check if this is a global variable. 2826 if (VD->hasLinkage() || VD->isStaticDataMember()) 2827 return EmitGlobalVarDeclLValue(*this, E, VD); 2828 2829 Address addr = Address::invalid(); 2830 2831 // The variable should generally be present in the local decl map. 2832 auto iter = LocalDeclMap.find(VD); 2833 if (iter != LocalDeclMap.end()) { 2834 addr = iter->second; 2835 2836 // Otherwise, it might be static local we haven't emitted yet for 2837 // some reason; most likely, because it's in an outer function. 2838 } else if (VD->isStaticLocal()) { 2839 llvm::Constant *var = CGM.getOrCreateStaticVarDecl( 2840 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); 2841 addr = Address( 2842 var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD)); 2843 2844 // No other cases for now. 2845 } else { 2846 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2847 } 2848 2849 // Handle threadlocal function locals. 2850 if (VD->getTLSKind() != VarDecl::TLS_None) 2851 addr = 2852 addr.withPointer(Builder.CreateThreadLocalAddress(addr.getPointer())); 2853 2854 // Check for OpenMP threadprivate variables. 2855 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2856 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2857 return EmitThreadPrivateVarDeclLValue( 2858 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2859 E->getExprLoc()); 2860 } 2861 2862 // Drill into block byref variables. 2863 bool isBlockByref = VD->isEscapingByref(); 2864 if (isBlockByref) { 2865 addr = emitBlockByrefAddress(addr, VD); 2866 } 2867 2868 // Drill into reference types. 2869 LValue LV = VD->getType()->isReferenceType() ? 2870 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2871 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2872 2873 bool isLocalStorage = VD->hasLocalStorage(); 2874 2875 bool NonGCable = isLocalStorage && 2876 !VD->getType()->isReferenceType() && 2877 !isBlockByref; 2878 if (NonGCable) { 2879 LV.getQuals().removeObjCGCAttr(); 2880 LV.setNonGC(true); 2881 } 2882 2883 bool isImpreciseLifetime = 2884 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2885 if (isImpreciseLifetime) 2886 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2887 setObjCGCLValueClass(getContext(), E, LV); 2888 return LV; 2889 } 2890 2891 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 2892 LValue LV = EmitFunctionDeclLValue(*this, E, FD); 2893 2894 // Emit debuginfo for the function declaration if the target wants to. 2895 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) { 2896 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) { 2897 auto *Fn = 2898 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts()); 2899 if (!Fn->getSubprogram()) 2900 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn); 2901 } 2902 } 2903 2904 return LV; 2905 } 2906 2907 // FIXME: While we're emitting a binding from an enclosing scope, all other 2908 // DeclRefExprs we see should be implicitly treated as if they also refer to 2909 // an enclosing scope. 2910 if (const auto *BD = dyn_cast<BindingDecl>(ND)) { 2911 if (E->refersToEnclosingVariableOrCapture()) { 2912 auto *FD = LambdaCaptureFields.lookup(BD); 2913 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2914 } 2915 return EmitLValue(BD->getBinding()); 2916 } 2917 2918 // We can form DeclRefExprs naming GUID declarations when reconstituting 2919 // non-type template parameters into expressions. 2920 if (const auto *GD = dyn_cast<MSGuidDecl>(ND)) 2921 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T, 2922 AlignmentSource::Decl); 2923 2924 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) 2925 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T, 2926 AlignmentSource::Decl); 2927 2928 llvm_unreachable("Unhandled DeclRefExpr"); 2929 } 2930 2931 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2932 // __extension__ doesn't affect lvalue-ness. 2933 if (E->getOpcode() == UO_Extension) 2934 return EmitLValue(E->getSubExpr()); 2935 2936 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2937 switch (E->getOpcode()) { 2938 default: llvm_unreachable("Unknown unary operator lvalue!"); 2939 case UO_Deref: { 2940 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2941 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2942 2943 LValueBaseInfo BaseInfo; 2944 TBAAAccessInfo TBAAInfo; 2945 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2946 &TBAAInfo); 2947 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2948 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2949 2950 // We should not generate __weak write barrier on indirect reference 2951 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2952 // But, we continue to generate __strong write barrier on indirect write 2953 // into a pointer to object. 2954 if (getLangOpts().ObjC && 2955 getLangOpts().getGC() != LangOptions::NonGC && 2956 LV.isObjCWeak()) 2957 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2958 return LV; 2959 } 2960 case UO_Real: 2961 case UO_Imag: { 2962 LValue LV = EmitLValue(E->getSubExpr()); 2963 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2964 2965 // __real is valid on scalars. This is a faster way of testing that. 2966 // __imag can only produce an rvalue on scalars. 2967 if (E->getOpcode() == UO_Real && 2968 !LV.getAddress(*this).getElementType()->isStructTy()) { 2969 assert(E->getSubExpr()->getType()->isArithmeticType()); 2970 return LV; 2971 } 2972 2973 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2974 2975 Address Component = 2976 (E->getOpcode() == UO_Real 2977 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2978 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2979 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2980 CGM.getTBAAInfoForSubobject(LV, T)); 2981 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2982 return ElemLV; 2983 } 2984 case UO_PreInc: 2985 case UO_PreDec: { 2986 LValue LV = EmitLValue(E->getSubExpr()); 2987 bool isInc = E->getOpcode() == UO_PreInc; 2988 2989 if (E->getType()->isAnyComplexType()) 2990 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2991 else 2992 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2993 return LV; 2994 } 2995 } 2996 } 2997 2998 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2999 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 3000 E->getType(), AlignmentSource::Decl); 3001 } 3002 3003 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 3004 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 3005 E->getType(), AlignmentSource::Decl); 3006 } 3007 3008 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 3009 auto SL = E->getFunctionName(); 3010 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 3011 StringRef FnName = CurFn->getName(); 3012 if (FnName.startswith("\01")) 3013 FnName = FnName.substr(1); 3014 StringRef NameItems[] = { 3015 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 3016 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 3017 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 3018 std::string Name = std::string(SL->getString()); 3019 if (!Name.empty()) { 3020 unsigned Discriminator = 3021 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 3022 if (Discriminator) 3023 Name += "_" + Twine(Discriminator + 1).str(); 3024 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 3025 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3026 } else { 3027 auto C = 3028 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 3029 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3030 } 3031 } 3032 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 3033 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 3034 } 3035 3036 /// Emit a type description suitable for use by a runtime sanitizer library. The 3037 /// format of a type descriptor is 3038 /// 3039 /// \code 3040 /// { i16 TypeKind, i16 TypeInfo } 3041 /// \endcode 3042 /// 3043 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 3044 /// integer, 1 for a floating point value, and -1 for anything else. 3045 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 3046 // Only emit each type's descriptor once. 3047 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 3048 return C; 3049 3050 uint16_t TypeKind = -1; 3051 uint16_t TypeInfo = 0; 3052 3053 if (T->isIntegerType()) { 3054 TypeKind = 0; 3055 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 3056 (T->isSignedIntegerType() ? 1 : 0); 3057 } else if (T->isFloatingType()) { 3058 TypeKind = 1; 3059 TypeInfo = getContext().getTypeSize(T); 3060 } 3061 3062 // Format the type name as if for a diagnostic, including quotes and 3063 // optionally an 'aka'. 3064 SmallString<32> Buffer; 3065 CGM.getDiags().ConvertArgToString( 3066 DiagnosticsEngine::ak_qualtype, (intptr_t)T.getAsOpaquePtr(), StringRef(), 3067 StringRef(), std::nullopt, Buffer, std::nullopt); 3068 3069 llvm::Constant *Components[] = { 3070 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 3071 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 3072 }; 3073 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 3074 3075 auto *GV = new llvm::GlobalVariable( 3076 CGM.getModule(), Descriptor->getType(), 3077 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 3078 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3079 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 3080 3081 // Remember the descriptor for this type. 3082 CGM.setTypeDescriptorInMap(T, GV); 3083 3084 return GV; 3085 } 3086 3087 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 3088 llvm::Type *TargetTy = IntPtrTy; 3089 3090 if (V->getType() == TargetTy) 3091 return V; 3092 3093 // Floating-point types which fit into intptr_t are bitcast to integers 3094 // and then passed directly (after zero-extension, if necessary). 3095 if (V->getType()->isFloatingPointTy()) { 3096 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedValue(); 3097 if (Bits <= TargetTy->getIntegerBitWidth()) 3098 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 3099 Bits)); 3100 } 3101 3102 // Integers which fit in intptr_t are zero-extended and passed directly. 3103 if (V->getType()->isIntegerTy() && 3104 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 3105 return Builder.CreateZExt(V, TargetTy); 3106 3107 // Pointers are passed directly, everything else is passed by address. 3108 if (!V->getType()->isPointerTy()) { 3109 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 3110 Builder.CreateStore(V, Ptr); 3111 V = Ptr.getPointer(); 3112 } 3113 return Builder.CreatePtrToInt(V, TargetTy); 3114 } 3115 3116 /// Emit a representation of a SourceLocation for passing to a handler 3117 /// in a sanitizer runtime library. The format for this data is: 3118 /// \code 3119 /// struct SourceLocation { 3120 /// const char *Filename; 3121 /// int32_t Line, Column; 3122 /// }; 3123 /// \endcode 3124 /// For an invalid SourceLocation, the Filename pointer is null. 3125 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 3126 llvm::Constant *Filename; 3127 int Line, Column; 3128 3129 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 3130 if (PLoc.isValid()) { 3131 StringRef FilenameString = PLoc.getFilename(); 3132 3133 int PathComponentsToStrip = 3134 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 3135 if (PathComponentsToStrip < 0) { 3136 assert(PathComponentsToStrip != INT_MIN); 3137 int PathComponentsToKeep = -PathComponentsToStrip; 3138 auto I = llvm::sys::path::rbegin(FilenameString); 3139 auto E = llvm::sys::path::rend(FilenameString); 3140 while (I != E && --PathComponentsToKeep) 3141 ++I; 3142 3143 FilenameString = FilenameString.substr(I - E); 3144 } else if (PathComponentsToStrip > 0) { 3145 auto I = llvm::sys::path::begin(FilenameString); 3146 auto E = llvm::sys::path::end(FilenameString); 3147 while (I != E && PathComponentsToStrip--) 3148 ++I; 3149 3150 if (I != E) 3151 FilenameString = 3152 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 3153 else 3154 FilenameString = llvm::sys::path::filename(FilenameString); 3155 } 3156 3157 auto FilenameGV = 3158 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 3159 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 3160 cast<llvm::GlobalVariable>( 3161 FilenameGV.getPointer()->stripPointerCasts())); 3162 Filename = FilenameGV.getPointer(); 3163 Line = PLoc.getLine(); 3164 Column = PLoc.getColumn(); 3165 } else { 3166 Filename = llvm::Constant::getNullValue(Int8PtrTy); 3167 Line = Column = 0; 3168 } 3169 3170 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 3171 Builder.getInt32(Column)}; 3172 3173 return llvm::ConstantStruct::getAnon(Data); 3174 } 3175 3176 namespace { 3177 /// Specify under what conditions this check can be recovered 3178 enum class CheckRecoverableKind { 3179 /// Always terminate program execution if this check fails. 3180 Unrecoverable, 3181 /// Check supports recovering, runtime has both fatal (noreturn) and 3182 /// non-fatal handlers for this check. 3183 Recoverable, 3184 /// Runtime conditionally aborts, always need to support recovery. 3185 AlwaysRecoverable 3186 }; 3187 } 3188 3189 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 3190 assert(Kind.countPopulation() == 1); 3191 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 3192 return CheckRecoverableKind::AlwaysRecoverable; 3193 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 3194 return CheckRecoverableKind::Unrecoverable; 3195 else 3196 return CheckRecoverableKind::Recoverable; 3197 } 3198 3199 namespace { 3200 struct SanitizerHandlerInfo { 3201 char const *const Name; 3202 unsigned Version; 3203 }; 3204 } 3205 3206 const SanitizerHandlerInfo SanitizerHandlers[] = { 3207 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 3208 LIST_SANITIZER_CHECKS 3209 #undef SANITIZER_CHECK 3210 }; 3211 3212 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3213 llvm::FunctionType *FnType, 3214 ArrayRef<llvm::Value *> FnArgs, 3215 SanitizerHandler CheckHandler, 3216 CheckRecoverableKind RecoverKind, bool IsFatal, 3217 llvm::BasicBlock *ContBB) { 3218 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3219 std::optional<ApplyDebugLocation> DL; 3220 if (!CGF.Builder.getCurrentDebugLocation()) { 3221 // Ensure that the call has at least an artificial debug location. 3222 DL.emplace(CGF, SourceLocation()); 3223 } 3224 bool NeedsAbortSuffix = 3225 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3226 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3227 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3228 const StringRef CheckName = CheckInfo.Name; 3229 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3230 if (CheckInfo.Version && !MinimalRuntime) 3231 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3232 if (MinimalRuntime) 3233 FnName += "_minimal"; 3234 if (NeedsAbortSuffix) 3235 FnName += "_abort"; 3236 bool MayReturn = 3237 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3238 3239 llvm::AttrBuilder B(CGF.getLLVMContext()); 3240 if (!MayReturn) { 3241 B.addAttribute(llvm::Attribute::NoReturn) 3242 .addAttribute(llvm::Attribute::NoUnwind); 3243 } 3244 B.addUWTableAttr(llvm::UWTableKind::Default); 3245 3246 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3247 FnType, FnName, 3248 llvm::AttributeList::get(CGF.getLLVMContext(), 3249 llvm::AttributeList::FunctionIndex, B), 3250 /*Local=*/true); 3251 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3252 if (!MayReturn) { 3253 HandlerCall->setDoesNotReturn(); 3254 CGF.Builder.CreateUnreachable(); 3255 } else { 3256 CGF.Builder.CreateBr(ContBB); 3257 } 3258 } 3259 3260 void CodeGenFunction::EmitCheck( 3261 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3262 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3263 ArrayRef<llvm::Value *> DynamicArgs) { 3264 assert(IsSanitizerScope); 3265 assert(Checked.size() > 0); 3266 assert(CheckHandler >= 0 && 3267 size_t(CheckHandler) < std::size(SanitizerHandlers)); 3268 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3269 3270 llvm::Value *FatalCond = nullptr; 3271 llvm::Value *RecoverableCond = nullptr; 3272 llvm::Value *TrapCond = nullptr; 3273 for (int i = 0, n = Checked.size(); i < n; ++i) { 3274 llvm::Value *Check = Checked[i].first; 3275 // -fsanitize-trap= overrides -fsanitize-recover=. 3276 llvm::Value *&Cond = 3277 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3278 ? TrapCond 3279 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3280 ? RecoverableCond 3281 : FatalCond; 3282 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3283 } 3284 3285 if (TrapCond) 3286 EmitTrapCheck(TrapCond, CheckHandler); 3287 if (!FatalCond && !RecoverableCond) 3288 return; 3289 3290 llvm::Value *JointCond; 3291 if (FatalCond && RecoverableCond) 3292 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3293 else 3294 JointCond = FatalCond ? FatalCond : RecoverableCond; 3295 assert(JointCond); 3296 3297 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3298 assert(SanOpts.has(Checked[0].second)); 3299 #ifndef NDEBUG 3300 for (int i = 1, n = Checked.size(); i < n; ++i) { 3301 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3302 "All recoverable kinds in a single check must be same!"); 3303 assert(SanOpts.has(Checked[i].second)); 3304 } 3305 #endif 3306 3307 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3308 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3309 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3310 // Give hint that we very much don't expect to execute the handler 3311 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3312 llvm::MDBuilder MDHelper(getLLVMContext()); 3313 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3314 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3315 EmitBlock(Handlers); 3316 3317 // Handler functions take an i8* pointing to the (handler-specific) static 3318 // information block, followed by a sequence of intptr_t arguments 3319 // representing operand values. 3320 SmallVector<llvm::Value *, 4> Args; 3321 SmallVector<llvm::Type *, 4> ArgTypes; 3322 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3323 Args.reserve(DynamicArgs.size() + 1); 3324 ArgTypes.reserve(DynamicArgs.size() + 1); 3325 3326 // Emit handler arguments and create handler function type. 3327 if (!StaticArgs.empty()) { 3328 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3329 auto *InfoPtr = new llvm::GlobalVariable( 3330 CGM.getModule(), Info->getType(), false, 3331 llvm::GlobalVariable::PrivateLinkage, Info, "", nullptr, 3332 llvm::GlobalVariable::NotThreadLocal, 3333 CGM.getDataLayout().getDefaultGlobalsAddressSpace()); 3334 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3335 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3336 Args.push_back(EmitCastToVoidPtr(InfoPtr)); 3337 ArgTypes.push_back(Args.back()->getType()); 3338 } 3339 3340 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3341 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3342 ArgTypes.push_back(IntPtrTy); 3343 } 3344 } 3345 3346 llvm::FunctionType *FnType = 3347 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3348 3349 if (!FatalCond || !RecoverableCond) { 3350 // Simple case: we need to generate a single handler call, either 3351 // fatal, or non-fatal. 3352 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3353 (FatalCond != nullptr), Cont); 3354 } else { 3355 // Emit two handler calls: first one for set of unrecoverable checks, 3356 // another one for recoverable. 3357 llvm::BasicBlock *NonFatalHandlerBB = 3358 createBasicBlock("non_fatal." + CheckName); 3359 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3360 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3361 EmitBlock(FatalHandlerBB); 3362 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3363 NonFatalHandlerBB); 3364 EmitBlock(NonFatalHandlerBB); 3365 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3366 Cont); 3367 } 3368 3369 EmitBlock(Cont); 3370 } 3371 3372 void CodeGenFunction::EmitCfiSlowPathCheck( 3373 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3374 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3375 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3376 3377 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3378 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3379 3380 llvm::MDBuilder MDHelper(getLLVMContext()); 3381 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3382 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3383 3384 EmitBlock(CheckBB); 3385 3386 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3387 3388 llvm::CallInst *CheckCall; 3389 llvm::FunctionCallee SlowPathFn; 3390 if (WithDiag) { 3391 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3392 auto *InfoPtr = 3393 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3394 llvm::GlobalVariable::PrivateLinkage, Info); 3395 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3396 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3397 3398 SlowPathFn = CGM.getModule().getOrInsertFunction( 3399 "__cfi_slowpath_diag", 3400 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3401 false)); 3402 CheckCall = Builder.CreateCall( 3403 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3404 } else { 3405 SlowPathFn = CGM.getModule().getOrInsertFunction( 3406 "__cfi_slowpath", 3407 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3408 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3409 } 3410 3411 CGM.setDSOLocal( 3412 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3413 CheckCall->setDoesNotThrow(); 3414 3415 EmitBlock(Cont); 3416 } 3417 3418 // Emit a stub for __cfi_check function so that the linker knows about this 3419 // symbol in LTO mode. 3420 void CodeGenFunction::EmitCfiCheckStub() { 3421 llvm::Module *M = &CGM.getModule(); 3422 auto &Ctx = M->getContext(); 3423 llvm::Function *F = llvm::Function::Create( 3424 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3425 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3426 CGM.setDSOLocal(F); 3427 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3428 // FIXME: consider emitting an intrinsic call like 3429 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3430 // which can be lowered in CrossDSOCFI pass to the actual contents of 3431 // __cfi_check. This would allow inlining of __cfi_check calls. 3432 llvm::CallInst::Create( 3433 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3434 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3435 } 3436 3437 // This function is basically a switch over the CFI failure kind, which is 3438 // extracted from CFICheckFailData (1st function argument). Each case is either 3439 // llvm.trap or a call to one of the two runtime handlers, based on 3440 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3441 // failure kind) traps, but this should really never happen. CFICheckFailData 3442 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3443 // check kind; in this case __cfi_check_fail traps as well. 3444 void CodeGenFunction::EmitCfiCheckFail() { 3445 SanitizerScope SanScope(this); 3446 FunctionArgList Args; 3447 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3448 ImplicitParamDecl::Other); 3449 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3450 ImplicitParamDecl::Other); 3451 Args.push_back(&ArgData); 3452 Args.push_back(&ArgAddr); 3453 3454 const CGFunctionInfo &FI = 3455 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3456 3457 llvm::Function *F = llvm::Function::Create( 3458 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3459 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3460 3461 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false); 3462 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3463 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3464 3465 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3466 SourceLocation()); 3467 3468 // This function is not affected by NoSanitizeList. This function does 3469 // not have a source location, but "src:*" would still apply. Revert any 3470 // changes to SanOpts made in StartFunction. 3471 SanOpts = CGM.getLangOpts().Sanitize; 3472 3473 llvm::Value *Data = 3474 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3475 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3476 llvm::Value *Addr = 3477 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3478 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3479 3480 // Data == nullptr means the calling module has trap behaviour for this check. 3481 llvm::Value *DataIsNotNullPtr = 3482 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3483 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail); 3484 3485 llvm::StructType *SourceLocationTy = 3486 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3487 llvm::StructType *CfiCheckFailDataTy = 3488 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3489 3490 llvm::Value *V = Builder.CreateConstGEP2_32( 3491 CfiCheckFailDataTy, 3492 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3493 0); 3494 3495 Address CheckKindAddr(V, Int8Ty, getIntAlign()); 3496 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3497 3498 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3499 CGM.getLLVMContext(), 3500 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3501 llvm::Value *ValidVtable = Builder.CreateZExt( 3502 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3503 {Addr, AllVtables}), 3504 IntPtrTy); 3505 3506 const std::pair<int, SanitizerMask> CheckKinds[] = { 3507 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3508 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3509 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3510 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3511 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3512 3513 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3514 for (auto CheckKindMaskPair : CheckKinds) { 3515 int Kind = CheckKindMaskPair.first; 3516 SanitizerMask Mask = CheckKindMaskPair.second; 3517 llvm::Value *Cond = 3518 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3519 if (CGM.getLangOpts().Sanitize.has(Mask)) 3520 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3521 {Data, Addr, ValidVtable}); 3522 else 3523 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail); 3524 } 3525 3526 FinishFunction(); 3527 // The only reference to this function will be created during LTO link. 3528 // Make sure it survives until then. 3529 CGM.addUsedGlobal(F); 3530 } 3531 3532 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3533 if (SanOpts.has(SanitizerKind::Unreachable)) { 3534 SanitizerScope SanScope(this); 3535 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3536 SanitizerKind::Unreachable), 3537 SanitizerHandler::BuiltinUnreachable, 3538 EmitCheckSourceLocation(Loc), std::nullopt); 3539 } 3540 Builder.CreateUnreachable(); 3541 } 3542 3543 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked, 3544 SanitizerHandler CheckHandlerID) { 3545 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3546 3547 // If we're optimizing, collapse all calls to trap down to just one per 3548 // check-type per function to save on code size. 3549 if (TrapBBs.size() <= CheckHandlerID) 3550 TrapBBs.resize(CheckHandlerID + 1); 3551 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID]; 3552 3553 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB || 3554 (CurCodeDecl && CurCodeDecl->hasAttr<OptimizeNoneAttr>())) { 3555 TrapBB = createBasicBlock("trap"); 3556 Builder.CreateCondBr(Checked, Cont, TrapBB); 3557 EmitBlock(TrapBB); 3558 3559 llvm::CallInst *TrapCall = 3560 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap), 3561 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID)); 3562 3563 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3564 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3565 CGM.getCodeGenOpts().TrapFuncName); 3566 TrapCall->addFnAttr(A); 3567 } 3568 TrapCall->setDoesNotReturn(); 3569 TrapCall->setDoesNotThrow(); 3570 Builder.CreateUnreachable(); 3571 } else { 3572 auto Call = TrapBB->begin(); 3573 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB"); 3574 3575 Call->applyMergedLocation(Call->getDebugLoc(), 3576 Builder.getCurrentDebugLocation()); 3577 Builder.CreateCondBr(Checked, Cont, TrapBB); 3578 } 3579 3580 EmitBlock(Cont); 3581 } 3582 3583 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3584 llvm::CallInst *TrapCall = 3585 Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3586 3587 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3588 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3589 CGM.getCodeGenOpts().TrapFuncName); 3590 TrapCall->addFnAttr(A); 3591 } 3592 3593 return TrapCall; 3594 } 3595 3596 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3597 LValueBaseInfo *BaseInfo, 3598 TBAAAccessInfo *TBAAInfo) { 3599 assert(E->getType()->isArrayType() && 3600 "Array to pointer decay must have array source type!"); 3601 3602 // Expressions of array type can't be bitfields or vector elements. 3603 LValue LV = EmitLValue(E); 3604 Address Addr = LV.getAddress(*this); 3605 3606 // If the array type was an incomplete type, we need to make sure 3607 // the decay ends up being the right type. 3608 llvm::Type *NewTy = ConvertType(E->getType()); 3609 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3610 3611 // Note that VLA pointers are always decayed, so we don't need to do 3612 // anything here. 3613 if (!E->getType()->isVariableArrayType()) { 3614 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3615 "Expected pointer to array"); 3616 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3617 } 3618 3619 // The result of this decay conversion points to an array element within the 3620 // base lvalue. However, since TBAA currently does not support representing 3621 // accesses to elements of member arrays, we conservatively represent accesses 3622 // to the pointee object as if it had no any base lvalue specified. 3623 // TODO: Support TBAA for member arrays. 3624 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3625 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3626 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3627 3628 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3629 } 3630 3631 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3632 /// array to pointer, return the array subexpression. 3633 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3634 // If this isn't just an array->pointer decay, bail out. 3635 const auto *CE = dyn_cast<CastExpr>(E); 3636 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3637 return nullptr; 3638 3639 // If this is a decay from variable width array, bail out. 3640 const Expr *SubExpr = CE->getSubExpr(); 3641 if (SubExpr->getType()->isVariableArrayType()) 3642 return nullptr; 3643 3644 return SubExpr; 3645 } 3646 3647 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3648 llvm::Type *elemType, 3649 llvm::Value *ptr, 3650 ArrayRef<llvm::Value*> indices, 3651 bool inbounds, 3652 bool signedIndices, 3653 SourceLocation loc, 3654 const llvm::Twine &name = "arrayidx") { 3655 if (inbounds) { 3656 return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices, 3657 CodeGenFunction::NotSubtraction, loc, 3658 name); 3659 } else { 3660 return CGF.Builder.CreateGEP(elemType, ptr, indices, name); 3661 } 3662 } 3663 3664 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3665 llvm::Value *idx, 3666 CharUnits eltSize) { 3667 // If we have a constant index, we can use the exact offset of the 3668 // element we're accessing. 3669 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3670 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3671 return arrayAlign.alignmentAtOffset(offset); 3672 3673 // Otherwise, use the worst-case alignment for any element. 3674 } else { 3675 return arrayAlign.alignmentOfArrayElement(eltSize); 3676 } 3677 } 3678 3679 static QualType getFixedSizeElementType(const ASTContext &ctx, 3680 const VariableArrayType *vla) { 3681 QualType eltType; 3682 do { 3683 eltType = vla->getElementType(); 3684 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3685 return eltType; 3686 } 3687 3688 /// Given an array base, check whether its member access belongs to a record 3689 /// with preserve_access_index attribute or not. 3690 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3691 if (!ArrayBase || !CGF.getDebugInfo()) 3692 return false; 3693 3694 // Only support base as either a MemberExpr or DeclRefExpr. 3695 // DeclRefExpr to cover cases like: 3696 // struct s { int a; int b[10]; }; 3697 // struct s *p; 3698 // p[1].a 3699 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3700 // p->b[5] is a MemberExpr example. 3701 const Expr *E = ArrayBase->IgnoreImpCasts(); 3702 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3703 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3704 3705 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3706 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3707 if (!VarDef) 3708 return false; 3709 3710 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3711 if (!PtrT) 3712 return false; 3713 3714 const auto *PointeeT = PtrT->getPointeeType() 3715 ->getUnqualifiedDesugaredType(); 3716 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3717 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3718 return false; 3719 } 3720 3721 return false; 3722 } 3723 3724 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3725 ArrayRef<llvm::Value *> indices, 3726 QualType eltType, bool inbounds, 3727 bool signedIndices, SourceLocation loc, 3728 QualType *arrayType = nullptr, 3729 const Expr *Base = nullptr, 3730 const llvm::Twine &name = "arrayidx") { 3731 // All the indices except that last must be zero. 3732 #ifndef NDEBUG 3733 for (auto *idx : indices.drop_back()) 3734 assert(isa<llvm::ConstantInt>(idx) && 3735 cast<llvm::ConstantInt>(idx)->isZero()); 3736 #endif 3737 3738 // Determine the element size of the statically-sized base. This is 3739 // the thing that the indices are expressed in terms of. 3740 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3741 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3742 } 3743 3744 // We can use that to compute the best alignment of the element. 3745 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3746 CharUnits eltAlign = 3747 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3748 3749 llvm::Value *eltPtr; 3750 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3751 if (!LastIndex || 3752 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3753 eltPtr = emitArraySubscriptGEP( 3754 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds, 3755 signedIndices, loc, name); 3756 } else { 3757 // Remember the original array subscript for bpf target 3758 unsigned idx = LastIndex->getZExtValue(); 3759 llvm::DIType *DbgInfo = nullptr; 3760 if (arrayType) 3761 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3762 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3763 addr.getPointer(), 3764 indices.size() - 1, 3765 idx, DbgInfo); 3766 } 3767 3768 return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign); 3769 } 3770 3771 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3772 bool Accessed) { 3773 // The index must always be an integer, which is not an aggregate. Emit it 3774 // in lexical order (this complexity is, sadly, required by C++17). 3775 llvm::Value *IdxPre = 3776 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3777 bool SignedIndices = false; 3778 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3779 auto *Idx = IdxPre; 3780 if (E->getLHS() != E->getIdx()) { 3781 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3782 Idx = EmitScalarExpr(E->getIdx()); 3783 } 3784 3785 QualType IdxTy = E->getIdx()->getType(); 3786 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3787 SignedIndices |= IdxSigned; 3788 3789 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3790 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3791 3792 // Extend or truncate the index type to 32 or 64-bits. 3793 if (Promote && Idx->getType() != IntPtrTy) 3794 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3795 3796 return Idx; 3797 }; 3798 IdxPre = nullptr; 3799 3800 // If the base is a vector type, then we are forming a vector element lvalue 3801 // with this subscript. 3802 if (E->getBase()->getType()->isVectorType() && 3803 !isa<ExtVectorElementExpr>(E->getBase())) { 3804 // Emit the vector as an lvalue to get its address. 3805 LValue LHS = EmitLValue(E->getBase()); 3806 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3807 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3808 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3809 E->getBase()->getType(), LHS.getBaseInfo(), 3810 TBAAAccessInfo()); 3811 } 3812 3813 // All the other cases basically behave like simple offsetting. 3814 3815 // Handle the extvector case we ignored above. 3816 if (isa<ExtVectorElementExpr>(E->getBase())) { 3817 LValue LV = EmitLValue(E->getBase()); 3818 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3819 Address Addr = EmitExtVectorElementLValue(LV); 3820 3821 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3822 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3823 SignedIndices, E->getExprLoc()); 3824 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3825 CGM.getTBAAInfoForSubobject(LV, EltType)); 3826 } 3827 3828 LValueBaseInfo EltBaseInfo; 3829 TBAAAccessInfo EltTBAAInfo; 3830 Address Addr = Address::invalid(); 3831 if (const VariableArrayType *vla = 3832 getContext().getAsVariableArrayType(E->getType())) { 3833 // The base must be a pointer, which is not an aggregate. Emit 3834 // it. It needs to be emitted first in case it's what captures 3835 // the VLA bounds. 3836 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3837 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3838 3839 // The element count here is the total number of non-VLA elements. 3840 llvm::Value *numElements = getVLASize(vla).NumElts; 3841 3842 // Effectively, the multiply by the VLA size is part of the GEP. 3843 // GEP indexes are signed, and scaling an index isn't permitted to 3844 // signed-overflow, so we use the same semantics for our explicit 3845 // multiply. We suppress this if overflow is not undefined behavior. 3846 if (getLangOpts().isSignedOverflowDefined()) { 3847 Idx = Builder.CreateMul(Idx, numElements); 3848 } else { 3849 Idx = Builder.CreateNSWMul(Idx, numElements); 3850 } 3851 3852 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3853 !getLangOpts().isSignedOverflowDefined(), 3854 SignedIndices, E->getExprLoc()); 3855 3856 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3857 // Indexing over an interface, as in "NSString *P; P[4];" 3858 3859 // Emit the base pointer. 3860 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3861 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3862 3863 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3864 llvm::Value *InterfaceSizeVal = 3865 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3866 3867 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3868 3869 // We don't necessarily build correct LLVM struct types for ObjC 3870 // interfaces, so we can't rely on GEP to do this scaling 3871 // correctly, so we need to cast to i8*. FIXME: is this actually 3872 // true? A lot of other things in the fragile ABI would break... 3873 llvm::Type *OrigBaseElemTy = Addr.getElementType(); 3874 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3875 3876 // Do the GEP. 3877 CharUnits EltAlign = 3878 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3879 llvm::Value *EltPtr = 3880 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(), 3881 ScaledIdx, false, SignedIndices, E->getExprLoc()); 3882 Addr = Address(EltPtr, Addr.getElementType(), EltAlign); 3883 3884 // Cast back. 3885 Addr = Builder.CreateElementBitCast(Addr, OrigBaseElemTy); 3886 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3887 // If this is A[i] where A is an array, the frontend will have decayed the 3888 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3889 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3890 // "gep x, i" here. Emit one "gep A, 0, i". 3891 assert(Array->getType()->isArrayType() && 3892 "Array to pointer decay must have array source type!"); 3893 LValue ArrayLV; 3894 // For simple multidimensional array indexing, set the 'accessed' flag for 3895 // better bounds-checking of the base expression. 3896 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3897 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3898 else 3899 ArrayLV = EmitLValue(Array); 3900 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3901 3902 // Propagate the alignment from the array itself to the result. 3903 QualType arrayType = Array->getType(); 3904 Addr = emitArraySubscriptGEP( 3905 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3906 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3907 E->getExprLoc(), &arrayType, E->getBase()); 3908 EltBaseInfo = ArrayLV.getBaseInfo(); 3909 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3910 } else { 3911 // The base must be a pointer; emit it with an estimate of its alignment. 3912 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3913 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3914 QualType ptrType = E->getBase()->getType(); 3915 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3916 !getLangOpts().isSignedOverflowDefined(), 3917 SignedIndices, E->getExprLoc(), &ptrType, 3918 E->getBase()); 3919 } 3920 3921 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3922 3923 if (getLangOpts().ObjC && 3924 getLangOpts().getGC() != LangOptions::NonGC) { 3925 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3926 setObjCGCLValueClass(getContext(), E, LV); 3927 } 3928 return LV; 3929 } 3930 3931 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) { 3932 assert( 3933 !E->isIncomplete() && 3934 "incomplete matrix subscript expressions should be rejected during Sema"); 3935 LValue Base = EmitLValue(E->getBase()); 3936 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx()); 3937 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx()); 3938 llvm::Value *NumRows = Builder.getIntN( 3939 RowIdx->getType()->getScalarSizeInBits(), 3940 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows()); 3941 llvm::Value *FinalIdx = 3942 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx); 3943 return LValue::MakeMatrixElt( 3944 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx, 3945 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo()); 3946 } 3947 3948 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3949 LValueBaseInfo &BaseInfo, 3950 TBAAAccessInfo &TBAAInfo, 3951 QualType BaseTy, QualType ElTy, 3952 bool IsLowerBound) { 3953 LValue BaseLVal; 3954 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3955 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3956 if (BaseTy->isArrayType()) { 3957 Address Addr = BaseLVal.getAddress(CGF); 3958 BaseInfo = BaseLVal.getBaseInfo(); 3959 3960 // If the array type was an incomplete type, we need to make sure 3961 // the decay ends up being the right type. 3962 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3963 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3964 3965 // Note that VLA pointers are always decayed, so we don't need to do 3966 // anything here. 3967 if (!BaseTy->isVariableArrayType()) { 3968 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3969 "Expected pointer to array"); 3970 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3971 } 3972 3973 return CGF.Builder.CreateElementBitCast(Addr, 3974 CGF.ConvertTypeForMem(ElTy)); 3975 } 3976 LValueBaseInfo TypeBaseInfo; 3977 TBAAAccessInfo TypeTBAAInfo; 3978 CharUnits Align = 3979 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo); 3980 BaseInfo.mergeForCast(TypeBaseInfo); 3981 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3982 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), 3983 CGF.ConvertTypeForMem(ElTy), Align); 3984 } 3985 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3986 } 3987 3988 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3989 bool IsLowerBound) { 3990 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3991 QualType ResultExprTy; 3992 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3993 ResultExprTy = AT->getElementType(); 3994 else 3995 ResultExprTy = BaseTy->getPointeeType(); 3996 llvm::Value *Idx = nullptr; 3997 if (IsLowerBound || E->getColonLocFirst().isInvalid()) { 3998 // Requesting lower bound or upper bound, but without provided length and 3999 // without ':' symbol for the default length -> length = 1. 4000 // Idx = LowerBound ?: 0; 4001 if (auto *LowerBound = E->getLowerBound()) { 4002 Idx = Builder.CreateIntCast( 4003 EmitScalarExpr(LowerBound), IntPtrTy, 4004 LowerBound->getType()->hasSignedIntegerRepresentation()); 4005 } else 4006 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 4007 } else { 4008 // Try to emit length or lower bound as constant. If this is possible, 1 4009 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 4010 // IR (LB + Len) - 1. 4011 auto &C = CGM.getContext(); 4012 auto *Length = E->getLength(); 4013 llvm::APSInt ConstLength; 4014 if (Length) { 4015 // Idx = LowerBound + Length - 1; 4016 if (std::optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) { 4017 ConstLength = CL->zextOrTrunc(PointerWidthInBits); 4018 Length = nullptr; 4019 } 4020 auto *LowerBound = E->getLowerBound(); 4021 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 4022 if (LowerBound) { 4023 if (std::optional<llvm::APSInt> LB = 4024 LowerBound->getIntegerConstantExpr(C)) { 4025 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits); 4026 LowerBound = nullptr; 4027 } 4028 } 4029 if (!Length) 4030 --ConstLength; 4031 else if (!LowerBound) 4032 --ConstLowerBound; 4033 4034 if (Length || LowerBound) { 4035 auto *LowerBoundVal = 4036 LowerBound 4037 ? Builder.CreateIntCast( 4038 EmitScalarExpr(LowerBound), IntPtrTy, 4039 LowerBound->getType()->hasSignedIntegerRepresentation()) 4040 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 4041 auto *LengthVal = 4042 Length 4043 ? Builder.CreateIntCast( 4044 EmitScalarExpr(Length), IntPtrTy, 4045 Length->getType()->hasSignedIntegerRepresentation()) 4046 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 4047 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 4048 /*HasNUW=*/false, 4049 !getLangOpts().isSignedOverflowDefined()); 4050 if (Length && LowerBound) { 4051 Idx = Builder.CreateSub( 4052 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 4053 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4054 } 4055 } else 4056 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 4057 } else { 4058 // Idx = ArraySize - 1; 4059 QualType ArrayTy = BaseTy->isPointerType() 4060 ? E->getBase()->IgnoreParenImpCasts()->getType() 4061 : BaseTy; 4062 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 4063 Length = VAT->getSizeExpr(); 4064 if (std::optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) { 4065 ConstLength = *L; 4066 Length = nullptr; 4067 } 4068 } else { 4069 auto *CAT = C.getAsConstantArrayType(ArrayTy); 4070 ConstLength = CAT->getSize(); 4071 } 4072 if (Length) { 4073 auto *LengthVal = Builder.CreateIntCast( 4074 EmitScalarExpr(Length), IntPtrTy, 4075 Length->getType()->hasSignedIntegerRepresentation()); 4076 Idx = Builder.CreateSub( 4077 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 4078 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4079 } else { 4080 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 4081 --ConstLength; 4082 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 4083 } 4084 } 4085 } 4086 assert(Idx); 4087 4088 Address EltPtr = Address::invalid(); 4089 LValueBaseInfo BaseInfo; 4090 TBAAAccessInfo TBAAInfo; 4091 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 4092 // The base must be a pointer, which is not an aggregate. Emit 4093 // it. It needs to be emitted first in case it's what captures 4094 // the VLA bounds. 4095 Address Base = 4096 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 4097 BaseTy, VLA->getElementType(), IsLowerBound); 4098 // The element count here is the total number of non-VLA elements. 4099 llvm::Value *NumElements = getVLASize(VLA).NumElts; 4100 4101 // Effectively, the multiply by the VLA size is part of the GEP. 4102 // GEP indexes are signed, and scaling an index isn't permitted to 4103 // signed-overflow, so we use the same semantics for our explicit 4104 // multiply. We suppress this if overflow is not undefined behavior. 4105 if (getLangOpts().isSignedOverflowDefined()) 4106 Idx = Builder.CreateMul(Idx, NumElements); 4107 else 4108 Idx = Builder.CreateNSWMul(Idx, NumElements); 4109 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 4110 !getLangOpts().isSignedOverflowDefined(), 4111 /*signedIndices=*/false, E->getExprLoc()); 4112 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 4113 // If this is A[i] where A is an array, the frontend will have decayed the 4114 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 4115 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 4116 // "gep x, i" here. Emit one "gep A, 0, i". 4117 assert(Array->getType()->isArrayType() && 4118 "Array to pointer decay must have array source type!"); 4119 LValue ArrayLV; 4120 // For simple multidimensional array indexing, set the 'accessed' flag for 4121 // better bounds-checking of the base expression. 4122 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 4123 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 4124 else 4125 ArrayLV = EmitLValue(Array); 4126 4127 // Propagate the alignment from the array itself to the result. 4128 EltPtr = emitArraySubscriptGEP( 4129 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 4130 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 4131 /*signedIndices=*/false, E->getExprLoc()); 4132 BaseInfo = ArrayLV.getBaseInfo(); 4133 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 4134 } else { 4135 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 4136 TBAAInfo, BaseTy, ResultExprTy, 4137 IsLowerBound); 4138 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 4139 !getLangOpts().isSignedOverflowDefined(), 4140 /*signedIndices=*/false, E->getExprLoc()); 4141 } 4142 4143 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 4144 } 4145 4146 LValue CodeGenFunction:: 4147 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 4148 // Emit the base vector as an l-value. 4149 LValue Base; 4150 4151 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 4152 if (E->isArrow()) { 4153 // If it is a pointer to a vector, emit the address and form an lvalue with 4154 // it. 4155 LValueBaseInfo BaseInfo; 4156 TBAAAccessInfo TBAAInfo; 4157 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 4158 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 4159 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 4160 Base.getQuals().removeObjCGCAttr(); 4161 } else if (E->getBase()->isGLValue()) { 4162 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 4163 // emit the base as an lvalue. 4164 assert(E->getBase()->getType()->isVectorType()); 4165 Base = EmitLValue(E->getBase()); 4166 } else { 4167 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 4168 assert(E->getBase()->getType()->isVectorType() && 4169 "Result must be a vector"); 4170 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 4171 4172 // Store the vector to memory (because LValue wants an address). 4173 Address VecMem = CreateMemTemp(E->getBase()->getType()); 4174 Builder.CreateStore(Vec, VecMem); 4175 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 4176 AlignmentSource::Decl); 4177 } 4178 4179 QualType type = 4180 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 4181 4182 // Encode the element access list into a vector of unsigned indices. 4183 SmallVector<uint32_t, 4> Indices; 4184 E->getEncodedElementAccess(Indices); 4185 4186 if (Base.isSimple()) { 4187 llvm::Constant *CV = 4188 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 4189 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 4190 Base.getBaseInfo(), TBAAAccessInfo()); 4191 } 4192 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 4193 4194 llvm::Constant *BaseElts = Base.getExtVectorElts(); 4195 SmallVector<llvm::Constant *, 4> CElts; 4196 4197 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 4198 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 4199 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 4200 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 4201 Base.getBaseInfo(), TBAAAccessInfo()); 4202 } 4203 4204 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 4205 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 4206 EmitIgnoredExpr(E->getBase()); 4207 return EmitDeclRefLValue(DRE); 4208 } 4209 4210 Expr *BaseExpr = E->getBase(); 4211 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 4212 LValue BaseLV; 4213 if (E->isArrow()) { 4214 LValueBaseInfo BaseInfo; 4215 TBAAAccessInfo TBAAInfo; 4216 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 4217 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 4218 SanitizerSet SkippedChecks; 4219 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 4220 if (IsBaseCXXThis) 4221 SkippedChecks.set(SanitizerKind::Alignment, true); 4222 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 4223 SkippedChecks.set(SanitizerKind::Null, true); 4224 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 4225 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 4226 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 4227 } else 4228 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 4229 4230 NamedDecl *ND = E->getMemberDecl(); 4231 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 4232 LValue LV = EmitLValueForField(BaseLV, Field); 4233 setObjCGCLValueClass(getContext(), E, LV); 4234 if (getLangOpts().OpenMP) { 4235 // If the member was explicitly marked as nontemporal, mark it as 4236 // nontemporal. If the base lvalue is marked as nontemporal, mark access 4237 // to children as nontemporal too. 4238 if ((IsWrappedCXXThis(BaseExpr) && 4239 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 4240 BaseLV.isNontemporal()) 4241 LV.setNontemporal(/*Value=*/true); 4242 } 4243 return LV; 4244 } 4245 4246 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 4247 return EmitFunctionDeclLValue(*this, E, FD); 4248 4249 llvm_unreachable("Unhandled member declaration!"); 4250 } 4251 4252 /// Given that we are currently emitting a lambda, emit an l-value for 4253 /// one of its members. 4254 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 4255 if (CurCodeDecl) { 4256 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 4257 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 4258 } 4259 QualType LambdaTagType = 4260 getContext().getTagDeclType(Field->getParent()); 4261 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 4262 return EmitLValueForField(LambdaLV, Field); 4263 } 4264 4265 /// Get the field index in the debug info. The debug info structure/union 4266 /// will ignore the unnamed bitfields. 4267 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4268 unsigned FieldIndex) { 4269 unsigned I = 0, Skipped = 0; 4270 4271 for (auto *F : Rec->getDefinition()->fields()) { 4272 if (I == FieldIndex) 4273 break; 4274 if (F->isUnnamedBitfield()) 4275 Skipped++; 4276 I++; 4277 } 4278 4279 return FieldIndex - Skipped; 4280 } 4281 4282 /// Get the address of a zero-sized field within a record. The resulting 4283 /// address doesn't necessarily have the right type. 4284 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4285 const FieldDecl *Field) { 4286 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4287 CGF.getContext().getFieldOffset(Field)); 4288 if (Offset.isZero()) 4289 return Base; 4290 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4291 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4292 } 4293 4294 /// Drill down to the storage of a field without walking into 4295 /// reference types. 4296 /// 4297 /// The resulting address doesn't necessarily have the right type. 4298 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4299 const FieldDecl *field) { 4300 if (field->isZeroSize(CGF.getContext())) 4301 return emitAddrOfZeroSizeField(CGF, base, field); 4302 4303 const RecordDecl *rec = field->getParent(); 4304 4305 unsigned idx = 4306 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4307 4308 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4309 } 4310 4311 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4312 Address addr, const FieldDecl *field) { 4313 const RecordDecl *rec = field->getParent(); 4314 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4315 base.getType(), rec->getLocation()); 4316 4317 unsigned idx = 4318 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4319 4320 return CGF.Builder.CreatePreserveStructAccessIndex( 4321 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4322 } 4323 4324 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4325 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4326 if (!RD) 4327 return false; 4328 4329 if (RD->isDynamicClass()) 4330 return true; 4331 4332 for (const auto &Base : RD->bases()) 4333 if (hasAnyVptr(Base.getType(), Context)) 4334 return true; 4335 4336 for (const FieldDecl *Field : RD->fields()) 4337 if (hasAnyVptr(Field->getType(), Context)) 4338 return true; 4339 4340 return false; 4341 } 4342 4343 LValue CodeGenFunction::EmitLValueForField(LValue base, 4344 const FieldDecl *field) { 4345 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4346 4347 if (field->isBitField()) { 4348 const CGRecordLayout &RL = 4349 CGM.getTypes().getCGRecordLayout(field->getParent()); 4350 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4351 const bool UseVolatile = isAAPCS(CGM.getTarget()) && 4352 CGM.getCodeGenOpts().AAPCSBitfieldWidth && 4353 Info.VolatileStorageSize != 0 && 4354 field->getType() 4355 .withCVRQualifiers(base.getVRQualifiers()) 4356 .isVolatileQualified(); 4357 Address Addr = base.getAddress(*this); 4358 unsigned Idx = RL.getLLVMFieldNo(field); 4359 const RecordDecl *rec = field->getParent(); 4360 if (!UseVolatile) { 4361 if (!IsInPreservedAIRegion && 4362 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4363 if (Idx != 0) 4364 // For structs, we GEP to the field that the record layout suggests. 4365 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4366 } else { 4367 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4368 getContext().getRecordType(rec), rec->getLocation()); 4369 Addr = Builder.CreatePreserveStructAccessIndex( 4370 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()), 4371 DbgInfo); 4372 } 4373 } 4374 const unsigned SS = 4375 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 4376 // Get the access type. 4377 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS); 4378 if (Addr.getElementType() != FieldIntTy) 4379 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4380 if (UseVolatile) { 4381 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity(); 4382 if (VolatileOffset) 4383 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset); 4384 } 4385 4386 QualType fieldType = 4387 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4388 // TODO: Support TBAA for bit fields. 4389 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4390 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4391 TBAAAccessInfo()); 4392 } 4393 4394 // Fields of may-alias structures are may-alias themselves. 4395 // FIXME: this should get propagated down through anonymous structs 4396 // and unions. 4397 QualType FieldType = field->getType(); 4398 const RecordDecl *rec = field->getParent(); 4399 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4400 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4401 TBAAAccessInfo FieldTBAAInfo; 4402 if (base.getTBAAInfo().isMayAlias() || 4403 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4404 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4405 } else if (rec->isUnion()) { 4406 // TODO: Support TBAA for unions. 4407 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4408 } else { 4409 // If no base type been assigned for the base access, then try to generate 4410 // one for this base lvalue. 4411 FieldTBAAInfo = base.getTBAAInfo(); 4412 if (!FieldTBAAInfo.BaseType) { 4413 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4414 assert(!FieldTBAAInfo.Offset && 4415 "Nonzero offset for an access with no base type!"); 4416 } 4417 4418 // Adjust offset to be relative to the base type. 4419 const ASTRecordLayout &Layout = 4420 getContext().getASTRecordLayout(field->getParent()); 4421 unsigned CharWidth = getContext().getCharWidth(); 4422 if (FieldTBAAInfo.BaseType) 4423 FieldTBAAInfo.Offset += 4424 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4425 4426 // Update the final access type and size. 4427 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4428 FieldTBAAInfo.Size = 4429 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4430 } 4431 4432 Address addr = base.getAddress(*this); 4433 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4434 if (CGM.getCodeGenOpts().StrictVTablePointers && 4435 ClassDef->isDynamicClass()) { 4436 // Getting to any field of dynamic object requires stripping dynamic 4437 // information provided by invariant.group. This is because accessing 4438 // fields may leak the real address of dynamic object, which could result 4439 // in miscompilation when leaked pointer would be compared. 4440 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4441 addr = Address(stripped, addr.getElementType(), addr.getAlignment()); 4442 } 4443 } 4444 4445 unsigned RecordCVR = base.getVRQualifiers(); 4446 if (rec->isUnion()) { 4447 // For unions, there is no pointer adjustment. 4448 if (CGM.getCodeGenOpts().StrictVTablePointers && 4449 hasAnyVptr(FieldType, getContext())) 4450 // Because unions can easily skip invariant.barriers, we need to add 4451 // a barrier every time CXXRecord field with vptr is referenced. 4452 addr = Builder.CreateLaunderInvariantGroup(addr); 4453 4454 if (IsInPreservedAIRegion || 4455 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4456 // Remember the original union field index 4457 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4458 rec->getLocation()); 4459 addr = Address( 4460 Builder.CreatePreserveUnionAccessIndex( 4461 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4462 addr.getElementType(), addr.getAlignment()); 4463 } 4464 4465 if (FieldType->isReferenceType()) 4466 addr = Builder.CreateElementBitCast( 4467 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4468 } else { 4469 if (!IsInPreservedAIRegion && 4470 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4471 // For structs, we GEP to the field that the record layout suggests. 4472 addr = emitAddrOfFieldStorage(*this, addr, field); 4473 else 4474 // Remember the original struct field index 4475 addr = emitPreserveStructAccess(*this, base, addr, field); 4476 } 4477 4478 // If this is a reference field, load the reference right now. 4479 if (FieldType->isReferenceType()) { 4480 LValue RefLVal = 4481 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4482 if (RecordCVR & Qualifiers::Volatile) 4483 RefLVal.getQuals().addVolatile(); 4484 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4485 4486 // Qualifiers on the struct don't apply to the referencee. 4487 RecordCVR = 0; 4488 FieldType = FieldType->getPointeeType(); 4489 } 4490 4491 // Make sure that the address is pointing to the right type. This is critical 4492 // for both unions and structs. A union needs a bitcast, a struct element 4493 // will need a bitcast if the LLVM type laid out doesn't match the desired 4494 // type. 4495 addr = Builder.CreateElementBitCast( 4496 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4497 4498 if (field->hasAttr<AnnotateAttr>()) 4499 addr = EmitFieldAnnotations(field, addr); 4500 4501 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4502 LV.getQuals().addCVRQualifiers(RecordCVR); 4503 4504 // __weak attribute on a field is ignored. 4505 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4506 LV.getQuals().removeObjCGCAttr(); 4507 4508 return LV; 4509 } 4510 4511 LValue 4512 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4513 const FieldDecl *Field) { 4514 QualType FieldType = Field->getType(); 4515 4516 if (!FieldType->isReferenceType()) 4517 return EmitLValueForField(Base, Field); 4518 4519 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4520 4521 // Make sure that the address is pointing to the right type. 4522 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4523 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4524 4525 // TODO: Generate TBAA information that describes this access as a structure 4526 // member access and not just an access to an object of the field's type. This 4527 // should be similar to what we do in EmitLValueForField(). 4528 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4529 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4530 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4531 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4532 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4533 } 4534 4535 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4536 if (E->isFileScope()) { 4537 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4538 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4539 } 4540 if (E->getType()->isVariablyModifiedType()) 4541 // make sure to emit the VLA size. 4542 EmitVariablyModifiedType(E->getType()); 4543 4544 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4545 const Expr *InitExpr = E->getInitializer(); 4546 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4547 4548 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4549 /*Init*/ true); 4550 4551 // Block-scope compound literals are destroyed at the end of the enclosing 4552 // scope in C. 4553 if (!getLangOpts().CPlusPlus) 4554 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4555 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4556 E->getType(), getDestroyer(DtorKind), 4557 DtorKind & EHCleanup); 4558 4559 return Result; 4560 } 4561 4562 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4563 if (!E->isGLValue()) 4564 // Initializing an aggregate temporary in C++11: T{...}. 4565 return EmitAggExprToLValue(E); 4566 4567 // An lvalue initializer list must be initializing a reference. 4568 assert(E->isTransparent() && "non-transparent glvalue init list"); 4569 return EmitLValue(E->getInit(0)); 4570 } 4571 4572 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4573 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4574 /// LValue is returned and the current block has been terminated. 4575 static std::optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4576 const Expr *Operand) { 4577 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4578 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4579 return std::nullopt; 4580 } 4581 4582 return CGF.EmitLValue(Operand); 4583 } 4584 4585 namespace { 4586 // Handle the case where the condition is a constant evaluatable simple integer, 4587 // which means we don't have to separately handle the true/false blocks. 4588 std::optional<LValue> HandleConditionalOperatorLValueSimpleCase( 4589 CodeGenFunction &CGF, const AbstractConditionalOperator *E) { 4590 const Expr *condExpr = E->getCond(); 4591 bool CondExprBool; 4592 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4593 const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr(); 4594 if (!CondExprBool) 4595 std::swap(Live, Dead); 4596 4597 if (!CGF.ContainsLabel(Dead)) { 4598 // If the true case is live, we need to track its region. 4599 if (CondExprBool) 4600 CGF.incrementProfileCounter(E); 4601 // If a throw expression we emit it and return an undefined lvalue 4602 // because it can't be used. 4603 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) { 4604 CGF.EmitCXXThrowExpr(ThrowExpr); 4605 llvm::Type *ElemTy = CGF.ConvertType(Dead->getType()); 4606 llvm::Type *Ty = llvm::PointerType::getUnqual(ElemTy); 4607 return CGF.MakeAddrLValue( 4608 Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()), 4609 Dead->getType()); 4610 } 4611 return CGF.EmitLValue(Live); 4612 } 4613 } 4614 return std::nullopt; 4615 } 4616 struct ConditionalInfo { 4617 llvm::BasicBlock *lhsBlock, *rhsBlock; 4618 std::optional<LValue> LHS, RHS; 4619 }; 4620 4621 // Create and generate the 3 blocks for a conditional operator. 4622 // Leaves the 'current block' in the continuation basic block. 4623 template<typename FuncTy> 4624 ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF, 4625 const AbstractConditionalOperator *E, 4626 const FuncTy &BranchGenFunc) { 4627 ConditionalInfo Info{CGF.createBasicBlock("cond.true"), 4628 CGF.createBasicBlock("cond.false"), std::nullopt, 4629 std::nullopt}; 4630 llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end"); 4631 4632 CodeGenFunction::ConditionalEvaluation eval(CGF); 4633 CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock, 4634 CGF.getProfileCount(E)); 4635 4636 // Any temporaries created here are conditional. 4637 CGF.EmitBlock(Info.lhsBlock); 4638 CGF.incrementProfileCounter(E); 4639 eval.begin(CGF); 4640 Info.LHS = BranchGenFunc(CGF, E->getTrueExpr()); 4641 eval.end(CGF); 4642 Info.lhsBlock = CGF.Builder.GetInsertBlock(); 4643 4644 if (Info.LHS) 4645 CGF.Builder.CreateBr(endBlock); 4646 4647 // Any temporaries created here are conditional. 4648 CGF.EmitBlock(Info.rhsBlock); 4649 eval.begin(CGF); 4650 Info.RHS = BranchGenFunc(CGF, E->getFalseExpr()); 4651 eval.end(CGF); 4652 Info.rhsBlock = CGF.Builder.GetInsertBlock(); 4653 CGF.EmitBlock(endBlock); 4654 4655 return Info; 4656 } 4657 } // namespace 4658 4659 void CodeGenFunction::EmitIgnoredConditionalOperator( 4660 const AbstractConditionalOperator *E) { 4661 if (!E->isGLValue()) { 4662 // ?: here should be an aggregate. 4663 assert(hasAggregateEvaluationKind(E->getType()) && 4664 "Unexpected conditional operator!"); 4665 return (void)EmitAggExprToLValue(E); 4666 } 4667 4668 OpaqueValueMapping binding(*this, E); 4669 if (HandleConditionalOperatorLValueSimpleCase(*this, E)) 4670 return; 4671 4672 EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) { 4673 CGF.EmitIgnoredExpr(E); 4674 return LValue{}; 4675 }); 4676 } 4677 LValue CodeGenFunction::EmitConditionalOperatorLValue( 4678 const AbstractConditionalOperator *expr) { 4679 if (!expr->isGLValue()) { 4680 // ?: here should be an aggregate. 4681 assert(hasAggregateEvaluationKind(expr->getType()) && 4682 "Unexpected conditional operator!"); 4683 return EmitAggExprToLValue(expr); 4684 } 4685 4686 OpaqueValueMapping binding(*this, expr); 4687 if (std::optional<LValue> Res = 4688 HandleConditionalOperatorLValueSimpleCase(*this, expr)) 4689 return *Res; 4690 4691 ConditionalInfo Info = EmitConditionalBlocks( 4692 *this, expr, [](CodeGenFunction &CGF, const Expr *E) { 4693 return EmitLValueOrThrowExpression(CGF, E); 4694 }); 4695 4696 if ((Info.LHS && !Info.LHS->isSimple()) || 4697 (Info.RHS && !Info.RHS->isSimple())) 4698 return EmitUnsupportedLValue(expr, "conditional operator"); 4699 4700 if (Info.LHS && Info.RHS) { 4701 Address lhsAddr = Info.LHS->getAddress(*this); 4702 Address rhsAddr = Info.RHS->getAddress(*this); 4703 llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue"); 4704 phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock); 4705 phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock); 4706 Address result(phi, lhsAddr.getElementType(), 4707 std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment())); 4708 AlignmentSource alignSource = 4709 std::max(Info.LHS->getBaseInfo().getAlignmentSource(), 4710 Info.RHS->getBaseInfo().getAlignmentSource()); 4711 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4712 Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo()); 4713 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4714 TBAAInfo); 4715 } else { 4716 assert((Info.LHS || Info.RHS) && 4717 "both operands of glvalue conditional are throw-expressions?"); 4718 return Info.LHS ? *Info.LHS : *Info.RHS; 4719 } 4720 } 4721 4722 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4723 /// type. If the cast is to a reference, we can have the usual lvalue result, 4724 /// otherwise if a cast is needed by the code generator in an lvalue context, 4725 /// then it must mean that we need the address of an aggregate in order to 4726 /// access one of its members. This can happen for all the reasons that casts 4727 /// are permitted with aggregate result, including noop aggregate casts, and 4728 /// cast from scalar to union. 4729 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4730 switch (E->getCastKind()) { 4731 case CK_ToVoid: 4732 case CK_BitCast: 4733 case CK_LValueToRValueBitCast: 4734 case CK_ArrayToPointerDecay: 4735 case CK_FunctionToPointerDecay: 4736 case CK_NullToMemberPointer: 4737 case CK_NullToPointer: 4738 case CK_IntegralToPointer: 4739 case CK_PointerToIntegral: 4740 case CK_PointerToBoolean: 4741 case CK_VectorSplat: 4742 case CK_IntegralCast: 4743 case CK_BooleanToSignedIntegral: 4744 case CK_IntegralToBoolean: 4745 case CK_IntegralToFloating: 4746 case CK_FloatingToIntegral: 4747 case CK_FloatingToBoolean: 4748 case CK_FloatingCast: 4749 case CK_FloatingRealToComplex: 4750 case CK_FloatingComplexToReal: 4751 case CK_FloatingComplexToBoolean: 4752 case CK_FloatingComplexCast: 4753 case CK_FloatingComplexToIntegralComplex: 4754 case CK_IntegralRealToComplex: 4755 case CK_IntegralComplexToReal: 4756 case CK_IntegralComplexToBoolean: 4757 case CK_IntegralComplexCast: 4758 case CK_IntegralComplexToFloatingComplex: 4759 case CK_DerivedToBaseMemberPointer: 4760 case CK_BaseToDerivedMemberPointer: 4761 case CK_MemberPointerToBoolean: 4762 case CK_ReinterpretMemberPointer: 4763 case CK_AnyPointerToBlockPointerCast: 4764 case CK_ARCProduceObject: 4765 case CK_ARCConsumeObject: 4766 case CK_ARCReclaimReturnedObject: 4767 case CK_ARCExtendBlockObject: 4768 case CK_CopyAndAutoreleaseBlockObject: 4769 case CK_IntToOCLSampler: 4770 case CK_FloatingToFixedPoint: 4771 case CK_FixedPointToFloating: 4772 case CK_FixedPointCast: 4773 case CK_FixedPointToBoolean: 4774 case CK_FixedPointToIntegral: 4775 case CK_IntegralToFixedPoint: 4776 case CK_MatrixCast: 4777 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4778 4779 case CK_Dependent: 4780 llvm_unreachable("dependent cast kind in IR gen!"); 4781 4782 case CK_BuiltinFnToFnPtr: 4783 llvm_unreachable("builtin functions are handled elsewhere"); 4784 4785 // These are never l-values; just use the aggregate emission code. 4786 case CK_NonAtomicToAtomic: 4787 case CK_AtomicToNonAtomic: 4788 return EmitAggExprToLValue(E); 4789 4790 case CK_Dynamic: { 4791 LValue LV = EmitLValue(E->getSubExpr()); 4792 Address V = LV.getAddress(*this); 4793 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4794 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4795 } 4796 4797 case CK_ConstructorConversion: 4798 case CK_UserDefinedConversion: 4799 case CK_CPointerToObjCPointerCast: 4800 case CK_BlockPointerToObjCPointerCast: 4801 case CK_LValueToRValue: 4802 return EmitLValue(E->getSubExpr()); 4803 4804 case CK_NoOp: { 4805 // CK_NoOp can model a qualification conversion, which can remove an array 4806 // bound and change the IR type. 4807 // FIXME: Once pointee types are removed from IR, remove this. 4808 LValue LV = EmitLValue(E->getSubExpr()); 4809 if (LV.isSimple()) { 4810 Address V = LV.getAddress(*this); 4811 if (V.isValid()) { 4812 llvm::Type *T = ConvertTypeForMem(E->getType()); 4813 if (V.getElementType() != T) 4814 LV.setAddress(Builder.CreateElementBitCast(V, T)); 4815 } 4816 } 4817 return LV; 4818 } 4819 4820 case CK_UncheckedDerivedToBase: 4821 case CK_DerivedToBase: { 4822 const auto *DerivedClassTy = 4823 E->getSubExpr()->getType()->castAs<RecordType>(); 4824 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4825 4826 LValue LV = EmitLValue(E->getSubExpr()); 4827 Address This = LV.getAddress(*this); 4828 4829 // Perform the derived-to-base conversion 4830 Address Base = GetAddressOfBaseClass( 4831 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4832 /*NullCheckValue=*/false, E->getExprLoc()); 4833 4834 // TODO: Support accesses to members of base classes in TBAA. For now, we 4835 // conservatively pretend that the complete object is of the base class 4836 // type. 4837 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4838 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4839 } 4840 case CK_ToUnion: 4841 return EmitAggExprToLValue(E); 4842 case CK_BaseToDerived: { 4843 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4844 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4845 4846 LValue LV = EmitLValue(E->getSubExpr()); 4847 4848 // Perform the base-to-derived conversion 4849 Address Derived = GetAddressOfDerivedClass( 4850 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4851 /*NullCheckValue=*/false); 4852 4853 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4854 // performed and the object is not of the derived type. 4855 if (sanitizePerformTypeCheck()) 4856 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4857 Derived.getPointer(), E->getType()); 4858 4859 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4860 EmitVTablePtrCheckForCast(E->getType(), Derived, 4861 /*MayBeNull=*/false, CFITCK_DerivedCast, 4862 E->getBeginLoc()); 4863 4864 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4865 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4866 } 4867 case CK_LValueBitCast: { 4868 // This must be a reinterpret_cast (or c-style equivalent). 4869 const auto *CE = cast<ExplicitCastExpr>(E); 4870 4871 CGM.EmitExplicitCastExprType(CE, this); 4872 LValue LV = EmitLValue(E->getSubExpr()); 4873 Address V = Builder.CreateElementBitCast( 4874 LV.getAddress(*this), 4875 ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType())); 4876 4877 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4878 EmitVTablePtrCheckForCast(E->getType(), V, 4879 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4880 E->getBeginLoc()); 4881 4882 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4883 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4884 } 4885 case CK_AddressSpaceConversion: { 4886 LValue LV = EmitLValue(E->getSubExpr()); 4887 QualType DestTy = getContext().getPointerType(E->getType()); 4888 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4889 *this, LV.getPointer(*this), 4890 E->getSubExpr()->getType().getAddressSpace(), 4891 E->getType().getAddressSpace(), ConvertType(DestTy)); 4892 return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()), 4893 LV.getAddress(*this).getAlignment()), 4894 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4895 } 4896 case CK_ObjCObjectLValueCast: { 4897 LValue LV = EmitLValue(E->getSubExpr()); 4898 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4899 ConvertType(E->getType())); 4900 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4901 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4902 } 4903 case CK_ZeroToOCLOpaqueType: 4904 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4905 } 4906 4907 llvm_unreachable("Unhandled lvalue cast kind?"); 4908 } 4909 4910 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4911 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4912 return getOrCreateOpaqueLValueMapping(e); 4913 } 4914 4915 LValue 4916 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4917 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4918 4919 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4920 it = OpaqueLValues.find(e); 4921 4922 if (it != OpaqueLValues.end()) 4923 return it->second; 4924 4925 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4926 return EmitLValue(e->getSourceExpr()); 4927 } 4928 4929 RValue 4930 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4931 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4932 4933 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4934 it = OpaqueRValues.find(e); 4935 4936 if (it != OpaqueRValues.end()) 4937 return it->second; 4938 4939 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4940 return EmitAnyExpr(e->getSourceExpr()); 4941 } 4942 4943 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4944 const FieldDecl *FD, 4945 SourceLocation Loc) { 4946 QualType FT = FD->getType(); 4947 LValue FieldLV = EmitLValueForField(LV, FD); 4948 switch (getEvaluationKind(FT)) { 4949 case TEK_Complex: 4950 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4951 case TEK_Aggregate: 4952 return FieldLV.asAggregateRValue(*this); 4953 case TEK_Scalar: 4954 // This routine is used to load fields one-by-one to perform a copy, so 4955 // don't load reference fields. 4956 if (FD->getType()->isReferenceType()) 4957 return RValue::get(FieldLV.getPointer(*this)); 4958 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4959 // primitive load. 4960 if (FieldLV.isBitField()) 4961 return EmitLoadOfLValue(FieldLV, Loc); 4962 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4963 } 4964 llvm_unreachable("bad evaluation kind"); 4965 } 4966 4967 //===--------------------------------------------------------------------===// 4968 // Expression Emission 4969 //===--------------------------------------------------------------------===// 4970 4971 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4972 ReturnValueSlot ReturnValue) { 4973 // Builtins never have block type. 4974 if (E->getCallee()->getType()->isBlockPointerType()) 4975 return EmitBlockCallExpr(E, ReturnValue); 4976 4977 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4978 return EmitCXXMemberCallExpr(CE, ReturnValue); 4979 4980 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4981 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4982 4983 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4984 if (const CXXMethodDecl *MD = 4985 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4986 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4987 4988 CGCallee callee = EmitCallee(E->getCallee()); 4989 4990 if (callee.isBuiltin()) { 4991 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4992 E, ReturnValue); 4993 } 4994 4995 if (callee.isPseudoDestructor()) { 4996 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4997 } 4998 4999 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 5000 } 5001 5002 /// Emit a CallExpr without considering whether it might be a subclass. 5003 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 5004 ReturnValueSlot ReturnValue) { 5005 CGCallee Callee = EmitCallee(E->getCallee()); 5006 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 5007 } 5008 5009 // Detect the unusual situation where an inline version is shadowed by a 5010 // non-inline version. In that case we should pick the external one 5011 // everywhere. That's GCC behavior too. 5012 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) { 5013 for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl()) 5014 if (!PD->isInlineBuiltinDeclaration()) 5015 return false; 5016 return true; 5017 } 5018 5019 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 5020 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 5021 5022 if (auto builtinID = FD->getBuiltinID()) { 5023 std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str(); 5024 std::string NoBuiltins = "no-builtins"; 5025 5026 StringRef Ident = CGF.CGM.getMangledName(GD); 5027 std::string FDInlineName = (Ident + ".inline").str(); 5028 5029 bool IsPredefinedLibFunction = 5030 CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID); 5031 bool HasAttributeNoBuiltin = 5032 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) || 5033 CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins); 5034 5035 // When directing calling an inline builtin, call it through it's mangled 5036 // name to make it clear it's not the actual builtin. 5037 if (CGF.CurFn->getName() != FDInlineName && 5038 OnlyHasInlineBuiltinDeclaration(FD)) { 5039 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 5040 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr); 5041 llvm::Module *M = Fn->getParent(); 5042 llvm::Function *Clone = M->getFunction(FDInlineName); 5043 if (!Clone) { 5044 Clone = llvm::Function::Create(Fn->getFunctionType(), 5045 llvm::GlobalValue::InternalLinkage, 5046 Fn->getAddressSpace(), FDInlineName, M); 5047 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 5048 } 5049 return CGCallee::forDirect(Clone, GD); 5050 } 5051 5052 // Replaceable builtins provide their own implementation of a builtin. If we 5053 // are in an inline builtin implementation, avoid trivial infinite 5054 // recursion. Honor __attribute__((no_builtin("foo"))) or 5055 // __attribute__((no_builtin)) on the current function unless foo is 5056 // not a predefined library function which means we must generate the 5057 // builtin no matter what. 5058 else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin) 5059 return CGCallee::forBuiltin(builtinID, FD); 5060 } 5061 5062 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 5063 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice && 5064 FD->hasAttr<CUDAGlobalAttr>()) 5065 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub( 5066 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts())); 5067 5068 return CGCallee::forDirect(CalleePtr, GD); 5069 } 5070 5071 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 5072 E = E->IgnoreParens(); 5073 5074 // Look through function-to-pointer decay. 5075 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 5076 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 5077 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 5078 return EmitCallee(ICE->getSubExpr()); 5079 } 5080 5081 // Resolve direct calls. 5082 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 5083 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 5084 return EmitDirectCallee(*this, FD); 5085 } 5086 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 5087 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 5088 EmitIgnoredExpr(ME->getBase()); 5089 return EmitDirectCallee(*this, FD); 5090 } 5091 5092 // Look through template substitutions. 5093 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 5094 return EmitCallee(NTTP->getReplacement()); 5095 5096 // Treat pseudo-destructor calls differently. 5097 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 5098 return CGCallee::forPseudoDestructor(PDE); 5099 } 5100 5101 // Otherwise, we have an indirect reference. 5102 llvm::Value *calleePtr; 5103 QualType functionType; 5104 if (auto ptrType = E->getType()->getAs<PointerType>()) { 5105 calleePtr = EmitScalarExpr(E); 5106 functionType = ptrType->getPointeeType(); 5107 } else { 5108 functionType = E->getType(); 5109 calleePtr = EmitLValue(E).getPointer(*this); 5110 } 5111 assert(functionType->isFunctionType()); 5112 5113 GlobalDecl GD; 5114 if (const auto *VD = 5115 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 5116 GD = GlobalDecl(VD); 5117 5118 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 5119 CGCallee callee(calleeInfo, calleePtr); 5120 return callee; 5121 } 5122 5123 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 5124 // Comma expressions just emit their LHS then their RHS as an l-value. 5125 if (E->getOpcode() == BO_Comma) { 5126 EmitIgnoredExpr(E->getLHS()); 5127 EnsureInsertPoint(); 5128 return EmitLValue(E->getRHS()); 5129 } 5130 5131 if (E->getOpcode() == BO_PtrMemD || 5132 E->getOpcode() == BO_PtrMemI) 5133 return EmitPointerToDataMemberBinaryExpr(E); 5134 5135 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 5136 5137 // Note that in all of these cases, __block variables need the RHS 5138 // evaluated first just in case the variable gets moved by the RHS. 5139 5140 switch (getEvaluationKind(E->getType())) { 5141 case TEK_Scalar: { 5142 switch (E->getLHS()->getType().getObjCLifetime()) { 5143 case Qualifiers::OCL_Strong: 5144 return EmitARCStoreStrong(E, /*ignored*/ false).first; 5145 5146 case Qualifiers::OCL_Autoreleasing: 5147 return EmitARCStoreAutoreleasing(E).first; 5148 5149 // No reason to do any of these differently. 5150 case Qualifiers::OCL_None: 5151 case Qualifiers::OCL_ExplicitNone: 5152 case Qualifiers::OCL_Weak: 5153 break; 5154 } 5155 5156 RValue RV = EmitAnyExpr(E->getRHS()); 5157 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 5158 if (RV.isScalar()) 5159 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 5160 EmitStoreThroughLValue(RV, LV); 5161 if (getLangOpts().OpenMP) 5162 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 5163 E->getLHS()); 5164 return LV; 5165 } 5166 5167 case TEK_Complex: 5168 return EmitComplexAssignmentLValue(E); 5169 5170 case TEK_Aggregate: 5171 return EmitAggExprToLValue(E); 5172 } 5173 llvm_unreachable("bad evaluation kind"); 5174 } 5175 5176 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 5177 RValue RV = EmitCallExpr(E); 5178 5179 if (!RV.isScalar()) 5180 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5181 AlignmentSource::Decl); 5182 5183 assert(E->getCallReturnType(getContext())->isReferenceType() && 5184 "Can't have a scalar return unless the return type is a " 5185 "reference type!"); 5186 5187 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5188 } 5189 5190 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 5191 // FIXME: This shouldn't require another copy. 5192 return EmitAggExprToLValue(E); 5193 } 5194 5195 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 5196 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 5197 && "binding l-value to type which needs a temporary"); 5198 AggValueSlot Slot = CreateAggTemp(E->getType()); 5199 EmitCXXConstructExpr(E, Slot); 5200 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5201 } 5202 5203 LValue 5204 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 5205 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 5206 } 5207 5208 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 5209 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()), 5210 ConvertType(E->getType())); 5211 } 5212 5213 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 5214 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 5215 AlignmentSource::Decl); 5216 } 5217 5218 LValue 5219 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 5220 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 5221 Slot.setExternallyDestructed(); 5222 EmitAggExpr(E->getSubExpr(), Slot); 5223 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 5224 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5225 } 5226 5227 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 5228 RValue RV = EmitObjCMessageExpr(E); 5229 5230 if (!RV.isScalar()) 5231 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5232 AlignmentSource::Decl); 5233 5234 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 5235 "Can't have a scalar return unless the return type is a " 5236 "reference type!"); 5237 5238 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5239 } 5240 5241 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 5242 Address V = 5243 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 5244 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 5245 } 5246 5247 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 5248 const ObjCIvarDecl *Ivar) { 5249 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 5250 } 5251 5252 llvm::Value * 5253 CodeGenFunction::EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, 5254 const ObjCIvarDecl *Ivar) { 5255 llvm::Value *OffsetValue = EmitIvarOffset(Interface, Ivar); 5256 QualType PointerDiffType = getContext().getPointerDiffType(); 5257 return Builder.CreateZExtOrTrunc(OffsetValue, 5258 getTypes().ConvertType(PointerDiffType)); 5259 } 5260 5261 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 5262 llvm::Value *BaseValue, 5263 const ObjCIvarDecl *Ivar, 5264 unsigned CVRQualifiers) { 5265 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 5266 Ivar, CVRQualifiers); 5267 } 5268 5269 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 5270 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 5271 llvm::Value *BaseValue = nullptr; 5272 const Expr *BaseExpr = E->getBase(); 5273 Qualifiers BaseQuals; 5274 QualType ObjectTy; 5275 if (E->isArrow()) { 5276 BaseValue = EmitScalarExpr(BaseExpr); 5277 ObjectTy = BaseExpr->getType()->getPointeeType(); 5278 BaseQuals = ObjectTy.getQualifiers(); 5279 } else { 5280 LValue BaseLV = EmitLValue(BaseExpr); 5281 BaseValue = BaseLV.getPointer(*this); 5282 ObjectTy = BaseExpr->getType(); 5283 BaseQuals = ObjectTy.getQualifiers(); 5284 } 5285 5286 LValue LV = 5287 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 5288 BaseQuals.getCVRQualifiers()); 5289 setObjCGCLValueClass(getContext(), E, LV); 5290 return LV; 5291 } 5292 5293 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 5294 // Can only get l-value for message expression returning aggregate type 5295 RValue RV = EmitAnyExprToTemp(E); 5296 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5297 AlignmentSource::Decl); 5298 } 5299 5300 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 5301 const CallExpr *E, ReturnValueSlot ReturnValue, 5302 llvm::Value *Chain) { 5303 // Get the actual function type. The callee type will always be a pointer to 5304 // function type or a block pointer type. 5305 assert(CalleeType->isFunctionPointerType() && 5306 "Call must have function pointer type!"); 5307 5308 const Decl *TargetDecl = 5309 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 5310 5311 CalleeType = getContext().getCanonicalType(CalleeType); 5312 5313 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 5314 5315 CGCallee Callee = OrigCallee; 5316 5317 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 5318 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5319 if (llvm::Constant *PrefixSig = 5320 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 5321 SanitizerScope SanScope(this); 5322 // Remove any (C++17) exception specifications, to allow calling e.g. a 5323 // noexcept function through a non-noexcept pointer. 5324 auto ProtoTy = 5325 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 5326 llvm::Constant *FTRTTIConst = 5327 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 5328 llvm::Type *PrefixSigType = PrefixSig->getType(); 5329 llvm::StructType *PrefixStructTy = llvm::StructType::get( 5330 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true); 5331 5332 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5333 5334 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 5335 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 5336 llvm::Value *CalleeSigPtr = 5337 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 5338 llvm::Value *CalleeSig = 5339 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign()); 5340 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 5341 5342 llvm::BasicBlock *Cont = createBasicBlock("cont"); 5343 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 5344 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 5345 5346 EmitBlock(TypeCheck); 5347 llvm::Value *CalleeRTTIPtr = 5348 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 5349 llvm::Value *CalleeRTTIEncoded = 5350 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign()); 5351 llvm::Value *CalleeRTTI = 5352 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 5353 llvm::Value *CalleeRTTIMatch = 5354 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 5355 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 5356 EmitCheckTypeDescriptor(CalleeType)}; 5357 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 5358 SanitizerHandler::FunctionTypeMismatch, StaticData, 5359 {CalleePtr, CalleeRTTI, FTRTTIConst}); 5360 5361 Builder.CreateBr(Cont); 5362 EmitBlock(Cont); 5363 } 5364 } 5365 5366 const auto *FnType = cast<FunctionType>(PointeeType); 5367 5368 // If we are checking indirect calls and this call is indirect, check that the 5369 // function pointer is a member of the bit set for the function type. 5370 if (SanOpts.has(SanitizerKind::CFIICall) && 5371 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5372 SanitizerScope SanScope(this); 5373 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 5374 5375 llvm::Metadata *MD; 5376 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 5377 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 5378 else 5379 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 5380 5381 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 5382 5383 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5384 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 5385 llvm::Value *TypeTest = Builder.CreateCall( 5386 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 5387 5388 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 5389 llvm::Constant *StaticData[] = { 5390 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 5391 EmitCheckSourceLocation(E->getBeginLoc()), 5392 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5393 }; 5394 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5395 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5396 CastedCallee, StaticData); 5397 } else { 5398 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5399 SanitizerHandler::CFICheckFail, StaticData, 5400 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 5401 } 5402 } 5403 5404 CallArgList Args; 5405 if (Chain) 5406 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5407 CGM.getContext().VoidPtrTy); 5408 5409 // C++17 requires that we evaluate arguments to a call using assignment syntax 5410 // right-to-left, and that we evaluate arguments to certain other operators 5411 // left-to-right. Note that we allow this to override the order dictated by 5412 // the calling convention on the MS ABI, which means that parameter 5413 // destruction order is not necessarily reverse construction order. 5414 // FIXME: Revisit this based on C++ committee response to unimplementability. 5415 EvaluationOrder Order = EvaluationOrder::Default; 5416 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5417 if (OCE->isAssignmentOp()) 5418 Order = EvaluationOrder::ForceRightToLeft; 5419 else { 5420 switch (OCE->getOperator()) { 5421 case OO_LessLess: 5422 case OO_GreaterGreater: 5423 case OO_AmpAmp: 5424 case OO_PipePipe: 5425 case OO_Comma: 5426 case OO_ArrowStar: 5427 Order = EvaluationOrder::ForceLeftToRight; 5428 break; 5429 default: 5430 break; 5431 } 5432 } 5433 } 5434 5435 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5436 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5437 5438 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5439 Args, FnType, /*ChainCall=*/Chain); 5440 5441 // C99 6.5.2.2p6: 5442 // If the expression that denotes the called function has a type 5443 // that does not include a prototype, [the default argument 5444 // promotions are performed]. If the number of arguments does not 5445 // equal the number of parameters, the behavior is undefined. If 5446 // the function is defined with a type that includes a prototype, 5447 // and either the prototype ends with an ellipsis (, ...) or the 5448 // types of the arguments after promotion are not compatible with 5449 // the types of the parameters, the behavior is undefined. If the 5450 // function is defined with a type that does not include a 5451 // prototype, and the types of the arguments after promotion are 5452 // not compatible with those of the parameters after promotion, 5453 // the behavior is undefined [except in some trivial cases]. 5454 // That is, in the general case, we should assume that a call 5455 // through an unprototyped function type works like a *non-variadic* 5456 // call. The way we make this work is to cast to the exact type 5457 // of the promoted arguments. 5458 // 5459 // Chain calls use this same code path to add the invisible chain parameter 5460 // to the function type. 5461 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5462 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5463 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace(); 5464 CalleeTy = CalleeTy->getPointerTo(AS); 5465 5466 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5467 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5468 Callee.setFunctionPointer(CalleePtr); 5469 } 5470 5471 // HIP function pointer contains kernel handle when it is used in triple 5472 // chevron. The kernel stub needs to be loaded from kernel handle and used 5473 // as callee. 5474 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice && 5475 isa<CUDAKernelCallExpr>(E) && 5476 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5477 llvm::Value *Handle = Callee.getFunctionPointer(); 5478 auto *Cast = 5479 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo()); 5480 auto *Stub = Builder.CreateLoad( 5481 Address(Cast, Handle->getType(), CGM.getPointerAlign())); 5482 Callee.setFunctionPointer(Stub); 5483 } 5484 llvm::CallBase *CallOrInvoke = nullptr; 5485 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5486 E == MustTailCall, E->getExprLoc()); 5487 5488 // Generate function declaration DISuprogram in order to be used 5489 // in debug info about call sites. 5490 if (CGDebugInfo *DI = getDebugInfo()) { 5491 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5492 FunctionArgList Args; 5493 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args); 5494 DI->EmitFuncDeclForCallSite(CallOrInvoke, 5495 DI->getFunctionType(CalleeDecl, ResTy, Args), 5496 CalleeDecl); 5497 } 5498 } 5499 5500 return Call; 5501 } 5502 5503 LValue CodeGenFunction:: 5504 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5505 Address BaseAddr = Address::invalid(); 5506 if (E->getOpcode() == BO_PtrMemI) { 5507 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5508 } else { 5509 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5510 } 5511 5512 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5513 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5514 5515 LValueBaseInfo BaseInfo; 5516 TBAAAccessInfo TBAAInfo; 5517 Address MemberAddr = 5518 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5519 &TBAAInfo); 5520 5521 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5522 } 5523 5524 /// Given the address of a temporary variable, produce an r-value of 5525 /// its type. 5526 RValue CodeGenFunction::convertTempToRValue(Address addr, 5527 QualType type, 5528 SourceLocation loc) { 5529 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5530 switch (getEvaluationKind(type)) { 5531 case TEK_Complex: 5532 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5533 case TEK_Aggregate: 5534 return lvalue.asAggregateRValue(*this); 5535 case TEK_Scalar: 5536 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5537 } 5538 llvm_unreachable("bad evaluation kind"); 5539 } 5540 5541 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5542 assert(Val->getType()->isFPOrFPVectorTy()); 5543 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5544 return; 5545 5546 llvm::MDBuilder MDHelper(getLLVMContext()); 5547 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5548 5549 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5550 } 5551 5552 namespace { 5553 struct LValueOrRValue { 5554 LValue LV; 5555 RValue RV; 5556 }; 5557 } 5558 5559 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5560 const PseudoObjectExpr *E, 5561 bool forLValue, 5562 AggValueSlot slot) { 5563 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5564 5565 // Find the result expression, if any. 5566 const Expr *resultExpr = E->getResultExpr(); 5567 LValueOrRValue result; 5568 5569 for (PseudoObjectExpr::const_semantics_iterator 5570 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5571 const Expr *semantic = *i; 5572 5573 // If this semantic expression is an opaque value, bind it 5574 // to the result of its source expression. 5575 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5576 // Skip unique OVEs. 5577 if (ov->isUnique()) { 5578 assert(ov != resultExpr && 5579 "A unique OVE cannot be used as the result expression"); 5580 continue; 5581 } 5582 5583 // If this is the result expression, we may need to evaluate 5584 // directly into the slot. 5585 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5586 OVMA opaqueData; 5587 if (ov == resultExpr && ov->isPRValue() && !forLValue && 5588 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5589 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5590 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5591 AlignmentSource::Decl); 5592 opaqueData = OVMA::bind(CGF, ov, LV); 5593 result.RV = slot.asRValue(); 5594 5595 // Otherwise, emit as normal. 5596 } else { 5597 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5598 5599 // If this is the result, also evaluate the result now. 5600 if (ov == resultExpr) { 5601 if (forLValue) 5602 result.LV = CGF.EmitLValue(ov); 5603 else 5604 result.RV = CGF.EmitAnyExpr(ov, slot); 5605 } 5606 } 5607 5608 opaques.push_back(opaqueData); 5609 5610 // Otherwise, if the expression is the result, evaluate it 5611 // and remember the result. 5612 } else if (semantic == resultExpr) { 5613 if (forLValue) 5614 result.LV = CGF.EmitLValue(semantic); 5615 else 5616 result.RV = CGF.EmitAnyExpr(semantic, slot); 5617 5618 // Otherwise, evaluate the expression in an ignored context. 5619 } else { 5620 CGF.EmitIgnoredExpr(semantic); 5621 } 5622 } 5623 5624 // Unbind all the opaques now. 5625 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5626 opaques[i].unbind(CGF); 5627 5628 return result; 5629 } 5630 5631 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5632 AggValueSlot slot) { 5633 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5634 } 5635 5636 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5637 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5638 } 5639