xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/CGDecl.cpp (revision cab6a39d7b343596a5823e65c0f7b426551ec22d)
1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Type.h"
40 
41 using namespace clang;
42 using namespace CodeGen;
43 
44 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
45               "Clang max alignment greater than what LLVM supports?");
46 
47 void CodeGenFunction::EmitDecl(const Decl &D) {
48   switch (D.getKind()) {
49   case Decl::BuiltinTemplate:
50   case Decl::TranslationUnit:
51   case Decl::ExternCContext:
52   case Decl::Namespace:
53   case Decl::UnresolvedUsingTypename:
54   case Decl::ClassTemplateSpecialization:
55   case Decl::ClassTemplatePartialSpecialization:
56   case Decl::VarTemplateSpecialization:
57   case Decl::VarTemplatePartialSpecialization:
58   case Decl::TemplateTypeParm:
59   case Decl::UnresolvedUsingValue:
60   case Decl::NonTypeTemplateParm:
61   case Decl::CXXDeductionGuide:
62   case Decl::CXXMethod:
63   case Decl::CXXConstructor:
64   case Decl::CXXDestructor:
65   case Decl::CXXConversion:
66   case Decl::Field:
67   case Decl::MSProperty:
68   case Decl::IndirectField:
69   case Decl::ObjCIvar:
70   case Decl::ObjCAtDefsField:
71   case Decl::ParmVar:
72   case Decl::ImplicitParam:
73   case Decl::ClassTemplate:
74   case Decl::VarTemplate:
75   case Decl::FunctionTemplate:
76   case Decl::TypeAliasTemplate:
77   case Decl::TemplateTemplateParm:
78   case Decl::ObjCMethod:
79   case Decl::ObjCCategory:
80   case Decl::ObjCProtocol:
81   case Decl::ObjCInterface:
82   case Decl::ObjCCategoryImpl:
83   case Decl::ObjCImplementation:
84   case Decl::ObjCProperty:
85   case Decl::ObjCCompatibleAlias:
86   case Decl::PragmaComment:
87   case Decl::PragmaDetectMismatch:
88   case Decl::AccessSpec:
89   case Decl::LinkageSpec:
90   case Decl::Export:
91   case Decl::ObjCPropertyImpl:
92   case Decl::FileScopeAsm:
93   case Decl::Friend:
94   case Decl::FriendTemplate:
95   case Decl::Block:
96   case Decl::Captured:
97   case Decl::ClassScopeFunctionSpecialization:
98   case Decl::UsingShadow:
99   case Decl::ConstructorUsingShadow:
100   case Decl::ObjCTypeParam:
101   case Decl::Binding:
102     llvm_unreachable("Declaration should not be in declstmts!");
103   case Decl::Record:    // struct/union/class X;
104   case Decl::CXXRecord: // struct/union/class X; [C++]
105     if (CGDebugInfo *DI = getDebugInfo())
106       if (cast<RecordDecl>(D).getDefinition())
107         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D)));
108     return;
109   case Decl::Enum:      // enum X;
110     if (CGDebugInfo *DI = getDebugInfo())
111       if (cast<EnumDecl>(D).getDefinition())
112         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D)));
113     return;
114   case Decl::Function:     // void X();
115   case Decl::EnumConstant: // enum ? { X = ? }
116   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
117   case Decl::Label:        // __label__ x;
118   case Decl::Import:
119   case Decl::MSGuid:    // __declspec(uuid("..."))
120   case Decl::TemplateParamObject:
121   case Decl::OMPThreadPrivate:
122   case Decl::OMPAllocate:
123   case Decl::OMPCapturedExpr:
124   case Decl::OMPRequires:
125   case Decl::Empty:
126   case Decl::Concept:
127   case Decl::LifetimeExtendedTemporary:
128   case Decl::RequiresExprBody:
129     // None of these decls require codegen support.
130     return;
131 
132   case Decl::NamespaceAlias:
133     if (CGDebugInfo *DI = getDebugInfo())
134         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
135     return;
136   case Decl::Using:          // using X; [C++]
137     if (CGDebugInfo *DI = getDebugInfo())
138         DI->EmitUsingDecl(cast<UsingDecl>(D));
139     return;
140   case Decl::UsingPack:
141     for (auto *Using : cast<UsingPackDecl>(D).expansions())
142       EmitDecl(*Using);
143     return;
144   case Decl::UsingDirective: // using namespace X; [C++]
145     if (CGDebugInfo *DI = getDebugInfo())
146       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
147     return;
148   case Decl::Var:
149   case Decl::Decomposition: {
150     const VarDecl &VD = cast<VarDecl>(D);
151     assert(VD.isLocalVarDecl() &&
152            "Should not see file-scope variables inside a function!");
153     EmitVarDecl(VD);
154     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
155       for (auto *B : DD->bindings())
156         if (auto *HD = B->getHoldingVar())
157           EmitVarDecl(*HD);
158     return;
159   }
160 
161   case Decl::OMPDeclareReduction:
162     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
163 
164   case Decl::OMPDeclareMapper:
165     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
166 
167   case Decl::Typedef:      // typedef int X;
168   case Decl::TypeAlias: {  // using X = int; [C++0x]
169     QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
170     if (CGDebugInfo *DI = getDebugInfo())
171       DI->EmitAndRetainType(Ty);
172     if (Ty->isVariablyModifiedType())
173       EmitVariablyModifiedType(Ty);
174     return;
175   }
176   }
177 }
178 
179 /// EmitVarDecl - This method handles emission of any variable declaration
180 /// inside a function, including static vars etc.
181 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
182   if (D.hasExternalStorage())
183     // Don't emit it now, allow it to be emitted lazily on its first use.
184     return;
185 
186   // Some function-scope variable does not have static storage but still
187   // needs to be emitted like a static variable, e.g. a function-scope
188   // variable in constant address space in OpenCL.
189   if (D.getStorageDuration() != SD_Automatic) {
190     // Static sampler variables translated to function calls.
191     if (D.getType()->isSamplerT())
192       return;
193 
194     llvm::GlobalValue::LinkageTypes Linkage =
195         CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
196 
197     // FIXME: We need to force the emission/use of a guard variable for
198     // some variables even if we can constant-evaluate them because
199     // we can't guarantee every translation unit will constant-evaluate them.
200 
201     return EmitStaticVarDecl(D, Linkage);
202   }
203 
204   if (D.getType().getAddressSpace() == LangAS::opencl_local)
205     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
206 
207   assert(D.hasLocalStorage());
208   return EmitAutoVarDecl(D);
209 }
210 
211 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
212   if (CGM.getLangOpts().CPlusPlus)
213     return CGM.getMangledName(&D).str();
214 
215   // If this isn't C++, we don't need a mangled name, just a pretty one.
216   assert(!D.isExternallyVisible() && "name shouldn't matter");
217   std::string ContextName;
218   const DeclContext *DC = D.getDeclContext();
219   if (auto *CD = dyn_cast<CapturedDecl>(DC))
220     DC = cast<DeclContext>(CD->getNonClosureContext());
221   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
222     ContextName = std::string(CGM.getMangledName(FD));
223   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
224     ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
225   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
226     ContextName = OMD->getSelector().getAsString();
227   else
228     llvm_unreachable("Unknown context for static var decl");
229 
230   ContextName += "." + D.getNameAsString();
231   return ContextName;
232 }
233 
234 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
235     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
236   // In general, we don't always emit static var decls once before we reference
237   // them. It is possible to reference them before emitting the function that
238   // contains them, and it is possible to emit the containing function multiple
239   // times.
240   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
241     return ExistingGV;
242 
243   QualType Ty = D.getType();
244   assert(Ty->isConstantSizeType() && "VLAs can't be static");
245 
246   // Use the label if the variable is renamed with the asm-label extension.
247   std::string Name;
248   if (D.hasAttr<AsmLabelAttr>())
249     Name = std::string(getMangledName(&D));
250   else
251     Name = getStaticDeclName(*this, D);
252 
253   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
254   LangAS AS = GetGlobalVarAddressSpace(&D);
255   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
256 
257   // OpenCL variables in local address space and CUDA shared
258   // variables cannot have an initializer.
259   llvm::Constant *Init = nullptr;
260   if (Ty.getAddressSpace() == LangAS::opencl_local ||
261       D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
262     Init = llvm::UndefValue::get(LTy);
263   else
264     Init = EmitNullConstant(Ty);
265 
266   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
267       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
268       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
269   GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
270 
271   if (supportsCOMDAT() && GV->isWeakForLinker())
272     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
273 
274   if (D.getTLSKind())
275     setTLSMode(GV, D);
276 
277   setGVProperties(GV, &D);
278 
279   // Make sure the result is of the correct type.
280   LangAS ExpectedAS = Ty.getAddressSpace();
281   llvm::Constant *Addr = GV;
282   if (AS != ExpectedAS) {
283     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
284         *this, GV, AS, ExpectedAS,
285         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
286   }
287 
288   setStaticLocalDeclAddress(&D, Addr);
289 
290   // Ensure that the static local gets initialized by making sure the parent
291   // function gets emitted eventually.
292   const Decl *DC = cast<Decl>(D.getDeclContext());
293 
294   // We can't name blocks or captured statements directly, so try to emit their
295   // parents.
296   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
297     DC = DC->getNonClosureContext();
298     // FIXME: Ensure that global blocks get emitted.
299     if (!DC)
300       return Addr;
301   }
302 
303   GlobalDecl GD;
304   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
305     GD = GlobalDecl(CD, Ctor_Base);
306   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
307     GD = GlobalDecl(DD, Dtor_Base);
308   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
309     GD = GlobalDecl(FD);
310   else {
311     // Don't do anything for Obj-C method decls or global closures. We should
312     // never defer them.
313     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
314   }
315   if (GD.getDecl()) {
316     // Disable emission of the parent function for the OpenMP device codegen.
317     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
318     (void)GetAddrOfGlobal(GD);
319   }
320 
321   return Addr;
322 }
323 
324 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
325 /// global variable that has already been created for it.  If the initializer
326 /// has a different type than GV does, this may free GV and return a different
327 /// one.  Otherwise it just returns GV.
328 llvm::GlobalVariable *
329 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
330                                                llvm::GlobalVariable *GV) {
331   ConstantEmitter emitter(*this);
332   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
333 
334   // If constant emission failed, then this should be a C++ static
335   // initializer.
336   if (!Init) {
337     if (!getLangOpts().CPlusPlus)
338       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
339     else if (HaveInsertPoint()) {
340       // Since we have a static initializer, this global variable can't
341       // be constant.
342       GV->setConstant(false);
343 
344       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
345     }
346     return GV;
347   }
348 
349   // The initializer may differ in type from the global. Rewrite
350   // the global to match the initializer.  (We have to do this
351   // because some types, like unions, can't be completely represented
352   // in the LLVM type system.)
353   if (GV->getValueType() != Init->getType()) {
354     llvm::GlobalVariable *OldGV = GV;
355 
356     GV = new llvm::GlobalVariable(
357         CGM.getModule(), Init->getType(), OldGV->isConstant(),
358         OldGV->getLinkage(), Init, "",
359         /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(),
360         OldGV->getType()->getPointerAddressSpace());
361     GV->setVisibility(OldGV->getVisibility());
362     GV->setDSOLocal(OldGV->isDSOLocal());
363     GV->setComdat(OldGV->getComdat());
364 
365     // Steal the name of the old global
366     GV->takeName(OldGV);
367 
368     // Replace all uses of the old global with the new global
369     llvm::Constant *NewPtrForOldDecl =
370     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
371     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
372 
373     // Erase the old global, since it is no longer used.
374     OldGV->eraseFromParent();
375   }
376 
377   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
378   GV->setInitializer(Init);
379 
380   emitter.finalize(GV);
381 
382   if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
383       HaveInsertPoint()) {
384     // We have a constant initializer, but a nontrivial destructor. We still
385     // need to perform a guarded "initialization" in order to register the
386     // destructor.
387     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
388   }
389 
390   return GV;
391 }
392 
393 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
394                                       llvm::GlobalValue::LinkageTypes Linkage) {
395   // Check to see if we already have a global variable for this
396   // declaration.  This can happen when double-emitting function
397   // bodies, e.g. with complete and base constructors.
398   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
399   CharUnits alignment = getContext().getDeclAlign(&D);
400 
401   // Store into LocalDeclMap before generating initializer to handle
402   // circular references.
403   setAddrOfLocalVar(&D, Address(addr, alignment));
404 
405   // We can't have a VLA here, but we can have a pointer to a VLA,
406   // even though that doesn't really make any sense.
407   // Make sure to evaluate VLA bounds now so that we have them for later.
408   if (D.getType()->isVariablyModifiedType())
409     EmitVariablyModifiedType(D.getType());
410 
411   // Save the type in case adding the initializer forces a type change.
412   llvm::Type *expectedType = addr->getType();
413 
414   llvm::GlobalVariable *var =
415     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
416 
417   // CUDA's local and local static __shared__ variables should not
418   // have any non-empty initializers. This is ensured by Sema.
419   // Whatever initializer such variable may have when it gets here is
420   // a no-op and should not be emitted.
421   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
422                          D.hasAttr<CUDASharedAttr>();
423   // If this value has an initializer, emit it.
424   if (D.getInit() && !isCudaSharedVar)
425     var = AddInitializerToStaticVarDecl(D, var);
426 
427   var->setAlignment(alignment.getAsAlign());
428 
429   if (D.hasAttr<AnnotateAttr>())
430     CGM.AddGlobalAnnotations(&D, var);
431 
432   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
433     var->addAttribute("bss-section", SA->getName());
434   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
435     var->addAttribute("data-section", SA->getName());
436   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
437     var->addAttribute("rodata-section", SA->getName());
438   if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
439     var->addAttribute("relro-section", SA->getName());
440 
441   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
442     var->setSection(SA->getName());
443 
444   if (D.hasAttr<UsedAttr>())
445     CGM.addUsedGlobal(var);
446 
447   // We may have to cast the constant because of the initializer
448   // mismatch above.
449   //
450   // FIXME: It is really dangerous to store this in the map; if anyone
451   // RAUW's the GV uses of this constant will be invalid.
452   llvm::Constant *castedAddr =
453     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
454   if (var != castedAddr)
455     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
456   CGM.setStaticLocalDeclAddress(&D, castedAddr);
457 
458   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
459 
460   // Emit global variable debug descriptor for static vars.
461   CGDebugInfo *DI = getDebugInfo();
462   if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
463     DI->setLocation(D.getLocation());
464     DI->EmitGlobalVariable(var, &D);
465   }
466 }
467 
468 namespace {
469   struct DestroyObject final : EHScopeStack::Cleanup {
470     DestroyObject(Address addr, QualType type,
471                   CodeGenFunction::Destroyer *destroyer,
472                   bool useEHCleanupForArray)
473       : addr(addr), type(type), destroyer(destroyer),
474         useEHCleanupForArray(useEHCleanupForArray) {}
475 
476     Address addr;
477     QualType type;
478     CodeGenFunction::Destroyer *destroyer;
479     bool useEHCleanupForArray;
480 
481     void Emit(CodeGenFunction &CGF, Flags flags) override {
482       // Don't use an EH cleanup recursively from an EH cleanup.
483       bool useEHCleanupForArray =
484         flags.isForNormalCleanup() && this->useEHCleanupForArray;
485 
486       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
487     }
488   };
489 
490   template <class Derived>
491   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
492     DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
493         : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
494 
495     llvm::Value *NRVOFlag;
496     Address Loc;
497     QualType Ty;
498 
499     void Emit(CodeGenFunction &CGF, Flags flags) override {
500       // Along the exceptions path we always execute the dtor.
501       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
502 
503       llvm::BasicBlock *SkipDtorBB = nullptr;
504       if (NRVO) {
505         // If we exited via NRVO, we skip the destructor call.
506         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
507         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
508         llvm::Value *DidNRVO =
509           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
510         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
511         CGF.EmitBlock(RunDtorBB);
512       }
513 
514       static_cast<Derived *>(this)->emitDestructorCall(CGF);
515 
516       if (NRVO) CGF.EmitBlock(SkipDtorBB);
517     }
518 
519     virtual ~DestroyNRVOVariable() = default;
520   };
521 
522   struct DestroyNRVOVariableCXX final
523       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
524     DestroyNRVOVariableCXX(Address addr, QualType type,
525                            const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
526         : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
527           Dtor(Dtor) {}
528 
529     const CXXDestructorDecl *Dtor;
530 
531     void emitDestructorCall(CodeGenFunction &CGF) {
532       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
533                                 /*ForVirtualBase=*/false,
534                                 /*Delegating=*/false, Loc, Ty);
535     }
536   };
537 
538   struct DestroyNRVOVariableC final
539       : DestroyNRVOVariable<DestroyNRVOVariableC> {
540     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
541         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
542 
543     void emitDestructorCall(CodeGenFunction &CGF) {
544       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
545     }
546   };
547 
548   struct CallStackRestore final : EHScopeStack::Cleanup {
549     Address Stack;
550     CallStackRestore(Address Stack) : Stack(Stack) {}
551     void Emit(CodeGenFunction &CGF, Flags flags) override {
552       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
553       llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
554       CGF.Builder.CreateCall(F, V);
555     }
556   };
557 
558   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
559     const VarDecl &Var;
560     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
561 
562     void Emit(CodeGenFunction &CGF, Flags flags) override {
563       // Compute the address of the local variable, in case it's a
564       // byref or something.
565       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
566                       Var.getType(), VK_LValue, SourceLocation());
567       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
568                                                 SourceLocation());
569       CGF.EmitExtendGCLifetime(value);
570     }
571   };
572 
573   struct CallCleanupFunction final : EHScopeStack::Cleanup {
574     llvm::Constant *CleanupFn;
575     const CGFunctionInfo &FnInfo;
576     const VarDecl &Var;
577 
578     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
579                         const VarDecl *Var)
580       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
581 
582     void Emit(CodeGenFunction &CGF, Flags flags) override {
583       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
584                       Var.getType(), VK_LValue, SourceLocation());
585       // Compute the address of the local variable, in case it's a byref
586       // or something.
587       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
588 
589       // In some cases, the type of the function argument will be different from
590       // the type of the pointer. An example of this is
591       // void f(void* arg);
592       // __attribute__((cleanup(f))) void *g;
593       //
594       // To fix this we insert a bitcast here.
595       QualType ArgTy = FnInfo.arg_begin()->type;
596       llvm::Value *Arg =
597         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
598 
599       CallArgList Args;
600       Args.add(RValue::get(Arg),
601                CGF.getContext().getPointerType(Var.getType()));
602       auto Callee = CGCallee::forDirect(CleanupFn);
603       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
604     }
605   };
606 } // end anonymous namespace
607 
608 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
609 /// variable with lifetime.
610 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
611                                     Address addr,
612                                     Qualifiers::ObjCLifetime lifetime) {
613   switch (lifetime) {
614   case Qualifiers::OCL_None:
615     llvm_unreachable("present but none");
616 
617   case Qualifiers::OCL_ExplicitNone:
618     // nothing to do
619     break;
620 
621   case Qualifiers::OCL_Strong: {
622     CodeGenFunction::Destroyer *destroyer =
623       (var.hasAttr<ObjCPreciseLifetimeAttr>()
624        ? CodeGenFunction::destroyARCStrongPrecise
625        : CodeGenFunction::destroyARCStrongImprecise);
626 
627     CleanupKind cleanupKind = CGF.getARCCleanupKind();
628     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
629                     cleanupKind & EHCleanup);
630     break;
631   }
632   case Qualifiers::OCL_Autoreleasing:
633     // nothing to do
634     break;
635 
636   case Qualifiers::OCL_Weak:
637     // __weak objects always get EH cleanups; otherwise, exceptions
638     // could cause really nasty crashes instead of mere leaks.
639     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
640                     CodeGenFunction::destroyARCWeak,
641                     /*useEHCleanup*/ true);
642     break;
643   }
644 }
645 
646 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
647   if (const Expr *e = dyn_cast<Expr>(s)) {
648     // Skip the most common kinds of expressions that make
649     // hierarchy-walking expensive.
650     s = e = e->IgnoreParenCasts();
651 
652     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
653       return (ref->getDecl() == &var);
654     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
655       const BlockDecl *block = be->getBlockDecl();
656       for (const auto &I : block->captures()) {
657         if (I.getVariable() == &var)
658           return true;
659       }
660     }
661   }
662 
663   for (const Stmt *SubStmt : s->children())
664     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
665     if (SubStmt && isAccessedBy(var, SubStmt))
666       return true;
667 
668   return false;
669 }
670 
671 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
672   if (!decl) return false;
673   if (!isa<VarDecl>(decl)) return false;
674   const VarDecl *var = cast<VarDecl>(decl);
675   return isAccessedBy(*var, e);
676 }
677 
678 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
679                                    const LValue &destLV, const Expr *init) {
680   bool needsCast = false;
681 
682   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
683     switch (castExpr->getCastKind()) {
684     // Look through casts that don't require representation changes.
685     case CK_NoOp:
686     case CK_BitCast:
687     case CK_BlockPointerToObjCPointerCast:
688       needsCast = true;
689       break;
690 
691     // If we find an l-value to r-value cast from a __weak variable,
692     // emit this operation as a copy or move.
693     case CK_LValueToRValue: {
694       const Expr *srcExpr = castExpr->getSubExpr();
695       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
696         return false;
697 
698       // Emit the source l-value.
699       LValue srcLV = CGF.EmitLValue(srcExpr);
700 
701       // Handle a formal type change to avoid asserting.
702       auto srcAddr = srcLV.getAddress(CGF);
703       if (needsCast) {
704         srcAddr = CGF.Builder.CreateElementBitCast(
705             srcAddr, destLV.getAddress(CGF).getElementType());
706       }
707 
708       // If it was an l-value, use objc_copyWeak.
709       if (srcExpr->getValueKind() == VK_LValue) {
710         CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
711       } else {
712         assert(srcExpr->getValueKind() == VK_XValue);
713         CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
714       }
715       return true;
716     }
717 
718     // Stop at anything else.
719     default:
720       return false;
721     }
722 
723     init = castExpr->getSubExpr();
724   }
725   return false;
726 }
727 
728 static void drillIntoBlockVariable(CodeGenFunction &CGF,
729                                    LValue &lvalue,
730                                    const VarDecl *var) {
731   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
732 }
733 
734 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
735                                            SourceLocation Loc) {
736   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
737     return;
738 
739   auto Nullability = LHS.getType()->getNullability(getContext());
740   if (!Nullability || *Nullability != NullabilityKind::NonNull)
741     return;
742 
743   // Check if the right hand side of the assignment is nonnull, if the left
744   // hand side must be nonnull.
745   SanitizerScope SanScope(this);
746   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
747   llvm::Constant *StaticData[] = {
748       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
749       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
750       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
751   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
752             SanitizerHandler::TypeMismatch, StaticData, RHS);
753 }
754 
755 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
756                                      LValue lvalue, bool capturedByInit) {
757   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
758   if (!lifetime) {
759     llvm::Value *value = EmitScalarExpr(init);
760     if (capturedByInit)
761       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
762     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
763     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
764     return;
765   }
766 
767   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
768     init = DIE->getExpr();
769 
770   // If we're emitting a value with lifetime, we have to do the
771   // initialization *before* we leave the cleanup scopes.
772   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(init))
773     init = EWC->getSubExpr();
774   CodeGenFunction::RunCleanupsScope Scope(*this);
775 
776   // We have to maintain the illusion that the variable is
777   // zero-initialized.  If the variable might be accessed in its
778   // initializer, zero-initialize before running the initializer, then
779   // actually perform the initialization with an assign.
780   bool accessedByInit = false;
781   if (lifetime != Qualifiers::OCL_ExplicitNone)
782     accessedByInit = (capturedByInit || isAccessedBy(D, init));
783   if (accessedByInit) {
784     LValue tempLV = lvalue;
785     // Drill down to the __block object if necessary.
786     if (capturedByInit) {
787       // We can use a simple GEP for this because it can't have been
788       // moved yet.
789       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
790                                               cast<VarDecl>(D),
791                                               /*follow*/ false));
792     }
793 
794     auto ty =
795         cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
796     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
797 
798     // If __weak, we want to use a barrier under certain conditions.
799     if (lifetime == Qualifiers::OCL_Weak)
800       EmitARCInitWeak(tempLV.getAddress(*this), zero);
801 
802     // Otherwise just do a simple store.
803     else
804       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
805   }
806 
807   // Emit the initializer.
808   llvm::Value *value = nullptr;
809 
810   switch (lifetime) {
811   case Qualifiers::OCL_None:
812     llvm_unreachable("present but none");
813 
814   case Qualifiers::OCL_Strong: {
815     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
816       value = EmitARCRetainScalarExpr(init);
817       break;
818     }
819     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
820     // that we omit the retain, and causes non-autoreleased return values to be
821     // immediately released.
822     LLVM_FALLTHROUGH;
823   }
824 
825   case Qualifiers::OCL_ExplicitNone:
826     value = EmitARCUnsafeUnretainedScalarExpr(init);
827     break;
828 
829   case Qualifiers::OCL_Weak: {
830     // If it's not accessed by the initializer, try to emit the
831     // initialization with a copy or move.
832     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
833       return;
834     }
835 
836     // No way to optimize a producing initializer into this.  It's not
837     // worth optimizing for, because the value will immediately
838     // disappear in the common case.
839     value = EmitScalarExpr(init);
840 
841     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
842     if (accessedByInit)
843       EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
844     else
845       EmitARCInitWeak(lvalue.getAddress(*this), value);
846     return;
847   }
848 
849   case Qualifiers::OCL_Autoreleasing:
850     value = EmitARCRetainAutoreleaseScalarExpr(init);
851     break;
852   }
853 
854   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
855 
856   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
857 
858   // If the variable might have been accessed by its initializer, we
859   // might have to initialize with a barrier.  We have to do this for
860   // both __weak and __strong, but __weak got filtered out above.
861   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
862     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
863     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
864     EmitARCRelease(oldValue, ARCImpreciseLifetime);
865     return;
866   }
867 
868   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
869 }
870 
871 /// Decide whether we can emit the non-zero parts of the specified initializer
872 /// with equal or fewer than NumStores scalar stores.
873 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
874                                                unsigned &NumStores) {
875   // Zero and Undef never requires any extra stores.
876   if (isa<llvm::ConstantAggregateZero>(Init) ||
877       isa<llvm::ConstantPointerNull>(Init) ||
878       isa<llvm::UndefValue>(Init))
879     return true;
880   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
881       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
882       isa<llvm::ConstantExpr>(Init))
883     return Init->isNullValue() || NumStores--;
884 
885   // See if we can emit each element.
886   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
887     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
888       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
889       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
890         return false;
891     }
892     return true;
893   }
894 
895   if (llvm::ConstantDataSequential *CDS =
896         dyn_cast<llvm::ConstantDataSequential>(Init)) {
897     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
898       llvm::Constant *Elt = CDS->getElementAsConstant(i);
899       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
900         return false;
901     }
902     return true;
903   }
904 
905   // Anything else is hard and scary.
906   return false;
907 }
908 
909 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
910 /// the scalar stores that would be required.
911 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
912                                         llvm::Constant *Init, Address Loc,
913                                         bool isVolatile, CGBuilderTy &Builder,
914                                         bool IsAutoInit) {
915   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
916          "called emitStoresForInitAfterBZero for zero or undef value.");
917 
918   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
919       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
920       isa<llvm::ConstantExpr>(Init)) {
921     auto *I = Builder.CreateStore(Init, Loc, isVolatile);
922     if (IsAutoInit)
923       I->addAnnotationMetadata("auto-init");
924     return;
925   }
926 
927   if (llvm::ConstantDataSequential *CDS =
928           dyn_cast<llvm::ConstantDataSequential>(Init)) {
929     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
930       llvm::Constant *Elt = CDS->getElementAsConstant(i);
931 
932       // If necessary, get a pointer to the element and emit it.
933       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
934         emitStoresForInitAfterBZero(
935             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
936             Builder, IsAutoInit);
937     }
938     return;
939   }
940 
941   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
942          "Unknown value type!");
943 
944   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
945     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
946 
947     // If necessary, get a pointer to the element and emit it.
948     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
949       emitStoresForInitAfterBZero(CGM, Elt,
950                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
951                                   isVolatile, Builder, IsAutoInit);
952   }
953 }
954 
955 /// Decide whether we should use bzero plus some stores to initialize a local
956 /// variable instead of using a memcpy from a constant global.  It is beneficial
957 /// to use bzero if the global is all zeros, or mostly zeros and large.
958 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
959                                                  uint64_t GlobalSize) {
960   // If a global is all zeros, always use a bzero.
961   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
962 
963   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
964   // do it if it will require 6 or fewer scalar stores.
965   // TODO: Should budget depends on the size?  Avoiding a large global warrants
966   // plopping in more stores.
967   unsigned StoreBudget = 6;
968   uint64_t SizeLimit = 32;
969 
970   return GlobalSize > SizeLimit &&
971          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
972 }
973 
974 /// Decide whether we should use memset to initialize a local variable instead
975 /// of using a memcpy from a constant global. Assumes we've already decided to
976 /// not user bzero.
977 /// FIXME We could be more clever, as we are for bzero above, and generate
978 ///       memset followed by stores. It's unclear that's worth the effort.
979 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
980                                                 uint64_t GlobalSize,
981                                                 const llvm::DataLayout &DL) {
982   uint64_t SizeLimit = 32;
983   if (GlobalSize <= SizeLimit)
984     return nullptr;
985   return llvm::isBytewiseValue(Init, DL);
986 }
987 
988 /// Decide whether we want to split a constant structure or array store into a
989 /// sequence of its fields' stores. This may cost us code size and compilation
990 /// speed, but plays better with store optimizations.
991 static bool shouldSplitConstantStore(CodeGenModule &CGM,
992                                      uint64_t GlobalByteSize) {
993   // Don't break things that occupy more than one cacheline.
994   uint64_t ByteSizeLimit = 64;
995   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
996     return false;
997   if (GlobalByteSize <= ByteSizeLimit)
998     return true;
999   return false;
1000 }
1001 
1002 enum class IsPattern { No, Yes };
1003 
1004 /// Generate a constant filled with either a pattern or zeroes.
1005 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
1006                                         llvm::Type *Ty) {
1007   if (isPattern == IsPattern::Yes)
1008     return initializationPatternFor(CGM, Ty);
1009   else
1010     return llvm::Constant::getNullValue(Ty);
1011 }
1012 
1013 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1014                                         llvm::Constant *constant);
1015 
1016 /// Helper function for constWithPadding() to deal with padding in structures.
1017 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1018                                               IsPattern isPattern,
1019                                               llvm::StructType *STy,
1020                                               llvm::Constant *constant) {
1021   const llvm::DataLayout &DL = CGM.getDataLayout();
1022   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1023   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1024   unsigned SizeSoFar = 0;
1025   SmallVector<llvm::Constant *, 8> Values;
1026   bool NestedIntact = true;
1027   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1028     unsigned CurOff = Layout->getElementOffset(i);
1029     if (SizeSoFar < CurOff) {
1030       assert(!STy->isPacked());
1031       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1032       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1033     }
1034     llvm::Constant *CurOp;
1035     if (constant->isZeroValue())
1036       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1037     else
1038       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1039     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1040     if (CurOp != NewOp)
1041       NestedIntact = false;
1042     Values.push_back(NewOp);
1043     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1044   }
1045   unsigned TotalSize = Layout->getSizeInBytes();
1046   if (SizeSoFar < TotalSize) {
1047     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1048     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1049   }
1050   if (NestedIntact && Values.size() == STy->getNumElements())
1051     return constant;
1052   return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1053 }
1054 
1055 /// Replace all padding bytes in a given constant with either a pattern byte or
1056 /// 0x00.
1057 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1058                                         llvm::Constant *constant) {
1059   llvm::Type *OrigTy = constant->getType();
1060   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1061     return constStructWithPadding(CGM, isPattern, STy, constant);
1062   if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1063     llvm::SmallVector<llvm::Constant *, 8> Values;
1064     uint64_t Size = ArrayTy->getNumElements();
1065     if (!Size)
1066       return constant;
1067     llvm::Type *ElemTy = ArrayTy->getElementType();
1068     bool ZeroInitializer = constant->isNullValue();
1069     llvm::Constant *OpValue, *PaddedOp;
1070     if (ZeroInitializer) {
1071       OpValue = llvm::Constant::getNullValue(ElemTy);
1072       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1073     }
1074     for (unsigned Op = 0; Op != Size; ++Op) {
1075       if (!ZeroInitializer) {
1076         OpValue = constant->getAggregateElement(Op);
1077         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1078       }
1079       Values.push_back(PaddedOp);
1080     }
1081     auto *NewElemTy = Values[0]->getType();
1082     if (NewElemTy == ElemTy)
1083       return constant;
1084     auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1085     return llvm::ConstantArray::get(NewArrayTy, Values);
1086   }
1087   // FIXME: Add handling for tail padding in vectors. Vectors don't
1088   // have padding between or inside elements, but the total amount of
1089   // data can be less than the allocated size.
1090   return constant;
1091 }
1092 
1093 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1094                                                llvm::Constant *Constant,
1095                                                CharUnits Align) {
1096   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1097     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1098       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1099         return CC->getNameAsString();
1100       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1101         return CD->getNameAsString();
1102       return std::string(getMangledName(FD));
1103     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1104       return OM->getNameAsString();
1105     } else if (isa<BlockDecl>(DC)) {
1106       return "<block>";
1107     } else if (isa<CapturedDecl>(DC)) {
1108       return "<captured>";
1109     } else {
1110       llvm_unreachable("expected a function or method");
1111     }
1112   };
1113 
1114   // Form a simple per-variable cache of these values in case we find we
1115   // want to reuse them.
1116   llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1117   if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1118     auto *Ty = Constant->getType();
1119     bool isConstant = true;
1120     llvm::GlobalVariable *InsertBefore = nullptr;
1121     unsigned AS =
1122         getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
1123     std::string Name;
1124     if (D.hasGlobalStorage())
1125       Name = getMangledName(&D).str() + ".const";
1126     else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1127       Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1128     else
1129       llvm_unreachable("local variable has no parent function or method");
1130     llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1131         getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1132         Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1133     GV->setAlignment(Align.getAsAlign());
1134     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1135     CacheEntry = GV;
1136   } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
1137     CacheEntry->setAlignment(Align.getAsAlign());
1138   }
1139 
1140   return Address(CacheEntry, Align);
1141 }
1142 
1143 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1144                                                 const VarDecl &D,
1145                                                 CGBuilderTy &Builder,
1146                                                 llvm::Constant *Constant,
1147                                                 CharUnits Align) {
1148   Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1149   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
1150                                                    SrcPtr.getAddressSpace());
1151   if (SrcPtr.getType() != BP)
1152     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1153   return SrcPtr;
1154 }
1155 
1156 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1157                                   Address Loc, bool isVolatile,
1158                                   CGBuilderTy &Builder,
1159                                   llvm::Constant *constant, bool IsAutoInit) {
1160   auto *Ty = constant->getType();
1161   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1162   if (!ConstantSize)
1163     return;
1164 
1165   bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1166                           Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1167   if (canDoSingleStore) {
1168     auto *I = Builder.CreateStore(constant, Loc, isVolatile);
1169     if (IsAutoInit)
1170       I->addAnnotationMetadata("auto-init");
1171     return;
1172   }
1173 
1174   auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1175 
1176   // If the initializer is all or mostly the same, codegen with bzero / memset
1177   // then do a few stores afterward.
1178   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1179     auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0),
1180                                    SizeVal, isVolatile);
1181     if (IsAutoInit)
1182       I->addAnnotationMetadata("auto-init");
1183 
1184     bool valueAlreadyCorrect =
1185         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1186     if (!valueAlreadyCorrect) {
1187       Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1188       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder,
1189                                   IsAutoInit);
1190     }
1191     return;
1192   }
1193 
1194   // If the initializer is a repeated byte pattern, use memset.
1195   llvm::Value *Pattern =
1196       shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1197   if (Pattern) {
1198     uint64_t Value = 0x00;
1199     if (!isa<llvm::UndefValue>(Pattern)) {
1200       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1201       assert(AP.getBitWidth() <= 8);
1202       Value = AP.getLimitedValue();
1203     }
1204     auto *I = Builder.CreateMemSet(
1205         Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile);
1206     if (IsAutoInit)
1207       I->addAnnotationMetadata("auto-init");
1208     return;
1209   }
1210 
1211   // If the initializer is small, use a handful of stores.
1212   if (shouldSplitConstantStore(CGM, ConstantSize)) {
1213     if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1214       // FIXME: handle the case when STy != Loc.getElementType().
1215       if (STy == Loc.getElementType()) {
1216         for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1217           Address EltPtr = Builder.CreateStructGEP(Loc, i);
1218           emitStoresForConstant(
1219               CGM, D, EltPtr, isVolatile, Builder,
1220               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
1221               IsAutoInit);
1222         }
1223         return;
1224       }
1225     } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1226       // FIXME: handle the case when ATy != Loc.getElementType().
1227       if (ATy == Loc.getElementType()) {
1228         for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1229           Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
1230           emitStoresForConstant(
1231               CGM, D, EltPtr, isVolatile, Builder,
1232               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)),
1233               IsAutoInit);
1234         }
1235         return;
1236       }
1237     }
1238   }
1239 
1240   // Copy from a global.
1241   auto *I =
1242       Builder.CreateMemCpy(Loc,
1243                            createUnnamedGlobalForMemcpyFrom(
1244                                CGM, D, Builder, constant, Loc.getAlignment()),
1245                            SizeVal, isVolatile);
1246   if (IsAutoInit)
1247     I->addAnnotationMetadata("auto-init");
1248 }
1249 
1250 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1251                                   Address Loc, bool isVolatile,
1252                                   CGBuilderTy &Builder) {
1253   llvm::Type *ElTy = Loc.getElementType();
1254   llvm::Constant *constant =
1255       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1256   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1257                         /*IsAutoInit=*/true);
1258 }
1259 
1260 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1261                                      Address Loc, bool isVolatile,
1262                                      CGBuilderTy &Builder) {
1263   llvm::Type *ElTy = Loc.getElementType();
1264   llvm::Constant *constant = constWithPadding(
1265       CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1266   assert(!isa<llvm::UndefValue>(constant));
1267   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1268                         /*IsAutoInit=*/true);
1269 }
1270 
1271 static bool containsUndef(llvm::Constant *constant) {
1272   auto *Ty = constant->getType();
1273   if (isa<llvm::UndefValue>(constant))
1274     return true;
1275   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1276     for (llvm::Use &Op : constant->operands())
1277       if (containsUndef(cast<llvm::Constant>(Op)))
1278         return true;
1279   return false;
1280 }
1281 
1282 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1283                                     llvm::Constant *constant) {
1284   auto *Ty = constant->getType();
1285   if (isa<llvm::UndefValue>(constant))
1286     return patternOrZeroFor(CGM, isPattern, Ty);
1287   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1288     return constant;
1289   if (!containsUndef(constant))
1290     return constant;
1291   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1292   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1293     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1294     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1295   }
1296   if (Ty->isStructTy())
1297     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1298   if (Ty->isArrayTy())
1299     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1300   assert(Ty->isVectorTy());
1301   return llvm::ConstantVector::get(Values);
1302 }
1303 
1304 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1305 /// variable declaration with auto, register, or no storage class specifier.
1306 /// These turn into simple stack objects, or GlobalValues depending on target.
1307 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1308   AutoVarEmission emission = EmitAutoVarAlloca(D);
1309   EmitAutoVarInit(emission);
1310   EmitAutoVarCleanups(emission);
1311 }
1312 
1313 /// Emit a lifetime.begin marker if some criteria are satisfied.
1314 /// \return a pointer to the temporary size Value if a marker was emitted, null
1315 /// otherwise
1316 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1317                                                 llvm::Value *Addr) {
1318   if (!ShouldEmitLifetimeMarkers)
1319     return nullptr;
1320 
1321   assert(Addr->getType()->getPointerAddressSpace() ==
1322              CGM.getDataLayout().getAllocaAddrSpace() &&
1323          "Pointer should be in alloca address space");
1324   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1325   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1326   llvm::CallInst *C =
1327       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1328   C->setDoesNotThrow();
1329   return SizeV;
1330 }
1331 
1332 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1333   assert(Addr->getType()->getPointerAddressSpace() ==
1334              CGM.getDataLayout().getAllocaAddrSpace() &&
1335          "Pointer should be in alloca address space");
1336   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1337   llvm::CallInst *C =
1338       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1339   C->setDoesNotThrow();
1340 }
1341 
1342 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1343     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1344   // For each dimension stores its QualType and corresponding
1345   // size-expression Value.
1346   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1347   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1348 
1349   // Break down the array into individual dimensions.
1350   QualType Type1D = D.getType();
1351   while (getContext().getAsVariableArrayType(Type1D)) {
1352     auto VlaSize = getVLAElements1D(Type1D);
1353     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1354       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1355     else {
1356       // Generate a locally unique name for the size expression.
1357       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1358       SmallString<12> Buffer;
1359       StringRef NameRef = Name.toStringRef(Buffer);
1360       auto &Ident = getContext().Idents.getOwn(NameRef);
1361       VLAExprNames.push_back(&Ident);
1362       auto SizeExprAddr =
1363           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1364       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1365       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1366                               Type1D.getUnqualifiedType());
1367     }
1368     Type1D = VlaSize.Type;
1369   }
1370 
1371   if (!EmitDebugInfo)
1372     return;
1373 
1374   // Register each dimension's size-expression with a DILocalVariable,
1375   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1376   // to describe this array.
1377   unsigned NameIdx = 0;
1378   for (auto &VlaSize : Dimensions) {
1379     llvm::Metadata *MD;
1380     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1381       MD = llvm::ConstantAsMetadata::get(C);
1382     else {
1383       // Create an artificial VarDecl to generate debug info for.
1384       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1385       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1386       auto QT = getContext().getIntTypeForBitwidth(
1387           VlaExprTy->getScalarSizeInBits(), false);
1388       auto *ArtificialDecl = VarDecl::Create(
1389           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1390           D.getLocation(), D.getLocation(), NameIdent, QT,
1391           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1392       ArtificialDecl->setImplicit();
1393 
1394       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1395                                          Builder);
1396     }
1397     assert(MD && "No Size expression debug node created");
1398     DI->registerVLASizeExpression(VlaSize.Type, MD);
1399   }
1400 }
1401 
1402 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1403 /// local variable.  Does not emit initialization or destruction.
1404 CodeGenFunction::AutoVarEmission
1405 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1406   QualType Ty = D.getType();
1407   assert(
1408       Ty.getAddressSpace() == LangAS::Default ||
1409       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1410 
1411   AutoVarEmission emission(D);
1412 
1413   bool isEscapingByRef = D.isEscapingByref();
1414   emission.IsEscapingByRef = isEscapingByRef;
1415 
1416   CharUnits alignment = getContext().getDeclAlign(&D);
1417 
1418   // If the type is variably-modified, emit all the VLA sizes for it.
1419   if (Ty->isVariablyModifiedType())
1420     EmitVariablyModifiedType(Ty);
1421 
1422   auto *DI = getDebugInfo();
1423   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1424 
1425   Address address = Address::invalid();
1426   Address AllocaAddr = Address::invalid();
1427   Address OpenMPLocalAddr = Address::invalid();
1428   if (CGM.getLangOpts().OpenMPIRBuilder)
1429     OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1430   else
1431     OpenMPLocalAddr =
1432         getLangOpts().OpenMP
1433             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1434             : Address::invalid();
1435 
1436   bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1437 
1438   if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1439     address = OpenMPLocalAddr;
1440   } else if (Ty->isConstantSizeType()) {
1441     // If this value is an array or struct with a statically determinable
1442     // constant initializer, there are optimizations we can do.
1443     //
1444     // TODO: We should constant-evaluate the initializer of any variable,
1445     // as long as it is initialized by a constant expression. Currently,
1446     // isConstantInitializer produces wrong answers for structs with
1447     // reference or bitfield members, and a few other cases, and checking
1448     // for POD-ness protects us from some of these.
1449     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1450         (D.isConstexpr() ||
1451          ((Ty.isPODType(getContext()) ||
1452            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1453           D.getInit()->isConstantInitializer(getContext(), false)))) {
1454 
1455       // If the variable's a const type, and it's neither an NRVO
1456       // candidate nor a __block variable and has no mutable members,
1457       // emit it as a global instead.
1458       // Exception is if a variable is located in non-constant address space
1459       // in OpenCL.
1460       if ((!getLangOpts().OpenCL ||
1461            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1462           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1463            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1464         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1465 
1466         // Signal this condition to later callbacks.
1467         emission.Addr = Address::invalid();
1468         assert(emission.wasEmittedAsGlobal());
1469         return emission;
1470       }
1471 
1472       // Otherwise, tell the initialization code that we're in this case.
1473       emission.IsConstantAggregate = true;
1474     }
1475 
1476     // A normal fixed sized variable becomes an alloca in the entry block,
1477     // unless:
1478     // - it's an NRVO variable.
1479     // - we are compiling OpenMP and it's an OpenMP local variable.
1480     if (NRVO) {
1481       // The named return value optimization: allocate this variable in the
1482       // return slot, so that we can elide the copy when returning this
1483       // variable (C++0x [class.copy]p34).
1484       address = ReturnValue;
1485 
1486       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1487         const auto *RD = RecordTy->getDecl();
1488         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1489         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1490             RD->isNonTrivialToPrimitiveDestroy()) {
1491           // Create a flag that is used to indicate when the NRVO was applied
1492           // to this variable. Set it to zero to indicate that NRVO was not
1493           // applied.
1494           llvm::Value *Zero = Builder.getFalse();
1495           Address NRVOFlag =
1496             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1497           EnsureInsertPoint();
1498           Builder.CreateStore(Zero, NRVOFlag);
1499 
1500           // Record the NRVO flag for this variable.
1501           NRVOFlags[&D] = NRVOFlag.getPointer();
1502           emission.NRVOFlag = NRVOFlag.getPointer();
1503         }
1504       }
1505     } else {
1506       CharUnits allocaAlignment;
1507       llvm::Type *allocaTy;
1508       if (isEscapingByRef) {
1509         auto &byrefInfo = getBlockByrefInfo(&D);
1510         allocaTy = byrefInfo.Type;
1511         allocaAlignment = byrefInfo.ByrefAlignment;
1512       } else {
1513         allocaTy = ConvertTypeForMem(Ty);
1514         allocaAlignment = alignment;
1515       }
1516 
1517       // Create the alloca.  Note that we set the name separately from
1518       // building the instruction so that it's there even in no-asserts
1519       // builds.
1520       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1521                                  /*ArraySize=*/nullptr, &AllocaAddr);
1522 
1523       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1524       // the catch parameter starts in the catchpad instruction, and we can't
1525       // insert code in those basic blocks.
1526       bool IsMSCatchParam =
1527           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1528 
1529       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1530       // if we don't have a valid insertion point (?).
1531       if (HaveInsertPoint() && !IsMSCatchParam) {
1532         // If there's a jump into the lifetime of this variable, its lifetime
1533         // gets broken up into several regions in IR, which requires more work
1534         // to handle correctly. For now, just omit the intrinsics; this is a
1535         // rare case, and it's better to just be conservatively correct.
1536         // PR28267.
1537         //
1538         // We have to do this in all language modes if there's a jump past the
1539         // declaration. We also have to do it in C if there's a jump to an
1540         // earlier point in the current block because non-VLA lifetimes begin as
1541         // soon as the containing block is entered, not when its variables
1542         // actually come into scope; suppressing the lifetime annotations
1543         // completely in this case is unnecessarily pessimistic, but again, this
1544         // is rare.
1545         if (!Bypasses.IsBypassed(&D) &&
1546             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1547           llvm::TypeSize size =
1548               CGM.getDataLayout().getTypeAllocSize(allocaTy);
1549           emission.SizeForLifetimeMarkers =
1550               size.isScalable() ? EmitLifetimeStart(-1, AllocaAddr.getPointer())
1551                                 : EmitLifetimeStart(size.getFixedSize(),
1552                                                     AllocaAddr.getPointer());
1553         }
1554       } else {
1555         assert(!emission.useLifetimeMarkers());
1556       }
1557     }
1558   } else {
1559     EnsureInsertPoint();
1560 
1561     if (!DidCallStackSave) {
1562       // Save the stack.
1563       Address Stack =
1564         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1565 
1566       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1567       llvm::Value *V = Builder.CreateCall(F);
1568       Builder.CreateStore(V, Stack);
1569 
1570       DidCallStackSave = true;
1571 
1572       // Push a cleanup block and restore the stack there.
1573       // FIXME: in general circumstances, this should be an EH cleanup.
1574       pushStackRestore(NormalCleanup, Stack);
1575     }
1576 
1577     auto VlaSize = getVLASize(Ty);
1578     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1579 
1580     // Allocate memory for the array.
1581     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1582                                &AllocaAddr);
1583 
1584     // If we have debug info enabled, properly describe the VLA dimensions for
1585     // this type by registering the vla size expression for each of the
1586     // dimensions.
1587     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1588   }
1589 
1590   setAddrOfLocalVar(&D, address);
1591   emission.Addr = address;
1592   emission.AllocaAddr = AllocaAddr;
1593 
1594   // Emit debug info for local var declaration.
1595   if (EmitDebugInfo && HaveInsertPoint()) {
1596     Address DebugAddr = address;
1597     bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1598     DI->setLocation(D.getLocation());
1599 
1600     // If NRVO, use a pointer to the return address.
1601     if (UsePointerValue)
1602       DebugAddr = ReturnValuePointer;
1603 
1604     (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
1605                                         UsePointerValue);
1606   }
1607 
1608   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1609     EmitVarAnnotations(&D, address.getPointer());
1610 
1611   // Make sure we call @llvm.lifetime.end.
1612   if (emission.useLifetimeMarkers())
1613     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1614                                          emission.getOriginalAllocatedAddress(),
1615                                          emission.getSizeForLifetimeMarkers());
1616 
1617   return emission;
1618 }
1619 
1620 static bool isCapturedBy(const VarDecl &, const Expr *);
1621 
1622 /// Determines whether the given __block variable is potentially
1623 /// captured by the given statement.
1624 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1625   if (const Expr *E = dyn_cast<Expr>(S))
1626     return isCapturedBy(Var, E);
1627   for (const Stmt *SubStmt : S->children())
1628     if (isCapturedBy(Var, SubStmt))
1629       return true;
1630   return false;
1631 }
1632 
1633 /// Determines whether the given __block variable is potentially
1634 /// captured by the given expression.
1635 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1636   // Skip the most common kinds of expressions that make
1637   // hierarchy-walking expensive.
1638   E = E->IgnoreParenCasts();
1639 
1640   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1641     const BlockDecl *Block = BE->getBlockDecl();
1642     for (const auto &I : Block->captures()) {
1643       if (I.getVariable() == &Var)
1644         return true;
1645     }
1646 
1647     // No need to walk into the subexpressions.
1648     return false;
1649   }
1650 
1651   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1652     const CompoundStmt *CS = SE->getSubStmt();
1653     for (const auto *BI : CS->body())
1654       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1655         if (isCapturedBy(Var, BIE))
1656           return true;
1657       }
1658       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1659           // special case declarations
1660           for (const auto *I : DS->decls()) {
1661               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1662                 const Expr *Init = VD->getInit();
1663                 if (Init && isCapturedBy(Var, Init))
1664                   return true;
1665               }
1666           }
1667       }
1668       else
1669         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1670         // Later, provide code to poke into statements for capture analysis.
1671         return true;
1672     return false;
1673   }
1674 
1675   for (const Stmt *SubStmt : E->children())
1676     if (isCapturedBy(Var, SubStmt))
1677       return true;
1678 
1679   return false;
1680 }
1681 
1682 /// Determine whether the given initializer is trivial in the sense
1683 /// that it requires no code to be generated.
1684 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1685   if (!Init)
1686     return true;
1687 
1688   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1689     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1690       if (Constructor->isTrivial() &&
1691           Constructor->isDefaultConstructor() &&
1692           !Construct->requiresZeroInitialization())
1693         return true;
1694 
1695   return false;
1696 }
1697 
1698 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1699                                                       const VarDecl &D,
1700                                                       Address Loc) {
1701   auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1702   CharUnits Size = getContext().getTypeSizeInChars(type);
1703   bool isVolatile = type.isVolatileQualified();
1704   if (!Size.isZero()) {
1705     switch (trivialAutoVarInit) {
1706     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1707       llvm_unreachable("Uninitialized handled by caller");
1708     case LangOptions::TrivialAutoVarInitKind::Zero:
1709       if (CGM.stopAutoInit())
1710         return;
1711       emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1712       break;
1713     case LangOptions::TrivialAutoVarInitKind::Pattern:
1714       if (CGM.stopAutoInit())
1715         return;
1716       emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1717       break;
1718     }
1719     return;
1720   }
1721 
1722   // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1723   // them, so emit a memcpy with the VLA size to initialize each element.
1724   // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1725   // will catch that code, but there exists code which generates zero-sized
1726   // VLAs. Be nice and initialize whatever they requested.
1727   const auto *VlaType = getContext().getAsVariableArrayType(type);
1728   if (!VlaType)
1729     return;
1730   auto VlaSize = getVLASize(VlaType);
1731   auto SizeVal = VlaSize.NumElts;
1732   CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1733   switch (trivialAutoVarInit) {
1734   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1735     llvm_unreachable("Uninitialized handled by caller");
1736 
1737   case LangOptions::TrivialAutoVarInitKind::Zero: {
1738     if (CGM.stopAutoInit())
1739       return;
1740     if (!EltSize.isOne())
1741       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1742     auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0),
1743                                    SizeVal, isVolatile);
1744     I->addAnnotationMetadata("auto-init");
1745     break;
1746   }
1747 
1748   case LangOptions::TrivialAutoVarInitKind::Pattern: {
1749     if (CGM.stopAutoInit())
1750       return;
1751     llvm::Type *ElTy = Loc.getElementType();
1752     llvm::Constant *Constant = constWithPadding(
1753         CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1754     CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1755     llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1756     llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1757     llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1758     llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1759         SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1760         "vla.iszerosized");
1761     Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1762     EmitBlock(SetupBB);
1763     if (!EltSize.isOne())
1764       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1765     llvm::Value *BaseSizeInChars =
1766         llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1767     Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1768     llvm::Value *End =
1769         Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
1770     llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1771     EmitBlock(LoopBB);
1772     llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1773     Cur->addIncoming(Begin.getPointer(), OriginBB);
1774     CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1775     auto *I =
1776         Builder.CreateMemCpy(Address(Cur, CurAlign),
1777                              createUnnamedGlobalForMemcpyFrom(
1778                                  CGM, D, Builder, Constant, ConstantAlign),
1779                              BaseSizeInChars, isVolatile);
1780     I->addAnnotationMetadata("auto-init");
1781     llvm::Value *Next =
1782         Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1783     llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1784     Builder.CreateCondBr(Done, ContBB, LoopBB);
1785     Cur->addIncoming(Next, LoopBB);
1786     EmitBlock(ContBB);
1787   } break;
1788   }
1789 }
1790 
1791 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1792   assert(emission.Variable && "emission was not valid!");
1793 
1794   // If this was emitted as a global constant, we're done.
1795   if (emission.wasEmittedAsGlobal()) return;
1796 
1797   const VarDecl &D = *emission.Variable;
1798   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1799   QualType type = D.getType();
1800 
1801   // If this local has an initializer, emit it now.
1802   const Expr *Init = D.getInit();
1803 
1804   // If we are at an unreachable point, we don't need to emit the initializer
1805   // unless it contains a label.
1806   if (!HaveInsertPoint()) {
1807     if (!Init || !ContainsLabel(Init)) return;
1808     EnsureInsertPoint();
1809   }
1810 
1811   // Initialize the structure of a __block variable.
1812   if (emission.IsEscapingByRef)
1813     emitByrefStructureInit(emission);
1814 
1815   // Initialize the variable here if it doesn't have a initializer and it is a
1816   // C struct that is non-trivial to initialize or an array containing such a
1817   // struct.
1818   if (!Init &&
1819       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1820           QualType::PDIK_Struct) {
1821     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1822     if (emission.IsEscapingByRef)
1823       drillIntoBlockVariable(*this, Dst, &D);
1824     defaultInitNonTrivialCStructVar(Dst);
1825     return;
1826   }
1827 
1828   // Check whether this is a byref variable that's potentially
1829   // captured and moved by its own initializer.  If so, we'll need to
1830   // emit the initializer first, then copy into the variable.
1831   bool capturedByInit =
1832       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1833 
1834   bool locIsByrefHeader = !capturedByInit;
1835   const Address Loc =
1836       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1837 
1838   // Note: constexpr already initializes everything correctly.
1839   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1840       (D.isConstexpr()
1841            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1842            : (D.getAttr<UninitializedAttr>()
1843                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1844                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1845 
1846   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1847     if (trivialAutoVarInit ==
1848         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1849       return;
1850 
1851     // Only initialize a __block's storage: we always initialize the header.
1852     if (emission.IsEscapingByRef && !locIsByrefHeader)
1853       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1854 
1855     return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1856   };
1857 
1858   if (isTrivialInitializer(Init))
1859     return initializeWhatIsTechnicallyUninitialized(Loc);
1860 
1861   llvm::Constant *constant = nullptr;
1862   if (emission.IsConstantAggregate ||
1863       D.mightBeUsableInConstantExpressions(getContext())) {
1864     assert(!capturedByInit && "constant init contains a capturing block?");
1865     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1866     if (constant && !constant->isZeroValue() &&
1867         (trivialAutoVarInit !=
1868          LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1869       IsPattern isPattern =
1870           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1871               ? IsPattern::Yes
1872               : IsPattern::No;
1873       // C guarantees that brace-init with fewer initializers than members in
1874       // the aggregate will initialize the rest of the aggregate as-if it were
1875       // static initialization. In turn static initialization guarantees that
1876       // padding is initialized to zero bits. We could instead pattern-init if D
1877       // has any ImplicitValueInitExpr, but that seems to be unintuitive
1878       // behavior.
1879       constant = constWithPadding(CGM, IsPattern::No,
1880                                   replaceUndef(CGM, isPattern, constant));
1881     }
1882   }
1883 
1884   if (!constant) {
1885     initializeWhatIsTechnicallyUninitialized(Loc);
1886     LValue lv = MakeAddrLValue(Loc, type);
1887     lv.setNonGC(true);
1888     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1889   }
1890 
1891   if (!emission.IsConstantAggregate) {
1892     // For simple scalar/complex initialization, store the value directly.
1893     LValue lv = MakeAddrLValue(Loc, type);
1894     lv.setNonGC(true);
1895     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1896   }
1897 
1898   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1899   emitStoresForConstant(
1900       CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
1901       type.isVolatileQualified(), Builder, constant, /*IsAutoInit=*/false);
1902 }
1903 
1904 /// Emit an expression as an initializer for an object (variable, field, etc.)
1905 /// at the given location.  The expression is not necessarily the normal
1906 /// initializer for the object, and the address is not necessarily
1907 /// its normal location.
1908 ///
1909 /// \param init the initializing expression
1910 /// \param D the object to act as if we're initializing
1911 /// \param lvalue the lvalue to initialize
1912 /// \param capturedByInit true if \p D is a __block variable
1913 ///   whose address is potentially changed by the initializer
1914 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1915                                      LValue lvalue, bool capturedByInit) {
1916   QualType type = D->getType();
1917 
1918   if (type->isReferenceType()) {
1919     RValue rvalue = EmitReferenceBindingToExpr(init);
1920     if (capturedByInit)
1921       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1922     EmitStoreThroughLValue(rvalue, lvalue, true);
1923     return;
1924   }
1925   switch (getEvaluationKind(type)) {
1926   case TEK_Scalar:
1927     EmitScalarInit(init, D, lvalue, capturedByInit);
1928     return;
1929   case TEK_Complex: {
1930     ComplexPairTy complex = EmitComplexExpr(init);
1931     if (capturedByInit)
1932       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1933     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1934     return;
1935   }
1936   case TEK_Aggregate:
1937     if (type->isAtomicType()) {
1938       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1939     } else {
1940       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1941       if (isa<VarDecl>(D))
1942         Overlap = AggValueSlot::DoesNotOverlap;
1943       else if (auto *FD = dyn_cast<FieldDecl>(D))
1944         Overlap = getOverlapForFieldInit(FD);
1945       // TODO: how can we delay here if D is captured by its initializer?
1946       EmitAggExpr(init, AggValueSlot::forLValue(
1947                             lvalue, *this, AggValueSlot::IsDestructed,
1948                             AggValueSlot::DoesNotNeedGCBarriers,
1949                             AggValueSlot::IsNotAliased, Overlap));
1950     }
1951     return;
1952   }
1953   llvm_unreachable("bad evaluation kind");
1954 }
1955 
1956 /// Enter a destroy cleanup for the given local variable.
1957 void CodeGenFunction::emitAutoVarTypeCleanup(
1958                             const CodeGenFunction::AutoVarEmission &emission,
1959                             QualType::DestructionKind dtorKind) {
1960   assert(dtorKind != QualType::DK_none);
1961 
1962   // Note that for __block variables, we want to destroy the
1963   // original stack object, not the possibly forwarded object.
1964   Address addr = emission.getObjectAddress(*this);
1965 
1966   const VarDecl *var = emission.Variable;
1967   QualType type = var->getType();
1968 
1969   CleanupKind cleanupKind = NormalAndEHCleanup;
1970   CodeGenFunction::Destroyer *destroyer = nullptr;
1971 
1972   switch (dtorKind) {
1973   case QualType::DK_none:
1974     llvm_unreachable("no cleanup for trivially-destructible variable");
1975 
1976   case QualType::DK_cxx_destructor:
1977     // If there's an NRVO flag on the emission, we need a different
1978     // cleanup.
1979     if (emission.NRVOFlag) {
1980       assert(!type->isArrayType());
1981       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1982       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
1983                                                   emission.NRVOFlag);
1984       return;
1985     }
1986     break;
1987 
1988   case QualType::DK_objc_strong_lifetime:
1989     // Suppress cleanups for pseudo-strong variables.
1990     if (var->isARCPseudoStrong()) return;
1991 
1992     // Otherwise, consider whether to use an EH cleanup or not.
1993     cleanupKind = getARCCleanupKind();
1994 
1995     // Use the imprecise destroyer by default.
1996     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1997       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1998     break;
1999 
2000   case QualType::DK_objc_weak_lifetime:
2001     break;
2002 
2003   case QualType::DK_nontrivial_c_struct:
2004     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
2005     if (emission.NRVOFlag) {
2006       assert(!type->isArrayType());
2007       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
2008                                                 emission.NRVOFlag, type);
2009       return;
2010     }
2011     break;
2012   }
2013 
2014   // If we haven't chosen a more specific destroyer, use the default.
2015   if (!destroyer) destroyer = getDestroyer(dtorKind);
2016 
2017   // Use an EH cleanup in array destructors iff the destructor itself
2018   // is being pushed as an EH cleanup.
2019   bool useEHCleanup = (cleanupKind & EHCleanup);
2020   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
2021                                      useEHCleanup);
2022 }
2023 
2024 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
2025   assert(emission.Variable && "emission was not valid!");
2026 
2027   // If this was emitted as a global constant, we're done.
2028   if (emission.wasEmittedAsGlobal()) return;
2029 
2030   // If we don't have an insertion point, we're done.  Sema prevents
2031   // us from jumping into any of these scopes anyway.
2032   if (!HaveInsertPoint()) return;
2033 
2034   const VarDecl &D = *emission.Variable;
2035 
2036   // Check the type for a cleanup.
2037   if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
2038     emitAutoVarTypeCleanup(emission, dtorKind);
2039 
2040   // In GC mode, honor objc_precise_lifetime.
2041   if (getLangOpts().getGC() != LangOptions::NonGC &&
2042       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2043     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2044   }
2045 
2046   // Handle the cleanup attribute.
2047   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2048     const FunctionDecl *FD = CA->getFunctionDecl();
2049 
2050     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2051     assert(F && "Could not find function!");
2052 
2053     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2054     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2055   }
2056 
2057   // If this is a block variable, call _Block_object_destroy
2058   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2059   // mode.
2060   if (emission.IsEscapingByRef &&
2061       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2062     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2063     if (emission.Variable->getType().isObjCGCWeak())
2064       Flags |= BLOCK_FIELD_IS_WEAK;
2065     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2066                       /*LoadBlockVarAddr*/ false,
2067                       cxxDestructorCanThrow(emission.Variable->getType()));
2068   }
2069 }
2070 
2071 CodeGenFunction::Destroyer *
2072 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2073   switch (kind) {
2074   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2075   case QualType::DK_cxx_destructor:
2076     return destroyCXXObject;
2077   case QualType::DK_objc_strong_lifetime:
2078     return destroyARCStrongPrecise;
2079   case QualType::DK_objc_weak_lifetime:
2080     return destroyARCWeak;
2081   case QualType::DK_nontrivial_c_struct:
2082     return destroyNonTrivialCStruct;
2083   }
2084   llvm_unreachable("Unknown DestructionKind");
2085 }
2086 
2087 /// pushEHDestroy - Push the standard destructor for the given type as
2088 /// an EH-only cleanup.
2089 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2090                                     Address addr, QualType type) {
2091   assert(dtorKind && "cannot push destructor for trivial type");
2092   assert(needsEHCleanup(dtorKind));
2093 
2094   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2095 }
2096 
2097 /// pushDestroy - Push the standard destructor for the given type as
2098 /// at least a normal cleanup.
2099 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2100                                   Address addr, QualType type) {
2101   assert(dtorKind && "cannot push destructor for trivial type");
2102 
2103   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2104   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2105               cleanupKind & EHCleanup);
2106 }
2107 
2108 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2109                                   QualType type, Destroyer *destroyer,
2110                                   bool useEHCleanupForArray) {
2111   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2112                                      destroyer, useEHCleanupForArray);
2113 }
2114 
2115 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2116   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2117 }
2118 
2119 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind,
2120                                                   Address addr, QualType type,
2121                                                   Destroyer *destroyer,
2122                                                   bool useEHCleanupForArray) {
2123   // If we're not in a conditional branch, we don't need to bother generating a
2124   // conditional cleanup.
2125   if (!isInConditionalBranch()) {
2126     // Push an EH-only cleanup for the object now.
2127     // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2128     // around in case a temporary's destructor throws an exception.
2129     if (cleanupKind & EHCleanup)
2130       EHStack.pushCleanup<DestroyObject>(
2131           static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2132           destroyer, useEHCleanupForArray);
2133 
2134     return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>(
2135         cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray);
2136   }
2137 
2138   // Otherwise, we should only destroy the object if it's been initialized.
2139   // Re-use the active flag and saved address across both the EH and end of
2140   // scope cleanups.
2141 
2142   using SavedType = typename DominatingValue<Address>::saved_type;
2143   using ConditionalCleanupType =
2144       EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType,
2145                                        Destroyer *, bool>;
2146 
2147   Address ActiveFlag = createCleanupActiveFlag();
2148   SavedType SavedAddr = saveValueInCond(addr);
2149 
2150   if (cleanupKind & EHCleanup) {
2151     EHStack.pushCleanup<ConditionalCleanupType>(
2152         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type,
2153         destroyer, useEHCleanupForArray);
2154     initFullExprCleanupWithFlag(ActiveFlag);
2155   }
2156 
2157   pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>(
2158       cleanupKind, ActiveFlag, SavedAddr, type, destroyer,
2159       useEHCleanupForArray);
2160 }
2161 
2162 /// emitDestroy - Immediately perform the destruction of the given
2163 /// object.
2164 ///
2165 /// \param addr - the address of the object; a type*
2166 /// \param type - the type of the object; if an array type, all
2167 ///   objects are destroyed in reverse order
2168 /// \param destroyer - the function to call to destroy individual
2169 ///   elements
2170 /// \param useEHCleanupForArray - whether an EH cleanup should be
2171 ///   used when destroying array elements, in case one of the
2172 ///   destructions throws an exception
2173 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2174                                   Destroyer *destroyer,
2175                                   bool useEHCleanupForArray) {
2176   const ArrayType *arrayType = getContext().getAsArrayType(type);
2177   if (!arrayType)
2178     return destroyer(*this, addr, type);
2179 
2180   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2181 
2182   CharUnits elementAlign =
2183     addr.getAlignment()
2184         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2185 
2186   // Normally we have to check whether the array is zero-length.
2187   bool checkZeroLength = true;
2188 
2189   // But if the array length is constant, we can suppress that.
2190   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2191     // ...and if it's constant zero, we can just skip the entire thing.
2192     if (constLength->isZero()) return;
2193     checkZeroLength = false;
2194   }
2195 
2196   llvm::Value *begin = addr.getPointer();
2197   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
2198   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2199                    checkZeroLength, useEHCleanupForArray);
2200 }
2201 
2202 /// emitArrayDestroy - Destroys all the elements of the given array,
2203 /// beginning from last to first.  The array cannot be zero-length.
2204 ///
2205 /// \param begin - a type* denoting the first element of the array
2206 /// \param end - a type* denoting one past the end of the array
2207 /// \param elementType - the element type of the array
2208 /// \param destroyer - the function to call to destroy elements
2209 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2210 ///   the remaining elements in case the destruction of a single
2211 ///   element throws
2212 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2213                                        llvm::Value *end,
2214                                        QualType elementType,
2215                                        CharUnits elementAlign,
2216                                        Destroyer *destroyer,
2217                                        bool checkZeroLength,
2218                                        bool useEHCleanup) {
2219   assert(!elementType->isArrayType());
2220 
2221   // The basic structure here is a do-while loop, because we don't
2222   // need to check for the zero-element case.
2223   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2224   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2225 
2226   if (checkZeroLength) {
2227     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2228                                                 "arraydestroy.isempty");
2229     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2230   }
2231 
2232   // Enter the loop body, making that address the current address.
2233   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2234   EmitBlock(bodyBB);
2235   llvm::PHINode *elementPast =
2236     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2237   elementPast->addIncoming(end, entryBB);
2238 
2239   // Shift the address back by one element.
2240   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2241   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2242                                                    "arraydestroy.element");
2243 
2244   if (useEHCleanup)
2245     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2246                                    destroyer);
2247 
2248   // Perform the actual destruction there.
2249   destroyer(*this, Address(element, elementAlign), elementType);
2250 
2251   if (useEHCleanup)
2252     PopCleanupBlock();
2253 
2254   // Check whether we've reached the end.
2255   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2256   Builder.CreateCondBr(done, doneBB, bodyBB);
2257   elementPast->addIncoming(element, Builder.GetInsertBlock());
2258 
2259   // Done.
2260   EmitBlock(doneBB);
2261 }
2262 
2263 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2264 /// emitArrayDestroy, the element type here may still be an array type.
2265 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2266                                     llvm::Value *begin, llvm::Value *end,
2267                                     QualType type, CharUnits elementAlign,
2268                                     CodeGenFunction::Destroyer *destroyer) {
2269   // If the element type is itself an array, drill down.
2270   unsigned arrayDepth = 0;
2271   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2272     // VLAs don't require a GEP index to walk into.
2273     if (!isa<VariableArrayType>(arrayType))
2274       arrayDepth++;
2275     type = arrayType->getElementType();
2276   }
2277 
2278   if (arrayDepth) {
2279     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2280 
2281     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2282     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2283     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2284   }
2285 
2286   // Destroy the array.  We don't ever need an EH cleanup because we
2287   // assume that we're in an EH cleanup ourselves, so a throwing
2288   // destructor causes an immediate terminate.
2289   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2290                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2291 }
2292 
2293 namespace {
2294   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2295   /// array destroy where the end pointer is regularly determined and
2296   /// does not need to be loaded from a local.
2297   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2298     llvm::Value *ArrayBegin;
2299     llvm::Value *ArrayEnd;
2300     QualType ElementType;
2301     CodeGenFunction::Destroyer *Destroyer;
2302     CharUnits ElementAlign;
2303   public:
2304     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2305                                QualType elementType, CharUnits elementAlign,
2306                                CodeGenFunction::Destroyer *destroyer)
2307       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2308         ElementType(elementType), Destroyer(destroyer),
2309         ElementAlign(elementAlign) {}
2310 
2311     void Emit(CodeGenFunction &CGF, Flags flags) override {
2312       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2313                               ElementType, ElementAlign, Destroyer);
2314     }
2315   };
2316 
2317   /// IrregularPartialArrayDestroy - a cleanup which performs a
2318   /// partial array destroy where the end pointer is irregularly
2319   /// determined and must be loaded from a local.
2320   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2321     llvm::Value *ArrayBegin;
2322     Address ArrayEndPointer;
2323     QualType ElementType;
2324     CodeGenFunction::Destroyer *Destroyer;
2325     CharUnits ElementAlign;
2326   public:
2327     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2328                                  Address arrayEndPointer,
2329                                  QualType elementType,
2330                                  CharUnits elementAlign,
2331                                  CodeGenFunction::Destroyer *destroyer)
2332       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2333         ElementType(elementType), Destroyer(destroyer),
2334         ElementAlign(elementAlign) {}
2335 
2336     void Emit(CodeGenFunction &CGF, Flags flags) override {
2337       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2338       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2339                               ElementType, ElementAlign, Destroyer);
2340     }
2341   };
2342 } // end anonymous namespace
2343 
2344 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2345 /// already-constructed elements of the given array.  The cleanup
2346 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2347 ///
2348 /// \param elementType - the immediate element type of the array;
2349 ///   possibly still an array type
2350 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2351                                                        Address arrayEndPointer,
2352                                                        QualType elementType,
2353                                                        CharUnits elementAlign,
2354                                                        Destroyer *destroyer) {
2355   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2356                                                     arrayBegin, arrayEndPointer,
2357                                                     elementType, elementAlign,
2358                                                     destroyer);
2359 }
2360 
2361 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2362 /// already-constructed elements of the given array.  The cleanup
2363 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2364 ///
2365 /// \param elementType - the immediate element type of the array;
2366 ///   possibly still an array type
2367 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2368                                                      llvm::Value *arrayEnd,
2369                                                      QualType elementType,
2370                                                      CharUnits elementAlign,
2371                                                      Destroyer *destroyer) {
2372   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2373                                                   arrayBegin, arrayEnd,
2374                                                   elementType, elementAlign,
2375                                                   destroyer);
2376 }
2377 
2378 /// Lazily declare the @llvm.lifetime.start intrinsic.
2379 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2380   if (LifetimeStartFn)
2381     return LifetimeStartFn;
2382   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2383     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2384   return LifetimeStartFn;
2385 }
2386 
2387 /// Lazily declare the @llvm.lifetime.end intrinsic.
2388 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2389   if (LifetimeEndFn)
2390     return LifetimeEndFn;
2391   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2392     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2393   return LifetimeEndFn;
2394 }
2395 
2396 namespace {
2397   /// A cleanup to perform a release of an object at the end of a
2398   /// function.  This is used to balance out the incoming +1 of a
2399   /// ns_consumed argument when we can't reasonably do that just by
2400   /// not doing the initial retain for a __block argument.
2401   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2402     ConsumeARCParameter(llvm::Value *param,
2403                         ARCPreciseLifetime_t precise)
2404       : Param(param), Precise(precise) {}
2405 
2406     llvm::Value *Param;
2407     ARCPreciseLifetime_t Precise;
2408 
2409     void Emit(CodeGenFunction &CGF, Flags flags) override {
2410       CGF.EmitARCRelease(Param, Precise);
2411     }
2412   };
2413 } // end anonymous namespace
2414 
2415 /// Emit an alloca (or GlobalValue depending on target)
2416 /// for the specified parameter and set up LocalDeclMap.
2417 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2418                                    unsigned ArgNo) {
2419   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2420   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2421          "Invalid argument to EmitParmDecl");
2422 
2423   Arg.getAnyValue()->setName(D.getName());
2424 
2425   QualType Ty = D.getType();
2426 
2427   // Use better IR generation for certain implicit parameters.
2428   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2429     // The only implicit argument a block has is its literal.
2430     // This may be passed as an inalloca'ed value on Windows x86.
2431     if (BlockInfo) {
2432       llvm::Value *V = Arg.isIndirect()
2433                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2434                            : Arg.getDirectValue();
2435       setBlockContextParameter(IPD, ArgNo, V);
2436       return;
2437     }
2438   }
2439 
2440   Address DeclPtr = Address::invalid();
2441   bool DoStore = false;
2442   bool IsScalar = hasScalarEvaluationKind(Ty);
2443   // If we already have a pointer to the argument, reuse the input pointer.
2444   if (Arg.isIndirect()) {
2445     DeclPtr = Arg.getIndirectAddress();
2446     // If we have a prettier pointer type at this point, bitcast to that.
2447     unsigned AS = DeclPtr.getType()->getAddressSpace();
2448     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2449     if (DeclPtr.getType() != IRTy)
2450       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2451     // Indirect argument is in alloca address space, which may be different
2452     // from the default address space.
2453     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2454     auto *V = DeclPtr.getPointer();
2455     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2456     auto DestLangAS =
2457         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2458     if (SrcLangAS != DestLangAS) {
2459       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2460              CGM.getDataLayout().getAllocaAddrSpace());
2461       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2462       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2463       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2464                             *this, V, SrcLangAS, DestLangAS, T, true),
2465                         DeclPtr.getAlignment());
2466     }
2467 
2468     // Push a destructor cleanup for this parameter if the ABI requires it.
2469     // Don't push a cleanup in a thunk for a method that will also emit a
2470     // cleanup.
2471     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2472         Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2473       if (QualType::DestructionKind DtorKind =
2474               D.needsDestruction(getContext())) {
2475         assert((DtorKind == QualType::DK_cxx_destructor ||
2476                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2477                "unexpected destructor type");
2478         pushDestroy(DtorKind, DeclPtr, Ty);
2479         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2480             EHStack.stable_begin();
2481       }
2482     }
2483   } else {
2484     // Check if the parameter address is controlled by OpenMP runtime.
2485     Address OpenMPLocalAddr =
2486         getLangOpts().OpenMP
2487             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2488             : Address::invalid();
2489     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2490       DeclPtr = OpenMPLocalAddr;
2491     } else {
2492       // Otherwise, create a temporary to hold the value.
2493       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2494                               D.getName() + ".addr");
2495     }
2496     DoStore = true;
2497   }
2498 
2499   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2500 
2501   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2502   if (IsScalar) {
2503     Qualifiers qs = Ty.getQualifiers();
2504     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2505       // We honor __attribute__((ns_consumed)) for types with lifetime.
2506       // For __strong, it's handled by just skipping the initial retain;
2507       // otherwise we have to balance out the initial +1 with an extra
2508       // cleanup to do the release at the end of the function.
2509       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2510 
2511       // If a parameter is pseudo-strong then we can omit the implicit retain.
2512       if (D.isARCPseudoStrong()) {
2513         assert(lt == Qualifiers::OCL_Strong &&
2514                "pseudo-strong variable isn't strong?");
2515         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2516         lt = Qualifiers::OCL_ExplicitNone;
2517       }
2518 
2519       // Load objects passed indirectly.
2520       if (Arg.isIndirect() && !ArgVal)
2521         ArgVal = Builder.CreateLoad(DeclPtr);
2522 
2523       if (lt == Qualifiers::OCL_Strong) {
2524         if (!isConsumed) {
2525           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2526             // use objc_storeStrong(&dest, value) for retaining the
2527             // object. But first, store a null into 'dest' because
2528             // objc_storeStrong attempts to release its old value.
2529             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2530             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2531             EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
2532             DoStore = false;
2533           }
2534           else
2535           // Don't use objc_retainBlock for block pointers, because we
2536           // don't want to Block_copy something just because we got it
2537           // as a parameter.
2538             ArgVal = EmitARCRetainNonBlock(ArgVal);
2539         }
2540       } else {
2541         // Push the cleanup for a consumed parameter.
2542         if (isConsumed) {
2543           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2544                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2545           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2546                                                    precise);
2547         }
2548 
2549         if (lt == Qualifiers::OCL_Weak) {
2550           EmitARCInitWeak(DeclPtr, ArgVal);
2551           DoStore = false; // The weak init is a store, no need to do two.
2552         }
2553       }
2554 
2555       // Enter the cleanup scope.
2556       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2557     }
2558   }
2559 
2560   // Store the initial value into the alloca.
2561   if (DoStore)
2562     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2563 
2564   setAddrOfLocalVar(&D, DeclPtr);
2565 
2566   // Emit debug info for param declarations in non-thunk functions.
2567   if (CGDebugInfo *DI = getDebugInfo()) {
2568     if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) {
2569       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2570     }
2571   }
2572 
2573   if (D.hasAttr<AnnotateAttr>())
2574     EmitVarAnnotations(&D, DeclPtr.getPointer());
2575 
2576   // We can only check return value nullability if all arguments to the
2577   // function satisfy their nullability preconditions. This makes it necessary
2578   // to emit null checks for args in the function body itself.
2579   if (requiresReturnValueNullabilityCheck()) {
2580     auto Nullability = Ty->getNullability(getContext());
2581     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2582       SanitizerScope SanScope(this);
2583       RetValNullabilityPrecondition =
2584           Builder.CreateAnd(RetValNullabilityPrecondition,
2585                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2586     }
2587   }
2588 }
2589 
2590 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2591                                             CodeGenFunction *CGF) {
2592   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2593     return;
2594   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2595 }
2596 
2597 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2598                                          CodeGenFunction *CGF) {
2599   if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2600       (!LangOpts.EmitAllDecls && !D->isUsed()))
2601     return;
2602   getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2603 }
2604 
2605 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2606   getOpenMPRuntime().processRequiresDirective(D);
2607 }
2608