1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/CodeGen/BackendUtil.h" 10 #include "clang/Basic/CodeGenOptions.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/FrontendDiagnostic.h" 15 #include "clang/Frontend/Utils.h" 16 #include "clang/Lex/HeaderSearchOptions.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/StackSafetyAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Bitcode/BitcodeReader.h" 25 #include "llvm/Bitcode/BitcodeWriter.h" 26 #include "llvm/Bitcode/BitcodeWriterPass.h" 27 #include "llvm/CodeGen/RegAllocRegistry.h" 28 #include "llvm/CodeGen/SchedulerRegistry.h" 29 #include "llvm/CodeGen/TargetSubtargetInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/IRPrintingPasses.h" 32 #include "llvm/IR/LegacyPassManager.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSummaryIndex.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/Verifier.h" 37 #include "llvm/LTO/LTOBackend.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/SubtargetFeature.h" 40 #include "llvm/Passes/PassBuilder.h" 41 #include "llvm/Passes/PassPlugin.h" 42 #include "llvm/Passes/StandardInstrumentations.h" 43 #include "llvm/Support/BuryPointer.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/PrettyStackTrace.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/TimeProfiler.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/ToolOutputFile.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Transforms/Coroutines.h" 55 #include "llvm/Transforms/Coroutines/CoroCleanup.h" 56 #include "llvm/Transforms/Coroutines/CoroEarly.h" 57 #include "llvm/Transforms/Coroutines/CoroElide.h" 58 #include "llvm/Transforms/Coroutines/CoroSplit.h" 59 #include "llvm/Transforms/IPO.h" 60 #include "llvm/Transforms/IPO/AlwaysInliner.h" 61 #include "llvm/Transforms/IPO/LowerTypeTests.h" 62 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 63 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 64 #include "llvm/Transforms/InstCombine/InstCombine.h" 65 #include "llvm/Transforms/Instrumentation.h" 66 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" 67 #include "llvm/Transforms/Instrumentation/BoundsChecking.h" 68 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h" 69 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" 70 #include "llvm/Transforms/Instrumentation/InstrProfiling.h" 71 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" 72 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" 73 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" 74 #include "llvm/Transforms/ObjCARC.h" 75 #include "llvm/Transforms/Scalar.h" 76 #include "llvm/Transforms/Scalar/GVN.h" 77 #include "llvm/Transforms/Utils.h" 78 #include "llvm/Transforms/Utils/CanonicalizeAliases.h" 79 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h" 80 #include "llvm/Transforms/Utils/NameAnonGlobals.h" 81 #include "llvm/Transforms/Utils/SymbolRewriter.h" 82 #include "llvm/Transforms/Utils/UniqueInternalLinkageNames.h" 83 #include <memory> 84 using namespace clang; 85 using namespace llvm; 86 87 #define HANDLE_EXTENSION(Ext) \ 88 llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); 89 #include "llvm/Support/Extension.def" 90 91 namespace { 92 93 // Default filename used for profile generation. 94 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw"; 95 96 class EmitAssemblyHelper { 97 DiagnosticsEngine &Diags; 98 const HeaderSearchOptions &HSOpts; 99 const CodeGenOptions &CodeGenOpts; 100 const clang::TargetOptions &TargetOpts; 101 const LangOptions &LangOpts; 102 Module *TheModule; 103 104 Timer CodeGenerationTime; 105 106 std::unique_ptr<raw_pwrite_stream> OS; 107 108 TargetIRAnalysis getTargetIRAnalysis() const { 109 if (TM) 110 return TM->getTargetIRAnalysis(); 111 112 return TargetIRAnalysis(); 113 } 114 115 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM); 116 117 /// Generates the TargetMachine. 118 /// Leaves TM unchanged if it is unable to create the target machine. 119 /// Some of our clang tests specify triples which are not built 120 /// into clang. This is okay because these tests check the generated 121 /// IR, and they require DataLayout which depends on the triple. 122 /// In this case, we allow this method to fail and not report an error. 123 /// When MustCreateTM is used, we print an error if we are unable to load 124 /// the requested target. 125 void CreateTargetMachine(bool MustCreateTM); 126 127 /// Add passes necessary to emit assembly or LLVM IR. 128 /// 129 /// \return True on success. 130 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action, 131 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS); 132 133 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) { 134 std::error_code EC; 135 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC, 136 llvm::sys::fs::OF_None); 137 if (EC) { 138 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message(); 139 F.reset(); 140 } 141 return F; 142 } 143 144 public: 145 EmitAssemblyHelper(DiagnosticsEngine &_Diags, 146 const HeaderSearchOptions &HeaderSearchOpts, 147 const CodeGenOptions &CGOpts, 148 const clang::TargetOptions &TOpts, 149 const LangOptions &LOpts, Module *M) 150 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts), 151 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M), 152 CodeGenerationTime("codegen", "Code Generation Time") {} 153 154 ~EmitAssemblyHelper() { 155 if (CodeGenOpts.DisableFree) 156 BuryPointer(std::move(TM)); 157 } 158 159 std::unique_ptr<TargetMachine> TM; 160 161 void EmitAssembly(BackendAction Action, 162 std::unique_ptr<raw_pwrite_stream> OS); 163 164 void EmitAssemblyWithNewPassManager(BackendAction Action, 165 std::unique_ptr<raw_pwrite_stream> OS); 166 }; 167 168 // We need this wrapper to access LangOpts and CGOpts from extension functions 169 // that we add to the PassManagerBuilder. 170 class PassManagerBuilderWrapper : public PassManagerBuilder { 171 public: 172 PassManagerBuilderWrapper(const Triple &TargetTriple, 173 const CodeGenOptions &CGOpts, 174 const LangOptions &LangOpts) 175 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts), 176 LangOpts(LangOpts) {} 177 const Triple &getTargetTriple() const { return TargetTriple; } 178 const CodeGenOptions &getCGOpts() const { return CGOpts; } 179 const LangOptions &getLangOpts() const { return LangOpts; } 180 181 private: 182 const Triple &TargetTriple; 183 const CodeGenOptions &CGOpts; 184 const LangOptions &LangOpts; 185 }; 186 } 187 188 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 189 if (Builder.OptLevel > 0) 190 PM.add(createObjCARCAPElimPass()); 191 } 192 193 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 194 if (Builder.OptLevel > 0) 195 PM.add(createObjCARCExpandPass()); 196 } 197 198 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 199 if (Builder.OptLevel > 0) 200 PM.add(createObjCARCOptPass()); 201 } 202 203 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 204 legacy::PassManagerBase &PM) { 205 PM.add(createAddDiscriminatorsPass()); 206 } 207 208 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 209 legacy::PassManagerBase &PM) { 210 PM.add(createBoundsCheckingLegacyPass()); 211 } 212 213 static SanitizerCoverageOptions 214 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) { 215 SanitizerCoverageOptions Opts; 216 Opts.CoverageType = 217 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 218 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 219 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 220 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 221 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv; 222 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep; 223 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 224 Opts.TracePC = CGOpts.SanitizeCoverageTracePC; 225 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard; 226 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune; 227 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters; 228 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag; 229 Opts.PCTable = CGOpts.SanitizeCoveragePCTable; 230 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth; 231 return Opts; 232 } 233 234 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 235 legacy::PassManagerBase &PM) { 236 const PassManagerBuilderWrapper &BuilderWrapper = 237 static_cast<const PassManagerBuilderWrapper &>(Builder); 238 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 239 auto Opts = getSancovOptsFromCGOpts(CGOpts); 240 PM.add(createModuleSanitizerCoverageLegacyPassPass( 241 Opts, CGOpts.SanitizeCoverageAllowlistFiles, 242 CGOpts.SanitizeCoverageBlocklistFiles)); 243 } 244 245 // Check if ASan should use GC-friendly instrumentation for globals. 246 // First of all, there is no point if -fdata-sections is off (expect for MachO, 247 // where this is not a factor). Also, on ELF this feature requires an assembler 248 // extension that only works with -integrated-as at the moment. 249 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) { 250 if (!CGOpts.SanitizeAddressGlobalsDeadStripping) 251 return false; 252 switch (T.getObjectFormat()) { 253 case Triple::MachO: 254 case Triple::COFF: 255 return true; 256 case Triple::ELF: 257 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS; 258 case Triple::XCOFF: 259 llvm::report_fatal_error("ASan not implemented for XCOFF."); 260 case Triple::Wasm: 261 case Triple::UnknownObjectFormat: 262 break; 263 } 264 return false; 265 } 266 267 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 268 legacy::PassManagerBase &PM) { 269 const PassManagerBuilderWrapper &BuilderWrapper = 270 static_cast<const PassManagerBuilderWrapper&>(Builder); 271 const Triple &T = BuilderWrapper.getTargetTriple(); 272 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 273 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 274 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope; 275 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator; 276 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts); 277 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover, 278 UseAfterScope)); 279 PM.add(createModuleAddressSanitizerLegacyPassPass( 280 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator)); 281 } 282 283 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 284 legacy::PassManagerBase &PM) { 285 PM.add(createAddressSanitizerFunctionPass( 286 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false)); 287 PM.add(createModuleAddressSanitizerLegacyPassPass( 288 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true, 289 /*UseOdrIndicator*/ false)); 290 } 291 292 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 293 legacy::PassManagerBase &PM) { 294 const PassManagerBuilderWrapper &BuilderWrapper = 295 static_cast<const PassManagerBuilderWrapper &>(Builder); 296 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 297 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 298 PM.add( 299 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover)); 300 } 301 302 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder, 303 legacy::PassManagerBase &PM) { 304 PM.add(createHWAddressSanitizerLegacyPassPass( 305 /*CompileKernel*/ true, /*Recover*/ true)); 306 } 307 308 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder, 309 legacy::PassManagerBase &PM, 310 bool CompileKernel) { 311 const PassManagerBuilderWrapper &BuilderWrapper = 312 static_cast<const PassManagerBuilderWrapper&>(Builder); 313 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 314 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins; 315 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory); 316 PM.add(createMemorySanitizerLegacyPassPass( 317 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel})); 318 319 // MemorySanitizer inserts complex instrumentation that mostly follows 320 // the logic of the original code, but operates on "shadow" values. 321 // It can benefit from re-running some general purpose optimization passes. 322 if (Builder.OptLevel > 0) { 323 PM.add(createEarlyCSEPass()); 324 PM.add(createReassociatePass()); 325 PM.add(createLICMPass()); 326 PM.add(createGVNPass()); 327 PM.add(createInstructionCombiningPass()); 328 PM.add(createDeadStoreEliminationPass()); 329 } 330 } 331 332 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 333 legacy::PassManagerBase &PM) { 334 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false); 335 } 336 337 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder, 338 legacy::PassManagerBase &PM) { 339 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true); 340 } 341 342 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 343 legacy::PassManagerBase &PM) { 344 PM.add(createThreadSanitizerLegacyPassPass()); 345 } 346 347 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 348 legacy::PassManagerBase &PM) { 349 const PassManagerBuilderWrapper &BuilderWrapper = 350 static_cast<const PassManagerBuilderWrapper&>(Builder); 351 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 352 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 353 } 354 355 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 356 const CodeGenOptions &CodeGenOpts) { 357 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 358 359 switch (CodeGenOpts.getVecLib()) { 360 case CodeGenOptions::Accelerate: 361 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 362 break; 363 case CodeGenOptions::MASSV: 364 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV); 365 break; 366 case CodeGenOptions::SVML: 367 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML); 368 break; 369 default: 370 break; 371 } 372 return TLII; 373 } 374 375 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 376 legacy::PassManager *MPM) { 377 llvm::SymbolRewriter::RewriteDescriptorList DL; 378 379 llvm::SymbolRewriter::RewriteMapParser MapParser; 380 for (const auto &MapFile : Opts.RewriteMapFiles) 381 MapParser.parse(MapFile, &DL); 382 383 MPM->add(createRewriteSymbolsPass(DL)); 384 } 385 386 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) { 387 switch (CodeGenOpts.OptimizationLevel) { 388 default: 389 llvm_unreachable("Invalid optimization level!"); 390 case 0: 391 return CodeGenOpt::None; 392 case 1: 393 return CodeGenOpt::Less; 394 case 2: 395 return CodeGenOpt::Default; // O2/Os/Oz 396 case 3: 397 return CodeGenOpt::Aggressive; 398 } 399 } 400 401 static Optional<llvm::CodeModel::Model> 402 getCodeModel(const CodeGenOptions &CodeGenOpts) { 403 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 404 .Case("tiny", llvm::CodeModel::Tiny) 405 .Case("small", llvm::CodeModel::Small) 406 .Case("kernel", llvm::CodeModel::Kernel) 407 .Case("medium", llvm::CodeModel::Medium) 408 .Case("large", llvm::CodeModel::Large) 409 .Case("default", ~1u) 410 .Default(~0u); 411 assert(CodeModel != ~0u && "invalid code model!"); 412 if (CodeModel == ~1u) 413 return None; 414 return static_cast<llvm::CodeModel::Model>(CodeModel); 415 } 416 417 static CodeGenFileType getCodeGenFileType(BackendAction Action) { 418 if (Action == Backend_EmitObj) 419 return CGFT_ObjectFile; 420 else if (Action == Backend_EmitMCNull) 421 return CGFT_Null; 422 else { 423 assert(Action == Backend_EmitAssembly && "Invalid action!"); 424 return CGFT_AssemblyFile; 425 } 426 } 427 428 static void initTargetOptions(DiagnosticsEngine &Diags, 429 llvm::TargetOptions &Options, 430 const CodeGenOptions &CodeGenOpts, 431 const clang::TargetOptions &TargetOpts, 432 const LangOptions &LangOpts, 433 const HeaderSearchOptions &HSOpts) { 434 Options.ThreadModel = 435 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 436 .Case("posix", llvm::ThreadModel::POSIX) 437 .Case("single", llvm::ThreadModel::Single); 438 439 // Set float ABI type. 440 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 441 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 442 "Invalid Floating Point ABI!"); 443 Options.FloatABIType = 444 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 445 .Case("soft", llvm::FloatABI::Soft) 446 .Case("softfp", llvm::FloatABI::Soft) 447 .Case("hard", llvm::FloatABI::Hard) 448 .Default(llvm::FloatABI::Default); 449 450 // Set FP fusion mode. 451 switch (LangOpts.getDefaultFPContractMode()) { 452 case LangOptions::FPM_Off: 453 // Preserve any contraction performed by the front-end. (Strict performs 454 // splitting of the muladd intrinsic in the backend.) 455 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 456 break; 457 case LangOptions::FPM_On: 458 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 459 break; 460 case LangOptions::FPM_Fast: 461 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 462 break; 463 } 464 465 Options.UseInitArray = CodeGenOpts.UseInitArray; 466 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 467 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections(); 468 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations; 469 470 // Set EABI version. 471 Options.EABIVersion = TargetOpts.EABIVersion; 472 473 if (LangOpts.SjLjExceptions) 474 Options.ExceptionModel = llvm::ExceptionHandling::SjLj; 475 if (LangOpts.SEHExceptions) 476 Options.ExceptionModel = llvm::ExceptionHandling::WinEH; 477 if (LangOpts.DWARFExceptions) 478 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI; 479 if (LangOpts.WasmExceptions) 480 Options.ExceptionModel = llvm::ExceptionHandling::Wasm; 481 482 Options.NoInfsFPMath = LangOpts.NoHonorInfs; 483 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs; 484 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 485 Options.UnsafeFPMath = LangOpts.UnsafeFPMath; 486 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 487 488 Options.BBSections = 489 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections) 490 .Case("all", llvm::BasicBlockSection::All) 491 .Case("labels", llvm::BasicBlockSection::Labels) 492 .StartsWith("list=", llvm::BasicBlockSection::List) 493 .Case("none", llvm::BasicBlockSection::None) 494 .Default(llvm::BasicBlockSection::None); 495 496 if (Options.BBSections == llvm::BasicBlockSection::List) { 497 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr = 498 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5)); 499 if (!MBOrErr) 500 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file) 501 << MBOrErr.getError().message(); 502 else 503 Options.BBSectionsFuncListBuf = std::move(*MBOrErr); 504 } 505 506 Options.FunctionSections = CodeGenOpts.FunctionSections; 507 Options.DataSections = CodeGenOpts.DataSections; 508 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 509 Options.UniqueBasicBlockSectionNames = 510 CodeGenOpts.UniqueBasicBlockSectionNames; 511 Options.TLSSize = CodeGenOpts.TLSSize; 512 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 513 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS; 514 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning(); 515 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection; 516 Options.EmitAddrsig = CodeGenOpts.Addrsig; 517 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection; 518 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo; 519 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex; 520 521 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile; 522 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 523 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 524 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 525 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 526 Options.MCOptions.MCIncrementalLinkerCompatible = 527 CodeGenOpts.IncrementalLinkerCompatible; 528 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 529 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn; 530 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 531 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments; 532 Options.MCOptions.ABIName = TargetOpts.ABI; 533 for (const auto &Entry : HSOpts.UserEntries) 534 if (!Entry.IsFramework && 535 (Entry.Group == frontend::IncludeDirGroup::Quoted || 536 Entry.Group == frontend::IncludeDirGroup::Angled || 537 Entry.Group == frontend::IncludeDirGroup::System)) 538 Options.MCOptions.IASSearchPaths.push_back( 539 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path); 540 Options.MCOptions.Argv0 = CodeGenOpts.Argv0; 541 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs; 542 } 543 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts) { 544 if (CodeGenOpts.DisableGCov) 545 return None; 546 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes) 547 return None; 548 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 549 // LLVM's -default-gcov-version flag is set to something invalid. 550 GCOVOptions Options; 551 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 552 Options.EmitData = CodeGenOpts.EmitGcovArcs; 553 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version)); 554 Options.NoRedZone = CodeGenOpts.DisableRedZone; 555 Options.Filter = CodeGenOpts.ProfileFilterFiles; 556 Options.Exclude = CodeGenOpts.ProfileExcludeFiles; 557 return Options; 558 } 559 560 static Optional<InstrProfOptions> 561 getInstrProfOptions(const CodeGenOptions &CodeGenOpts, 562 const LangOptions &LangOpts) { 563 if (!CodeGenOpts.hasProfileClangInstr()) 564 return None; 565 InstrProfOptions Options; 566 Options.NoRedZone = CodeGenOpts.DisableRedZone; 567 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 568 569 // TODO: Surface the option to emit atomic profile counter increments at 570 // the driver level. 571 Options.Atomic = LangOpts.Sanitize.has(SanitizerKind::Thread); 572 return Options; 573 } 574 575 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM, 576 legacy::FunctionPassManager &FPM) { 577 // Handle disabling of all LLVM passes, where we want to preserve the 578 // internal module before any optimization. 579 if (CodeGenOpts.DisableLLVMPasses) 580 return; 581 582 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM 583 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling) 584 // are inserted before PMBuilder ones - they'd get the default-constructed 585 // TLI with an unknown target otherwise. 586 Triple TargetTriple(TheModule->getTargetTriple()); 587 std::unique_ptr<TargetLibraryInfoImpl> TLII( 588 createTLII(TargetTriple, CodeGenOpts)); 589 590 // If we reached here with a non-empty index file name, then the index file 591 // was empty and we are not performing ThinLTO backend compilation (used in 592 // testing in a distributed build environment). Drop any the type test 593 // assume sequences inserted for whole program vtables so that codegen doesn't 594 // complain. 595 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 596 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr, 597 /*ImportSummary=*/nullptr, 598 /*DropTypeTests=*/true)); 599 600 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts); 601 602 // At O0 and O1 we only run the always inliner which is more efficient. At 603 // higher optimization levels we run the normal inliner. 604 if (CodeGenOpts.OptimizationLevel <= 1) { 605 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 && 606 !CodeGenOpts.DisableLifetimeMarkers) || 607 LangOpts.Coroutines); 608 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics); 609 } else { 610 // We do not want to inline hot callsites for SamplePGO module-summary build 611 // because profile annotation will happen again in ThinLTO backend, and we 612 // want the IR of the hot path to match the profile. 613 PMBuilder.Inliner = createFunctionInliningPass( 614 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize, 615 (!CodeGenOpts.SampleProfileFile.empty() && 616 CodeGenOpts.PrepareForThinLTO)); 617 } 618 619 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel; 620 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 621 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 622 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 623 // Only enable CGProfilePass when using integrated assembler, since 624 // non-integrated assemblers don't recognize .cgprofile section. 625 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 626 627 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 628 // Loop interleaving in the loop vectorizer has historically been set to be 629 // enabled when loop unrolling is enabled. 630 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops; 631 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 632 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO; 633 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 634 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 635 636 MPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 637 638 if (TM) 639 TM->adjustPassManager(PMBuilder); 640 641 if (CodeGenOpts.DebugInfoForProfiling || 642 !CodeGenOpts.SampleProfileFile.empty()) 643 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 644 addAddDiscriminatorsPass); 645 646 // In ObjC ARC mode, add the main ARC optimization passes. 647 if (LangOpts.ObjCAutoRefCount) { 648 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 649 addObjCARCExpandPass); 650 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 651 addObjCARCAPElimPass); 652 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 653 addObjCARCOptPass); 654 } 655 656 if (LangOpts.Coroutines) 657 addCoroutinePassesToExtensionPoints(PMBuilder); 658 659 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 660 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 661 addBoundsCheckingPass); 662 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 663 addBoundsCheckingPass); 664 } 665 666 if (CodeGenOpts.SanitizeCoverageType || 667 CodeGenOpts.SanitizeCoverageIndirectCalls || 668 CodeGenOpts.SanitizeCoverageTraceCmp) { 669 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 670 addSanitizerCoveragePass); 671 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 672 addSanitizerCoveragePass); 673 } 674 675 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 676 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 677 addAddressSanitizerPasses); 678 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 679 addAddressSanitizerPasses); 680 } 681 682 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 683 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 684 addKernelAddressSanitizerPasses); 685 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 686 addKernelAddressSanitizerPasses); 687 } 688 689 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 690 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 691 addHWAddressSanitizerPasses); 692 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 693 addHWAddressSanitizerPasses); 694 } 695 696 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 697 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 698 addKernelHWAddressSanitizerPasses); 699 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 700 addKernelHWAddressSanitizerPasses); 701 } 702 703 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 704 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 705 addMemorySanitizerPass); 706 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 707 addMemorySanitizerPass); 708 } 709 710 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 711 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 712 addKernelMemorySanitizerPass); 713 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 714 addKernelMemorySanitizerPass); 715 } 716 717 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 718 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 719 addThreadSanitizerPass); 720 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 721 addThreadSanitizerPass); 722 } 723 724 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 725 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 726 addDataFlowSanitizerPass); 727 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 728 addDataFlowSanitizerPass); 729 } 730 731 // Set up the per-function pass manager. 732 FPM.add(new TargetLibraryInfoWrapperPass(*TLII)); 733 if (CodeGenOpts.VerifyModule) 734 FPM.add(createVerifierPass()); 735 736 // Set up the per-module pass manager. 737 if (!CodeGenOpts.RewriteMapFiles.empty()) 738 addSymbolRewriterPass(CodeGenOpts, &MPM); 739 740 // Add UniqueInternalLinkageNames Pass which renames internal linkage symbols 741 // with unique names. 742 if (CodeGenOpts.UniqueInternalLinkageNames) { 743 MPM.add(createUniqueInternalLinkageNamesPass()); 744 } 745 746 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) { 747 MPM.add(createGCOVProfilerPass(*Options)); 748 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo) 749 MPM.add(createStripSymbolsPass(true)); 750 } 751 752 if (Optional<InstrProfOptions> Options = 753 getInstrProfOptions(CodeGenOpts, LangOpts)) 754 MPM.add(createInstrProfilingLegacyPass(*Options, false)); 755 756 bool hasIRInstr = false; 757 if (CodeGenOpts.hasProfileIRInstr()) { 758 PMBuilder.EnablePGOInstrGen = true; 759 hasIRInstr = true; 760 } 761 if (CodeGenOpts.hasProfileCSIRInstr()) { 762 assert(!CodeGenOpts.hasProfileCSIRUse() && 763 "Cannot have both CSProfileUse pass and CSProfileGen pass at the " 764 "same time"); 765 assert(!hasIRInstr && 766 "Cannot have both ProfileGen pass and CSProfileGen pass at the " 767 "same time"); 768 PMBuilder.EnablePGOCSInstrGen = true; 769 hasIRInstr = true; 770 } 771 if (hasIRInstr) { 772 if (!CodeGenOpts.InstrProfileOutput.empty()) 773 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput; 774 else 775 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName); 776 } 777 if (CodeGenOpts.hasProfileIRUse()) { 778 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath; 779 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse(); 780 } 781 782 if (!CodeGenOpts.SampleProfileFile.empty()) 783 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile; 784 785 PMBuilder.populateFunctionPassManager(FPM); 786 PMBuilder.populateModulePassManager(MPM); 787 } 788 789 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) { 790 SmallVector<const char *, 16> BackendArgs; 791 BackendArgs.push_back("clang"); // Fake program name. 792 if (!CodeGenOpts.DebugPass.empty()) { 793 BackendArgs.push_back("-debug-pass"); 794 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 795 } 796 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 797 BackendArgs.push_back("-limit-float-precision"); 798 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 799 } 800 BackendArgs.push_back(nullptr); 801 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 802 BackendArgs.data()); 803 } 804 805 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 806 // Create the TargetMachine for generating code. 807 std::string Error; 808 std::string Triple = TheModule->getTargetTriple(); 809 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 810 if (!TheTarget) { 811 if (MustCreateTM) 812 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 813 return; 814 } 815 816 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts); 817 std::string FeaturesStr = 818 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 819 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel; 820 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts); 821 822 llvm::TargetOptions Options; 823 initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts); 824 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr, 825 Options, RM, CM, OptLevel)); 826 } 827 828 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses, 829 BackendAction Action, 830 raw_pwrite_stream &OS, 831 raw_pwrite_stream *DwoOS) { 832 // Add LibraryInfo. 833 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 834 std::unique_ptr<TargetLibraryInfoImpl> TLII( 835 createTLII(TargetTriple, CodeGenOpts)); 836 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII)); 837 838 // Normal mode, emit a .s or .o file by running the code generator. Note, 839 // this also adds codegenerator level optimization passes. 840 CodeGenFileType CGFT = getCodeGenFileType(Action); 841 842 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 843 // "codegen" passes so that it isn't run multiple times when there is 844 // inlining happening. 845 if (CodeGenOpts.OptimizationLevel > 0) 846 CodeGenPasses.add(createObjCARCContractPass()); 847 848 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT, 849 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 850 Diags.Report(diag::err_fe_unable_to_interface_with_target); 851 return false; 852 } 853 854 return true; 855 } 856 857 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 858 std::unique_ptr<raw_pwrite_stream> OS) { 859 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 860 861 setCommandLineOpts(CodeGenOpts); 862 863 bool UsesCodeGen = (Action != Backend_EmitNothing && 864 Action != Backend_EmitBC && 865 Action != Backend_EmitLL); 866 CreateTargetMachine(UsesCodeGen); 867 868 if (UsesCodeGen && !TM) 869 return; 870 if (TM) 871 TheModule->setDataLayout(TM->createDataLayout()); 872 873 legacy::PassManager PerModulePasses; 874 PerModulePasses.add( 875 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 876 877 legacy::FunctionPassManager PerFunctionPasses(TheModule); 878 PerFunctionPasses.add( 879 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 880 881 CreatePasses(PerModulePasses, PerFunctionPasses); 882 883 legacy::PassManager CodeGenPasses; 884 CodeGenPasses.add( 885 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 886 887 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 888 889 switch (Action) { 890 case Backend_EmitNothing: 891 break; 892 893 case Backend_EmitBC: 894 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 895 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 896 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 897 if (!ThinLinkOS) 898 return; 899 } 900 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 901 CodeGenOpts.EnableSplitLTOUnit); 902 PerModulePasses.add(createWriteThinLTOBitcodePass( 903 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr)); 904 } else { 905 // Emit a module summary by default for Regular LTO except for ld64 906 // targets 907 bool EmitLTOSummary = 908 (CodeGenOpts.PrepareForLTO && 909 !CodeGenOpts.DisableLLVMPasses && 910 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 911 llvm::Triple::Apple); 912 if (EmitLTOSummary) { 913 if (!TheModule->getModuleFlag("ThinLTO")) 914 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 915 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 916 uint32_t(1)); 917 } 918 919 PerModulePasses.add(createBitcodeWriterPass( 920 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 921 } 922 break; 923 924 case Backend_EmitLL: 925 PerModulePasses.add( 926 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 927 break; 928 929 default: 930 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 931 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 932 if (!DwoOS) 933 return; 934 } 935 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 936 DwoOS ? &DwoOS->os() : nullptr)) 937 return; 938 } 939 940 // Before executing passes, print the final values of the LLVM options. 941 cl::PrintOptionValues(); 942 943 // Run passes. For now we do all passes at once, but eventually we 944 // would like to have the option of streaming code generation. 945 946 { 947 PrettyStackTraceString CrashInfo("Per-function optimization"); 948 llvm::TimeTraceScope TimeScope("PerFunctionPasses"); 949 950 PerFunctionPasses.doInitialization(); 951 for (Function &F : *TheModule) 952 if (!F.isDeclaration()) 953 PerFunctionPasses.run(F); 954 PerFunctionPasses.doFinalization(); 955 } 956 957 { 958 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 959 llvm::TimeTraceScope TimeScope("PerModulePasses"); 960 PerModulePasses.run(*TheModule); 961 } 962 963 { 964 PrettyStackTraceString CrashInfo("Code generation"); 965 llvm::TimeTraceScope TimeScope("CodeGenPasses"); 966 CodeGenPasses.run(*TheModule); 967 } 968 969 if (ThinLinkOS) 970 ThinLinkOS->keep(); 971 if (DwoOS) 972 DwoOS->keep(); 973 } 974 975 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) { 976 switch (Opts.OptimizationLevel) { 977 default: 978 llvm_unreachable("Invalid optimization level!"); 979 980 case 1: 981 return PassBuilder::OptimizationLevel::O1; 982 983 case 2: 984 switch (Opts.OptimizeSize) { 985 default: 986 llvm_unreachable("Invalid optimization level for size!"); 987 988 case 0: 989 return PassBuilder::OptimizationLevel::O2; 990 991 case 1: 992 return PassBuilder::OptimizationLevel::Os; 993 994 case 2: 995 return PassBuilder::OptimizationLevel::Oz; 996 } 997 998 case 3: 999 return PassBuilder::OptimizationLevel::O3; 1000 } 1001 } 1002 1003 static void addCoroutinePassesAtO0(ModulePassManager &MPM, 1004 const LangOptions &LangOpts, 1005 const CodeGenOptions &CodeGenOpts) { 1006 if (!LangOpts.Coroutines) 1007 return; 1008 1009 MPM.addPass(createModuleToFunctionPassAdaptor(CoroEarlyPass())); 1010 1011 CGSCCPassManager CGPM(CodeGenOpts.DebugPassManager); 1012 CGPM.addPass(CoroSplitPass()); 1013 CGPM.addPass(createCGSCCToFunctionPassAdaptor(CoroElidePass())); 1014 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM))); 1015 1016 MPM.addPass(createModuleToFunctionPassAdaptor(CoroCleanupPass())); 1017 } 1018 1019 static void addSanitizersAtO0(ModulePassManager &MPM, 1020 const Triple &TargetTriple, 1021 const LangOptions &LangOpts, 1022 const CodeGenOptions &CodeGenOpts) { 1023 if (CodeGenOpts.SanitizeCoverageType || 1024 CodeGenOpts.SanitizeCoverageIndirectCalls || 1025 CodeGenOpts.SanitizeCoverageTraceCmp) { 1026 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1027 MPM.addPass(ModuleSanitizerCoveragePass( 1028 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1029 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1030 } 1031 1032 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) { 1033 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1034 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask); 1035 MPM.addPass(createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1036 CompileKernel, Recover, CodeGenOpts.SanitizeAddressUseAfterScope))); 1037 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1038 MPM.addPass( 1039 ModuleAddressSanitizerPass(CompileKernel, Recover, ModuleUseAfterScope, 1040 CodeGenOpts.SanitizeAddressUseOdrIndicator)); 1041 }; 1042 1043 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1044 ASanPass(SanitizerKind::Address, /*CompileKernel=*/false); 1045 } 1046 1047 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 1048 ASanPass(SanitizerKind::KernelAddress, /*CompileKernel=*/true); 1049 } 1050 1051 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1052 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1053 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1054 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1055 MPM.addPass(createModuleToFunctionPassAdaptor( 1056 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1057 } 1058 1059 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) { 1060 MPM.addPass(createModuleToFunctionPassAdaptor( 1061 MemorySanitizerPass({0, false, /*Kernel=*/true}))); 1062 } 1063 1064 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1065 MPM.addPass(ThreadSanitizerPass()); 1066 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1067 } 1068 } 1069 1070 /// A clean version of `EmitAssembly` that uses the new pass manager. 1071 /// 1072 /// Not all features are currently supported in this system, but where 1073 /// necessary it falls back to the legacy pass manager to at least provide 1074 /// basic functionality. 1075 /// 1076 /// This API is planned to have its functionality finished and then to replace 1077 /// `EmitAssembly` at some point in the future when the default switches. 1078 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager( 1079 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) { 1080 TimeRegion Region(FrontendTimesIsEnabled ? &CodeGenerationTime : nullptr); 1081 setCommandLineOpts(CodeGenOpts); 1082 1083 bool RequiresCodeGen = (Action != Backend_EmitNothing && 1084 Action != Backend_EmitBC && 1085 Action != Backend_EmitLL); 1086 CreateTargetMachine(RequiresCodeGen); 1087 1088 if (RequiresCodeGen && !TM) 1089 return; 1090 if (TM) 1091 TheModule->setDataLayout(TM->createDataLayout()); 1092 1093 Optional<PGOOptions> PGOOpt; 1094 1095 if (CodeGenOpts.hasProfileIRInstr()) 1096 // -fprofile-generate. 1097 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty() 1098 ? std::string(DefaultProfileGenName) 1099 : CodeGenOpts.InstrProfileOutput, 1100 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction, 1101 CodeGenOpts.DebugInfoForProfiling); 1102 else if (CodeGenOpts.hasProfileIRUse()) { 1103 // -fprofile-use. 1104 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse 1105 : PGOOptions::NoCSAction; 1106 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "", 1107 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse, 1108 CSAction, CodeGenOpts.DebugInfoForProfiling); 1109 } else if (!CodeGenOpts.SampleProfileFile.empty()) 1110 // -fprofile-sample-use 1111 PGOOpt = 1112 PGOOptions(CodeGenOpts.SampleProfileFile, "", 1113 CodeGenOpts.ProfileRemappingFile, PGOOptions::SampleUse, 1114 PGOOptions::NoCSAction, CodeGenOpts.DebugInfoForProfiling); 1115 else if (CodeGenOpts.DebugInfoForProfiling) 1116 // -fdebug-info-for-profiling 1117 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction, 1118 PGOOptions::NoCSAction, true); 1119 1120 // Check to see if we want to generate a CS profile. 1121 if (CodeGenOpts.hasProfileCSIRInstr()) { 1122 assert(!CodeGenOpts.hasProfileCSIRUse() && 1123 "Cannot have both CSProfileUse pass and CSProfileGen pass at " 1124 "the same time"); 1125 if (PGOOpt.hasValue()) { 1126 assert(PGOOpt->Action != PGOOptions::IRInstr && 1127 PGOOpt->Action != PGOOptions::SampleUse && 1128 "Cannot run CSProfileGen pass with ProfileGen or SampleUse " 1129 " pass"); 1130 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() 1131 ? std::string(DefaultProfileGenName) 1132 : CodeGenOpts.InstrProfileOutput; 1133 PGOOpt->CSAction = PGOOptions::CSIRInstr; 1134 } else 1135 PGOOpt = PGOOptions("", 1136 CodeGenOpts.InstrProfileOutput.empty() 1137 ? std::string(DefaultProfileGenName) 1138 : CodeGenOpts.InstrProfileOutput, 1139 "", PGOOptions::NoAction, PGOOptions::CSIRInstr, 1140 CodeGenOpts.DebugInfoForProfiling); 1141 } 1142 1143 PipelineTuningOptions PTO; 1144 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops; 1145 // For historical reasons, loop interleaving is set to mirror setting for loop 1146 // unrolling. 1147 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops; 1148 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop; 1149 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP; 1150 // Only enable CGProfilePass when using integrated assembler, since 1151 // non-integrated assemblers don't recognize .cgprofile section. 1152 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS; 1153 PTO.Coroutines = LangOpts.Coroutines; 1154 1155 PassInstrumentationCallbacks PIC; 1156 StandardInstrumentations SI; 1157 SI.registerCallbacks(PIC); 1158 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC); 1159 1160 // Attempt to load pass plugins and register their callbacks with PB. 1161 for (auto &PluginFN : CodeGenOpts.PassPlugins) { 1162 auto PassPlugin = PassPlugin::Load(PluginFN); 1163 if (PassPlugin) { 1164 PassPlugin->registerPassBuilderCallbacks(PB); 1165 } else { 1166 Diags.Report(diag::err_fe_unable_to_load_plugin) 1167 << PluginFN << toString(PassPlugin.takeError()); 1168 } 1169 } 1170 #define HANDLE_EXTENSION(Ext) \ 1171 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); 1172 #include "llvm/Support/Extension.def" 1173 1174 LoopAnalysisManager LAM(CodeGenOpts.DebugPassManager); 1175 FunctionAnalysisManager FAM(CodeGenOpts.DebugPassManager); 1176 CGSCCAnalysisManager CGAM(CodeGenOpts.DebugPassManager); 1177 ModuleAnalysisManager MAM(CodeGenOpts.DebugPassManager); 1178 1179 // Register the AA manager first so that our version is the one used. 1180 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); }); 1181 1182 // Register the target library analysis directly and give it a customized 1183 // preset TLI. 1184 Triple TargetTriple(TheModule->getTargetTriple()); 1185 std::unique_ptr<TargetLibraryInfoImpl> TLII( 1186 createTLII(TargetTriple, CodeGenOpts)); 1187 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); }); 1188 1189 // Register all the basic analyses with the managers. 1190 PB.registerModuleAnalyses(MAM); 1191 PB.registerCGSCCAnalyses(CGAM); 1192 PB.registerFunctionAnalyses(FAM); 1193 PB.registerLoopAnalyses(LAM); 1194 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); 1195 1196 ModulePassManager MPM(CodeGenOpts.DebugPassManager); 1197 1198 if (!CodeGenOpts.DisableLLVMPasses) { 1199 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO; 1200 bool IsLTO = CodeGenOpts.PrepareForLTO; 1201 1202 if (CodeGenOpts.OptimizationLevel == 0) { 1203 // If we reached here with a non-empty index file name, then the index 1204 // file was empty and we are not performing ThinLTO backend compilation 1205 // (used in testing in a distributed build environment). Drop any the type 1206 // test assume sequences inserted for whole program vtables so that 1207 // codegen doesn't complain. 1208 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1209 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1210 /*ImportSummary=*/nullptr, 1211 /*DropTypeTests=*/true)); 1212 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1213 MPM.addPass(GCOVProfilerPass(*Options)); 1214 if (Optional<InstrProfOptions> Options = 1215 getInstrProfOptions(CodeGenOpts, LangOpts)) 1216 MPM.addPass(InstrProfiling(*Options, false)); 1217 1218 // Build a minimal pipeline based on the semantics required by Clang, 1219 // which is just that always inlining occurs. Further, disable generating 1220 // lifetime intrinsics to avoid enabling further optimizations during 1221 // code generation. 1222 // However, we need to insert lifetime intrinsics to avoid invalid access 1223 // caused by multithreaded coroutines. 1224 MPM.addPass( 1225 AlwaysInlinerPass(/*InsertLifetimeIntrinsics=*/LangOpts.Coroutines)); 1226 1227 // At -O0, we can still do PGO. Add all the requested passes for 1228 // instrumentation PGO, if requested. 1229 if (PGOOpt && (PGOOpt->Action == PGOOptions::IRInstr || 1230 PGOOpt->Action == PGOOptions::IRUse)) 1231 PB.addPGOInstrPassesForO0( 1232 MPM, CodeGenOpts.DebugPassManager, 1233 /* RunProfileGen */ (PGOOpt->Action == PGOOptions::IRInstr), 1234 /* IsCS */ false, PGOOpt->ProfileFile, 1235 PGOOpt->ProfileRemappingFile); 1236 1237 // At -O0 we directly run necessary sanitizer passes. 1238 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1239 MPM.addPass(createModuleToFunctionPassAdaptor(BoundsCheckingPass())); 1240 1241 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1242 // symbols with unique names. 1243 if (CodeGenOpts.UniqueInternalLinkageNames) { 1244 MPM.addPass(UniqueInternalLinkageNamesPass()); 1245 } 1246 1247 // Lastly, add semantically necessary passes for LTO. 1248 if (IsLTO || IsThinLTO) { 1249 MPM.addPass(CanonicalizeAliasesPass()); 1250 MPM.addPass(NameAnonGlobalPass()); 1251 } 1252 } else { 1253 // Map our optimization levels into one of the distinct levels used to 1254 // configure the pipeline. 1255 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts); 1256 1257 // If we reached here with a non-empty index file name, then the index 1258 // file was empty and we are not performing ThinLTO backend compilation 1259 // (used in testing in a distributed build environment). Drop any the type 1260 // test assume sequences inserted for whole program vtables so that 1261 // codegen doesn't complain. 1262 if (!CodeGenOpts.ThinLTOIndexFile.empty()) 1263 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1264 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr, 1265 /*ImportSummary=*/nullptr, 1266 /*DropTypeTests=*/true)); 1267 }); 1268 1269 PB.registerPipelineStartEPCallback([](ModulePassManager &MPM) { 1270 MPM.addPass(createModuleToFunctionPassAdaptor( 1271 EntryExitInstrumenterPass(/*PostInlining=*/false))); 1272 }); 1273 1274 // Register callbacks to schedule sanitizer passes at the appropriate part of 1275 // the pipeline. 1276 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) 1277 PB.registerScalarOptimizerLateEPCallback( 1278 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) { 1279 FPM.addPass(BoundsCheckingPass()); 1280 }); 1281 1282 if (CodeGenOpts.SanitizeCoverageType || 1283 CodeGenOpts.SanitizeCoverageIndirectCalls || 1284 CodeGenOpts.SanitizeCoverageTraceCmp) { 1285 PB.registerOptimizerLastEPCallback( 1286 [this](ModulePassManager &MPM, 1287 PassBuilder::OptimizationLevel Level) { 1288 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts); 1289 MPM.addPass(ModuleSanitizerCoveragePass( 1290 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles, 1291 CodeGenOpts.SanitizeCoverageBlocklistFiles)); 1292 }); 1293 } 1294 1295 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 1296 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins; 1297 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Memory); 1298 PB.registerOptimizerLastEPCallback( 1299 [TrackOrigins, Recover](ModulePassManager &MPM, 1300 PassBuilder::OptimizationLevel Level) { 1301 MPM.addPass(MemorySanitizerPass({TrackOrigins, Recover, false})); 1302 MPM.addPass(createModuleToFunctionPassAdaptor( 1303 MemorySanitizerPass({TrackOrigins, Recover, false}))); 1304 }); 1305 } 1306 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 1307 PB.registerOptimizerLastEPCallback( 1308 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1309 MPM.addPass(ThreadSanitizerPass()); 1310 MPM.addPass( 1311 createModuleToFunctionPassAdaptor(ThreadSanitizerPass())); 1312 }); 1313 } 1314 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 1315 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::Address); 1316 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope; 1317 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts); 1318 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator; 1319 PB.registerOptimizerLastEPCallback( 1320 [Recover, UseAfterScope, ModuleUseAfterScope, UseOdrIndicator]( 1321 ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) { 1322 MPM.addPass( 1323 RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>()); 1324 MPM.addPass(ModuleAddressSanitizerPass( 1325 /*CompileKernel=*/false, Recover, ModuleUseAfterScope, 1326 UseOdrIndicator)); 1327 MPM.addPass( 1328 createModuleToFunctionPassAdaptor(AddressSanitizerPass( 1329 /*CompileKernel=*/false, Recover, UseAfterScope))); 1330 }); 1331 } 1332 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts)) 1333 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1334 MPM.addPass(GCOVProfilerPass(*Options)); 1335 }); 1336 if (Optional<InstrProfOptions> Options = 1337 getInstrProfOptions(CodeGenOpts, LangOpts)) 1338 PB.registerPipelineStartEPCallback([Options](ModulePassManager &MPM) { 1339 MPM.addPass(InstrProfiling(*Options, false)); 1340 }); 1341 1342 // Add UniqueInternalLinkageNames Pass which renames internal linkage 1343 // symbols with unique names. 1344 if (CodeGenOpts.UniqueInternalLinkageNames) { 1345 MPM.addPass(UniqueInternalLinkageNamesPass()); 1346 } 1347 1348 if (IsThinLTO) { 1349 MPM = PB.buildThinLTOPreLinkDefaultPipeline( 1350 Level, CodeGenOpts.DebugPassManager); 1351 MPM.addPass(CanonicalizeAliasesPass()); 1352 MPM.addPass(NameAnonGlobalPass()); 1353 } else if (IsLTO) { 1354 MPM = PB.buildLTOPreLinkDefaultPipeline(Level, 1355 CodeGenOpts.DebugPassManager); 1356 MPM.addPass(CanonicalizeAliasesPass()); 1357 MPM.addPass(NameAnonGlobalPass()); 1358 } else { 1359 MPM = PB.buildPerModuleDefaultPipeline(Level, 1360 CodeGenOpts.DebugPassManager); 1361 } 1362 } 1363 1364 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) { 1365 bool Recover = CodeGenOpts.SanitizeRecover.has(SanitizerKind::HWAddress); 1366 MPM.addPass(HWAddressSanitizerPass( 1367 /*CompileKernel=*/false, Recover)); 1368 } 1369 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) { 1370 MPM.addPass(HWAddressSanitizerPass( 1371 /*CompileKernel=*/true, /*Recover=*/true)); 1372 } 1373 1374 if (CodeGenOpts.OptimizationLevel == 0) { 1375 addCoroutinePassesAtO0(MPM, LangOpts, CodeGenOpts); 1376 addSanitizersAtO0(MPM, TargetTriple, LangOpts, CodeGenOpts); 1377 } 1378 } 1379 1380 // FIXME: We still use the legacy pass manager to do code generation. We 1381 // create that pass manager here and use it as needed below. 1382 legacy::PassManager CodeGenPasses; 1383 bool NeedCodeGen = false; 1384 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS; 1385 1386 // Append any output we need to the pass manager. 1387 switch (Action) { 1388 case Backend_EmitNothing: 1389 break; 1390 1391 case Backend_EmitBC: 1392 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) { 1393 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) { 1394 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile); 1395 if (!ThinLinkOS) 1396 return; 1397 } 1398 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1399 CodeGenOpts.EnableSplitLTOUnit); 1400 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os() 1401 : nullptr)); 1402 } else { 1403 // Emit a module summary by default for Regular LTO except for ld64 1404 // targets 1405 bool EmitLTOSummary = 1406 (CodeGenOpts.PrepareForLTO && 1407 !CodeGenOpts.DisableLLVMPasses && 1408 llvm::Triple(TheModule->getTargetTriple()).getVendor() != 1409 llvm::Triple::Apple); 1410 if (EmitLTOSummary) { 1411 if (!TheModule->getModuleFlag("ThinLTO")) 1412 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 1413 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit", 1414 uint32_t(1)); 1415 } 1416 MPM.addPass( 1417 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary)); 1418 } 1419 break; 1420 1421 case Backend_EmitLL: 1422 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 1423 break; 1424 1425 case Backend_EmitAssembly: 1426 case Backend_EmitMCNull: 1427 case Backend_EmitObj: 1428 NeedCodeGen = true; 1429 CodeGenPasses.add( 1430 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 1431 if (!CodeGenOpts.SplitDwarfOutput.empty()) { 1432 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput); 1433 if (!DwoOS) 1434 return; 1435 } 1436 if (!AddEmitPasses(CodeGenPasses, Action, *OS, 1437 DwoOS ? &DwoOS->os() : nullptr)) 1438 // FIXME: Should we handle this error differently? 1439 return; 1440 break; 1441 } 1442 1443 // Before executing passes, print the final values of the LLVM options. 1444 cl::PrintOptionValues(); 1445 1446 // Now that we have all of the passes ready, run them. 1447 { 1448 PrettyStackTraceString CrashInfo("Optimizer"); 1449 MPM.run(*TheModule, MAM); 1450 } 1451 1452 // Now if needed, run the legacy PM for codegen. 1453 if (NeedCodeGen) { 1454 PrettyStackTraceString CrashInfo("Code generation"); 1455 CodeGenPasses.run(*TheModule); 1456 } 1457 1458 if (ThinLinkOS) 1459 ThinLinkOS->keep(); 1460 if (DwoOS) 1461 DwoOS->keep(); 1462 } 1463 1464 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) { 1465 Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef); 1466 if (!BMsOrErr) 1467 return BMsOrErr.takeError(); 1468 1469 // The bitcode file may contain multiple modules, we want the one that is 1470 // marked as being the ThinLTO module. 1471 if (const BitcodeModule *Bm = FindThinLTOModule(*BMsOrErr)) 1472 return *Bm; 1473 1474 return make_error<StringError>("Could not find module summary", 1475 inconvertibleErrorCode()); 1476 } 1477 1478 BitcodeModule *clang::FindThinLTOModule(MutableArrayRef<BitcodeModule> BMs) { 1479 for (BitcodeModule &BM : BMs) { 1480 Expected<BitcodeLTOInfo> LTOInfo = BM.getLTOInfo(); 1481 if (LTOInfo && LTOInfo->IsThinLTO) 1482 return &BM; 1483 } 1484 return nullptr; 1485 } 1486 1487 static void runThinLTOBackend( 1488 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M, 1489 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts, 1490 const clang::TargetOptions &TOpts, const LangOptions &LOpts, 1491 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile, 1492 std::string ProfileRemapping, BackendAction Action) { 1493 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>> 1494 ModuleToDefinedGVSummaries; 1495 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries); 1496 1497 setCommandLineOpts(CGOpts); 1498 1499 // We can simply import the values mentioned in the combined index, since 1500 // we should only invoke this using the individual indexes written out 1501 // via a WriteIndexesThinBackend. 1502 FunctionImporter::ImportMapTy ImportList; 1503 for (auto &GlobalList : *CombinedIndex) { 1504 // Ignore entries for undefined references. 1505 if (GlobalList.second.SummaryList.empty()) 1506 continue; 1507 1508 auto GUID = GlobalList.first; 1509 for (auto &Summary : GlobalList.second.SummaryList) { 1510 // Skip the summaries for the importing module. These are included to 1511 // e.g. record required linkage changes. 1512 if (Summary->modulePath() == M->getModuleIdentifier()) 1513 continue; 1514 // Add an entry to provoke importing by thinBackend. 1515 ImportList[Summary->modulePath()].insert(GUID); 1516 } 1517 } 1518 1519 std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports; 1520 MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap; 1521 1522 for (auto &I : ImportList) { 1523 ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr = 1524 llvm::MemoryBuffer::getFile(I.first()); 1525 if (!MBOrErr) { 1526 errs() << "Error loading imported file '" << I.first() 1527 << "': " << MBOrErr.getError().message() << "\n"; 1528 return; 1529 } 1530 1531 Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr); 1532 if (!BMOrErr) { 1533 handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { 1534 errs() << "Error loading imported file '" << I.first() 1535 << "': " << EIB.message() << '\n'; 1536 }); 1537 return; 1538 } 1539 ModuleMap.insert({I.first(), *BMOrErr}); 1540 1541 OwnedImports.push_back(std::move(*MBOrErr)); 1542 } 1543 auto AddStream = [&](size_t Task) { 1544 return std::make_unique<lto::NativeObjectStream>(std::move(OS)); 1545 }; 1546 lto::Config Conf; 1547 if (CGOpts.SaveTempsFilePrefix != "") { 1548 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".", 1549 /* UseInputModulePath */ false)) { 1550 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1551 errs() << "Error setting up ThinLTO save-temps: " << EIB.message() 1552 << '\n'; 1553 }); 1554 } 1555 } 1556 Conf.CPU = TOpts.CPU; 1557 Conf.CodeModel = getCodeModel(CGOpts); 1558 Conf.MAttrs = TOpts.Features; 1559 Conf.RelocModel = CGOpts.RelocationModel; 1560 Conf.CGOptLevel = getCGOptLevel(CGOpts); 1561 Conf.OptLevel = CGOpts.OptimizationLevel; 1562 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts); 1563 Conf.SampleProfile = std::move(SampleProfile); 1564 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops; 1565 // For historical reasons, loop interleaving is set to mirror setting for loop 1566 // unrolling. 1567 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops; 1568 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop; 1569 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP; 1570 // Only enable CGProfilePass when using integrated assembler, since 1571 // non-integrated assemblers don't recognize .cgprofile section. 1572 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS; 1573 1574 // Context sensitive profile. 1575 if (CGOpts.hasProfileCSIRInstr()) { 1576 Conf.RunCSIRInstr = true; 1577 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput); 1578 } else if (CGOpts.hasProfileCSIRUse()) { 1579 Conf.RunCSIRInstr = false; 1580 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath); 1581 } 1582 1583 Conf.ProfileRemapping = std::move(ProfileRemapping); 1584 Conf.UseNewPM = CGOpts.ExperimentalNewPassManager; 1585 Conf.DebugPassManager = CGOpts.DebugPassManager; 1586 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness; 1587 Conf.RemarksFilename = CGOpts.OptRecordFile; 1588 Conf.RemarksPasses = CGOpts.OptRecordPasses; 1589 Conf.RemarksFormat = CGOpts.OptRecordFormat; 1590 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile; 1591 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput; 1592 switch (Action) { 1593 case Backend_EmitNothing: 1594 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) { 1595 return false; 1596 }; 1597 break; 1598 case Backend_EmitLL: 1599 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1600 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists); 1601 return false; 1602 }; 1603 break; 1604 case Backend_EmitBC: 1605 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) { 1606 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists); 1607 return false; 1608 }; 1609 break; 1610 default: 1611 Conf.CGFileType = getCodeGenFileType(Action); 1612 break; 1613 } 1614 if (Error E = thinBackend( 1615 Conf, -1, AddStream, *M, *CombinedIndex, ImportList, 1616 ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) { 1617 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) { 1618 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n'; 1619 }); 1620 } 1621 } 1622 1623 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 1624 const HeaderSearchOptions &HeaderOpts, 1625 const CodeGenOptions &CGOpts, 1626 const clang::TargetOptions &TOpts, 1627 const LangOptions &LOpts, 1628 const llvm::DataLayout &TDesc, Module *M, 1629 BackendAction Action, 1630 std::unique_ptr<raw_pwrite_stream> OS) { 1631 1632 llvm::TimeTraceScope TimeScope("Backend"); 1633 1634 std::unique_ptr<llvm::Module> EmptyModule; 1635 if (!CGOpts.ThinLTOIndexFile.empty()) { 1636 // If we are performing a ThinLTO importing compile, load the function index 1637 // into memory and pass it into runThinLTOBackend, which will run the 1638 // function importer and invoke LTO passes. 1639 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr = 1640 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile, 1641 /*IgnoreEmptyThinLTOIndexFile*/true); 1642 if (!IndexOrErr) { 1643 logAllUnhandledErrors(IndexOrErr.takeError(), errs(), 1644 "Error loading index file '" + 1645 CGOpts.ThinLTOIndexFile + "': "); 1646 return; 1647 } 1648 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr); 1649 // A null CombinedIndex means we should skip ThinLTO compilation 1650 // (LLVM will optionally ignore empty index files, returning null instead 1651 // of an error). 1652 if (CombinedIndex) { 1653 if (!CombinedIndex->skipModuleByDistributedBackend()) { 1654 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts, 1655 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile, 1656 CGOpts.ProfileRemappingFile, Action); 1657 return; 1658 } 1659 // Distributed indexing detected that nothing from the module is needed 1660 // for the final linking. So we can skip the compilation. We sill need to 1661 // output an empty object file to make sure that a linker does not fail 1662 // trying to read it. Also for some features, like CFI, we must skip 1663 // the compilation as CombinedIndex does not contain all required 1664 // information. 1665 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext()); 1666 EmptyModule->setTargetTriple(M->getTargetTriple()); 1667 M = EmptyModule.get(); 1668 } 1669 } 1670 1671 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M); 1672 1673 if (CGOpts.ExperimentalNewPassManager) 1674 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS)); 1675 else 1676 AsmHelper.EmitAssembly(Action, std::move(OS)); 1677 1678 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's 1679 // DataLayout. 1680 if (AsmHelper.TM) { 1681 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 1682 if (DLDesc != TDesc.getStringRepresentation()) { 1683 unsigned DiagID = Diags.getCustomDiagID( 1684 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 1685 "expected target description '%1'"); 1686 Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation(); 1687 } 1688 } 1689 } 1690 1691 // With -fembed-bitcode, save a copy of the llvm IR as data in the 1692 // __LLVM,__bitcode section. 1693 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, 1694 llvm::MemoryBufferRef Buf) { 1695 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off) 1696 return; 1697 llvm::EmbedBitcodeInModule( 1698 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker, 1699 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode, 1700 &CGOpts.CmdArgs); 1701 } 1702