1 //===--- X86.cpp - Implement X86 target feature support -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements X86 TargetInfo objects. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86.h" 14 #include "clang/Basic/Builtins.h" 15 #include "clang/Basic/Diagnostic.h" 16 #include "clang/Basic/TargetBuiltins.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/TargetParser/X86TargetParser.h" 21 #include <optional> 22 23 namespace clang { 24 namespace targets { 25 26 static constexpr Builtin::Info BuiltinInfoX86[] = { 27 #define BUILTIN(ID, TYPE, ATTRS) \ 28 {#ID, TYPE, ATTRS, nullptr, HeaderDesc::NO_HEADER, ALL_LANGUAGES}, 29 #define TARGET_BUILTIN(ID, TYPE, ATTRS, FEATURE) \ 30 {#ID, TYPE, ATTRS, FEATURE, HeaderDesc::NO_HEADER, ALL_LANGUAGES}, 31 #define TARGET_HEADER_BUILTIN(ID, TYPE, ATTRS, HEADER, LANGS, FEATURE) \ 32 {#ID, TYPE, ATTRS, FEATURE, HeaderDesc::HEADER, LANGS}, 33 #include "clang/Basic/BuiltinsX86.def" 34 35 #define BUILTIN(ID, TYPE, ATTRS) \ 36 {#ID, TYPE, ATTRS, nullptr, HeaderDesc::NO_HEADER, ALL_LANGUAGES}, 37 #define TARGET_BUILTIN(ID, TYPE, ATTRS, FEATURE) \ 38 {#ID, TYPE, ATTRS, FEATURE, HeaderDesc::NO_HEADER, ALL_LANGUAGES}, 39 #define TARGET_HEADER_BUILTIN(ID, TYPE, ATTRS, HEADER, LANGS, FEATURE) \ 40 {#ID, TYPE, ATTRS, FEATURE, HeaderDesc::HEADER, LANGS}, 41 #include "clang/Basic/BuiltinsX86_64.def" 42 }; 43 44 static const char *const GCCRegNames[] = { 45 "ax", "dx", "cx", "bx", "si", "di", "bp", "sp", 46 "st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)", 47 "argp", "flags", "fpcr", "fpsr", "dirflag", "frame", "xmm0", "xmm1", 48 "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", "mm0", "mm1", 49 "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", "r8", "r9", 50 "r10", "r11", "r12", "r13", "r14", "r15", "xmm8", "xmm9", 51 "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", "ymm0", "ymm1", 52 "ymm2", "ymm3", "ymm4", "ymm5", "ymm6", "ymm7", "ymm8", "ymm9", 53 "ymm10", "ymm11", "ymm12", "ymm13", "ymm14", "ymm15", "xmm16", "xmm17", 54 "xmm18", "xmm19", "xmm20", "xmm21", "xmm22", "xmm23", "xmm24", "xmm25", 55 "xmm26", "xmm27", "xmm28", "xmm29", "xmm30", "xmm31", "ymm16", "ymm17", 56 "ymm18", "ymm19", "ymm20", "ymm21", "ymm22", "ymm23", "ymm24", "ymm25", 57 "ymm26", "ymm27", "ymm28", "ymm29", "ymm30", "ymm31", "zmm0", "zmm1", 58 "zmm2", "zmm3", "zmm4", "zmm5", "zmm6", "zmm7", "zmm8", "zmm9", 59 "zmm10", "zmm11", "zmm12", "zmm13", "zmm14", "zmm15", "zmm16", "zmm17", 60 "zmm18", "zmm19", "zmm20", "zmm21", "zmm22", "zmm23", "zmm24", "zmm25", 61 "zmm26", "zmm27", "zmm28", "zmm29", "zmm30", "zmm31", "k0", "k1", 62 "k2", "k3", "k4", "k5", "k6", "k7", 63 "cr0", "cr2", "cr3", "cr4", "cr8", 64 "dr0", "dr1", "dr2", "dr3", "dr6", "dr7", 65 "bnd0", "bnd1", "bnd2", "bnd3", 66 "tmm0", "tmm1", "tmm2", "tmm3", "tmm4", "tmm5", "tmm6", "tmm7", 67 }; 68 69 const TargetInfo::AddlRegName AddlRegNames[] = { 70 {{"al", "ah", "eax", "rax"}, 0}, 71 {{"bl", "bh", "ebx", "rbx"}, 3}, 72 {{"cl", "ch", "ecx", "rcx"}, 2}, 73 {{"dl", "dh", "edx", "rdx"}, 1}, 74 {{"esi", "rsi"}, 4}, 75 {{"edi", "rdi"}, 5}, 76 {{"esp", "rsp"}, 7}, 77 {{"ebp", "rbp"}, 6}, 78 {{"r8d", "r8w", "r8b"}, 38}, 79 {{"r9d", "r9w", "r9b"}, 39}, 80 {{"r10d", "r10w", "r10b"}, 40}, 81 {{"r11d", "r11w", "r11b"}, 41}, 82 {{"r12d", "r12w", "r12b"}, 42}, 83 {{"r13d", "r13w", "r13b"}, 43}, 84 {{"r14d", "r14w", "r14b"}, 44}, 85 {{"r15d", "r15w", "r15b"}, 45}, 86 }; 87 88 } // namespace targets 89 } // namespace clang 90 91 using namespace clang; 92 using namespace clang::targets; 93 94 bool X86TargetInfo::setFPMath(StringRef Name) { 95 if (Name == "387") { 96 FPMath = FP_387; 97 return true; 98 } 99 if (Name == "sse") { 100 FPMath = FP_SSE; 101 return true; 102 } 103 return false; 104 } 105 106 bool X86TargetInfo::initFeatureMap( 107 llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, 108 const std::vector<std::string> &FeaturesVec) const { 109 // FIXME: This *really* should not be here. 110 // X86_64 always has SSE2. 111 if (getTriple().getArch() == llvm::Triple::x86_64) 112 setFeatureEnabled(Features, "sse2", true); 113 114 using namespace llvm::X86; 115 116 SmallVector<StringRef, 16> CPUFeatures; 117 getFeaturesForCPU(CPU, CPUFeatures); 118 for (auto &F : CPUFeatures) 119 setFeatureEnabled(Features, F, true); 120 121 std::vector<std::string> UpdatedFeaturesVec; 122 std::vector<std::string> UpdatedAVX10FeaturesVec; 123 enum { FE_NOSET = -1, FE_FALSE, FE_TRUE }; 124 int HasEVEX512 = FE_NOSET; 125 bool HasAVX512F = Features.lookup("avx512f"); 126 bool HasAVX10 = Features.lookup("avx10.1-256"); 127 bool HasAVX10_512 = Features.lookup("avx10.1-512"); 128 std::string LastAVX10; 129 std::string LastAVX512; 130 for (const auto &Feature : FeaturesVec) { 131 // Expand general-regs-only to -x86, -mmx and -sse 132 if (Feature == "+general-regs-only") { 133 UpdatedFeaturesVec.push_back("-x87"); 134 UpdatedFeaturesVec.push_back("-mmx"); 135 UpdatedFeaturesVec.push_back("-sse"); 136 continue; 137 } 138 139 if (Feature.substr(1, 6) == "avx10.") { 140 if (Feature[0] == '+') { 141 HasAVX10 = true; 142 if (Feature.substr(Feature.size() - 3, 3) == "512") 143 HasAVX10_512 = true; 144 LastAVX10 = Feature; 145 } else if (HasAVX10 && Feature == "-avx10.1-256") { 146 HasAVX10 = false; 147 HasAVX10_512 = false; 148 } else if (HasAVX10_512 && Feature == "-avx10.1-512") { 149 HasAVX10_512 = false; 150 } 151 // Postpone AVX10 features handling after AVX512 settled. 152 UpdatedAVX10FeaturesVec.push_back(Feature); 153 continue; 154 } else if (!HasAVX512F && Feature.substr(0, 7) == "+avx512") { 155 HasAVX512F = true; 156 LastAVX512 = Feature; 157 } else if (HasAVX512F && Feature == "-avx512f") { 158 HasAVX512F = false; 159 } else if (HasEVEX512 != FE_TRUE && Feature == "+evex512") { 160 HasEVEX512 = FE_TRUE; 161 continue; 162 } else if (HasEVEX512 != FE_FALSE && Feature == "-evex512") { 163 HasEVEX512 = FE_FALSE; 164 continue; 165 } 166 167 UpdatedFeaturesVec.push_back(Feature); 168 } 169 llvm::append_range(UpdatedFeaturesVec, UpdatedAVX10FeaturesVec); 170 // HasEVEX512 is a three-states flag. We need to turn it into [+-]evex512 171 // according to other features. 172 if (HasAVX512F) { 173 UpdatedFeaturesVec.push_back(HasEVEX512 == FE_FALSE ? "-evex512" 174 : "+evex512"); 175 if (HasAVX10 && !HasAVX10_512 && HasEVEX512 != FE_FALSE) 176 Diags.Report(diag::warn_invalid_feature_combination) 177 << LastAVX512 + " " + LastAVX10 + "; will be promoted to avx10.1-512"; 178 } else if (HasAVX10) { 179 if (HasEVEX512 != FE_NOSET) 180 Diags.Report(diag::warn_invalid_feature_combination) 181 << LastAVX10 + (HasEVEX512 == FE_TRUE ? " +evex512" : " -evex512"); 182 UpdatedFeaturesVec.push_back(HasAVX10_512 ? "+evex512" : "-evex512"); 183 } 184 185 if (!TargetInfo::initFeatureMap(Features, Diags, CPU, UpdatedFeaturesVec)) 186 return false; 187 188 // Can't do this earlier because we need to be able to explicitly enable 189 // or disable these features and the things that they depend upon. 190 191 // Enable popcnt if sse4.2 is enabled and popcnt is not explicitly disabled. 192 auto I = Features.find("sse4.2"); 193 if (I != Features.end() && I->getValue() && 194 !llvm::is_contained(UpdatedFeaturesVec, "-popcnt")) 195 Features["popcnt"] = true; 196 197 // Additionally, if SSE is enabled and mmx is not explicitly disabled, 198 // then enable MMX. 199 I = Features.find("sse"); 200 if (I != Features.end() && I->getValue() && 201 !llvm::is_contained(UpdatedFeaturesVec, "-mmx")) 202 Features["mmx"] = true; 203 204 // Enable xsave if avx is enabled and xsave is not explicitly disabled. 205 I = Features.find("avx"); 206 if (I != Features.end() && I->getValue() && 207 !llvm::is_contained(UpdatedFeaturesVec, "-xsave")) 208 Features["xsave"] = true; 209 210 // Enable CRC32 if SSE4.2 is enabled and CRC32 is not explicitly disabled. 211 I = Features.find("sse4.2"); 212 if (I != Features.end() && I->getValue() && 213 !llvm::is_contained(UpdatedFeaturesVec, "-crc32")) 214 Features["crc32"] = true; 215 216 return true; 217 } 218 219 void X86TargetInfo::setFeatureEnabled(llvm::StringMap<bool> &Features, 220 StringRef Name, bool Enabled) const { 221 if (Name == "sse4") { 222 // We can get here via the __target__ attribute since that's not controlled 223 // via the -msse4/-mno-sse4 command line alias. Handle this the same way 224 // here - turn on the sse4.2 if enabled, turn off the sse4.1 level if 225 // disabled. 226 if (Enabled) 227 Name = "sse4.2"; 228 else 229 Name = "sse4.1"; 230 } 231 232 Features[Name] = Enabled; 233 llvm::X86::updateImpliedFeatures(Name, Enabled, Features); 234 } 235 236 /// handleTargetFeatures - Perform initialization based on the user 237 /// configured set of features. 238 bool X86TargetInfo::handleTargetFeatures(std::vector<std::string> &Features, 239 DiagnosticsEngine &Diags) { 240 for (const auto &Feature : Features) { 241 if (Feature[0] != '+') 242 continue; 243 244 if (Feature == "+aes") { 245 HasAES = true; 246 } else if (Feature == "+vaes") { 247 HasVAES = true; 248 } else if (Feature == "+pclmul") { 249 HasPCLMUL = true; 250 } else if (Feature == "+vpclmulqdq") { 251 HasVPCLMULQDQ = true; 252 } else if (Feature == "+lzcnt") { 253 HasLZCNT = true; 254 } else if (Feature == "+rdrnd") { 255 HasRDRND = true; 256 } else if (Feature == "+fsgsbase") { 257 HasFSGSBASE = true; 258 } else if (Feature == "+bmi") { 259 HasBMI = true; 260 } else if (Feature == "+bmi2") { 261 HasBMI2 = true; 262 } else if (Feature == "+popcnt") { 263 HasPOPCNT = true; 264 } else if (Feature == "+rtm") { 265 HasRTM = true; 266 } else if (Feature == "+prfchw") { 267 HasPRFCHW = true; 268 } else if (Feature == "+rdseed") { 269 HasRDSEED = true; 270 } else if (Feature == "+adx") { 271 HasADX = true; 272 } else if (Feature == "+tbm") { 273 HasTBM = true; 274 } else if (Feature == "+lwp") { 275 HasLWP = true; 276 } else if (Feature == "+fma") { 277 HasFMA = true; 278 } else if (Feature == "+f16c") { 279 HasF16C = true; 280 } else if (Feature == "+gfni") { 281 HasGFNI = true; 282 } else if (Feature == "+evex512") { 283 HasEVEX512 = true; 284 } else if (Feature == "+avx10.1-256") { 285 HasAVX10_1 = true; 286 } else if (Feature == "+avx10.1-512") { 287 HasAVX10_1_512 = true; 288 } else if (Feature == "+avx512cd") { 289 HasAVX512CD = true; 290 } else if (Feature == "+avx512vpopcntdq") { 291 HasAVX512VPOPCNTDQ = true; 292 } else if (Feature == "+avx512vnni") { 293 HasAVX512VNNI = true; 294 } else if (Feature == "+avx512bf16") { 295 HasAVX512BF16 = true; 296 } else if (Feature == "+avx512er") { 297 HasAVX512ER = true; 298 Diags.Report(diag::warn_knl_knm_isa_support_removed); 299 } else if (Feature == "+avx512fp16") { 300 HasAVX512FP16 = true; 301 HasLegalHalfType = true; 302 } else if (Feature == "+avx512pf") { 303 HasAVX512PF = true; 304 Diags.Report(diag::warn_knl_knm_isa_support_removed); 305 } else if (Feature == "+avx512dq") { 306 HasAVX512DQ = true; 307 } else if (Feature == "+avx512bitalg") { 308 HasAVX512BITALG = true; 309 } else if (Feature == "+avx512bw") { 310 HasAVX512BW = true; 311 } else if (Feature == "+avx512vl") { 312 HasAVX512VL = true; 313 } else if (Feature == "+avx512vbmi") { 314 HasAVX512VBMI = true; 315 } else if (Feature == "+avx512vbmi2") { 316 HasAVX512VBMI2 = true; 317 } else if (Feature == "+avx512ifma") { 318 HasAVX512IFMA = true; 319 } else if (Feature == "+avx512vp2intersect") { 320 HasAVX512VP2INTERSECT = true; 321 } else if (Feature == "+sha") { 322 HasSHA = true; 323 } else if (Feature == "+sha512") { 324 HasSHA512 = true; 325 } else if (Feature == "+shstk") { 326 HasSHSTK = true; 327 } else if (Feature == "+sm3") { 328 HasSM3 = true; 329 } else if (Feature == "+sm4") { 330 HasSM4 = true; 331 } else if (Feature == "+movbe") { 332 HasMOVBE = true; 333 } else if (Feature == "+sgx") { 334 HasSGX = true; 335 } else if (Feature == "+cx8") { 336 HasCX8 = true; 337 } else if (Feature == "+cx16") { 338 HasCX16 = true; 339 } else if (Feature == "+fxsr") { 340 HasFXSR = true; 341 } else if (Feature == "+xsave") { 342 HasXSAVE = true; 343 } else if (Feature == "+xsaveopt") { 344 HasXSAVEOPT = true; 345 } else if (Feature == "+xsavec") { 346 HasXSAVEC = true; 347 } else if (Feature == "+xsaves") { 348 HasXSAVES = true; 349 } else if (Feature == "+mwaitx") { 350 HasMWAITX = true; 351 } else if (Feature == "+pku") { 352 HasPKU = true; 353 } else if (Feature == "+clflushopt") { 354 HasCLFLUSHOPT = true; 355 } else if (Feature == "+clwb") { 356 HasCLWB = true; 357 } else if (Feature == "+wbnoinvd") { 358 HasWBNOINVD = true; 359 } else if (Feature == "+prefetchi") { 360 HasPREFETCHI = true; 361 } else if (Feature == "+prefetchwt1") { 362 HasPREFETCHWT1 = true; 363 Diags.Report(diag::warn_knl_knm_isa_support_removed); 364 } else if (Feature == "+clzero") { 365 HasCLZERO = true; 366 } else if (Feature == "+cldemote") { 367 HasCLDEMOTE = true; 368 } else if (Feature == "+rdpid") { 369 HasRDPID = true; 370 } else if (Feature == "+rdpru") { 371 HasRDPRU = true; 372 } else if (Feature == "+kl") { 373 HasKL = true; 374 } else if (Feature == "+widekl") { 375 HasWIDEKL = true; 376 } else if (Feature == "+retpoline-external-thunk") { 377 HasRetpolineExternalThunk = true; 378 } else if (Feature == "+sahf") { 379 HasLAHFSAHF = true; 380 } else if (Feature == "+waitpkg") { 381 HasWAITPKG = true; 382 } else if (Feature == "+movdiri") { 383 HasMOVDIRI = true; 384 } else if (Feature == "+movdir64b") { 385 HasMOVDIR64B = true; 386 } else if (Feature == "+pconfig") { 387 HasPCONFIG = true; 388 } else if (Feature == "+ptwrite") { 389 HasPTWRITE = true; 390 } else if (Feature == "+invpcid") { 391 HasINVPCID = true; 392 } else if (Feature == "+enqcmd") { 393 HasENQCMD = true; 394 } else if (Feature == "+hreset") { 395 HasHRESET = true; 396 } else if (Feature == "+amx-bf16") { 397 HasAMXBF16 = true; 398 } else if (Feature == "+amx-fp16") { 399 HasAMXFP16 = true; 400 } else if (Feature == "+amx-int8") { 401 HasAMXINT8 = true; 402 } else if (Feature == "+amx-tile") { 403 HasAMXTILE = true; 404 } else if (Feature == "+amx-complex") { 405 HasAMXCOMPLEX = true; 406 } else if (Feature == "+cmpccxadd") { 407 HasCMPCCXADD = true; 408 } else if (Feature == "+raoint") { 409 HasRAOINT = true; 410 } else if (Feature == "+avxifma") { 411 HasAVXIFMA = true; 412 } else if (Feature == "+avxneconvert") { 413 HasAVXNECONVERT= true; 414 } else if (Feature == "+avxvnni") { 415 HasAVXVNNI = true; 416 } else if (Feature == "+avxvnniint16") { 417 HasAVXVNNIINT16 = true; 418 } else if (Feature == "+avxvnniint8") { 419 HasAVXVNNIINT8 = true; 420 } else if (Feature == "+serialize") { 421 HasSERIALIZE = true; 422 } else if (Feature == "+tsxldtrk") { 423 HasTSXLDTRK = true; 424 } else if (Feature == "+uintr") { 425 HasUINTR = true; 426 } else if (Feature == "+usermsr") { 427 HasUSERMSR = true; 428 } else if (Feature == "+crc32") { 429 HasCRC32 = true; 430 } else if (Feature == "+x87") { 431 HasX87 = true; 432 } else if (Feature == "+fullbf16") { 433 HasFullBFloat16 = true; 434 } else if (Feature == "+egpr") { 435 HasEGPR = true; 436 } else if (Feature == "+push2pop2") { 437 HasPush2Pop2 = true; 438 } else if (Feature == "+ppx") { 439 HasPPX = true; 440 } else if (Feature == "+ndd") { 441 HasNDD = true; 442 } else if (Feature == "+ccmp") { 443 HasCCMP = true; 444 } else if (Feature == "+cf") { 445 HasCF = true; 446 } 447 448 X86SSEEnum Level = llvm::StringSwitch<X86SSEEnum>(Feature) 449 .Case("+avx512f", AVX512F) 450 .Case("+avx2", AVX2) 451 .Case("+avx", AVX) 452 .Case("+sse4.2", SSE42) 453 .Case("+sse4.1", SSE41) 454 .Case("+ssse3", SSSE3) 455 .Case("+sse3", SSE3) 456 .Case("+sse2", SSE2) 457 .Case("+sse", SSE1) 458 .Default(NoSSE); 459 SSELevel = std::max(SSELevel, Level); 460 461 HasFloat16 = SSELevel >= SSE2; 462 463 // X86 target has bfloat16 emulation support in the backend, where 464 // bfloat16 is treated as a 32-bit float, arithmetic operations are 465 // performed in 32-bit, and the result is converted back to bfloat16. 466 // Truncation and extension between bfloat16 and 32-bit float are supported 467 // by the compiler-rt library. However, native bfloat16 support is currently 468 // not available in the X86 target. Hence, HasFullBFloat16 will be false 469 // until native bfloat16 support is available. HasFullBFloat16 is used to 470 // determine whether to automatically use excess floating point precision 471 // for bfloat16 arithmetic operations in the front-end. 472 HasBFloat16 = SSELevel >= SSE2; 473 474 MMX3DNowEnum ThreeDNowLevel = llvm::StringSwitch<MMX3DNowEnum>(Feature) 475 .Case("+3dnowa", AMD3DNowAthlon) 476 .Case("+3dnow", AMD3DNow) 477 .Case("+mmx", MMX) 478 .Default(NoMMX3DNow); 479 MMX3DNowLevel = std::max(MMX3DNowLevel, ThreeDNowLevel); 480 481 XOPEnum XLevel = llvm::StringSwitch<XOPEnum>(Feature) 482 .Case("+xop", XOP) 483 .Case("+fma4", FMA4) 484 .Case("+sse4a", SSE4A) 485 .Default(NoXOP); 486 XOPLevel = std::max(XOPLevel, XLevel); 487 } 488 489 // LLVM doesn't have a separate switch for fpmath, so only accept it if it 490 // matches the selected sse level. 491 if ((FPMath == FP_SSE && SSELevel < SSE1) || 492 (FPMath == FP_387 && SSELevel >= SSE1)) { 493 Diags.Report(diag::err_target_unsupported_fpmath) 494 << (FPMath == FP_SSE ? "sse" : "387"); 495 return false; 496 } 497 498 // FIXME: We should allow long double type on 32-bits to match with GCC. 499 // This requires backend to be able to lower f80 without x87 first. 500 if (!HasX87 && LongDoubleFormat == &llvm::APFloat::x87DoubleExtended()) 501 HasLongDouble = false; 502 503 return true; 504 } 505 506 /// X86TargetInfo::getTargetDefines - Return the set of the X86-specific macro 507 /// definitions for this particular subtarget. 508 void X86TargetInfo::getTargetDefines(const LangOptions &Opts, 509 MacroBuilder &Builder) const { 510 // Inline assembly supports X86 flag outputs. 511 Builder.defineMacro("__GCC_ASM_FLAG_OUTPUTS__"); 512 513 std::string CodeModel = getTargetOpts().CodeModel; 514 if (CodeModel == "default") 515 CodeModel = "small"; 516 Builder.defineMacro("__code_model_" + CodeModel + "__"); 517 518 // Target identification. 519 if (getTriple().getArch() == llvm::Triple::x86_64) { 520 Builder.defineMacro("__amd64__"); 521 Builder.defineMacro("__amd64"); 522 Builder.defineMacro("__x86_64"); 523 Builder.defineMacro("__x86_64__"); 524 if (getTriple().getArchName() == "x86_64h") { 525 Builder.defineMacro("__x86_64h"); 526 Builder.defineMacro("__x86_64h__"); 527 } 528 } else { 529 DefineStd(Builder, "i386", Opts); 530 } 531 532 Builder.defineMacro("__SEG_GS"); 533 Builder.defineMacro("__SEG_FS"); 534 Builder.defineMacro("__seg_gs", "__attribute__((address_space(256)))"); 535 Builder.defineMacro("__seg_fs", "__attribute__((address_space(257)))"); 536 537 // Subtarget options. 538 // FIXME: We are hard-coding the tune parameters based on the CPU, but they 539 // truly should be based on -mtune options. 540 using namespace llvm::X86; 541 switch (CPU) { 542 case CK_None: 543 break; 544 case CK_i386: 545 // The rest are coming from the i386 define above. 546 Builder.defineMacro("__tune_i386__"); 547 break; 548 case CK_i486: 549 case CK_WinChipC6: 550 case CK_WinChip2: 551 case CK_C3: 552 defineCPUMacros(Builder, "i486"); 553 break; 554 case CK_PentiumMMX: 555 Builder.defineMacro("__pentium_mmx__"); 556 Builder.defineMacro("__tune_pentium_mmx__"); 557 [[fallthrough]]; 558 case CK_i586: 559 case CK_Pentium: 560 defineCPUMacros(Builder, "i586"); 561 defineCPUMacros(Builder, "pentium"); 562 break; 563 case CK_Pentium3: 564 case CK_PentiumM: 565 Builder.defineMacro("__tune_pentium3__"); 566 [[fallthrough]]; 567 case CK_Pentium2: 568 case CK_C3_2: 569 Builder.defineMacro("__tune_pentium2__"); 570 [[fallthrough]]; 571 case CK_PentiumPro: 572 case CK_i686: 573 defineCPUMacros(Builder, "i686"); 574 defineCPUMacros(Builder, "pentiumpro"); 575 break; 576 case CK_Pentium4: 577 defineCPUMacros(Builder, "pentium4"); 578 break; 579 case CK_Yonah: 580 case CK_Prescott: 581 case CK_Nocona: 582 defineCPUMacros(Builder, "nocona"); 583 break; 584 case CK_Core2: 585 case CK_Penryn: 586 defineCPUMacros(Builder, "core2"); 587 break; 588 case CK_Bonnell: 589 defineCPUMacros(Builder, "atom"); 590 break; 591 case CK_Silvermont: 592 defineCPUMacros(Builder, "slm"); 593 break; 594 case CK_Goldmont: 595 defineCPUMacros(Builder, "goldmont"); 596 break; 597 case CK_GoldmontPlus: 598 defineCPUMacros(Builder, "goldmont_plus"); 599 break; 600 case CK_Tremont: 601 defineCPUMacros(Builder, "tremont"); 602 break; 603 // Gracemont and later atom-cores use P-core cpu macros. 604 case CK_Gracemont: 605 case CK_Nehalem: 606 case CK_Westmere: 607 case CK_SandyBridge: 608 case CK_IvyBridge: 609 case CK_Haswell: 610 case CK_Broadwell: 611 case CK_SkylakeClient: 612 case CK_SkylakeServer: 613 case CK_Cascadelake: 614 case CK_Cooperlake: 615 case CK_Cannonlake: 616 case CK_IcelakeClient: 617 case CK_Rocketlake: 618 case CK_IcelakeServer: 619 case CK_Tigerlake: 620 case CK_SapphireRapids: 621 case CK_Alderlake: 622 case CK_Raptorlake: 623 case CK_Meteorlake: 624 case CK_Arrowlake: 625 case CK_ArrowlakeS: 626 case CK_Lunarlake: 627 case CK_Pantherlake: 628 case CK_Sierraforest: 629 case CK_Grandridge: 630 case CK_Graniterapids: 631 case CK_GraniterapidsD: 632 case CK_Emeraldrapids: 633 case CK_Clearwaterforest: 634 // FIXME: Historically, we defined this legacy name, it would be nice to 635 // remove it at some point. We've never exposed fine-grained names for 636 // recent primary x86 CPUs, and we should keep it that way. 637 defineCPUMacros(Builder, "corei7"); 638 break; 639 case CK_KNL: 640 defineCPUMacros(Builder, "knl"); 641 break; 642 case CK_KNM: 643 break; 644 case CK_Lakemont: 645 defineCPUMacros(Builder, "i586", /*Tuning*/false); 646 defineCPUMacros(Builder, "pentium", /*Tuning*/false); 647 Builder.defineMacro("__tune_lakemont__"); 648 break; 649 case CK_K6_2: 650 Builder.defineMacro("__k6_2__"); 651 Builder.defineMacro("__tune_k6_2__"); 652 [[fallthrough]]; 653 case CK_K6_3: 654 if (CPU != CK_K6_2) { // In case of fallthrough 655 // FIXME: GCC may be enabling these in cases where some other k6 656 // architecture is specified but -m3dnow is explicitly provided. The 657 // exact semantics need to be determined and emulated here. 658 Builder.defineMacro("__k6_3__"); 659 Builder.defineMacro("__tune_k6_3__"); 660 } 661 [[fallthrough]]; 662 case CK_K6: 663 defineCPUMacros(Builder, "k6"); 664 break; 665 case CK_Athlon: 666 case CK_AthlonXP: 667 defineCPUMacros(Builder, "athlon"); 668 if (SSELevel != NoSSE) { 669 Builder.defineMacro("__athlon_sse__"); 670 Builder.defineMacro("__tune_athlon_sse__"); 671 } 672 break; 673 case CK_K8: 674 case CK_K8SSE3: 675 case CK_x86_64: 676 defineCPUMacros(Builder, "k8"); 677 break; 678 case CK_x86_64_v2: 679 case CK_x86_64_v3: 680 case CK_x86_64_v4: 681 break; 682 case CK_AMDFAM10: 683 defineCPUMacros(Builder, "amdfam10"); 684 break; 685 case CK_BTVER1: 686 defineCPUMacros(Builder, "btver1"); 687 break; 688 case CK_BTVER2: 689 defineCPUMacros(Builder, "btver2"); 690 break; 691 case CK_BDVER1: 692 defineCPUMacros(Builder, "bdver1"); 693 break; 694 case CK_BDVER2: 695 defineCPUMacros(Builder, "bdver2"); 696 break; 697 case CK_BDVER3: 698 defineCPUMacros(Builder, "bdver3"); 699 break; 700 case CK_BDVER4: 701 defineCPUMacros(Builder, "bdver4"); 702 break; 703 case CK_ZNVER1: 704 defineCPUMacros(Builder, "znver1"); 705 break; 706 case CK_ZNVER2: 707 defineCPUMacros(Builder, "znver2"); 708 break; 709 case CK_ZNVER3: 710 defineCPUMacros(Builder, "znver3"); 711 break; 712 case CK_ZNVER4: 713 defineCPUMacros(Builder, "znver4"); 714 break; 715 case CK_Geode: 716 defineCPUMacros(Builder, "geode"); 717 break; 718 } 719 720 // Target properties. 721 Builder.defineMacro("__REGISTER_PREFIX__", ""); 722 723 // Define __NO_MATH_INLINES on linux/x86 so that we don't get inline 724 // functions in glibc header files that use FP Stack inline asm which the 725 // backend can't deal with (PR879). 726 Builder.defineMacro("__NO_MATH_INLINES"); 727 728 if (HasAES) 729 Builder.defineMacro("__AES__"); 730 731 if (HasVAES) 732 Builder.defineMacro("__VAES__"); 733 734 if (HasPCLMUL) 735 Builder.defineMacro("__PCLMUL__"); 736 737 if (HasVPCLMULQDQ) 738 Builder.defineMacro("__VPCLMULQDQ__"); 739 740 // Note, in 32-bit mode, GCC does not define the macro if -mno-sahf. In LLVM, 741 // the feature flag only applies to 64-bit mode. 742 if (HasLAHFSAHF || getTriple().getArch() == llvm::Triple::x86) 743 Builder.defineMacro("__LAHF_SAHF__"); 744 745 if (HasLZCNT) 746 Builder.defineMacro("__LZCNT__"); 747 748 if (HasRDRND) 749 Builder.defineMacro("__RDRND__"); 750 751 if (HasFSGSBASE) 752 Builder.defineMacro("__FSGSBASE__"); 753 754 if (HasBMI) 755 Builder.defineMacro("__BMI__"); 756 757 if (HasBMI2) 758 Builder.defineMacro("__BMI2__"); 759 760 if (HasPOPCNT) 761 Builder.defineMacro("__POPCNT__"); 762 763 if (HasRTM) 764 Builder.defineMacro("__RTM__"); 765 766 if (HasPRFCHW) 767 Builder.defineMacro("__PRFCHW__"); 768 769 if (HasRDSEED) 770 Builder.defineMacro("__RDSEED__"); 771 772 if (HasADX) 773 Builder.defineMacro("__ADX__"); 774 775 if (HasTBM) 776 Builder.defineMacro("__TBM__"); 777 778 if (HasLWP) 779 Builder.defineMacro("__LWP__"); 780 781 if (HasMWAITX) 782 Builder.defineMacro("__MWAITX__"); 783 784 if (HasMOVBE) 785 Builder.defineMacro("__MOVBE__"); 786 787 switch (XOPLevel) { 788 case XOP: 789 Builder.defineMacro("__XOP__"); 790 [[fallthrough]]; 791 case FMA4: 792 Builder.defineMacro("__FMA4__"); 793 [[fallthrough]]; 794 case SSE4A: 795 Builder.defineMacro("__SSE4A__"); 796 [[fallthrough]]; 797 case NoXOP: 798 break; 799 } 800 801 if (HasFMA) 802 Builder.defineMacro("__FMA__"); 803 804 if (HasF16C) 805 Builder.defineMacro("__F16C__"); 806 807 if (HasGFNI) 808 Builder.defineMacro("__GFNI__"); 809 810 if (HasEVEX512) 811 Builder.defineMacro("__EVEX512__"); 812 if (HasAVX10_1) 813 Builder.defineMacro("__AVX10_1__"); 814 if (HasAVX10_1_512) 815 Builder.defineMacro("__AVX10_1_512__"); 816 if (HasAVX512CD) 817 Builder.defineMacro("__AVX512CD__"); 818 if (HasAVX512VPOPCNTDQ) 819 Builder.defineMacro("__AVX512VPOPCNTDQ__"); 820 if (HasAVX512VNNI) 821 Builder.defineMacro("__AVX512VNNI__"); 822 if (HasAVX512BF16) 823 Builder.defineMacro("__AVX512BF16__"); 824 if (HasAVX512ER) 825 Builder.defineMacro("__AVX512ER__"); 826 if (HasAVX512FP16) 827 Builder.defineMacro("__AVX512FP16__"); 828 if (HasAVX512PF) 829 Builder.defineMacro("__AVX512PF__"); 830 if (HasAVX512DQ) 831 Builder.defineMacro("__AVX512DQ__"); 832 if (HasAVX512BITALG) 833 Builder.defineMacro("__AVX512BITALG__"); 834 if (HasAVX512BW) 835 Builder.defineMacro("__AVX512BW__"); 836 if (HasAVX512VL) { 837 Builder.defineMacro("__AVX512VL__"); 838 Builder.defineMacro("__EVEX256__"); 839 } 840 if (HasAVX512VBMI) 841 Builder.defineMacro("__AVX512VBMI__"); 842 if (HasAVX512VBMI2) 843 Builder.defineMacro("__AVX512VBMI2__"); 844 if (HasAVX512IFMA) 845 Builder.defineMacro("__AVX512IFMA__"); 846 if (HasAVX512VP2INTERSECT) 847 Builder.defineMacro("__AVX512VP2INTERSECT__"); 848 if (HasSHA) 849 Builder.defineMacro("__SHA__"); 850 if (HasSHA512) 851 Builder.defineMacro("__SHA512__"); 852 853 if (HasFXSR) 854 Builder.defineMacro("__FXSR__"); 855 if (HasXSAVE) 856 Builder.defineMacro("__XSAVE__"); 857 if (HasXSAVEOPT) 858 Builder.defineMacro("__XSAVEOPT__"); 859 if (HasXSAVEC) 860 Builder.defineMacro("__XSAVEC__"); 861 if (HasXSAVES) 862 Builder.defineMacro("__XSAVES__"); 863 if (HasPKU) 864 Builder.defineMacro("__PKU__"); 865 if (HasCLFLUSHOPT) 866 Builder.defineMacro("__CLFLUSHOPT__"); 867 if (HasCLWB) 868 Builder.defineMacro("__CLWB__"); 869 if (HasWBNOINVD) 870 Builder.defineMacro("__WBNOINVD__"); 871 if (HasSHSTK) 872 Builder.defineMacro("__SHSTK__"); 873 if (HasSGX) 874 Builder.defineMacro("__SGX__"); 875 if (HasSM3) 876 Builder.defineMacro("__SM3__"); 877 if (HasSM4) 878 Builder.defineMacro("__SM4__"); 879 if (HasPREFETCHI) 880 Builder.defineMacro("__PREFETCHI__"); 881 if (HasPREFETCHWT1) 882 Builder.defineMacro("__PREFETCHWT1__"); 883 if (HasCLZERO) 884 Builder.defineMacro("__CLZERO__"); 885 if (HasKL) 886 Builder.defineMacro("__KL__"); 887 if (HasWIDEKL) 888 Builder.defineMacro("__WIDEKL__"); 889 if (HasRDPID) 890 Builder.defineMacro("__RDPID__"); 891 if (HasRDPRU) 892 Builder.defineMacro("__RDPRU__"); 893 if (HasCLDEMOTE) 894 Builder.defineMacro("__CLDEMOTE__"); 895 if (HasWAITPKG) 896 Builder.defineMacro("__WAITPKG__"); 897 if (HasMOVDIRI) 898 Builder.defineMacro("__MOVDIRI__"); 899 if (HasMOVDIR64B) 900 Builder.defineMacro("__MOVDIR64B__"); 901 if (HasPCONFIG) 902 Builder.defineMacro("__PCONFIG__"); 903 if (HasPTWRITE) 904 Builder.defineMacro("__PTWRITE__"); 905 if (HasINVPCID) 906 Builder.defineMacro("__INVPCID__"); 907 if (HasENQCMD) 908 Builder.defineMacro("__ENQCMD__"); 909 if (HasHRESET) 910 Builder.defineMacro("__HRESET__"); 911 if (HasAMXTILE) 912 Builder.defineMacro("__AMX_TILE__"); 913 if (HasAMXINT8) 914 Builder.defineMacro("__AMX_INT8__"); 915 if (HasAMXBF16) 916 Builder.defineMacro("__AMX_BF16__"); 917 if (HasAMXFP16) 918 Builder.defineMacro("__AMX_FP16__"); 919 if (HasAMXCOMPLEX) 920 Builder.defineMacro("__AMX_COMPLEX__"); 921 if (HasCMPCCXADD) 922 Builder.defineMacro("__CMPCCXADD__"); 923 if (HasRAOINT) 924 Builder.defineMacro("__RAOINT__"); 925 if (HasAVXIFMA) 926 Builder.defineMacro("__AVXIFMA__"); 927 if (HasAVXNECONVERT) 928 Builder.defineMacro("__AVXNECONVERT__"); 929 if (HasAVXVNNI) 930 Builder.defineMacro("__AVXVNNI__"); 931 if (HasAVXVNNIINT16) 932 Builder.defineMacro("__AVXVNNIINT16__"); 933 if (HasAVXVNNIINT8) 934 Builder.defineMacro("__AVXVNNIINT8__"); 935 if (HasSERIALIZE) 936 Builder.defineMacro("__SERIALIZE__"); 937 if (HasTSXLDTRK) 938 Builder.defineMacro("__TSXLDTRK__"); 939 if (HasUINTR) 940 Builder.defineMacro("__UINTR__"); 941 if (HasUSERMSR) 942 Builder.defineMacro("__USERMSR__"); 943 if (HasCRC32) 944 Builder.defineMacro("__CRC32__"); 945 if (HasEGPR) 946 Builder.defineMacro("__EGPR__"); 947 if (HasPush2Pop2) 948 Builder.defineMacro("__PUSH2POP2__"); 949 if (HasPPX) 950 Builder.defineMacro("__PPX__"); 951 if (HasNDD) 952 Builder.defineMacro("__NDD__"); 953 if (HasCCMP) 954 Builder.defineMacro("__CCMP__"); 955 if (HasCF) 956 Builder.defineMacro("__CF__"); 957 958 // Each case falls through to the previous one here. 959 switch (SSELevel) { 960 case AVX512F: 961 Builder.defineMacro("__AVX512F__"); 962 [[fallthrough]]; 963 case AVX2: 964 Builder.defineMacro("__AVX2__"); 965 [[fallthrough]]; 966 case AVX: 967 Builder.defineMacro("__AVX__"); 968 [[fallthrough]]; 969 case SSE42: 970 Builder.defineMacro("__SSE4_2__"); 971 [[fallthrough]]; 972 case SSE41: 973 Builder.defineMacro("__SSE4_1__"); 974 [[fallthrough]]; 975 case SSSE3: 976 Builder.defineMacro("__SSSE3__"); 977 [[fallthrough]]; 978 case SSE3: 979 Builder.defineMacro("__SSE3__"); 980 [[fallthrough]]; 981 case SSE2: 982 Builder.defineMacro("__SSE2__"); 983 Builder.defineMacro("__SSE2_MATH__"); // -mfp-math=sse always implied. 984 [[fallthrough]]; 985 case SSE1: 986 Builder.defineMacro("__SSE__"); 987 Builder.defineMacro("__SSE_MATH__"); // -mfp-math=sse always implied. 988 [[fallthrough]]; 989 case NoSSE: 990 break; 991 } 992 993 if (Opts.MicrosoftExt && getTriple().getArch() == llvm::Triple::x86) { 994 switch (SSELevel) { 995 case AVX512F: 996 case AVX2: 997 case AVX: 998 case SSE42: 999 case SSE41: 1000 case SSSE3: 1001 case SSE3: 1002 case SSE2: 1003 Builder.defineMacro("_M_IX86_FP", Twine(2)); 1004 break; 1005 case SSE1: 1006 Builder.defineMacro("_M_IX86_FP", Twine(1)); 1007 break; 1008 default: 1009 Builder.defineMacro("_M_IX86_FP", Twine(0)); 1010 break; 1011 } 1012 } 1013 1014 // Each case falls through to the previous one here. 1015 switch (MMX3DNowLevel) { 1016 case AMD3DNowAthlon: 1017 Builder.defineMacro("__3dNOW_A__"); 1018 [[fallthrough]]; 1019 case AMD3DNow: 1020 Builder.defineMacro("__3dNOW__"); 1021 [[fallthrough]]; 1022 case MMX: 1023 Builder.defineMacro("__MMX__"); 1024 [[fallthrough]]; 1025 case NoMMX3DNow: 1026 break; 1027 } 1028 1029 if (CPU >= CK_i486 || CPU == CK_None) { 1030 Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1"); 1031 Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2"); 1032 Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4"); 1033 } 1034 if (HasCX8) 1035 Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8"); 1036 if (HasCX16 && getTriple().getArch() == llvm::Triple::x86_64) 1037 Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16"); 1038 1039 if (HasFloat128) 1040 Builder.defineMacro("__SIZEOF_FLOAT128__", "16"); 1041 } 1042 1043 bool X86TargetInfo::isValidFeatureName(StringRef Name) const { 1044 return llvm::StringSwitch<bool>(Name) 1045 .Case("3dnow", true) 1046 .Case("3dnowa", true) 1047 .Case("adx", true) 1048 .Case("aes", true) 1049 .Case("amx-bf16", true) 1050 .Case("amx-complex", true) 1051 .Case("amx-fp16", true) 1052 .Case("amx-int8", true) 1053 .Case("amx-tile", true) 1054 .Case("avx", true) 1055 .Case("avx10.1-256", true) 1056 .Case("avx10.1-512", true) 1057 .Case("avx2", true) 1058 .Case("avx512f", true) 1059 .Case("avx512cd", true) 1060 .Case("avx512vpopcntdq", true) 1061 .Case("avx512vnni", true) 1062 .Case("avx512bf16", true) 1063 .Case("avx512er", true) 1064 .Case("avx512fp16", true) 1065 .Case("avx512pf", true) 1066 .Case("avx512dq", true) 1067 .Case("avx512bitalg", true) 1068 .Case("avx512bw", true) 1069 .Case("avx512vl", true) 1070 .Case("avx512vbmi", true) 1071 .Case("avx512vbmi2", true) 1072 .Case("avx512ifma", true) 1073 .Case("avx512vp2intersect", true) 1074 .Case("avxifma", true) 1075 .Case("avxneconvert", true) 1076 .Case("avxvnni", true) 1077 .Case("avxvnniint16", true) 1078 .Case("avxvnniint8", true) 1079 .Case("bmi", true) 1080 .Case("bmi2", true) 1081 .Case("cldemote", true) 1082 .Case("clflushopt", true) 1083 .Case("clwb", true) 1084 .Case("clzero", true) 1085 .Case("cmpccxadd", true) 1086 .Case("crc32", true) 1087 .Case("cx16", true) 1088 .Case("enqcmd", true) 1089 .Case("evex512", true) 1090 .Case("f16c", true) 1091 .Case("fma", true) 1092 .Case("fma4", true) 1093 .Case("fsgsbase", true) 1094 .Case("fxsr", true) 1095 .Case("general-regs-only", true) 1096 .Case("gfni", true) 1097 .Case("hreset", true) 1098 .Case("invpcid", true) 1099 .Case("kl", true) 1100 .Case("widekl", true) 1101 .Case("lwp", true) 1102 .Case("lzcnt", true) 1103 .Case("mmx", true) 1104 .Case("movbe", true) 1105 .Case("movdiri", true) 1106 .Case("movdir64b", true) 1107 .Case("mwaitx", true) 1108 .Case("pclmul", true) 1109 .Case("pconfig", true) 1110 .Case("pku", true) 1111 .Case("popcnt", true) 1112 .Case("prefetchi", true) 1113 .Case("prefetchwt1", true) 1114 .Case("prfchw", true) 1115 .Case("ptwrite", true) 1116 .Case("raoint", true) 1117 .Case("rdpid", true) 1118 .Case("rdpru", true) 1119 .Case("rdrnd", true) 1120 .Case("rdseed", true) 1121 .Case("rtm", true) 1122 .Case("sahf", true) 1123 .Case("serialize", true) 1124 .Case("sgx", true) 1125 .Case("sha", true) 1126 .Case("sha512", true) 1127 .Case("shstk", true) 1128 .Case("sm3", true) 1129 .Case("sm4", true) 1130 .Case("sse", true) 1131 .Case("sse2", true) 1132 .Case("sse3", true) 1133 .Case("ssse3", true) 1134 .Case("sse4", true) 1135 .Case("sse4.1", true) 1136 .Case("sse4.2", true) 1137 .Case("sse4a", true) 1138 .Case("tbm", true) 1139 .Case("tsxldtrk", true) 1140 .Case("uintr", true) 1141 .Case("usermsr", true) 1142 .Case("vaes", true) 1143 .Case("vpclmulqdq", true) 1144 .Case("wbnoinvd", true) 1145 .Case("waitpkg", true) 1146 .Case("x87", true) 1147 .Case("xop", true) 1148 .Case("xsave", true) 1149 .Case("xsavec", true) 1150 .Case("xsaves", true) 1151 .Case("xsaveopt", true) 1152 .Case("egpr", true) 1153 .Case("push2pop2", true) 1154 .Case("ppx", true) 1155 .Case("ndd", true) 1156 .Case("ccmp", true) 1157 .Case("cf", true) 1158 .Default(false); 1159 } 1160 1161 bool X86TargetInfo::hasFeature(StringRef Feature) const { 1162 return llvm::StringSwitch<bool>(Feature) 1163 .Case("adx", HasADX) 1164 .Case("aes", HasAES) 1165 .Case("amx-bf16", HasAMXBF16) 1166 .Case("amx-complex", HasAMXCOMPLEX) 1167 .Case("amx-fp16", HasAMXFP16) 1168 .Case("amx-int8", HasAMXINT8) 1169 .Case("amx-tile", HasAMXTILE) 1170 .Case("avx", SSELevel >= AVX) 1171 .Case("avx10.1-256", HasAVX10_1) 1172 .Case("avx10.1-512", HasAVX10_1_512) 1173 .Case("avx2", SSELevel >= AVX2) 1174 .Case("avx512f", SSELevel >= AVX512F) 1175 .Case("avx512cd", HasAVX512CD) 1176 .Case("avx512vpopcntdq", HasAVX512VPOPCNTDQ) 1177 .Case("avx512vnni", HasAVX512VNNI) 1178 .Case("avx512bf16", HasAVX512BF16) 1179 .Case("avx512er", HasAVX512ER) 1180 .Case("avx512fp16", HasAVX512FP16) 1181 .Case("avx512pf", HasAVX512PF) 1182 .Case("avx512dq", HasAVX512DQ) 1183 .Case("avx512bitalg", HasAVX512BITALG) 1184 .Case("avx512bw", HasAVX512BW) 1185 .Case("avx512vl", HasAVX512VL) 1186 .Case("avx512vbmi", HasAVX512VBMI) 1187 .Case("avx512vbmi2", HasAVX512VBMI2) 1188 .Case("avx512ifma", HasAVX512IFMA) 1189 .Case("avx512vp2intersect", HasAVX512VP2INTERSECT) 1190 .Case("avxifma", HasAVXIFMA) 1191 .Case("avxneconvert", HasAVXNECONVERT) 1192 .Case("avxvnni", HasAVXVNNI) 1193 .Case("avxvnniint16", HasAVXVNNIINT16) 1194 .Case("avxvnniint8", HasAVXVNNIINT8) 1195 .Case("bmi", HasBMI) 1196 .Case("bmi2", HasBMI2) 1197 .Case("cldemote", HasCLDEMOTE) 1198 .Case("clflushopt", HasCLFLUSHOPT) 1199 .Case("clwb", HasCLWB) 1200 .Case("clzero", HasCLZERO) 1201 .Case("cmpccxadd", HasCMPCCXADD) 1202 .Case("crc32", HasCRC32) 1203 .Case("cx8", HasCX8) 1204 .Case("cx16", HasCX16) 1205 .Case("enqcmd", HasENQCMD) 1206 .Case("evex512", HasEVEX512) 1207 .Case("f16c", HasF16C) 1208 .Case("fma", HasFMA) 1209 .Case("fma4", XOPLevel >= FMA4) 1210 .Case("fsgsbase", HasFSGSBASE) 1211 .Case("fxsr", HasFXSR) 1212 .Case("gfni", HasGFNI) 1213 .Case("hreset", HasHRESET) 1214 .Case("invpcid", HasINVPCID) 1215 .Case("kl", HasKL) 1216 .Case("widekl", HasWIDEKL) 1217 .Case("lwp", HasLWP) 1218 .Case("lzcnt", HasLZCNT) 1219 .Case("mm3dnow", MMX3DNowLevel >= AMD3DNow) 1220 .Case("mm3dnowa", MMX3DNowLevel >= AMD3DNowAthlon) 1221 .Case("mmx", MMX3DNowLevel >= MMX) 1222 .Case("movbe", HasMOVBE) 1223 .Case("movdiri", HasMOVDIRI) 1224 .Case("movdir64b", HasMOVDIR64B) 1225 .Case("mwaitx", HasMWAITX) 1226 .Case("pclmul", HasPCLMUL) 1227 .Case("pconfig", HasPCONFIG) 1228 .Case("pku", HasPKU) 1229 .Case("popcnt", HasPOPCNT) 1230 .Case("prefetchi", HasPREFETCHI) 1231 .Case("prefetchwt1", HasPREFETCHWT1) 1232 .Case("prfchw", HasPRFCHW) 1233 .Case("ptwrite", HasPTWRITE) 1234 .Case("raoint", HasRAOINT) 1235 .Case("rdpid", HasRDPID) 1236 .Case("rdpru", HasRDPRU) 1237 .Case("rdrnd", HasRDRND) 1238 .Case("rdseed", HasRDSEED) 1239 .Case("retpoline-external-thunk", HasRetpolineExternalThunk) 1240 .Case("rtm", HasRTM) 1241 .Case("sahf", HasLAHFSAHF) 1242 .Case("serialize", HasSERIALIZE) 1243 .Case("sgx", HasSGX) 1244 .Case("sha", HasSHA) 1245 .Case("sha512", HasSHA512) 1246 .Case("shstk", HasSHSTK) 1247 .Case("sm3", HasSM3) 1248 .Case("sm4", HasSM4) 1249 .Case("sse", SSELevel >= SSE1) 1250 .Case("sse2", SSELevel >= SSE2) 1251 .Case("sse3", SSELevel >= SSE3) 1252 .Case("ssse3", SSELevel >= SSSE3) 1253 .Case("sse4.1", SSELevel >= SSE41) 1254 .Case("sse4.2", SSELevel >= SSE42) 1255 .Case("sse4a", XOPLevel >= SSE4A) 1256 .Case("tbm", HasTBM) 1257 .Case("tsxldtrk", HasTSXLDTRK) 1258 .Case("uintr", HasUINTR) 1259 .Case("usermsr", HasUSERMSR) 1260 .Case("vaes", HasVAES) 1261 .Case("vpclmulqdq", HasVPCLMULQDQ) 1262 .Case("wbnoinvd", HasWBNOINVD) 1263 .Case("waitpkg", HasWAITPKG) 1264 .Case("x86", true) 1265 .Case("x86_32", getTriple().getArch() == llvm::Triple::x86) 1266 .Case("x86_64", getTriple().getArch() == llvm::Triple::x86_64) 1267 .Case("x87", HasX87) 1268 .Case("xop", XOPLevel >= XOP) 1269 .Case("xsave", HasXSAVE) 1270 .Case("xsavec", HasXSAVEC) 1271 .Case("xsaves", HasXSAVES) 1272 .Case("xsaveopt", HasXSAVEOPT) 1273 .Case("fullbf16", HasFullBFloat16) 1274 .Case("egpr", HasEGPR) 1275 .Case("push2pop2", HasPush2Pop2) 1276 .Case("ppx", HasPPX) 1277 .Case("ndd", HasNDD) 1278 .Case("ccmp", HasCCMP) 1279 .Case("cf", HasCF) 1280 .Default(false); 1281 } 1282 1283 // We can't use a generic validation scheme for the features accepted here 1284 // versus subtarget features accepted in the target attribute because the 1285 // bitfield structure that's initialized in the runtime only supports the 1286 // below currently rather than the full range of subtarget features. (See 1287 // X86TargetInfo::hasFeature for a somewhat comprehensive list). 1288 bool X86TargetInfo::validateCpuSupports(StringRef FeatureStr) const { 1289 return llvm::StringSwitch<bool>(FeatureStr) 1290 #define X86_FEATURE_COMPAT(ENUM, STR, PRIORITY) .Case(STR, true) 1291 #define X86_MICROARCH_LEVEL(ENUM, STR, PRIORITY) .Case(STR, true) 1292 #include "llvm/TargetParser/X86TargetParser.def" 1293 .Default(false); 1294 } 1295 1296 static llvm::X86::ProcessorFeatures getFeature(StringRef Name) { 1297 return llvm::StringSwitch<llvm::X86::ProcessorFeatures>(Name) 1298 #define X86_FEATURE_COMPAT(ENUM, STR, PRIORITY) \ 1299 .Case(STR, llvm::X86::FEATURE_##ENUM) 1300 1301 #include "llvm/TargetParser/X86TargetParser.def" 1302 ; 1303 // Note, this function should only be used after ensuring the value is 1304 // correct, so it asserts if the value is out of range. 1305 } 1306 1307 unsigned X86TargetInfo::multiVersionSortPriority(StringRef Name) const { 1308 // Valid CPUs have a 'key feature' that compares just better than its key 1309 // feature. 1310 using namespace llvm::X86; 1311 CPUKind Kind = parseArchX86(Name); 1312 if (Kind != CK_None) { 1313 ProcessorFeatures KeyFeature = getKeyFeature(Kind); 1314 return (getFeaturePriority(KeyFeature) << 1) + 1; 1315 } 1316 1317 // Now we know we have a feature, so get its priority and shift it a few so 1318 // that we have sufficient room for the CPUs (above). 1319 return getFeaturePriority(getFeature(Name)) << 1; 1320 } 1321 1322 bool X86TargetInfo::validateCPUSpecificCPUDispatch(StringRef Name) const { 1323 return llvm::X86::validateCPUSpecificCPUDispatch(Name); 1324 } 1325 1326 char X86TargetInfo::CPUSpecificManglingCharacter(StringRef Name) const { 1327 return llvm::X86::getCPUDispatchMangling(Name); 1328 } 1329 1330 void X86TargetInfo::getCPUSpecificCPUDispatchFeatures( 1331 StringRef Name, llvm::SmallVectorImpl<StringRef> &Features) const { 1332 SmallVector<StringRef, 32> TargetCPUFeatures; 1333 llvm::X86::getFeaturesForCPU(Name, TargetCPUFeatures, true); 1334 for (auto &F : TargetCPUFeatures) 1335 Features.push_back(F); 1336 } 1337 1338 // We can't use a generic validation scheme for the cpus accepted here 1339 // versus subtarget cpus accepted in the target attribute because the 1340 // variables intitialized by the runtime only support the below currently 1341 // rather than the full range of cpus. 1342 bool X86TargetInfo::validateCpuIs(StringRef FeatureStr) const { 1343 return llvm::StringSwitch<bool>(FeatureStr) 1344 #define X86_VENDOR(ENUM, STRING) .Case(STRING, true) 1345 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) .Case(ALIAS, true) 1346 #define X86_CPU_TYPE(ENUM, STR) .Case(STR, true) 1347 #define X86_CPU_SUBTYPE_ALIAS(ENUM, ALIAS) .Case(ALIAS, true) 1348 #define X86_CPU_SUBTYPE(ENUM, STR) .Case(STR, true) 1349 #include "llvm/TargetParser/X86TargetParser.def" 1350 .Default(false); 1351 } 1352 1353 static unsigned matchAsmCCConstraint(const char *Name) { 1354 auto RV = llvm::StringSwitch<unsigned>(Name) 1355 .Case("@cca", 4) 1356 .Case("@ccae", 5) 1357 .Case("@ccb", 4) 1358 .Case("@ccbe", 5) 1359 .Case("@ccc", 4) 1360 .Case("@cce", 4) 1361 .Case("@ccz", 4) 1362 .Case("@ccg", 4) 1363 .Case("@ccge", 5) 1364 .Case("@ccl", 4) 1365 .Case("@ccle", 5) 1366 .Case("@ccna", 5) 1367 .Case("@ccnae", 6) 1368 .Case("@ccnb", 5) 1369 .Case("@ccnbe", 6) 1370 .Case("@ccnc", 5) 1371 .Case("@ccne", 5) 1372 .Case("@ccnz", 5) 1373 .Case("@ccng", 5) 1374 .Case("@ccnge", 6) 1375 .Case("@ccnl", 5) 1376 .Case("@ccnle", 6) 1377 .Case("@ccno", 5) 1378 .Case("@ccnp", 5) 1379 .Case("@ccns", 5) 1380 .Case("@cco", 4) 1381 .Case("@ccp", 4) 1382 .Case("@ccs", 4) 1383 .Default(0); 1384 return RV; 1385 } 1386 1387 bool X86TargetInfo::validateAsmConstraint( 1388 const char *&Name, TargetInfo::ConstraintInfo &Info) const { 1389 switch (*Name) { 1390 default: 1391 return false; 1392 // Constant constraints. 1393 case 'e': // 32-bit signed integer constant for use with sign-extending x86_64 1394 // instructions. 1395 case 'Z': // 32-bit unsigned integer constant for use with zero-extending 1396 // x86_64 instructions. 1397 case 's': 1398 Info.setRequiresImmediate(); 1399 return true; 1400 case 'I': 1401 Info.setRequiresImmediate(0, 31); 1402 return true; 1403 case 'J': 1404 Info.setRequiresImmediate(0, 63); 1405 return true; 1406 case 'K': 1407 Info.setRequiresImmediate(-128, 127); 1408 return true; 1409 case 'L': 1410 Info.setRequiresImmediate({int(0xff), int(0xffff), int(0xffffffff)}); 1411 return true; 1412 case 'M': 1413 Info.setRequiresImmediate(0, 3); 1414 return true; 1415 case 'N': 1416 Info.setRequiresImmediate(0, 255); 1417 return true; 1418 case 'O': 1419 Info.setRequiresImmediate(0, 127); 1420 return true; 1421 // Register constraints. 1422 case 'Y': // 'Y' is the first character for several 2-character constraints. 1423 // Shift the pointer to the second character of the constraint. 1424 Name++; 1425 switch (*Name) { 1426 default: 1427 return false; 1428 case 'z': // First SSE register. 1429 case '2': 1430 case 't': // Any SSE register, when SSE2 is enabled. 1431 case 'i': // Any SSE register, when SSE2 and inter-unit moves enabled. 1432 case 'm': // Any MMX register, when inter-unit moves enabled. 1433 case 'k': // AVX512 arch mask registers: k1-k7. 1434 Info.setAllowsRegister(); 1435 return true; 1436 } 1437 case 'f': // Any x87 floating point stack register. 1438 // Constraint 'f' cannot be used for output operands. 1439 if (Info.ConstraintStr[0] == '=') 1440 return false; 1441 Info.setAllowsRegister(); 1442 return true; 1443 case 'a': // eax. 1444 case 'b': // ebx. 1445 case 'c': // ecx. 1446 case 'd': // edx. 1447 case 'S': // esi. 1448 case 'D': // edi. 1449 case 'A': // edx:eax. 1450 case 't': // Top of floating point stack. 1451 case 'u': // Second from top of floating point stack. 1452 case 'q': // Any register accessible as [r]l: a, b, c, and d. 1453 case 'y': // Any MMX register. 1454 case 'v': // Any {X,Y,Z}MM register (Arch & context dependent) 1455 case 'x': // Any SSE register. 1456 case 'k': // Any AVX512 mask register (same as Yk, additionally allows k0 1457 // for intermideate k reg operations). 1458 case 'Q': // Any register accessible as [r]h: a, b, c, and d. 1459 case 'R': // "Legacy" registers: ax, bx, cx, dx, di, si, sp, bp. 1460 case 'l': // "Index" registers: any general register that can be used as an 1461 // index in a base+index memory access. 1462 Info.setAllowsRegister(); 1463 return true; 1464 // Floating point constant constraints. 1465 case 'C': // SSE floating point constant. 1466 case 'G': // x87 floating point constant. 1467 return true; 1468 case '@': 1469 // CC condition changes. 1470 if (auto Len = matchAsmCCConstraint(Name)) { 1471 Name += Len - 1; 1472 Info.setAllowsRegister(); 1473 return true; 1474 } 1475 return false; 1476 } 1477 } 1478 1479 // Below is based on the following information: 1480 // +------------------------------------+-------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1481 // | Processor Name | Cache Line Size (Bytes) | Source | 1482 // +------------------------------------+-------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1483 // | i386 | 64 | https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf | 1484 // | i486 | 16 | "four doublewords" (doubleword = 32 bits, 4 bits * 32 bits = 16 bytes) https://en.wikichip.org/w/images/d/d3/i486_MICROPROCESSOR_HARDWARE_REFERENCE_MANUAL_%281990%29.pdf and http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.4216&rep=rep1&type=pdf (page 29) | 1485 // | i586/Pentium MMX | 32 | https://www.7-cpu.com/cpu/P-MMX.html | 1486 // | i686/Pentium | 32 | https://www.7-cpu.com/cpu/P6.html | 1487 // | Netburst/Pentium4 | 64 | https://www.7-cpu.com/cpu/P4-180.html | 1488 // | Atom | 64 | https://www.7-cpu.com/cpu/Atom.html | 1489 // | Westmere | 64 | https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client) "Cache Architecture" | 1490 // | Sandy Bridge | 64 | https://en.wikipedia.org/wiki/Sandy_Bridge and https://www.7-cpu.com/cpu/SandyBridge.html | 1491 // | Ivy Bridge | 64 | https://blog.stuffedcow.net/2013/01/ivb-cache-replacement/ and https://www.7-cpu.com/cpu/IvyBridge.html | 1492 // | Haswell | 64 | https://www.7-cpu.com/cpu/Haswell.html | 1493 // | Broadwell | 64 | https://www.7-cpu.com/cpu/Broadwell.html | 1494 // | Skylake (including skylake-avx512) | 64 | https://www.nas.nasa.gov/hecc/support/kb/skylake-processors_550.html "Cache Hierarchy" | 1495 // | Cascade Lake | 64 | https://www.nas.nasa.gov/hecc/support/kb/cascade-lake-processors_579.html "Cache Hierarchy" | 1496 // | Skylake | 64 | https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake "Memory Hierarchy" | 1497 // | Ice Lake | 64 | https://www.7-cpu.com/cpu/Ice_Lake.html | 1498 // | Knights Landing | 64 | https://software.intel.com/en-us/articles/intel-xeon-phi-processor-7200-family-memory-management-optimizations "The Intel® Xeon Phi™ Processor Architecture" | 1499 // | Knights Mill | 64 | https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf?countrylabel=Colombia "2.5.5.2 L1 DCache " | 1500 // +------------------------------------+-------------------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1501 std::optional<unsigned> X86TargetInfo::getCPUCacheLineSize() const { 1502 using namespace llvm::X86; 1503 switch (CPU) { 1504 // i386 1505 case CK_i386: 1506 // i486 1507 case CK_i486: 1508 case CK_WinChipC6: 1509 case CK_WinChip2: 1510 case CK_C3: 1511 // Lakemont 1512 case CK_Lakemont: 1513 return 16; 1514 1515 // i586 1516 case CK_i586: 1517 case CK_Pentium: 1518 case CK_PentiumMMX: 1519 // i686 1520 case CK_PentiumPro: 1521 case CK_i686: 1522 case CK_Pentium2: 1523 case CK_Pentium3: 1524 case CK_PentiumM: 1525 case CK_C3_2: 1526 // K6 1527 case CK_K6: 1528 case CK_K6_2: 1529 case CK_K6_3: 1530 // Geode 1531 case CK_Geode: 1532 return 32; 1533 1534 // Netburst 1535 case CK_Pentium4: 1536 case CK_Prescott: 1537 case CK_Nocona: 1538 // Atom 1539 case CK_Bonnell: 1540 case CK_Silvermont: 1541 case CK_Goldmont: 1542 case CK_GoldmontPlus: 1543 case CK_Tremont: 1544 case CK_Gracemont: 1545 1546 case CK_Westmere: 1547 case CK_SandyBridge: 1548 case CK_IvyBridge: 1549 case CK_Haswell: 1550 case CK_Broadwell: 1551 case CK_SkylakeClient: 1552 case CK_SkylakeServer: 1553 case CK_Cascadelake: 1554 case CK_Nehalem: 1555 case CK_Cooperlake: 1556 case CK_Cannonlake: 1557 case CK_Tigerlake: 1558 case CK_SapphireRapids: 1559 case CK_IcelakeClient: 1560 case CK_Rocketlake: 1561 case CK_IcelakeServer: 1562 case CK_Alderlake: 1563 case CK_Raptorlake: 1564 case CK_Meteorlake: 1565 case CK_Arrowlake: 1566 case CK_ArrowlakeS: 1567 case CK_Lunarlake: 1568 case CK_Pantherlake: 1569 case CK_Sierraforest: 1570 case CK_Grandridge: 1571 case CK_Graniterapids: 1572 case CK_GraniterapidsD: 1573 case CK_Emeraldrapids: 1574 case CK_Clearwaterforest: 1575 case CK_KNL: 1576 case CK_KNM: 1577 // K7 1578 case CK_Athlon: 1579 case CK_AthlonXP: 1580 // K8 1581 case CK_K8: 1582 case CK_K8SSE3: 1583 case CK_AMDFAM10: 1584 // Bobcat 1585 case CK_BTVER1: 1586 case CK_BTVER2: 1587 // Bulldozer 1588 case CK_BDVER1: 1589 case CK_BDVER2: 1590 case CK_BDVER3: 1591 case CK_BDVER4: 1592 // Zen 1593 case CK_ZNVER1: 1594 case CK_ZNVER2: 1595 case CK_ZNVER3: 1596 case CK_ZNVER4: 1597 // Deprecated 1598 case CK_x86_64: 1599 case CK_x86_64_v2: 1600 case CK_x86_64_v3: 1601 case CK_x86_64_v4: 1602 case CK_Yonah: 1603 case CK_Penryn: 1604 case CK_Core2: 1605 return 64; 1606 1607 // The following currently have unknown cache line sizes (but they are probably all 64): 1608 // Core 1609 case CK_None: 1610 return std::nullopt; 1611 } 1612 llvm_unreachable("Unknown CPU kind"); 1613 } 1614 1615 bool X86TargetInfo::validateOutputSize(const llvm::StringMap<bool> &FeatureMap, 1616 StringRef Constraint, 1617 unsigned Size) const { 1618 // Strip off constraint modifiers. 1619 Constraint = Constraint.ltrim("=+&"); 1620 1621 return validateOperandSize(FeatureMap, Constraint, Size); 1622 } 1623 1624 bool X86TargetInfo::validateInputSize(const llvm::StringMap<bool> &FeatureMap, 1625 StringRef Constraint, 1626 unsigned Size) const { 1627 return validateOperandSize(FeatureMap, Constraint, Size); 1628 } 1629 1630 bool X86TargetInfo::validateOperandSize(const llvm::StringMap<bool> &FeatureMap, 1631 StringRef Constraint, 1632 unsigned Size) const { 1633 switch (Constraint[0]) { 1634 default: 1635 break; 1636 case 'k': 1637 // Registers k0-k7 (AVX512) size limit is 64 bit. 1638 case 'y': 1639 return Size <= 64; 1640 case 'f': 1641 case 't': 1642 case 'u': 1643 return Size <= 128; 1644 case 'Y': 1645 // 'Y' is the first character for several 2-character constraints. 1646 switch (Constraint[1]) { 1647 default: 1648 return false; 1649 case 'm': 1650 // 'Ym' is synonymous with 'y'. 1651 case 'k': 1652 return Size <= 64; 1653 case 'z': 1654 // XMM0/YMM/ZMM0 1655 if (hasFeatureEnabled(FeatureMap, "avx512f") && 1656 hasFeatureEnabled(FeatureMap, "evex512")) 1657 // ZMM0 can be used if target supports AVX512F and EVEX512 is set. 1658 return Size <= 512U; 1659 else if (hasFeatureEnabled(FeatureMap, "avx")) 1660 // YMM0 can be used if target supports AVX. 1661 return Size <= 256U; 1662 else if (hasFeatureEnabled(FeatureMap, "sse")) 1663 return Size <= 128U; 1664 return false; 1665 case 'i': 1666 case 't': 1667 case '2': 1668 // 'Yi','Yt','Y2' are synonymous with 'x' when SSE2 is enabled. 1669 if (SSELevel < SSE2) 1670 return false; 1671 break; 1672 } 1673 break; 1674 case 'v': 1675 case 'x': 1676 if (hasFeatureEnabled(FeatureMap, "avx512f") && 1677 hasFeatureEnabled(FeatureMap, "evex512")) 1678 // 512-bit zmm registers can be used if target supports AVX512F and 1679 // EVEX512 is set. 1680 return Size <= 512U; 1681 else if (hasFeatureEnabled(FeatureMap, "avx")) 1682 // 256-bit ymm registers can be used if target supports AVX. 1683 return Size <= 256U; 1684 return Size <= 128U; 1685 1686 } 1687 1688 return true; 1689 } 1690 1691 std::string X86TargetInfo::convertConstraint(const char *&Constraint) const { 1692 switch (*Constraint) { 1693 case '@': 1694 if (auto Len = matchAsmCCConstraint(Constraint)) { 1695 std::string Converted = "{" + std::string(Constraint, Len) + "}"; 1696 Constraint += Len - 1; 1697 return Converted; 1698 } 1699 return std::string(1, *Constraint); 1700 case 'a': 1701 return std::string("{ax}"); 1702 case 'b': 1703 return std::string("{bx}"); 1704 case 'c': 1705 return std::string("{cx}"); 1706 case 'd': 1707 return std::string("{dx}"); 1708 case 'S': 1709 return std::string("{si}"); 1710 case 'D': 1711 return std::string("{di}"); 1712 case 'p': // Keep 'p' constraint (address). 1713 return std::string("p"); 1714 case 't': // top of floating point stack. 1715 return std::string("{st}"); 1716 case 'u': // second from top of floating point stack. 1717 return std::string("{st(1)}"); // second from top of floating point stack. 1718 case 'Y': 1719 switch (Constraint[1]) { 1720 default: 1721 // Break from inner switch and fall through (copy single char), 1722 // continue parsing after copying the current constraint into 1723 // the return string. 1724 break; 1725 case 'k': 1726 case 'm': 1727 case 'i': 1728 case 't': 1729 case 'z': 1730 case '2': 1731 // "^" hints llvm that this is a 2 letter constraint. 1732 // "Constraint++" is used to promote the string iterator 1733 // to the next constraint. 1734 return std::string("^") + std::string(Constraint++, 2); 1735 } 1736 [[fallthrough]]; 1737 default: 1738 return std::string(1, *Constraint); 1739 } 1740 } 1741 1742 void X86TargetInfo::fillValidCPUList(SmallVectorImpl<StringRef> &Values) const { 1743 bool Only64Bit = getTriple().getArch() != llvm::Triple::x86; 1744 llvm::X86::fillValidCPUArchList(Values, Only64Bit); 1745 } 1746 1747 void X86TargetInfo::fillValidTuneCPUList(SmallVectorImpl<StringRef> &Values) const { 1748 llvm::X86::fillValidTuneCPUList(Values); 1749 } 1750 1751 ArrayRef<const char *> X86TargetInfo::getGCCRegNames() const { 1752 return llvm::ArrayRef(GCCRegNames); 1753 } 1754 1755 ArrayRef<TargetInfo::AddlRegName> X86TargetInfo::getGCCAddlRegNames() const { 1756 return llvm::ArrayRef(AddlRegNames); 1757 } 1758 1759 ArrayRef<Builtin::Info> X86_32TargetInfo::getTargetBuiltins() const { 1760 return llvm::ArrayRef(BuiltinInfoX86, clang::X86::LastX86CommonBuiltin - 1761 Builtin::FirstTSBuiltin + 1); 1762 } 1763 1764 ArrayRef<Builtin::Info> X86_64TargetInfo::getTargetBuiltins() const { 1765 return llvm::ArrayRef(BuiltinInfoX86, 1766 X86::LastTSBuiltin - Builtin::FirstTSBuiltin); 1767 } 1768