1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code dealing with generation of the layout of virtual tables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/VTableBuilder.h" 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/ASTDiagnostic.h" 16 #include "clang/AST/CXXInheritance.h" 17 #include "clang/AST/RecordLayout.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/Support/Format.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <algorithm> 25 #include <cstdio> 26 27 using namespace clang; 28 29 #define DUMP_OVERRIDERS 0 30 31 namespace { 32 33 /// BaseOffset - Represents an offset from a derived class to a direct or 34 /// indirect base class. 35 struct BaseOffset { 36 /// DerivedClass - The derived class. 37 const CXXRecordDecl *DerivedClass; 38 39 /// VirtualBase - If the path from the derived class to the base class 40 /// involves virtual base classes, this holds the declaration of the last 41 /// virtual base in this path (i.e. closest to the base class). 42 const CXXRecordDecl *VirtualBase; 43 44 /// NonVirtualOffset - The offset from the derived class to the base class. 45 /// (Or the offset from the virtual base class to the base class, if the 46 /// path from the derived class to the base class involves a virtual base 47 /// class. 48 CharUnits NonVirtualOffset; 49 50 BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr), 51 NonVirtualOffset(CharUnits::Zero()) { } 52 BaseOffset(const CXXRecordDecl *DerivedClass, 53 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset) 54 : DerivedClass(DerivedClass), VirtualBase(VirtualBase), 55 NonVirtualOffset(NonVirtualOffset) { } 56 57 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; } 58 }; 59 60 /// FinalOverriders - Contains the final overrider member functions for all 61 /// member functions in the base subobjects of a class. 62 class FinalOverriders { 63 public: 64 /// OverriderInfo - Information about a final overrider. 65 struct OverriderInfo { 66 /// Method - The method decl of the overrider. 67 const CXXMethodDecl *Method; 68 69 /// VirtualBase - The virtual base class subobject of this overrider. 70 /// Note that this records the closest derived virtual base class subobject. 71 const CXXRecordDecl *VirtualBase; 72 73 /// Offset - the base offset of the overrider's parent in the layout class. 74 CharUnits Offset; 75 76 OverriderInfo() : Method(nullptr), VirtualBase(nullptr), 77 Offset(CharUnits::Zero()) { } 78 }; 79 80 private: 81 /// MostDerivedClass - The most derived class for which the final overriders 82 /// are stored. 83 const CXXRecordDecl *MostDerivedClass; 84 85 /// MostDerivedClassOffset - If we're building final overriders for a 86 /// construction vtable, this holds the offset from the layout class to the 87 /// most derived class. 88 const CharUnits MostDerivedClassOffset; 89 90 /// LayoutClass - The class we're using for layout information. Will be 91 /// different than the most derived class if the final overriders are for a 92 /// construction vtable. 93 const CXXRecordDecl *LayoutClass; 94 95 ASTContext &Context; 96 97 /// MostDerivedClassLayout - the AST record layout of the most derived class. 98 const ASTRecordLayout &MostDerivedClassLayout; 99 100 /// MethodBaseOffsetPairTy - Uniquely identifies a member function 101 /// in a base subobject. 102 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy; 103 104 typedef llvm::DenseMap<MethodBaseOffsetPairTy, 105 OverriderInfo> OverridersMapTy; 106 107 /// OverridersMap - The final overriders for all virtual member functions of 108 /// all the base subobjects of the most derived class. 109 OverridersMapTy OverridersMap; 110 111 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented 112 /// as a record decl and a subobject number) and its offsets in the most 113 /// derived class as well as the layout class. 114 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>, 115 CharUnits> SubobjectOffsetMapTy; 116 117 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy; 118 119 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the 120 /// given base. 121 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, 122 CharUnits OffsetInLayoutClass, 123 SubobjectOffsetMapTy &SubobjectOffsets, 124 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, 125 SubobjectCountMapTy &SubobjectCounts); 126 127 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 128 129 /// dump - dump the final overriders for a base subobject, and all its direct 130 /// and indirect base subobjects. 131 void dump(raw_ostream &Out, BaseSubobject Base, 132 VisitedVirtualBasesSetTy& VisitedVirtualBases); 133 134 public: 135 FinalOverriders(const CXXRecordDecl *MostDerivedClass, 136 CharUnits MostDerivedClassOffset, 137 const CXXRecordDecl *LayoutClass); 138 139 /// getOverrider - Get the final overrider for the given method declaration in 140 /// the subobject with the given base offset. 141 OverriderInfo getOverrider(const CXXMethodDecl *MD, 142 CharUnits BaseOffset) const { 143 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) && 144 "Did not find overrider!"); 145 146 return OverridersMap.lookup(std::make_pair(MD, BaseOffset)); 147 } 148 149 /// dump - dump the final overriders. 150 void dump() { 151 VisitedVirtualBasesSetTy VisitedVirtualBases; 152 dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()), 153 VisitedVirtualBases); 154 } 155 156 }; 157 158 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass, 159 CharUnits MostDerivedClassOffset, 160 const CXXRecordDecl *LayoutClass) 161 : MostDerivedClass(MostDerivedClass), 162 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass), 163 Context(MostDerivedClass->getASTContext()), 164 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) { 165 166 // Compute base offsets. 167 SubobjectOffsetMapTy SubobjectOffsets; 168 SubobjectOffsetMapTy SubobjectLayoutClassOffsets; 169 SubobjectCountMapTy SubobjectCounts; 170 ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 171 /*IsVirtual=*/false, 172 MostDerivedClassOffset, 173 SubobjectOffsets, SubobjectLayoutClassOffsets, 174 SubobjectCounts); 175 176 // Get the final overriders. 177 CXXFinalOverriderMap FinalOverriders; 178 MostDerivedClass->getFinalOverriders(FinalOverriders); 179 180 for (const auto &Overrider : FinalOverriders) { 181 const CXXMethodDecl *MD = Overrider.first; 182 const OverridingMethods &Methods = Overrider.second; 183 184 for (const auto &M : Methods) { 185 unsigned SubobjectNumber = M.first; 186 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(), 187 SubobjectNumber)) && 188 "Did not find subobject offset!"); 189 190 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(), 191 SubobjectNumber)]; 192 193 assert(M.second.size() == 1 && "Final overrider is not unique!"); 194 const UniqueVirtualMethod &Method = M.second.front(); 195 196 const CXXRecordDecl *OverriderRD = Method.Method->getParent(); 197 assert(SubobjectLayoutClassOffsets.count( 198 std::make_pair(OverriderRD, Method.Subobject)) 199 && "Did not find subobject offset!"); 200 CharUnits OverriderOffset = 201 SubobjectLayoutClassOffsets[std::make_pair(OverriderRD, 202 Method.Subobject)]; 203 204 OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)]; 205 assert(!Overrider.Method && "Overrider should not exist yet!"); 206 207 Overrider.Offset = OverriderOffset; 208 Overrider.Method = Method.Method; 209 Overrider.VirtualBase = Method.InVirtualSubobject; 210 } 211 } 212 213 #if DUMP_OVERRIDERS 214 // And dump them (for now). 215 dump(); 216 #endif 217 } 218 219 static BaseOffset ComputeBaseOffset(const ASTContext &Context, 220 const CXXRecordDecl *DerivedRD, 221 const CXXBasePath &Path) { 222 CharUnits NonVirtualOffset = CharUnits::Zero(); 223 224 unsigned NonVirtualStart = 0; 225 const CXXRecordDecl *VirtualBase = nullptr; 226 227 // First, look for the virtual base class. 228 for (int I = Path.size(), E = 0; I != E; --I) { 229 const CXXBasePathElement &Element = Path[I - 1]; 230 231 if (Element.Base->isVirtual()) { 232 NonVirtualStart = I; 233 QualType VBaseType = Element.Base->getType(); 234 VirtualBase = VBaseType->getAsCXXRecordDecl(); 235 break; 236 } 237 } 238 239 // Now compute the non-virtual offset. 240 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) { 241 const CXXBasePathElement &Element = Path[I]; 242 243 // Check the base class offset. 244 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class); 245 246 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl(); 247 248 NonVirtualOffset += Layout.getBaseClassOffset(Base); 249 } 250 251 // FIXME: This should probably use CharUnits or something. Maybe we should 252 // even change the base offsets in ASTRecordLayout to be specified in 253 // CharUnits. 254 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset); 255 256 } 257 258 static BaseOffset ComputeBaseOffset(const ASTContext &Context, 259 const CXXRecordDecl *BaseRD, 260 const CXXRecordDecl *DerivedRD) { 261 CXXBasePaths Paths(/*FindAmbiguities=*/false, 262 /*RecordPaths=*/true, /*DetectVirtual=*/false); 263 264 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 265 llvm_unreachable("Class must be derived from the passed in base class!"); 266 267 return ComputeBaseOffset(Context, DerivedRD, Paths.front()); 268 } 269 270 static BaseOffset 271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context, 272 const CXXMethodDecl *DerivedMD, 273 const CXXMethodDecl *BaseMD) { 274 const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>(); 275 const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>(); 276 277 // Canonicalize the return types. 278 CanQualType CanDerivedReturnType = 279 Context.getCanonicalType(DerivedFT->getReturnType()); 280 CanQualType CanBaseReturnType = 281 Context.getCanonicalType(BaseFT->getReturnType()); 282 283 assert(CanDerivedReturnType->getTypeClass() == 284 CanBaseReturnType->getTypeClass() && 285 "Types must have same type class!"); 286 287 if (CanDerivedReturnType == CanBaseReturnType) { 288 // No adjustment needed. 289 return BaseOffset(); 290 } 291 292 if (isa<ReferenceType>(CanDerivedReturnType)) { 293 CanDerivedReturnType = 294 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType(); 295 CanBaseReturnType = 296 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType(); 297 } else if (isa<PointerType>(CanDerivedReturnType)) { 298 CanDerivedReturnType = 299 CanDerivedReturnType->getAs<PointerType>()->getPointeeType(); 300 CanBaseReturnType = 301 CanBaseReturnType->getAs<PointerType>()->getPointeeType(); 302 } else { 303 llvm_unreachable("Unexpected return type!"); 304 } 305 306 // We need to compare unqualified types here; consider 307 // const T *Base::foo(); 308 // T *Derived::foo(); 309 if (CanDerivedReturnType.getUnqualifiedType() == 310 CanBaseReturnType.getUnqualifiedType()) { 311 // No adjustment needed. 312 return BaseOffset(); 313 } 314 315 const CXXRecordDecl *DerivedRD = 316 cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl()); 317 318 const CXXRecordDecl *BaseRD = 319 cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl()); 320 321 return ComputeBaseOffset(Context, BaseRD, DerivedRD); 322 } 323 324 void 325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, 326 CharUnits OffsetInLayoutClass, 327 SubobjectOffsetMapTy &SubobjectOffsets, 328 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, 329 SubobjectCountMapTy &SubobjectCounts) { 330 const CXXRecordDecl *RD = Base.getBase(); 331 332 unsigned SubobjectNumber = 0; 333 if (!IsVirtual) 334 SubobjectNumber = ++SubobjectCounts[RD]; 335 336 // Set up the subobject to offset mapping. 337 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber)) 338 && "Subobject offset already exists!"); 339 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber)) 340 && "Subobject offset already exists!"); 341 342 SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset(); 343 SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] = 344 OffsetInLayoutClass; 345 346 // Traverse our bases. 347 for (const auto &B : RD->bases()) { 348 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 349 350 CharUnits BaseOffset; 351 CharUnits BaseOffsetInLayoutClass; 352 if (B.isVirtual()) { 353 // Check if we've visited this virtual base before. 354 if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0))) 355 continue; 356 357 const ASTRecordLayout &LayoutClassLayout = 358 Context.getASTRecordLayout(LayoutClass); 359 360 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 361 BaseOffsetInLayoutClass = 362 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 363 } else { 364 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 365 CharUnits Offset = Layout.getBaseClassOffset(BaseDecl); 366 367 BaseOffset = Base.getBaseOffset() + Offset; 368 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset; 369 } 370 371 ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset), 372 B.isVirtual(), BaseOffsetInLayoutClass, 373 SubobjectOffsets, SubobjectLayoutClassOffsets, 374 SubobjectCounts); 375 } 376 } 377 378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base, 379 VisitedVirtualBasesSetTy &VisitedVirtualBases) { 380 const CXXRecordDecl *RD = Base.getBase(); 381 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 382 383 for (const auto &B : RD->bases()) { 384 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 385 386 // Ignore bases that don't have any virtual member functions. 387 if (!BaseDecl->isPolymorphic()) 388 continue; 389 390 CharUnits BaseOffset; 391 if (B.isVirtual()) { 392 if (!VisitedVirtualBases.insert(BaseDecl).second) { 393 // We've visited this base before. 394 continue; 395 } 396 397 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 398 } else { 399 BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset(); 400 } 401 402 dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases); 403 } 404 405 Out << "Final overriders for ("; 406 RD->printQualifiedName(Out); 407 Out << ", "; 408 Out << Base.getBaseOffset().getQuantity() << ")\n"; 409 410 // Now dump the overriders for this base subobject. 411 for (const auto *MD : RD->methods()) { 412 if (!VTableContextBase::hasVtableSlot(MD)) 413 continue; 414 MD = MD->getCanonicalDecl(); 415 416 OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset()); 417 418 Out << " "; 419 MD->printQualifiedName(Out); 420 Out << " - ("; 421 Overrider.Method->printQualifiedName(Out); 422 Out << ", " << Overrider.Offset.getQuantity() << ')'; 423 424 BaseOffset Offset; 425 if (!Overrider.Method->isPureVirtual()) 426 Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); 427 428 if (!Offset.isEmpty()) { 429 Out << " [ret-adj: "; 430 if (Offset.VirtualBase) { 431 Offset.VirtualBase->printQualifiedName(Out); 432 Out << " vbase, "; 433 } 434 435 Out << Offset.NonVirtualOffset.getQuantity() << " nv]"; 436 } 437 438 Out << "\n"; 439 } 440 } 441 442 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable. 443 struct VCallOffsetMap { 444 445 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy; 446 447 /// Offsets - Keeps track of methods and their offsets. 448 // FIXME: This should be a real map and not a vector. 449 SmallVector<MethodAndOffsetPairTy, 16> Offsets; 450 451 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions 452 /// can share the same vcall offset. 453 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, 454 const CXXMethodDecl *RHS); 455 456 public: 457 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the 458 /// add was successful, or false if there was already a member function with 459 /// the same signature in the map. 460 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset); 461 462 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the 463 /// vtable address point) for the given virtual member function. 464 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD); 465 466 // empty - Return whether the offset map is empty or not. 467 bool empty() const { return Offsets.empty(); } 468 }; 469 470 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS, 471 const CXXMethodDecl *RHS) { 472 const FunctionProtoType *LT = 473 cast<FunctionProtoType>(LHS->getType().getCanonicalType()); 474 const FunctionProtoType *RT = 475 cast<FunctionProtoType>(RHS->getType().getCanonicalType()); 476 477 // Fast-path matches in the canonical types. 478 if (LT == RT) return true; 479 480 // Force the signatures to match. We can't rely on the overrides 481 // list here because there isn't necessarily an inheritance 482 // relationship between the two methods. 483 if (LT->getMethodQuals() != RT->getMethodQuals()) 484 return false; 485 return LT->getParamTypes() == RT->getParamTypes(); 486 } 487 488 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, 489 const CXXMethodDecl *RHS) { 490 assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!"); 491 assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!"); 492 493 // A destructor can share a vcall offset with another destructor. 494 if (isa<CXXDestructorDecl>(LHS)) 495 return isa<CXXDestructorDecl>(RHS); 496 497 // FIXME: We need to check more things here. 498 499 // The methods must have the same name. 500 DeclarationName LHSName = LHS->getDeclName(); 501 DeclarationName RHSName = RHS->getDeclName(); 502 if (LHSName != RHSName) 503 return false; 504 505 // And the same signatures. 506 return HasSameVirtualSignature(LHS, RHS); 507 } 508 509 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD, 510 CharUnits OffsetOffset) { 511 // Check if we can reuse an offset. 512 for (const auto &OffsetPair : Offsets) { 513 if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) 514 return false; 515 } 516 517 // Add the offset. 518 Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset)); 519 return true; 520 } 521 522 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) { 523 // Look for an offset. 524 for (const auto &OffsetPair : Offsets) { 525 if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) 526 return OffsetPair.second; 527 } 528 529 llvm_unreachable("Should always find a vcall offset offset!"); 530 } 531 532 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets. 533 class VCallAndVBaseOffsetBuilder { 534 public: 535 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> 536 VBaseOffsetOffsetsMapTy; 537 538 private: 539 const ItaniumVTableContext &VTables; 540 541 /// MostDerivedClass - The most derived class for which we're building vcall 542 /// and vbase offsets. 543 const CXXRecordDecl *MostDerivedClass; 544 545 /// LayoutClass - The class we're using for layout information. Will be 546 /// different than the most derived class if we're building a construction 547 /// vtable. 548 const CXXRecordDecl *LayoutClass; 549 550 /// Context - The ASTContext which we will use for layout information. 551 ASTContext &Context; 552 553 /// Components - vcall and vbase offset components 554 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy; 555 VTableComponentVectorTy Components; 556 557 /// VisitedVirtualBases - Visited virtual bases. 558 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; 559 560 /// VCallOffsets - Keeps track of vcall offsets. 561 VCallOffsetMap VCallOffsets; 562 563 564 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets, 565 /// relative to the address point. 566 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; 567 568 /// FinalOverriders - The final overriders of the most derived class. 569 /// (Can be null when we're not building a vtable of the most derived class). 570 const FinalOverriders *Overriders; 571 572 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the 573 /// given base subobject. 574 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual, 575 CharUnits RealBaseOffset); 576 577 /// AddVCallOffsets - Add vcall offsets for the given base subobject. 578 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset); 579 580 /// AddVBaseOffsets - Add vbase offsets for the given class. 581 void AddVBaseOffsets(const CXXRecordDecl *Base, 582 CharUnits OffsetInLayoutClass); 583 584 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in 585 /// chars, relative to the vtable address point. 586 CharUnits getCurrentOffsetOffset() const; 587 588 public: 589 VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables, 590 const CXXRecordDecl *MostDerivedClass, 591 const CXXRecordDecl *LayoutClass, 592 const FinalOverriders *Overriders, 593 BaseSubobject Base, bool BaseIsVirtual, 594 CharUnits OffsetInLayoutClass) 595 : VTables(VTables), MostDerivedClass(MostDerivedClass), 596 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), 597 Overriders(Overriders) { 598 599 // Add vcall and vbase offsets. 600 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass); 601 } 602 603 /// Methods for iterating over the components. 604 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator; 605 const_iterator components_begin() const { return Components.rbegin(); } 606 const_iterator components_end() const { return Components.rend(); } 607 608 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; } 609 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { 610 return VBaseOffsetOffsets; 611 } 612 }; 613 614 void 615 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base, 616 bool BaseIsVirtual, 617 CharUnits RealBaseOffset) { 618 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase()); 619 620 // Itanium C++ ABI 2.5.2: 621 // ..in classes sharing a virtual table with a primary base class, the vcall 622 // and vbase offsets added by the derived class all come before the vcall 623 // and vbase offsets required by the base class, so that the latter may be 624 // laid out as required by the base class without regard to additions from 625 // the derived class(es). 626 627 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll 628 // emit them for the primary base first). 629 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 630 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); 631 632 CharUnits PrimaryBaseOffset; 633 634 // Get the base offset of the primary base. 635 if (PrimaryBaseIsVirtual) { 636 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 637 "Primary vbase should have a zero offset!"); 638 639 const ASTRecordLayout &MostDerivedClassLayout = 640 Context.getASTRecordLayout(MostDerivedClass); 641 642 PrimaryBaseOffset = 643 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); 644 } else { 645 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 646 "Primary base should have a zero offset!"); 647 648 PrimaryBaseOffset = Base.getBaseOffset(); 649 } 650 651 AddVCallAndVBaseOffsets( 652 BaseSubobject(PrimaryBase,PrimaryBaseOffset), 653 PrimaryBaseIsVirtual, RealBaseOffset); 654 } 655 656 AddVBaseOffsets(Base.getBase(), RealBaseOffset); 657 658 // We only want to add vcall offsets for virtual bases. 659 if (BaseIsVirtual) 660 AddVCallOffsets(Base, RealBaseOffset); 661 } 662 663 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const { 664 // OffsetIndex is the index of this vcall or vbase offset, relative to the 665 // vtable address point. (We subtract 3 to account for the information just 666 // above the address point, the RTTI info, the offset to top, and the 667 // vcall offset itself). 668 size_t NumComponentsAboveAddrPoint = 3; 669 if (Context.getLangOpts().OmitVTableRTTI) 670 NumComponentsAboveAddrPoint--; 671 int64_t OffsetIndex = 672 -(int64_t)(NumComponentsAboveAddrPoint + Components.size()); 673 674 // Under the relative ABI, the offset widths are 32-bit ints instead of 675 // pointer widths. 676 CharUnits OffsetWidth = Context.toCharUnitsFromBits( 677 VTables.isRelativeLayout() 678 ? 32 679 : Context.getTargetInfo().getPointerWidth(LangAS::Default)); 680 CharUnits OffsetOffset = OffsetWidth * OffsetIndex; 681 682 return OffsetOffset; 683 } 684 685 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base, 686 CharUnits VBaseOffset) { 687 const CXXRecordDecl *RD = Base.getBase(); 688 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 689 690 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 691 692 // Handle the primary base first. 693 // We only want to add vcall offsets if the base is non-virtual; a virtual 694 // primary base will have its vcall and vbase offsets emitted already. 695 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) { 696 // Get the base offset of the primary base. 697 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 698 "Primary base should have a zero offset!"); 699 700 AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()), 701 VBaseOffset); 702 } 703 704 // Add the vcall offsets. 705 for (const auto *MD : RD->methods()) { 706 if (!VTableContextBase::hasVtableSlot(MD)) 707 continue; 708 MD = MD->getCanonicalDecl(); 709 710 CharUnits OffsetOffset = getCurrentOffsetOffset(); 711 712 // Don't add a vcall offset if we already have one for this member function 713 // signature. 714 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset)) 715 continue; 716 717 CharUnits Offset = CharUnits::Zero(); 718 719 if (Overriders) { 720 // Get the final overrider. 721 FinalOverriders::OverriderInfo Overrider = 722 Overriders->getOverrider(MD, Base.getBaseOffset()); 723 724 /// The vcall offset is the offset from the virtual base to the object 725 /// where the function was overridden. 726 Offset = Overrider.Offset - VBaseOffset; 727 } 728 729 Components.push_back( 730 VTableComponent::MakeVCallOffset(Offset)); 731 } 732 733 // And iterate over all non-virtual bases (ignoring the primary base). 734 for (const auto &B : RD->bases()) { 735 if (B.isVirtual()) 736 continue; 737 738 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 739 if (BaseDecl == PrimaryBase) 740 continue; 741 742 // Get the base offset of this base. 743 CharUnits BaseOffset = Base.getBaseOffset() + 744 Layout.getBaseClassOffset(BaseDecl); 745 746 AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset), 747 VBaseOffset); 748 } 749 } 750 751 void 752 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD, 753 CharUnits OffsetInLayoutClass) { 754 const ASTRecordLayout &LayoutClassLayout = 755 Context.getASTRecordLayout(LayoutClass); 756 757 // Add vbase offsets. 758 for (const auto &B : RD->bases()) { 759 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 760 761 // Check if this is a virtual base that we haven't visited before. 762 if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) { 763 CharUnits Offset = 764 LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass; 765 766 // Add the vbase offset offset. 767 assert(!VBaseOffsetOffsets.count(BaseDecl) && 768 "vbase offset offset already exists!"); 769 770 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset(); 771 VBaseOffsetOffsets.insert( 772 std::make_pair(BaseDecl, VBaseOffsetOffset)); 773 774 Components.push_back( 775 VTableComponent::MakeVBaseOffset(Offset)); 776 } 777 778 // Check the base class looking for more vbase offsets. 779 AddVBaseOffsets(BaseDecl, OffsetInLayoutClass); 780 } 781 } 782 783 /// ItaniumVTableBuilder - Class for building vtable layout information. 784 class ItaniumVTableBuilder { 785 public: 786 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect 787 /// primary bases. 788 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> 789 PrimaryBasesSetVectorTy; 790 791 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> 792 VBaseOffsetOffsetsMapTy; 793 794 typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy; 795 796 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy; 797 798 private: 799 /// VTables - Global vtable information. 800 ItaniumVTableContext &VTables; 801 802 /// MostDerivedClass - The most derived class for which we're building this 803 /// vtable. 804 const CXXRecordDecl *MostDerivedClass; 805 806 /// MostDerivedClassOffset - If we're building a construction vtable, this 807 /// holds the offset from the layout class to the most derived class. 808 const CharUnits MostDerivedClassOffset; 809 810 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual 811 /// base. (This only makes sense when building a construction vtable). 812 bool MostDerivedClassIsVirtual; 813 814 /// LayoutClass - The class we're using for layout information. Will be 815 /// different than the most derived class if we're building a construction 816 /// vtable. 817 const CXXRecordDecl *LayoutClass; 818 819 /// Context - The ASTContext which we will use for layout information. 820 ASTContext &Context; 821 822 /// FinalOverriders - The final overriders of the most derived class. 823 const FinalOverriders Overriders; 824 825 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual 826 /// bases in this vtable. 827 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases; 828 829 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for 830 /// the most derived class. 831 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; 832 833 /// Components - The components of the vtable being built. 834 SmallVector<VTableComponent, 64> Components; 835 836 /// AddressPoints - Address points for the vtable being built. 837 AddressPointsMapTy AddressPoints; 838 839 /// MethodInfo - Contains information about a method in a vtable. 840 /// (Used for computing 'this' pointer adjustment thunks. 841 struct MethodInfo { 842 /// BaseOffset - The base offset of this method. 843 const CharUnits BaseOffset; 844 845 /// BaseOffsetInLayoutClass - The base offset in the layout class of this 846 /// method. 847 const CharUnits BaseOffsetInLayoutClass; 848 849 /// VTableIndex - The index in the vtable that this method has. 850 /// (For destructors, this is the index of the complete destructor). 851 const uint64_t VTableIndex; 852 853 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass, 854 uint64_t VTableIndex) 855 : BaseOffset(BaseOffset), 856 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass), 857 VTableIndex(VTableIndex) { } 858 859 MethodInfo() 860 : BaseOffset(CharUnits::Zero()), 861 BaseOffsetInLayoutClass(CharUnits::Zero()), 862 VTableIndex(0) { } 863 864 MethodInfo(MethodInfo const&) = default; 865 }; 866 867 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; 868 869 /// MethodInfoMap - The information for all methods in the vtable we're 870 /// currently building. 871 MethodInfoMapTy MethodInfoMap; 872 873 /// MethodVTableIndices - Contains the index (relative to the vtable address 874 /// point) where the function pointer for a virtual function is stored. 875 MethodVTableIndicesTy MethodVTableIndices; 876 877 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; 878 879 /// VTableThunks - The thunks by vtable index in the vtable currently being 880 /// built. 881 VTableThunksMapTy VTableThunks; 882 883 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; 884 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; 885 886 /// Thunks - A map that contains all the thunks needed for all methods in the 887 /// most derived class for which the vtable is currently being built. 888 ThunksMapTy Thunks; 889 890 /// AddThunk - Add a thunk for the given method. 891 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk); 892 893 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the 894 /// part of the vtable we're currently building. 895 void ComputeThisAdjustments(); 896 897 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 898 899 /// PrimaryVirtualBases - All known virtual bases who are a primary base of 900 /// some other base. 901 VisitedVirtualBasesSetTy PrimaryVirtualBases; 902 903 /// ComputeReturnAdjustment - Compute the return adjustment given a return 904 /// adjustment base offset. 905 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset); 906 907 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting 908 /// the 'this' pointer from the base subobject to the derived subobject. 909 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base, 910 BaseSubobject Derived) const; 911 912 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the 913 /// given virtual member function, its offset in the layout class and its 914 /// final overrider. 915 ThisAdjustment 916 ComputeThisAdjustment(const CXXMethodDecl *MD, 917 CharUnits BaseOffsetInLayoutClass, 918 FinalOverriders::OverriderInfo Overrider); 919 920 /// AddMethod - Add a single virtual member function to the vtable 921 /// components vector. 922 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment); 923 924 /// IsOverriderUsed - Returns whether the overrider will ever be used in this 925 /// part of the vtable. 926 /// 927 /// Itanium C++ ABI 2.5.2: 928 /// 929 /// struct A { virtual void f(); }; 930 /// struct B : virtual public A { int i; }; 931 /// struct C : virtual public A { int j; }; 932 /// struct D : public B, public C {}; 933 /// 934 /// When B and C are declared, A is a primary base in each case, so although 935 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this 936 /// adjustment is required and no thunk is generated. However, inside D 937 /// objects, A is no longer a primary base of C, so if we allowed calls to 938 /// C::f() to use the copy of A's vtable in the C subobject, we would need 939 /// to adjust this from C* to B::A*, which would require a third-party 940 /// thunk. Since we require that a call to C::f() first convert to A*, 941 /// C-in-D's copy of A's vtable is never referenced, so this is not 942 /// necessary. 943 bool IsOverriderUsed(const CXXMethodDecl *Overrider, 944 CharUnits BaseOffsetInLayoutClass, 945 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 946 CharUnits FirstBaseOffsetInLayoutClass) const; 947 948 949 /// AddMethods - Add the methods of this base subobject and all its 950 /// primary bases to the vtable components vector. 951 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, 952 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 953 CharUnits FirstBaseOffsetInLayoutClass, 954 PrimaryBasesSetVectorTy &PrimaryBases); 955 956 // LayoutVTable - Layout the vtable for the given base class, including its 957 // secondary vtables and any vtables for virtual bases. 958 void LayoutVTable(); 959 960 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the 961 /// given base subobject, as well as all its secondary vtables. 962 /// 963 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base 964 /// or a direct or indirect base of a virtual base. 965 /// 966 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual 967 /// in the layout class. 968 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base, 969 bool BaseIsMorallyVirtual, 970 bool BaseIsVirtualInLayoutClass, 971 CharUnits OffsetInLayoutClass); 972 973 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base 974 /// subobject. 975 /// 976 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base 977 /// or a direct or indirect base of a virtual base. 978 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual, 979 CharUnits OffsetInLayoutClass); 980 981 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this 982 /// class hierarchy. 983 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD, 984 CharUnits OffsetInLayoutClass, 985 VisitedVirtualBasesSetTy &VBases); 986 987 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the 988 /// given base (excluding any primary bases). 989 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD, 990 VisitedVirtualBasesSetTy &VBases); 991 992 /// isBuildingConstructionVTable - Return whether this vtable builder is 993 /// building a construction vtable. 994 bool isBuildingConstructorVTable() const { 995 return MostDerivedClass != LayoutClass; 996 } 997 998 public: 999 /// Component indices of the first component of each of the vtables in the 1000 /// vtable group. 1001 SmallVector<size_t, 4> VTableIndices; 1002 1003 ItaniumVTableBuilder(ItaniumVTableContext &VTables, 1004 const CXXRecordDecl *MostDerivedClass, 1005 CharUnits MostDerivedClassOffset, 1006 bool MostDerivedClassIsVirtual, 1007 const CXXRecordDecl *LayoutClass) 1008 : VTables(VTables), MostDerivedClass(MostDerivedClass), 1009 MostDerivedClassOffset(MostDerivedClassOffset), 1010 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual), 1011 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), 1012 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) { 1013 assert(!Context.getTargetInfo().getCXXABI().isMicrosoft()); 1014 1015 LayoutVTable(); 1016 1017 if (Context.getLangOpts().DumpVTableLayouts) 1018 dumpLayout(llvm::outs()); 1019 } 1020 1021 uint64_t getNumThunks() const { 1022 return Thunks.size(); 1023 } 1024 1025 ThunksMapTy::const_iterator thunks_begin() const { 1026 return Thunks.begin(); 1027 } 1028 1029 ThunksMapTy::const_iterator thunks_end() const { 1030 return Thunks.end(); 1031 } 1032 1033 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { 1034 return VBaseOffsetOffsets; 1035 } 1036 1037 const AddressPointsMapTy &getAddressPoints() const { 1038 return AddressPoints; 1039 } 1040 1041 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const { 1042 return MethodVTableIndices.begin(); 1043 } 1044 1045 MethodVTableIndicesTy::const_iterator vtable_indices_end() const { 1046 return MethodVTableIndices.end(); 1047 } 1048 1049 ArrayRef<VTableComponent> vtable_components() const { return Components; } 1050 1051 AddressPointsMapTy::const_iterator address_points_begin() const { 1052 return AddressPoints.begin(); 1053 } 1054 1055 AddressPointsMapTy::const_iterator address_points_end() const { 1056 return AddressPoints.end(); 1057 } 1058 1059 VTableThunksMapTy::const_iterator vtable_thunks_begin() const { 1060 return VTableThunks.begin(); 1061 } 1062 1063 VTableThunksMapTy::const_iterator vtable_thunks_end() const { 1064 return VTableThunks.end(); 1065 } 1066 1067 /// dumpLayout - Dump the vtable layout. 1068 void dumpLayout(raw_ostream&); 1069 }; 1070 1071 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD, 1072 const ThunkInfo &Thunk) { 1073 assert(!isBuildingConstructorVTable() && 1074 "Can't add thunks for construction vtable"); 1075 1076 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD]; 1077 1078 // Check if we have this thunk already. 1079 if (llvm::is_contained(ThunksVector, Thunk)) 1080 return; 1081 1082 ThunksVector.push_back(Thunk); 1083 } 1084 1085 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy; 1086 1087 /// Visit all the methods overridden by the given method recursively, 1088 /// in a depth-first pre-order. The Visitor's visitor method returns a bool 1089 /// indicating whether to continue the recursion for the given overridden 1090 /// method (i.e. returning false stops the iteration). 1091 template <class VisitorTy> 1092 static void 1093 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) { 1094 assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!"); 1095 1096 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { 1097 if (!Visitor(OverriddenMD)) 1098 continue; 1099 visitAllOverriddenMethods(OverriddenMD, Visitor); 1100 } 1101 } 1102 1103 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all 1104 /// the overridden methods that the function decl overrides. 1105 static void 1106 ComputeAllOverriddenMethods(const CXXMethodDecl *MD, 1107 OverriddenMethodsSetTy& OverriddenMethods) { 1108 auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) { 1109 // Don't recurse on this method if we've already collected it. 1110 return OverriddenMethods.insert(MD).second; 1111 }; 1112 visitAllOverriddenMethods(MD, OverriddenMethodsCollector); 1113 } 1114 1115 void ItaniumVTableBuilder::ComputeThisAdjustments() { 1116 // Now go through the method info map and see if any of the methods need 1117 // 'this' pointer adjustments. 1118 for (const auto &MI : MethodInfoMap) { 1119 const CXXMethodDecl *MD = MI.first; 1120 const MethodInfo &MethodInfo = MI.second; 1121 1122 // Ignore adjustments for unused function pointers. 1123 uint64_t VTableIndex = MethodInfo.VTableIndex; 1124 if (Components[VTableIndex].getKind() == 1125 VTableComponent::CK_UnusedFunctionPointer) 1126 continue; 1127 1128 // Get the final overrider for this method. 1129 FinalOverriders::OverriderInfo Overrider = 1130 Overriders.getOverrider(MD, MethodInfo.BaseOffset); 1131 1132 // Check if we need an adjustment at all. 1133 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) { 1134 // When a return thunk is needed by a derived class that overrides a 1135 // virtual base, gcc uses a virtual 'this' adjustment as well. 1136 // While the thunk itself might be needed by vtables in subclasses or 1137 // in construction vtables, there doesn't seem to be a reason for using 1138 // the thunk in this vtable. Still, we do so to match gcc. 1139 if (VTableThunks.lookup(VTableIndex).Return.isEmpty()) 1140 continue; 1141 } 1142 1143 ThisAdjustment ThisAdjustment = 1144 ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider); 1145 1146 if (ThisAdjustment.isEmpty()) 1147 continue; 1148 1149 // Add it. 1150 auto SetThisAdjustmentThunk = [&](uint64_t Idx) { 1151 // If a this pointer adjustment is required, record the method that 1152 // created the vtable entry. MD is not necessarily the method that 1153 // created the entry since derived classes overwrite base class 1154 // information in MethodInfoMap, hence findOriginalMethodInMap is called 1155 // here. 1156 // 1157 // For example, in the following class hierarchy, if MD = D1::m and 1158 // Overrider = D2:m, the original method that created the entry is B0:m, 1159 // which is what findOriginalMethodInMap(MD) returns: 1160 // 1161 // struct B0 { int a; virtual void m(); }; 1162 // struct D0 : B0 { int a; void m() override; }; 1163 // struct D1 : B0 { int a; void m() override; }; 1164 // struct D2 : D0, D1 { int a; void m() override; }; 1165 // 1166 // We need to record the method because we cannot 1167 // call findOriginalMethod to find the method that created the entry if 1168 // the method in the entry requires adjustment. 1169 // 1170 // Do not set ThunkInfo::Method if Idx is already in VTableThunks. This 1171 // can happen when covariant return adjustment is required too. 1172 if (!VTableThunks.count(Idx)) { 1173 const CXXMethodDecl *Method = VTables.findOriginalMethodInMap(MD); 1174 VTableThunks[Idx].Method = Method; 1175 VTableThunks[Idx].ThisType = Method->getThisType().getTypePtr(); 1176 } 1177 VTableThunks[Idx].This = ThisAdjustment; 1178 }; 1179 1180 SetThisAdjustmentThunk(VTableIndex); 1181 1182 if (isa<CXXDestructorDecl>(MD)) { 1183 // Add an adjustment for the deleting destructor as well. 1184 SetThisAdjustmentThunk(VTableIndex + 1); 1185 } 1186 } 1187 1188 /// Clear the method info map. 1189 MethodInfoMap.clear(); 1190 1191 if (isBuildingConstructorVTable()) { 1192 // We don't need to store thunk information for construction vtables. 1193 return; 1194 } 1195 1196 for (const auto &TI : VTableThunks) { 1197 const VTableComponent &Component = Components[TI.first]; 1198 const ThunkInfo &Thunk = TI.second; 1199 const CXXMethodDecl *MD; 1200 1201 switch (Component.getKind()) { 1202 default: 1203 llvm_unreachable("Unexpected vtable component kind!"); 1204 case VTableComponent::CK_FunctionPointer: 1205 MD = Component.getFunctionDecl(); 1206 break; 1207 case VTableComponent::CK_CompleteDtorPointer: 1208 MD = Component.getDestructorDecl(); 1209 break; 1210 case VTableComponent::CK_DeletingDtorPointer: 1211 // We've already added the thunk when we saw the complete dtor pointer. 1212 continue; 1213 } 1214 1215 if (MD->getParent() == MostDerivedClass) 1216 AddThunk(MD, Thunk); 1217 } 1218 } 1219 1220 ReturnAdjustment 1221 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) { 1222 ReturnAdjustment Adjustment; 1223 1224 if (!Offset.isEmpty()) { 1225 if (Offset.VirtualBase) { 1226 // Get the virtual base offset offset. 1227 if (Offset.DerivedClass == MostDerivedClass) { 1228 // We can get the offset offset directly from our map. 1229 Adjustment.Virtual.Itanium.VBaseOffsetOffset = 1230 VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity(); 1231 } else { 1232 Adjustment.Virtual.Itanium.VBaseOffsetOffset = 1233 VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass, 1234 Offset.VirtualBase).getQuantity(); 1235 } 1236 } 1237 1238 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); 1239 } 1240 1241 return Adjustment; 1242 } 1243 1244 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset( 1245 BaseSubobject Base, BaseSubobject Derived) const { 1246 const CXXRecordDecl *BaseRD = Base.getBase(); 1247 const CXXRecordDecl *DerivedRD = Derived.getBase(); 1248 1249 CXXBasePaths Paths(/*FindAmbiguities=*/true, 1250 /*RecordPaths=*/true, /*DetectVirtual=*/true); 1251 1252 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 1253 llvm_unreachable("Class must be derived from the passed in base class!"); 1254 1255 // We have to go through all the paths, and see which one leads us to the 1256 // right base subobject. 1257 for (const CXXBasePath &Path : Paths) { 1258 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path); 1259 1260 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset; 1261 1262 if (Offset.VirtualBase) { 1263 // If we have a virtual base class, the non-virtual offset is relative 1264 // to the virtual base class offset. 1265 const ASTRecordLayout &LayoutClassLayout = 1266 Context.getASTRecordLayout(LayoutClass); 1267 1268 /// Get the virtual base offset, relative to the most derived class 1269 /// layout. 1270 OffsetToBaseSubobject += 1271 LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase); 1272 } else { 1273 // Otherwise, the non-virtual offset is relative to the derived class 1274 // offset. 1275 OffsetToBaseSubobject += Derived.getBaseOffset(); 1276 } 1277 1278 // Check if this path gives us the right base subobject. 1279 if (OffsetToBaseSubobject == Base.getBaseOffset()) { 1280 // Since we're going from the base class _to_ the derived class, we'll 1281 // invert the non-virtual offset here. 1282 Offset.NonVirtualOffset = -Offset.NonVirtualOffset; 1283 return Offset; 1284 } 1285 } 1286 1287 return BaseOffset(); 1288 } 1289 1290 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment( 1291 const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass, 1292 FinalOverriders::OverriderInfo Overrider) { 1293 // Ignore adjustments for pure virtual member functions. 1294 if (Overrider.Method->isPureVirtual()) 1295 return ThisAdjustment(); 1296 1297 BaseSubobject OverriddenBaseSubobject(MD->getParent(), 1298 BaseOffsetInLayoutClass); 1299 1300 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(), 1301 Overrider.Offset); 1302 1303 // Compute the adjustment offset. 1304 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject, 1305 OverriderBaseSubobject); 1306 if (Offset.isEmpty()) 1307 return ThisAdjustment(); 1308 1309 ThisAdjustment Adjustment; 1310 1311 if (Offset.VirtualBase) { 1312 // Get the vcall offset map for this virtual base. 1313 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase]; 1314 1315 if (VCallOffsets.empty()) { 1316 // We don't have vcall offsets for this virtual base, go ahead and 1317 // build them. 1318 VCallAndVBaseOffsetBuilder Builder( 1319 VTables, MostDerivedClass, MostDerivedClass, 1320 /*Overriders=*/nullptr, 1321 BaseSubobject(Offset.VirtualBase, CharUnits::Zero()), 1322 /*BaseIsVirtual=*/true, 1323 /*OffsetInLayoutClass=*/ 1324 CharUnits::Zero()); 1325 1326 VCallOffsets = Builder.getVCallOffsets(); 1327 } 1328 1329 Adjustment.Virtual.Itanium.VCallOffsetOffset = 1330 VCallOffsets.getVCallOffsetOffset(MD).getQuantity(); 1331 } 1332 1333 // Set the non-virtual part of the adjustment. 1334 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); 1335 1336 return Adjustment; 1337 } 1338 1339 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD, 1340 ReturnAdjustment ReturnAdjustment) { 1341 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1342 assert(ReturnAdjustment.isEmpty() && 1343 "Destructor can't have return adjustment!"); 1344 1345 // Add both the complete destructor and the deleting destructor. 1346 Components.push_back(VTableComponent::MakeCompleteDtor(DD)); 1347 Components.push_back(VTableComponent::MakeDeletingDtor(DD)); 1348 } else { 1349 // Add the return adjustment if necessary. 1350 if (!ReturnAdjustment.isEmpty()) 1351 VTableThunks[Components.size()].Return = ReturnAdjustment; 1352 1353 // Add the function. 1354 Components.push_back(VTableComponent::MakeFunction(MD)); 1355 } 1356 } 1357 1358 /// OverridesIndirectMethodInBase - Return whether the given member function 1359 /// overrides any methods in the set of given bases. 1360 /// Unlike OverridesMethodInBase, this checks "overriders of overriders". 1361 /// For example, if we have: 1362 /// 1363 /// struct A { virtual void f(); } 1364 /// struct B : A { virtual void f(); } 1365 /// struct C : B { virtual void f(); } 1366 /// 1367 /// OverridesIndirectMethodInBase will return true if given C::f as the method 1368 /// and { A } as the set of bases. 1369 static bool OverridesIndirectMethodInBases( 1370 const CXXMethodDecl *MD, 1371 ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) { 1372 if (Bases.count(MD->getParent())) 1373 return true; 1374 1375 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { 1376 // Check "indirect overriders". 1377 if (OverridesIndirectMethodInBases(OverriddenMD, Bases)) 1378 return true; 1379 } 1380 1381 return false; 1382 } 1383 1384 bool ItaniumVTableBuilder::IsOverriderUsed( 1385 const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass, 1386 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 1387 CharUnits FirstBaseOffsetInLayoutClass) const { 1388 // If the base and the first base in the primary base chain have the same 1389 // offsets, then this overrider will be used. 1390 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass) 1391 return true; 1392 1393 // We know now that Base (or a direct or indirect base of it) is a primary 1394 // base in part of the class hierarchy, but not a primary base in the most 1395 // derived class. 1396 1397 // If the overrider is the first base in the primary base chain, we know 1398 // that the overrider will be used. 1399 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain) 1400 return true; 1401 1402 ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases; 1403 1404 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain; 1405 PrimaryBases.insert(RD); 1406 1407 // Now traverse the base chain, starting with the first base, until we find 1408 // the base that is no longer a primary base. 1409 while (true) { 1410 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1411 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1412 1413 if (!PrimaryBase) 1414 break; 1415 1416 if (Layout.isPrimaryBaseVirtual()) { 1417 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 1418 "Primary base should always be at offset 0!"); 1419 1420 const ASTRecordLayout &LayoutClassLayout = 1421 Context.getASTRecordLayout(LayoutClass); 1422 1423 // Now check if this is the primary base that is not a primary base in the 1424 // most derived class. 1425 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != 1426 FirstBaseOffsetInLayoutClass) { 1427 // We found it, stop walking the chain. 1428 break; 1429 } 1430 } else { 1431 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 1432 "Primary base should always be at offset 0!"); 1433 } 1434 1435 if (!PrimaryBases.insert(PrimaryBase)) 1436 llvm_unreachable("Found a duplicate primary base!"); 1437 1438 RD = PrimaryBase; 1439 } 1440 1441 // If the final overrider is an override of one of the primary bases, 1442 // then we know that it will be used. 1443 return OverridesIndirectMethodInBases(Overrider, PrimaryBases); 1444 } 1445 1446 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy; 1447 1448 /// FindNearestOverriddenMethod - Given a method, returns the overridden method 1449 /// from the nearest base. Returns null if no method was found. 1450 /// The Bases are expected to be sorted in a base-to-derived order. 1451 static const CXXMethodDecl * 1452 FindNearestOverriddenMethod(const CXXMethodDecl *MD, 1453 BasesSetVectorTy &Bases) { 1454 OverriddenMethodsSetTy OverriddenMethods; 1455 ComputeAllOverriddenMethods(MD, OverriddenMethods); 1456 1457 for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) { 1458 // Now check the overridden methods. 1459 for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) { 1460 // We found our overridden method. 1461 if (OverriddenMD->getParent() == PrimaryBase) 1462 return OverriddenMD; 1463 } 1464 } 1465 1466 return nullptr; 1467 } 1468 1469 void ItaniumVTableBuilder::AddMethods( 1470 BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, 1471 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 1472 CharUnits FirstBaseOffsetInLayoutClass, 1473 PrimaryBasesSetVectorTy &PrimaryBases) { 1474 // Itanium C++ ABI 2.5.2: 1475 // The order of the virtual function pointers in a virtual table is the 1476 // order of declaration of the corresponding member functions in the class. 1477 // 1478 // There is an entry for any virtual function declared in a class, 1479 // whether it is a new function or overrides a base class function, 1480 // unless it overrides a function from the primary base, and conversion 1481 // between their return types does not require an adjustment. 1482 1483 const CXXRecordDecl *RD = Base.getBase(); 1484 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1485 1486 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 1487 CharUnits PrimaryBaseOffset; 1488 CharUnits PrimaryBaseOffsetInLayoutClass; 1489 if (Layout.isPrimaryBaseVirtual()) { 1490 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 1491 "Primary vbase should have a zero offset!"); 1492 1493 const ASTRecordLayout &MostDerivedClassLayout = 1494 Context.getASTRecordLayout(MostDerivedClass); 1495 1496 PrimaryBaseOffset = 1497 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); 1498 1499 const ASTRecordLayout &LayoutClassLayout = 1500 Context.getASTRecordLayout(LayoutClass); 1501 1502 PrimaryBaseOffsetInLayoutClass = 1503 LayoutClassLayout.getVBaseClassOffset(PrimaryBase); 1504 } else { 1505 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 1506 "Primary base should have a zero offset!"); 1507 1508 PrimaryBaseOffset = Base.getBaseOffset(); 1509 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass; 1510 } 1511 1512 AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset), 1513 PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain, 1514 FirstBaseOffsetInLayoutClass, PrimaryBases); 1515 1516 if (!PrimaryBases.insert(PrimaryBase)) 1517 llvm_unreachable("Found a duplicate primary base!"); 1518 } 1519 1520 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy; 1521 NewVirtualFunctionsTy NewVirtualFunctions; 1522 1523 llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions; 1524 1525 // Now go through all virtual member functions and add them. 1526 for (const auto *MD : RD->methods()) { 1527 if (!ItaniumVTableContext::hasVtableSlot(MD)) 1528 continue; 1529 MD = MD->getCanonicalDecl(); 1530 1531 // Get the final overrider. 1532 FinalOverriders::OverriderInfo Overrider = 1533 Overriders.getOverrider(MD, Base.getBaseOffset()); 1534 1535 // Check if this virtual member function overrides a method in a primary 1536 // base. If this is the case, and the return type doesn't require adjustment 1537 // then we can just use the member function from the primary base. 1538 if (const CXXMethodDecl *OverriddenMD = 1539 FindNearestOverriddenMethod(MD, PrimaryBases)) { 1540 if (ComputeReturnAdjustmentBaseOffset(Context, MD, 1541 OverriddenMD).isEmpty()) { 1542 VTables.setOriginalMethod(MD, OverriddenMD); 1543 1544 // Replace the method info of the overridden method with our own 1545 // method. 1546 assert(MethodInfoMap.count(OverriddenMD) && 1547 "Did not find the overridden method!"); 1548 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD]; 1549 1550 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, 1551 OverriddenMethodInfo.VTableIndex); 1552 1553 assert(!MethodInfoMap.count(MD) && 1554 "Should not have method info for this method yet!"); 1555 1556 MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); 1557 MethodInfoMap.erase(OverriddenMD); 1558 1559 // If the overridden method exists in a virtual base class or a direct 1560 // or indirect base class of a virtual base class, we need to emit a 1561 // thunk if we ever have a class hierarchy where the base class is not 1562 // a primary base in the complete object. 1563 if (!isBuildingConstructorVTable() && OverriddenMD != MD) { 1564 // Compute the this adjustment. 1565 ThisAdjustment ThisAdjustment = 1566 ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass, 1567 Overrider); 1568 1569 if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset && 1570 Overrider.Method->getParent() == MostDerivedClass) { 1571 1572 // There's no return adjustment from OverriddenMD and MD, 1573 // but that doesn't mean there isn't one between MD and 1574 // the final overrider. 1575 BaseOffset ReturnAdjustmentOffset = 1576 ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); 1577 ReturnAdjustment ReturnAdjustment = 1578 ComputeReturnAdjustment(ReturnAdjustmentOffset); 1579 1580 // This is a virtual thunk for the most derived class, add it. 1581 AddThunk(Overrider.Method, 1582 ThunkInfo(ThisAdjustment, ReturnAdjustment, 1583 OverriddenMD->getThisType().getTypePtr())); 1584 } 1585 } 1586 1587 continue; 1588 } 1589 } 1590 1591 if (MD->isImplicit()) 1592 NewImplicitVirtualFunctions.push_back(MD); 1593 else 1594 NewVirtualFunctions.push_back(MD); 1595 } 1596 1597 std::stable_sort( 1598 NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(), 1599 [](const CXXMethodDecl *A, const CXXMethodDecl *B) { 1600 if (A == B) 1601 return false; 1602 if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator()) 1603 return A->isCopyAssignmentOperator(); 1604 if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator()) 1605 return A->isMoveAssignmentOperator(); 1606 if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B)) 1607 return isa<CXXDestructorDecl>(A); 1608 assert(A->getOverloadedOperator() == OO_EqualEqual && 1609 B->getOverloadedOperator() == OO_EqualEqual && 1610 "unexpected or duplicate implicit virtual function"); 1611 // We rely on Sema to have declared the operator== members in the 1612 // same order as the corresponding operator<=> members. 1613 return false; 1614 }); 1615 NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(), 1616 NewImplicitVirtualFunctions.end()); 1617 1618 for (const CXXMethodDecl *MD : NewVirtualFunctions) { 1619 // Get the final overrider. 1620 FinalOverriders::OverriderInfo Overrider = 1621 Overriders.getOverrider(MD, Base.getBaseOffset()); 1622 1623 // Insert the method info for this method. 1624 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, 1625 Components.size()); 1626 1627 assert(!MethodInfoMap.count(MD) && 1628 "Should not have method info for this method yet!"); 1629 MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); 1630 1631 // Check if this overrider is going to be used. 1632 const CXXMethodDecl *OverriderMD = Overrider.Method; 1633 if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass, 1634 FirstBaseInPrimaryBaseChain, 1635 FirstBaseOffsetInLayoutClass)) { 1636 Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD)); 1637 continue; 1638 } 1639 1640 // Check if this overrider needs a return adjustment. 1641 // We don't want to do this for pure virtual member functions. 1642 BaseOffset ReturnAdjustmentOffset; 1643 if (!OverriderMD->isPureVirtual()) { 1644 ReturnAdjustmentOffset = 1645 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD); 1646 } 1647 1648 ReturnAdjustment ReturnAdjustment = 1649 ComputeReturnAdjustment(ReturnAdjustmentOffset); 1650 1651 // If a return adjustment is required, record the method that created the 1652 // vtable entry. We need to record the method because we cannot call 1653 // findOriginalMethod to find the method that created the entry if the 1654 // method in the entry requires adjustment. 1655 if (!ReturnAdjustment.isEmpty()) { 1656 VTableThunks[Components.size()].Method = MD; 1657 VTableThunks[Components.size()].ThisType = MD->getThisType().getTypePtr(); 1658 } 1659 1660 AddMethod(Overrider.Method, ReturnAdjustment); 1661 } 1662 } 1663 1664 void ItaniumVTableBuilder::LayoutVTable() { 1665 LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass, 1666 CharUnits::Zero()), 1667 /*BaseIsMorallyVirtual=*/false, 1668 MostDerivedClassIsVirtual, 1669 MostDerivedClassOffset); 1670 1671 VisitedVirtualBasesSetTy VBases; 1672 1673 // Determine the primary virtual bases. 1674 DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset, 1675 VBases); 1676 VBases.clear(); 1677 1678 LayoutVTablesForVirtualBases(MostDerivedClass, VBases); 1679 1680 // -fapple-kext adds an extra entry at end of vtbl. 1681 bool IsAppleKext = Context.getLangOpts().AppleKext; 1682 if (IsAppleKext) 1683 Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero())); 1684 } 1685 1686 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables( 1687 BaseSubobject Base, bool BaseIsMorallyVirtual, 1688 bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) { 1689 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!"); 1690 1691 unsigned VTableIndex = Components.size(); 1692 VTableIndices.push_back(VTableIndex); 1693 1694 // Add vcall and vbase offsets for this vtable. 1695 VCallAndVBaseOffsetBuilder Builder( 1696 VTables, MostDerivedClass, LayoutClass, &Overriders, Base, 1697 BaseIsVirtualInLayoutClass, OffsetInLayoutClass); 1698 Components.append(Builder.components_begin(), Builder.components_end()); 1699 1700 // Check if we need to add these vcall offsets. 1701 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) { 1702 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()]; 1703 1704 if (VCallOffsets.empty()) 1705 VCallOffsets = Builder.getVCallOffsets(); 1706 } 1707 1708 // If we're laying out the most derived class we want to keep track of the 1709 // virtual base class offset offsets. 1710 if (Base.getBase() == MostDerivedClass) 1711 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets(); 1712 1713 // Add the offset to top. 1714 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass; 1715 Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop)); 1716 1717 // Next, add the RTTI. 1718 if (!Context.getLangOpts().OmitVTableRTTI) 1719 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); 1720 1721 uint64_t AddressPoint = Components.size(); 1722 1723 // Now go through all virtual member functions and add them. 1724 PrimaryBasesSetVectorTy PrimaryBases; 1725 AddMethods(Base, OffsetInLayoutClass, 1726 Base.getBase(), OffsetInLayoutClass, 1727 PrimaryBases); 1728 1729 const CXXRecordDecl *RD = Base.getBase(); 1730 if (RD == MostDerivedClass) { 1731 assert(MethodVTableIndices.empty()); 1732 for (const auto &I : MethodInfoMap) { 1733 const CXXMethodDecl *MD = I.first; 1734 const MethodInfo &MI = I.second; 1735 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1736 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)] 1737 = MI.VTableIndex - AddressPoint; 1738 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)] 1739 = MI.VTableIndex + 1 - AddressPoint; 1740 } else { 1741 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint; 1742 } 1743 } 1744 } 1745 1746 // Compute 'this' pointer adjustments. 1747 ComputeThisAdjustments(); 1748 1749 // Add all address points. 1750 while (true) { 1751 AddressPoints.insert( 1752 std::make_pair(BaseSubobject(RD, OffsetInLayoutClass), 1753 VTableLayout::AddressPointLocation{ 1754 unsigned(VTableIndices.size() - 1), 1755 unsigned(AddressPoint - VTableIndex)})); 1756 1757 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1758 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1759 1760 if (!PrimaryBase) 1761 break; 1762 1763 if (Layout.isPrimaryBaseVirtual()) { 1764 // Check if this virtual primary base is a primary base in the layout 1765 // class. If it's not, we don't want to add it. 1766 const ASTRecordLayout &LayoutClassLayout = 1767 Context.getASTRecordLayout(LayoutClass); 1768 1769 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != 1770 OffsetInLayoutClass) { 1771 // We don't want to add this class (or any of its primary bases). 1772 break; 1773 } 1774 } 1775 1776 RD = PrimaryBase; 1777 } 1778 1779 // Layout secondary vtables. 1780 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass); 1781 } 1782 1783 void 1784 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base, 1785 bool BaseIsMorallyVirtual, 1786 CharUnits OffsetInLayoutClass) { 1787 // Itanium C++ ABI 2.5.2: 1788 // Following the primary virtual table of a derived class are secondary 1789 // virtual tables for each of its proper base classes, except any primary 1790 // base(s) with which it shares its primary virtual table. 1791 1792 const CXXRecordDecl *RD = Base.getBase(); 1793 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1794 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1795 1796 for (const auto &B : RD->bases()) { 1797 // Ignore virtual bases, we'll emit them later. 1798 if (B.isVirtual()) 1799 continue; 1800 1801 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1802 1803 // Ignore bases that don't have a vtable. 1804 if (!BaseDecl->isDynamicClass()) 1805 continue; 1806 1807 if (isBuildingConstructorVTable()) { 1808 // Itanium C++ ABI 2.6.4: 1809 // Some of the base class subobjects may not need construction virtual 1810 // tables, which will therefore not be present in the construction 1811 // virtual table group, even though the subobject virtual tables are 1812 // present in the main virtual table group for the complete object. 1813 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases()) 1814 continue; 1815 } 1816 1817 // Get the base offset of this base. 1818 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl); 1819 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset; 1820 1821 CharUnits BaseOffsetInLayoutClass = 1822 OffsetInLayoutClass + RelativeBaseOffset; 1823 1824 // Don't emit a secondary vtable for a primary base. We might however want 1825 // to emit secondary vtables for other bases of this base. 1826 if (BaseDecl == PrimaryBase) { 1827 LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset), 1828 BaseIsMorallyVirtual, BaseOffsetInLayoutClass); 1829 continue; 1830 } 1831 1832 // Layout the primary vtable (and any secondary vtables) for this base. 1833 LayoutPrimaryAndSecondaryVTables( 1834 BaseSubobject(BaseDecl, BaseOffset), 1835 BaseIsMorallyVirtual, 1836 /*BaseIsVirtualInLayoutClass=*/false, 1837 BaseOffsetInLayoutClass); 1838 } 1839 } 1840 1841 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases( 1842 const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass, 1843 VisitedVirtualBasesSetTy &VBases) { 1844 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1845 1846 // Check if this base has a primary base. 1847 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 1848 1849 // Check if it's virtual. 1850 if (Layout.isPrimaryBaseVirtual()) { 1851 bool IsPrimaryVirtualBase = true; 1852 1853 if (isBuildingConstructorVTable()) { 1854 // Check if the base is actually a primary base in the class we use for 1855 // layout. 1856 const ASTRecordLayout &LayoutClassLayout = 1857 Context.getASTRecordLayout(LayoutClass); 1858 1859 CharUnits PrimaryBaseOffsetInLayoutClass = 1860 LayoutClassLayout.getVBaseClassOffset(PrimaryBase); 1861 1862 // We know that the base is not a primary base in the layout class if 1863 // the base offsets are different. 1864 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass) 1865 IsPrimaryVirtualBase = false; 1866 } 1867 1868 if (IsPrimaryVirtualBase) 1869 PrimaryVirtualBases.insert(PrimaryBase); 1870 } 1871 } 1872 1873 // Traverse bases, looking for more primary virtual bases. 1874 for (const auto &B : RD->bases()) { 1875 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1876 1877 CharUnits BaseOffsetInLayoutClass; 1878 1879 if (B.isVirtual()) { 1880 if (!VBases.insert(BaseDecl).second) 1881 continue; 1882 1883 const ASTRecordLayout &LayoutClassLayout = 1884 Context.getASTRecordLayout(LayoutClass); 1885 1886 BaseOffsetInLayoutClass = 1887 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 1888 } else { 1889 BaseOffsetInLayoutClass = 1890 OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl); 1891 } 1892 1893 DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases); 1894 } 1895 } 1896 1897 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases( 1898 const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) { 1899 // Itanium C++ ABI 2.5.2: 1900 // Then come the virtual base virtual tables, also in inheritance graph 1901 // order, and again excluding primary bases (which share virtual tables with 1902 // the classes for which they are primary). 1903 for (const auto &B : RD->bases()) { 1904 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1905 1906 // Check if this base needs a vtable. (If it's virtual, not a primary base 1907 // of some other class, and we haven't visited it before). 1908 if (B.isVirtual() && BaseDecl->isDynamicClass() && 1909 !PrimaryVirtualBases.count(BaseDecl) && 1910 VBases.insert(BaseDecl).second) { 1911 const ASTRecordLayout &MostDerivedClassLayout = 1912 Context.getASTRecordLayout(MostDerivedClass); 1913 CharUnits BaseOffset = 1914 MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 1915 1916 const ASTRecordLayout &LayoutClassLayout = 1917 Context.getASTRecordLayout(LayoutClass); 1918 CharUnits BaseOffsetInLayoutClass = 1919 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 1920 1921 LayoutPrimaryAndSecondaryVTables( 1922 BaseSubobject(BaseDecl, BaseOffset), 1923 /*BaseIsMorallyVirtual=*/true, 1924 /*BaseIsVirtualInLayoutClass=*/true, 1925 BaseOffsetInLayoutClass); 1926 } 1927 1928 // We only need to check the base for virtual base vtables if it actually 1929 // has virtual bases. 1930 if (BaseDecl->getNumVBases()) 1931 LayoutVTablesForVirtualBases(BaseDecl, VBases); 1932 } 1933 } 1934 1935 static void printThunkMethod(const ThunkInfo &Info, raw_ostream &Out) { 1936 if (!Info.Method) 1937 return; 1938 std::string Str = PredefinedExpr::ComputeName( 1939 PredefinedIdentKind::PrettyFunctionNoVirtual, Info.Method); 1940 Out << " method: " << Str; 1941 } 1942 1943 /// dumpLayout - Dump the vtable layout. 1944 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) { 1945 // FIXME: write more tests that actually use the dumpLayout output to prevent 1946 // ItaniumVTableBuilder regressions. 1947 1948 Out << "Original map\n"; 1949 1950 for (const auto &P : VTables.getOriginalMethodMap()) { 1951 std::string Str0 = 1952 PredefinedExpr::ComputeName(PredefinedIdentKind::PrettyFunctionNoVirtual, 1953 P.first); 1954 std::string Str1 = 1955 PredefinedExpr::ComputeName(PredefinedIdentKind::PrettyFunctionNoVirtual, 1956 P.second); 1957 Out << " " << Str0 << " -> " << Str1 << "\n"; 1958 } 1959 1960 if (isBuildingConstructorVTable()) { 1961 Out << "Construction vtable for ('"; 1962 MostDerivedClass->printQualifiedName(Out); 1963 Out << "', "; 1964 Out << MostDerivedClassOffset.getQuantity() << ") in '"; 1965 LayoutClass->printQualifiedName(Out); 1966 } else { 1967 Out << "Vtable for '"; 1968 MostDerivedClass->printQualifiedName(Out); 1969 } 1970 Out << "' (" << Components.size() << " entries).\n"; 1971 1972 // Iterate through the address points and insert them into a new map where 1973 // they are keyed by the index and not the base object. 1974 // Since an address point can be shared by multiple subobjects, we use an 1975 // STL multimap. 1976 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex; 1977 for (const auto &AP : AddressPoints) { 1978 const BaseSubobject &Base = AP.first; 1979 uint64_t Index = 1980 VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex; 1981 1982 AddressPointsByIndex.insert(std::make_pair(Index, Base)); 1983 } 1984 1985 for (unsigned I = 0, E = Components.size(); I != E; ++I) { 1986 uint64_t Index = I; 1987 1988 Out << llvm::format("%4d | ", I); 1989 1990 const VTableComponent &Component = Components[I]; 1991 1992 // Dump the component. 1993 switch (Component.getKind()) { 1994 1995 case VTableComponent::CK_VCallOffset: 1996 Out << "vcall_offset (" 1997 << Component.getVCallOffset().getQuantity() 1998 << ")"; 1999 break; 2000 2001 case VTableComponent::CK_VBaseOffset: 2002 Out << "vbase_offset (" 2003 << Component.getVBaseOffset().getQuantity() 2004 << ")"; 2005 break; 2006 2007 case VTableComponent::CK_OffsetToTop: 2008 Out << "offset_to_top (" 2009 << Component.getOffsetToTop().getQuantity() 2010 << ")"; 2011 break; 2012 2013 case VTableComponent::CK_RTTI: 2014 Component.getRTTIDecl()->printQualifiedName(Out); 2015 Out << " RTTI"; 2016 break; 2017 2018 case VTableComponent::CK_FunctionPointer: { 2019 const CXXMethodDecl *MD = Component.getFunctionDecl(); 2020 2021 std::string Str = PredefinedExpr::ComputeName( 2022 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 2023 Out << Str; 2024 if (MD->isPureVirtual()) 2025 Out << " [pure]"; 2026 2027 if (MD->isDeleted()) 2028 Out << " [deleted]"; 2029 2030 ThunkInfo Thunk = VTableThunks.lookup(I); 2031 if (!Thunk.isEmpty()) { 2032 // If this function pointer has a return adjustment, dump it. 2033 if (!Thunk.Return.isEmpty()) { 2034 Out << "\n [return adjustment: "; 2035 Out << Thunk.Return.NonVirtual << " non-virtual"; 2036 2037 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { 2038 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; 2039 Out << " vbase offset offset"; 2040 } 2041 2042 Out << ']'; 2043 printThunkMethod(Thunk, Out); 2044 } 2045 2046 // If this function pointer has a 'this' pointer adjustment, dump it. 2047 if (!Thunk.This.isEmpty()) { 2048 Out << "\n [this adjustment: "; 2049 Out << Thunk.This.NonVirtual << " non-virtual"; 2050 2051 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 2052 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 2053 Out << " vcall offset offset"; 2054 } 2055 2056 Out << ']'; 2057 printThunkMethod(Thunk, Out); 2058 } 2059 } 2060 2061 break; 2062 } 2063 2064 case VTableComponent::CK_CompleteDtorPointer: 2065 case VTableComponent::CK_DeletingDtorPointer: { 2066 bool IsComplete = 2067 Component.getKind() == VTableComponent::CK_CompleteDtorPointer; 2068 2069 const CXXDestructorDecl *DD = Component.getDestructorDecl(); 2070 2071 DD->printQualifiedName(Out); 2072 if (IsComplete) 2073 Out << "() [complete]"; 2074 else 2075 Out << "() [deleting]"; 2076 2077 if (DD->isPureVirtual()) 2078 Out << " [pure]"; 2079 2080 ThunkInfo Thunk = VTableThunks.lookup(I); 2081 if (!Thunk.isEmpty()) { 2082 // If this destructor has a 'this' pointer adjustment, dump it. 2083 if (!Thunk.This.isEmpty()) { 2084 Out << "\n [this adjustment: "; 2085 Out << Thunk.This.NonVirtual << " non-virtual"; 2086 2087 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 2088 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 2089 Out << " vcall offset offset"; 2090 } 2091 2092 Out << ']'; 2093 } 2094 printThunkMethod(Thunk, Out); 2095 } 2096 2097 break; 2098 } 2099 2100 case VTableComponent::CK_UnusedFunctionPointer: { 2101 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl(); 2102 2103 std::string Str = PredefinedExpr::ComputeName( 2104 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 2105 Out << "[unused] " << Str; 2106 if (MD->isPureVirtual()) 2107 Out << " [pure]"; 2108 } 2109 2110 } 2111 2112 Out << '\n'; 2113 2114 // Dump the next address point. 2115 uint64_t NextIndex = Index + 1; 2116 if (AddressPointsByIndex.count(NextIndex)) { 2117 if (AddressPointsByIndex.count(NextIndex) == 1) { 2118 const BaseSubobject &Base = 2119 AddressPointsByIndex.find(NextIndex)->second; 2120 2121 Out << " -- ("; 2122 Base.getBase()->printQualifiedName(Out); 2123 Out << ", " << Base.getBaseOffset().getQuantity(); 2124 Out << ") vtable address --\n"; 2125 } else { 2126 CharUnits BaseOffset = 2127 AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset(); 2128 2129 // We store the class names in a set to get a stable order. 2130 std::set<std::string> ClassNames; 2131 for (const auto &I : 2132 llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) { 2133 assert(I.second.getBaseOffset() == BaseOffset && 2134 "Invalid base offset!"); 2135 const CXXRecordDecl *RD = I.second.getBase(); 2136 ClassNames.insert(RD->getQualifiedNameAsString()); 2137 } 2138 2139 for (const std::string &Name : ClassNames) { 2140 Out << " -- (" << Name; 2141 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n"; 2142 } 2143 } 2144 } 2145 } 2146 2147 Out << '\n'; 2148 2149 if (isBuildingConstructorVTable()) 2150 return; 2151 2152 if (MostDerivedClass->getNumVBases()) { 2153 // We store the virtual base class names and their offsets in a map to get 2154 // a stable order. 2155 2156 std::map<std::string, CharUnits> ClassNamesAndOffsets; 2157 for (const auto &I : VBaseOffsetOffsets) { 2158 std::string ClassName = I.first->getQualifiedNameAsString(); 2159 CharUnits OffsetOffset = I.second; 2160 ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset)); 2161 } 2162 2163 Out << "Virtual base offset offsets for '"; 2164 MostDerivedClass->printQualifiedName(Out); 2165 Out << "' ("; 2166 Out << ClassNamesAndOffsets.size(); 2167 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n"; 2168 2169 for (const auto &I : ClassNamesAndOffsets) 2170 Out << " " << I.first << " | " << I.second.getQuantity() << '\n'; 2171 2172 Out << "\n"; 2173 } 2174 2175 if (!Thunks.empty()) { 2176 // We store the method names in a map to get a stable order. 2177 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; 2178 2179 for (const auto &I : Thunks) { 2180 const CXXMethodDecl *MD = I.first; 2181 std::string MethodName = PredefinedExpr::ComputeName( 2182 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 2183 2184 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); 2185 } 2186 2187 for (const auto &I : MethodNamesAndDecls) { 2188 const std::string &MethodName = I.first; 2189 const CXXMethodDecl *MD = I.second; 2190 2191 ThunkInfoVectorTy ThunksVector = Thunks[MD]; 2192 llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) { 2193 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); 2194 }); 2195 2196 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); 2197 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; 2198 2199 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { 2200 const ThunkInfo &Thunk = ThunksVector[I]; 2201 2202 Out << llvm::format("%4d | ", I); 2203 2204 // If this function pointer has a return pointer adjustment, dump it. 2205 if (!Thunk.Return.isEmpty()) { 2206 Out << "return adjustment: " << Thunk.Return.NonVirtual; 2207 Out << " non-virtual"; 2208 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { 2209 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; 2210 Out << " vbase offset offset"; 2211 } 2212 2213 if (!Thunk.This.isEmpty()) 2214 Out << "\n "; 2215 } 2216 2217 // If this function pointer has a 'this' pointer adjustment, dump it. 2218 if (!Thunk.This.isEmpty()) { 2219 Out << "this adjustment: "; 2220 Out << Thunk.This.NonVirtual << " non-virtual"; 2221 2222 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 2223 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 2224 Out << " vcall offset offset"; 2225 } 2226 } 2227 2228 Out << '\n'; 2229 } 2230 2231 Out << '\n'; 2232 } 2233 } 2234 2235 // Compute the vtable indices for all the member functions. 2236 // Store them in a map keyed by the index so we'll get a sorted table. 2237 std::map<uint64_t, std::string> IndicesMap; 2238 2239 for (const auto *MD : MostDerivedClass->methods()) { 2240 // We only want virtual member functions. 2241 if (!ItaniumVTableContext::hasVtableSlot(MD)) 2242 continue; 2243 MD = MD->getCanonicalDecl(); 2244 2245 std::string MethodName = PredefinedExpr::ComputeName( 2246 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 2247 2248 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2249 GlobalDecl GD(DD, Dtor_Complete); 2250 assert(MethodVTableIndices.count(GD)); 2251 uint64_t VTableIndex = MethodVTableIndices[GD]; 2252 IndicesMap[VTableIndex] = MethodName + " [complete]"; 2253 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]"; 2254 } else { 2255 assert(MethodVTableIndices.count(MD)); 2256 IndicesMap[MethodVTableIndices[MD]] = MethodName; 2257 } 2258 } 2259 2260 // Print the vtable indices for all the member functions. 2261 if (!IndicesMap.empty()) { 2262 Out << "VTable indices for '"; 2263 MostDerivedClass->printQualifiedName(Out); 2264 Out << "' (" << IndicesMap.size() << " entries).\n"; 2265 2266 for (const auto &I : IndicesMap) { 2267 uint64_t VTableIndex = I.first; 2268 const std::string &MethodName = I.second; 2269 2270 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName 2271 << '\n'; 2272 } 2273 } 2274 2275 Out << '\n'; 2276 } 2277 } 2278 2279 static VTableLayout::AddressPointsIndexMapTy 2280 MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints, 2281 unsigned numVTables) { 2282 VTableLayout::AddressPointsIndexMapTy indexMap(numVTables); 2283 2284 for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) { 2285 const auto &addressPointLoc = it->second; 2286 unsigned vtableIndex = addressPointLoc.VTableIndex; 2287 unsigned addressPoint = addressPointLoc.AddressPointIndex; 2288 if (indexMap[vtableIndex]) { 2289 // Multiple BaseSubobjects can map to the same AddressPointLocation, but 2290 // every vtable index should have a unique address point. 2291 assert(indexMap[vtableIndex] == addressPoint && 2292 "Every vtable index should have a unique address point. Found a " 2293 "vtable that has two different address points."); 2294 } else { 2295 indexMap[vtableIndex] = addressPoint; 2296 } 2297 } 2298 2299 // Note that by this point, not all the address may be initialized if the 2300 // AddressPoints map is empty. This is ok if the map isn't needed. See 2301 // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an 2302 // emprt map. 2303 return indexMap; 2304 } 2305 2306 VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices, 2307 ArrayRef<VTableComponent> VTableComponents, 2308 ArrayRef<VTableThunkTy> VTableThunks, 2309 const AddressPointsMapTy &AddressPoints) 2310 : VTableComponents(VTableComponents), VTableThunks(VTableThunks), 2311 AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices( 2312 AddressPoints, VTableIndices.size())) { 2313 if (VTableIndices.size() <= 1) 2314 assert(VTableIndices.size() == 1 && VTableIndices[0] == 0); 2315 else 2316 this->VTableIndices = OwningArrayRef<size_t>(VTableIndices); 2317 2318 llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS, 2319 const VTableLayout::VTableThunkTy &RHS) { 2320 assert((LHS.first != RHS.first || LHS.second == RHS.second) && 2321 "Different thunks should have unique indices!"); 2322 return LHS.first < RHS.first; 2323 }); 2324 } 2325 2326 VTableLayout::~VTableLayout() { } 2327 2328 bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) { 2329 return MD->isVirtual() && !MD->isImmediateFunction(); 2330 } 2331 2332 ItaniumVTableContext::ItaniumVTableContext( 2333 ASTContext &Context, VTableComponentLayout ComponentLayout) 2334 : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {} 2335 2336 ItaniumVTableContext::~ItaniumVTableContext() {} 2337 2338 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) { 2339 GD = GD.getCanonicalDecl(); 2340 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD); 2341 if (I != MethodVTableIndices.end()) 2342 return I->second; 2343 2344 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 2345 2346 computeVTableRelatedInformation(RD); 2347 2348 I = MethodVTableIndices.find(GD); 2349 assert(I != MethodVTableIndices.end() && "Did not find index!"); 2350 return I->second; 2351 } 2352 2353 CharUnits 2354 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD, 2355 const CXXRecordDecl *VBase) { 2356 ClassPairTy ClassPair(RD, VBase); 2357 2358 VirtualBaseClassOffsetOffsetsMapTy::iterator I = 2359 VirtualBaseClassOffsetOffsets.find(ClassPair); 2360 if (I != VirtualBaseClassOffsetOffsets.end()) 2361 return I->second; 2362 2363 VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr, 2364 BaseSubobject(RD, CharUnits::Zero()), 2365 /*BaseIsVirtual=*/false, 2366 /*OffsetInLayoutClass=*/CharUnits::Zero()); 2367 2368 for (const auto &I : Builder.getVBaseOffsetOffsets()) { 2369 // Insert all types. 2370 ClassPairTy ClassPair(RD, I.first); 2371 2372 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); 2373 } 2374 2375 I = VirtualBaseClassOffsetOffsets.find(ClassPair); 2376 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!"); 2377 2378 return I->second; 2379 } 2380 2381 GlobalDecl ItaniumVTableContext::findOriginalMethod(GlobalDecl GD) { 2382 const auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 2383 computeVTableRelatedInformation(MD->getParent()); 2384 const CXXMethodDecl *OriginalMD = findOriginalMethodInMap(MD); 2385 2386 if (const auto *DD = dyn_cast<CXXDestructorDecl>(OriginalMD)) 2387 return GlobalDecl(DD, GD.getDtorType()); 2388 return OriginalMD; 2389 } 2390 2391 const CXXMethodDecl * 2392 ItaniumVTableContext::findOriginalMethodInMap(const CXXMethodDecl *MD) const { 2393 // Traverse the chain of virtual methods until we find the method that added 2394 // the v-table slot. 2395 while (true) { 2396 auto I = OriginalMethodMap.find(MD); 2397 2398 // MD doesn't exist in OriginalMethodMap, so it must be the method we are 2399 // looking for. 2400 if (I == OriginalMethodMap.end()) 2401 break; 2402 2403 // Set MD to the overridden method. 2404 MD = I->second; 2405 } 2406 2407 return MD; 2408 } 2409 2410 static std::unique_ptr<VTableLayout> 2411 CreateVTableLayout(const ItaniumVTableBuilder &Builder) { 2412 SmallVector<VTableLayout::VTableThunkTy, 1> 2413 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); 2414 2415 return std::make_unique<VTableLayout>( 2416 Builder.VTableIndices, Builder.vtable_components(), VTableThunks, 2417 Builder.getAddressPoints()); 2418 } 2419 2420 void 2421 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) { 2422 std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD]; 2423 2424 // Check if we've computed this information before. 2425 if (Entry) 2426 return; 2427 2428 ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(), 2429 /*MostDerivedClassIsVirtual=*/false, RD); 2430 Entry = CreateVTableLayout(Builder); 2431 2432 MethodVTableIndices.insert(Builder.vtable_indices_begin(), 2433 Builder.vtable_indices_end()); 2434 2435 // Add the known thunks. 2436 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); 2437 2438 // If we don't have the vbase information for this class, insert it. 2439 // getVirtualBaseOffsetOffset will compute it separately without computing 2440 // the rest of the vtable related information. 2441 if (!RD->getNumVBases()) 2442 return; 2443 2444 const CXXRecordDecl *VBase = 2445 RD->vbases_begin()->getType()->getAsCXXRecordDecl(); 2446 2447 if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase))) 2448 return; 2449 2450 for (const auto &I : Builder.getVBaseOffsetOffsets()) { 2451 // Insert all types. 2452 ClassPairTy ClassPair(RD, I.first); 2453 2454 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); 2455 } 2456 } 2457 2458 std::unique_ptr<VTableLayout> 2459 ItaniumVTableContext::createConstructionVTableLayout( 2460 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset, 2461 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) { 2462 ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset, 2463 MostDerivedClassIsVirtual, LayoutClass); 2464 return CreateVTableLayout(Builder); 2465 } 2466 2467 namespace { 2468 2469 // Vtables in the Microsoft ABI are different from the Itanium ABI. 2470 // 2471 // The main differences are: 2472 // 1. Separate vftable and vbtable. 2473 // 2474 // 2. Each subobject with a vfptr gets its own vftable rather than an address 2475 // point in a single vtable shared between all the subobjects. 2476 // Each vftable is represented by a separate section and virtual calls 2477 // must be done using the vftable which has a slot for the function to be 2478 // called. 2479 // 2480 // 3. Virtual method definitions expect their 'this' parameter to point to the 2481 // first vfptr whose table provides a compatible overridden method. In many 2482 // cases, this permits the original vf-table entry to directly call 2483 // the method instead of passing through a thunk. 2484 // See example before VFTableBuilder::ComputeThisOffset below. 2485 // 2486 // A compatible overridden method is one which does not have a non-trivial 2487 // covariant-return adjustment. 2488 // 2489 // The first vfptr is the one with the lowest offset in the complete-object 2490 // layout of the defining class, and the method definition will subtract 2491 // that constant offset from the parameter value to get the real 'this' 2492 // value. Therefore, if the offset isn't really constant (e.g. if a virtual 2493 // function defined in a virtual base is overridden in a more derived 2494 // virtual base and these bases have a reverse order in the complete 2495 // object), the vf-table may require a this-adjustment thunk. 2496 // 2497 // 4. vftables do not contain new entries for overrides that merely require 2498 // this-adjustment. Together with #3, this keeps vf-tables smaller and 2499 // eliminates the need for this-adjustment thunks in many cases, at the cost 2500 // of often requiring redundant work to adjust the "this" pointer. 2501 // 2502 // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used. 2503 // Vtordisps are emitted into the class layout if a class has 2504 // a) a user-defined ctor/dtor 2505 // and 2506 // b) a method overriding a method in a virtual base. 2507 // 2508 // To get a better understanding of this code, 2509 // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp 2510 2511 class VFTableBuilder { 2512 public: 2513 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation> 2514 MethodVFTableLocationsTy; 2515 2516 typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator> 2517 method_locations_range; 2518 2519 private: 2520 /// VTables - Global vtable information. 2521 MicrosoftVTableContext &VTables; 2522 2523 /// Context - The ASTContext which we will use for layout information. 2524 ASTContext &Context; 2525 2526 /// MostDerivedClass - The most derived class for which we're building this 2527 /// vtable. 2528 const CXXRecordDecl *MostDerivedClass; 2529 2530 const ASTRecordLayout &MostDerivedClassLayout; 2531 2532 const VPtrInfo &WhichVFPtr; 2533 2534 /// FinalOverriders - The final overriders of the most derived class. 2535 const FinalOverriders Overriders; 2536 2537 /// Components - The components of the vftable being built. 2538 SmallVector<VTableComponent, 64> Components; 2539 2540 MethodVFTableLocationsTy MethodVFTableLocations; 2541 2542 /// Does this class have an RTTI component? 2543 bool HasRTTIComponent = false; 2544 2545 /// MethodInfo - Contains information about a method in a vtable. 2546 /// (Used for computing 'this' pointer adjustment thunks. 2547 struct MethodInfo { 2548 /// VBTableIndex - The nonzero index in the vbtable that 2549 /// this method's base has, or zero. 2550 const uint64_t VBTableIndex; 2551 2552 /// VFTableIndex - The index in the vftable that this method has. 2553 const uint64_t VFTableIndex; 2554 2555 /// Shadowed - Indicates if this vftable slot is shadowed by 2556 /// a slot for a covariant-return override. If so, it shouldn't be printed 2557 /// or used for vcalls in the most derived class. 2558 bool Shadowed; 2559 2560 /// UsesExtraSlot - Indicates if this vftable slot was created because 2561 /// any of the overridden slots required a return adjusting thunk. 2562 bool UsesExtraSlot; 2563 2564 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex, 2565 bool UsesExtraSlot = false) 2566 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex), 2567 Shadowed(false), UsesExtraSlot(UsesExtraSlot) {} 2568 2569 MethodInfo() 2570 : VBTableIndex(0), VFTableIndex(0), Shadowed(false), 2571 UsesExtraSlot(false) {} 2572 }; 2573 2574 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; 2575 2576 /// MethodInfoMap - The information for all methods in the vftable we're 2577 /// currently building. 2578 MethodInfoMapTy MethodInfoMap; 2579 2580 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; 2581 2582 /// VTableThunks - The thunks by vftable index in the vftable currently being 2583 /// built. 2584 VTableThunksMapTy VTableThunks; 2585 2586 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; 2587 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; 2588 2589 /// Thunks - A map that contains all the thunks needed for all methods in the 2590 /// most derived class for which the vftable is currently being built. 2591 ThunksMapTy Thunks; 2592 2593 /// AddThunk - Add a thunk for the given method. 2594 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) { 2595 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD]; 2596 2597 // Check if we have this thunk already. 2598 if (llvm::is_contained(ThunksVector, Thunk)) 2599 return; 2600 2601 ThunksVector.push_back(Thunk); 2602 } 2603 2604 /// ComputeThisOffset - Returns the 'this' argument offset for the given 2605 /// method, relative to the beginning of the MostDerivedClass. 2606 CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider); 2607 2608 void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider, 2609 CharUnits ThisOffset, ThisAdjustment &TA); 2610 2611 /// AddMethod - Add a single virtual member function to the vftable 2612 /// components vector. 2613 void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) { 2614 if (!TI.isEmpty()) { 2615 VTableThunks[Components.size()] = TI; 2616 AddThunk(MD, TI); 2617 } 2618 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2619 assert(TI.Return.isEmpty() && 2620 "Destructor can't have return adjustment!"); 2621 Components.push_back(VTableComponent::MakeDeletingDtor(DD)); 2622 } else { 2623 Components.push_back(VTableComponent::MakeFunction(MD)); 2624 } 2625 } 2626 2627 /// AddMethods - Add the methods of this base subobject and the relevant 2628 /// subbases to the vftable we're currently laying out. 2629 void AddMethods(BaseSubobject Base, unsigned BaseDepth, 2630 const CXXRecordDecl *LastVBase, 2631 BasesSetVectorTy &VisitedBases); 2632 2633 void LayoutVFTable() { 2634 // RTTI data goes before all other entries. 2635 if (HasRTTIComponent) 2636 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); 2637 2638 BasesSetVectorTy VisitedBases; 2639 AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr, 2640 VisitedBases); 2641 // Note that it is possible for the vftable to contain only an RTTI 2642 // pointer, if all virtual functions are constewval. 2643 assert(!Components.empty() && "vftable can't be empty"); 2644 2645 assert(MethodVFTableLocations.empty()); 2646 for (const auto &I : MethodInfoMap) { 2647 const CXXMethodDecl *MD = I.first; 2648 const MethodInfo &MI = I.second; 2649 assert(MD == MD->getCanonicalDecl()); 2650 2651 // Skip the methods that the MostDerivedClass didn't override 2652 // and the entries shadowed by return adjusting thunks. 2653 if (MD->getParent() != MostDerivedClass || MI.Shadowed) 2654 continue; 2655 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(), 2656 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex); 2657 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2658 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc; 2659 } else { 2660 MethodVFTableLocations[MD] = Loc; 2661 } 2662 } 2663 } 2664 2665 public: 2666 VFTableBuilder(MicrosoftVTableContext &VTables, 2667 const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which) 2668 : VTables(VTables), 2669 Context(MostDerivedClass->getASTContext()), 2670 MostDerivedClass(MostDerivedClass), 2671 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)), 2672 WhichVFPtr(Which), 2673 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) { 2674 // Provide the RTTI component if RTTIData is enabled. If the vftable would 2675 // be available externally, we should not provide the RTTI componenent. It 2676 // is currently impossible to get available externally vftables with either 2677 // dllimport or extern template instantiations, but eventually we may add a 2678 // flag to support additional devirtualization that needs this. 2679 if (Context.getLangOpts().RTTIData) 2680 HasRTTIComponent = true; 2681 2682 LayoutVFTable(); 2683 2684 if (Context.getLangOpts().DumpVTableLayouts) 2685 dumpLayout(llvm::outs()); 2686 } 2687 2688 uint64_t getNumThunks() const { return Thunks.size(); } 2689 2690 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); } 2691 2692 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); } 2693 2694 method_locations_range vtable_locations() const { 2695 return method_locations_range(MethodVFTableLocations.begin(), 2696 MethodVFTableLocations.end()); 2697 } 2698 2699 ArrayRef<VTableComponent> vtable_components() const { return Components; } 2700 2701 VTableThunksMapTy::const_iterator vtable_thunks_begin() const { 2702 return VTableThunks.begin(); 2703 } 2704 2705 VTableThunksMapTy::const_iterator vtable_thunks_end() const { 2706 return VTableThunks.end(); 2707 } 2708 2709 void dumpLayout(raw_ostream &); 2710 }; 2711 2712 } // end namespace 2713 2714 // Let's study one class hierarchy as an example: 2715 // struct A { 2716 // virtual void f(); 2717 // int x; 2718 // }; 2719 // 2720 // struct B : virtual A { 2721 // virtual void f(); 2722 // }; 2723 // 2724 // Record layouts: 2725 // struct A: 2726 // 0 | (A vftable pointer) 2727 // 4 | int x 2728 // 2729 // struct B: 2730 // 0 | (B vbtable pointer) 2731 // 4 | struct A (virtual base) 2732 // 4 | (A vftable pointer) 2733 // 8 | int x 2734 // 2735 // Let's assume we have a pointer to the A part of an object of dynamic type B: 2736 // B b; 2737 // A *a = (A*)&b; 2738 // a->f(); 2739 // 2740 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects 2741 // "this" parameter to point at the A subobject, which is B+4. 2742 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4, 2743 // performed as a *static* adjustment. 2744 // 2745 // Interesting thing happens when we alter the relative placement of A and B 2746 // subobjects in a class: 2747 // struct C : virtual B { }; 2748 // 2749 // C c; 2750 // A *a = (A*)&c; 2751 // a->f(); 2752 // 2753 // Respective record layout is: 2754 // 0 | (C vbtable pointer) 2755 // 4 | struct A (virtual base) 2756 // 4 | (A vftable pointer) 2757 // 8 | int x 2758 // 12 | struct B (virtual base) 2759 // 12 | (B vbtable pointer) 2760 // 2761 // The final overrider of f() in class C is still B::f(), so B+4 should be 2762 // passed as "this" to that code. However, "a" points at B-8, so the respective 2763 // vftable entry should hold a thunk that adds 12 to the "this" argument before 2764 // performing a tail call to B::f(). 2765 // 2766 // With this example in mind, we can now calculate the 'this' argument offset 2767 // for the given method, relative to the beginning of the MostDerivedClass. 2768 CharUnits 2769 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) { 2770 BasesSetVectorTy Bases; 2771 2772 { 2773 // Find the set of least derived bases that define the given method. 2774 OverriddenMethodsSetTy VisitedOverriddenMethods; 2775 auto InitialOverriddenDefinitionCollector = [&]( 2776 const CXXMethodDecl *OverriddenMD) { 2777 if (OverriddenMD->size_overridden_methods() == 0) 2778 Bases.insert(OverriddenMD->getParent()); 2779 // Don't recurse on this method if we've already collected it. 2780 return VisitedOverriddenMethods.insert(OverriddenMD).second; 2781 }; 2782 visitAllOverriddenMethods(Overrider.Method, 2783 InitialOverriddenDefinitionCollector); 2784 } 2785 2786 // If there are no overrides then 'this' is located 2787 // in the base that defines the method. 2788 if (Bases.size() == 0) 2789 return Overrider.Offset; 2790 2791 CXXBasePaths Paths; 2792 Overrider.Method->getParent()->lookupInBases( 2793 [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) { 2794 return Bases.count(Specifier->getType()->getAsCXXRecordDecl()); 2795 }, 2796 Paths); 2797 2798 // This will hold the smallest this offset among overridees of MD. 2799 // This implies that an offset of a non-virtual base will dominate an offset 2800 // of a virtual base to potentially reduce the number of thunks required 2801 // in the derived classes that inherit this method. 2802 CharUnits Ret; 2803 bool First = true; 2804 2805 const ASTRecordLayout &OverriderRDLayout = 2806 Context.getASTRecordLayout(Overrider.Method->getParent()); 2807 for (const CXXBasePath &Path : Paths) { 2808 CharUnits ThisOffset = Overrider.Offset; 2809 CharUnits LastVBaseOffset; 2810 2811 // For each path from the overrider to the parents of the overridden 2812 // methods, traverse the path, calculating the this offset in the most 2813 // derived class. 2814 for (const CXXBasePathElement &Element : Path) { 2815 QualType CurTy = Element.Base->getType(); 2816 const CXXRecordDecl *PrevRD = Element.Class, 2817 *CurRD = CurTy->getAsCXXRecordDecl(); 2818 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD); 2819 2820 if (Element.Base->isVirtual()) { 2821 // The interesting things begin when you have virtual inheritance. 2822 // The final overrider will use a static adjustment equal to the offset 2823 // of the vbase in the final overrider class. 2824 // For example, if the final overrider is in a vbase B of the most 2825 // derived class and it overrides a method of the B's own vbase A, 2826 // it uses A* as "this". In its prologue, it can cast A* to B* with 2827 // a static offset. This offset is used regardless of the actual 2828 // offset of A from B in the most derived class, requiring an 2829 // this-adjusting thunk in the vftable if A and B are laid out 2830 // differently in the most derived class. 2831 LastVBaseOffset = ThisOffset = 2832 Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD); 2833 } else { 2834 ThisOffset += Layout.getBaseClassOffset(CurRD); 2835 } 2836 } 2837 2838 if (isa<CXXDestructorDecl>(Overrider.Method)) { 2839 if (LastVBaseOffset.isZero()) { 2840 // If a "Base" class has at least one non-virtual base with a virtual 2841 // destructor, the "Base" virtual destructor will take the address 2842 // of the "Base" subobject as the "this" argument. 2843 ThisOffset = Overrider.Offset; 2844 } else { 2845 // A virtual destructor of a virtual base takes the address of the 2846 // virtual base subobject as the "this" argument. 2847 ThisOffset = LastVBaseOffset; 2848 } 2849 } 2850 2851 if (Ret > ThisOffset || First) { 2852 First = false; 2853 Ret = ThisOffset; 2854 } 2855 } 2856 2857 assert(!First && "Method not found in the given subobject?"); 2858 return Ret; 2859 } 2860 2861 // Things are getting even more complex when the "this" adjustment has to 2862 // use a dynamic offset instead of a static one, or even two dynamic offsets. 2863 // This is sometimes required when a virtual call happens in the middle of 2864 // a non-most-derived class construction or destruction. 2865 // 2866 // Let's take a look at the following example: 2867 // struct A { 2868 // virtual void f(); 2869 // }; 2870 // 2871 // void foo(A *a) { a->f(); } // Knows nothing about siblings of A. 2872 // 2873 // struct B : virtual A { 2874 // virtual void f(); 2875 // B() { 2876 // foo(this); 2877 // } 2878 // }; 2879 // 2880 // struct C : virtual B { 2881 // virtual void f(); 2882 // }; 2883 // 2884 // Record layouts for these classes are: 2885 // struct A 2886 // 0 | (A vftable pointer) 2887 // 2888 // struct B 2889 // 0 | (B vbtable pointer) 2890 // 4 | (vtordisp for vbase A) 2891 // 8 | struct A (virtual base) 2892 // 8 | (A vftable pointer) 2893 // 2894 // struct C 2895 // 0 | (C vbtable pointer) 2896 // 4 | (vtordisp for vbase A) 2897 // 8 | struct A (virtual base) // A precedes B! 2898 // 8 | (A vftable pointer) 2899 // 12 | struct B (virtual base) 2900 // 12 | (B vbtable pointer) 2901 // 2902 // When one creates an object of type C, the C constructor: 2903 // - initializes all the vbptrs, then 2904 // - calls the A subobject constructor 2905 // (initializes A's vfptr with an address of A vftable), then 2906 // - calls the B subobject constructor 2907 // (initializes A's vfptr with an address of B vftable and vtordisp for A), 2908 // that in turn calls foo(), then 2909 // - initializes A's vfptr with an address of C vftable and zeroes out the 2910 // vtordisp 2911 // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable 2912 // without vtordisp thunks? 2913 // FIXME: how are vtordisp handled in the presence of nooverride/final? 2914 // 2915 // When foo() is called, an object with a layout of class C has a vftable 2916 // referencing B::f() that assumes a B layout, so the "this" adjustments are 2917 // incorrect, unless an extra adjustment is done. This adjustment is called 2918 // "vtordisp adjustment". Vtordisp basically holds the difference between the 2919 // actual location of a vbase in the layout class and the location assumed by 2920 // the vftable of the class being constructed/destructed. Vtordisp is only 2921 // needed if "this" escapes a 2922 // structor (or we can't prove otherwise). 2923 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an 2924 // estimation of a dynamic adjustment] 2925 // 2926 // foo() gets a pointer to the A vbase and doesn't know anything about B or C, 2927 // so it just passes that pointer as "this" in a virtual call. 2928 // If there was no vtordisp, that would just dispatch to B::f(). 2929 // However, B::f() assumes B+8 is passed as "this", 2930 // yet the pointer foo() passes along is B-4 (i.e. C+8). 2931 // An extra adjustment is needed, so we emit a thunk into the B vftable. 2932 // This vtordisp thunk subtracts the value of vtordisp 2933 // from the "this" argument (-12) before making a tailcall to B::f(). 2934 // 2935 // Let's consider an even more complex example: 2936 // struct D : virtual B, virtual C { 2937 // D() { 2938 // foo(this); 2939 // } 2940 // }; 2941 // 2942 // struct D 2943 // 0 | (D vbtable pointer) 2944 // 4 | (vtordisp for vbase A) 2945 // 8 | struct A (virtual base) // A precedes both B and C! 2946 // 8 | (A vftable pointer) 2947 // 12 | struct B (virtual base) // B precedes C! 2948 // 12 | (B vbtable pointer) 2949 // 16 | struct C (virtual base) 2950 // 16 | (C vbtable pointer) 2951 // 2952 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall 2953 // to C::f(), which assumes C+8 as its "this" parameter. This time, foo() 2954 // passes along A, which is C-8. The A vtordisp holds 2955 // "D.vbptr[index_of_A] - offset_of_A_in_D" 2956 // and we statically know offset_of_A_in_D, so can get a pointer to D. 2957 // When we know it, we can make an extra vbtable lookup to locate the C vbase 2958 // and one extra static adjustment to calculate the expected value of C+8. 2959 void VFTableBuilder::CalculateVtordispAdjustment( 2960 FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset, 2961 ThisAdjustment &TA) { 2962 const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap = 2963 MostDerivedClassLayout.getVBaseOffsetsMap(); 2964 const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry = 2965 VBaseMap.find(WhichVFPtr.getVBaseWithVPtr()); 2966 assert(VBaseMapEntry != VBaseMap.end()); 2967 2968 // If there's no vtordisp or the final overrider is defined in the same vbase 2969 // as the initial declaration, we don't need any vtordisp adjustment. 2970 if (!VBaseMapEntry->second.hasVtorDisp() || 2971 Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr()) 2972 return; 2973 2974 // OK, now we know we need to use a vtordisp thunk. 2975 // The implicit vtordisp field is located right before the vbase. 2976 CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset; 2977 TA.Virtual.Microsoft.VtordispOffset = 2978 (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4; 2979 2980 // A simple vtordisp thunk will suffice if the final overrider is defined 2981 // in either the most derived class or its non-virtual base. 2982 if (Overrider.Method->getParent() == MostDerivedClass || 2983 !Overrider.VirtualBase) 2984 return; 2985 2986 // Otherwise, we need to do use the dynamic offset of the final overrider 2987 // in order to get "this" adjustment right. 2988 TA.Virtual.Microsoft.VBPtrOffset = 2989 (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset - 2990 MostDerivedClassLayout.getVBPtrOffset()).getQuantity(); 2991 TA.Virtual.Microsoft.VBOffsetOffset = 2992 Context.getTypeSizeInChars(Context.IntTy).getQuantity() * 2993 VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase); 2994 2995 TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity(); 2996 } 2997 2998 static void GroupNewVirtualOverloads( 2999 const CXXRecordDecl *RD, 3000 SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) { 3001 // Put the virtual methods into VirtualMethods in the proper order: 3002 // 1) Group overloads by declaration name. New groups are added to the 3003 // vftable in the order of their first declarations in this class 3004 // (including overrides, non-virtual methods and any other named decl that 3005 // might be nested within the class). 3006 // 2) In each group, new overloads appear in the reverse order of declaration. 3007 typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup; 3008 SmallVector<MethodGroup, 10> Groups; 3009 typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy; 3010 VisitedGroupIndicesTy VisitedGroupIndices; 3011 for (const auto *D : RD->decls()) { 3012 const auto *ND = dyn_cast<NamedDecl>(D); 3013 if (!ND) 3014 continue; 3015 VisitedGroupIndicesTy::iterator J; 3016 bool Inserted; 3017 std::tie(J, Inserted) = VisitedGroupIndices.insert( 3018 std::make_pair(ND->getDeclName(), Groups.size())); 3019 if (Inserted) 3020 Groups.push_back(MethodGroup()); 3021 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) 3022 if (MicrosoftVTableContext::hasVtableSlot(MD)) 3023 Groups[J->second].push_back(MD->getCanonicalDecl()); 3024 } 3025 3026 for (const MethodGroup &Group : Groups) 3027 VirtualMethods.append(Group.rbegin(), Group.rend()); 3028 } 3029 3030 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) { 3031 for (const auto &B : RD->bases()) { 3032 if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base) 3033 return true; 3034 } 3035 return false; 3036 } 3037 3038 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth, 3039 const CXXRecordDecl *LastVBase, 3040 BasesSetVectorTy &VisitedBases) { 3041 const CXXRecordDecl *RD = Base.getBase(); 3042 if (!RD->isPolymorphic()) 3043 return; 3044 3045 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3046 3047 // See if this class expands a vftable of the base we look at, which is either 3048 // the one defined by the vfptr base path or the primary base of the current 3049 // class. 3050 const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase; 3051 CharUnits NextBaseOffset; 3052 if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) { 3053 NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth]; 3054 if (isDirectVBase(NextBase, RD)) { 3055 NextLastVBase = NextBase; 3056 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase); 3057 } else { 3058 NextBaseOffset = 3059 Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase); 3060 } 3061 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 3062 assert(!Layout.isPrimaryBaseVirtual() && 3063 "No primary virtual bases in this ABI"); 3064 NextBase = PrimaryBase; 3065 NextBaseOffset = Base.getBaseOffset(); 3066 } 3067 3068 if (NextBase) { 3069 AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1, 3070 NextLastVBase, VisitedBases); 3071 if (!VisitedBases.insert(NextBase)) 3072 llvm_unreachable("Found a duplicate primary base!"); 3073 } 3074 3075 SmallVector<const CXXMethodDecl*, 10> VirtualMethods; 3076 // Put virtual methods in the proper order. 3077 GroupNewVirtualOverloads(RD, VirtualMethods); 3078 3079 // Now go through all virtual member functions and add them to the current 3080 // vftable. This is done by 3081 // - replacing overridden methods in their existing slots, as long as they 3082 // don't require return adjustment; calculating This adjustment if needed. 3083 // - adding new slots for methods of the current base not present in any 3084 // sub-bases; 3085 // - adding new slots for methods that require Return adjustment. 3086 // We keep track of the methods visited in the sub-bases in MethodInfoMap. 3087 for (const CXXMethodDecl *MD : VirtualMethods) { 3088 FinalOverriders::OverriderInfo FinalOverrider = 3089 Overriders.getOverrider(MD, Base.getBaseOffset()); 3090 const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method; 3091 const CXXMethodDecl *OverriddenMD = 3092 FindNearestOverriddenMethod(MD, VisitedBases); 3093 3094 ThisAdjustment ThisAdjustmentOffset; 3095 bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false; 3096 CharUnits ThisOffset = ComputeThisOffset(FinalOverrider); 3097 ThisAdjustmentOffset.NonVirtual = 3098 (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity(); 3099 if ((OverriddenMD || FinalOverriderMD != MD) && 3100 WhichVFPtr.getVBaseWithVPtr()) 3101 CalculateVtordispAdjustment(FinalOverrider, ThisOffset, 3102 ThisAdjustmentOffset); 3103 3104 unsigned VBIndex = 3105 LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0; 3106 3107 if (OverriddenMD) { 3108 // If MD overrides anything in this vftable, we need to update the 3109 // entries. 3110 MethodInfoMapTy::iterator OverriddenMDIterator = 3111 MethodInfoMap.find(OverriddenMD); 3112 3113 // If the overridden method went to a different vftable, skip it. 3114 if (OverriddenMDIterator == MethodInfoMap.end()) 3115 continue; 3116 3117 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second; 3118 3119 VBIndex = OverriddenMethodInfo.VBTableIndex; 3120 3121 // Let's check if the overrider requires any return adjustments. 3122 // We must create a new slot if the MD's return type is not trivially 3123 // convertible to the OverriddenMD's one. 3124 // Once a chain of method overrides adds a return adjusting vftable slot, 3125 // all subsequent overrides will also use an extra method slot. 3126 ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset( 3127 Context, MD, OverriddenMD).isEmpty() || 3128 OverriddenMethodInfo.UsesExtraSlot; 3129 3130 if (!ReturnAdjustingThunk) { 3131 // No return adjustment needed - just replace the overridden method info 3132 // with the current info. 3133 MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex); 3134 MethodInfoMap.erase(OverriddenMDIterator); 3135 3136 assert(!MethodInfoMap.count(MD) && 3137 "Should not have method info for this method yet!"); 3138 MethodInfoMap.insert(std::make_pair(MD, MI)); 3139 continue; 3140 } 3141 3142 // In case we need a return adjustment, we'll add a new slot for 3143 // the overrider. Mark the overridden method as shadowed by the new slot. 3144 OverriddenMethodInfo.Shadowed = true; 3145 3146 // Force a special name mangling for a return-adjusting thunk 3147 // unless the method is the final overrider without this adjustment. 3148 ForceReturnAdjustmentMangling = 3149 !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty()); 3150 } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC || 3151 MD->size_overridden_methods()) { 3152 // Skip methods that don't belong to the vftable of the current class, 3153 // e.g. each method that wasn't seen in any of the visited sub-bases 3154 // but overrides multiple methods of other sub-bases. 3155 continue; 3156 } 3157 3158 // If we got here, MD is a method not seen in any of the sub-bases or 3159 // it requires return adjustment. Insert the method info for this method. 3160 MethodInfo MI(VBIndex, 3161 HasRTTIComponent ? Components.size() - 1 : Components.size(), 3162 ReturnAdjustingThunk); 3163 3164 assert(!MethodInfoMap.count(MD) && 3165 "Should not have method info for this method yet!"); 3166 MethodInfoMap.insert(std::make_pair(MD, MI)); 3167 3168 // Check if this overrider needs a return adjustment. 3169 // We don't want to do this for pure virtual member functions. 3170 BaseOffset ReturnAdjustmentOffset; 3171 ReturnAdjustment ReturnAdjustment; 3172 if (!FinalOverriderMD->isPureVirtual()) { 3173 ReturnAdjustmentOffset = 3174 ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD); 3175 } 3176 if (!ReturnAdjustmentOffset.isEmpty()) { 3177 ForceReturnAdjustmentMangling = true; 3178 ReturnAdjustment.NonVirtual = 3179 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity(); 3180 if (ReturnAdjustmentOffset.VirtualBase) { 3181 const ASTRecordLayout &DerivedLayout = 3182 Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass); 3183 ReturnAdjustment.Virtual.Microsoft.VBPtrOffset = 3184 DerivedLayout.getVBPtrOffset().getQuantity(); 3185 ReturnAdjustment.Virtual.Microsoft.VBIndex = 3186 VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass, 3187 ReturnAdjustmentOffset.VirtualBase); 3188 } 3189 } 3190 auto ThisType = (OverriddenMD ? OverriddenMD : MD)->getThisType().getTypePtr(); 3191 AddMethod(FinalOverriderMD, 3192 ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment, ThisType, 3193 ForceReturnAdjustmentMangling ? MD : nullptr)); 3194 } 3195 } 3196 3197 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) { 3198 for (const CXXRecordDecl *Elem : llvm::reverse(Path)) { 3199 Out << "'"; 3200 Elem->printQualifiedName(Out); 3201 Out << "' in "; 3202 } 3203 } 3204 3205 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out, 3206 bool ContinueFirstLine) { 3207 const ReturnAdjustment &R = TI.Return; 3208 bool Multiline = false; 3209 const char *LinePrefix = "\n "; 3210 if (!R.isEmpty() || TI.Method) { 3211 if (!ContinueFirstLine) 3212 Out << LinePrefix; 3213 Out << "[return adjustment (to type '" 3214 << TI.Method->getReturnType().getCanonicalType() << "'): "; 3215 if (R.Virtual.Microsoft.VBPtrOffset) 3216 Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", "; 3217 if (R.Virtual.Microsoft.VBIndex) 3218 Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", "; 3219 Out << R.NonVirtual << " non-virtual]"; 3220 Multiline = true; 3221 } 3222 3223 const ThisAdjustment &T = TI.This; 3224 if (!T.isEmpty()) { 3225 if (Multiline || !ContinueFirstLine) 3226 Out << LinePrefix; 3227 Out << "[this adjustment: "; 3228 if (!TI.This.Virtual.isEmpty()) { 3229 assert(T.Virtual.Microsoft.VtordispOffset < 0); 3230 Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", "; 3231 if (T.Virtual.Microsoft.VBPtrOffset) { 3232 Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset 3233 << " to the left,"; 3234 assert(T.Virtual.Microsoft.VBOffsetOffset > 0); 3235 Out << LinePrefix << " vboffset at " 3236 << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, "; 3237 } 3238 } 3239 Out << T.NonVirtual << " non-virtual]"; 3240 } 3241 } 3242 3243 void VFTableBuilder::dumpLayout(raw_ostream &Out) { 3244 Out << "VFTable for "; 3245 PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out); 3246 Out << "'"; 3247 MostDerivedClass->printQualifiedName(Out); 3248 Out << "' (" << Components.size() 3249 << (Components.size() == 1 ? " entry" : " entries") << ").\n"; 3250 3251 for (unsigned I = 0, E = Components.size(); I != E; ++I) { 3252 Out << llvm::format("%4d | ", I); 3253 3254 const VTableComponent &Component = Components[I]; 3255 3256 // Dump the component. 3257 switch (Component.getKind()) { 3258 case VTableComponent::CK_RTTI: 3259 Component.getRTTIDecl()->printQualifiedName(Out); 3260 Out << " RTTI"; 3261 break; 3262 3263 case VTableComponent::CK_FunctionPointer: { 3264 const CXXMethodDecl *MD = Component.getFunctionDecl(); 3265 3266 // FIXME: Figure out how to print the real thunk type, since they can 3267 // differ in the return type. 3268 std::string Str = PredefinedExpr::ComputeName( 3269 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 3270 Out << Str; 3271 if (MD->isPureVirtual()) 3272 Out << " [pure]"; 3273 3274 if (MD->isDeleted()) 3275 Out << " [deleted]"; 3276 3277 ThunkInfo Thunk = VTableThunks.lookup(I); 3278 if (!Thunk.isEmpty()) 3279 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); 3280 3281 break; 3282 } 3283 3284 case VTableComponent::CK_DeletingDtorPointer: { 3285 const CXXDestructorDecl *DD = Component.getDestructorDecl(); 3286 3287 DD->printQualifiedName(Out); 3288 Out << "() [scalar deleting]"; 3289 3290 if (DD->isPureVirtual()) 3291 Out << " [pure]"; 3292 3293 ThunkInfo Thunk = VTableThunks.lookup(I); 3294 if (!Thunk.isEmpty()) { 3295 assert(Thunk.Return.isEmpty() && 3296 "No return adjustment needed for destructors!"); 3297 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); 3298 } 3299 3300 break; 3301 } 3302 3303 default: 3304 DiagnosticsEngine &Diags = Context.getDiagnostics(); 3305 unsigned DiagID = Diags.getCustomDiagID( 3306 DiagnosticsEngine::Error, 3307 "Unexpected vftable component type %0 for component number %1"); 3308 Diags.Report(MostDerivedClass->getLocation(), DiagID) 3309 << I << Component.getKind(); 3310 } 3311 3312 Out << '\n'; 3313 } 3314 3315 Out << '\n'; 3316 3317 if (!Thunks.empty()) { 3318 // We store the method names in a map to get a stable order. 3319 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; 3320 3321 for (const auto &I : Thunks) { 3322 const CXXMethodDecl *MD = I.first; 3323 std::string MethodName = PredefinedExpr::ComputeName( 3324 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 3325 3326 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); 3327 } 3328 3329 for (const auto &MethodNameAndDecl : MethodNamesAndDecls) { 3330 const std::string &MethodName = MethodNameAndDecl.first; 3331 const CXXMethodDecl *MD = MethodNameAndDecl.second; 3332 3333 ThunkInfoVectorTy ThunksVector = Thunks[MD]; 3334 llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS, 3335 const ThunkInfo &RHS) { 3336 // Keep different thunks with the same adjustments in the order they 3337 // were put into the vector. 3338 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); 3339 }); 3340 3341 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); 3342 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; 3343 3344 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { 3345 const ThunkInfo &Thunk = ThunksVector[I]; 3346 3347 Out << llvm::format("%4d | ", I); 3348 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true); 3349 Out << '\n'; 3350 } 3351 3352 Out << '\n'; 3353 } 3354 } 3355 3356 Out.flush(); 3357 } 3358 3359 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A, 3360 ArrayRef<const CXXRecordDecl *> B) { 3361 for (const CXXRecordDecl *Decl : B) { 3362 if (A.count(Decl)) 3363 return true; 3364 } 3365 return false; 3366 } 3367 3368 static bool rebucketPaths(VPtrInfoVector &Paths); 3369 3370 /// Produces MSVC-compatible vbtable data. The symbols produced by this 3371 /// algorithm match those produced by MSVC 2012 and newer, which is different 3372 /// from MSVC 2010. 3373 /// 3374 /// MSVC 2012 appears to minimize the vbtable names using the following 3375 /// algorithm. First, walk the class hierarchy in the usual order, depth first, 3376 /// left to right, to find all of the subobjects which contain a vbptr field. 3377 /// Visiting each class node yields a list of inheritance paths to vbptrs. Each 3378 /// record with a vbptr creates an initially empty path. 3379 /// 3380 /// To combine paths from child nodes, the paths are compared to check for 3381 /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of 3382 /// components in the same order. Each group of ambiguous paths is extended by 3383 /// appending the class of the base from which it came. If the current class 3384 /// node produced an ambiguous path, its path is extended with the current class. 3385 /// After extending paths, MSVC again checks for ambiguity, and extends any 3386 /// ambiguous path which wasn't already extended. Because each node yields an 3387 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once 3388 /// to produce an unambiguous set of paths. 3389 /// 3390 /// TODO: Presumably vftables use the same algorithm. 3391 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables, 3392 const CXXRecordDecl *RD, 3393 VPtrInfoVector &Paths) { 3394 assert(Paths.empty()); 3395 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3396 3397 // Base case: this subobject has its own vptr. 3398 if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr()) 3399 Paths.push_back(std::make_unique<VPtrInfo>(RD)); 3400 3401 // Recursive case: get all the vbtables from our bases and remove anything 3402 // that shares a virtual base. 3403 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen; 3404 for (const auto &B : RD->bases()) { 3405 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl(); 3406 if (B.isVirtual() && VBasesSeen.count(Base)) 3407 continue; 3408 3409 if (!Base->isDynamicClass()) 3410 continue; 3411 3412 const VPtrInfoVector &BasePaths = 3413 ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base); 3414 3415 for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) { 3416 // Don't include the path if it goes through a virtual base that we've 3417 // already included. 3418 if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases)) 3419 continue; 3420 3421 // Copy the path and adjust it as necessary. 3422 auto P = std::make_unique<VPtrInfo>(*BaseInfo); 3423 3424 // We mangle Base into the path if the path would've been ambiguous and it 3425 // wasn't already extended with Base. 3426 if (P->MangledPath.empty() || P->MangledPath.back() != Base) 3427 P->NextBaseToMangle = Base; 3428 3429 // Keep track of which vtable the derived class is going to extend with 3430 // new methods or bases. We append to either the vftable of our primary 3431 // base, or the first non-virtual base that has a vbtable. 3432 if (P->ObjectWithVPtr == Base && 3433 Base == (ForVBTables ? Layout.getBaseSharingVBPtr() 3434 : Layout.getPrimaryBase())) 3435 P->ObjectWithVPtr = RD; 3436 3437 // Keep track of the full adjustment from the MDC to this vtable. The 3438 // adjustment is captured by an optional vbase and a non-virtual offset. 3439 if (B.isVirtual()) 3440 P->ContainingVBases.push_back(Base); 3441 else if (P->ContainingVBases.empty()) 3442 P->NonVirtualOffset += Layout.getBaseClassOffset(Base); 3443 3444 // Update the full offset in the MDC. 3445 P->FullOffsetInMDC = P->NonVirtualOffset; 3446 if (const CXXRecordDecl *VB = P->getVBaseWithVPtr()) 3447 P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB); 3448 3449 Paths.push_back(std::move(P)); 3450 } 3451 3452 if (B.isVirtual()) 3453 VBasesSeen.insert(Base); 3454 3455 // After visiting any direct base, we've transitively visited all of its 3456 // morally virtual bases. 3457 for (const auto &VB : Base->vbases()) 3458 VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl()); 3459 } 3460 3461 // Sort the paths into buckets, and if any of them are ambiguous, extend all 3462 // paths in ambiguous buckets. 3463 bool Changed = true; 3464 while (Changed) 3465 Changed = rebucketPaths(Paths); 3466 } 3467 3468 static bool extendPath(VPtrInfo &P) { 3469 if (P.NextBaseToMangle) { 3470 P.MangledPath.push_back(P.NextBaseToMangle); 3471 P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice. 3472 return true; 3473 } 3474 return false; 3475 } 3476 3477 static bool rebucketPaths(VPtrInfoVector &Paths) { 3478 // What we're essentially doing here is bucketing together ambiguous paths. 3479 // Any bucket with more than one path in it gets extended by NextBase, which 3480 // is usually the direct base of the inherited the vbptr. This code uses a 3481 // sorted vector to implement a multiset to form the buckets. Note that the 3482 // ordering is based on pointers, but it doesn't change our output order. The 3483 // current algorithm is designed to match MSVC 2012's names. 3484 llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted( 3485 llvm::make_pointee_range(Paths)); 3486 llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) { 3487 return LHS.MangledPath < RHS.MangledPath; 3488 }); 3489 bool Changed = false; 3490 for (size_t I = 0, E = PathsSorted.size(); I != E;) { 3491 // Scan forward to find the end of the bucket. 3492 size_t BucketStart = I; 3493 do { 3494 ++I; 3495 } while (I != E && 3496 PathsSorted[BucketStart].get().MangledPath == 3497 PathsSorted[I].get().MangledPath); 3498 3499 // If this bucket has multiple paths, extend them all. 3500 if (I - BucketStart > 1) { 3501 for (size_t II = BucketStart; II != I; ++II) 3502 Changed |= extendPath(PathsSorted[II]); 3503 assert(Changed && "no paths were extended to fix ambiguity"); 3504 } 3505 } 3506 return Changed; 3507 } 3508 3509 MicrosoftVTableContext::~MicrosoftVTableContext() {} 3510 3511 namespace { 3512 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>, 3513 llvm::DenseSet<BaseSubobject>> FullPathTy; 3514 } 3515 3516 // This recursive function finds all paths from a subobject centered at 3517 // (RD, Offset) to the subobject located at IntroducingObject. 3518 static void findPathsToSubobject(ASTContext &Context, 3519 const ASTRecordLayout &MostDerivedLayout, 3520 const CXXRecordDecl *RD, CharUnits Offset, 3521 BaseSubobject IntroducingObject, 3522 FullPathTy &FullPath, 3523 std::list<FullPathTy> &Paths) { 3524 if (BaseSubobject(RD, Offset) == IntroducingObject) { 3525 Paths.push_back(FullPath); 3526 return; 3527 } 3528 3529 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3530 3531 for (const CXXBaseSpecifier &BS : RD->bases()) { 3532 const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl(); 3533 CharUnits NewOffset = BS.isVirtual() 3534 ? MostDerivedLayout.getVBaseClassOffset(Base) 3535 : Offset + Layout.getBaseClassOffset(Base); 3536 FullPath.insert(BaseSubobject(Base, NewOffset)); 3537 findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset, 3538 IntroducingObject, FullPath, Paths); 3539 FullPath.pop_back(); 3540 } 3541 } 3542 3543 // Return the paths which are not subsets of other paths. 3544 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) { 3545 FullPaths.remove_if([&](const FullPathTy &SpecificPath) { 3546 for (const FullPathTy &OtherPath : FullPaths) { 3547 if (&SpecificPath == &OtherPath) 3548 continue; 3549 if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) { 3550 return OtherPath.contains(BSO); 3551 })) { 3552 return true; 3553 } 3554 } 3555 return false; 3556 }); 3557 } 3558 3559 static CharUnits getOffsetOfFullPath(ASTContext &Context, 3560 const CXXRecordDecl *RD, 3561 const FullPathTy &FullPath) { 3562 const ASTRecordLayout &MostDerivedLayout = 3563 Context.getASTRecordLayout(RD); 3564 CharUnits Offset = CharUnits::fromQuantity(-1); 3565 for (const BaseSubobject &BSO : FullPath) { 3566 const CXXRecordDecl *Base = BSO.getBase(); 3567 // The first entry in the path is always the most derived record, skip it. 3568 if (Base == RD) { 3569 assert(Offset.getQuantity() == -1); 3570 Offset = CharUnits::Zero(); 3571 continue; 3572 } 3573 assert(Offset.getQuantity() != -1); 3574 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3575 // While we know which base has to be traversed, we don't know if that base 3576 // was a virtual base. 3577 const CXXBaseSpecifier *BaseBS = std::find_if( 3578 RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) { 3579 return BS.getType()->getAsCXXRecordDecl() == Base; 3580 }); 3581 Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base) 3582 : Offset + Layout.getBaseClassOffset(Base); 3583 RD = Base; 3584 } 3585 return Offset; 3586 } 3587 3588 // We want to select the path which introduces the most covariant overrides. If 3589 // two paths introduce overrides which the other path doesn't contain, issue a 3590 // diagnostic. 3591 static const FullPathTy *selectBestPath(ASTContext &Context, 3592 const CXXRecordDecl *RD, 3593 const VPtrInfo &Info, 3594 std::list<FullPathTy> &FullPaths) { 3595 // Handle some easy cases first. 3596 if (FullPaths.empty()) 3597 return nullptr; 3598 if (FullPaths.size() == 1) 3599 return &FullPaths.front(); 3600 3601 const FullPathTy *BestPath = nullptr; 3602 typedef std::set<const CXXMethodDecl *> OverriderSetTy; 3603 OverriderSetTy LastOverrides; 3604 for (const FullPathTy &SpecificPath : FullPaths) { 3605 assert(!SpecificPath.empty()); 3606 OverriderSetTy CurrentOverrides; 3607 const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase(); 3608 // Find the distance from the start of the path to the subobject with the 3609 // VPtr. 3610 CharUnits BaseOffset = 3611 getOffsetOfFullPath(Context, TopLevelRD, SpecificPath); 3612 FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD); 3613 for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) { 3614 if (!MicrosoftVTableContext::hasVtableSlot(MD)) 3615 continue; 3616 FinalOverriders::OverriderInfo OI = 3617 Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset); 3618 const CXXMethodDecl *OverridingMethod = OI.Method; 3619 // Only overriders which have a return adjustment introduce problematic 3620 // thunks. 3621 if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD) 3622 .isEmpty()) 3623 continue; 3624 // It's possible that the overrider isn't in this path. If so, skip it 3625 // because this path didn't introduce it. 3626 const CXXRecordDecl *OverridingParent = OverridingMethod->getParent(); 3627 if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) { 3628 return BSO.getBase() == OverridingParent; 3629 })) 3630 continue; 3631 CurrentOverrides.insert(OverridingMethod); 3632 } 3633 OverriderSetTy NewOverrides = 3634 llvm::set_difference(CurrentOverrides, LastOverrides); 3635 if (NewOverrides.empty()) 3636 continue; 3637 OverriderSetTy MissingOverrides = 3638 llvm::set_difference(LastOverrides, CurrentOverrides); 3639 if (MissingOverrides.empty()) { 3640 // This path is a strict improvement over the last path, let's use it. 3641 BestPath = &SpecificPath; 3642 std::swap(CurrentOverrides, LastOverrides); 3643 } else { 3644 // This path introduces an overrider with a conflicting covariant thunk. 3645 DiagnosticsEngine &Diags = Context.getDiagnostics(); 3646 const CXXMethodDecl *CovariantMD = *NewOverrides.begin(); 3647 const CXXMethodDecl *ConflictMD = *MissingOverrides.begin(); 3648 Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component) 3649 << RD; 3650 Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk) 3651 << CovariantMD; 3652 Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk) 3653 << ConflictMD; 3654 } 3655 } 3656 // Go with the path that introduced the most covariant overrides. If there is 3657 // no such path, pick the first path. 3658 return BestPath ? BestPath : &FullPaths.front(); 3659 } 3660 3661 static void computeFullPathsForVFTables(ASTContext &Context, 3662 const CXXRecordDecl *RD, 3663 VPtrInfoVector &Paths) { 3664 const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD); 3665 FullPathTy FullPath; 3666 std::list<FullPathTy> FullPaths; 3667 for (const std::unique_ptr<VPtrInfo>& Info : Paths) { 3668 findPathsToSubobject( 3669 Context, MostDerivedLayout, RD, CharUnits::Zero(), 3670 BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath, 3671 FullPaths); 3672 FullPath.clear(); 3673 removeRedundantPaths(FullPaths); 3674 Info->PathToIntroducingObject.clear(); 3675 if (const FullPathTy *BestPath = 3676 selectBestPath(Context, RD, *Info, FullPaths)) 3677 for (const BaseSubobject &BSO : *BestPath) 3678 Info->PathToIntroducingObject.push_back(BSO.getBase()); 3679 FullPaths.clear(); 3680 } 3681 } 3682 3683 static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout, 3684 const MethodVFTableLocation &LHS, 3685 const MethodVFTableLocation &RHS) { 3686 CharUnits L = LHS.VFPtrOffset; 3687 CharUnits R = RHS.VFPtrOffset; 3688 if (LHS.VBase) 3689 L += Layout.getVBaseClassOffset(LHS.VBase); 3690 if (RHS.VBase) 3691 R += Layout.getVBaseClassOffset(RHS.VBase); 3692 return L < R; 3693 } 3694 3695 void MicrosoftVTableContext::computeVTableRelatedInformation( 3696 const CXXRecordDecl *RD) { 3697 assert(RD->isDynamicClass()); 3698 3699 // Check if we've computed this information before. 3700 if (VFPtrLocations.count(RD)) 3701 return; 3702 3703 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap; 3704 3705 { 3706 auto VFPtrs = std::make_unique<VPtrInfoVector>(); 3707 computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs); 3708 computeFullPathsForVFTables(Context, RD, *VFPtrs); 3709 VFPtrLocations[RD] = std::move(VFPtrs); 3710 } 3711 3712 MethodVFTableLocationsTy NewMethodLocations; 3713 for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) { 3714 VFTableBuilder Builder(*this, RD, *VFPtr); 3715 3716 VFTableIdTy id(RD, VFPtr->FullOffsetInMDC); 3717 assert(VFTableLayouts.count(id) == 0); 3718 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks( 3719 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); 3720 VFTableLayouts[id] = std::make_unique<VTableLayout>( 3721 ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks, 3722 EmptyAddressPointsMap); 3723 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); 3724 3725 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3726 for (const auto &Loc : Builder.vtable_locations()) { 3727 auto Insert = NewMethodLocations.insert(Loc); 3728 if (!Insert.second) { 3729 const MethodVFTableLocation &NewLoc = Loc.second; 3730 MethodVFTableLocation &OldLoc = Insert.first->second; 3731 if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc)) 3732 OldLoc = NewLoc; 3733 } 3734 } 3735 } 3736 3737 MethodVFTableLocations.insert(NewMethodLocations.begin(), 3738 NewMethodLocations.end()); 3739 if (Context.getLangOpts().DumpVTableLayouts) 3740 dumpMethodLocations(RD, NewMethodLocations, llvm::outs()); 3741 } 3742 3743 void MicrosoftVTableContext::dumpMethodLocations( 3744 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods, 3745 raw_ostream &Out) { 3746 // Compute the vtable indices for all the member functions. 3747 // Store them in a map keyed by the location so we'll get a sorted table. 3748 std::map<MethodVFTableLocation, std::string> IndicesMap; 3749 bool HasNonzeroOffset = false; 3750 3751 for (const auto &I : NewMethods) { 3752 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl()); 3753 assert(hasVtableSlot(MD)); 3754 3755 std::string MethodName = PredefinedExpr::ComputeName( 3756 PredefinedIdentKind::PrettyFunctionNoVirtual, MD); 3757 3758 if (isa<CXXDestructorDecl>(MD)) { 3759 IndicesMap[I.second] = MethodName + " [scalar deleting]"; 3760 } else { 3761 IndicesMap[I.second] = MethodName; 3762 } 3763 3764 if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0) 3765 HasNonzeroOffset = true; 3766 } 3767 3768 // Print the vtable indices for all the member functions. 3769 if (!IndicesMap.empty()) { 3770 Out << "VFTable indices for "; 3771 Out << "'"; 3772 RD->printQualifiedName(Out); 3773 Out << "' (" << IndicesMap.size() 3774 << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n"; 3775 3776 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1); 3777 uint64_t LastVBIndex = 0; 3778 for (const auto &I : IndicesMap) { 3779 CharUnits VFPtrOffset = I.first.VFPtrOffset; 3780 uint64_t VBIndex = I.first.VBTableIndex; 3781 if (HasNonzeroOffset && 3782 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) { 3783 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset); 3784 Out << " -- accessible via "; 3785 if (VBIndex) 3786 Out << "vbtable index " << VBIndex << ", "; 3787 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n"; 3788 LastVFPtrOffset = VFPtrOffset; 3789 LastVBIndex = VBIndex; 3790 } 3791 3792 uint64_t VTableIndex = I.first.Index; 3793 const std::string &MethodName = I.second; 3794 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n'; 3795 } 3796 Out << '\n'; 3797 } 3798 3799 Out.flush(); 3800 } 3801 3802 const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation( 3803 const CXXRecordDecl *RD) { 3804 VirtualBaseInfo *VBI; 3805 3806 { 3807 // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell, 3808 // as it may be modified and rehashed under us. 3809 std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD]; 3810 if (Entry) 3811 return *Entry; 3812 Entry = std::make_unique<VirtualBaseInfo>(); 3813 VBI = Entry.get(); 3814 } 3815 3816 computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths); 3817 3818 // First, see if the Derived class shared the vbptr with a non-virtual base. 3819 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3820 if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) { 3821 // If the Derived class shares the vbptr with a non-virtual base, the shared 3822 // virtual bases come first so that the layout is the same. 3823 const VirtualBaseInfo &BaseInfo = 3824 computeVBTableRelatedInformation(VBPtrBase); 3825 VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(), 3826 BaseInfo.VBTableIndices.end()); 3827 } 3828 3829 // New vbases are added to the end of the vbtable. 3830 // Skip the self entry and vbases visited in the non-virtual base, if any. 3831 unsigned VBTableIndex = 1 + VBI->VBTableIndices.size(); 3832 for (const auto &VB : RD->vbases()) { 3833 const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl(); 3834 if (!VBI->VBTableIndices.count(CurVBase)) 3835 VBI->VBTableIndices[CurVBase] = VBTableIndex++; 3836 } 3837 3838 return *VBI; 3839 } 3840 3841 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived, 3842 const CXXRecordDecl *VBase) { 3843 const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived); 3844 assert(VBInfo.VBTableIndices.count(VBase)); 3845 return VBInfo.VBTableIndices.find(VBase)->second; 3846 } 3847 3848 const VPtrInfoVector & 3849 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) { 3850 return computeVBTableRelatedInformation(RD).VBPtrPaths; 3851 } 3852 3853 const VPtrInfoVector & 3854 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) { 3855 computeVTableRelatedInformation(RD); 3856 3857 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations"); 3858 return *VFPtrLocations[RD]; 3859 } 3860 3861 const VTableLayout & 3862 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD, 3863 CharUnits VFPtrOffset) { 3864 computeVTableRelatedInformation(RD); 3865 3866 VFTableIdTy id(RD, VFPtrOffset); 3867 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset"); 3868 return *VFTableLayouts[id]; 3869 } 3870 3871 MethodVFTableLocation 3872 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) { 3873 assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) && 3874 "Only use this method for virtual methods or dtors"); 3875 if (isa<CXXDestructorDecl>(GD.getDecl())) 3876 assert(GD.getDtorType() == Dtor_Deleting); 3877 3878 GD = GD.getCanonicalDecl(); 3879 3880 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD); 3881 if (I != MethodVFTableLocations.end()) 3882 return I->second; 3883 3884 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 3885 3886 computeVTableRelatedInformation(RD); 3887 3888 I = MethodVFTableLocations.find(GD); 3889 assert(I != MethodVFTableLocations.end() && "Did not find index!"); 3890 return I->second; 3891 } 3892