xref: /freebsd/contrib/llvm-project/clang/lib/AST/RecordLayoutBuilder.cpp (revision 3078531de10dcae44b253a35125c949ff4235284)
1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/AST/ASTContext.h"
10 #include "clang/AST/ASTDiagnostic.h"
11 #include "clang/AST/Attr.h"
12 #include "clang/AST/CXXInheritance.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/VTableBuilder.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
23 
24 using namespace clang;
25 
26 namespace {
27 
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40   /// Class - The class for this base info.
41   const CXXRecordDecl *Class;
42 
43   /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44   bool IsVirtual;
45 
46   /// Bases - Information about the base subobjects.
47   SmallVector<BaseSubobjectInfo*, 4> Bases;
48 
49   /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50   /// of this base info (if one exists).
51   BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52 
53   // FIXME: Document.
54   const BaseSubobjectInfo *Derived;
55 };
56 
57 /// Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
61   ExternalLayout() : Size(0), Align(0) {}
62 
63   /// Overall record size in bits.
64   uint64_t Size;
65 
66   /// Overall record alignment in bits.
67   uint64_t Align;
68 
69   /// Record field offsets in bits.
70   llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71 
72   /// Direct, non-virtual base offsets.
73   llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74 
75   /// Virtual base offsets.
76   llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77 
78   /// Get the offset of the given field. The external source must provide
79   /// entries for all fields in the record.
80   uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81     assert(FieldOffsets.count(FD) &&
82            "Field does not have an external offset");
83     return FieldOffsets[FD];
84   }
85 
86   bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87     auto Known = BaseOffsets.find(RD);
88     if (Known == BaseOffsets.end())
89       return false;
90     BaseOffset = Known->second;
91     return true;
92   }
93 
94   bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95     auto Known = VirtualBaseOffsets.find(RD);
96     if (Known == VirtualBaseOffsets.end())
97       return false;
98     BaseOffset = Known->second;
99     return true;
100   }
101 };
102 
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106   const ASTContext &Context;
107   uint64_t CharWidth;
108 
109   /// Class - The class whose empty entries we're keeping track of.
110   const CXXRecordDecl *Class;
111 
112   /// EmptyClassOffsets - A map from offsets to empty record decls.
113   typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114   typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115   EmptyClassOffsetsMapTy EmptyClassOffsets;
116 
117   /// MaxEmptyClassOffset - The highest offset known to contain an empty
118   /// base subobject.
119   CharUnits MaxEmptyClassOffset;
120 
121   /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122   /// member subobject that is empty.
123   void ComputeEmptySubobjectSizes();
124 
125   void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126 
127   void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128                                  CharUnits Offset, bool PlacingEmptyBase);
129 
130   void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131                                   const CXXRecordDecl *Class, CharUnits Offset,
132                                   bool PlacingOverlappingField);
133   void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset,
134                                   bool PlacingOverlappingField);
135 
136   /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137   /// subobjects beyond the given offset.
138   bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139     return Offset <= MaxEmptyClassOffset;
140   }
141 
142   CharUnits
143   getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144     uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145     assert(FieldOffset % CharWidth == 0 &&
146            "Field offset not at char boundary!");
147 
148     return Context.toCharUnitsFromBits(FieldOffset);
149   }
150 
151 protected:
152   bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153                                  CharUnits Offset) const;
154 
155   bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156                                      CharUnits Offset);
157 
158   bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159                                       const CXXRecordDecl *Class,
160                                       CharUnits Offset) const;
161   bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162                                       CharUnits Offset) const;
163 
164 public:
165   /// This holds the size of the largest empty subobject (either a base
166   /// or a member). Will be zero if the record being built doesn't contain
167   /// any empty classes.
168   CharUnits SizeOfLargestEmptySubobject;
169 
170   EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171   : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172       ComputeEmptySubobjectSizes();
173   }
174 
175   /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176   /// at the given offset.
177   /// Returns false if placing the record will result in two components
178   /// (direct or indirect) of the same type having the same offset.
179   bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180                             CharUnits Offset);
181 
182   /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183   /// offset.
184   bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
185 };
186 
187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188   // Check the bases.
189   for (const CXXBaseSpecifier &Base : Class->bases()) {
190     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
191 
192     CharUnits EmptySize;
193     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194     if (BaseDecl->isEmpty()) {
195       // If the class decl is empty, get its size.
196       EmptySize = Layout.getSize();
197     } else {
198       // Otherwise, we get the largest empty subobject for the decl.
199       EmptySize = Layout.getSizeOfLargestEmptySubobject();
200     }
201 
202     if (EmptySize > SizeOfLargestEmptySubobject)
203       SizeOfLargestEmptySubobject = EmptySize;
204   }
205 
206   // Check the fields.
207   for (const FieldDecl *FD : Class->fields()) {
208     const RecordType *RT =
209         Context.getBaseElementType(FD->getType())->getAs<RecordType>();
210 
211     // We only care about record types.
212     if (!RT)
213       continue;
214 
215     CharUnits EmptySize;
216     const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217     const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218     if (MemberDecl->isEmpty()) {
219       // If the class decl is empty, get its size.
220       EmptySize = Layout.getSize();
221     } else {
222       // Otherwise, we get the largest empty subobject for the decl.
223       EmptySize = Layout.getSizeOfLargestEmptySubobject();
224     }
225 
226     if (EmptySize > SizeOfLargestEmptySubobject)
227       SizeOfLargestEmptySubobject = EmptySize;
228   }
229 }
230 
231 bool
232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233                                              CharUnits Offset) const {
234   // We only need to check empty bases.
235   if (!RD->isEmpty())
236     return true;
237 
238   EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239   if (I == EmptyClassOffsets.end())
240     return true;
241 
242   const ClassVectorTy &Classes = I->second;
243   if (!llvm::is_contained(Classes, RD))
244     return true;
245 
246   // There is already an empty class of the same type at this offset.
247   return false;
248 }
249 
250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251                                              CharUnits Offset) {
252   // We only care about empty bases.
253   if (!RD->isEmpty())
254     return;
255 
256   // If we have empty structures inside a union, we can assign both
257   // the same offset. Just avoid pushing them twice in the list.
258   ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259   if (llvm::is_contained(Classes, RD))
260     return;
261 
262   Classes.push_back(RD);
263 
264   // Update the empty class offset.
265   if (Offset > MaxEmptyClassOffset)
266     MaxEmptyClassOffset = Offset;
267 }
268 
269 bool
270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271                                                  CharUnits Offset) {
272   // We don't have to keep looking past the maximum offset that's known to
273   // contain an empty class.
274   if (!AnyEmptySubobjectsBeyondOffset(Offset))
275     return true;
276 
277   if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278     return false;
279 
280   // Traverse all non-virtual bases.
281   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282   for (const BaseSubobjectInfo *Base : Info->Bases) {
283     if (Base->IsVirtual)
284       continue;
285 
286     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
287 
288     if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289       return false;
290   }
291 
292   if (Info->PrimaryVirtualBaseInfo) {
293     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
294 
295     if (Info == PrimaryVirtualBaseInfo->Derived) {
296       if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297         return false;
298     }
299   }
300 
301   // Traverse all member variables.
302   unsigned FieldNo = 0;
303   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305     if (I->isBitField())
306       continue;
307 
308     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310       return false;
311   }
312 
313   return true;
314 }
315 
316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317                                                   CharUnits Offset,
318                                                   bool PlacingEmptyBase) {
319   if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320     // We know that the only empty subobjects that can conflict with empty
321     // subobject of non-empty bases, are empty bases that can be placed at
322     // offset zero. Because of this, we only need to keep track of empty base
323     // subobjects with offsets less than the size of the largest empty
324     // subobject for our class.
325     return;
326   }
327 
328   AddSubobjectAtOffset(Info->Class, Offset);
329 
330   // Traverse all non-virtual bases.
331   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332   for (const BaseSubobjectInfo *Base : Info->Bases) {
333     if (Base->IsVirtual)
334       continue;
335 
336     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337     UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
338   }
339 
340   if (Info->PrimaryVirtualBaseInfo) {
341     BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
342 
343     if (Info == PrimaryVirtualBaseInfo->Derived)
344       UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345                                 PlacingEmptyBase);
346   }
347 
348   // Traverse all member variables.
349   unsigned FieldNo = 0;
350   for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351        E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352     if (I->isBitField())
353       continue;
354 
355     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingEmptyBase);
357   }
358 }
359 
360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361                                              CharUnits Offset) {
362   // If we know this class doesn't have any empty subobjects we don't need to
363   // bother checking.
364   if (SizeOfLargestEmptySubobject.isZero())
365     return true;
366 
367   if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368     return false;
369 
370   // We are able to place the base at this offset. Make sure to update the
371   // empty base subobject map.
372   UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373   return true;
374 }
375 
376 bool
377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378                                                   const CXXRecordDecl *Class,
379                                                   CharUnits Offset) const {
380   // We don't have to keep looking past the maximum offset that's known to
381   // contain an empty class.
382   if (!AnyEmptySubobjectsBeyondOffset(Offset))
383     return true;
384 
385   if (!CanPlaceSubobjectAtOffset(RD, Offset))
386     return false;
387 
388   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
389 
390   // Traverse all non-virtual bases.
391   for (const CXXBaseSpecifier &Base : RD->bases()) {
392     if (Base.isVirtual())
393       continue;
394 
395     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
396 
397     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398     if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399       return false;
400   }
401 
402   if (RD == Class) {
403     // This is the most derived class, traverse virtual bases as well.
404     for (const CXXBaseSpecifier &Base : RD->vbases()) {
405       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
406 
407       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408       if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409         return false;
410     }
411   }
412 
413   // Traverse all member variables.
414   unsigned FieldNo = 0;
415   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416        I != E; ++I, ++FieldNo) {
417     if (I->isBitField())
418       continue;
419 
420     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
421 
422     if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423       return false;
424   }
425 
426   return true;
427 }
428 
429 bool
430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431                                                   CharUnits Offset) const {
432   // We don't have to keep looking past the maximum offset that's known to
433   // contain an empty class.
434   if (!AnyEmptySubobjectsBeyondOffset(Offset))
435     return true;
436 
437   QualType T = FD->getType();
438   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439     return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
440 
441   // If we have an array type we need to look at every element.
442   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443     QualType ElemTy = Context.getBaseElementType(AT);
444     const RecordType *RT = ElemTy->getAs<RecordType>();
445     if (!RT)
446       return true;
447 
448     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450 
451     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452     CharUnits ElementOffset = Offset;
453     for (uint64_t I = 0; I != NumElements; ++I) {
454       // We don't have to keep looking past the maximum offset that's known to
455       // contain an empty class.
456       if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457         return true;
458 
459       if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460         return false;
461 
462       ElementOffset += Layout.getSize();
463     }
464   }
465 
466   return true;
467 }
468 
469 bool
470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471                                          CharUnits Offset) {
472   if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473     return false;
474 
475   // We are able to place the member variable at this offset.
476   // Make sure to update the empty field subobject map.
477   UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>());
478   return true;
479 }
480 
481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
482     const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset,
483     bool PlacingOverlappingField) {
484   // We know that the only empty subobjects that can conflict with empty
485   // field subobjects are subobjects of empty bases and potentially-overlapping
486   // fields that can be placed at offset zero. Because of this, we only need to
487   // keep track of empty field subobjects with offsets less than the size of
488   // the largest empty subobject for our class.
489   //
490   // (Proof: we will only consider placing a subobject at offset zero or at
491   // >= the current dsize. The only cases where the earlier subobject can be
492   // placed beyond the end of dsize is if it's an empty base or a
493   // potentially-overlapping field.)
494   if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject)
495     return;
496 
497   AddSubobjectAtOffset(RD, Offset);
498 
499   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
500 
501   // Traverse all non-virtual bases.
502   for (const CXXBaseSpecifier &Base : RD->bases()) {
503     if (Base.isVirtual())
504       continue;
505 
506     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
507 
508     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
509     UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset,
510                                PlacingOverlappingField);
511   }
512 
513   if (RD == Class) {
514     // This is the most derived class, traverse virtual bases as well.
515     for (const CXXBaseSpecifier &Base : RD->vbases()) {
516       const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
517 
518       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
519       UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset,
520                                  PlacingOverlappingField);
521     }
522   }
523 
524   // Traverse all member variables.
525   unsigned FieldNo = 0;
526   for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
527        I != E; ++I, ++FieldNo) {
528     if (I->isBitField())
529       continue;
530 
531     CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
532 
533     UpdateEmptyFieldSubobjects(*I, FieldOffset, PlacingOverlappingField);
534   }
535 }
536 
537 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(
538     const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) {
539   QualType T = FD->getType();
540   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
541     UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField);
542     return;
543   }
544 
545   // If we have an array type we need to update every element.
546   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
547     QualType ElemTy = Context.getBaseElementType(AT);
548     const RecordType *RT = ElemTy->getAs<RecordType>();
549     if (!RT)
550       return;
551 
552     const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
553     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
554 
555     uint64_t NumElements = Context.getConstantArrayElementCount(AT);
556     CharUnits ElementOffset = Offset;
557 
558     for (uint64_t I = 0; I != NumElements; ++I) {
559       // We know that the only empty subobjects that can conflict with empty
560       // field subobjects are subobjects of empty bases that can be placed at
561       // offset zero. Because of this, we only need to keep track of empty field
562       // subobjects with offsets less than the size of the largest empty
563       // subobject for our class.
564       if (!PlacingOverlappingField &&
565           ElementOffset >= SizeOfLargestEmptySubobject)
566         return;
567 
568       UpdateEmptyFieldSubobjects(RD, RD, ElementOffset,
569                                  PlacingOverlappingField);
570       ElementOffset += Layout.getSize();
571     }
572   }
573 }
574 
575 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
576 
577 class ItaniumRecordLayoutBuilder {
578 protected:
579   // FIXME: Remove this and make the appropriate fields public.
580   friend class clang::ASTContext;
581 
582   const ASTContext &Context;
583 
584   EmptySubobjectMap *EmptySubobjects;
585 
586   /// Size - The current size of the record layout.
587   uint64_t Size;
588 
589   /// Alignment - The current alignment of the record layout.
590   CharUnits Alignment;
591 
592   /// PreferredAlignment - The preferred alignment of the record layout.
593   CharUnits PreferredAlignment;
594 
595   /// The alignment if attribute packed is not used.
596   CharUnits UnpackedAlignment;
597 
598   /// \brief The maximum of the alignments of top-level members.
599   CharUnits UnadjustedAlignment;
600 
601   SmallVector<uint64_t, 16> FieldOffsets;
602 
603   /// Whether the external AST source has provided a layout for this
604   /// record.
605   unsigned UseExternalLayout : 1;
606 
607   /// Whether we need to infer alignment, even when we have an
608   /// externally-provided layout.
609   unsigned InferAlignment : 1;
610 
611   /// Packed - Whether the record is packed or not.
612   unsigned Packed : 1;
613 
614   unsigned IsUnion : 1;
615 
616   unsigned IsMac68kAlign : 1;
617 
618   unsigned IsNaturalAlign : 1;
619 
620   unsigned IsMsStruct : 1;
621 
622   /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
623   /// this contains the number of bits in the last unit that can be used for
624   /// an adjacent bitfield if necessary.  The unit in question is usually
625   /// a byte, but larger units are used if IsMsStruct.
626   unsigned char UnfilledBitsInLastUnit;
627 
628   /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the
629   /// storage unit of the previous field if it was a bitfield.
630   unsigned char LastBitfieldStorageUnitSize;
631 
632   /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
633   /// #pragma pack.
634   CharUnits MaxFieldAlignment;
635 
636   /// DataSize - The data size of the record being laid out.
637   uint64_t DataSize;
638 
639   CharUnits NonVirtualSize;
640   CharUnits NonVirtualAlignment;
641   CharUnits PreferredNVAlignment;
642 
643   /// If we've laid out a field but not included its tail padding in Size yet,
644   /// this is the size up to the end of that field.
645   CharUnits PaddedFieldSize;
646 
647   /// PrimaryBase - the primary base class (if one exists) of the class
648   /// we're laying out.
649   const CXXRecordDecl *PrimaryBase;
650 
651   /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
652   /// out is virtual.
653   bool PrimaryBaseIsVirtual;
654 
655   /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
656   /// pointer, as opposed to inheriting one from a primary base class.
657   bool HasOwnVFPtr;
658 
659   /// the flag of field offset changing due to packed attribute.
660   bool HasPackedField;
661 
662   /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX.
663   /// When there are OverlappingEmptyFields existing in the aggregate, the
664   /// flag shows if the following first non-empty or empty-but-non-overlapping
665   /// field has been handled, if any.
666   bool HandledFirstNonOverlappingEmptyField;
667 
668   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
669 
670   /// Bases - base classes and their offsets in the record.
671   BaseOffsetsMapTy Bases;
672 
673   // VBases - virtual base classes and their offsets in the record.
674   ASTRecordLayout::VBaseOffsetsMapTy VBases;
675 
676   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
677   /// primary base classes for some other direct or indirect base class.
678   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
679 
680   /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
681   /// inheritance graph order. Used for determining the primary base class.
682   const CXXRecordDecl *FirstNearlyEmptyVBase;
683 
684   /// VisitedVirtualBases - A set of all the visited virtual bases, used to
685   /// avoid visiting virtual bases more than once.
686   llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
687 
688   /// Valid if UseExternalLayout is true.
689   ExternalLayout External;
690 
691   ItaniumRecordLayoutBuilder(const ASTContext &Context,
692                              EmptySubobjectMap *EmptySubobjects)
693       : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
694         Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()),
695         UnpackedAlignment(CharUnits::One()),
696         UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false),
697         InferAlignment(false), Packed(false), IsUnion(false),
698         IsMac68kAlign(false),
699         IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()),
700         IsMsStruct(false), UnfilledBitsInLastUnit(0),
701         LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()),
702         DataSize(0), NonVirtualSize(CharUnits::Zero()),
703         NonVirtualAlignment(CharUnits::One()),
704         PreferredNVAlignment(CharUnits::One()),
705         PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr),
706         PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false),
707         HandledFirstNonOverlappingEmptyField(false),
708         FirstNearlyEmptyVBase(nullptr) {}
709 
710   void Layout(const RecordDecl *D);
711   void Layout(const CXXRecordDecl *D);
712   void Layout(const ObjCInterfaceDecl *D);
713 
714   void LayoutFields(const RecordDecl *D);
715   void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
716   void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize,
717                           bool FieldPacked, const FieldDecl *D);
718   void LayoutBitField(const FieldDecl *D);
719 
720   TargetCXXABI getCXXABI() const {
721     return Context.getTargetInfo().getCXXABI();
722   }
723 
724   /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
725   llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
726 
727   typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
728     BaseSubobjectInfoMapTy;
729 
730   /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
731   /// of the class we're laying out to their base subobject info.
732   BaseSubobjectInfoMapTy VirtualBaseInfo;
733 
734   /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
735   /// class we're laying out to their base subobject info.
736   BaseSubobjectInfoMapTy NonVirtualBaseInfo;
737 
738   /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
739   /// bases of the given class.
740   void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
741 
742   /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
743   /// single class and all of its base classes.
744   BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
745                                               bool IsVirtual,
746                                               BaseSubobjectInfo *Derived);
747 
748   /// DeterminePrimaryBase - Determine the primary base of the given class.
749   void DeterminePrimaryBase(const CXXRecordDecl *RD);
750 
751   void SelectPrimaryVBase(const CXXRecordDecl *RD);
752 
753   void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
754 
755   /// LayoutNonVirtualBases - Determines the primary base class (if any) and
756   /// lays it out. Will then proceed to lay out all non-virtual base clasess.
757   void LayoutNonVirtualBases(const CXXRecordDecl *RD);
758 
759   /// LayoutNonVirtualBase - Lays out a single non-virtual base.
760   void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
761 
762   void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
763                                     CharUnits Offset);
764 
765   /// LayoutVirtualBases - Lays out all the virtual bases.
766   void LayoutVirtualBases(const CXXRecordDecl *RD,
767                           const CXXRecordDecl *MostDerivedClass);
768 
769   /// LayoutVirtualBase - Lays out a single virtual base.
770   void LayoutVirtualBase(const BaseSubobjectInfo *Base);
771 
772   /// LayoutBase - Will lay out a base and return the offset where it was
773   /// placed, in chars.
774   CharUnits LayoutBase(const BaseSubobjectInfo *Base);
775 
776   /// InitializeLayout - Initialize record layout for the given record decl.
777   void InitializeLayout(const Decl *D);
778 
779   /// FinishLayout - Finalize record layout. Adjust record size based on the
780   /// alignment.
781   void FinishLayout(const NamedDecl *D);
782 
783   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
784                        CharUnits PreferredAlignment);
785   void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
786     UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment);
787   }
788   void UpdateAlignment(CharUnits NewAlignment) {
789     UpdateAlignment(NewAlignment, NewAlignment, NewAlignment);
790   }
791 
792   /// Retrieve the externally-supplied field offset for the given
793   /// field.
794   ///
795   /// \param Field The field whose offset is being queried.
796   /// \param ComputedOffset The offset that we've computed for this field.
797   uint64_t updateExternalFieldOffset(const FieldDecl *Field,
798                                      uint64_t ComputedOffset);
799 
800   void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
801                           uint64_t UnpackedOffset, unsigned UnpackedAlign,
802                           bool isPacked, const FieldDecl *D);
803 
804   DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
805 
806   CharUnits getSize() const {
807     assert(Size % Context.getCharWidth() == 0);
808     return Context.toCharUnitsFromBits(Size);
809   }
810   uint64_t getSizeInBits() const { return Size; }
811 
812   void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
813   void setSize(uint64_t NewSize) { Size = NewSize; }
814 
815   CharUnits getAligment() const { return Alignment; }
816 
817   CharUnits getDataSize() const {
818     assert(DataSize % Context.getCharWidth() == 0);
819     return Context.toCharUnitsFromBits(DataSize);
820   }
821   uint64_t getDataSizeInBits() const { return DataSize; }
822 
823   void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
824   void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
825 
826   ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
827   void operator=(const ItaniumRecordLayoutBuilder &) = delete;
828 };
829 } // end anonymous namespace
830 
831 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
832   for (const auto &I : RD->bases()) {
833     assert(!I.getType()->isDependentType() &&
834            "Cannot layout class with dependent bases.");
835 
836     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
837 
838     // Check if this is a nearly empty virtual base.
839     if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
840       // If it's not an indirect primary base, then we've found our primary
841       // base.
842       if (!IndirectPrimaryBases.count(Base)) {
843         PrimaryBase = Base;
844         PrimaryBaseIsVirtual = true;
845         return;
846       }
847 
848       // Is this the first nearly empty virtual base?
849       if (!FirstNearlyEmptyVBase)
850         FirstNearlyEmptyVBase = Base;
851     }
852 
853     SelectPrimaryVBase(Base);
854     if (PrimaryBase)
855       return;
856   }
857 }
858 
859 /// DeterminePrimaryBase - Determine the primary base of the given class.
860 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
861   // If the class isn't dynamic, it won't have a primary base.
862   if (!RD->isDynamicClass())
863     return;
864 
865   // Compute all the primary virtual bases for all of our direct and
866   // indirect bases, and record all their primary virtual base classes.
867   RD->getIndirectPrimaryBases(IndirectPrimaryBases);
868 
869   // If the record has a dynamic base class, attempt to choose a primary base
870   // class. It is the first (in direct base class order) non-virtual dynamic
871   // base class, if one exists.
872   for (const auto &I : RD->bases()) {
873     // Ignore virtual bases.
874     if (I.isVirtual())
875       continue;
876 
877     const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
878 
879     if (Base->isDynamicClass()) {
880       // We found it.
881       PrimaryBase = Base;
882       PrimaryBaseIsVirtual = false;
883       return;
884     }
885   }
886 
887   // Under the Itanium ABI, if there is no non-virtual primary base class,
888   // try to compute the primary virtual base.  The primary virtual base is
889   // the first nearly empty virtual base that is not an indirect primary
890   // virtual base class, if one exists.
891   if (RD->getNumVBases() != 0) {
892     SelectPrimaryVBase(RD);
893     if (PrimaryBase)
894       return;
895   }
896 
897   // Otherwise, it is the first indirect primary base class, if one exists.
898   if (FirstNearlyEmptyVBase) {
899     PrimaryBase = FirstNearlyEmptyVBase;
900     PrimaryBaseIsVirtual = true;
901     return;
902   }
903 
904   assert(!PrimaryBase && "Should not get here with a primary base!");
905 }
906 
907 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
908     const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
909   BaseSubobjectInfo *Info;
910 
911   if (IsVirtual) {
912     // Check if we already have info about this virtual base.
913     BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
914     if (InfoSlot) {
915       assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
916       return InfoSlot;
917     }
918 
919     // We don't, create it.
920     InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
921     Info = InfoSlot;
922   } else {
923     Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
924   }
925 
926   Info->Class = RD;
927   Info->IsVirtual = IsVirtual;
928   Info->Derived = nullptr;
929   Info->PrimaryVirtualBaseInfo = nullptr;
930 
931   const CXXRecordDecl *PrimaryVirtualBase = nullptr;
932   BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
933 
934   // Check if this base has a primary virtual base.
935   if (RD->getNumVBases()) {
936     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
937     if (Layout.isPrimaryBaseVirtual()) {
938       // This base does have a primary virtual base.
939       PrimaryVirtualBase = Layout.getPrimaryBase();
940       assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
941 
942       // Now check if we have base subobject info about this primary base.
943       PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
944 
945       if (PrimaryVirtualBaseInfo) {
946         if (PrimaryVirtualBaseInfo->Derived) {
947           // We did have info about this primary base, and it turns out that it
948           // has already been claimed as a primary virtual base for another
949           // base.
950           PrimaryVirtualBase = nullptr;
951         } else {
952           // We can claim this base as our primary base.
953           Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
954           PrimaryVirtualBaseInfo->Derived = Info;
955         }
956       }
957     }
958   }
959 
960   // Now go through all direct bases.
961   for (const auto &I : RD->bases()) {
962     bool IsVirtual = I.isVirtual();
963 
964     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
965 
966     Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
967   }
968 
969   if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
970     // Traversing the bases must have created the base info for our primary
971     // virtual base.
972     PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
973     assert(PrimaryVirtualBaseInfo &&
974            "Did not create a primary virtual base!");
975 
976     // Claim the primary virtual base as our primary virtual base.
977     Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
978     PrimaryVirtualBaseInfo->Derived = Info;
979   }
980 
981   return Info;
982 }
983 
984 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
985     const CXXRecordDecl *RD) {
986   for (const auto &I : RD->bases()) {
987     bool IsVirtual = I.isVirtual();
988 
989     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
990 
991     // Compute the base subobject info for this base.
992     BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
993                                                        nullptr);
994 
995     if (IsVirtual) {
996       // ComputeBaseInfo has already added this base for us.
997       assert(VirtualBaseInfo.count(BaseDecl) &&
998              "Did not add virtual base!");
999     } else {
1000       // Add the base info to the map of non-virtual bases.
1001       assert(!NonVirtualBaseInfo.count(BaseDecl) &&
1002              "Non-virtual base already exists!");
1003       NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
1004     }
1005   }
1006 }
1007 
1008 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
1009     CharUnits UnpackedBaseAlign) {
1010   CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign;
1011 
1012   // The maximum field alignment overrides base align.
1013   if (!MaxFieldAlignment.isZero()) {
1014     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1015     UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1016   }
1017 
1018   // Round up the current record size to pointer alignment.
1019   setSize(getSize().alignTo(BaseAlign));
1020 
1021   // Update the alignment.
1022   UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign);
1023 }
1024 
1025 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
1026     const CXXRecordDecl *RD) {
1027   // Then, determine the primary base class.
1028   DeterminePrimaryBase(RD);
1029 
1030   // Compute base subobject info.
1031   ComputeBaseSubobjectInfo(RD);
1032 
1033   // If we have a primary base class, lay it out.
1034   if (PrimaryBase) {
1035     if (PrimaryBaseIsVirtual) {
1036       // If the primary virtual base was a primary virtual base of some other
1037       // base class we'll have to steal it.
1038       BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1039       PrimaryBaseInfo->Derived = nullptr;
1040 
1041       // We have a virtual primary base, insert it as an indirect primary base.
1042       IndirectPrimaryBases.insert(PrimaryBase);
1043 
1044       assert(!VisitedVirtualBases.count(PrimaryBase) &&
1045              "vbase already visited!");
1046       VisitedVirtualBases.insert(PrimaryBase);
1047 
1048       LayoutVirtualBase(PrimaryBaseInfo);
1049     } else {
1050       BaseSubobjectInfo *PrimaryBaseInfo =
1051         NonVirtualBaseInfo.lookup(PrimaryBase);
1052       assert(PrimaryBaseInfo &&
1053              "Did not find base info for non-virtual primary base!");
1054 
1055       LayoutNonVirtualBase(PrimaryBaseInfo);
1056     }
1057 
1058   // If this class needs a vtable/vf-table and didn't get one from a
1059   // primary base, add it in now.
1060   } else if (RD->isDynamicClass()) {
1061     assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1062     CharUnits PtrWidth =
1063       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1064     CharUnits PtrAlign =
1065       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1066     EnsureVTablePointerAlignment(PtrAlign);
1067     HasOwnVFPtr = true;
1068 
1069     assert(!IsUnion && "Unions cannot be dynamic classes.");
1070     HandledFirstNonOverlappingEmptyField = true;
1071 
1072     setSize(getSize() + PtrWidth);
1073     setDataSize(getSize());
1074   }
1075 
1076   // Now lay out the non-virtual bases.
1077   for (const auto &I : RD->bases()) {
1078 
1079     // Ignore virtual bases.
1080     if (I.isVirtual())
1081       continue;
1082 
1083     const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1084 
1085     // Skip the primary base, because we've already laid it out.  The
1086     // !PrimaryBaseIsVirtual check is required because we might have a
1087     // non-virtual base of the same type as a primary virtual base.
1088     if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1089       continue;
1090 
1091     // Lay out the base.
1092     BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1093     assert(BaseInfo && "Did not find base info for non-virtual base!");
1094 
1095     LayoutNonVirtualBase(BaseInfo);
1096   }
1097 }
1098 
1099 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1100     const BaseSubobjectInfo *Base) {
1101   // Layout the base.
1102   CharUnits Offset = LayoutBase(Base);
1103 
1104   // Add its base class offset.
1105   assert(!Bases.count(Base->Class) && "base offset already exists!");
1106   Bases.insert(std::make_pair(Base->Class, Offset));
1107 
1108   AddPrimaryVirtualBaseOffsets(Base, Offset);
1109 }
1110 
1111 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1112     const BaseSubobjectInfo *Info, CharUnits Offset) {
1113   // This base isn't interesting, it has no virtual bases.
1114   if (!Info->Class->getNumVBases())
1115     return;
1116 
1117   // First, check if we have a virtual primary base to add offsets for.
1118   if (Info->PrimaryVirtualBaseInfo) {
1119     assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1120            "Primary virtual base is not virtual!");
1121     if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1122       // Add the offset.
1123       assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1124              "primary vbase offset already exists!");
1125       VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1126                                    ASTRecordLayout::VBaseInfo(Offset, false)));
1127 
1128       // Traverse the primary virtual base.
1129       AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1130     }
1131   }
1132 
1133   // Now go through all direct non-virtual bases.
1134   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1135   for (const BaseSubobjectInfo *Base : Info->Bases) {
1136     if (Base->IsVirtual)
1137       continue;
1138 
1139     CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1140     AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1141   }
1142 }
1143 
1144 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1145     const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1146   const CXXRecordDecl *PrimaryBase;
1147   bool PrimaryBaseIsVirtual;
1148 
1149   if (MostDerivedClass == RD) {
1150     PrimaryBase = this->PrimaryBase;
1151     PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1152   } else {
1153     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1154     PrimaryBase = Layout.getPrimaryBase();
1155     PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1156   }
1157 
1158   for (const CXXBaseSpecifier &Base : RD->bases()) {
1159     assert(!Base.getType()->isDependentType() &&
1160            "Cannot layout class with dependent bases.");
1161 
1162     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1163 
1164     if (Base.isVirtual()) {
1165       if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1166         bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1167 
1168         // Only lay out the virtual base if it's not an indirect primary base.
1169         if (!IndirectPrimaryBase) {
1170           // Only visit virtual bases once.
1171           if (!VisitedVirtualBases.insert(BaseDecl).second)
1172             continue;
1173 
1174           const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1175           assert(BaseInfo && "Did not find virtual base info!");
1176           LayoutVirtualBase(BaseInfo);
1177         }
1178       }
1179     }
1180 
1181     if (!BaseDecl->getNumVBases()) {
1182       // This base isn't interesting since it doesn't have any virtual bases.
1183       continue;
1184     }
1185 
1186     LayoutVirtualBases(BaseDecl, MostDerivedClass);
1187   }
1188 }
1189 
1190 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1191     const BaseSubobjectInfo *Base) {
1192   assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1193 
1194   // Layout the base.
1195   CharUnits Offset = LayoutBase(Base);
1196 
1197   // Add its base class offset.
1198   assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1199   VBases.insert(std::make_pair(Base->Class,
1200                        ASTRecordLayout::VBaseInfo(Offset, false)));
1201 
1202   AddPrimaryVirtualBaseOffsets(Base, Offset);
1203 }
1204 
1205 CharUnits
1206 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1207   assert(!IsUnion && "Unions cannot have base classes.");
1208 
1209   const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1210   CharUnits Offset;
1211 
1212   // Query the external layout to see if it provides an offset.
1213   bool HasExternalLayout = false;
1214   if (UseExternalLayout) {
1215     if (Base->IsVirtual)
1216       HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1217     else
1218       HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1219   }
1220 
1221   auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) {
1222     // Clang <= 6 incorrectly applied the 'packed' attribute to base classes.
1223     // Per GCC's documentation, it only applies to non-static data members.
1224     return (Packed && ((Context.getLangOpts().getClangABICompat() <=
1225                         LangOptions::ClangABI::Ver6) ||
1226                        Context.getTargetInfo().getTriple().isPS4() ||
1227                        Context.getTargetInfo().getTriple().isOSAIX()))
1228                ? CharUnits::One()
1229                : UnpackedAlign;
1230   };
1231 
1232   CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1233   CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment();
1234   CharUnits BaseAlign =
1235       getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign);
1236   CharUnits PreferredBaseAlign =
1237       getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign);
1238 
1239   const bool DefaultsToAIXPowerAlignment =
1240       Context.getTargetInfo().defaultsToAIXPowerAlignment();
1241   if (DefaultsToAIXPowerAlignment) {
1242     // AIX `power` alignment does not apply the preferred alignment for
1243     // non-union classes if the source of the alignment (the current base in
1244     // this context) follows introduction of the first subobject with
1245     // exclusively allocated space or zero-extent array.
1246     if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) {
1247       // By handling a base class that is not empty, we're handling the
1248       // "first (inherited) member".
1249       HandledFirstNonOverlappingEmptyField = true;
1250     } else if (!IsNaturalAlign) {
1251       UnpackedPreferredBaseAlign = UnpackedBaseAlign;
1252       PreferredBaseAlign = BaseAlign;
1253     }
1254   }
1255 
1256   CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment
1257                                   ? UnpackedBaseAlign
1258                                   : UnpackedPreferredBaseAlign;
1259   // If we have an empty base class, try to place it at offset 0.
1260   if (Base->Class->isEmpty() &&
1261       (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1262       EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1263     setSize(std::max(getSize(), Layout.getSize()));
1264     UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1265 
1266     return CharUnits::Zero();
1267   }
1268 
1269   // The maximum field alignment overrides the base align/(AIX-only) preferred
1270   // base align.
1271   if (!MaxFieldAlignment.isZero()) {
1272     BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1273     PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment);
1274     UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment);
1275   }
1276 
1277   CharUnits AlignTo =
1278       !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign;
1279   if (!HasExternalLayout) {
1280     // Round up the current record size to the base's alignment boundary.
1281     Offset = getDataSize().alignTo(AlignTo);
1282 
1283     // Try to place the base.
1284     while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1285       Offset += AlignTo;
1286   } else {
1287     bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1288     (void)Allowed;
1289     assert(Allowed && "Base subobject externally placed at overlapping offset");
1290 
1291     if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) {
1292       // The externally-supplied base offset is before the base offset we
1293       // computed. Assume that the structure is packed.
1294       Alignment = CharUnits::One();
1295       InferAlignment = false;
1296     }
1297   }
1298 
1299   if (!Base->Class->isEmpty()) {
1300     // Update the data size.
1301     setDataSize(Offset + Layout.getNonVirtualSize());
1302 
1303     setSize(std::max(getSize(), getDataSize()));
1304   } else
1305     setSize(std::max(getSize(), Offset + Layout.getSize()));
1306 
1307   // Remember max struct/class alignment.
1308   UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign);
1309 
1310   return Offset;
1311 }
1312 
1313 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1314   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1315     IsUnion = RD->isUnion();
1316     IsMsStruct = RD->isMsStruct(Context);
1317   }
1318 
1319   Packed = D->hasAttr<PackedAttr>();
1320 
1321   // Honor the default struct packing maximum alignment flag.
1322   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1323     MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1324   }
1325 
1326   // mac68k alignment supersedes maximum field alignment and attribute aligned,
1327   // and forces all structures to have 2-byte alignment. The IBM docs on it
1328   // allude to additional (more complicated) semantics, especially with regard
1329   // to bit-fields, but gcc appears not to follow that.
1330   if (D->hasAttr<AlignMac68kAttr>()) {
1331     assert(
1332         !D->hasAttr<AlignNaturalAttr>() &&
1333         "Having both mac68k and natural alignment on a decl is not allowed.");
1334     IsMac68kAlign = true;
1335     MaxFieldAlignment = CharUnits::fromQuantity(2);
1336     Alignment = CharUnits::fromQuantity(2);
1337     PreferredAlignment = CharUnits::fromQuantity(2);
1338   } else {
1339     if (D->hasAttr<AlignNaturalAttr>())
1340       IsNaturalAlign = true;
1341 
1342     if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1343       MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1344 
1345     if (unsigned MaxAlign = D->getMaxAlignment())
1346       UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1347   }
1348 
1349   HandledFirstNonOverlappingEmptyField =
1350       !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign;
1351 
1352   // If there is an external AST source, ask it for the various offsets.
1353   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1354     if (ExternalASTSource *Source = Context.getExternalSource()) {
1355       UseExternalLayout = Source->layoutRecordType(
1356           RD, External.Size, External.Align, External.FieldOffsets,
1357           External.BaseOffsets, External.VirtualBaseOffsets);
1358 
1359       // Update based on external alignment.
1360       if (UseExternalLayout) {
1361         if (External.Align > 0) {
1362           Alignment = Context.toCharUnitsFromBits(External.Align);
1363           PreferredAlignment = Context.toCharUnitsFromBits(External.Align);
1364         } else {
1365           // The external source didn't have alignment information; infer it.
1366           InferAlignment = true;
1367         }
1368       }
1369     }
1370 }
1371 
1372 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1373   InitializeLayout(D);
1374   LayoutFields(D);
1375 
1376   // Finally, round the size of the total struct up to the alignment of the
1377   // struct itself.
1378   FinishLayout(D);
1379 }
1380 
1381 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1382   InitializeLayout(RD);
1383 
1384   // Lay out the vtable and the non-virtual bases.
1385   LayoutNonVirtualBases(RD);
1386 
1387   LayoutFields(RD);
1388 
1389   NonVirtualSize = Context.toCharUnitsFromBits(
1390       llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1391   NonVirtualAlignment = Alignment;
1392   PreferredNVAlignment = PreferredAlignment;
1393 
1394   // Lay out the virtual bases and add the primary virtual base offsets.
1395   LayoutVirtualBases(RD, RD);
1396 
1397   // Finally, round the size of the total struct up to the alignment
1398   // of the struct itself.
1399   FinishLayout(RD);
1400 
1401 #ifndef NDEBUG
1402   // Check that we have base offsets for all bases.
1403   for (const CXXBaseSpecifier &Base : RD->bases()) {
1404     if (Base.isVirtual())
1405       continue;
1406 
1407     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1408 
1409     assert(Bases.count(BaseDecl) && "Did not find base offset!");
1410   }
1411 
1412   // And all virtual bases.
1413   for (const CXXBaseSpecifier &Base : RD->vbases()) {
1414     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1415 
1416     assert(VBases.count(BaseDecl) && "Did not find base offset!");
1417   }
1418 #endif
1419 }
1420 
1421 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1422   if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1423     const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1424 
1425     UpdateAlignment(SL.getAlignment());
1426 
1427     // We start laying out ivars not at the end of the superclass
1428     // structure, but at the next byte following the last field.
1429     setDataSize(SL.getDataSize());
1430     setSize(getDataSize());
1431   }
1432 
1433   InitializeLayout(D);
1434   // Layout each ivar sequentially.
1435   for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1436        IVD = IVD->getNextIvar())
1437     LayoutField(IVD, false);
1438 
1439   // Finally, round the size of the total struct up to the alignment of the
1440   // struct itself.
1441   FinishLayout(D);
1442 }
1443 
1444 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1445   // Layout each field, for now, just sequentially, respecting alignment.  In
1446   // the future, this will need to be tweakable by targets.
1447   bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1448   bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1449   for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1450     auto Next(I);
1451     ++Next;
1452     LayoutField(*I,
1453                 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1454   }
1455 }
1456 
1457 // Rounds the specified size to have it a multiple of the char size.
1458 static uint64_t
1459 roundUpSizeToCharAlignment(uint64_t Size,
1460                            const ASTContext &Context) {
1461   uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1462   return llvm::alignTo(Size, CharAlignment);
1463 }
1464 
1465 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1466                                                     uint64_t StorageUnitSize,
1467                                                     bool FieldPacked,
1468                                                     const FieldDecl *D) {
1469   assert(Context.getLangOpts().CPlusPlus &&
1470          "Can only have wide bit-fields in C++!");
1471 
1472   // Itanium C++ ABI 2.4:
1473   //   If sizeof(T)*8 < n, let T' be the largest integral POD type with
1474   //   sizeof(T')*8 <= n.
1475 
1476   QualType IntegralPODTypes[] = {
1477     Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1478     Context.UnsignedLongTy, Context.UnsignedLongLongTy
1479   };
1480 
1481   QualType Type;
1482   for (const QualType &QT : IntegralPODTypes) {
1483     uint64_t Size = Context.getTypeSize(QT);
1484 
1485     if (Size > FieldSize)
1486       break;
1487 
1488     Type = QT;
1489   }
1490   assert(!Type.isNull() && "Did not find a type!");
1491 
1492   CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1493 
1494   // We're not going to use any of the unfilled bits in the last byte.
1495   UnfilledBitsInLastUnit = 0;
1496   LastBitfieldStorageUnitSize = 0;
1497 
1498   uint64_t FieldOffset;
1499   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1500 
1501   if (IsUnion) {
1502     uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1503                                                            Context);
1504     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1505     FieldOffset = 0;
1506   } else {
1507     // The bitfield is allocated starting at the next offset aligned
1508     // appropriately for T', with length n bits.
1509     FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1510 
1511     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1512 
1513     setDataSize(
1514         llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1515     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1516   }
1517 
1518   // Place this field at the current location.
1519   FieldOffsets.push_back(FieldOffset);
1520 
1521   CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1522                     Context.toBits(TypeAlign), FieldPacked, D);
1523 
1524   // Update the size.
1525   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1526 
1527   // Remember max struct/class alignment.
1528   UpdateAlignment(TypeAlign);
1529 }
1530 
1531 static bool isAIXLayout(const ASTContext &Context) {
1532   return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX;
1533 }
1534 
1535 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1536   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1537   uint64_t FieldSize = D->getBitWidthValue(Context);
1538   TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1539   uint64_t StorageUnitSize = FieldInfo.Width;
1540   unsigned FieldAlign = FieldInfo.Align;
1541   bool AlignIsRequired = FieldInfo.isAlignRequired();
1542 
1543   // UnfilledBitsInLastUnit is the difference between the end of the
1544   // last allocated bitfield (i.e. the first bit offset available for
1545   // bitfields) and the end of the current data size in bits (i.e. the
1546   // first bit offset available for non-bitfields).  The current data
1547   // size in bits is always a multiple of the char size; additionally,
1548   // for ms_struct records it's also a multiple of the
1549   // LastBitfieldStorageUnitSize (if set).
1550 
1551   // The struct-layout algorithm is dictated by the platform ABI,
1552   // which in principle could use almost any rules it likes.  In
1553   // practice, UNIXy targets tend to inherit the algorithm described
1554   // in the System V generic ABI.  The basic bitfield layout rule in
1555   // System V is to place bitfields at the next available bit offset
1556   // where the entire bitfield would fit in an aligned storage unit of
1557   // the declared type; it's okay if an earlier or later non-bitfield
1558   // is allocated in the same storage unit.  However, some targets
1559   // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1560   // require this storage unit to be aligned, and therefore always put
1561   // the bitfield at the next available bit offset.
1562 
1563   // ms_struct basically requests a complete replacement of the
1564   // platform ABI's struct-layout algorithm, with the high-level goal
1565   // of duplicating MSVC's layout.  For non-bitfields, this follows
1566   // the standard algorithm.  The basic bitfield layout rule is to
1567   // allocate an entire unit of the bitfield's declared type
1568   // (e.g. 'unsigned long'), then parcel it up among successive
1569   // bitfields whose declared types have the same size, making a new
1570   // unit as soon as the last can no longer store the whole value.
1571   // Since it completely replaces the platform ABI's algorithm,
1572   // settings like !useBitFieldTypeAlignment() do not apply.
1573 
1574   // A zero-width bitfield forces the use of a new storage unit for
1575   // later bitfields.  In general, this occurs by rounding up the
1576   // current size of the struct as if the algorithm were about to
1577   // place a non-bitfield of the field's formal type.  Usually this
1578   // does not change the alignment of the struct itself, but it does
1579   // on some targets (those that useZeroLengthBitfieldAlignment(),
1580   // e.g. ARM).  In ms_struct layout, zero-width bitfields are
1581   // ignored unless they follow a non-zero-width bitfield.
1582 
1583   // A field alignment restriction (e.g. from #pragma pack) or
1584   // specification (e.g. from __attribute__((aligned))) changes the
1585   // formal alignment of the field.  For System V, this alters the
1586   // required alignment of the notional storage unit that must contain
1587   // the bitfield.  For ms_struct, this only affects the placement of
1588   // new storage units.  In both cases, the effect of #pragma pack is
1589   // ignored on zero-width bitfields.
1590 
1591   // On System V, a packed field (e.g. from #pragma pack or
1592   // __attribute__((packed))) always uses the next available bit
1593   // offset.
1594 
1595   // In an ms_struct struct, the alignment of a fundamental type is
1596   // always equal to its size.  This is necessary in order to mimic
1597   // the i386 alignment rules on targets which might not fully align
1598   // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1599 
1600   // First, some simple bookkeeping to perform for ms_struct structs.
1601   if (IsMsStruct) {
1602     // The field alignment for integer types is always the size.
1603     FieldAlign = StorageUnitSize;
1604 
1605     // If the previous field was not a bitfield, or was a bitfield
1606     // with a different storage unit size, or if this field doesn't fit into
1607     // the current storage unit, we're done with that storage unit.
1608     if (LastBitfieldStorageUnitSize != StorageUnitSize ||
1609         UnfilledBitsInLastUnit < FieldSize) {
1610       // Also, ignore zero-length bitfields after non-bitfields.
1611       if (!LastBitfieldStorageUnitSize && !FieldSize)
1612         FieldAlign = 1;
1613 
1614       UnfilledBitsInLastUnit = 0;
1615       LastBitfieldStorageUnitSize = 0;
1616     }
1617   }
1618 
1619   if (isAIXLayout(Context)) {
1620     if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) {
1621       // On AIX, [bool, char, short] bitfields have the same alignment
1622       // as [unsigned].
1623       StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy);
1624     } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) &&
1625                Context.getTargetInfo().getTriple().isArch32Bit() &&
1626                FieldSize <= 32) {
1627       // Under 32-bit compile mode, the bitcontainer is 32 bits if a single
1628       // long long bitfield has length no greater than 32 bits.
1629       StorageUnitSize = 32;
1630 
1631       if (!AlignIsRequired)
1632         FieldAlign = 32;
1633     }
1634 
1635     if (FieldAlign < StorageUnitSize) {
1636       // The bitfield alignment should always be greater than or equal to
1637       // bitcontainer size.
1638       FieldAlign = StorageUnitSize;
1639     }
1640   }
1641 
1642   // If the field is wider than its declared type, it follows
1643   // different rules in all cases, except on AIX.
1644   // On AIX, wide bitfield follows the same rules as normal bitfield.
1645   if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) {
1646     LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D);
1647     return;
1648   }
1649 
1650   // Compute the next available bit offset.
1651   uint64_t FieldOffset =
1652     IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1653 
1654   // Handle targets that don't honor bitfield type alignment.
1655   if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1656     // Some such targets do honor it on zero-width bitfields.
1657     if (FieldSize == 0 &&
1658         Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1659       // Some targets don't honor leading zero-width bitfield.
1660       if (!IsUnion && FieldOffset == 0 &&
1661           !Context.getTargetInfo().useLeadingZeroLengthBitfield())
1662         FieldAlign = 1;
1663       else {
1664         // The alignment to round up to is the max of the field's natural
1665         // alignment and a target-specific fixed value (sometimes zero).
1666         unsigned ZeroLengthBitfieldBoundary =
1667             Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1668         FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1669       }
1670     // If that doesn't apply, just ignore the field alignment.
1671     } else {
1672       FieldAlign = 1;
1673     }
1674   }
1675 
1676   // Remember the alignment we would have used if the field were not packed.
1677   unsigned UnpackedFieldAlign = FieldAlign;
1678 
1679   // Ignore the field alignment if the field is packed unless it has zero-size.
1680   if (!IsMsStruct && FieldPacked && FieldSize != 0)
1681     FieldAlign = 1;
1682 
1683   // But, if there's an 'aligned' attribute on the field, honor that.
1684   unsigned ExplicitFieldAlign = D->getMaxAlignment();
1685   if (ExplicitFieldAlign) {
1686     FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1687     UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1688   }
1689 
1690   // But, if there's a #pragma pack in play, that takes precedent over
1691   // even the 'aligned' attribute, for non-zero-width bitfields.
1692   unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1693   if (!MaxFieldAlignment.isZero() && FieldSize) {
1694     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1695     if (FieldPacked)
1696       FieldAlign = UnpackedFieldAlign;
1697     else
1698       FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1699   }
1700 
1701   // But, ms_struct just ignores all of that in unions, even explicit
1702   // alignment attributes.
1703   if (IsMsStruct && IsUnion) {
1704     FieldAlign = UnpackedFieldAlign = 1;
1705   }
1706 
1707   // For purposes of diagnostics, we're going to simultaneously
1708   // compute the field offsets that we would have used if we weren't
1709   // adding any alignment padding or if the field weren't packed.
1710   uint64_t UnpaddedFieldOffset = FieldOffset;
1711   uint64_t UnpackedFieldOffset = FieldOffset;
1712 
1713   // Check if we need to add padding to fit the bitfield within an
1714   // allocation unit with the right size and alignment.  The rules are
1715   // somewhat different here for ms_struct structs.
1716   if (IsMsStruct) {
1717     // If it's not a zero-width bitfield, and we can fit the bitfield
1718     // into the active storage unit (and we haven't already decided to
1719     // start a new storage unit), just do so, regardless of any other
1720     // other consideration.  Otherwise, round up to the right alignment.
1721     if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1722       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1723       UnpackedFieldOffset =
1724           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1725       UnfilledBitsInLastUnit = 0;
1726     }
1727 
1728   } else {
1729     // #pragma pack, with any value, suppresses the insertion of padding.
1730     bool AllowPadding = MaxFieldAlignment.isZero();
1731 
1732     // Compute the real offset.
1733     if (FieldSize == 0 ||
1734         (AllowPadding &&
1735          (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) {
1736       FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1737     } else if (ExplicitFieldAlign &&
1738                (MaxFieldAlignmentInBits == 0 ||
1739                 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1740                Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1741       // TODO: figure it out what needs to be done on targets that don't honor
1742       // bit-field type alignment like ARM APCS ABI.
1743       FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1744     }
1745 
1746     // Repeat the computation for diagnostic purposes.
1747     if (FieldSize == 0 ||
1748         (AllowPadding &&
1749          (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize >
1750              StorageUnitSize))
1751       UnpackedFieldOffset =
1752           llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1753     else if (ExplicitFieldAlign &&
1754              (MaxFieldAlignmentInBits == 0 ||
1755               ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1756              Context.getTargetInfo().useExplicitBitFieldAlignment())
1757       UnpackedFieldOffset =
1758           llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1759   }
1760 
1761   // If we're using external layout, give the external layout a chance
1762   // to override this information.
1763   if (UseExternalLayout)
1764     FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1765 
1766   // Okay, place the bitfield at the calculated offset.
1767   FieldOffsets.push_back(FieldOffset);
1768 
1769   // Bookkeeping:
1770 
1771   // Anonymous members don't affect the overall record alignment,
1772   // except on targets where they do.
1773   if (!IsMsStruct &&
1774       !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1775       !D->getIdentifier())
1776     FieldAlign = UnpackedFieldAlign = 1;
1777 
1778   // On AIX, zero-width bitfields pad out to the natural alignment boundary,
1779   // but do not increase the alignment greater than the MaxFieldAlignment, or 1
1780   // if packed.
1781   if (isAIXLayout(Context) && !FieldSize) {
1782     if (FieldPacked)
1783       FieldAlign = 1;
1784     if (!MaxFieldAlignment.isZero()) {
1785       UnpackedFieldAlign =
1786           std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1787       FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1788     }
1789   }
1790 
1791   // Diagnose differences in layout due to padding or packing.
1792   if (!UseExternalLayout)
1793     CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1794                       UnpackedFieldAlign, FieldPacked, D);
1795 
1796   // Update DataSize to include the last byte containing (part of) the bitfield.
1797 
1798   // For unions, this is just a max operation, as usual.
1799   if (IsUnion) {
1800     // For ms_struct, allocate the entire storage unit --- unless this
1801     // is a zero-width bitfield, in which case just use a size of 1.
1802     uint64_t RoundedFieldSize;
1803     if (IsMsStruct) {
1804       RoundedFieldSize = (FieldSize ? StorageUnitSize
1805                                     : Context.getTargetInfo().getCharWidth());
1806 
1807       // Otherwise, allocate just the number of bytes required to store
1808       // the bitfield.
1809     } else {
1810       RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1811     }
1812     setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1813 
1814   // For non-zero-width bitfields in ms_struct structs, allocate a new
1815   // storage unit if necessary.
1816   } else if (IsMsStruct && FieldSize) {
1817     // We should have cleared UnfilledBitsInLastUnit in every case
1818     // where we changed storage units.
1819     if (!UnfilledBitsInLastUnit) {
1820       setDataSize(FieldOffset + StorageUnitSize);
1821       UnfilledBitsInLastUnit = StorageUnitSize;
1822     }
1823     UnfilledBitsInLastUnit -= FieldSize;
1824     LastBitfieldStorageUnitSize = StorageUnitSize;
1825 
1826     // Otherwise, bump the data size up to include the bitfield,
1827     // including padding up to char alignment, and then remember how
1828     // bits we didn't use.
1829   } else {
1830     uint64_t NewSizeInBits = FieldOffset + FieldSize;
1831     uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1832     setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1833     UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1834 
1835     // The only time we can get here for an ms_struct is if this is a
1836     // zero-width bitfield, which doesn't count as anything for the
1837     // purposes of unfilled bits.
1838     LastBitfieldStorageUnitSize = 0;
1839   }
1840 
1841   // Update the size.
1842   setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1843 
1844   // Remember max struct/class alignment.
1845   UnadjustedAlignment =
1846       std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign));
1847   UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1848                   Context.toCharUnitsFromBits(UnpackedFieldAlign));
1849 }
1850 
1851 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1852                                              bool InsertExtraPadding) {
1853   auto *FieldClass = D->getType()->getAsCXXRecordDecl();
1854   bool PotentiallyOverlapping = D->hasAttr<NoUniqueAddressAttr>() && FieldClass;
1855   bool IsOverlappingEmptyField =
1856       PotentiallyOverlapping && FieldClass->isEmpty();
1857 
1858   CharUnits FieldOffset =
1859       (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize();
1860 
1861   const bool DefaultsToAIXPowerAlignment =
1862       Context.getTargetInfo().defaultsToAIXPowerAlignment();
1863   bool FoundFirstNonOverlappingEmptyFieldForAIX = false;
1864   if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) {
1865     assert(FieldOffset == CharUnits::Zero() &&
1866            "The first non-overlapping empty field should have been handled.");
1867 
1868     if (!IsOverlappingEmptyField) {
1869       FoundFirstNonOverlappingEmptyFieldForAIX = true;
1870 
1871       // We're going to handle the "first member" based on
1872       // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current
1873       // invocation of this function; record it as handled for future
1874       // invocations (except for unions, because the current field does not
1875       // represent all "firsts").
1876       HandledFirstNonOverlappingEmptyField = !IsUnion;
1877     }
1878   }
1879 
1880   if (D->isBitField()) {
1881     LayoutBitField(D);
1882     return;
1883   }
1884 
1885   uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1886   // Reset the unfilled bits.
1887   UnfilledBitsInLastUnit = 0;
1888   LastBitfieldStorageUnitSize = 0;
1889 
1890   bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1891 
1892   AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1893   CharUnits FieldSize;
1894   CharUnits FieldAlign;
1895   // The amount of this class's dsize occupied by the field.
1896   // This is equal to FieldSize unless we're permitted to pack
1897   // into the field's tail padding.
1898   CharUnits EffectiveFieldSize;
1899 
1900   auto setDeclInfo = [&](bool IsIncompleteArrayType) {
1901     auto TI = Context.getTypeInfoInChars(D->getType());
1902     FieldAlign = TI.Align;
1903     // Flexible array members don't have any size, but they have to be
1904     // aligned appropriately for their element type.
1905     EffectiveFieldSize = FieldSize =
1906         IsIncompleteArrayType ? CharUnits::Zero() : TI.Width;
1907     AlignRequirement = TI.AlignRequirement;
1908   };
1909 
1910   if (D->getType()->isIncompleteArrayType()) {
1911     setDeclInfo(true /* IsIncompleteArrayType */);
1912   } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1913     unsigned AS = Context.getTargetAddressSpace(RT->getPointeeType());
1914     EffectiveFieldSize = FieldSize = Context.toCharUnitsFromBits(
1915         Context.getTargetInfo().getPointerWidth(AS));
1916     FieldAlign = Context.toCharUnitsFromBits(
1917         Context.getTargetInfo().getPointerAlign(AS));
1918   } else {
1919     setDeclInfo(false /* IsIncompleteArrayType */);
1920 
1921     // A potentially-overlapping field occupies its dsize or nvsize, whichever
1922     // is larger.
1923     if (PotentiallyOverlapping) {
1924       const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass);
1925       EffectiveFieldSize =
1926           std::max(Layout.getNonVirtualSize(), Layout.getDataSize());
1927     }
1928 
1929     if (IsMsStruct) {
1930       // If MS bitfield layout is required, figure out what type is being
1931       // laid out and align the field to the width of that type.
1932 
1933       // Resolve all typedefs down to their base type and round up the field
1934       // alignment if necessary.
1935       QualType T = Context.getBaseElementType(D->getType());
1936       if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1937         CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1938 
1939         if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) {
1940           assert(
1941               !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() &&
1942               "Non PowerOf2 size in MSVC mode");
1943           // Base types with sizes that aren't a power of two don't work
1944           // with the layout rules for MS structs. This isn't an issue in
1945           // MSVC itself since there are no such base data types there.
1946           // On e.g. x86_32 mingw and linux, long double is 12 bytes though.
1947           // Any structs involving that data type obviously can't be ABI
1948           // compatible with MSVC regardless of how it is laid out.
1949 
1950           // Since ms_struct can be mass enabled (via a pragma or via the
1951           // -mms-bitfields command line parameter), this can trigger for
1952           // structs that don't actually need MSVC compatibility, so we
1953           // need to be able to sidestep the ms_struct layout for these types.
1954 
1955           // Since the combination of -mms-bitfields together with structs
1956           // like max_align_t (which contains a long double) for mingw is
1957           // quite common (and GCC handles it silently), just handle it
1958           // silently there. For other targets that have ms_struct enabled
1959           // (most probably via a pragma or attribute), trigger a diagnostic
1960           // that defaults to an error.
1961           if (!Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
1962             Diag(D->getLocation(), diag::warn_npot_ms_struct);
1963         }
1964         if (TypeSize > FieldAlign &&
1965             llvm::isPowerOf2_64(TypeSize.getQuantity()))
1966           FieldAlign = TypeSize;
1967       }
1968     }
1969   }
1970 
1971   // When used as part of a typedef, or together with a 'packed' attribute, the
1972   // 'aligned' attribute can be used to decrease alignment. In that case, it
1973   // overrides any computed alignment we have, and there is no need to upgrade
1974   // the alignment.
1975   auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] {
1976     // Enum alignment sources can be safely ignored here, because this only
1977     // helps decide whether we need the AIX alignment upgrade, which only
1978     // applies to floating-point types.
1979     return AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
1980            (AlignRequirement == AlignRequirementKind::RequiredByRecord &&
1981             FieldPacked);
1982   };
1983 
1984   // The AIX `power` alignment rules apply the natural alignment of the
1985   // "first member" if it is of a floating-point data type (or is an aggregate
1986   // whose recursively "first" member or element is such a type). The alignment
1987   // associated with these types for subsequent members use an alignment value
1988   // where the floating-point data type is considered to have 4-byte alignment.
1989   //
1990   // For the purposes of the foregoing: vtable pointers, non-empty base classes,
1991   // and zero-width bit-fields count as prior members; members of empty class
1992   // types marked `no_unique_address` are not considered to be prior members.
1993   CharUnits PreferredAlign = FieldAlign;
1994   if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() &&
1995       (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) {
1996     auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) {
1997       if (BTy->getKind() == BuiltinType::Double ||
1998           BTy->getKind() == BuiltinType::LongDouble) {
1999         assert(PreferredAlign == CharUnits::fromQuantity(4) &&
2000                "No need to upgrade the alignment value.");
2001         PreferredAlign = CharUnits::fromQuantity(8);
2002       }
2003     };
2004 
2005     const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe();
2006     if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) {
2007       performBuiltinTypeAlignmentUpgrade(
2008           CTy->getElementType()->castAs<BuiltinType>());
2009     } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) {
2010       performBuiltinTypeAlignmentUpgrade(BTy);
2011     } else if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
2012       const RecordDecl *RD = RT->getDecl();
2013       assert(RD && "Expected non-null RecordDecl.");
2014       const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD);
2015       PreferredAlign = FieldRecord.getPreferredAlignment();
2016     }
2017   }
2018 
2019   // The align if the field is not packed. This is to check if the attribute
2020   // was unnecessary (-Wpacked).
2021   CharUnits UnpackedFieldAlign =
2022       !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2023   CharUnits UnpackedFieldOffset = FieldOffset;
2024   CharUnits OriginalFieldAlign = UnpackedFieldAlign;
2025 
2026   if (FieldPacked) {
2027     FieldAlign = CharUnits::One();
2028     PreferredAlign = CharUnits::One();
2029   }
2030   CharUnits MaxAlignmentInChars =
2031       Context.toCharUnitsFromBits(D->getMaxAlignment());
2032   FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
2033   PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars);
2034   UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
2035 
2036   // The maximum field alignment overrides the aligned attribute.
2037   if (!MaxFieldAlignment.isZero()) {
2038     FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
2039     PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment);
2040     UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
2041   }
2042 
2043   CharUnits AlignTo =
2044       !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign;
2045   // Round up the current record size to the field's alignment boundary.
2046   FieldOffset = FieldOffset.alignTo(AlignTo);
2047   UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
2048 
2049   if (UseExternalLayout) {
2050     FieldOffset = Context.toCharUnitsFromBits(
2051         updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
2052 
2053     if (!IsUnion && EmptySubobjects) {
2054       // Record the fact that we're placing a field at this offset.
2055       bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
2056       (void)Allowed;
2057       assert(Allowed && "Externally-placed field cannot be placed here");
2058     }
2059   } else {
2060     if (!IsUnion && EmptySubobjects) {
2061       // Check if we can place the field at this offset.
2062       while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
2063         // We couldn't place the field at the offset. Try again at a new offset.
2064         // We try offset 0 (for an empty field) and then dsize(C) onwards.
2065         if (FieldOffset == CharUnits::Zero() &&
2066             getDataSize() != CharUnits::Zero())
2067           FieldOffset = getDataSize().alignTo(AlignTo);
2068         else
2069           FieldOffset += AlignTo;
2070       }
2071     }
2072   }
2073 
2074   // Place this field at the current location.
2075   FieldOffsets.push_back(Context.toBits(FieldOffset));
2076 
2077   if (!UseExternalLayout)
2078     CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
2079                       Context.toBits(UnpackedFieldOffset),
2080                       Context.toBits(UnpackedFieldAlign), FieldPacked, D);
2081 
2082   if (InsertExtraPadding) {
2083     CharUnits ASanAlignment = CharUnits::fromQuantity(8);
2084     CharUnits ExtraSizeForAsan = ASanAlignment;
2085     if (FieldSize % ASanAlignment)
2086       ExtraSizeForAsan +=
2087           ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
2088     EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan;
2089   }
2090 
2091   // Reserve space for this field.
2092   if (!IsOverlappingEmptyField) {
2093     uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize);
2094     if (IsUnion)
2095       setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits));
2096     else
2097       setDataSize(FieldOffset + EffectiveFieldSize);
2098 
2099     PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize);
2100     setSize(std::max(getSizeInBits(), getDataSizeInBits()));
2101   } else {
2102     setSize(std::max(getSizeInBits(),
2103                      (uint64_t)Context.toBits(FieldOffset + FieldSize)));
2104   }
2105 
2106   // Remember max struct/class ABI-specified alignment.
2107   UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign);
2108   UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign);
2109 
2110   // For checking the alignment of inner fields against
2111   // the alignment of its parent record.
2112   if (const RecordDecl *RD = D->getParent()) {
2113     // Check if packed attribute or pragma pack is present.
2114     if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero())
2115       if (FieldAlign < OriginalFieldAlign)
2116         if (D->getType()->isRecordType()) {
2117           // If the offset is a multiple of the alignment of
2118           // the type, raise the warning.
2119           // TODO: Takes no account the alignment of the outer struct
2120           if (FieldOffset % OriginalFieldAlign != 0)
2121             Diag(D->getLocation(), diag::warn_unaligned_access)
2122                 << Context.getTypeDeclType(RD) << D->getName() << D->getType();
2123         }
2124   }
2125 }
2126 
2127 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
2128   // In C++, records cannot be of size 0.
2129   if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
2130     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2131       // Compatibility with gcc requires a class (pod or non-pod)
2132       // which is not empty but of size 0; such as having fields of
2133       // array of zero-length, remains of Size 0
2134       if (RD->isEmpty())
2135         setSize(CharUnits::One());
2136     }
2137     else
2138       setSize(CharUnits::One());
2139   }
2140 
2141   // If we have any remaining field tail padding, include that in the overall
2142   // size.
2143   setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize)));
2144 
2145   // Finally, round the size of the record up to the alignment of the
2146   // record itself.
2147   uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
2148   uint64_t UnpackedSizeInBits =
2149       llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
2150 
2151   uint64_t RoundedSize = llvm::alignTo(
2152       getSizeInBits(),
2153       Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment()
2154                          ? Alignment
2155                          : PreferredAlignment));
2156 
2157   if (UseExternalLayout) {
2158     // If we're inferring alignment, and the external size is smaller than
2159     // our size after we've rounded up to alignment, conservatively set the
2160     // alignment to 1.
2161     if (InferAlignment && External.Size < RoundedSize) {
2162       Alignment = CharUnits::One();
2163       PreferredAlignment = CharUnits::One();
2164       InferAlignment = false;
2165     }
2166     setSize(External.Size);
2167     return;
2168   }
2169 
2170   // Set the size to the final size.
2171   setSize(RoundedSize);
2172 
2173   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2174   if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
2175     // Warn if padding was introduced to the struct/class/union.
2176     if (getSizeInBits() > UnpaddedSize) {
2177       unsigned PadSize = getSizeInBits() - UnpaddedSize;
2178       bool InBits = true;
2179       if (PadSize % CharBitNum == 0) {
2180         PadSize = PadSize / CharBitNum;
2181         InBits = false;
2182       }
2183       Diag(RD->getLocation(), diag::warn_padded_struct_size)
2184           << Context.getTypeDeclType(RD)
2185           << PadSize
2186           << (InBits ? 1 : 0); // (byte|bit)
2187     }
2188 
2189     // Warn if we packed it unnecessarily, when the unpacked alignment is not
2190     // greater than the one after packing, the size in bits doesn't change and
2191     // the offset of each field is identical.
2192     if (Packed && UnpackedAlignment <= Alignment &&
2193         UnpackedSizeInBits == getSizeInBits() && !HasPackedField)
2194       Diag(D->getLocation(), diag::warn_unnecessary_packed)
2195           << Context.getTypeDeclType(RD);
2196   }
2197 }
2198 
2199 void ItaniumRecordLayoutBuilder::UpdateAlignment(
2200     CharUnits NewAlignment, CharUnits UnpackedNewAlignment,
2201     CharUnits PreferredNewAlignment) {
2202   // The alignment is not modified when using 'mac68k' alignment or when
2203   // we have an externally-supplied layout that also provides overall alignment.
2204   if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
2205     return;
2206 
2207   if (NewAlignment > Alignment) {
2208     assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
2209            "Alignment not a power of 2");
2210     Alignment = NewAlignment;
2211   }
2212 
2213   if (UnpackedNewAlignment > UnpackedAlignment) {
2214     assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
2215            "Alignment not a power of 2");
2216     UnpackedAlignment = UnpackedNewAlignment;
2217   }
2218 
2219   if (PreferredNewAlignment > PreferredAlignment) {
2220     assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) &&
2221            "Alignment not a power of 2");
2222     PreferredAlignment = PreferredNewAlignment;
2223   }
2224 }
2225 
2226 uint64_t
2227 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
2228                                                       uint64_t ComputedOffset) {
2229   uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
2230 
2231   if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
2232     // The externally-supplied field offset is before the field offset we
2233     // computed. Assume that the structure is packed.
2234     Alignment = CharUnits::One();
2235     PreferredAlignment = CharUnits::One();
2236     InferAlignment = false;
2237   }
2238 
2239   // Use the externally-supplied field offset.
2240   return ExternalFieldOffset;
2241 }
2242 
2243 /// Get diagnostic %select index for tag kind for
2244 /// field padding diagnostic message.
2245 /// WARNING: Indexes apply to particular diagnostics only!
2246 ///
2247 /// \returns diagnostic %select index.
2248 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
2249   switch (Tag) {
2250   case TTK_Struct: return 0;
2251   case TTK_Interface: return 1;
2252   case TTK_Class: return 2;
2253   default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
2254   }
2255 }
2256 
2257 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
2258     uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
2259     unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
2260   // We let objc ivars without warning, objc interfaces generally are not used
2261   // for padding tricks.
2262   if (isa<ObjCIvarDecl>(D))
2263     return;
2264 
2265   // Don't warn about structs created without a SourceLocation.  This can
2266   // be done by clients of the AST, such as codegen.
2267   if (D->getLocation().isInvalid())
2268     return;
2269 
2270   unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
2271 
2272   // Warn if padding was introduced to the struct/class.
2273   if (!IsUnion && Offset > UnpaddedOffset) {
2274     unsigned PadSize = Offset - UnpaddedOffset;
2275     bool InBits = true;
2276     if (PadSize % CharBitNum == 0) {
2277       PadSize = PadSize / CharBitNum;
2278       InBits = false;
2279     }
2280     if (D->getIdentifier())
2281       Diag(D->getLocation(), diag::warn_padded_struct_field)
2282           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2283           << Context.getTypeDeclType(D->getParent())
2284           << PadSize
2285           << (InBits ? 1 : 0) // (byte|bit)
2286           << D->getIdentifier();
2287     else
2288       Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
2289           << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
2290           << Context.getTypeDeclType(D->getParent())
2291           << PadSize
2292           << (InBits ? 1 : 0); // (byte|bit)
2293  }
2294  if (isPacked && Offset != UnpackedOffset) {
2295    HasPackedField = true;
2296  }
2297 }
2298 
2299 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
2300                                                const CXXRecordDecl *RD) {
2301   // If a class isn't polymorphic it doesn't have a key function.
2302   if (!RD->isPolymorphic())
2303     return nullptr;
2304 
2305   // A class that is not externally visible doesn't have a key function. (Or
2306   // at least, there's no point to assigning a key function to such a class;
2307   // this doesn't affect the ABI.)
2308   if (!RD->isExternallyVisible())
2309     return nullptr;
2310 
2311   // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2312   // Same behavior as GCC.
2313   TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2314   if (TSK == TSK_ImplicitInstantiation ||
2315       TSK == TSK_ExplicitInstantiationDeclaration ||
2316       TSK == TSK_ExplicitInstantiationDefinition)
2317     return nullptr;
2318 
2319   bool allowInlineFunctions =
2320     Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2321 
2322   for (const CXXMethodDecl *MD : RD->methods()) {
2323     if (!MD->isVirtual())
2324       continue;
2325 
2326     if (MD->isPure())
2327       continue;
2328 
2329     // Ignore implicit member functions, they are always marked as inline, but
2330     // they don't have a body until they're defined.
2331     if (MD->isImplicit())
2332       continue;
2333 
2334     if (MD->isInlineSpecified() || MD->isConstexpr())
2335       continue;
2336 
2337     if (MD->hasInlineBody())
2338       continue;
2339 
2340     // Ignore inline deleted or defaulted functions.
2341     if (!MD->isUserProvided())
2342       continue;
2343 
2344     // In certain ABIs, ignore functions with out-of-line inline definitions.
2345     if (!allowInlineFunctions) {
2346       const FunctionDecl *Def;
2347       if (MD->hasBody(Def) && Def->isInlineSpecified())
2348         continue;
2349     }
2350 
2351     if (Context.getLangOpts().CUDA) {
2352       // While compiler may see key method in this TU, during CUDA
2353       // compilation we should ignore methods that are not accessible
2354       // on this side of compilation.
2355       if (Context.getLangOpts().CUDAIsDevice) {
2356         // In device mode ignore methods without __device__ attribute.
2357         if (!MD->hasAttr<CUDADeviceAttr>())
2358           continue;
2359       } else {
2360         // In host mode ignore __device__-only methods.
2361         if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2362           continue;
2363       }
2364     }
2365 
2366     // If the key function is dllimport but the class isn't, then the class has
2367     // no key function. The DLL that exports the key function won't export the
2368     // vtable in this case.
2369     if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() &&
2370         !Context.getTargetInfo().hasPS4DLLImportExport())
2371       return nullptr;
2372 
2373     // We found it.
2374     return MD;
2375   }
2376 
2377   return nullptr;
2378 }
2379 
2380 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2381                                                    unsigned DiagID) {
2382   return Context.getDiagnostics().Report(Loc, DiagID);
2383 }
2384 
2385 /// Does the target C++ ABI require us to skip over the tail-padding
2386 /// of the given class (considering it as a base class) when allocating
2387 /// objects?
2388 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2389   switch (ABI.getTailPaddingUseRules()) {
2390   case TargetCXXABI::AlwaysUseTailPadding:
2391     return false;
2392 
2393   case TargetCXXABI::UseTailPaddingUnlessPOD03:
2394     // FIXME: To the extent that this is meant to cover the Itanium ABI
2395     // rules, we should implement the restrictions about over-sized
2396     // bitfields:
2397     //
2398     // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD :
2399     //   In general, a type is considered a POD for the purposes of
2400     //   layout if it is a POD type (in the sense of ISO C++
2401     //   [basic.types]). However, a POD-struct or POD-union (in the
2402     //   sense of ISO C++ [class]) with a bitfield member whose
2403     //   declared width is wider than the declared type of the
2404     //   bitfield is not a POD for the purpose of layout.  Similarly,
2405     //   an array type is not a POD for the purpose of layout if the
2406     //   element type of the array is not a POD for the purpose of
2407     //   layout.
2408     //
2409     //   Where references to the ISO C++ are made in this paragraph,
2410     //   the Technical Corrigendum 1 version of the standard is
2411     //   intended.
2412     return RD->isPOD();
2413 
2414   case TargetCXXABI::UseTailPaddingUnlessPOD11:
2415     // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2416     // but with a lot of abstraction penalty stripped off.  This does
2417     // assume that these properties are set correctly even in C++98
2418     // mode; fortunately, that is true because we want to assign
2419     // consistently semantics to the type-traits intrinsics (or at
2420     // least as many of them as possible).
2421     return RD->isTrivial() && RD->isCXX11StandardLayout();
2422   }
2423 
2424   llvm_unreachable("bad tail-padding use kind");
2425 }
2426 
2427 static bool isMsLayout(const ASTContext &Context) {
2428   return Context.getTargetInfo().getCXXABI().isMicrosoft();
2429 }
2430 
2431 // This section contains an implementation of struct layout that is, up to the
2432 // included tests, compatible with cl.exe (2013).  The layout produced is
2433 // significantly different than those produced by the Itanium ABI.  Here we note
2434 // the most important differences.
2435 //
2436 // * The alignment of bitfields in unions is ignored when computing the
2437 //   alignment of the union.
2438 // * The existence of zero-width bitfield that occurs after anything other than
2439 //   a non-zero length bitfield is ignored.
2440 // * There is no explicit primary base for the purposes of layout.  All bases
2441 //   with vfptrs are laid out first, followed by all bases without vfptrs.
2442 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2443 //   function pointer) and a vbptr (virtual base pointer).  They can each be
2444 //   shared with a, non-virtual bases. These bases need not be the same.  vfptrs
2445 //   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are
2446 //   placed after the lexicographically last non-virtual base.  This placement
2447 //   is always before fields but can be in the middle of the non-virtual bases
2448 //   due to the two-pass layout scheme for non-virtual-bases.
2449 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2450 //   the virtual base and is used in conjunction with virtual overrides during
2451 //   construction and destruction.  This is always a 4 byte value and is used as
2452 //   an alternative to constructor vtables.
2453 // * vtordisps are allocated in a block of memory with size and alignment equal
2454 //   to the alignment of the completed structure (before applying __declspec(
2455 //   align())).  The vtordisp always occur at the end of the allocation block,
2456 //   immediately prior to the virtual base.
2457 // * vfptrs are injected after all bases and fields have been laid out.  In
2458 //   order to guarantee proper alignment of all fields, the vfptr injection
2459 //   pushes all bases and fields back by the alignment imposed by those bases
2460 //   and fields.  This can potentially add a significant amount of padding.
2461 //   vfptrs are always injected at offset 0.
2462 // * vbptrs are injected after all bases and fields have been laid out.  In
2463 //   order to guarantee proper alignment of all fields, the vfptr injection
2464 //   pushes all bases and fields back by the alignment imposed by those bases
2465 //   and fields.  This can potentially add a significant amount of padding.
2466 //   vbptrs are injected immediately after the last non-virtual base as
2467 //   lexicographically ordered in the code.  If this site isn't pointer aligned
2468 //   the vbptr is placed at the next properly aligned location.  Enough padding
2469 //   is added to guarantee a fit.
2470 // * The last zero sized non-virtual base can be placed at the end of the
2471 //   struct (potentially aliasing another object), or may alias with the first
2472 //   field, even if they are of the same type.
2473 // * The last zero size virtual base may be placed at the end of the struct
2474 //   potentially aliasing another object.
2475 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2476 //   between bases or vbases with specific properties.  The criteria for
2477 //   additional padding between two bases is that the first base is zero sized
2478 //   or ends with a zero sized subobject and the second base is zero sized or
2479 //   trails with a zero sized base or field (sharing of vfptrs can reorder the
2480 //   layout of the so the leading base is not always the first one declared).
2481 //   This rule does take into account fields that are not records, so padding
2482 //   will occur even if the last field is, e.g. an int. The padding added for
2483 //   bases is 1 byte.  The padding added between vbases depends on the alignment
2484 //   of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2485 // * There is no concept of non-virtual alignment, non-virtual alignment and
2486 //   alignment are always identical.
2487 // * There is a distinction between alignment and required alignment.
2488 //   __declspec(align) changes the required alignment of a struct.  This
2489 //   alignment is _always_ obeyed, even in the presence of #pragma pack. A
2490 //   record inherits required alignment from all of its fields and bases.
2491 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2492 //   alignment instead of its required alignment.  This is the only known way
2493 //   to make the alignment of a struct bigger than 8.  Interestingly enough
2494 //   this alignment is also immune to the effects of #pragma pack and can be
2495 //   used to create structures with large alignment under #pragma pack.
2496 //   However, because it does not impact required alignment, such a structure,
2497 //   when used as a field or base, will not be aligned if #pragma pack is
2498 //   still active at the time of use.
2499 //
2500 // Known incompatibilities:
2501 // * all: #pragma pack between fields in a record
2502 // * 2010 and back: If the last field in a record is a bitfield, every object
2503 //   laid out after the record will have extra padding inserted before it.  The
2504 //   extra padding will have size equal to the size of the storage class of the
2505 //   bitfield.  0 sized bitfields don't exhibit this behavior and the extra
2506 //   padding can be avoided by adding a 0 sized bitfield after the non-zero-
2507 //   sized bitfield.
2508 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2509 //   greater due to __declspec(align()) then a second layout phase occurs after
2510 //   The locations of the vf and vb pointers are known.  This layout phase
2511 //   suffers from the "last field is a bitfield" bug in 2010 and results in
2512 //   _every_ field getting padding put in front of it, potentially including the
2513 //   vfptr, leaving the vfprt at a non-zero location which results in a fault if
2514 //   anything tries to read the vftbl.  The second layout phase also treats
2515 //   bitfields as separate entities and gives them each storage rather than
2516 //   packing them.  Additionally, because this phase appears to perform a
2517 //   (an unstable) sort on the members before laying them out and because merged
2518 //   bitfields have the same address, the bitfields end up in whatever order
2519 //   the sort left them in, a behavior we could never hope to replicate.
2520 
2521 namespace {
2522 struct MicrosoftRecordLayoutBuilder {
2523   struct ElementInfo {
2524     CharUnits Size;
2525     CharUnits Alignment;
2526   };
2527   typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
2528   MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2529 private:
2530   MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2531   void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2532 public:
2533   void layout(const RecordDecl *RD);
2534   void cxxLayout(const CXXRecordDecl *RD);
2535   /// Initializes size and alignment and honors some flags.
2536   void initializeLayout(const RecordDecl *RD);
2537   /// Initialized C++ layout, compute alignment and virtual alignment and
2538   /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is
2539   /// laid out.
2540   void initializeCXXLayout(const CXXRecordDecl *RD);
2541   void layoutNonVirtualBases(const CXXRecordDecl *RD);
2542   void layoutNonVirtualBase(const CXXRecordDecl *RD,
2543                             const CXXRecordDecl *BaseDecl,
2544                             const ASTRecordLayout &BaseLayout,
2545                             const ASTRecordLayout *&PreviousBaseLayout);
2546   void injectVFPtr(const CXXRecordDecl *RD);
2547   void injectVBPtr(const CXXRecordDecl *RD);
2548   /// Lays out the fields of the record.  Also rounds size up to
2549   /// alignment.
2550   void layoutFields(const RecordDecl *RD);
2551   void layoutField(const FieldDecl *FD);
2552   void layoutBitField(const FieldDecl *FD);
2553   /// Lays out a single zero-width bit-field in the record and handles
2554   /// special cases associated with zero-width bit-fields.
2555   void layoutZeroWidthBitField(const FieldDecl *FD);
2556   void layoutVirtualBases(const CXXRecordDecl *RD);
2557   void finalizeLayout(const RecordDecl *RD);
2558   /// Gets the size and alignment of a base taking pragma pack and
2559   /// __declspec(align) into account.
2560   ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2561   /// Gets the size and alignment of a field taking pragma  pack and
2562   /// __declspec(align) into account.  It also updates RequiredAlignment as a
2563   /// side effect because it is most convenient to do so here.
2564   ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2565   /// Places a field at an offset in CharUnits.
2566   void placeFieldAtOffset(CharUnits FieldOffset) {
2567     FieldOffsets.push_back(Context.toBits(FieldOffset));
2568   }
2569   /// Places a bitfield at a bit offset.
2570   void placeFieldAtBitOffset(uint64_t FieldOffset) {
2571     FieldOffsets.push_back(FieldOffset);
2572   }
2573   /// Compute the set of virtual bases for which vtordisps are required.
2574   void computeVtorDispSet(
2575       llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2576       const CXXRecordDecl *RD) const;
2577   const ASTContext &Context;
2578   /// The size of the record being laid out.
2579   CharUnits Size;
2580   /// The non-virtual size of the record layout.
2581   CharUnits NonVirtualSize;
2582   /// The data size of the record layout.
2583   CharUnits DataSize;
2584   /// The current alignment of the record layout.
2585   CharUnits Alignment;
2586   /// The maximum allowed field alignment. This is set by #pragma pack.
2587   CharUnits MaxFieldAlignment;
2588   /// The alignment that this record must obey.  This is imposed by
2589   /// __declspec(align()) on the record itself or one of its fields or bases.
2590   CharUnits RequiredAlignment;
2591   /// The size of the allocation of the currently active bitfield.
2592   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2593   /// is true.
2594   CharUnits CurrentBitfieldSize;
2595   /// Offset to the virtual base table pointer (if one exists).
2596   CharUnits VBPtrOffset;
2597   /// Minimum record size possible.
2598   CharUnits MinEmptyStructSize;
2599   /// The size and alignment info of a pointer.
2600   ElementInfo PointerInfo;
2601   /// The primary base class (if one exists).
2602   const CXXRecordDecl *PrimaryBase;
2603   /// The class we share our vb-pointer with.
2604   const CXXRecordDecl *SharedVBPtrBase;
2605   /// The collection of field offsets.
2606   SmallVector<uint64_t, 16> FieldOffsets;
2607   /// Base classes and their offsets in the record.
2608   BaseOffsetsMapTy Bases;
2609   /// virtual base classes and their offsets in the record.
2610   ASTRecordLayout::VBaseOffsetsMapTy VBases;
2611   /// The number of remaining bits in our last bitfield allocation.
2612   /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2613   /// true.
2614   unsigned RemainingBitsInField;
2615   bool IsUnion : 1;
2616   /// True if the last field laid out was a bitfield and was not 0
2617   /// width.
2618   bool LastFieldIsNonZeroWidthBitfield : 1;
2619   /// True if the class has its own vftable pointer.
2620   bool HasOwnVFPtr : 1;
2621   /// True if the class has a vbtable pointer.
2622   bool HasVBPtr : 1;
2623   /// True if the last sub-object within the type is zero sized or the
2624   /// object itself is zero sized.  This *does not* count members that are not
2625   /// records.  Only used for MS-ABI.
2626   bool EndsWithZeroSizedObject : 1;
2627   /// True if this class is zero sized or first base is zero sized or
2628   /// has this property.  Only used for MS-ABI.
2629   bool LeadsWithZeroSizedBase : 1;
2630 
2631   /// True if the external AST source provided a layout for this record.
2632   bool UseExternalLayout : 1;
2633 
2634   /// The layout provided by the external AST source. Only active if
2635   /// UseExternalLayout is true.
2636   ExternalLayout External;
2637 };
2638 } // namespace
2639 
2640 MicrosoftRecordLayoutBuilder::ElementInfo
2641 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2642     const ASTRecordLayout &Layout) {
2643   ElementInfo Info;
2644   Info.Alignment = Layout.getAlignment();
2645   // Respect pragma pack.
2646   if (!MaxFieldAlignment.isZero())
2647     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2648   // Track zero-sized subobjects here where it's already available.
2649   EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2650   // Respect required alignment, this is necessary because we may have adjusted
2651   // the alignment in the case of pragma pack.  Note that the required alignment
2652   // doesn't actually apply to the struct alignment at this point.
2653   Alignment = std::max(Alignment, Info.Alignment);
2654   RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2655   Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2656   Info.Size = Layout.getNonVirtualSize();
2657   return Info;
2658 }
2659 
2660 MicrosoftRecordLayoutBuilder::ElementInfo
2661 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2662     const FieldDecl *FD) {
2663   // Get the alignment of the field type's natural alignment, ignore any
2664   // alignment attributes.
2665   auto TInfo =
2666       Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2667   ElementInfo Info{TInfo.Width, TInfo.Align};
2668   // Respect align attributes on the field.
2669   CharUnits FieldRequiredAlignment =
2670       Context.toCharUnitsFromBits(FD->getMaxAlignment());
2671   // Respect align attributes on the type.
2672   if (Context.isAlignmentRequired(FD->getType()))
2673     FieldRequiredAlignment = std::max(
2674         Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2675   // Respect attributes applied to subobjects of the field.
2676   if (FD->isBitField())
2677     // For some reason __declspec align impacts alignment rather than required
2678     // alignment when it is applied to bitfields.
2679     Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2680   else {
2681     if (auto RT =
2682             FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2683       auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2684       EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2685       FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2686                                         Layout.getRequiredAlignment());
2687     }
2688     // Capture required alignment as a side-effect.
2689     RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2690   }
2691   // Respect pragma pack, attribute pack and declspec align
2692   if (!MaxFieldAlignment.isZero())
2693     Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2694   if (FD->hasAttr<PackedAttr>())
2695     Info.Alignment = CharUnits::One();
2696   Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2697   return Info;
2698 }
2699 
2700 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2701   // For C record layout, zero-sized records always have size 4.
2702   MinEmptyStructSize = CharUnits::fromQuantity(4);
2703   initializeLayout(RD);
2704   layoutFields(RD);
2705   DataSize = Size = Size.alignTo(Alignment);
2706   RequiredAlignment = std::max(
2707       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2708   finalizeLayout(RD);
2709 }
2710 
2711 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2712   // The C++ standard says that empty structs have size 1.
2713   MinEmptyStructSize = CharUnits::One();
2714   initializeLayout(RD);
2715   initializeCXXLayout(RD);
2716   layoutNonVirtualBases(RD);
2717   layoutFields(RD);
2718   injectVBPtr(RD);
2719   injectVFPtr(RD);
2720   if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2721     Alignment = std::max(Alignment, PointerInfo.Alignment);
2722   auto RoundingAlignment = Alignment;
2723   if (!MaxFieldAlignment.isZero())
2724     RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2725   if (!UseExternalLayout)
2726     Size = Size.alignTo(RoundingAlignment);
2727   NonVirtualSize = Size;
2728   RequiredAlignment = std::max(
2729       RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2730   layoutVirtualBases(RD);
2731   finalizeLayout(RD);
2732 }
2733 
2734 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2735   IsUnion = RD->isUnion();
2736   Size = CharUnits::Zero();
2737   Alignment = CharUnits::One();
2738   // In 64-bit mode we always perform an alignment step after laying out vbases.
2739   // In 32-bit mode we do not.  The check to see if we need to perform alignment
2740   // checks the RequiredAlignment field and performs alignment if it isn't 0.
2741   RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2742                           ? CharUnits::One()
2743                           : CharUnits::Zero();
2744   // Compute the maximum field alignment.
2745   MaxFieldAlignment = CharUnits::Zero();
2746   // Honor the default struct packing maximum alignment flag.
2747   if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2748       MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2749   // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger
2750   // than the pointer size.
2751   if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2752     unsigned PackedAlignment = MFAA->getAlignment();
2753     if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2754       MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2755   }
2756   // Packed attribute forces max field alignment to be 1.
2757   if (RD->hasAttr<PackedAttr>())
2758     MaxFieldAlignment = CharUnits::One();
2759 
2760   // Try to respect the external layout if present.
2761   UseExternalLayout = false;
2762   if (ExternalASTSource *Source = Context.getExternalSource())
2763     UseExternalLayout = Source->layoutRecordType(
2764         RD, External.Size, External.Align, External.FieldOffsets,
2765         External.BaseOffsets, External.VirtualBaseOffsets);
2766 }
2767 
2768 void
2769 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2770   EndsWithZeroSizedObject = false;
2771   LeadsWithZeroSizedBase = false;
2772   HasOwnVFPtr = false;
2773   HasVBPtr = false;
2774   PrimaryBase = nullptr;
2775   SharedVBPtrBase = nullptr;
2776   // Calculate pointer size and alignment.  These are used for vfptr and vbprt
2777   // injection.
2778   PointerInfo.Size =
2779       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2780   PointerInfo.Alignment =
2781       Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2782   // Respect pragma pack.
2783   if (!MaxFieldAlignment.isZero())
2784     PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2785 }
2786 
2787 void
2788 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2789   // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2790   // out any bases that do not contain vfptrs.  We implement this as two passes
2791   // over the bases.  This approach guarantees that the primary base is laid out
2792   // first.  We use these passes to calculate some additional aggregated
2793   // information about the bases, such as required alignment and the presence of
2794   // zero sized members.
2795   const ASTRecordLayout *PreviousBaseLayout = nullptr;
2796   bool HasPolymorphicBaseClass = false;
2797   // Iterate through the bases and lay out the non-virtual ones.
2798   for (const CXXBaseSpecifier &Base : RD->bases()) {
2799     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2800     HasPolymorphicBaseClass |= BaseDecl->isPolymorphic();
2801     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2802     // Mark and skip virtual bases.
2803     if (Base.isVirtual()) {
2804       HasVBPtr = true;
2805       continue;
2806     }
2807     // Check for a base to share a VBPtr with.
2808     if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2809       SharedVBPtrBase = BaseDecl;
2810       HasVBPtr = true;
2811     }
2812     // Only lay out bases with extendable VFPtrs on the first pass.
2813     if (!BaseLayout.hasExtendableVFPtr())
2814       continue;
2815     // If we don't have a primary base, this one qualifies.
2816     if (!PrimaryBase) {
2817       PrimaryBase = BaseDecl;
2818       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2819     }
2820     // Lay out the base.
2821     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2822   }
2823   // Figure out if we need a fresh VFPtr for this class.
2824   if (RD->isPolymorphic()) {
2825     if (!HasPolymorphicBaseClass)
2826       // This class introduces polymorphism, so we need a vftable to store the
2827       // RTTI information.
2828       HasOwnVFPtr = true;
2829     else if (!PrimaryBase) {
2830       // We have a polymorphic base class but can't extend its vftable. Add a
2831       // new vfptr if we would use any vftable slots.
2832       for (CXXMethodDecl *M : RD->methods()) {
2833         if (MicrosoftVTableContext::hasVtableSlot(M) &&
2834             M->size_overridden_methods() == 0) {
2835           HasOwnVFPtr = true;
2836           break;
2837         }
2838       }
2839     }
2840   }
2841   // If we don't have a primary base then we have a leading object that could
2842   // itself lead with a zero-sized object, something we track.
2843   bool CheckLeadingLayout = !PrimaryBase;
2844   // Iterate through the bases and lay out the non-virtual ones.
2845   for (const CXXBaseSpecifier &Base : RD->bases()) {
2846     if (Base.isVirtual())
2847       continue;
2848     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2849     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2850     // Only lay out bases without extendable VFPtrs on the second pass.
2851     if (BaseLayout.hasExtendableVFPtr()) {
2852       VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2853       continue;
2854     }
2855     // If this is the first layout, check to see if it leads with a zero sized
2856     // object.  If it does, so do we.
2857     if (CheckLeadingLayout) {
2858       CheckLeadingLayout = false;
2859       LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2860     }
2861     // Lay out the base.
2862     layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2863     VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2864   }
2865   // Set our VBPtroffset if we know it at this point.
2866   if (!HasVBPtr)
2867     VBPtrOffset = CharUnits::fromQuantity(-1);
2868   else if (SharedVBPtrBase) {
2869     const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2870     VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2871   }
2872 }
2873 
2874 static bool recordUsesEBO(const RecordDecl *RD) {
2875   if (!isa<CXXRecordDecl>(RD))
2876     return false;
2877   if (RD->hasAttr<EmptyBasesAttr>())
2878     return true;
2879   if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2880     // TODO: Double check with the next version of MSVC.
2881     if (LVA->getVersion() <= LangOptions::MSVC2015)
2882       return false;
2883   // TODO: Some later version of MSVC will change the default behavior of the
2884   // compiler to enable EBO by default.  When this happens, we will need an
2885   // additional isCompatibleWithMSVC check.
2886   return false;
2887 }
2888 
2889 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2890     const CXXRecordDecl *RD,
2891     const CXXRecordDecl *BaseDecl,
2892     const ASTRecordLayout &BaseLayout,
2893     const ASTRecordLayout *&PreviousBaseLayout) {
2894   // Insert padding between two bases if the left first one is zero sized or
2895   // contains a zero sized subobject and the right is zero sized or one leads
2896   // with a zero sized base.
2897   bool MDCUsesEBO = recordUsesEBO(RD);
2898   if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2899       BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2900     Size++;
2901   ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2902   CharUnits BaseOffset;
2903 
2904   // Respect the external AST source base offset, if present.
2905   bool FoundBase = false;
2906   if (UseExternalLayout) {
2907     FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2908     if (FoundBase) {
2909       assert(BaseOffset >= Size && "base offset already allocated");
2910       Size = BaseOffset;
2911     }
2912   }
2913 
2914   if (!FoundBase) {
2915     if (MDCUsesEBO && BaseDecl->isEmpty()) {
2916       assert(BaseLayout.getNonVirtualSize() == CharUnits::Zero());
2917       BaseOffset = CharUnits::Zero();
2918     } else {
2919       // Otherwise, lay the base out at the end of the MDC.
2920       BaseOffset = Size = Size.alignTo(Info.Alignment);
2921     }
2922   }
2923   Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2924   Size += BaseLayout.getNonVirtualSize();
2925   PreviousBaseLayout = &BaseLayout;
2926 }
2927 
2928 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2929   LastFieldIsNonZeroWidthBitfield = false;
2930   for (const FieldDecl *Field : RD->fields())
2931     layoutField(Field);
2932 }
2933 
2934 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2935   if (FD->isBitField()) {
2936     layoutBitField(FD);
2937     return;
2938   }
2939   LastFieldIsNonZeroWidthBitfield = false;
2940   ElementInfo Info = getAdjustedElementInfo(FD);
2941   Alignment = std::max(Alignment, Info.Alignment);
2942   CharUnits FieldOffset;
2943   if (UseExternalLayout)
2944     FieldOffset =
2945         Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2946   else if (IsUnion)
2947     FieldOffset = CharUnits::Zero();
2948   else
2949     FieldOffset = Size.alignTo(Info.Alignment);
2950   placeFieldAtOffset(FieldOffset);
2951   Size = std::max(Size, FieldOffset + Info.Size);
2952 }
2953 
2954 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2955   unsigned Width = FD->getBitWidthValue(Context);
2956   if (Width == 0) {
2957     layoutZeroWidthBitField(FD);
2958     return;
2959   }
2960   ElementInfo Info = getAdjustedElementInfo(FD);
2961   // Clamp the bitfield to a containable size for the sake of being able
2962   // to lay them out.  Sema will throw an error.
2963   if (Width > Context.toBits(Info.Size))
2964     Width = Context.toBits(Info.Size);
2965   // Check to see if this bitfield fits into an existing allocation.  Note:
2966   // MSVC refuses to pack bitfields of formal types with different sizes
2967   // into the same allocation.
2968   if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield &&
2969       CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2970     placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2971     RemainingBitsInField -= Width;
2972     return;
2973   }
2974   LastFieldIsNonZeroWidthBitfield = true;
2975   CurrentBitfieldSize = Info.Size;
2976   if (UseExternalLayout) {
2977     auto FieldBitOffset = External.getExternalFieldOffset(FD);
2978     placeFieldAtBitOffset(FieldBitOffset);
2979     auto NewSize = Context.toCharUnitsFromBits(
2980         llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) +
2981         Context.toBits(Info.Size));
2982     Size = std::max(Size, NewSize);
2983     Alignment = std::max(Alignment, Info.Alignment);
2984   } else if (IsUnion) {
2985     placeFieldAtOffset(CharUnits::Zero());
2986     Size = std::max(Size, Info.Size);
2987     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2988   } else {
2989     // Allocate a new block of memory and place the bitfield in it.
2990     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2991     placeFieldAtOffset(FieldOffset);
2992     Size = FieldOffset + Info.Size;
2993     Alignment = std::max(Alignment, Info.Alignment);
2994     RemainingBitsInField = Context.toBits(Info.Size) - Width;
2995   }
2996 }
2997 
2998 void
2999 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
3000   // Zero-width bitfields are ignored unless they follow a non-zero-width
3001   // bitfield.
3002   if (!LastFieldIsNonZeroWidthBitfield) {
3003     placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
3004     // TODO: Add a Sema warning that MS ignores alignment for zero
3005     // sized bitfields that occur after zero-size bitfields or non-bitfields.
3006     return;
3007   }
3008   LastFieldIsNonZeroWidthBitfield = false;
3009   ElementInfo Info = getAdjustedElementInfo(FD);
3010   if (IsUnion) {
3011     placeFieldAtOffset(CharUnits::Zero());
3012     Size = std::max(Size, Info.Size);
3013     // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
3014   } else {
3015     // Round up the current record size to the field's alignment boundary.
3016     CharUnits FieldOffset = Size.alignTo(Info.Alignment);
3017     placeFieldAtOffset(FieldOffset);
3018     Size = FieldOffset;
3019     Alignment = std::max(Alignment, Info.Alignment);
3020   }
3021 }
3022 
3023 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
3024   if (!HasVBPtr || SharedVBPtrBase)
3025     return;
3026   // Inject the VBPointer at the injection site.
3027   CharUnits InjectionSite = VBPtrOffset;
3028   // But before we do, make sure it's properly aligned.
3029   VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
3030   // Determine where the first field should be laid out after the vbptr.
3031   CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
3032   // Shift everything after the vbptr down, unless we're using an external
3033   // layout.
3034   if (UseExternalLayout) {
3035     // It is possible that there were no fields or bases located after vbptr,
3036     // so the size was not adjusted before.
3037     if (Size < FieldStart)
3038       Size = FieldStart;
3039     return;
3040   }
3041   // Make sure that the amount we push the fields back by is a multiple of the
3042   // alignment.
3043   CharUnits Offset = (FieldStart - InjectionSite)
3044                          .alignTo(std::max(RequiredAlignment, Alignment));
3045   Size += Offset;
3046   for (uint64_t &FieldOffset : FieldOffsets)
3047     FieldOffset += Context.toBits(Offset);
3048   for (BaseOffsetsMapTy::value_type &Base : Bases)
3049     if (Base.second >= InjectionSite)
3050       Base.second += Offset;
3051 }
3052 
3053 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
3054   if (!HasOwnVFPtr)
3055     return;
3056   // Make sure that the amount we push the struct back by is a multiple of the
3057   // alignment.
3058   CharUnits Offset =
3059       PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
3060   // Push back the vbptr, but increase the size of the object and push back
3061   // regular fields by the offset only if not using external record layout.
3062   if (HasVBPtr)
3063     VBPtrOffset += Offset;
3064 
3065   if (UseExternalLayout) {
3066     // The class may have no bases or fields, but still have a vfptr
3067     // (e.g. it's an interface class). The size was not correctly set before
3068     // in this case.
3069     if (FieldOffsets.empty() && Bases.empty())
3070       Size += Offset;
3071     return;
3072   }
3073 
3074   Size += Offset;
3075 
3076   // If we're using an external layout, the fields offsets have already
3077   // accounted for this adjustment.
3078   for (uint64_t &FieldOffset : FieldOffsets)
3079     FieldOffset += Context.toBits(Offset);
3080   for (BaseOffsetsMapTy::value_type &Base : Bases)
3081     Base.second += Offset;
3082 }
3083 
3084 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
3085   if (!HasVBPtr)
3086     return;
3087   // Vtordisps are always 4 bytes (even in 64-bit mode)
3088   CharUnits VtorDispSize = CharUnits::fromQuantity(4);
3089   CharUnits VtorDispAlignment = VtorDispSize;
3090   // vtordisps respect pragma pack.
3091   if (!MaxFieldAlignment.isZero())
3092     VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
3093   // The alignment of the vtordisp is at least the required alignment of the
3094   // entire record.  This requirement may be present to support vtordisp
3095   // injection.
3096   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3097     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3098     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3099     RequiredAlignment =
3100         std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
3101   }
3102   VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
3103   // Compute the vtordisp set.
3104   llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
3105   computeVtorDispSet(HasVtorDispSet, RD);
3106   // Iterate through the virtual bases and lay them out.
3107   const ASTRecordLayout *PreviousBaseLayout = nullptr;
3108   for (const CXXBaseSpecifier &VBase : RD->vbases()) {
3109     const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
3110     const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
3111     bool HasVtordisp = HasVtorDispSet.contains(BaseDecl);
3112     // Insert padding between two bases if the left first one is zero sized or
3113     // contains a zero sized subobject and the right is zero sized or one leads
3114     // with a zero sized base.  The padding between virtual bases is 4
3115     // bytes (in both 32 and 64 bits modes) and always involves rounding up to
3116     // the required alignment, we don't know why.
3117     if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
3118          BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
3119         HasVtordisp) {
3120       Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
3121       Alignment = std::max(VtorDispAlignment, Alignment);
3122     }
3123     // Insert the virtual base.
3124     ElementInfo Info = getAdjustedElementInfo(BaseLayout);
3125     CharUnits BaseOffset;
3126 
3127     // Respect the external AST source base offset, if present.
3128     if (UseExternalLayout) {
3129       if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset))
3130         BaseOffset = Size;
3131     } else
3132       BaseOffset = Size.alignTo(Info.Alignment);
3133 
3134     assert(BaseOffset >= Size && "base offset already allocated");
3135 
3136     VBases.insert(std::make_pair(BaseDecl,
3137         ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
3138     Size = BaseOffset + BaseLayout.getNonVirtualSize();
3139     PreviousBaseLayout = &BaseLayout;
3140   }
3141 }
3142 
3143 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
3144   // Respect required alignment.  Note that in 32-bit mode Required alignment
3145   // may be 0 and cause size not to be updated.
3146   DataSize = Size;
3147   if (!RequiredAlignment.isZero()) {
3148     Alignment = std::max(Alignment, RequiredAlignment);
3149     auto RoundingAlignment = Alignment;
3150     if (!MaxFieldAlignment.isZero())
3151       RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
3152     RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
3153     Size = Size.alignTo(RoundingAlignment);
3154   }
3155   if (Size.isZero()) {
3156     if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
3157       EndsWithZeroSizedObject = true;
3158       LeadsWithZeroSizedBase = true;
3159     }
3160     // Zero-sized structures have size equal to their alignment if a
3161     // __declspec(align) came into play.
3162     if (RequiredAlignment >= MinEmptyStructSize)
3163       Size = Alignment;
3164     else
3165       Size = MinEmptyStructSize;
3166   }
3167 
3168   if (UseExternalLayout) {
3169     Size = Context.toCharUnitsFromBits(External.Size);
3170     if (External.Align)
3171       Alignment = Context.toCharUnitsFromBits(External.Align);
3172   }
3173 }
3174 
3175 // Recursively walks the non-virtual bases of a class and determines if any of
3176 // them are in the bases with overridden methods set.
3177 static bool
3178 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
3179                      BasesWithOverriddenMethods,
3180                  const CXXRecordDecl *RD) {
3181   if (BasesWithOverriddenMethods.count(RD))
3182     return true;
3183   // If any of a virtual bases non-virtual bases (recursively) requires a
3184   // vtordisp than so does this virtual base.
3185   for (const CXXBaseSpecifier &Base : RD->bases())
3186     if (!Base.isVirtual() &&
3187         RequiresVtordisp(BasesWithOverriddenMethods,
3188                          Base.getType()->getAsCXXRecordDecl()))
3189       return true;
3190   return false;
3191 }
3192 
3193 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
3194     llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
3195     const CXXRecordDecl *RD) const {
3196   // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
3197   // vftables.
3198   if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) {
3199     for (const CXXBaseSpecifier &Base : RD->vbases()) {
3200       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3201       const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3202       if (Layout.hasExtendableVFPtr())
3203         HasVtordispSet.insert(BaseDecl);
3204     }
3205     return;
3206   }
3207 
3208   // If any of our bases need a vtordisp for this type, so do we.  Check our
3209   // direct bases for vtordisp requirements.
3210   for (const CXXBaseSpecifier &Base : RD->bases()) {
3211     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3212     const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
3213     for (const auto &bi : Layout.getVBaseOffsetsMap())
3214       if (bi.second.hasVtorDisp())
3215         HasVtordispSet.insert(bi.first);
3216   }
3217   // We don't introduce any additional vtordisps if either:
3218   // * A user declared constructor or destructor aren't declared.
3219   // * #pragma vtordisp(0) or the /vd0 flag are in use.
3220   if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
3221       RD->getMSVtorDispMode() == MSVtorDispMode::Never)
3222     return;
3223   // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
3224   // possible for a partially constructed object with virtual base overrides to
3225   // escape a non-trivial constructor.
3226   assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride);
3227   // Compute a set of base classes which define methods we override.  A virtual
3228   // base in this set will require a vtordisp.  A virtual base that transitively
3229   // contains one of these bases as a non-virtual base will also require a
3230   // vtordisp.
3231   llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
3232   llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
3233   // Seed the working set with our non-destructor, non-pure virtual methods.
3234   for (const CXXMethodDecl *MD : RD->methods())
3235     if (MicrosoftVTableContext::hasVtableSlot(MD) &&
3236         !isa<CXXDestructorDecl>(MD) && !MD->isPure())
3237       Work.insert(MD);
3238   while (!Work.empty()) {
3239     const CXXMethodDecl *MD = *Work.begin();
3240     auto MethodRange = MD->overridden_methods();
3241     // If a virtual method has no-overrides it lives in its parent's vtable.
3242     if (MethodRange.begin() == MethodRange.end())
3243       BasesWithOverriddenMethods.insert(MD->getParent());
3244     else
3245       Work.insert(MethodRange.begin(), MethodRange.end());
3246     // We've finished processing this element, remove it from the working set.
3247     Work.erase(MD);
3248   }
3249   // For each of our virtual bases, check if it is in the set of overridden
3250   // bases or if it transitively contains a non-virtual base that is.
3251   for (const CXXBaseSpecifier &Base : RD->vbases()) {
3252     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
3253     if (!HasVtordispSet.count(BaseDecl) &&
3254         RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
3255       HasVtordispSet.insert(BaseDecl);
3256   }
3257 }
3258 
3259 /// getASTRecordLayout - Get or compute information about the layout of the
3260 /// specified record (struct/union/class), which indicates its size and field
3261 /// position information.
3262 const ASTRecordLayout &
3263 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
3264   // These asserts test different things.  A record has a definition
3265   // as soon as we begin to parse the definition.  That definition is
3266   // not a complete definition (which is what isDefinition() tests)
3267   // until we *finish* parsing the definition.
3268 
3269   if (D->hasExternalLexicalStorage() && !D->getDefinition())
3270     getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
3271 
3272   D = D->getDefinition();
3273   assert(D && "Cannot get layout of forward declarations!");
3274   assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
3275   assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
3276 
3277   // Look up this layout, if already laid out, return what we have.
3278   // Note that we can't save a reference to the entry because this function
3279   // is recursive.
3280   const ASTRecordLayout *Entry = ASTRecordLayouts[D];
3281   if (Entry) return *Entry;
3282 
3283   const ASTRecordLayout *NewEntry = nullptr;
3284 
3285   if (isMsLayout(*this)) {
3286     MicrosoftRecordLayoutBuilder Builder(*this);
3287     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3288       Builder.cxxLayout(RD);
3289       NewEntry = new (*this) ASTRecordLayout(
3290           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3291           Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr,
3292           Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset,
3293           Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize,
3294           Builder.Alignment, Builder.Alignment, CharUnits::Zero(),
3295           Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
3296           Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
3297           Builder.Bases, Builder.VBases);
3298     } else {
3299       Builder.layout(D);
3300       NewEntry = new (*this) ASTRecordLayout(
3301           *this, Builder.Size, Builder.Alignment, Builder.Alignment,
3302           Builder.Alignment, Builder.RequiredAlignment, Builder.Size,
3303           Builder.FieldOffsets);
3304     }
3305   } else {
3306     if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
3307       EmptySubobjectMap EmptySubobjects(*this, RD);
3308       ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
3309       Builder.Layout(RD);
3310 
3311       // In certain situations, we are allowed to lay out objects in the
3312       // tail-padding of base classes.  This is ABI-dependent.
3313       // FIXME: this should be stored in the record layout.
3314       bool skipTailPadding =
3315           mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
3316 
3317       // FIXME: This should be done in FinalizeLayout.
3318       CharUnits DataSize =
3319           skipTailPadding ? Builder.getSize() : Builder.getDataSize();
3320       CharUnits NonVirtualSize =
3321           skipTailPadding ? DataSize : Builder.NonVirtualSize;
3322       NewEntry = new (*this) ASTRecordLayout(
3323           *this, Builder.getSize(), Builder.Alignment,
3324           Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3325           /*RequiredAlignment : used by MS-ABI)*/
3326           Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
3327           CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
3328           NonVirtualSize, Builder.NonVirtualAlignment,
3329           Builder.PreferredNVAlignment,
3330           EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
3331           Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
3332           Builder.VBases);
3333     } else {
3334       ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3335       Builder.Layout(D);
3336 
3337       NewEntry = new (*this) ASTRecordLayout(
3338           *this, Builder.getSize(), Builder.Alignment,
3339           Builder.PreferredAlignment, Builder.UnadjustedAlignment,
3340           /*RequiredAlignment : used by MS-ABI)*/
3341           Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
3342     }
3343   }
3344 
3345   ASTRecordLayouts[D] = NewEntry;
3346 
3347   if (getLangOpts().DumpRecordLayouts) {
3348     llvm::outs() << "\n*** Dumping AST Record Layout\n";
3349     DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3350   }
3351 
3352   return *NewEntry;
3353 }
3354 
3355 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3356   if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3357     return nullptr;
3358 
3359   assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3360   RD = RD->getDefinition();
3361 
3362   // Beware:
3363   //  1) computing the key function might trigger deserialization, which might
3364   //     invalidate iterators into KeyFunctions
3365   //  2) 'get' on the LazyDeclPtr might also trigger deserialization and
3366   //     invalidate the LazyDeclPtr within the map itself
3367   LazyDeclPtr Entry = KeyFunctions[RD];
3368   const Decl *Result =
3369       Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3370 
3371   // Store it back if it changed.
3372   if (Entry.isOffset() || Entry.isValid() != bool(Result))
3373     KeyFunctions[RD] = const_cast<Decl*>(Result);
3374 
3375   return cast_or_null<CXXMethodDecl>(Result);
3376 }
3377 
3378 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3379   assert(Method == Method->getFirstDecl() &&
3380          "not working with method declaration from class definition");
3381 
3382   // Look up the cache entry.  Since we're working with the first
3383   // declaration, its parent must be the class definition, which is
3384   // the correct key for the KeyFunctions hash.
3385   const auto &Map = KeyFunctions;
3386   auto I = Map.find(Method->getParent());
3387 
3388   // If it's not cached, there's nothing to do.
3389   if (I == Map.end()) return;
3390 
3391   // If it is cached, check whether it's the target method, and if so,
3392   // remove it from the cache. Note, the call to 'get' might invalidate
3393   // the iterator and the LazyDeclPtr object within the map.
3394   LazyDeclPtr Ptr = I->second;
3395   if (Ptr.get(getExternalSource()) == Method) {
3396     // FIXME: remember that we did this for module / chained PCH state?
3397     KeyFunctions.erase(Method->getParent());
3398   }
3399 }
3400 
3401 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3402   const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3403   return Layout.getFieldOffset(FD->getFieldIndex());
3404 }
3405 
3406 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3407   uint64_t OffsetInBits;
3408   if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3409     OffsetInBits = ::getFieldOffset(*this, FD);
3410   } else {
3411     const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3412 
3413     OffsetInBits = 0;
3414     for (const NamedDecl *ND : IFD->chain())
3415       OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3416   }
3417 
3418   return OffsetInBits;
3419 }
3420 
3421 uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
3422                                           const ObjCImplementationDecl *ID,
3423                                           const ObjCIvarDecl *Ivar) const {
3424   Ivar = Ivar->getCanonicalDecl();
3425   const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
3426 
3427   // FIXME: We should eliminate the need to have ObjCImplementationDecl passed
3428   // in here; it should never be necessary because that should be the lexical
3429   // decl context for the ivar.
3430 
3431   // If we know have an implementation (and the ivar is in it) then
3432   // look up in the implementation layout.
3433   const ASTRecordLayout *RL;
3434   if (ID && declaresSameEntity(ID->getClassInterface(), Container))
3435     RL = &getASTObjCImplementationLayout(ID);
3436   else
3437     RL = &getASTObjCInterfaceLayout(Container);
3438 
3439   // Compute field index.
3440   //
3441   // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is
3442   // implemented. This should be fixed to get the information from the layout
3443   // directly.
3444   unsigned Index = 0;
3445 
3446   for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin();
3447        IVD; IVD = IVD->getNextIvar()) {
3448     if (Ivar == IVD)
3449       break;
3450     ++Index;
3451   }
3452   assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!");
3453 
3454   return RL->getFieldOffset(Index);
3455 }
3456 
3457 /// getObjCLayout - Get or compute information about the layout of the
3458 /// given interface.
3459 ///
3460 /// \param Impl - If given, also include the layout of the interface's
3461 /// implementation. This may differ by including synthesized ivars.
3462 const ASTRecordLayout &
3463 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3464                           const ObjCImplementationDecl *Impl) const {
3465   // Retrieve the definition
3466   if (D->hasExternalLexicalStorage() && !D->getDefinition())
3467     getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3468   D = D->getDefinition();
3469   assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() &&
3470          "Invalid interface decl!");
3471 
3472   // Look up this layout, if already laid out, return what we have.
3473   const ObjCContainerDecl *Key =
3474     Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3475   if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3476     return *Entry;
3477 
3478   // Add in synthesized ivar count if laying out an implementation.
3479   if (Impl) {
3480     unsigned SynthCount = CountNonClassIvars(D);
3481     // If there aren't any synthesized ivars then reuse the interface
3482     // entry. Note we can't cache this because we simply free all
3483     // entries later; however we shouldn't look up implementations
3484     // frequently.
3485     if (SynthCount == 0)
3486       return getObjCLayout(D, nullptr);
3487   }
3488 
3489   ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3490   Builder.Layout(D);
3491 
3492   const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout(
3493       *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment,
3494       Builder.UnadjustedAlignment,
3495       /*RequiredAlignment : used by MS-ABI)*/
3496       Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets);
3497 
3498   ObjCLayouts[Key] = NewEntry;
3499 
3500   return *NewEntry;
3501 }
3502 
3503 static void PrintOffset(raw_ostream &OS,
3504                         CharUnits Offset, unsigned IndentLevel) {
3505   OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3506   OS.indent(IndentLevel * 2);
3507 }
3508 
3509 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3510                                 unsigned Begin, unsigned Width,
3511                                 unsigned IndentLevel) {
3512   llvm::SmallString<10> Buffer;
3513   {
3514     llvm::raw_svector_ostream BufferOS(Buffer);
3515     BufferOS << Offset.getQuantity() << ':';
3516     if (Width == 0) {
3517       BufferOS << '-';
3518     } else {
3519       BufferOS << Begin << '-' << (Begin + Width - 1);
3520     }
3521   }
3522 
3523   OS << llvm::right_justify(Buffer, 10) << " | ";
3524   OS.indent(IndentLevel * 2);
3525 }
3526 
3527 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3528   OS << "           | ";
3529   OS.indent(IndentLevel * 2);
3530 }
3531 
3532 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3533                              const ASTContext &C,
3534                              CharUnits Offset,
3535                              unsigned IndentLevel,
3536                              const char* Description,
3537                              bool PrintSizeInfo,
3538                              bool IncludeVirtualBases) {
3539   const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3540   auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3541 
3542   PrintOffset(OS, Offset, IndentLevel);
3543   OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
3544   if (Description)
3545     OS << ' ' << Description;
3546   if (CXXRD && CXXRD->isEmpty())
3547     OS << " (empty)";
3548   OS << '\n';
3549 
3550   IndentLevel++;
3551 
3552   // Dump bases.
3553   if (CXXRD) {
3554     const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3555     bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3556     bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3557 
3558     // Vtable pointer.
3559     if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3560       PrintOffset(OS, Offset, IndentLevel);
3561       OS << '(' << *RD << " vtable pointer)\n";
3562     } else if (HasOwnVFPtr) {
3563       PrintOffset(OS, Offset, IndentLevel);
3564       // vfptr (for Microsoft C++ ABI)
3565       OS << '(' << *RD << " vftable pointer)\n";
3566     }
3567 
3568     // Collect nvbases.
3569     SmallVector<const CXXRecordDecl *, 4> Bases;
3570     for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3571       assert(!Base.getType()->isDependentType() &&
3572              "Cannot layout class with dependent bases.");
3573       if (!Base.isVirtual())
3574         Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3575     }
3576 
3577     // Sort nvbases by offset.
3578     llvm::stable_sort(
3579         Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3580           return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3581         });
3582 
3583     // Dump (non-virtual) bases
3584     for (const CXXRecordDecl *Base : Bases) {
3585       CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3586       DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3587                        Base == PrimaryBase ? "(primary base)" : "(base)",
3588                        /*PrintSizeInfo=*/false,
3589                        /*IncludeVirtualBases=*/false);
3590     }
3591 
3592     // vbptr (for Microsoft C++ ABI)
3593     if (HasOwnVBPtr) {
3594       PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3595       OS << '(' << *RD << " vbtable pointer)\n";
3596     }
3597   }
3598 
3599   // Dump fields.
3600   uint64_t FieldNo = 0;
3601   for (RecordDecl::field_iterator I = RD->field_begin(),
3602          E = RD->field_end(); I != E; ++I, ++FieldNo) {
3603     const FieldDecl &Field = **I;
3604     uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3605     CharUnits FieldOffset =
3606       Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3607 
3608     // Recursively dump fields of record type.
3609     if (auto RT = Field.getType()->getAs<RecordType>()) {
3610       DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3611                        Field.getName().data(),
3612                        /*PrintSizeInfo=*/false,
3613                        /*IncludeVirtualBases=*/true);
3614       continue;
3615     }
3616 
3617     if (Field.isBitField()) {
3618       uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3619       unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3620       unsigned Width = Field.getBitWidthValue(C);
3621       PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3622     } else {
3623       PrintOffset(OS, FieldOffset, IndentLevel);
3624     }
3625     const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical
3626                                     ? Field.getType().getCanonicalType()
3627                                     : Field.getType();
3628     OS << FieldType.getAsString() << ' ' << Field << '\n';
3629   }
3630 
3631   // Dump virtual bases.
3632   if (CXXRD && IncludeVirtualBases) {
3633     const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3634       Layout.getVBaseOffsetsMap();
3635 
3636     for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3637       assert(Base.isVirtual() && "Found non-virtual class!");
3638       const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3639 
3640       CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3641 
3642       if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3643         PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3644         OS << "(vtordisp for vbase " << *VBase << ")\n";
3645       }
3646 
3647       DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3648                        VBase == Layout.getPrimaryBase() ?
3649                          "(primary virtual base)" : "(virtual base)",
3650                        /*PrintSizeInfo=*/false,
3651                        /*IncludeVirtualBases=*/false);
3652     }
3653   }
3654 
3655   if (!PrintSizeInfo) return;
3656 
3657   PrintIndentNoOffset(OS, IndentLevel - 1);
3658   OS << "[sizeof=" << Layout.getSize().getQuantity();
3659   if (CXXRD && !isMsLayout(C))
3660     OS << ", dsize=" << Layout.getDataSize().getQuantity();
3661   OS << ", align=" << Layout.getAlignment().getQuantity();
3662   if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3663     OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity();
3664 
3665   if (CXXRD) {
3666     OS << ",\n";
3667     PrintIndentNoOffset(OS, IndentLevel - 1);
3668     OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3669     OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3670     if (C.getTargetInfo().defaultsToAIXPowerAlignment())
3671       OS << ", preferrednvalign="
3672          << Layout.getPreferredNVAlignment().getQuantity();
3673   }
3674   OS << "]\n";
3675 }
3676 
3677 void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
3678                                   bool Simple) const {
3679   if (!Simple) {
3680     ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3681                        /*PrintSizeInfo*/ true,
3682                        /*IncludeVirtualBases=*/true);
3683     return;
3684   }
3685 
3686   // The "simple" format is designed to be parsed by the
3687   // layout-override testing code.  There shouldn't be any external
3688   // uses of this format --- when LLDB overrides a layout, it sets up
3689   // the data structures directly --- so feel free to adjust this as
3690   // you like as long as you also update the rudimentary parser for it
3691   // in libFrontend.
3692 
3693   const ASTRecordLayout &Info = getASTRecordLayout(RD);
3694   OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3695   OS << "\nLayout: ";
3696   OS << "<ASTRecordLayout\n";
3697   OS << "  Size:" << toBits(Info.getSize()) << "\n";
3698   if (!isMsLayout(*this))
3699     OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n";
3700   OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n";
3701   if (Target->defaultsToAIXPowerAlignment())
3702     OS << "  PreferredAlignment:" << toBits(Info.getPreferredAlignment())
3703        << "\n";
3704   OS << "  FieldOffsets: [";
3705   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3706     if (i)
3707       OS << ", ";
3708     OS << Info.getFieldOffset(i);
3709   }
3710   OS << "]>\n";
3711 }
3712