1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Implements C++ name mangling according to the Itanium C++ ABI, 10 // which is used in GCC 3.2 and newer (and many compilers that are 11 // ABI-compatible with GCC): 12 // 13 // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclOpenMP.h" 23 #include "clang/AST/DeclTemplate.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprConcepts.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/TypeLoc.h" 30 #include "clang/Basic/ABI.h" 31 #include "clang/Basic/Module.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/Thunk.h" 35 #include "llvm/ADT/StringExtras.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 39 using namespace clang; 40 41 namespace { 42 43 static bool isLocalContainerContext(const DeclContext *DC) { 44 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC); 45 } 46 47 static const FunctionDecl *getStructor(const FunctionDecl *fn) { 48 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) 49 return ftd->getTemplatedDecl(); 50 51 return fn; 52 } 53 54 static const NamedDecl *getStructor(const NamedDecl *decl) { 55 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl); 56 return (fn ? getStructor(fn) : decl); 57 } 58 59 static bool isLambda(const NamedDecl *ND) { 60 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND); 61 if (!Record) 62 return false; 63 64 return Record->isLambda(); 65 } 66 67 static const unsigned UnknownArity = ~0U; 68 69 class ItaniumMangleContextImpl : public ItaniumMangleContext { 70 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy; 71 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator; 72 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; 73 const DiscriminatorOverrideTy DiscriminatorOverride = nullptr; 74 NamespaceDecl *StdNamespace = nullptr; 75 76 bool NeedsUniqueInternalLinkageNames = false; 77 78 public: 79 explicit ItaniumMangleContextImpl( 80 ASTContext &Context, DiagnosticsEngine &Diags, 81 DiscriminatorOverrideTy DiscriminatorOverride) 82 : ItaniumMangleContext(Context, Diags), 83 DiscriminatorOverride(DiscriminatorOverride) {} 84 85 /// @name Mangler Entry Points 86 /// @{ 87 88 bool shouldMangleCXXName(const NamedDecl *D) override; 89 bool shouldMangleStringLiteral(const StringLiteral *) override { 90 return false; 91 } 92 93 bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override; 94 void needsUniqueInternalLinkageNames() override { 95 NeedsUniqueInternalLinkageNames = true; 96 } 97 98 void mangleCXXName(GlobalDecl GD, raw_ostream &) override; 99 void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, 100 raw_ostream &) override; 101 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, 102 const ThisAdjustment &ThisAdjustment, 103 raw_ostream &) override; 104 void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber, 105 raw_ostream &) override; 106 void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override; 107 void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override; 108 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, 109 const CXXRecordDecl *Type, raw_ostream &) override; 110 void mangleCXXRTTI(QualType T, raw_ostream &) override; 111 void mangleCXXRTTIName(QualType T, raw_ostream &) override; 112 void mangleTypeName(QualType T, raw_ostream &) override; 113 114 void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override; 115 void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override; 116 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override; 117 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override; 118 void mangleDynamicAtExitDestructor(const VarDecl *D, 119 raw_ostream &Out) override; 120 void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override; 121 void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl, 122 raw_ostream &Out) override; 123 void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl, 124 raw_ostream &Out) override; 125 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override; 126 void mangleItaniumThreadLocalWrapper(const VarDecl *D, 127 raw_ostream &) override; 128 129 void mangleStringLiteral(const StringLiteral *, raw_ostream &) override; 130 131 void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override; 132 133 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { 134 // Lambda closure types are already numbered. 135 if (isLambda(ND)) 136 return false; 137 138 // Anonymous tags are already numbered. 139 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) { 140 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl()) 141 return false; 142 } 143 144 // Use the canonical number for externally visible decls. 145 if (ND->isExternallyVisible()) { 146 unsigned discriminator = getASTContext().getManglingNumber(ND); 147 if (discriminator == 1) 148 return false; 149 disc = discriminator - 2; 150 return true; 151 } 152 153 // Make up a reasonable number for internal decls. 154 unsigned &discriminator = Uniquifier[ND]; 155 if (!discriminator) { 156 const DeclContext *DC = getEffectiveDeclContext(ND); 157 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())]; 158 } 159 if (discriminator == 1) 160 return false; 161 disc = discriminator-2; 162 return true; 163 } 164 165 std::string getLambdaString(const CXXRecordDecl *Lambda) override { 166 // This function matches the one in MicrosoftMangle, which returns 167 // the string that is used in lambda mangled names. 168 assert(Lambda->isLambda() && "RD must be a lambda!"); 169 std::string Name("<lambda"); 170 Decl *LambdaContextDecl = Lambda->getLambdaContextDecl(); 171 unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber(); 172 unsigned LambdaId; 173 const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl); 174 const FunctionDecl *Func = 175 Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr; 176 177 if (Func) { 178 unsigned DefaultArgNo = 179 Func->getNumParams() - Parm->getFunctionScopeIndex(); 180 Name += llvm::utostr(DefaultArgNo); 181 Name += "_"; 182 } 183 184 if (LambdaManglingNumber) 185 LambdaId = LambdaManglingNumber; 186 else 187 LambdaId = getAnonymousStructIdForDebugInfo(Lambda); 188 189 Name += llvm::utostr(LambdaId); 190 Name += '>'; 191 return Name; 192 } 193 194 DiscriminatorOverrideTy getDiscriminatorOverride() const override { 195 return DiscriminatorOverride; 196 } 197 198 NamespaceDecl *getStdNamespace(); 199 200 const DeclContext *getEffectiveDeclContext(const Decl *D); 201 const DeclContext *getEffectiveParentContext(const DeclContext *DC) { 202 return getEffectiveDeclContext(cast<Decl>(DC)); 203 } 204 205 bool isInternalLinkageDecl(const NamedDecl *ND); 206 const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC); 207 208 /// @} 209 }; 210 211 /// Manage the mangling of a single name. 212 class CXXNameMangler { 213 ItaniumMangleContextImpl &Context; 214 raw_ostream &Out; 215 bool NullOut = false; 216 /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated. 217 /// This mode is used when mangler creates another mangler recursively to 218 /// calculate ABI tags for the function return value or the variable type. 219 /// Also it is required to avoid infinite recursion in some cases. 220 bool DisableDerivedAbiTags = false; 221 222 /// The "structor" is the top-level declaration being mangled, if 223 /// that's not a template specialization; otherwise it's the pattern 224 /// for that specialization. 225 const NamedDecl *Structor; 226 unsigned StructorType; 227 228 /// The next substitution sequence number. 229 unsigned SeqID; 230 231 class FunctionTypeDepthState { 232 unsigned Bits; 233 234 enum { InResultTypeMask = 1 }; 235 236 public: 237 FunctionTypeDepthState() : Bits(0) {} 238 239 /// The number of function types we're inside. 240 unsigned getDepth() const { 241 return Bits >> 1; 242 } 243 244 /// True if we're in the return type of the innermost function type. 245 bool isInResultType() const { 246 return Bits & InResultTypeMask; 247 } 248 249 FunctionTypeDepthState push() { 250 FunctionTypeDepthState tmp = *this; 251 Bits = (Bits & ~InResultTypeMask) + 2; 252 return tmp; 253 } 254 255 void enterResultType() { 256 Bits |= InResultTypeMask; 257 } 258 259 void leaveResultType() { 260 Bits &= ~InResultTypeMask; 261 } 262 263 void pop(FunctionTypeDepthState saved) { 264 assert(getDepth() == saved.getDepth() + 1); 265 Bits = saved.Bits; 266 } 267 268 } FunctionTypeDepth; 269 270 // abi_tag is a gcc attribute, taking one or more strings called "tags". 271 // The goal is to annotate against which version of a library an object was 272 // built and to be able to provide backwards compatibility ("dual abi"). 273 // For more information see docs/ItaniumMangleAbiTags.rst. 274 typedef SmallVector<StringRef, 4> AbiTagList; 275 276 // State to gather all implicit and explicit tags used in a mangled name. 277 // Must always have an instance of this while emitting any name to keep 278 // track. 279 class AbiTagState final { 280 public: 281 explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) { 282 Parent = LinkHead; 283 LinkHead = this; 284 } 285 286 // No copy, no move. 287 AbiTagState(const AbiTagState &) = delete; 288 AbiTagState &operator=(const AbiTagState &) = delete; 289 290 ~AbiTagState() { pop(); } 291 292 void write(raw_ostream &Out, const NamedDecl *ND, 293 const AbiTagList *AdditionalAbiTags) { 294 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 295 if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) { 296 assert( 297 !AdditionalAbiTags && 298 "only function and variables need a list of additional abi tags"); 299 if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) { 300 if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) { 301 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 302 AbiTag->tags().end()); 303 } 304 // Don't emit abi tags for namespaces. 305 return; 306 } 307 } 308 309 AbiTagList TagList; 310 if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) { 311 UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(), 312 AbiTag->tags().end()); 313 TagList.insert(TagList.end(), AbiTag->tags().begin(), 314 AbiTag->tags().end()); 315 } 316 317 if (AdditionalAbiTags) { 318 UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(), 319 AdditionalAbiTags->end()); 320 TagList.insert(TagList.end(), AdditionalAbiTags->begin(), 321 AdditionalAbiTags->end()); 322 } 323 324 llvm::sort(TagList); 325 TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end()); 326 327 writeSortedUniqueAbiTags(Out, TagList); 328 } 329 330 const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; } 331 void setUsedAbiTags(const AbiTagList &AbiTags) { 332 UsedAbiTags = AbiTags; 333 } 334 335 const AbiTagList &getEmittedAbiTags() const { 336 return EmittedAbiTags; 337 } 338 339 const AbiTagList &getSortedUniqueUsedAbiTags() { 340 llvm::sort(UsedAbiTags); 341 UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()), 342 UsedAbiTags.end()); 343 return UsedAbiTags; 344 } 345 346 private: 347 //! All abi tags used implicitly or explicitly. 348 AbiTagList UsedAbiTags; 349 //! All explicit abi tags (i.e. not from namespace). 350 AbiTagList EmittedAbiTags; 351 352 AbiTagState *&LinkHead; 353 AbiTagState *Parent = nullptr; 354 355 void pop() { 356 assert(LinkHead == this && 357 "abi tag link head must point to us on destruction"); 358 if (Parent) { 359 Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(), 360 UsedAbiTags.begin(), UsedAbiTags.end()); 361 Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(), 362 EmittedAbiTags.begin(), 363 EmittedAbiTags.end()); 364 } 365 LinkHead = Parent; 366 } 367 368 void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) { 369 for (const auto &Tag : AbiTags) { 370 EmittedAbiTags.push_back(Tag); 371 Out << "B"; 372 Out << Tag.size(); 373 Out << Tag; 374 } 375 } 376 }; 377 378 AbiTagState *AbiTags = nullptr; 379 AbiTagState AbiTagsRoot; 380 381 llvm::DenseMap<uintptr_t, unsigned> Substitutions; 382 llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions; 383 384 ASTContext &getASTContext() const { return Context.getASTContext(); } 385 386 bool isStd(const NamespaceDecl *NS); 387 bool isStdNamespace(const DeclContext *DC); 388 389 const RecordDecl *GetLocalClassDecl(const Decl *D); 390 const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC); 391 bool isSpecializedAs(QualType S, llvm::StringRef Name, QualType A); 392 bool isStdCharSpecialization(const ClassTemplateSpecializationDecl *SD, 393 llvm::StringRef Name, bool HasAllocator); 394 395 public: 396 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 397 const NamedDecl *D = nullptr, bool NullOut_ = false) 398 : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)), 399 StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) { 400 // These can't be mangled without a ctor type or dtor type. 401 assert(!D || (!isa<CXXDestructorDecl>(D) && 402 !isa<CXXConstructorDecl>(D))); 403 } 404 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 405 const CXXConstructorDecl *D, CXXCtorType Type) 406 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 407 SeqID(0), AbiTagsRoot(AbiTags) { } 408 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_, 409 const CXXDestructorDecl *D, CXXDtorType Type) 410 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), 411 SeqID(0), AbiTagsRoot(AbiTags) { } 412 413 CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_) 414 : Context(Outer.Context), Out(Out_), NullOut(false), 415 Structor(Outer.Structor), StructorType(Outer.StructorType), 416 SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), 417 AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} 418 419 CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_) 420 : Context(Outer.Context), Out(Out_), NullOut(true), 421 Structor(Outer.Structor), StructorType(Outer.StructorType), 422 SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth), 423 AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {} 424 425 raw_ostream &getStream() { return Out; } 426 427 void disableDerivedAbiTags() { DisableDerivedAbiTags = true; } 428 static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD); 429 430 void mangle(GlobalDecl GD); 431 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); 432 void mangleNumber(const llvm::APSInt &I); 433 void mangleNumber(int64_t Number); 434 void mangleFloat(const llvm::APFloat &F); 435 void mangleFunctionEncoding(GlobalDecl GD); 436 void mangleSeqID(unsigned SeqID); 437 void mangleName(GlobalDecl GD); 438 void mangleType(QualType T); 439 void mangleNameOrStandardSubstitution(const NamedDecl *ND); 440 void mangleLambdaSig(const CXXRecordDecl *Lambda); 441 442 private: 443 444 bool mangleSubstitution(const NamedDecl *ND); 445 bool mangleSubstitution(QualType T); 446 bool mangleSubstitution(TemplateName Template); 447 bool mangleSubstitution(uintptr_t Ptr); 448 449 void mangleExistingSubstitution(TemplateName name); 450 451 bool mangleStandardSubstitution(const NamedDecl *ND); 452 453 void addSubstitution(const NamedDecl *ND) { 454 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 455 456 addSubstitution(reinterpret_cast<uintptr_t>(ND)); 457 } 458 void addSubstitution(QualType T); 459 void addSubstitution(TemplateName Template); 460 void addSubstitution(uintptr_t Ptr); 461 // Destructive copy substitutions from other mangler. 462 void extendSubstitutions(CXXNameMangler* Other); 463 464 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 465 bool recursive = false); 466 void mangleUnresolvedName(NestedNameSpecifier *qualifier, 467 DeclarationName name, 468 const TemplateArgumentLoc *TemplateArgs, 469 unsigned NumTemplateArgs, 470 unsigned KnownArity = UnknownArity); 471 472 void mangleFunctionEncodingBareType(const FunctionDecl *FD); 473 474 void mangleNameWithAbiTags(GlobalDecl GD, 475 const AbiTagList *AdditionalAbiTags); 476 void mangleModuleName(const Module *M); 477 void mangleModuleNamePrefix(StringRef Name); 478 void mangleTemplateName(const TemplateDecl *TD, 479 const TemplateArgument *TemplateArgs, 480 unsigned NumTemplateArgs); 481 void mangleUnqualifiedName(GlobalDecl GD, 482 const AbiTagList *AdditionalAbiTags) { 483 mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity, 484 AdditionalAbiTags); 485 } 486 void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name, 487 unsigned KnownArity, 488 const AbiTagList *AdditionalAbiTags); 489 void mangleUnscopedName(GlobalDecl GD, 490 const AbiTagList *AdditionalAbiTags); 491 void mangleUnscopedTemplateName(GlobalDecl GD, 492 const AbiTagList *AdditionalAbiTags); 493 void mangleSourceName(const IdentifierInfo *II); 494 void mangleRegCallName(const IdentifierInfo *II); 495 void mangleDeviceStubName(const IdentifierInfo *II); 496 void mangleSourceNameWithAbiTags( 497 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr); 498 void mangleLocalName(GlobalDecl GD, 499 const AbiTagList *AdditionalAbiTags); 500 void mangleBlockForPrefix(const BlockDecl *Block); 501 void mangleUnqualifiedBlock(const BlockDecl *Block); 502 void mangleTemplateParamDecl(const NamedDecl *Decl); 503 void mangleLambda(const CXXRecordDecl *Lambda); 504 void mangleNestedName(GlobalDecl GD, const DeclContext *DC, 505 const AbiTagList *AdditionalAbiTags, 506 bool NoFunction=false); 507 void mangleNestedName(const TemplateDecl *TD, 508 const TemplateArgument *TemplateArgs, 509 unsigned NumTemplateArgs); 510 void mangleNestedNameWithClosurePrefix(GlobalDecl GD, 511 const NamedDecl *PrefixND, 512 const AbiTagList *AdditionalAbiTags); 513 void manglePrefix(NestedNameSpecifier *qualifier); 514 void manglePrefix(const DeclContext *DC, bool NoFunction=false); 515 void manglePrefix(QualType type); 516 void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false); 517 void mangleTemplatePrefix(TemplateName Template); 518 const NamedDecl *getClosurePrefix(const Decl *ND); 519 void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false); 520 bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType, 521 StringRef Prefix = ""); 522 void mangleOperatorName(DeclarationName Name, unsigned Arity); 523 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); 524 void mangleVendorQualifier(StringRef qualifier); 525 void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr); 526 void mangleRefQualifier(RefQualifierKind RefQualifier); 527 528 void mangleObjCMethodName(const ObjCMethodDecl *MD); 529 530 // Declare manglers for every type class. 531 #define ABSTRACT_TYPE(CLASS, PARENT) 532 #define NON_CANONICAL_TYPE(CLASS, PARENT) 533 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); 534 #include "clang/AST/TypeNodes.inc" 535 536 void mangleType(const TagType*); 537 void mangleType(TemplateName); 538 static StringRef getCallingConvQualifierName(CallingConv CC); 539 void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info); 540 void mangleExtFunctionInfo(const FunctionType *T); 541 void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType, 542 const FunctionDecl *FD = nullptr); 543 void mangleNeonVectorType(const VectorType *T); 544 void mangleNeonVectorType(const DependentVectorType *T); 545 void mangleAArch64NeonVectorType(const VectorType *T); 546 void mangleAArch64NeonVectorType(const DependentVectorType *T); 547 void mangleAArch64FixedSveVectorType(const VectorType *T); 548 void mangleAArch64FixedSveVectorType(const DependentVectorType *T); 549 550 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); 551 void mangleFloatLiteral(QualType T, const llvm::APFloat &V); 552 void mangleFixedPointLiteral(); 553 void mangleNullPointer(QualType T); 554 555 void mangleMemberExprBase(const Expr *base, bool isArrow); 556 void mangleMemberExpr(const Expr *base, bool isArrow, 557 NestedNameSpecifier *qualifier, 558 NamedDecl *firstQualifierLookup, 559 DeclarationName name, 560 const TemplateArgumentLoc *TemplateArgs, 561 unsigned NumTemplateArgs, 562 unsigned knownArity); 563 void mangleCastExpression(const Expr *E, StringRef CastEncoding); 564 void mangleInitListElements(const InitListExpr *InitList); 565 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity, 566 bool AsTemplateArg = false); 567 void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom); 568 void mangleCXXDtorType(CXXDtorType T); 569 570 void mangleTemplateArgs(TemplateName TN, 571 const TemplateArgumentLoc *TemplateArgs, 572 unsigned NumTemplateArgs); 573 void mangleTemplateArgs(TemplateName TN, const TemplateArgument *TemplateArgs, 574 unsigned NumTemplateArgs); 575 void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL); 576 void mangleTemplateArg(TemplateArgument A, bool NeedExactType); 577 void mangleTemplateArgExpr(const Expr *E); 578 void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel, 579 bool NeedExactType = false); 580 581 void mangleTemplateParameter(unsigned Depth, unsigned Index); 582 583 void mangleFunctionParam(const ParmVarDecl *parm); 584 585 void writeAbiTags(const NamedDecl *ND, 586 const AbiTagList *AdditionalAbiTags); 587 588 // Returns sorted unique list of ABI tags. 589 AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD); 590 // Returns sorted unique list of ABI tags. 591 AbiTagList makeVariableTypeTags(const VarDecl *VD); 592 }; 593 594 } 595 596 NamespaceDecl *ItaniumMangleContextImpl::getStdNamespace() { 597 if (!StdNamespace) { 598 StdNamespace = NamespaceDecl::Create( 599 getASTContext(), getASTContext().getTranslationUnitDecl(), 600 /*Inline*/ false, SourceLocation(), SourceLocation(), 601 &getASTContext().Idents.get("std"), 602 /*PrevDecl*/ nullptr); 603 StdNamespace->setImplicit(); 604 } 605 return StdNamespace; 606 } 607 608 /// Retrieve the declaration context that should be used when mangling the given 609 /// declaration. 610 const DeclContext * 611 ItaniumMangleContextImpl::getEffectiveDeclContext(const Decl *D) { 612 // The ABI assumes that lambda closure types that occur within 613 // default arguments live in the context of the function. However, due to 614 // the way in which Clang parses and creates function declarations, this is 615 // not the case: the lambda closure type ends up living in the context 616 // where the function itself resides, because the function declaration itself 617 // had not yet been created. Fix the context here. 618 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { 619 if (RD->isLambda()) 620 if (ParmVarDecl *ContextParam = 621 dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) 622 return ContextParam->getDeclContext(); 623 } 624 625 // Perform the same check for block literals. 626 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 627 if (ParmVarDecl *ContextParam = 628 dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) 629 return ContextParam->getDeclContext(); 630 } 631 632 // On ARM and AArch64, the va_list tag is always mangled as if in the std 633 // namespace. We do not represent va_list as actually being in the std 634 // namespace in C because this would result in incorrect debug info in C, 635 // among other things. It is important for both languages to have the same 636 // mangling in order for -fsanitize=cfi-icall to work. 637 if (D == getASTContext().getVaListTagDecl()) { 638 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 639 if (T.isARM() || T.isThumb() || T.isAArch64()) 640 return getStdNamespace(); 641 } 642 643 const DeclContext *DC = D->getDeclContext(); 644 if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) || 645 isa<OMPDeclareMapperDecl>(DC)) { 646 return getEffectiveDeclContext(cast<Decl>(DC)); 647 } 648 649 if (const auto *VD = dyn_cast<VarDecl>(D)) 650 if (VD->isExternC()) 651 return getASTContext().getTranslationUnitDecl(); 652 653 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 654 if (FD->isExternC()) 655 return getASTContext().getTranslationUnitDecl(); 656 657 return DC->getRedeclContext(); 658 } 659 660 bool ItaniumMangleContextImpl::isInternalLinkageDecl(const NamedDecl *ND) { 661 if (ND && ND->getFormalLinkage() == InternalLinkage && 662 !ND->isExternallyVisible() && 663 getEffectiveDeclContext(ND)->isFileContext() && 664 !ND->isInAnonymousNamespace()) 665 return true; 666 return false; 667 } 668 669 // Check if this Function Decl needs a unique internal linkage name. 670 bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl( 671 const NamedDecl *ND) { 672 if (!NeedsUniqueInternalLinkageNames || !ND) 673 return false; 674 675 const auto *FD = dyn_cast<FunctionDecl>(ND); 676 if (!FD) 677 return false; 678 679 // For C functions without prototypes, return false as their 680 // names should not be mangled. 681 if (!FD->getType()->getAs<FunctionProtoType>()) 682 return false; 683 684 if (isInternalLinkageDecl(ND)) 685 return true; 686 687 return false; 688 } 689 690 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) { 691 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 692 LanguageLinkage L = FD->getLanguageLinkage(); 693 // Overloadable functions need mangling. 694 if (FD->hasAttr<OverloadableAttr>()) 695 return true; 696 697 // "main" is not mangled. 698 if (FD->isMain()) 699 return false; 700 701 // The Windows ABI expects that we would never mangle "typical" 702 // user-defined entry points regardless of visibility or freestanding-ness. 703 // 704 // N.B. This is distinct from asking about "main". "main" has a lot of 705 // special rules associated with it in the standard while these 706 // user-defined entry points are outside of the purview of the standard. 707 // For example, there can be only one definition for "main" in a standards 708 // compliant program; however nothing forbids the existence of wmain and 709 // WinMain in the same translation unit. 710 if (FD->isMSVCRTEntryPoint()) 711 return false; 712 713 // C++ functions and those whose names are not a simple identifier need 714 // mangling. 715 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) 716 return true; 717 718 // C functions are not mangled. 719 if (L == CLanguageLinkage) 720 return false; 721 } 722 723 // Otherwise, no mangling is done outside C++ mode. 724 if (!getASTContext().getLangOpts().CPlusPlus) 725 return false; 726 727 if (const auto *VD = dyn_cast<VarDecl>(D)) { 728 // Decompositions are mangled. 729 if (isa<DecompositionDecl>(VD)) 730 return true; 731 732 // C variables are not mangled. 733 if (VD->isExternC()) 734 return false; 735 736 // Variables at global scope with non-internal linkage are not mangled. 737 const DeclContext *DC = getEffectiveDeclContext(D); 738 // Check for extern variable declared locally. 739 if (DC->isFunctionOrMethod() && D->hasLinkage()) 740 while (!DC->isFileContext()) 741 DC = getEffectiveParentContext(DC); 742 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage && 743 !CXXNameMangler::shouldHaveAbiTags(*this, VD) && 744 !isa<VarTemplateSpecializationDecl>(VD)) 745 return false; 746 } 747 748 return true; 749 } 750 751 void CXXNameMangler::writeAbiTags(const NamedDecl *ND, 752 const AbiTagList *AdditionalAbiTags) { 753 assert(AbiTags && "require AbiTagState"); 754 AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags); 755 } 756 757 void CXXNameMangler::mangleSourceNameWithAbiTags( 758 const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) { 759 mangleSourceName(ND->getIdentifier()); 760 writeAbiTags(ND, AdditionalAbiTags); 761 } 762 763 void CXXNameMangler::mangle(GlobalDecl GD) { 764 // <mangled-name> ::= _Z <encoding> 765 // ::= <data name> 766 // ::= <special-name> 767 Out << "_Z"; 768 if (isa<FunctionDecl>(GD.getDecl())) 769 mangleFunctionEncoding(GD); 770 else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl, 771 BindingDecl>(GD.getDecl())) 772 mangleName(GD); 773 else if (const IndirectFieldDecl *IFD = 774 dyn_cast<IndirectFieldDecl>(GD.getDecl())) 775 mangleName(IFD->getAnonField()); 776 else 777 llvm_unreachable("unexpected kind of global decl"); 778 } 779 780 void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) { 781 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 782 // <encoding> ::= <function name> <bare-function-type> 783 784 // Don't mangle in the type if this isn't a decl we should typically mangle. 785 if (!Context.shouldMangleDeclName(FD)) { 786 mangleName(GD); 787 return; 788 } 789 790 AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD); 791 if (ReturnTypeAbiTags.empty()) { 792 // There are no tags for return type, the simplest case. 793 mangleName(GD); 794 mangleFunctionEncodingBareType(FD); 795 return; 796 } 797 798 // Mangle function name and encoding to temporary buffer. 799 // We have to output name and encoding to the same mangler to get the same 800 // substitution as it will be in final mangling. 801 SmallString<256> FunctionEncodingBuf; 802 llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf); 803 CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream); 804 // Output name of the function. 805 FunctionEncodingMangler.disableDerivedAbiTags(); 806 FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr); 807 808 // Remember length of the function name in the buffer. 809 size_t EncodingPositionStart = FunctionEncodingStream.str().size(); 810 FunctionEncodingMangler.mangleFunctionEncodingBareType(FD); 811 812 // Get tags from return type that are not present in function name or 813 // encoding. 814 const AbiTagList &UsedAbiTags = 815 FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 816 AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size()); 817 AdditionalAbiTags.erase( 818 std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(), 819 UsedAbiTags.begin(), UsedAbiTags.end(), 820 AdditionalAbiTags.begin()), 821 AdditionalAbiTags.end()); 822 823 // Output name with implicit tags and function encoding from temporary buffer. 824 mangleNameWithAbiTags(FD, &AdditionalAbiTags); 825 Out << FunctionEncodingStream.str().substr(EncodingPositionStart); 826 827 // Function encoding could create new substitutions so we have to add 828 // temp mangled substitutions to main mangler. 829 extendSubstitutions(&FunctionEncodingMangler); 830 } 831 832 void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) { 833 if (FD->hasAttr<EnableIfAttr>()) { 834 FunctionTypeDepthState Saved = FunctionTypeDepth.push(); 835 Out << "Ua9enable_ifI"; 836 for (AttrVec::const_iterator I = FD->getAttrs().begin(), 837 E = FD->getAttrs().end(); 838 I != E; ++I) { 839 EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I); 840 if (!EIA) 841 continue; 842 if (Context.getASTContext().getLangOpts().getClangABICompat() > 843 LangOptions::ClangABI::Ver11) { 844 mangleTemplateArgExpr(EIA->getCond()); 845 } else { 846 // Prior to Clang 12, we hardcoded the X/E around enable-if's argument, 847 // even though <template-arg> should not include an X/E around 848 // <expr-primary>. 849 Out << 'X'; 850 mangleExpression(EIA->getCond()); 851 Out << 'E'; 852 } 853 } 854 Out << 'E'; 855 FunctionTypeDepth.pop(Saved); 856 } 857 858 // When mangling an inheriting constructor, the bare function type used is 859 // that of the inherited constructor. 860 if (auto *CD = dyn_cast<CXXConstructorDecl>(FD)) 861 if (auto Inherited = CD->getInheritedConstructor()) 862 FD = Inherited.getConstructor(); 863 864 // Whether the mangling of a function type includes the return type depends on 865 // the context and the nature of the function. The rules for deciding whether 866 // the return type is included are: 867 // 868 // 1. Template functions (names or types) have return types encoded, with 869 // the exceptions listed below. 870 // 2. Function types not appearing as part of a function name mangling, 871 // e.g. parameters, pointer types, etc., have return type encoded, with the 872 // exceptions listed below. 873 // 3. Non-template function names do not have return types encoded. 874 // 875 // The exceptions mentioned in (1) and (2) above, for which the return type is 876 // never included, are 877 // 1. Constructors. 878 // 2. Destructors. 879 // 3. Conversion operator functions, e.g. operator int. 880 bool MangleReturnType = false; 881 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { 882 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || 883 isa<CXXConversionDecl>(FD))) 884 MangleReturnType = true; 885 886 // Mangle the type of the primary template. 887 FD = PrimaryTemplate->getTemplatedDecl(); 888 } 889 890 mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(), 891 MangleReturnType, FD); 892 } 893 894 /// Return whether a given namespace is the 'std' namespace. 895 bool CXXNameMangler::isStd(const NamespaceDecl *NS) { 896 if (!Context.getEffectiveParentContext(NS)->isTranslationUnit()) 897 return false; 898 899 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); 900 return II && II->isStr("std"); 901 } 902 903 // isStdNamespace - Return whether a given decl context is a toplevel 'std' 904 // namespace. 905 bool CXXNameMangler::isStdNamespace(const DeclContext *DC) { 906 if (!DC->isNamespace()) 907 return false; 908 909 return isStd(cast<NamespaceDecl>(DC)); 910 } 911 912 static const GlobalDecl 913 isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) { 914 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 915 // Check if we have a function template. 916 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { 917 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { 918 TemplateArgs = FD->getTemplateSpecializationArgs(); 919 return GD.getWithDecl(TD); 920 } 921 } 922 923 // Check if we have a class template. 924 if (const ClassTemplateSpecializationDecl *Spec = 925 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 926 TemplateArgs = &Spec->getTemplateArgs(); 927 return GD.getWithDecl(Spec->getSpecializedTemplate()); 928 } 929 930 // Check if we have a variable template. 931 if (const VarTemplateSpecializationDecl *Spec = 932 dyn_cast<VarTemplateSpecializationDecl>(ND)) { 933 TemplateArgs = &Spec->getTemplateArgs(); 934 return GD.getWithDecl(Spec->getSpecializedTemplate()); 935 } 936 937 return GlobalDecl(); 938 } 939 940 static TemplateName asTemplateName(GlobalDecl GD) { 941 const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl()); 942 return TemplateName(const_cast<TemplateDecl*>(TD)); 943 } 944 945 void CXXNameMangler::mangleName(GlobalDecl GD) { 946 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 947 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 948 // Variables should have implicit tags from its type. 949 AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD); 950 if (VariableTypeAbiTags.empty()) { 951 // Simple case no variable type tags. 952 mangleNameWithAbiTags(VD, nullptr); 953 return; 954 } 955 956 // Mangle variable name to null stream to collect tags. 957 llvm::raw_null_ostream NullOutStream; 958 CXXNameMangler VariableNameMangler(*this, NullOutStream); 959 VariableNameMangler.disableDerivedAbiTags(); 960 VariableNameMangler.mangleNameWithAbiTags(VD, nullptr); 961 962 // Get tags from variable type that are not present in its name. 963 const AbiTagList &UsedAbiTags = 964 VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 965 AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size()); 966 AdditionalAbiTags.erase( 967 std::set_difference(VariableTypeAbiTags.begin(), 968 VariableTypeAbiTags.end(), UsedAbiTags.begin(), 969 UsedAbiTags.end(), AdditionalAbiTags.begin()), 970 AdditionalAbiTags.end()); 971 972 // Output name with implicit tags. 973 mangleNameWithAbiTags(VD, &AdditionalAbiTags); 974 } else { 975 mangleNameWithAbiTags(GD, nullptr); 976 } 977 } 978 979 const RecordDecl *CXXNameMangler::GetLocalClassDecl(const Decl *D) { 980 const DeclContext *DC = Context.getEffectiveDeclContext(D); 981 while (!DC->isNamespace() && !DC->isTranslationUnit()) { 982 if (isLocalContainerContext(DC)) 983 return dyn_cast<RecordDecl>(D); 984 D = cast<Decl>(DC); 985 DC = Context.getEffectiveDeclContext(D); 986 } 987 return nullptr; 988 } 989 990 void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD, 991 const AbiTagList *AdditionalAbiTags) { 992 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 993 // <name> ::= [<module-name>] <nested-name> 994 // ::= [<module-name>] <unscoped-name> 995 // ::= [<module-name>] <unscoped-template-name> <template-args> 996 // ::= <local-name> 997 // 998 const DeclContext *DC = Context.getEffectiveDeclContext(ND); 999 1000 // If this is an extern variable declared locally, the relevant DeclContext 1001 // is that of the containing namespace, or the translation unit. 1002 // FIXME: This is a hack; extern variables declared locally should have 1003 // a proper semantic declaration context! 1004 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND)) 1005 while (!DC->isNamespace() && !DC->isTranslationUnit()) 1006 DC = Context.getEffectiveParentContext(DC); 1007 else if (GetLocalClassDecl(ND)) { 1008 mangleLocalName(GD, AdditionalAbiTags); 1009 return; 1010 } 1011 1012 assert(!isa<LinkageSpecDecl>(DC) && "context cannot be LinkageSpecDecl"); 1013 1014 if (isLocalContainerContext(DC)) { 1015 mangleLocalName(GD, AdditionalAbiTags); 1016 return; 1017 } 1018 1019 // Do not mangle the owning module for an external linkage declaration. 1020 // This enables backwards-compatibility with non-modular code, and is 1021 // a valid choice since conflicts are not permitted by C++ Modules TS 1022 // [basic.def.odr]/6.2. 1023 if (!ND->hasExternalFormalLinkage()) 1024 if (Module *M = ND->getOwningModuleForLinkage()) 1025 mangleModuleName(M); 1026 1027 // Closures can require a nested-name mangling even if they're semantically 1028 // in the global namespace. 1029 if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { 1030 mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags); 1031 return; 1032 } 1033 1034 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 1035 // Check if we have a template. 1036 const TemplateArgumentList *TemplateArgs = nullptr; 1037 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { 1038 mangleUnscopedTemplateName(TD, AdditionalAbiTags); 1039 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 1040 return; 1041 } 1042 1043 mangleUnscopedName(GD, AdditionalAbiTags); 1044 return; 1045 } 1046 1047 mangleNestedName(GD, DC, AdditionalAbiTags); 1048 } 1049 1050 void CXXNameMangler::mangleModuleName(const Module *M) { 1051 // Implement the C++ Modules TS name mangling proposal; see 1052 // https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile 1053 // 1054 // <module-name> ::= W <unscoped-name>+ E 1055 // ::= W <module-subst> <unscoped-name>* E 1056 Out << 'W'; 1057 mangleModuleNamePrefix(M->Name); 1058 Out << 'E'; 1059 } 1060 1061 void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) { 1062 // <module-subst> ::= _ <seq-id> # 0 < seq-id < 10 1063 // ::= W <seq-id - 10> _ # otherwise 1064 auto It = ModuleSubstitutions.find(Name); 1065 if (It != ModuleSubstitutions.end()) { 1066 if (It->second < 10) 1067 Out << '_' << static_cast<char>('0' + It->second); 1068 else 1069 Out << 'W' << (It->second - 10) << '_'; 1070 return; 1071 } 1072 1073 // FIXME: Preserve hierarchy in module names rather than flattening 1074 // them to strings; use Module*s as substitution keys. 1075 auto Parts = Name.rsplit('.'); 1076 if (Parts.second.empty()) 1077 Parts.second = Parts.first; 1078 else 1079 mangleModuleNamePrefix(Parts.first); 1080 1081 Out << Parts.second.size() << Parts.second; 1082 ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()}); 1083 } 1084 1085 void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD, 1086 const TemplateArgument *TemplateArgs, 1087 unsigned NumTemplateArgs) { 1088 const DeclContext *DC = Context.getEffectiveDeclContext(TD); 1089 1090 if (DC->isTranslationUnit() || isStdNamespace(DC)) { 1091 mangleUnscopedTemplateName(TD, nullptr); 1092 mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs); 1093 } else { 1094 mangleNestedName(TD, TemplateArgs, NumTemplateArgs); 1095 } 1096 } 1097 1098 void CXXNameMangler::mangleUnscopedName(GlobalDecl GD, 1099 const AbiTagList *AdditionalAbiTags) { 1100 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1101 // <unscoped-name> ::= <unqualified-name> 1102 // ::= St <unqualified-name> # ::std:: 1103 1104 if (isStdNamespace(Context.getEffectiveDeclContext(ND))) 1105 Out << "St"; 1106 1107 mangleUnqualifiedName(GD, AdditionalAbiTags); 1108 } 1109 1110 void CXXNameMangler::mangleUnscopedTemplateName( 1111 GlobalDecl GD, const AbiTagList *AdditionalAbiTags) { 1112 const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl()); 1113 // <unscoped-template-name> ::= <unscoped-name> 1114 // ::= <substitution> 1115 if (mangleSubstitution(ND)) 1116 return; 1117 1118 // <template-template-param> ::= <template-param> 1119 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 1120 assert(!AdditionalAbiTags && 1121 "template template param cannot have abi tags"); 1122 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 1123 } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) { 1124 mangleUnscopedName(GD, AdditionalAbiTags); 1125 } else { 1126 mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags); 1127 } 1128 1129 addSubstitution(ND); 1130 } 1131 1132 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { 1133 // ABI: 1134 // Floating-point literals are encoded using a fixed-length 1135 // lowercase hexadecimal string corresponding to the internal 1136 // representation (IEEE on Itanium), high-order bytes first, 1137 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f 1138 // on Itanium. 1139 // The 'without leading zeroes' thing seems to be an editorial 1140 // mistake; see the discussion on cxx-abi-dev beginning on 1141 // 2012-01-16. 1142 1143 // Our requirements here are just barely weird enough to justify 1144 // using a custom algorithm instead of post-processing APInt::toString(). 1145 1146 llvm::APInt valueBits = f.bitcastToAPInt(); 1147 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; 1148 assert(numCharacters != 0); 1149 1150 // Allocate a buffer of the right number of characters. 1151 SmallVector<char, 20> buffer(numCharacters); 1152 1153 // Fill the buffer left-to-right. 1154 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { 1155 // The bit-index of the next hex digit. 1156 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); 1157 1158 // Project out 4 bits starting at 'digitIndex'. 1159 uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64]; 1160 hexDigit >>= (digitBitIndex % 64); 1161 hexDigit &= 0xF; 1162 1163 // Map that over to a lowercase hex digit. 1164 static const char charForHex[16] = { 1165 '0', '1', '2', '3', '4', '5', '6', '7', 1166 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' 1167 }; 1168 buffer[stringIndex] = charForHex[hexDigit]; 1169 } 1170 1171 Out.write(buffer.data(), numCharacters); 1172 } 1173 1174 void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) { 1175 Out << 'L'; 1176 mangleType(T); 1177 mangleFloat(V); 1178 Out << 'E'; 1179 } 1180 1181 void CXXNameMangler::mangleFixedPointLiteral() { 1182 DiagnosticsEngine &Diags = Context.getDiags(); 1183 unsigned DiagID = Diags.getCustomDiagID( 1184 DiagnosticsEngine::Error, "cannot mangle fixed point literals yet"); 1185 Diags.Report(DiagID); 1186 } 1187 1188 void CXXNameMangler::mangleNullPointer(QualType T) { 1189 // <expr-primary> ::= L <type> 0 E 1190 Out << 'L'; 1191 mangleType(T); 1192 Out << "0E"; 1193 } 1194 1195 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { 1196 if (Value.isSigned() && Value.isNegative()) { 1197 Out << 'n'; 1198 Value.abs().print(Out, /*signed*/ false); 1199 } else { 1200 Value.print(Out, /*signed*/ false); 1201 } 1202 } 1203 1204 void CXXNameMangler::mangleNumber(int64_t Number) { 1205 // <number> ::= [n] <non-negative decimal integer> 1206 if (Number < 0) { 1207 Out << 'n'; 1208 Number = -Number; 1209 } 1210 1211 Out << Number; 1212 } 1213 1214 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { 1215 // <call-offset> ::= h <nv-offset> _ 1216 // ::= v <v-offset> _ 1217 // <nv-offset> ::= <offset number> # non-virtual base override 1218 // <v-offset> ::= <offset number> _ <virtual offset number> 1219 // # virtual base override, with vcall offset 1220 if (!Virtual) { 1221 Out << 'h'; 1222 mangleNumber(NonVirtual); 1223 Out << '_'; 1224 return; 1225 } 1226 1227 Out << 'v'; 1228 mangleNumber(NonVirtual); 1229 Out << '_'; 1230 mangleNumber(Virtual); 1231 Out << '_'; 1232 } 1233 1234 void CXXNameMangler::manglePrefix(QualType type) { 1235 if (const auto *TST = type->getAs<TemplateSpecializationType>()) { 1236 if (!mangleSubstitution(QualType(TST, 0))) { 1237 mangleTemplatePrefix(TST->getTemplateName()); 1238 1239 // FIXME: GCC does not appear to mangle the template arguments when 1240 // the template in question is a dependent template name. Should we 1241 // emulate that badness? 1242 mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(), 1243 TST->getNumArgs()); 1244 addSubstitution(QualType(TST, 0)); 1245 } 1246 } else if (const auto *DTST = 1247 type->getAs<DependentTemplateSpecializationType>()) { 1248 if (!mangleSubstitution(QualType(DTST, 0))) { 1249 TemplateName Template = getASTContext().getDependentTemplateName( 1250 DTST->getQualifier(), DTST->getIdentifier()); 1251 mangleTemplatePrefix(Template); 1252 1253 // FIXME: GCC does not appear to mangle the template arguments when 1254 // the template in question is a dependent template name. Should we 1255 // emulate that badness? 1256 mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs()); 1257 addSubstitution(QualType(DTST, 0)); 1258 } 1259 } else { 1260 // We use the QualType mangle type variant here because it handles 1261 // substitutions. 1262 mangleType(type); 1263 } 1264 } 1265 1266 /// Mangle everything prior to the base-unresolved-name in an unresolved-name. 1267 /// 1268 /// \param recursive - true if this is being called recursively, 1269 /// i.e. if there is more prefix "to the right". 1270 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, 1271 bool recursive) { 1272 1273 // x, ::x 1274 // <unresolved-name> ::= [gs] <base-unresolved-name> 1275 1276 // T::x / decltype(p)::x 1277 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> 1278 1279 // T::N::x /decltype(p)::N::x 1280 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E 1281 // <base-unresolved-name> 1282 1283 // A::x, N::y, A<T>::z; "gs" means leading "::" 1284 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E 1285 // <base-unresolved-name> 1286 1287 switch (qualifier->getKind()) { 1288 case NestedNameSpecifier::Global: 1289 Out << "gs"; 1290 1291 // We want an 'sr' unless this is the entire NNS. 1292 if (recursive) 1293 Out << "sr"; 1294 1295 // We never want an 'E' here. 1296 return; 1297 1298 case NestedNameSpecifier::Super: 1299 llvm_unreachable("Can't mangle __super specifier"); 1300 1301 case NestedNameSpecifier::Namespace: 1302 if (qualifier->getPrefix()) 1303 mangleUnresolvedPrefix(qualifier->getPrefix(), 1304 /*recursive*/ true); 1305 else 1306 Out << "sr"; 1307 mangleSourceNameWithAbiTags(qualifier->getAsNamespace()); 1308 break; 1309 case NestedNameSpecifier::NamespaceAlias: 1310 if (qualifier->getPrefix()) 1311 mangleUnresolvedPrefix(qualifier->getPrefix(), 1312 /*recursive*/ true); 1313 else 1314 Out << "sr"; 1315 mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias()); 1316 break; 1317 1318 case NestedNameSpecifier::TypeSpec: 1319 case NestedNameSpecifier::TypeSpecWithTemplate: { 1320 const Type *type = qualifier->getAsType(); 1321 1322 // We only want to use an unresolved-type encoding if this is one of: 1323 // - a decltype 1324 // - a template type parameter 1325 // - a template template parameter with arguments 1326 // In all of these cases, we should have no prefix. 1327 if (qualifier->getPrefix()) { 1328 mangleUnresolvedPrefix(qualifier->getPrefix(), 1329 /*recursive*/ true); 1330 } else { 1331 // Otherwise, all the cases want this. 1332 Out << "sr"; 1333 } 1334 1335 if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : "")) 1336 return; 1337 1338 break; 1339 } 1340 1341 case NestedNameSpecifier::Identifier: 1342 // Member expressions can have these without prefixes. 1343 if (qualifier->getPrefix()) 1344 mangleUnresolvedPrefix(qualifier->getPrefix(), 1345 /*recursive*/ true); 1346 else 1347 Out << "sr"; 1348 1349 mangleSourceName(qualifier->getAsIdentifier()); 1350 // An Identifier has no type information, so we can't emit abi tags for it. 1351 break; 1352 } 1353 1354 // If this was the innermost part of the NNS, and we fell out to 1355 // here, append an 'E'. 1356 if (!recursive) 1357 Out << 'E'; 1358 } 1359 1360 /// Mangle an unresolved-name, which is generally used for names which 1361 /// weren't resolved to specific entities. 1362 void CXXNameMangler::mangleUnresolvedName( 1363 NestedNameSpecifier *qualifier, DeclarationName name, 1364 const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs, 1365 unsigned knownArity) { 1366 if (qualifier) mangleUnresolvedPrefix(qualifier); 1367 switch (name.getNameKind()) { 1368 // <base-unresolved-name> ::= <simple-id> 1369 case DeclarationName::Identifier: 1370 mangleSourceName(name.getAsIdentifierInfo()); 1371 break; 1372 // <base-unresolved-name> ::= dn <destructor-name> 1373 case DeclarationName::CXXDestructorName: 1374 Out << "dn"; 1375 mangleUnresolvedTypeOrSimpleId(name.getCXXNameType()); 1376 break; 1377 // <base-unresolved-name> ::= on <operator-name> 1378 case DeclarationName::CXXConversionFunctionName: 1379 case DeclarationName::CXXLiteralOperatorName: 1380 case DeclarationName::CXXOperatorName: 1381 Out << "on"; 1382 mangleOperatorName(name, knownArity); 1383 break; 1384 case DeclarationName::CXXConstructorName: 1385 llvm_unreachable("Can't mangle a constructor name!"); 1386 case DeclarationName::CXXUsingDirective: 1387 llvm_unreachable("Can't mangle a using directive name!"); 1388 case DeclarationName::CXXDeductionGuideName: 1389 llvm_unreachable("Can't mangle a deduction guide name!"); 1390 case DeclarationName::ObjCMultiArgSelector: 1391 case DeclarationName::ObjCOneArgSelector: 1392 case DeclarationName::ObjCZeroArgSelector: 1393 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1394 } 1395 1396 // The <simple-id> and on <operator-name> productions end in an optional 1397 // <template-args>. 1398 if (TemplateArgs) 1399 mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs); 1400 } 1401 1402 void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD, 1403 DeclarationName Name, 1404 unsigned KnownArity, 1405 const AbiTagList *AdditionalAbiTags) { 1406 const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl()); 1407 unsigned Arity = KnownArity; 1408 // <unqualified-name> ::= <operator-name> 1409 // ::= <ctor-dtor-name> 1410 // ::= <source-name> 1411 switch (Name.getNameKind()) { 1412 case DeclarationName::Identifier: { 1413 const IdentifierInfo *II = Name.getAsIdentifierInfo(); 1414 1415 // We mangle decomposition declarations as the names of their bindings. 1416 if (auto *DD = dyn_cast<DecompositionDecl>(ND)) { 1417 // FIXME: Non-standard mangling for decomposition declarations: 1418 // 1419 // <unqualified-name> ::= DC <source-name>* E 1420 // 1421 // These can never be referenced across translation units, so we do 1422 // not need a cross-vendor mangling for anything other than demanglers. 1423 // Proposed on cxx-abi-dev on 2016-08-12 1424 Out << "DC"; 1425 for (auto *BD : DD->bindings()) 1426 mangleSourceName(BD->getDeclName().getAsIdentifierInfo()); 1427 Out << 'E'; 1428 writeAbiTags(ND, AdditionalAbiTags); 1429 break; 1430 } 1431 1432 if (auto *GD = dyn_cast<MSGuidDecl>(ND)) { 1433 // We follow MSVC in mangling GUID declarations as if they were variables 1434 // with a particular reserved name. Continue the pretense here. 1435 SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID; 1436 llvm::raw_svector_ostream GUIDOS(GUID); 1437 Context.mangleMSGuidDecl(GD, GUIDOS); 1438 Out << GUID.size() << GUID; 1439 break; 1440 } 1441 1442 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { 1443 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. 1444 Out << "TA"; 1445 mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(), 1446 TPO->getValue(), /*TopLevel=*/true); 1447 break; 1448 } 1449 1450 if (II) { 1451 // Match GCC's naming convention for internal linkage symbols, for 1452 // symbols that are not actually visible outside of this TU. GCC 1453 // distinguishes between internal and external linkage symbols in 1454 // its mangling, to support cases like this that were valid C++ prior 1455 // to DR426: 1456 // 1457 // void test() { extern void foo(); } 1458 // static void foo(); 1459 // 1460 // Don't bother with the L marker for names in anonymous namespaces; the 1461 // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better 1462 // matches GCC anyway, because GCC does not treat anonymous namespaces as 1463 // implying internal linkage. 1464 if (Context.isInternalLinkageDecl(ND)) 1465 Out << 'L'; 1466 1467 auto *FD = dyn_cast<FunctionDecl>(ND); 1468 bool IsRegCall = FD && 1469 FD->getType()->castAs<FunctionType>()->getCallConv() == 1470 clang::CC_X86RegCall; 1471 bool IsDeviceStub = 1472 FD && FD->hasAttr<CUDAGlobalAttr>() && 1473 GD.getKernelReferenceKind() == KernelReferenceKind::Stub; 1474 if (IsDeviceStub) 1475 mangleDeviceStubName(II); 1476 else if (IsRegCall) 1477 mangleRegCallName(II); 1478 else 1479 mangleSourceName(II); 1480 1481 writeAbiTags(ND, AdditionalAbiTags); 1482 break; 1483 } 1484 1485 // Otherwise, an anonymous entity. We must have a declaration. 1486 assert(ND && "mangling empty name without declaration"); 1487 1488 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 1489 if (NS->isAnonymousNamespace()) { 1490 // This is how gcc mangles these names. 1491 Out << "12_GLOBAL__N_1"; 1492 break; 1493 } 1494 } 1495 1496 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1497 // We must have an anonymous union or struct declaration. 1498 const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl(); 1499 1500 // Itanium C++ ABI 5.1.2: 1501 // 1502 // For the purposes of mangling, the name of an anonymous union is 1503 // considered to be the name of the first named data member found by a 1504 // pre-order, depth-first, declaration-order walk of the data members of 1505 // the anonymous union. If there is no such data member (i.e., if all of 1506 // the data members in the union are unnamed), then there is no way for 1507 // a program to refer to the anonymous union, and there is therefore no 1508 // need to mangle its name. 1509 assert(RD->isAnonymousStructOrUnion() 1510 && "Expected anonymous struct or union!"); 1511 const FieldDecl *FD = RD->findFirstNamedDataMember(); 1512 1513 // It's actually possible for various reasons for us to get here 1514 // with an empty anonymous struct / union. Fortunately, it 1515 // doesn't really matter what name we generate. 1516 if (!FD) break; 1517 assert(FD->getIdentifier() && "Data member name isn't an identifier!"); 1518 1519 mangleSourceName(FD->getIdentifier()); 1520 // Not emitting abi tags: internal name anyway. 1521 break; 1522 } 1523 1524 // Class extensions have no name as a category, and it's possible 1525 // for them to be the semantic parent of certain declarations 1526 // (primarily, tag decls defined within declarations). Such 1527 // declarations will always have internal linkage, so the name 1528 // doesn't really matter, but we shouldn't crash on them. For 1529 // safety, just handle all ObjC containers here. 1530 if (isa<ObjCContainerDecl>(ND)) 1531 break; 1532 1533 // We must have an anonymous struct. 1534 const TagDecl *TD = cast<TagDecl>(ND); 1535 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { 1536 assert(TD->getDeclContext() == D->getDeclContext() && 1537 "Typedef should not be in another decl context!"); 1538 assert(D->getDeclName().getAsIdentifierInfo() && 1539 "Typedef was not named!"); 1540 mangleSourceName(D->getDeclName().getAsIdentifierInfo()); 1541 assert(!AdditionalAbiTags && "Type cannot have additional abi tags"); 1542 // Explicit abi tags are still possible; take from underlying type, not 1543 // from typedef. 1544 writeAbiTags(TD, nullptr); 1545 break; 1546 } 1547 1548 // <unnamed-type-name> ::= <closure-type-name> 1549 // 1550 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ 1551 // <lambda-sig> ::= <template-param-decl>* <parameter-type>+ 1552 // # Parameter types or 'v' for 'void'. 1553 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { 1554 llvm::Optional<unsigned> DeviceNumber = 1555 Context.getDiscriminatorOverride()(Context.getASTContext(), Record); 1556 1557 // If we have a device-number via the discriminator, use that to mangle 1558 // the lambda, otherwise use the typical lambda-mangling-number. In either 1559 // case, a '0' should be mangled as a normal unnamed class instead of as a 1560 // lambda. 1561 if (Record->isLambda() && 1562 ((DeviceNumber && *DeviceNumber > 0) || 1563 (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) { 1564 assert(!AdditionalAbiTags && 1565 "Lambda type cannot have additional abi tags"); 1566 mangleLambda(Record); 1567 break; 1568 } 1569 } 1570 1571 if (TD->isExternallyVisible()) { 1572 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD); 1573 Out << "Ut"; 1574 if (UnnamedMangle > 1) 1575 Out << UnnamedMangle - 2; 1576 Out << '_'; 1577 writeAbiTags(TD, AdditionalAbiTags); 1578 break; 1579 } 1580 1581 // Get a unique id for the anonymous struct. If it is not a real output 1582 // ID doesn't matter so use fake one. 1583 unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD); 1584 1585 // Mangle it as a source name in the form 1586 // [n] $_<id> 1587 // where n is the length of the string. 1588 SmallString<8> Str; 1589 Str += "$_"; 1590 Str += llvm::utostr(AnonStructId); 1591 1592 Out << Str.size(); 1593 Out << Str; 1594 break; 1595 } 1596 1597 case DeclarationName::ObjCZeroArgSelector: 1598 case DeclarationName::ObjCOneArgSelector: 1599 case DeclarationName::ObjCMultiArgSelector: 1600 llvm_unreachable("Can't mangle Objective-C selector names here!"); 1601 1602 case DeclarationName::CXXConstructorName: { 1603 const CXXRecordDecl *InheritedFrom = nullptr; 1604 TemplateName InheritedTemplateName; 1605 const TemplateArgumentList *InheritedTemplateArgs = nullptr; 1606 if (auto Inherited = 1607 cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) { 1608 InheritedFrom = Inherited.getConstructor()->getParent(); 1609 InheritedTemplateName = 1610 TemplateName(Inherited.getConstructor()->getPrimaryTemplate()); 1611 InheritedTemplateArgs = 1612 Inherited.getConstructor()->getTemplateSpecializationArgs(); 1613 } 1614 1615 if (ND == Structor) 1616 // If the named decl is the C++ constructor we're mangling, use the type 1617 // we were given. 1618 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom); 1619 else 1620 // Otherwise, use the complete constructor name. This is relevant if a 1621 // class with a constructor is declared within a constructor. 1622 mangleCXXCtorType(Ctor_Complete, InheritedFrom); 1623 1624 // FIXME: The template arguments are part of the enclosing prefix or 1625 // nested-name, but it's more convenient to mangle them here. 1626 if (InheritedTemplateArgs) 1627 mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs); 1628 1629 writeAbiTags(ND, AdditionalAbiTags); 1630 break; 1631 } 1632 1633 case DeclarationName::CXXDestructorName: 1634 if (ND == Structor) 1635 // If the named decl is the C++ destructor we're mangling, use the type we 1636 // were given. 1637 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); 1638 else 1639 // Otherwise, use the complete destructor name. This is relevant if a 1640 // class with a destructor is declared within a destructor. 1641 mangleCXXDtorType(Dtor_Complete); 1642 writeAbiTags(ND, AdditionalAbiTags); 1643 break; 1644 1645 case DeclarationName::CXXOperatorName: 1646 if (ND && Arity == UnknownArity) { 1647 Arity = cast<FunctionDecl>(ND)->getNumParams(); 1648 1649 // If we have a member function, we need to include the 'this' pointer. 1650 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) 1651 if (!MD->isStatic()) 1652 Arity++; 1653 } 1654 LLVM_FALLTHROUGH; 1655 case DeclarationName::CXXConversionFunctionName: 1656 case DeclarationName::CXXLiteralOperatorName: 1657 mangleOperatorName(Name, Arity); 1658 writeAbiTags(ND, AdditionalAbiTags); 1659 break; 1660 1661 case DeclarationName::CXXDeductionGuideName: 1662 llvm_unreachable("Can't mangle a deduction guide name!"); 1663 1664 case DeclarationName::CXXUsingDirective: 1665 llvm_unreachable("Can't mangle a using directive name!"); 1666 } 1667 } 1668 1669 void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) { 1670 // <source-name> ::= <positive length number> __regcall3__ <identifier> 1671 // <number> ::= [n] <non-negative decimal integer> 1672 // <identifier> ::= <unqualified source code identifier> 1673 Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__" 1674 << II->getName(); 1675 } 1676 1677 void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) { 1678 // <source-name> ::= <positive length number> __device_stub__ <identifier> 1679 // <number> ::= [n] <non-negative decimal integer> 1680 // <identifier> ::= <unqualified source code identifier> 1681 Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__" 1682 << II->getName(); 1683 } 1684 1685 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { 1686 // <source-name> ::= <positive length number> <identifier> 1687 // <number> ::= [n] <non-negative decimal integer> 1688 // <identifier> ::= <unqualified source code identifier> 1689 Out << II->getLength() << II->getName(); 1690 } 1691 1692 void CXXNameMangler::mangleNestedName(GlobalDecl GD, 1693 const DeclContext *DC, 1694 const AbiTagList *AdditionalAbiTags, 1695 bool NoFunction) { 1696 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 1697 // <nested-name> 1698 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E 1699 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 1700 // <template-args> E 1701 1702 Out << 'N'; 1703 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) { 1704 Qualifiers MethodQuals = Method->getMethodQualifiers(); 1705 // We do not consider restrict a distinguishing attribute for overloading 1706 // purposes so we must not mangle it. 1707 MethodQuals.removeRestrict(); 1708 mangleQualifiers(MethodQuals); 1709 mangleRefQualifier(Method->getRefQualifier()); 1710 } 1711 1712 // Check if we have a template. 1713 const TemplateArgumentList *TemplateArgs = nullptr; 1714 if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) { 1715 mangleTemplatePrefix(TD, NoFunction); 1716 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 1717 } else { 1718 manglePrefix(DC, NoFunction); 1719 mangleUnqualifiedName(GD, AdditionalAbiTags); 1720 } 1721 1722 Out << 'E'; 1723 } 1724 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, 1725 const TemplateArgument *TemplateArgs, 1726 unsigned NumTemplateArgs) { 1727 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E 1728 1729 Out << 'N'; 1730 1731 mangleTemplatePrefix(TD); 1732 mangleTemplateArgs(asTemplateName(TD), TemplateArgs, NumTemplateArgs); 1733 1734 Out << 'E'; 1735 } 1736 1737 void CXXNameMangler::mangleNestedNameWithClosurePrefix( 1738 GlobalDecl GD, const NamedDecl *PrefixND, 1739 const AbiTagList *AdditionalAbiTags) { 1740 // A <closure-prefix> represents a variable or field, not a regular 1741 // DeclContext, so needs special handling. In this case we're mangling a 1742 // limited form of <nested-name>: 1743 // 1744 // <nested-name> ::= N <closure-prefix> <closure-type-name> E 1745 1746 Out << 'N'; 1747 1748 mangleClosurePrefix(PrefixND); 1749 mangleUnqualifiedName(GD, AdditionalAbiTags); 1750 1751 Out << 'E'; 1752 } 1753 1754 static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) { 1755 GlobalDecl GD; 1756 // The Itanium spec says: 1757 // For entities in constructors and destructors, the mangling of the 1758 // complete object constructor or destructor is used as the base function 1759 // name, i.e. the C1 or D1 version. 1760 if (auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 1761 GD = GlobalDecl(CD, Ctor_Complete); 1762 else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 1763 GD = GlobalDecl(DD, Dtor_Complete); 1764 else 1765 GD = GlobalDecl(cast<FunctionDecl>(DC)); 1766 return GD; 1767 } 1768 1769 void CXXNameMangler::mangleLocalName(GlobalDecl GD, 1770 const AbiTagList *AdditionalAbiTags) { 1771 const Decl *D = GD.getDecl(); 1772 // <local-name> := Z <function encoding> E <entity name> [<discriminator>] 1773 // := Z <function encoding> E s [<discriminator>] 1774 // <local-name> := Z <function encoding> E d [ <parameter number> ] 1775 // _ <entity name> 1776 // <discriminator> := _ <non-negative number> 1777 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D)); 1778 const RecordDecl *RD = GetLocalClassDecl(D); 1779 const DeclContext *DC = Context.getEffectiveDeclContext(RD ? RD : D); 1780 1781 Out << 'Z'; 1782 1783 { 1784 AbiTagState LocalAbiTags(AbiTags); 1785 1786 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) 1787 mangleObjCMethodName(MD); 1788 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) 1789 mangleBlockForPrefix(BD); 1790 else 1791 mangleFunctionEncoding(getParentOfLocalEntity(DC)); 1792 1793 // Implicit ABI tags (from namespace) are not available in the following 1794 // entity; reset to actually emitted tags, which are available. 1795 LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags()); 1796 } 1797 1798 Out << 'E'; 1799 1800 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 1801 // be a bug that is fixed in trunk. 1802 1803 if (RD) { 1804 // The parameter number is omitted for the last parameter, 0 for the 1805 // second-to-last parameter, 1 for the third-to-last parameter, etc. The 1806 // <entity name> will of course contain a <closure-type-name>: Its 1807 // numbering will be local to the particular argument in which it appears 1808 // -- other default arguments do not affect its encoding. 1809 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1810 if (CXXRD && CXXRD->isLambda()) { 1811 if (const ParmVarDecl *Parm 1812 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) { 1813 if (const FunctionDecl *Func 1814 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1815 Out << 'd'; 1816 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1817 if (Num > 1) 1818 mangleNumber(Num - 2); 1819 Out << '_'; 1820 } 1821 } 1822 } 1823 1824 // Mangle the name relative to the closest enclosing function. 1825 // equality ok because RD derived from ND above 1826 if (D == RD) { 1827 mangleUnqualifiedName(RD, AdditionalAbiTags); 1828 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1829 if (const NamedDecl *PrefixND = getClosurePrefix(BD)) 1830 mangleClosurePrefix(PrefixND, true /*NoFunction*/); 1831 else 1832 manglePrefix(Context.getEffectiveDeclContext(BD), true /*NoFunction*/); 1833 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1834 mangleUnqualifiedBlock(BD); 1835 } else { 1836 const NamedDecl *ND = cast<NamedDecl>(D); 1837 mangleNestedName(GD, Context.getEffectiveDeclContext(ND), 1838 AdditionalAbiTags, true /*NoFunction*/); 1839 } 1840 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) { 1841 // Mangle a block in a default parameter; see above explanation for 1842 // lambdas. 1843 if (const ParmVarDecl *Parm 1844 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) { 1845 if (const FunctionDecl *Func 1846 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { 1847 Out << 'd'; 1848 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); 1849 if (Num > 1) 1850 mangleNumber(Num - 2); 1851 Out << '_'; 1852 } 1853 } 1854 1855 assert(!AdditionalAbiTags && "Block cannot have additional abi tags"); 1856 mangleUnqualifiedBlock(BD); 1857 } else { 1858 mangleUnqualifiedName(GD, AdditionalAbiTags); 1859 } 1860 1861 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) { 1862 unsigned disc; 1863 if (Context.getNextDiscriminator(ND, disc)) { 1864 if (disc < 10) 1865 Out << '_' << disc; 1866 else 1867 Out << "__" << disc << '_'; 1868 } 1869 } 1870 } 1871 1872 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) { 1873 if (GetLocalClassDecl(Block)) { 1874 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1875 return; 1876 } 1877 const DeclContext *DC = Context.getEffectiveDeclContext(Block); 1878 if (isLocalContainerContext(DC)) { 1879 mangleLocalName(Block, /* AdditionalAbiTags */ nullptr); 1880 return; 1881 } 1882 if (const NamedDecl *PrefixND = getClosurePrefix(Block)) 1883 mangleClosurePrefix(PrefixND); 1884 else 1885 manglePrefix(DC); 1886 mangleUnqualifiedBlock(Block); 1887 } 1888 1889 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) { 1890 // When trying to be ABI-compatibility with clang 12 and before, mangle a 1891 // <data-member-prefix> now, with no substitutions and no <template-args>. 1892 if (Decl *Context = Block->getBlockManglingContextDecl()) { 1893 if (getASTContext().getLangOpts().getClangABICompat() <= 1894 LangOptions::ClangABI::Ver12 && 1895 (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 1896 Context->getDeclContext()->isRecord()) { 1897 const auto *ND = cast<NamedDecl>(Context); 1898 if (ND->getIdentifier()) { 1899 mangleSourceNameWithAbiTags(ND); 1900 Out << 'M'; 1901 } 1902 } 1903 } 1904 1905 // If we have a block mangling number, use it. 1906 unsigned Number = Block->getBlockManglingNumber(); 1907 // Otherwise, just make up a number. It doesn't matter what it is because 1908 // the symbol in question isn't externally visible. 1909 if (!Number) 1910 Number = Context.getBlockId(Block, false); 1911 else { 1912 // Stored mangling numbers are 1-based. 1913 --Number; 1914 } 1915 Out << "Ub"; 1916 if (Number > 0) 1917 Out << Number - 1; 1918 Out << '_'; 1919 } 1920 1921 // <template-param-decl> 1922 // ::= Ty # template type parameter 1923 // ::= Tn <type> # template non-type parameter 1924 // ::= Tt <template-param-decl>* E # template template parameter 1925 // ::= Tp <template-param-decl> # template parameter pack 1926 void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) { 1927 if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) { 1928 if (Ty->isParameterPack()) 1929 Out << "Tp"; 1930 Out << "Ty"; 1931 } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) { 1932 if (Tn->isExpandedParameterPack()) { 1933 for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) { 1934 Out << "Tn"; 1935 mangleType(Tn->getExpansionType(I)); 1936 } 1937 } else { 1938 QualType T = Tn->getType(); 1939 if (Tn->isParameterPack()) { 1940 Out << "Tp"; 1941 if (auto *PackExpansion = T->getAs<PackExpansionType>()) 1942 T = PackExpansion->getPattern(); 1943 } 1944 Out << "Tn"; 1945 mangleType(T); 1946 } 1947 } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) { 1948 if (Tt->isExpandedParameterPack()) { 1949 for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N; 1950 ++I) { 1951 Out << "Tt"; 1952 for (auto *Param : *Tt->getExpansionTemplateParameters(I)) 1953 mangleTemplateParamDecl(Param); 1954 Out << "E"; 1955 } 1956 } else { 1957 if (Tt->isParameterPack()) 1958 Out << "Tp"; 1959 Out << "Tt"; 1960 for (auto *Param : *Tt->getTemplateParameters()) 1961 mangleTemplateParamDecl(Param); 1962 Out << "E"; 1963 } 1964 } 1965 } 1966 1967 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { 1968 // When trying to be ABI-compatibility with clang 12 and before, mangle a 1969 // <data-member-prefix> now, with no substitutions. 1970 if (Decl *Context = Lambda->getLambdaContextDecl()) { 1971 if (getASTContext().getLangOpts().getClangABICompat() <= 1972 LangOptions::ClangABI::Ver12 && 1973 (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && 1974 !isa<ParmVarDecl>(Context)) { 1975 if (const IdentifierInfo *Name 1976 = cast<NamedDecl>(Context)->getIdentifier()) { 1977 mangleSourceName(Name); 1978 const TemplateArgumentList *TemplateArgs = nullptr; 1979 if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs)) 1980 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 1981 Out << 'M'; 1982 } 1983 } 1984 } 1985 1986 Out << "Ul"; 1987 mangleLambdaSig(Lambda); 1988 Out << "E"; 1989 1990 // The number is omitted for the first closure type with a given 1991 // <lambda-sig> in a given context; it is n-2 for the nth closure type 1992 // (in lexical order) with that same <lambda-sig> and context. 1993 // 1994 // The AST keeps track of the number for us. 1995 // 1996 // In CUDA/HIP, to ensure the consistent lamba numbering between the device- 1997 // and host-side compilations, an extra device mangle context may be created 1998 // if the host-side CXX ABI has different numbering for lambda. In such case, 1999 // if the mangle context is that device-side one, use the device-side lambda 2000 // mangling number for this lambda. 2001 llvm::Optional<unsigned> DeviceNumber = 2002 Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda); 2003 unsigned Number = 2004 DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber(); 2005 2006 assert(Number > 0 && "Lambda should be mangled as an unnamed class"); 2007 if (Number > 1) 2008 mangleNumber(Number - 2); 2009 Out << '_'; 2010 } 2011 2012 void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) { 2013 for (auto *D : Lambda->getLambdaExplicitTemplateParameters()) 2014 mangleTemplateParamDecl(D); 2015 auto *Proto = 2016 Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>(); 2017 mangleBareFunctionType(Proto, /*MangleReturnType=*/false, 2018 Lambda->getLambdaStaticInvoker()); 2019 } 2020 2021 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { 2022 switch (qualifier->getKind()) { 2023 case NestedNameSpecifier::Global: 2024 // nothing 2025 return; 2026 2027 case NestedNameSpecifier::Super: 2028 llvm_unreachable("Can't mangle __super specifier"); 2029 2030 case NestedNameSpecifier::Namespace: 2031 mangleName(qualifier->getAsNamespace()); 2032 return; 2033 2034 case NestedNameSpecifier::NamespaceAlias: 2035 mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); 2036 return; 2037 2038 case NestedNameSpecifier::TypeSpec: 2039 case NestedNameSpecifier::TypeSpecWithTemplate: 2040 manglePrefix(QualType(qualifier->getAsType(), 0)); 2041 return; 2042 2043 case NestedNameSpecifier::Identifier: 2044 // Member expressions can have these without prefixes, but that 2045 // should end up in mangleUnresolvedPrefix instead. 2046 assert(qualifier->getPrefix()); 2047 manglePrefix(qualifier->getPrefix()); 2048 2049 mangleSourceName(qualifier->getAsIdentifier()); 2050 return; 2051 } 2052 2053 llvm_unreachable("unexpected nested name specifier"); 2054 } 2055 2056 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { 2057 // <prefix> ::= <prefix> <unqualified-name> 2058 // ::= <template-prefix> <template-args> 2059 // ::= <closure-prefix> 2060 // ::= <template-param> 2061 // ::= # empty 2062 // ::= <substitution> 2063 2064 assert(!isa<LinkageSpecDecl>(DC) && "prefix cannot be LinkageSpecDecl"); 2065 2066 if (DC->isTranslationUnit()) 2067 return; 2068 2069 if (NoFunction && isLocalContainerContext(DC)) 2070 return; 2071 2072 assert(!isLocalContainerContext(DC)); 2073 2074 const NamedDecl *ND = cast<NamedDecl>(DC); 2075 if (mangleSubstitution(ND)) 2076 return; 2077 2078 // Check if we have a template-prefix or a closure-prefix. 2079 const TemplateArgumentList *TemplateArgs = nullptr; 2080 if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) { 2081 mangleTemplatePrefix(TD); 2082 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 2083 } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) { 2084 mangleClosurePrefix(PrefixND, NoFunction); 2085 mangleUnqualifiedName(ND, nullptr); 2086 } else { 2087 manglePrefix(Context.getEffectiveDeclContext(ND), NoFunction); 2088 mangleUnqualifiedName(ND, nullptr); 2089 } 2090 2091 addSubstitution(ND); 2092 } 2093 2094 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { 2095 // <template-prefix> ::= <prefix> <template unqualified-name> 2096 // ::= <template-param> 2097 // ::= <substitution> 2098 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 2099 return mangleTemplatePrefix(TD); 2100 2101 DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); 2102 assert(Dependent && "unexpected template name kind"); 2103 2104 // Clang 11 and before mangled the substitution for a dependent template name 2105 // after already having emitted (a substitution for) the prefix. 2106 bool Clang11Compat = getASTContext().getLangOpts().getClangABICompat() <= 2107 LangOptions::ClangABI::Ver11; 2108 if (!Clang11Compat && mangleSubstitution(Template)) 2109 return; 2110 2111 if (NestedNameSpecifier *Qualifier = Dependent->getQualifier()) 2112 manglePrefix(Qualifier); 2113 2114 if (Clang11Compat && mangleSubstitution(Template)) 2115 return; 2116 2117 if (const IdentifierInfo *Id = Dependent->getIdentifier()) 2118 mangleSourceName(Id); 2119 else 2120 mangleOperatorName(Dependent->getOperator(), UnknownArity); 2121 2122 addSubstitution(Template); 2123 } 2124 2125 void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD, 2126 bool NoFunction) { 2127 const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl()); 2128 // <template-prefix> ::= <prefix> <template unqualified-name> 2129 // ::= <template-param> 2130 // ::= <substitution> 2131 // <template-template-param> ::= <template-param> 2132 // <substitution> 2133 2134 if (mangleSubstitution(ND)) 2135 return; 2136 2137 // <template-template-param> ::= <template-param> 2138 if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) { 2139 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 2140 } else { 2141 manglePrefix(Context.getEffectiveDeclContext(ND), NoFunction); 2142 if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) 2143 mangleUnqualifiedName(GD, nullptr); 2144 else 2145 mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr); 2146 } 2147 2148 addSubstitution(ND); 2149 } 2150 2151 const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) { 2152 if (getASTContext().getLangOpts().getClangABICompat() <= 2153 LangOptions::ClangABI::Ver12) 2154 return nullptr; 2155 2156 const NamedDecl *Context = nullptr; 2157 if (auto *Block = dyn_cast<BlockDecl>(ND)) { 2158 Context = dyn_cast_or_null<NamedDecl>(Block->getBlockManglingContextDecl()); 2159 } else if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 2160 if (RD->isLambda()) 2161 Context = dyn_cast_or_null<NamedDecl>(RD->getLambdaContextDecl()); 2162 } 2163 if (!Context) 2164 return nullptr; 2165 2166 // Only lambdas within the initializer of a non-local variable or non-static 2167 // data member get a <closure-prefix>. 2168 if ((isa<VarDecl>(Context) && cast<VarDecl>(Context)->hasGlobalStorage()) || 2169 isa<FieldDecl>(Context)) 2170 return Context; 2171 2172 return nullptr; 2173 } 2174 2175 void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) { 2176 // <closure-prefix> ::= [ <prefix> ] <unqualified-name> M 2177 // ::= <template-prefix> <template-args> M 2178 if (mangleSubstitution(ND)) 2179 return; 2180 2181 const TemplateArgumentList *TemplateArgs = nullptr; 2182 if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) { 2183 mangleTemplatePrefix(TD, NoFunction); 2184 mangleTemplateArgs(asTemplateName(TD), *TemplateArgs); 2185 } else { 2186 manglePrefix(Context.getEffectiveDeclContext(ND), NoFunction); 2187 mangleUnqualifiedName(ND, nullptr); 2188 } 2189 2190 Out << 'M'; 2191 2192 addSubstitution(ND); 2193 } 2194 2195 /// Mangles a template name under the production <type>. Required for 2196 /// template template arguments. 2197 /// <type> ::= <class-enum-type> 2198 /// ::= <template-param> 2199 /// ::= <substitution> 2200 void CXXNameMangler::mangleType(TemplateName TN) { 2201 if (mangleSubstitution(TN)) 2202 return; 2203 2204 TemplateDecl *TD = nullptr; 2205 2206 switch (TN.getKind()) { 2207 case TemplateName::QualifiedTemplate: 2208 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl(); 2209 goto HaveDecl; 2210 2211 case TemplateName::Template: 2212 TD = TN.getAsTemplateDecl(); 2213 goto HaveDecl; 2214 2215 HaveDecl: 2216 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD)) 2217 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 2218 else 2219 mangleName(TD); 2220 break; 2221 2222 case TemplateName::OverloadedTemplate: 2223 case TemplateName::AssumedTemplate: 2224 llvm_unreachable("can't mangle an overloaded template name as a <type>"); 2225 2226 case TemplateName::DependentTemplate: { 2227 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); 2228 assert(Dependent->isIdentifier()); 2229 2230 // <class-enum-type> ::= <name> 2231 // <name> ::= <nested-name> 2232 mangleUnresolvedPrefix(Dependent->getQualifier()); 2233 mangleSourceName(Dependent->getIdentifier()); 2234 break; 2235 } 2236 2237 case TemplateName::SubstTemplateTemplateParm: { 2238 // Substituted template parameters are mangled as the substituted 2239 // template. This will check for the substitution twice, which is 2240 // fine, but we have to return early so that we don't try to *add* 2241 // the substitution twice. 2242 SubstTemplateTemplateParmStorage *subst 2243 = TN.getAsSubstTemplateTemplateParm(); 2244 mangleType(subst->getReplacement()); 2245 return; 2246 } 2247 2248 case TemplateName::SubstTemplateTemplateParmPack: { 2249 // FIXME: not clear how to mangle this! 2250 // template <template <class> class T...> class A { 2251 // template <template <class> class U...> void foo(B<T,U> x...); 2252 // }; 2253 Out << "_SUBSTPACK_"; 2254 break; 2255 } 2256 } 2257 2258 addSubstitution(TN); 2259 } 2260 2261 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty, 2262 StringRef Prefix) { 2263 // Only certain other types are valid as prefixes; enumerate them. 2264 switch (Ty->getTypeClass()) { 2265 case Type::Builtin: 2266 case Type::Complex: 2267 case Type::Adjusted: 2268 case Type::Decayed: 2269 case Type::Pointer: 2270 case Type::BlockPointer: 2271 case Type::LValueReference: 2272 case Type::RValueReference: 2273 case Type::MemberPointer: 2274 case Type::ConstantArray: 2275 case Type::IncompleteArray: 2276 case Type::VariableArray: 2277 case Type::DependentSizedArray: 2278 case Type::DependentAddressSpace: 2279 case Type::DependentVector: 2280 case Type::DependentSizedExtVector: 2281 case Type::Vector: 2282 case Type::ExtVector: 2283 case Type::ConstantMatrix: 2284 case Type::DependentSizedMatrix: 2285 case Type::FunctionProto: 2286 case Type::FunctionNoProto: 2287 case Type::Paren: 2288 case Type::Attributed: 2289 case Type::Auto: 2290 case Type::DeducedTemplateSpecialization: 2291 case Type::PackExpansion: 2292 case Type::ObjCObject: 2293 case Type::ObjCInterface: 2294 case Type::ObjCObjectPointer: 2295 case Type::ObjCTypeParam: 2296 case Type::Atomic: 2297 case Type::Pipe: 2298 case Type::MacroQualified: 2299 case Type::BitInt: 2300 case Type::DependentBitInt: 2301 llvm_unreachable("type is illegal as a nested name specifier"); 2302 2303 case Type::SubstTemplateTypeParmPack: 2304 // FIXME: not clear how to mangle this! 2305 // template <class T...> class A { 2306 // template <class U...> void foo(decltype(T::foo(U())) x...); 2307 // }; 2308 Out << "_SUBSTPACK_"; 2309 break; 2310 2311 // <unresolved-type> ::= <template-param> 2312 // ::= <decltype> 2313 // ::= <template-template-param> <template-args> 2314 // (this last is not official yet) 2315 case Type::TypeOfExpr: 2316 case Type::TypeOf: 2317 case Type::Decltype: 2318 case Type::TemplateTypeParm: 2319 case Type::UnaryTransform: 2320 case Type::SubstTemplateTypeParm: 2321 unresolvedType: 2322 // Some callers want a prefix before the mangled type. 2323 Out << Prefix; 2324 2325 // This seems to do everything we want. It's not really 2326 // sanctioned for a substituted template parameter, though. 2327 mangleType(Ty); 2328 2329 // We never want to print 'E' directly after an unresolved-type, 2330 // so we return directly. 2331 return true; 2332 2333 case Type::Typedef: 2334 mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl()); 2335 break; 2336 2337 case Type::UnresolvedUsing: 2338 mangleSourceNameWithAbiTags( 2339 cast<UnresolvedUsingType>(Ty)->getDecl()); 2340 break; 2341 2342 case Type::Enum: 2343 case Type::Record: 2344 mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl()); 2345 break; 2346 2347 case Type::TemplateSpecialization: { 2348 const TemplateSpecializationType *TST = 2349 cast<TemplateSpecializationType>(Ty); 2350 TemplateName TN = TST->getTemplateName(); 2351 switch (TN.getKind()) { 2352 case TemplateName::Template: 2353 case TemplateName::QualifiedTemplate: { 2354 TemplateDecl *TD = TN.getAsTemplateDecl(); 2355 2356 // If the base is a template template parameter, this is an 2357 // unresolved type. 2358 assert(TD && "no template for template specialization type"); 2359 if (isa<TemplateTemplateParmDecl>(TD)) 2360 goto unresolvedType; 2361 2362 mangleSourceNameWithAbiTags(TD); 2363 break; 2364 } 2365 2366 case TemplateName::OverloadedTemplate: 2367 case TemplateName::AssumedTemplate: 2368 case TemplateName::DependentTemplate: 2369 llvm_unreachable("invalid base for a template specialization type"); 2370 2371 case TemplateName::SubstTemplateTemplateParm: { 2372 SubstTemplateTemplateParmStorage *subst = 2373 TN.getAsSubstTemplateTemplateParm(); 2374 mangleExistingSubstitution(subst->getReplacement()); 2375 break; 2376 } 2377 2378 case TemplateName::SubstTemplateTemplateParmPack: { 2379 // FIXME: not clear how to mangle this! 2380 // template <template <class U> class T...> class A { 2381 // template <class U...> void foo(decltype(T<U>::foo) x...); 2382 // }; 2383 Out << "_SUBSTPACK_"; 2384 break; 2385 } 2386 } 2387 2388 // Note: we don't pass in the template name here. We are mangling the 2389 // original source-level template arguments, so we shouldn't consider 2390 // conversions to the corresponding template parameter. 2391 // FIXME: Other compilers mangle partially-resolved template arguments in 2392 // unresolved-qualifier-levels. 2393 mangleTemplateArgs(TemplateName(), TST->getArgs(), TST->getNumArgs()); 2394 break; 2395 } 2396 2397 case Type::InjectedClassName: 2398 mangleSourceNameWithAbiTags( 2399 cast<InjectedClassNameType>(Ty)->getDecl()); 2400 break; 2401 2402 case Type::DependentName: 2403 mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier()); 2404 break; 2405 2406 case Type::DependentTemplateSpecialization: { 2407 const DependentTemplateSpecializationType *DTST = 2408 cast<DependentTemplateSpecializationType>(Ty); 2409 TemplateName Template = getASTContext().getDependentTemplateName( 2410 DTST->getQualifier(), DTST->getIdentifier()); 2411 mangleSourceName(DTST->getIdentifier()); 2412 mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs()); 2413 break; 2414 } 2415 2416 case Type::Using: 2417 return mangleUnresolvedTypeOrSimpleId(cast<UsingType>(Ty)->desugar(), 2418 Prefix); 2419 case Type::Elaborated: 2420 return mangleUnresolvedTypeOrSimpleId( 2421 cast<ElaboratedType>(Ty)->getNamedType(), Prefix); 2422 } 2423 2424 return false; 2425 } 2426 2427 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) { 2428 switch (Name.getNameKind()) { 2429 case DeclarationName::CXXConstructorName: 2430 case DeclarationName::CXXDestructorName: 2431 case DeclarationName::CXXDeductionGuideName: 2432 case DeclarationName::CXXUsingDirective: 2433 case DeclarationName::Identifier: 2434 case DeclarationName::ObjCMultiArgSelector: 2435 case DeclarationName::ObjCOneArgSelector: 2436 case DeclarationName::ObjCZeroArgSelector: 2437 llvm_unreachable("Not an operator name"); 2438 2439 case DeclarationName::CXXConversionFunctionName: 2440 // <operator-name> ::= cv <type> # (cast) 2441 Out << "cv"; 2442 mangleType(Name.getCXXNameType()); 2443 break; 2444 2445 case DeclarationName::CXXLiteralOperatorName: 2446 Out << "li"; 2447 mangleSourceName(Name.getCXXLiteralIdentifier()); 2448 return; 2449 2450 case DeclarationName::CXXOperatorName: 2451 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); 2452 break; 2453 } 2454 } 2455 2456 void 2457 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { 2458 switch (OO) { 2459 // <operator-name> ::= nw # new 2460 case OO_New: Out << "nw"; break; 2461 // ::= na # new[] 2462 case OO_Array_New: Out << "na"; break; 2463 // ::= dl # delete 2464 case OO_Delete: Out << "dl"; break; 2465 // ::= da # delete[] 2466 case OO_Array_Delete: Out << "da"; break; 2467 // ::= ps # + (unary) 2468 // ::= pl # + (binary or unknown) 2469 case OO_Plus: 2470 Out << (Arity == 1? "ps" : "pl"); break; 2471 // ::= ng # - (unary) 2472 // ::= mi # - (binary or unknown) 2473 case OO_Minus: 2474 Out << (Arity == 1? "ng" : "mi"); break; 2475 // ::= ad # & (unary) 2476 // ::= an # & (binary or unknown) 2477 case OO_Amp: 2478 Out << (Arity == 1? "ad" : "an"); break; 2479 // ::= de # * (unary) 2480 // ::= ml # * (binary or unknown) 2481 case OO_Star: 2482 // Use binary when unknown. 2483 Out << (Arity == 1? "de" : "ml"); break; 2484 // ::= co # ~ 2485 case OO_Tilde: Out << "co"; break; 2486 // ::= dv # / 2487 case OO_Slash: Out << "dv"; break; 2488 // ::= rm # % 2489 case OO_Percent: Out << "rm"; break; 2490 // ::= or # | 2491 case OO_Pipe: Out << "or"; break; 2492 // ::= eo # ^ 2493 case OO_Caret: Out << "eo"; break; 2494 // ::= aS # = 2495 case OO_Equal: Out << "aS"; break; 2496 // ::= pL # += 2497 case OO_PlusEqual: Out << "pL"; break; 2498 // ::= mI # -= 2499 case OO_MinusEqual: Out << "mI"; break; 2500 // ::= mL # *= 2501 case OO_StarEqual: Out << "mL"; break; 2502 // ::= dV # /= 2503 case OO_SlashEqual: Out << "dV"; break; 2504 // ::= rM # %= 2505 case OO_PercentEqual: Out << "rM"; break; 2506 // ::= aN # &= 2507 case OO_AmpEqual: Out << "aN"; break; 2508 // ::= oR # |= 2509 case OO_PipeEqual: Out << "oR"; break; 2510 // ::= eO # ^= 2511 case OO_CaretEqual: Out << "eO"; break; 2512 // ::= ls # << 2513 case OO_LessLess: Out << "ls"; break; 2514 // ::= rs # >> 2515 case OO_GreaterGreater: Out << "rs"; break; 2516 // ::= lS # <<= 2517 case OO_LessLessEqual: Out << "lS"; break; 2518 // ::= rS # >>= 2519 case OO_GreaterGreaterEqual: Out << "rS"; break; 2520 // ::= eq # == 2521 case OO_EqualEqual: Out << "eq"; break; 2522 // ::= ne # != 2523 case OO_ExclaimEqual: Out << "ne"; break; 2524 // ::= lt # < 2525 case OO_Less: Out << "lt"; break; 2526 // ::= gt # > 2527 case OO_Greater: Out << "gt"; break; 2528 // ::= le # <= 2529 case OO_LessEqual: Out << "le"; break; 2530 // ::= ge # >= 2531 case OO_GreaterEqual: Out << "ge"; break; 2532 // ::= nt # ! 2533 case OO_Exclaim: Out << "nt"; break; 2534 // ::= aa # && 2535 case OO_AmpAmp: Out << "aa"; break; 2536 // ::= oo # || 2537 case OO_PipePipe: Out << "oo"; break; 2538 // ::= pp # ++ 2539 case OO_PlusPlus: Out << "pp"; break; 2540 // ::= mm # -- 2541 case OO_MinusMinus: Out << "mm"; break; 2542 // ::= cm # , 2543 case OO_Comma: Out << "cm"; break; 2544 // ::= pm # ->* 2545 case OO_ArrowStar: Out << "pm"; break; 2546 // ::= pt # -> 2547 case OO_Arrow: Out << "pt"; break; 2548 // ::= cl # () 2549 case OO_Call: Out << "cl"; break; 2550 // ::= ix # [] 2551 case OO_Subscript: Out << "ix"; break; 2552 2553 // ::= qu # ? 2554 // The conditional operator can't be overloaded, but we still handle it when 2555 // mangling expressions. 2556 case OO_Conditional: Out << "qu"; break; 2557 // Proposal on cxx-abi-dev, 2015-10-21. 2558 // ::= aw # co_await 2559 case OO_Coawait: Out << "aw"; break; 2560 // Proposed in cxx-abi github issue 43. 2561 // ::= ss # <=> 2562 case OO_Spaceship: Out << "ss"; break; 2563 2564 case OO_None: 2565 case NUM_OVERLOADED_OPERATORS: 2566 llvm_unreachable("Not an overloaded operator"); 2567 } 2568 } 2569 2570 void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) { 2571 // Vendor qualifiers come first and if they are order-insensitive they must 2572 // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5. 2573 2574 // <type> ::= U <addrspace-expr> 2575 if (DAST) { 2576 Out << "U2ASI"; 2577 mangleExpression(DAST->getAddrSpaceExpr()); 2578 Out << "E"; 2579 } 2580 2581 // Address space qualifiers start with an ordinary letter. 2582 if (Quals.hasAddressSpace()) { 2583 // Address space extension: 2584 // 2585 // <type> ::= U <target-addrspace> 2586 // <type> ::= U <OpenCL-addrspace> 2587 // <type> ::= U <CUDA-addrspace> 2588 2589 SmallString<64> ASString; 2590 LangAS AS = Quals.getAddressSpace(); 2591 2592 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) { 2593 // <target-addrspace> ::= "AS" <address-space-number> 2594 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS); 2595 if (TargetAS != 0 || 2596 Context.getASTContext().getTargetAddressSpace(LangAS::Default) != 0) 2597 ASString = "AS" + llvm::utostr(TargetAS); 2598 } else { 2599 switch (AS) { 2600 default: llvm_unreachable("Not a language specific address space"); 2601 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" | 2602 // "private"| "generic" | "device" | 2603 // "host" ] 2604 case LangAS::opencl_global: 2605 ASString = "CLglobal"; 2606 break; 2607 case LangAS::opencl_global_device: 2608 ASString = "CLdevice"; 2609 break; 2610 case LangAS::opencl_global_host: 2611 ASString = "CLhost"; 2612 break; 2613 case LangAS::opencl_local: 2614 ASString = "CLlocal"; 2615 break; 2616 case LangAS::opencl_constant: 2617 ASString = "CLconstant"; 2618 break; 2619 case LangAS::opencl_private: 2620 ASString = "CLprivate"; 2621 break; 2622 case LangAS::opencl_generic: 2623 ASString = "CLgeneric"; 2624 break; 2625 // <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" | 2626 // "device" | "host" ] 2627 case LangAS::sycl_global: 2628 ASString = "SYglobal"; 2629 break; 2630 case LangAS::sycl_global_device: 2631 ASString = "SYdevice"; 2632 break; 2633 case LangAS::sycl_global_host: 2634 ASString = "SYhost"; 2635 break; 2636 case LangAS::sycl_local: 2637 ASString = "SYlocal"; 2638 break; 2639 case LangAS::sycl_private: 2640 ASString = "SYprivate"; 2641 break; 2642 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ] 2643 case LangAS::cuda_device: 2644 ASString = "CUdevice"; 2645 break; 2646 case LangAS::cuda_constant: 2647 ASString = "CUconstant"; 2648 break; 2649 case LangAS::cuda_shared: 2650 ASString = "CUshared"; 2651 break; 2652 // <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ] 2653 case LangAS::ptr32_sptr: 2654 ASString = "ptr32_sptr"; 2655 break; 2656 case LangAS::ptr32_uptr: 2657 ASString = "ptr32_uptr"; 2658 break; 2659 case LangAS::ptr64: 2660 ASString = "ptr64"; 2661 break; 2662 } 2663 } 2664 if (!ASString.empty()) 2665 mangleVendorQualifier(ASString); 2666 } 2667 2668 // The ARC ownership qualifiers start with underscores. 2669 // Objective-C ARC Extension: 2670 // 2671 // <type> ::= U "__strong" 2672 // <type> ::= U "__weak" 2673 // <type> ::= U "__autoreleasing" 2674 // 2675 // Note: we emit __weak first to preserve the order as 2676 // required by the Itanium ABI. 2677 if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak) 2678 mangleVendorQualifier("__weak"); 2679 2680 // __unaligned (from -fms-extensions) 2681 if (Quals.hasUnaligned()) 2682 mangleVendorQualifier("__unaligned"); 2683 2684 // Remaining ARC ownership qualifiers. 2685 switch (Quals.getObjCLifetime()) { 2686 case Qualifiers::OCL_None: 2687 break; 2688 2689 case Qualifiers::OCL_Weak: 2690 // Do nothing as we already handled this case above. 2691 break; 2692 2693 case Qualifiers::OCL_Strong: 2694 mangleVendorQualifier("__strong"); 2695 break; 2696 2697 case Qualifiers::OCL_Autoreleasing: 2698 mangleVendorQualifier("__autoreleasing"); 2699 break; 2700 2701 case Qualifiers::OCL_ExplicitNone: 2702 // The __unsafe_unretained qualifier is *not* mangled, so that 2703 // __unsafe_unretained types in ARC produce the same manglings as the 2704 // equivalent (but, naturally, unqualified) types in non-ARC, providing 2705 // better ABI compatibility. 2706 // 2707 // It's safe to do this because unqualified 'id' won't show up 2708 // in any type signatures that need to be mangled. 2709 break; 2710 } 2711 2712 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const 2713 if (Quals.hasRestrict()) 2714 Out << 'r'; 2715 if (Quals.hasVolatile()) 2716 Out << 'V'; 2717 if (Quals.hasConst()) 2718 Out << 'K'; 2719 } 2720 2721 void CXXNameMangler::mangleVendorQualifier(StringRef name) { 2722 Out << 'U' << name.size() << name; 2723 } 2724 2725 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { 2726 // <ref-qualifier> ::= R # lvalue reference 2727 // ::= O # rvalue-reference 2728 switch (RefQualifier) { 2729 case RQ_None: 2730 break; 2731 2732 case RQ_LValue: 2733 Out << 'R'; 2734 break; 2735 2736 case RQ_RValue: 2737 Out << 'O'; 2738 break; 2739 } 2740 } 2741 2742 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { 2743 Context.mangleObjCMethodNameAsSourceName(MD, Out); 2744 } 2745 2746 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty, 2747 ASTContext &Ctx) { 2748 if (Quals) 2749 return true; 2750 if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel)) 2751 return true; 2752 if (Ty->isOpenCLSpecificType()) 2753 return true; 2754 if (Ty->isBuiltinType()) 2755 return false; 2756 // Through to Clang 6.0, we accidentally treated undeduced auto types as 2757 // substitution candidates. 2758 if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 && 2759 isa<AutoType>(Ty)) 2760 return false; 2761 // A placeholder type for class template deduction is substitutable with 2762 // its corresponding template name; this is handled specially when mangling 2763 // the type. 2764 if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>()) 2765 if (DeducedTST->getDeducedType().isNull()) 2766 return false; 2767 return true; 2768 } 2769 2770 void CXXNameMangler::mangleType(QualType T) { 2771 // If our type is instantiation-dependent but not dependent, we mangle 2772 // it as it was written in the source, removing any top-level sugar. 2773 // Otherwise, use the canonical type. 2774 // 2775 // FIXME: This is an approximation of the instantiation-dependent name 2776 // mangling rules, since we should really be using the type as written and 2777 // augmented via semantic analysis (i.e., with implicit conversions and 2778 // default template arguments) for any instantiation-dependent type. 2779 // Unfortunately, that requires several changes to our AST: 2780 // - Instantiation-dependent TemplateSpecializationTypes will need to be 2781 // uniqued, so that we can handle substitutions properly 2782 // - Default template arguments will need to be represented in the 2783 // TemplateSpecializationType, since they need to be mangled even though 2784 // they aren't written. 2785 // - Conversions on non-type template arguments need to be expressed, since 2786 // they can affect the mangling of sizeof/alignof. 2787 // 2788 // FIXME: This is wrong when mapping to the canonical type for a dependent 2789 // type discards instantiation-dependent portions of the type, such as for: 2790 // 2791 // template<typename T, int N> void f(T (&)[sizeof(N)]); 2792 // template<typename T> void f(T() throw(typename T::type)); (pre-C++17) 2793 // 2794 // It's also wrong in the opposite direction when instantiation-dependent, 2795 // canonically-equivalent types differ in some irrelevant portion of inner 2796 // type sugar. In such cases, we fail to form correct substitutions, eg: 2797 // 2798 // template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*)); 2799 // 2800 // We should instead canonicalize the non-instantiation-dependent parts, 2801 // regardless of whether the type as a whole is dependent or instantiation 2802 // dependent. 2803 if (!T->isInstantiationDependentType() || T->isDependentType()) 2804 T = T.getCanonicalType(); 2805 else { 2806 // Desugar any types that are purely sugar. 2807 do { 2808 // Don't desugar through template specialization types that aren't 2809 // type aliases. We need to mangle the template arguments as written. 2810 if (const TemplateSpecializationType *TST 2811 = dyn_cast<TemplateSpecializationType>(T)) 2812 if (!TST->isTypeAlias()) 2813 break; 2814 2815 // FIXME: We presumably shouldn't strip off ElaboratedTypes with 2816 // instantation-dependent qualifiers. See 2817 // https://github.com/itanium-cxx-abi/cxx-abi/issues/114. 2818 2819 QualType Desugared 2820 = T.getSingleStepDesugaredType(Context.getASTContext()); 2821 if (Desugared == T) 2822 break; 2823 2824 T = Desugared; 2825 } while (true); 2826 } 2827 SplitQualType split = T.split(); 2828 Qualifiers quals = split.Quals; 2829 const Type *ty = split.Ty; 2830 2831 bool isSubstitutable = 2832 isTypeSubstitutable(quals, ty, Context.getASTContext()); 2833 if (isSubstitutable && mangleSubstitution(T)) 2834 return; 2835 2836 // If we're mangling a qualified array type, push the qualifiers to 2837 // the element type. 2838 if (quals && isa<ArrayType>(T)) { 2839 ty = Context.getASTContext().getAsArrayType(T); 2840 quals = Qualifiers(); 2841 2842 // Note that we don't update T: we want to add the 2843 // substitution at the original type. 2844 } 2845 2846 if (quals || ty->isDependentAddressSpaceType()) { 2847 if (const DependentAddressSpaceType *DAST = 2848 dyn_cast<DependentAddressSpaceType>(ty)) { 2849 SplitQualType splitDAST = DAST->getPointeeType().split(); 2850 mangleQualifiers(splitDAST.Quals, DAST); 2851 mangleType(QualType(splitDAST.Ty, 0)); 2852 } else { 2853 mangleQualifiers(quals); 2854 2855 // Recurse: even if the qualified type isn't yet substitutable, 2856 // the unqualified type might be. 2857 mangleType(QualType(ty, 0)); 2858 } 2859 } else { 2860 switch (ty->getTypeClass()) { 2861 #define ABSTRACT_TYPE(CLASS, PARENT) 2862 #define NON_CANONICAL_TYPE(CLASS, PARENT) \ 2863 case Type::CLASS: \ 2864 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ 2865 return; 2866 #define TYPE(CLASS, PARENT) \ 2867 case Type::CLASS: \ 2868 mangleType(static_cast<const CLASS##Type*>(ty)); \ 2869 break; 2870 #include "clang/AST/TypeNodes.inc" 2871 } 2872 } 2873 2874 // Add the substitution. 2875 if (isSubstitutable) 2876 addSubstitution(T); 2877 } 2878 2879 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { 2880 if (!mangleStandardSubstitution(ND)) 2881 mangleName(ND); 2882 } 2883 2884 void CXXNameMangler::mangleType(const BuiltinType *T) { 2885 // <type> ::= <builtin-type> 2886 // <builtin-type> ::= v # void 2887 // ::= w # wchar_t 2888 // ::= b # bool 2889 // ::= c # char 2890 // ::= a # signed char 2891 // ::= h # unsigned char 2892 // ::= s # short 2893 // ::= t # unsigned short 2894 // ::= i # int 2895 // ::= j # unsigned int 2896 // ::= l # long 2897 // ::= m # unsigned long 2898 // ::= x # long long, __int64 2899 // ::= y # unsigned long long, __int64 2900 // ::= n # __int128 2901 // ::= o # unsigned __int128 2902 // ::= f # float 2903 // ::= d # double 2904 // ::= e # long double, __float80 2905 // ::= g # __float128 2906 // ::= g # __ibm128 2907 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) 2908 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) 2909 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) 2910 // ::= Dh # IEEE 754r half-precision floating point (16 bits) 2911 // ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits); 2912 // ::= Di # char32_t 2913 // ::= Ds # char16_t 2914 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) 2915 // ::= u <source-name> # vendor extended type 2916 std::string type_name; 2917 switch (T->getKind()) { 2918 case BuiltinType::Void: 2919 Out << 'v'; 2920 break; 2921 case BuiltinType::Bool: 2922 Out << 'b'; 2923 break; 2924 case BuiltinType::Char_U: 2925 case BuiltinType::Char_S: 2926 Out << 'c'; 2927 break; 2928 case BuiltinType::UChar: 2929 Out << 'h'; 2930 break; 2931 case BuiltinType::UShort: 2932 Out << 't'; 2933 break; 2934 case BuiltinType::UInt: 2935 Out << 'j'; 2936 break; 2937 case BuiltinType::ULong: 2938 Out << 'm'; 2939 break; 2940 case BuiltinType::ULongLong: 2941 Out << 'y'; 2942 break; 2943 case BuiltinType::UInt128: 2944 Out << 'o'; 2945 break; 2946 case BuiltinType::SChar: 2947 Out << 'a'; 2948 break; 2949 case BuiltinType::WChar_S: 2950 case BuiltinType::WChar_U: 2951 Out << 'w'; 2952 break; 2953 case BuiltinType::Char8: 2954 Out << "Du"; 2955 break; 2956 case BuiltinType::Char16: 2957 Out << "Ds"; 2958 break; 2959 case BuiltinType::Char32: 2960 Out << "Di"; 2961 break; 2962 case BuiltinType::Short: 2963 Out << 's'; 2964 break; 2965 case BuiltinType::Int: 2966 Out << 'i'; 2967 break; 2968 case BuiltinType::Long: 2969 Out << 'l'; 2970 break; 2971 case BuiltinType::LongLong: 2972 Out << 'x'; 2973 break; 2974 case BuiltinType::Int128: 2975 Out << 'n'; 2976 break; 2977 case BuiltinType::Float16: 2978 Out << "DF16_"; 2979 break; 2980 case BuiltinType::ShortAccum: 2981 case BuiltinType::Accum: 2982 case BuiltinType::LongAccum: 2983 case BuiltinType::UShortAccum: 2984 case BuiltinType::UAccum: 2985 case BuiltinType::ULongAccum: 2986 case BuiltinType::ShortFract: 2987 case BuiltinType::Fract: 2988 case BuiltinType::LongFract: 2989 case BuiltinType::UShortFract: 2990 case BuiltinType::UFract: 2991 case BuiltinType::ULongFract: 2992 case BuiltinType::SatShortAccum: 2993 case BuiltinType::SatAccum: 2994 case BuiltinType::SatLongAccum: 2995 case BuiltinType::SatUShortAccum: 2996 case BuiltinType::SatUAccum: 2997 case BuiltinType::SatULongAccum: 2998 case BuiltinType::SatShortFract: 2999 case BuiltinType::SatFract: 3000 case BuiltinType::SatLongFract: 3001 case BuiltinType::SatUShortFract: 3002 case BuiltinType::SatUFract: 3003 case BuiltinType::SatULongFract: 3004 llvm_unreachable("Fixed point types are disabled for c++"); 3005 case BuiltinType::Half: 3006 Out << "Dh"; 3007 break; 3008 case BuiltinType::Float: 3009 Out << 'f'; 3010 break; 3011 case BuiltinType::Double: 3012 Out << 'd'; 3013 break; 3014 case BuiltinType::LongDouble: { 3015 const TargetInfo *TI = getASTContext().getLangOpts().OpenMP && 3016 getASTContext().getLangOpts().OpenMPIsDevice 3017 ? getASTContext().getAuxTargetInfo() 3018 : &getASTContext().getTargetInfo(); 3019 Out << TI->getLongDoubleMangling(); 3020 break; 3021 } 3022 case BuiltinType::Float128: { 3023 const TargetInfo *TI = getASTContext().getLangOpts().OpenMP && 3024 getASTContext().getLangOpts().OpenMPIsDevice 3025 ? getASTContext().getAuxTargetInfo() 3026 : &getASTContext().getTargetInfo(); 3027 Out << TI->getFloat128Mangling(); 3028 break; 3029 } 3030 case BuiltinType::BFloat16: { 3031 const TargetInfo *TI = &getASTContext().getTargetInfo(); 3032 Out << TI->getBFloat16Mangling(); 3033 break; 3034 } 3035 case BuiltinType::Ibm128: { 3036 const TargetInfo *TI = &getASTContext().getTargetInfo(); 3037 Out << TI->getIbm128Mangling(); 3038 break; 3039 } 3040 case BuiltinType::NullPtr: 3041 Out << "Dn"; 3042 break; 3043 3044 #define BUILTIN_TYPE(Id, SingletonId) 3045 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 3046 case BuiltinType::Id: 3047 #include "clang/AST/BuiltinTypes.def" 3048 case BuiltinType::Dependent: 3049 if (!NullOut) 3050 llvm_unreachable("mangling a placeholder type"); 3051 break; 3052 case BuiltinType::ObjCId: 3053 Out << "11objc_object"; 3054 break; 3055 case BuiltinType::ObjCClass: 3056 Out << "10objc_class"; 3057 break; 3058 case BuiltinType::ObjCSel: 3059 Out << "13objc_selector"; 3060 break; 3061 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 3062 case BuiltinType::Id: \ 3063 type_name = "ocl_" #ImgType "_" #Suffix; \ 3064 Out << type_name.size() << type_name; \ 3065 break; 3066 #include "clang/Basic/OpenCLImageTypes.def" 3067 case BuiltinType::OCLSampler: 3068 Out << "11ocl_sampler"; 3069 break; 3070 case BuiltinType::OCLEvent: 3071 Out << "9ocl_event"; 3072 break; 3073 case BuiltinType::OCLClkEvent: 3074 Out << "12ocl_clkevent"; 3075 break; 3076 case BuiltinType::OCLQueue: 3077 Out << "9ocl_queue"; 3078 break; 3079 case BuiltinType::OCLReserveID: 3080 Out << "13ocl_reserveid"; 3081 break; 3082 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 3083 case BuiltinType::Id: \ 3084 type_name = "ocl_" #ExtType; \ 3085 Out << type_name.size() << type_name; \ 3086 break; 3087 #include "clang/Basic/OpenCLExtensionTypes.def" 3088 // The SVE types are effectively target-specific. The mangling scheme 3089 // is defined in the appendices to the Procedure Call Standard for the 3090 // Arm Architecture. 3091 #define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls, \ 3092 ElBits, IsSigned, IsFP, IsBF) \ 3093 case BuiltinType::Id: \ 3094 type_name = MangledName; \ 3095 Out << (type_name == InternalName ? "u" : "") << type_name.size() \ 3096 << type_name; \ 3097 break; 3098 #define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \ 3099 case BuiltinType::Id: \ 3100 type_name = MangledName; \ 3101 Out << (type_name == InternalName ? "u" : "") << type_name.size() \ 3102 << type_name; \ 3103 break; 3104 #include "clang/Basic/AArch64SVEACLETypes.def" 3105 #define PPC_VECTOR_TYPE(Name, Id, Size) \ 3106 case BuiltinType::Id: \ 3107 type_name = #Name; \ 3108 Out << 'u' << type_name.size() << type_name; \ 3109 break; 3110 #include "clang/Basic/PPCTypes.def" 3111 // TODO: Check the mangling scheme for RISC-V V. 3112 #define RVV_TYPE(Name, Id, SingletonId) \ 3113 case BuiltinType::Id: \ 3114 type_name = Name; \ 3115 Out << 'u' << type_name.size() << type_name; \ 3116 break; 3117 #include "clang/Basic/RISCVVTypes.def" 3118 } 3119 } 3120 3121 StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) { 3122 switch (CC) { 3123 case CC_C: 3124 return ""; 3125 3126 case CC_X86VectorCall: 3127 case CC_X86Pascal: 3128 case CC_X86RegCall: 3129 case CC_AAPCS: 3130 case CC_AAPCS_VFP: 3131 case CC_AArch64VectorCall: 3132 case CC_IntelOclBicc: 3133 case CC_SpirFunction: 3134 case CC_OpenCLKernel: 3135 case CC_PreserveMost: 3136 case CC_PreserveAll: 3137 // FIXME: we should be mangling all of the above. 3138 return ""; 3139 3140 case CC_X86ThisCall: 3141 // FIXME: To match mingw GCC, thiscall should only be mangled in when it is 3142 // used explicitly. At this point, we don't have that much information in 3143 // the AST, since clang tends to bake the convention into the canonical 3144 // function type. thiscall only rarely used explicitly, so don't mangle it 3145 // for now. 3146 return ""; 3147 3148 case CC_X86StdCall: 3149 return "stdcall"; 3150 case CC_X86FastCall: 3151 return "fastcall"; 3152 case CC_X86_64SysV: 3153 return "sysv_abi"; 3154 case CC_Win64: 3155 return "ms_abi"; 3156 case CC_Swift: 3157 return "swiftcall"; 3158 case CC_SwiftAsync: 3159 return "swiftasynccall"; 3160 } 3161 llvm_unreachable("bad calling convention"); 3162 } 3163 3164 void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) { 3165 // Fast path. 3166 if (T->getExtInfo() == FunctionType::ExtInfo()) 3167 return; 3168 3169 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 3170 // This will get more complicated in the future if we mangle other 3171 // things here; but for now, since we mangle ns_returns_retained as 3172 // a qualifier on the result type, we can get away with this: 3173 StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC()); 3174 if (!CCQualifier.empty()) 3175 mangleVendorQualifier(CCQualifier); 3176 3177 // FIXME: regparm 3178 // FIXME: noreturn 3179 } 3180 3181 void 3182 CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) { 3183 // Vendor-specific qualifiers are emitted in reverse alphabetical order. 3184 3185 // Note that these are *not* substitution candidates. Demanglers might 3186 // have trouble with this if the parameter type is fully substituted. 3187 3188 switch (PI.getABI()) { 3189 case ParameterABI::Ordinary: 3190 break; 3191 3192 // All of these start with "swift", so they come before "ns_consumed". 3193 case ParameterABI::SwiftContext: 3194 case ParameterABI::SwiftAsyncContext: 3195 case ParameterABI::SwiftErrorResult: 3196 case ParameterABI::SwiftIndirectResult: 3197 mangleVendorQualifier(getParameterABISpelling(PI.getABI())); 3198 break; 3199 } 3200 3201 if (PI.isConsumed()) 3202 mangleVendorQualifier("ns_consumed"); 3203 3204 if (PI.isNoEscape()) 3205 mangleVendorQualifier("noescape"); 3206 } 3207 3208 // <type> ::= <function-type> 3209 // <function-type> ::= [<CV-qualifiers>] F [Y] 3210 // <bare-function-type> [<ref-qualifier>] E 3211 void CXXNameMangler::mangleType(const FunctionProtoType *T) { 3212 mangleExtFunctionInfo(T); 3213 3214 // Mangle CV-qualifiers, if present. These are 'this' qualifiers, 3215 // e.g. "const" in "int (A::*)() const". 3216 mangleQualifiers(T->getMethodQuals()); 3217 3218 // Mangle instantiation-dependent exception-specification, if present, 3219 // per cxx-abi-dev proposal on 2016-10-11. 3220 if (T->hasInstantiationDependentExceptionSpec()) { 3221 if (isComputedNoexcept(T->getExceptionSpecType())) { 3222 Out << "DO"; 3223 mangleExpression(T->getNoexceptExpr()); 3224 Out << "E"; 3225 } else { 3226 assert(T->getExceptionSpecType() == EST_Dynamic); 3227 Out << "Dw"; 3228 for (auto ExceptTy : T->exceptions()) 3229 mangleType(ExceptTy); 3230 Out << "E"; 3231 } 3232 } else if (T->isNothrow()) { 3233 Out << "Do"; 3234 } 3235 3236 Out << 'F'; 3237 3238 // FIXME: We don't have enough information in the AST to produce the 'Y' 3239 // encoding for extern "C" function types. 3240 mangleBareFunctionType(T, /*MangleReturnType=*/true); 3241 3242 // Mangle the ref-qualifier, if present. 3243 mangleRefQualifier(T->getRefQualifier()); 3244 3245 Out << 'E'; 3246 } 3247 3248 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { 3249 // Function types without prototypes can arise when mangling a function type 3250 // within an overloadable function in C. We mangle these as the absence of any 3251 // parameter types (not even an empty parameter list). 3252 Out << 'F'; 3253 3254 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 3255 3256 FunctionTypeDepth.enterResultType(); 3257 mangleType(T->getReturnType()); 3258 FunctionTypeDepth.leaveResultType(); 3259 3260 FunctionTypeDepth.pop(saved); 3261 Out << 'E'; 3262 } 3263 3264 void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto, 3265 bool MangleReturnType, 3266 const FunctionDecl *FD) { 3267 // Record that we're in a function type. See mangleFunctionParam 3268 // for details on what we're trying to achieve here. 3269 FunctionTypeDepthState saved = FunctionTypeDepth.push(); 3270 3271 // <bare-function-type> ::= <signature type>+ 3272 if (MangleReturnType) { 3273 FunctionTypeDepth.enterResultType(); 3274 3275 // Mangle ns_returns_retained as an order-sensitive qualifier here. 3276 if (Proto->getExtInfo().getProducesResult() && FD == nullptr) 3277 mangleVendorQualifier("ns_returns_retained"); 3278 3279 // Mangle the return type without any direct ARC ownership qualifiers. 3280 QualType ReturnTy = Proto->getReturnType(); 3281 if (ReturnTy.getObjCLifetime()) { 3282 auto SplitReturnTy = ReturnTy.split(); 3283 SplitReturnTy.Quals.removeObjCLifetime(); 3284 ReturnTy = getASTContext().getQualifiedType(SplitReturnTy); 3285 } 3286 mangleType(ReturnTy); 3287 3288 FunctionTypeDepth.leaveResultType(); 3289 } 3290 3291 if (Proto->getNumParams() == 0 && !Proto->isVariadic()) { 3292 // <builtin-type> ::= v # void 3293 Out << 'v'; 3294 3295 FunctionTypeDepth.pop(saved); 3296 return; 3297 } 3298 3299 assert(!FD || FD->getNumParams() == Proto->getNumParams()); 3300 for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) { 3301 // Mangle extended parameter info as order-sensitive qualifiers here. 3302 if (Proto->hasExtParameterInfos() && FD == nullptr) { 3303 mangleExtParameterInfo(Proto->getExtParameterInfo(I)); 3304 } 3305 3306 // Mangle the type. 3307 QualType ParamTy = Proto->getParamType(I); 3308 mangleType(Context.getASTContext().getSignatureParameterType(ParamTy)); 3309 3310 if (FD) { 3311 if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) { 3312 // Attr can only take 1 character, so we can hardcode the length below. 3313 assert(Attr->getType() <= 9 && Attr->getType() >= 0); 3314 if (Attr->isDynamic()) 3315 Out << "U25pass_dynamic_object_size" << Attr->getType(); 3316 else 3317 Out << "U17pass_object_size" << Attr->getType(); 3318 } 3319 } 3320 } 3321 3322 FunctionTypeDepth.pop(saved); 3323 3324 // <builtin-type> ::= z # ellipsis 3325 if (Proto->isVariadic()) 3326 Out << 'z'; 3327 } 3328 3329 // <type> ::= <class-enum-type> 3330 // <class-enum-type> ::= <name> 3331 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { 3332 mangleName(T->getDecl()); 3333 } 3334 3335 // <type> ::= <class-enum-type> 3336 // <class-enum-type> ::= <name> 3337 void CXXNameMangler::mangleType(const EnumType *T) { 3338 mangleType(static_cast<const TagType*>(T)); 3339 } 3340 void CXXNameMangler::mangleType(const RecordType *T) { 3341 mangleType(static_cast<const TagType*>(T)); 3342 } 3343 void CXXNameMangler::mangleType(const TagType *T) { 3344 mangleName(T->getDecl()); 3345 } 3346 3347 // <type> ::= <array-type> 3348 // <array-type> ::= A <positive dimension number> _ <element type> 3349 // ::= A [<dimension expression>] _ <element type> 3350 void CXXNameMangler::mangleType(const ConstantArrayType *T) { 3351 Out << 'A' << T->getSize() << '_'; 3352 mangleType(T->getElementType()); 3353 } 3354 void CXXNameMangler::mangleType(const VariableArrayType *T) { 3355 Out << 'A'; 3356 // decayed vla types (size 0) will just be skipped. 3357 if (T->getSizeExpr()) 3358 mangleExpression(T->getSizeExpr()); 3359 Out << '_'; 3360 mangleType(T->getElementType()); 3361 } 3362 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { 3363 Out << 'A'; 3364 // A DependentSizedArrayType might not have size expression as below 3365 // 3366 // template<int ...N> int arr[] = {N...}; 3367 if (T->getSizeExpr()) 3368 mangleExpression(T->getSizeExpr()); 3369 Out << '_'; 3370 mangleType(T->getElementType()); 3371 } 3372 void CXXNameMangler::mangleType(const IncompleteArrayType *T) { 3373 Out << "A_"; 3374 mangleType(T->getElementType()); 3375 } 3376 3377 // <type> ::= <pointer-to-member-type> 3378 // <pointer-to-member-type> ::= M <class type> <member type> 3379 void CXXNameMangler::mangleType(const MemberPointerType *T) { 3380 Out << 'M'; 3381 mangleType(QualType(T->getClass(), 0)); 3382 QualType PointeeType = T->getPointeeType(); 3383 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { 3384 mangleType(FPT); 3385 3386 // Itanium C++ ABI 5.1.8: 3387 // 3388 // The type of a non-static member function is considered to be different, 3389 // for the purposes of substitution, from the type of a namespace-scope or 3390 // static member function whose type appears similar. The types of two 3391 // non-static member functions are considered to be different, for the 3392 // purposes of substitution, if the functions are members of different 3393 // classes. In other words, for the purposes of substitution, the class of 3394 // which the function is a member is considered part of the type of 3395 // function. 3396 3397 // Given that we already substitute member function pointers as a 3398 // whole, the net effect of this rule is just to unconditionally 3399 // suppress substitution on the function type in a member pointer. 3400 // We increment the SeqID here to emulate adding an entry to the 3401 // substitution table. 3402 ++SeqID; 3403 } else 3404 mangleType(PointeeType); 3405 } 3406 3407 // <type> ::= <template-param> 3408 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { 3409 mangleTemplateParameter(T->getDepth(), T->getIndex()); 3410 } 3411 3412 // <type> ::= <template-param> 3413 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { 3414 // FIXME: not clear how to mangle this! 3415 // template <class T...> class A { 3416 // template <class U...> void foo(T(*)(U) x...); 3417 // }; 3418 Out << "_SUBSTPACK_"; 3419 } 3420 3421 // <type> ::= P <type> # pointer-to 3422 void CXXNameMangler::mangleType(const PointerType *T) { 3423 Out << 'P'; 3424 mangleType(T->getPointeeType()); 3425 } 3426 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { 3427 Out << 'P'; 3428 mangleType(T->getPointeeType()); 3429 } 3430 3431 // <type> ::= R <type> # reference-to 3432 void CXXNameMangler::mangleType(const LValueReferenceType *T) { 3433 Out << 'R'; 3434 mangleType(T->getPointeeType()); 3435 } 3436 3437 // <type> ::= O <type> # rvalue reference-to (C++0x) 3438 void CXXNameMangler::mangleType(const RValueReferenceType *T) { 3439 Out << 'O'; 3440 mangleType(T->getPointeeType()); 3441 } 3442 3443 // <type> ::= C <type> # complex pair (C 2000) 3444 void CXXNameMangler::mangleType(const ComplexType *T) { 3445 Out << 'C'; 3446 mangleType(T->getElementType()); 3447 } 3448 3449 // ARM's ABI for Neon vector types specifies that they should be mangled as 3450 // if they are structs (to match ARM's initial implementation). The 3451 // vector type must be one of the special types predefined by ARM. 3452 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { 3453 QualType EltType = T->getElementType(); 3454 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 3455 const char *EltName = nullptr; 3456 if (T->getVectorKind() == VectorType::NeonPolyVector) { 3457 switch (cast<BuiltinType>(EltType)->getKind()) { 3458 case BuiltinType::SChar: 3459 case BuiltinType::UChar: 3460 EltName = "poly8_t"; 3461 break; 3462 case BuiltinType::Short: 3463 case BuiltinType::UShort: 3464 EltName = "poly16_t"; 3465 break; 3466 case BuiltinType::LongLong: 3467 case BuiltinType::ULongLong: 3468 EltName = "poly64_t"; 3469 break; 3470 default: llvm_unreachable("unexpected Neon polynomial vector element type"); 3471 } 3472 } else { 3473 switch (cast<BuiltinType>(EltType)->getKind()) { 3474 case BuiltinType::SChar: EltName = "int8_t"; break; 3475 case BuiltinType::UChar: EltName = "uint8_t"; break; 3476 case BuiltinType::Short: EltName = "int16_t"; break; 3477 case BuiltinType::UShort: EltName = "uint16_t"; break; 3478 case BuiltinType::Int: EltName = "int32_t"; break; 3479 case BuiltinType::UInt: EltName = "uint32_t"; break; 3480 case BuiltinType::LongLong: EltName = "int64_t"; break; 3481 case BuiltinType::ULongLong: EltName = "uint64_t"; break; 3482 case BuiltinType::Double: EltName = "float64_t"; break; 3483 case BuiltinType::Float: EltName = "float32_t"; break; 3484 case BuiltinType::Half: EltName = "float16_t"; break; 3485 case BuiltinType::BFloat16: EltName = "bfloat16_t"; break; 3486 default: 3487 llvm_unreachable("unexpected Neon vector element type"); 3488 } 3489 } 3490 const char *BaseName = nullptr; 3491 unsigned BitSize = (T->getNumElements() * 3492 getASTContext().getTypeSize(EltType)); 3493 if (BitSize == 64) 3494 BaseName = "__simd64_"; 3495 else { 3496 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits"); 3497 BaseName = "__simd128_"; 3498 } 3499 Out << strlen(BaseName) + strlen(EltName); 3500 Out << BaseName << EltName; 3501 } 3502 3503 void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) { 3504 DiagnosticsEngine &Diags = Context.getDiags(); 3505 unsigned DiagID = Diags.getCustomDiagID( 3506 DiagnosticsEngine::Error, 3507 "cannot mangle this dependent neon vector type yet"); 3508 Diags.Report(T->getAttributeLoc(), DiagID); 3509 } 3510 3511 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) { 3512 switch (EltType->getKind()) { 3513 case BuiltinType::SChar: 3514 return "Int8"; 3515 case BuiltinType::Short: 3516 return "Int16"; 3517 case BuiltinType::Int: 3518 return "Int32"; 3519 case BuiltinType::Long: 3520 case BuiltinType::LongLong: 3521 return "Int64"; 3522 case BuiltinType::UChar: 3523 return "Uint8"; 3524 case BuiltinType::UShort: 3525 return "Uint16"; 3526 case BuiltinType::UInt: 3527 return "Uint32"; 3528 case BuiltinType::ULong: 3529 case BuiltinType::ULongLong: 3530 return "Uint64"; 3531 case BuiltinType::Half: 3532 return "Float16"; 3533 case BuiltinType::Float: 3534 return "Float32"; 3535 case BuiltinType::Double: 3536 return "Float64"; 3537 case BuiltinType::BFloat16: 3538 return "Bfloat16"; 3539 default: 3540 llvm_unreachable("Unexpected vector element base type"); 3541 } 3542 } 3543 3544 // AArch64's ABI for Neon vector types specifies that they should be mangled as 3545 // the equivalent internal name. The vector type must be one of the special 3546 // types predefined by ARM. 3547 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) { 3548 QualType EltType = T->getElementType(); 3549 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); 3550 unsigned BitSize = 3551 (T->getNumElements() * getASTContext().getTypeSize(EltType)); 3552 (void)BitSize; // Silence warning. 3553 3554 assert((BitSize == 64 || BitSize == 128) && 3555 "Neon vector type not 64 or 128 bits"); 3556 3557 StringRef EltName; 3558 if (T->getVectorKind() == VectorType::NeonPolyVector) { 3559 switch (cast<BuiltinType>(EltType)->getKind()) { 3560 case BuiltinType::UChar: 3561 EltName = "Poly8"; 3562 break; 3563 case BuiltinType::UShort: 3564 EltName = "Poly16"; 3565 break; 3566 case BuiltinType::ULong: 3567 case BuiltinType::ULongLong: 3568 EltName = "Poly64"; 3569 break; 3570 default: 3571 llvm_unreachable("unexpected Neon polynomial vector element type"); 3572 } 3573 } else 3574 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType)); 3575 3576 std::string TypeName = 3577 ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str(); 3578 Out << TypeName.length() << TypeName; 3579 } 3580 void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) { 3581 DiagnosticsEngine &Diags = Context.getDiags(); 3582 unsigned DiagID = Diags.getCustomDiagID( 3583 DiagnosticsEngine::Error, 3584 "cannot mangle this dependent neon vector type yet"); 3585 Diags.Report(T->getAttributeLoc(), DiagID); 3586 } 3587 3588 // The AArch64 ACLE specifies that fixed-length SVE vector and predicate types 3589 // defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64 3590 // type as the sizeless variants. 3591 // 3592 // The mangling scheme for VLS types is implemented as a "pseudo" template: 3593 // 3594 // '__SVE_VLS<<type>, <vector length>>' 3595 // 3596 // Combining the existing SVE type and a specific vector length (in bits). 3597 // For example: 3598 // 3599 // typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512))); 3600 // 3601 // is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as: 3602 // 3603 // "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE" 3604 // 3605 // i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE 3606 // 3607 // The latest ACLE specification (00bet5) does not contain details of this 3608 // mangling scheme, it will be specified in the next revision. The mangling 3609 // scheme is otherwise defined in the appendices to the Procedure Call Standard 3610 // for the Arm Architecture, see 3611 // https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#appendix-c-mangling 3612 void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) { 3613 assert((T->getVectorKind() == VectorType::SveFixedLengthDataVector || 3614 T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) && 3615 "expected fixed-length SVE vector!"); 3616 3617 QualType EltType = T->getElementType(); 3618 assert(EltType->isBuiltinType() && 3619 "expected builtin type for fixed-length SVE vector!"); 3620 3621 StringRef TypeName; 3622 switch (cast<BuiltinType>(EltType)->getKind()) { 3623 case BuiltinType::SChar: 3624 TypeName = "__SVInt8_t"; 3625 break; 3626 case BuiltinType::UChar: { 3627 if (T->getVectorKind() == VectorType::SveFixedLengthDataVector) 3628 TypeName = "__SVUint8_t"; 3629 else 3630 TypeName = "__SVBool_t"; 3631 break; 3632 } 3633 case BuiltinType::Short: 3634 TypeName = "__SVInt16_t"; 3635 break; 3636 case BuiltinType::UShort: 3637 TypeName = "__SVUint16_t"; 3638 break; 3639 case BuiltinType::Int: 3640 TypeName = "__SVInt32_t"; 3641 break; 3642 case BuiltinType::UInt: 3643 TypeName = "__SVUint32_t"; 3644 break; 3645 case BuiltinType::Long: 3646 TypeName = "__SVInt64_t"; 3647 break; 3648 case BuiltinType::ULong: 3649 TypeName = "__SVUint64_t"; 3650 break; 3651 case BuiltinType::Half: 3652 TypeName = "__SVFloat16_t"; 3653 break; 3654 case BuiltinType::Float: 3655 TypeName = "__SVFloat32_t"; 3656 break; 3657 case BuiltinType::Double: 3658 TypeName = "__SVFloat64_t"; 3659 break; 3660 case BuiltinType::BFloat16: 3661 TypeName = "__SVBfloat16_t"; 3662 break; 3663 default: 3664 llvm_unreachable("unexpected element type for fixed-length SVE vector!"); 3665 } 3666 3667 unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width; 3668 3669 if (T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) 3670 VecSizeInBits *= 8; 3671 3672 Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj" 3673 << VecSizeInBits << "EE"; 3674 } 3675 3676 void CXXNameMangler::mangleAArch64FixedSveVectorType( 3677 const DependentVectorType *T) { 3678 DiagnosticsEngine &Diags = Context.getDiags(); 3679 unsigned DiagID = Diags.getCustomDiagID( 3680 DiagnosticsEngine::Error, 3681 "cannot mangle this dependent fixed-length SVE vector type yet"); 3682 Diags.Report(T->getAttributeLoc(), DiagID); 3683 } 3684 3685 // GNU extension: vector types 3686 // <type> ::= <vector-type> 3687 // <vector-type> ::= Dv <positive dimension number> _ 3688 // <extended element type> 3689 // ::= Dv [<dimension expression>] _ <element type> 3690 // <extended element type> ::= <element type> 3691 // ::= p # AltiVec vector pixel 3692 // ::= b # Altivec vector bool 3693 void CXXNameMangler::mangleType(const VectorType *T) { 3694 if ((T->getVectorKind() == VectorType::NeonVector || 3695 T->getVectorKind() == VectorType::NeonPolyVector)) { 3696 llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); 3697 llvm::Triple::ArchType Arch = 3698 getASTContext().getTargetInfo().getTriple().getArch(); 3699 if ((Arch == llvm::Triple::aarch64 || 3700 Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin()) 3701 mangleAArch64NeonVectorType(T); 3702 else 3703 mangleNeonVectorType(T); 3704 return; 3705 } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector || 3706 T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 3707 mangleAArch64FixedSveVectorType(T); 3708 return; 3709 } 3710 Out << "Dv" << T->getNumElements() << '_'; 3711 if (T->getVectorKind() == VectorType::AltiVecPixel) 3712 Out << 'p'; 3713 else if (T->getVectorKind() == VectorType::AltiVecBool) 3714 Out << 'b'; 3715 else 3716 mangleType(T->getElementType()); 3717 } 3718 3719 void CXXNameMangler::mangleType(const DependentVectorType *T) { 3720 if ((T->getVectorKind() == VectorType::NeonVector || 3721 T->getVectorKind() == VectorType::NeonPolyVector)) { 3722 llvm::Triple Target = getASTContext().getTargetInfo().getTriple(); 3723 llvm::Triple::ArchType Arch = 3724 getASTContext().getTargetInfo().getTriple().getArch(); 3725 if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) && 3726 !Target.isOSDarwin()) 3727 mangleAArch64NeonVectorType(T); 3728 else 3729 mangleNeonVectorType(T); 3730 return; 3731 } else if (T->getVectorKind() == VectorType::SveFixedLengthDataVector || 3732 T->getVectorKind() == VectorType::SveFixedLengthPredicateVector) { 3733 mangleAArch64FixedSveVectorType(T); 3734 return; 3735 } 3736 3737 Out << "Dv"; 3738 mangleExpression(T->getSizeExpr()); 3739 Out << '_'; 3740 if (T->getVectorKind() == VectorType::AltiVecPixel) 3741 Out << 'p'; 3742 else if (T->getVectorKind() == VectorType::AltiVecBool) 3743 Out << 'b'; 3744 else 3745 mangleType(T->getElementType()); 3746 } 3747 3748 void CXXNameMangler::mangleType(const ExtVectorType *T) { 3749 mangleType(static_cast<const VectorType*>(T)); 3750 } 3751 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { 3752 Out << "Dv"; 3753 mangleExpression(T->getSizeExpr()); 3754 Out << '_'; 3755 mangleType(T->getElementType()); 3756 } 3757 3758 void CXXNameMangler::mangleType(const ConstantMatrixType *T) { 3759 // Mangle matrix types as a vendor extended type: 3760 // u<Len>matrix_typeI<Rows><Columns><element type>E 3761 3762 StringRef VendorQualifier = "matrix_type"; 3763 Out << "u" << VendorQualifier.size() << VendorQualifier; 3764 3765 Out << "I"; 3766 auto &ASTCtx = getASTContext(); 3767 unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType()); 3768 llvm::APSInt Rows(BitWidth); 3769 Rows = T->getNumRows(); 3770 mangleIntegerLiteral(ASTCtx.getSizeType(), Rows); 3771 llvm::APSInt Columns(BitWidth); 3772 Columns = T->getNumColumns(); 3773 mangleIntegerLiteral(ASTCtx.getSizeType(), Columns); 3774 mangleType(T->getElementType()); 3775 Out << "E"; 3776 } 3777 3778 void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) { 3779 // Mangle matrix types as a vendor extended type: 3780 // u<Len>matrix_typeI<row expr><column expr><element type>E 3781 StringRef VendorQualifier = "matrix_type"; 3782 Out << "u" << VendorQualifier.size() << VendorQualifier; 3783 3784 Out << "I"; 3785 mangleTemplateArgExpr(T->getRowExpr()); 3786 mangleTemplateArgExpr(T->getColumnExpr()); 3787 mangleType(T->getElementType()); 3788 Out << "E"; 3789 } 3790 3791 void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) { 3792 SplitQualType split = T->getPointeeType().split(); 3793 mangleQualifiers(split.Quals, T); 3794 mangleType(QualType(split.Ty, 0)); 3795 } 3796 3797 void CXXNameMangler::mangleType(const PackExpansionType *T) { 3798 // <type> ::= Dp <type> # pack expansion (C++0x) 3799 Out << "Dp"; 3800 mangleType(T->getPattern()); 3801 } 3802 3803 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { 3804 mangleSourceName(T->getDecl()->getIdentifier()); 3805 } 3806 3807 void CXXNameMangler::mangleType(const ObjCObjectType *T) { 3808 // Treat __kindof as a vendor extended type qualifier. 3809 if (T->isKindOfType()) 3810 Out << "U8__kindof"; 3811 3812 if (!T->qual_empty()) { 3813 // Mangle protocol qualifiers. 3814 SmallString<64> QualStr; 3815 llvm::raw_svector_ostream QualOS(QualStr); 3816 QualOS << "objcproto"; 3817 for (const auto *I : T->quals()) { 3818 StringRef name = I->getName(); 3819 QualOS << name.size() << name; 3820 } 3821 Out << 'U' << QualStr.size() << QualStr; 3822 } 3823 3824 mangleType(T->getBaseType()); 3825 3826 if (T->isSpecialized()) { 3827 // Mangle type arguments as I <type>+ E 3828 Out << 'I'; 3829 for (auto typeArg : T->getTypeArgs()) 3830 mangleType(typeArg); 3831 Out << 'E'; 3832 } 3833 } 3834 3835 void CXXNameMangler::mangleType(const BlockPointerType *T) { 3836 Out << "U13block_pointer"; 3837 mangleType(T->getPointeeType()); 3838 } 3839 3840 void CXXNameMangler::mangleType(const InjectedClassNameType *T) { 3841 // Mangle injected class name types as if the user had written the 3842 // specialization out fully. It may not actually be possible to see 3843 // this mangling, though. 3844 mangleType(T->getInjectedSpecializationType()); 3845 } 3846 3847 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { 3848 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { 3849 mangleTemplateName(TD, T->getArgs(), T->getNumArgs()); 3850 } else { 3851 if (mangleSubstitution(QualType(T, 0))) 3852 return; 3853 3854 mangleTemplatePrefix(T->getTemplateName()); 3855 3856 // FIXME: GCC does not appear to mangle the template arguments when 3857 // the template in question is a dependent template name. Should we 3858 // emulate that badness? 3859 mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs()); 3860 addSubstitution(QualType(T, 0)); 3861 } 3862 } 3863 3864 void CXXNameMangler::mangleType(const DependentNameType *T) { 3865 // Proposal by cxx-abi-dev, 2014-03-26 3866 // <class-enum-type> ::= <name> # non-dependent or dependent type name or 3867 // # dependent elaborated type specifier using 3868 // # 'typename' 3869 // ::= Ts <name> # dependent elaborated type specifier using 3870 // # 'struct' or 'class' 3871 // ::= Tu <name> # dependent elaborated type specifier using 3872 // # 'union' 3873 // ::= Te <name> # dependent elaborated type specifier using 3874 // # 'enum' 3875 switch (T->getKeyword()) { 3876 case ETK_None: 3877 case ETK_Typename: 3878 break; 3879 case ETK_Struct: 3880 case ETK_Class: 3881 case ETK_Interface: 3882 Out << "Ts"; 3883 break; 3884 case ETK_Union: 3885 Out << "Tu"; 3886 break; 3887 case ETK_Enum: 3888 Out << "Te"; 3889 break; 3890 } 3891 // Typename types are always nested 3892 Out << 'N'; 3893 manglePrefix(T->getQualifier()); 3894 mangleSourceName(T->getIdentifier()); 3895 Out << 'E'; 3896 } 3897 3898 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { 3899 // Dependently-scoped template types are nested if they have a prefix. 3900 Out << 'N'; 3901 3902 // TODO: avoid making this TemplateName. 3903 TemplateName Prefix = 3904 getASTContext().getDependentTemplateName(T->getQualifier(), 3905 T->getIdentifier()); 3906 mangleTemplatePrefix(Prefix); 3907 3908 // FIXME: GCC does not appear to mangle the template arguments when 3909 // the template in question is a dependent template name. Should we 3910 // emulate that badness? 3911 mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs()); 3912 Out << 'E'; 3913 } 3914 3915 void CXXNameMangler::mangleType(const TypeOfType *T) { 3916 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 3917 // "extension with parameters" mangling. 3918 Out << "u6typeof"; 3919 } 3920 3921 void CXXNameMangler::mangleType(const TypeOfExprType *T) { 3922 // FIXME: this is pretty unsatisfactory, but there isn't an obvious 3923 // "extension with parameters" mangling. 3924 Out << "u6typeof"; 3925 } 3926 3927 void CXXNameMangler::mangleType(const DecltypeType *T) { 3928 Expr *E = T->getUnderlyingExpr(); 3929 3930 // type ::= Dt <expression> E # decltype of an id-expression 3931 // # or class member access 3932 // ::= DT <expression> E # decltype of an expression 3933 3934 // This purports to be an exhaustive list of id-expressions and 3935 // class member accesses. Note that we do not ignore parentheses; 3936 // parentheses change the semantics of decltype for these 3937 // expressions (and cause the mangler to use the other form). 3938 if (isa<DeclRefExpr>(E) || 3939 isa<MemberExpr>(E) || 3940 isa<UnresolvedLookupExpr>(E) || 3941 isa<DependentScopeDeclRefExpr>(E) || 3942 isa<CXXDependentScopeMemberExpr>(E) || 3943 isa<UnresolvedMemberExpr>(E)) 3944 Out << "Dt"; 3945 else 3946 Out << "DT"; 3947 mangleExpression(E); 3948 Out << 'E'; 3949 } 3950 3951 void CXXNameMangler::mangleType(const UnaryTransformType *T) { 3952 // If this is dependent, we need to record that. If not, we simply 3953 // mangle it as the underlying type since they are equivalent. 3954 if (T->isDependentType()) { 3955 Out << 'U'; 3956 3957 switch (T->getUTTKind()) { 3958 case UnaryTransformType::EnumUnderlyingType: 3959 Out << "3eut"; 3960 break; 3961 } 3962 } 3963 3964 mangleType(T->getBaseType()); 3965 } 3966 3967 void CXXNameMangler::mangleType(const AutoType *T) { 3968 assert(T->getDeducedType().isNull() && 3969 "Deduced AutoType shouldn't be handled here!"); 3970 assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType && 3971 "shouldn't need to mangle __auto_type!"); 3972 // <builtin-type> ::= Da # auto 3973 // ::= Dc # decltype(auto) 3974 Out << (T->isDecltypeAuto() ? "Dc" : "Da"); 3975 } 3976 3977 void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) { 3978 QualType Deduced = T->getDeducedType(); 3979 if (!Deduced.isNull()) 3980 return mangleType(Deduced); 3981 3982 TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl(); 3983 assert(TD && "shouldn't form deduced TST unless we know we have a template"); 3984 3985 if (mangleSubstitution(TD)) 3986 return; 3987 3988 mangleName(GlobalDecl(TD)); 3989 addSubstitution(TD); 3990 } 3991 3992 void CXXNameMangler::mangleType(const AtomicType *T) { 3993 // <type> ::= U <source-name> <type> # vendor extended type qualifier 3994 // (Until there's a standardized mangling...) 3995 Out << "U7_Atomic"; 3996 mangleType(T->getValueType()); 3997 } 3998 3999 void CXXNameMangler::mangleType(const PipeType *T) { 4000 // Pipe type mangling rules are described in SPIR 2.0 specification 4001 // A.1 Data types and A.3 Summary of changes 4002 // <type> ::= 8ocl_pipe 4003 Out << "8ocl_pipe"; 4004 } 4005 4006 void CXXNameMangler::mangleType(const BitIntType *T) { 4007 // 5.1.5.2 Builtin types 4008 // <type> ::= DB <number | instantiation-dependent expression> _ 4009 // ::= DU <number | instantiation-dependent expression> _ 4010 Out << "D" << (T->isUnsigned() ? "U" : "B") << T->getNumBits() << "_"; 4011 } 4012 4013 void CXXNameMangler::mangleType(const DependentBitIntType *T) { 4014 // 5.1.5.2 Builtin types 4015 // <type> ::= DB <number | instantiation-dependent expression> _ 4016 // ::= DU <number | instantiation-dependent expression> _ 4017 Out << "D" << (T->isUnsigned() ? "U" : "B"); 4018 mangleExpression(T->getNumBitsExpr()); 4019 Out << "_"; 4020 } 4021 4022 void CXXNameMangler::mangleIntegerLiteral(QualType T, 4023 const llvm::APSInt &Value) { 4024 // <expr-primary> ::= L <type> <value number> E # integer literal 4025 Out << 'L'; 4026 4027 mangleType(T); 4028 if (T->isBooleanType()) { 4029 // Boolean values are encoded as 0/1. 4030 Out << (Value.getBoolValue() ? '1' : '0'); 4031 } else { 4032 mangleNumber(Value); 4033 } 4034 Out << 'E'; 4035 4036 } 4037 4038 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) { 4039 // Ignore member expressions involving anonymous unions. 4040 while (const auto *RT = Base->getType()->getAs<RecordType>()) { 4041 if (!RT->getDecl()->isAnonymousStructOrUnion()) 4042 break; 4043 const auto *ME = dyn_cast<MemberExpr>(Base); 4044 if (!ME) 4045 break; 4046 Base = ME->getBase(); 4047 IsArrow = ME->isArrow(); 4048 } 4049 4050 if (Base->isImplicitCXXThis()) { 4051 // Note: GCC mangles member expressions to the implicit 'this' as 4052 // *this., whereas we represent them as this->. The Itanium C++ ABI 4053 // does not specify anything here, so we follow GCC. 4054 Out << "dtdefpT"; 4055 } else { 4056 Out << (IsArrow ? "pt" : "dt"); 4057 mangleExpression(Base); 4058 } 4059 } 4060 4061 /// Mangles a member expression. 4062 void CXXNameMangler::mangleMemberExpr(const Expr *base, 4063 bool isArrow, 4064 NestedNameSpecifier *qualifier, 4065 NamedDecl *firstQualifierLookup, 4066 DeclarationName member, 4067 const TemplateArgumentLoc *TemplateArgs, 4068 unsigned NumTemplateArgs, 4069 unsigned arity) { 4070 // <expression> ::= dt <expression> <unresolved-name> 4071 // ::= pt <expression> <unresolved-name> 4072 if (base) 4073 mangleMemberExprBase(base, isArrow); 4074 mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity); 4075 } 4076 4077 /// Look at the callee of the given call expression and determine if 4078 /// it's a parenthesized id-expression which would have triggered ADL 4079 /// otherwise. 4080 static bool isParenthesizedADLCallee(const CallExpr *call) { 4081 const Expr *callee = call->getCallee(); 4082 const Expr *fn = callee->IgnoreParens(); 4083 4084 // Must be parenthesized. IgnoreParens() skips __extension__ nodes, 4085 // too, but for those to appear in the callee, it would have to be 4086 // parenthesized. 4087 if (callee == fn) return false; 4088 4089 // Must be an unresolved lookup. 4090 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn); 4091 if (!lookup) return false; 4092 4093 assert(!lookup->requiresADL()); 4094 4095 // Must be an unqualified lookup. 4096 if (lookup->getQualifier()) return false; 4097 4098 // Must not have found a class member. Note that if one is a class 4099 // member, they're all class members. 4100 if (lookup->getNumDecls() > 0 && 4101 (*lookup->decls_begin())->isCXXClassMember()) 4102 return false; 4103 4104 // Otherwise, ADL would have been triggered. 4105 return true; 4106 } 4107 4108 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) { 4109 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E); 4110 Out << CastEncoding; 4111 mangleType(ECE->getType()); 4112 mangleExpression(ECE->getSubExpr()); 4113 } 4114 4115 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) { 4116 if (auto *Syntactic = InitList->getSyntacticForm()) 4117 InitList = Syntactic; 4118 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) 4119 mangleExpression(InitList->getInit(i)); 4120 } 4121 4122 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity, 4123 bool AsTemplateArg) { 4124 // <expression> ::= <unary operator-name> <expression> 4125 // ::= <binary operator-name> <expression> <expression> 4126 // ::= <trinary operator-name> <expression> <expression> <expression> 4127 // ::= cv <type> expression # conversion with one argument 4128 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments 4129 // ::= dc <type> <expression> # dynamic_cast<type> (expression) 4130 // ::= sc <type> <expression> # static_cast<type> (expression) 4131 // ::= cc <type> <expression> # const_cast<type> (expression) 4132 // ::= rc <type> <expression> # reinterpret_cast<type> (expression) 4133 // ::= st <type> # sizeof (a type) 4134 // ::= at <type> # alignof (a type) 4135 // ::= <template-param> 4136 // ::= <function-param> 4137 // ::= fpT # 'this' expression (part of <function-param>) 4138 // ::= sr <type> <unqualified-name> # dependent name 4139 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id 4140 // ::= ds <expression> <expression> # expr.*expr 4141 // ::= sZ <template-param> # size of a parameter pack 4142 // ::= sZ <function-param> # size of a function parameter pack 4143 // ::= u <source-name> <template-arg>* E # vendor extended expression 4144 // ::= <expr-primary> 4145 // <expr-primary> ::= L <type> <value number> E # integer literal 4146 // ::= L <type> <value float> E # floating literal 4147 // ::= L <type> <string type> E # string literal 4148 // ::= L <nullptr type> E # nullptr literal "LDnE" 4149 // ::= L <pointer type> 0 E # null pointer template argument 4150 // ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C99); not used by clang 4151 // ::= L <mangled-name> E # external name 4152 QualType ImplicitlyConvertedToType; 4153 4154 // A top-level expression that's not <expr-primary> needs to be wrapped in 4155 // X...E in a template arg. 4156 bool IsPrimaryExpr = true; 4157 auto NotPrimaryExpr = [&] { 4158 if (AsTemplateArg && IsPrimaryExpr) 4159 Out << 'X'; 4160 IsPrimaryExpr = false; 4161 }; 4162 4163 auto MangleDeclRefExpr = [&](const NamedDecl *D) { 4164 switch (D->getKind()) { 4165 default: 4166 // <expr-primary> ::= L <mangled-name> E # external name 4167 Out << 'L'; 4168 mangle(D); 4169 Out << 'E'; 4170 break; 4171 4172 case Decl::ParmVar: 4173 NotPrimaryExpr(); 4174 mangleFunctionParam(cast<ParmVarDecl>(D)); 4175 break; 4176 4177 case Decl::EnumConstant: { 4178 // <expr-primary> 4179 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D); 4180 mangleIntegerLiteral(ED->getType(), ED->getInitVal()); 4181 break; 4182 } 4183 4184 case Decl::NonTypeTemplateParm: 4185 NotPrimaryExpr(); 4186 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); 4187 mangleTemplateParameter(PD->getDepth(), PD->getIndex()); 4188 break; 4189 } 4190 }; 4191 4192 // 'goto recurse' is used when handling a simple "unwrapping" node which 4193 // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need 4194 // to be preserved. 4195 recurse: 4196 switch (E->getStmtClass()) { 4197 case Expr::NoStmtClass: 4198 #define ABSTRACT_STMT(Type) 4199 #define EXPR(Type, Base) 4200 #define STMT(Type, Base) \ 4201 case Expr::Type##Class: 4202 #include "clang/AST/StmtNodes.inc" 4203 // fallthrough 4204 4205 // These all can only appear in local or variable-initialization 4206 // contexts and so should never appear in a mangling. 4207 case Expr::AddrLabelExprClass: 4208 case Expr::DesignatedInitUpdateExprClass: 4209 case Expr::ImplicitValueInitExprClass: 4210 case Expr::ArrayInitLoopExprClass: 4211 case Expr::ArrayInitIndexExprClass: 4212 case Expr::NoInitExprClass: 4213 case Expr::ParenListExprClass: 4214 case Expr::MSPropertyRefExprClass: 4215 case Expr::MSPropertySubscriptExprClass: 4216 case Expr::TypoExprClass: // This should no longer exist in the AST by now. 4217 case Expr::RecoveryExprClass: 4218 case Expr::OMPArraySectionExprClass: 4219 case Expr::OMPArrayShapingExprClass: 4220 case Expr::OMPIteratorExprClass: 4221 case Expr::CXXInheritedCtorInitExprClass: 4222 llvm_unreachable("unexpected statement kind"); 4223 4224 case Expr::ConstantExprClass: 4225 E = cast<ConstantExpr>(E)->getSubExpr(); 4226 goto recurse; 4227 4228 // FIXME: invent manglings for all these. 4229 case Expr::BlockExprClass: 4230 case Expr::ChooseExprClass: 4231 case Expr::CompoundLiteralExprClass: 4232 case Expr::ExtVectorElementExprClass: 4233 case Expr::GenericSelectionExprClass: 4234 case Expr::ObjCEncodeExprClass: 4235 case Expr::ObjCIsaExprClass: 4236 case Expr::ObjCIvarRefExprClass: 4237 case Expr::ObjCMessageExprClass: 4238 case Expr::ObjCPropertyRefExprClass: 4239 case Expr::ObjCProtocolExprClass: 4240 case Expr::ObjCSelectorExprClass: 4241 case Expr::ObjCStringLiteralClass: 4242 case Expr::ObjCBoxedExprClass: 4243 case Expr::ObjCArrayLiteralClass: 4244 case Expr::ObjCDictionaryLiteralClass: 4245 case Expr::ObjCSubscriptRefExprClass: 4246 case Expr::ObjCIndirectCopyRestoreExprClass: 4247 case Expr::ObjCAvailabilityCheckExprClass: 4248 case Expr::OffsetOfExprClass: 4249 case Expr::PredefinedExprClass: 4250 case Expr::ShuffleVectorExprClass: 4251 case Expr::ConvertVectorExprClass: 4252 case Expr::StmtExprClass: 4253 case Expr::TypeTraitExprClass: 4254 case Expr::RequiresExprClass: 4255 case Expr::ArrayTypeTraitExprClass: 4256 case Expr::ExpressionTraitExprClass: 4257 case Expr::VAArgExprClass: 4258 case Expr::CUDAKernelCallExprClass: 4259 case Expr::AsTypeExprClass: 4260 case Expr::PseudoObjectExprClass: 4261 case Expr::AtomicExprClass: 4262 case Expr::SourceLocExprClass: 4263 case Expr::BuiltinBitCastExprClass: 4264 { 4265 NotPrimaryExpr(); 4266 if (!NullOut) { 4267 // As bad as this diagnostic is, it's better than crashing. 4268 DiagnosticsEngine &Diags = Context.getDiags(); 4269 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 4270 "cannot yet mangle expression type %0"); 4271 Diags.Report(E->getExprLoc(), DiagID) 4272 << E->getStmtClassName() << E->getSourceRange(); 4273 return; 4274 } 4275 break; 4276 } 4277 4278 case Expr::CXXUuidofExprClass: { 4279 NotPrimaryExpr(); 4280 const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E); 4281 // As of clang 12, uuidof uses the vendor extended expression 4282 // mangling. Previously, it used a special-cased nonstandard extension. 4283 if (Context.getASTContext().getLangOpts().getClangABICompat() > 4284 LangOptions::ClangABI::Ver11) { 4285 Out << "u8__uuidof"; 4286 if (UE->isTypeOperand()) 4287 mangleType(UE->getTypeOperand(Context.getASTContext())); 4288 else 4289 mangleTemplateArgExpr(UE->getExprOperand()); 4290 Out << 'E'; 4291 } else { 4292 if (UE->isTypeOperand()) { 4293 QualType UuidT = UE->getTypeOperand(Context.getASTContext()); 4294 Out << "u8__uuidoft"; 4295 mangleType(UuidT); 4296 } else { 4297 Expr *UuidExp = UE->getExprOperand(); 4298 Out << "u8__uuidofz"; 4299 mangleExpression(UuidExp); 4300 } 4301 } 4302 break; 4303 } 4304 4305 // Even gcc-4.5 doesn't mangle this. 4306 case Expr::BinaryConditionalOperatorClass: { 4307 NotPrimaryExpr(); 4308 DiagnosticsEngine &Diags = Context.getDiags(); 4309 unsigned DiagID = 4310 Diags.getCustomDiagID(DiagnosticsEngine::Error, 4311 "?: operator with omitted middle operand cannot be mangled"); 4312 Diags.Report(E->getExprLoc(), DiagID) 4313 << E->getStmtClassName() << E->getSourceRange(); 4314 return; 4315 } 4316 4317 // These are used for internal purposes and cannot be meaningfully mangled. 4318 case Expr::OpaqueValueExprClass: 4319 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?"); 4320 4321 case Expr::InitListExprClass: { 4322 NotPrimaryExpr(); 4323 Out << "il"; 4324 mangleInitListElements(cast<InitListExpr>(E)); 4325 Out << "E"; 4326 break; 4327 } 4328 4329 case Expr::DesignatedInitExprClass: { 4330 NotPrimaryExpr(); 4331 auto *DIE = cast<DesignatedInitExpr>(E); 4332 for (const auto &Designator : DIE->designators()) { 4333 if (Designator.isFieldDesignator()) { 4334 Out << "di"; 4335 mangleSourceName(Designator.getFieldName()); 4336 } else if (Designator.isArrayDesignator()) { 4337 Out << "dx"; 4338 mangleExpression(DIE->getArrayIndex(Designator)); 4339 } else { 4340 assert(Designator.isArrayRangeDesignator() && 4341 "unknown designator kind"); 4342 Out << "dX"; 4343 mangleExpression(DIE->getArrayRangeStart(Designator)); 4344 mangleExpression(DIE->getArrayRangeEnd(Designator)); 4345 } 4346 } 4347 mangleExpression(DIE->getInit()); 4348 break; 4349 } 4350 4351 case Expr::CXXDefaultArgExprClass: 4352 E = cast<CXXDefaultArgExpr>(E)->getExpr(); 4353 goto recurse; 4354 4355 case Expr::CXXDefaultInitExprClass: 4356 E = cast<CXXDefaultInitExpr>(E)->getExpr(); 4357 goto recurse; 4358 4359 case Expr::CXXStdInitializerListExprClass: 4360 E = cast<CXXStdInitializerListExpr>(E)->getSubExpr(); 4361 goto recurse; 4362 4363 case Expr::SubstNonTypeTemplateParmExprClass: 4364 E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(); 4365 goto recurse; 4366 4367 case Expr::UserDefinedLiteralClass: 4368 // We follow g++'s approach of mangling a UDL as a call to the literal 4369 // operator. 4370 case Expr::CXXMemberCallExprClass: // fallthrough 4371 case Expr::CallExprClass: { 4372 NotPrimaryExpr(); 4373 const CallExpr *CE = cast<CallExpr>(E); 4374 4375 // <expression> ::= cp <simple-id> <expression>* E 4376 // We use this mangling only when the call would use ADL except 4377 // for being parenthesized. Per discussion with David 4378 // Vandervoorde, 2011.04.25. 4379 if (isParenthesizedADLCallee(CE)) { 4380 Out << "cp"; 4381 // The callee here is a parenthesized UnresolvedLookupExpr with 4382 // no qualifier and should always get mangled as a <simple-id> 4383 // anyway. 4384 4385 // <expression> ::= cl <expression>* E 4386 } else { 4387 Out << "cl"; 4388 } 4389 4390 unsigned CallArity = CE->getNumArgs(); 4391 for (const Expr *Arg : CE->arguments()) 4392 if (isa<PackExpansionExpr>(Arg)) 4393 CallArity = UnknownArity; 4394 4395 mangleExpression(CE->getCallee(), CallArity); 4396 for (const Expr *Arg : CE->arguments()) 4397 mangleExpression(Arg); 4398 Out << 'E'; 4399 break; 4400 } 4401 4402 case Expr::CXXNewExprClass: { 4403 NotPrimaryExpr(); 4404 const CXXNewExpr *New = cast<CXXNewExpr>(E); 4405 if (New->isGlobalNew()) Out << "gs"; 4406 Out << (New->isArray() ? "na" : "nw"); 4407 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), 4408 E = New->placement_arg_end(); I != E; ++I) 4409 mangleExpression(*I); 4410 Out << '_'; 4411 mangleType(New->getAllocatedType()); 4412 if (New->hasInitializer()) { 4413 if (New->getInitializationStyle() == CXXNewExpr::ListInit) 4414 Out << "il"; 4415 else 4416 Out << "pi"; 4417 const Expr *Init = New->getInitializer(); 4418 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 4419 // Directly inline the initializers. 4420 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 4421 E = CCE->arg_end(); 4422 I != E; ++I) 4423 mangleExpression(*I); 4424 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) { 4425 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) 4426 mangleExpression(PLE->getExpr(i)); 4427 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit && 4428 isa<InitListExpr>(Init)) { 4429 // Only take InitListExprs apart for list-initialization. 4430 mangleInitListElements(cast<InitListExpr>(Init)); 4431 } else 4432 mangleExpression(Init); 4433 } 4434 Out << 'E'; 4435 break; 4436 } 4437 4438 case Expr::CXXPseudoDestructorExprClass: { 4439 NotPrimaryExpr(); 4440 const auto *PDE = cast<CXXPseudoDestructorExpr>(E); 4441 if (const Expr *Base = PDE->getBase()) 4442 mangleMemberExprBase(Base, PDE->isArrow()); 4443 NestedNameSpecifier *Qualifier = PDE->getQualifier(); 4444 if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) { 4445 if (Qualifier) { 4446 mangleUnresolvedPrefix(Qualifier, 4447 /*recursive=*/true); 4448 mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()); 4449 Out << 'E'; 4450 } else { 4451 Out << "sr"; 4452 if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType())) 4453 Out << 'E'; 4454 } 4455 } else if (Qualifier) { 4456 mangleUnresolvedPrefix(Qualifier); 4457 } 4458 // <base-unresolved-name> ::= dn <destructor-name> 4459 Out << "dn"; 4460 QualType DestroyedType = PDE->getDestroyedType(); 4461 mangleUnresolvedTypeOrSimpleId(DestroyedType); 4462 break; 4463 } 4464 4465 case Expr::MemberExprClass: { 4466 NotPrimaryExpr(); 4467 const MemberExpr *ME = cast<MemberExpr>(E); 4468 mangleMemberExpr(ME->getBase(), ME->isArrow(), 4469 ME->getQualifier(), nullptr, 4470 ME->getMemberDecl()->getDeclName(), 4471 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 4472 Arity); 4473 break; 4474 } 4475 4476 case Expr::UnresolvedMemberExprClass: { 4477 NotPrimaryExpr(); 4478 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); 4479 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 4480 ME->isArrow(), ME->getQualifier(), nullptr, 4481 ME->getMemberName(), 4482 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 4483 Arity); 4484 break; 4485 } 4486 4487 case Expr::CXXDependentScopeMemberExprClass: { 4488 NotPrimaryExpr(); 4489 const CXXDependentScopeMemberExpr *ME 4490 = cast<CXXDependentScopeMemberExpr>(E); 4491 mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(), 4492 ME->isArrow(), ME->getQualifier(), 4493 ME->getFirstQualifierFoundInScope(), 4494 ME->getMember(), 4495 ME->getTemplateArgs(), ME->getNumTemplateArgs(), 4496 Arity); 4497 break; 4498 } 4499 4500 case Expr::UnresolvedLookupExprClass: { 4501 NotPrimaryExpr(); 4502 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); 4503 mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), 4504 ULE->getTemplateArgs(), ULE->getNumTemplateArgs(), 4505 Arity); 4506 break; 4507 } 4508 4509 case Expr::CXXUnresolvedConstructExprClass: { 4510 NotPrimaryExpr(); 4511 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); 4512 unsigned N = CE->getNumArgs(); 4513 4514 if (CE->isListInitialization()) { 4515 assert(N == 1 && "unexpected form for list initialization"); 4516 auto *IL = cast<InitListExpr>(CE->getArg(0)); 4517 Out << "tl"; 4518 mangleType(CE->getType()); 4519 mangleInitListElements(IL); 4520 Out << "E"; 4521 break; 4522 } 4523 4524 Out << "cv"; 4525 mangleType(CE->getType()); 4526 if (N != 1) Out << '_'; 4527 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); 4528 if (N != 1) Out << 'E'; 4529 break; 4530 } 4531 4532 case Expr::CXXConstructExprClass: { 4533 // An implicit cast is silent, thus may contain <expr-primary>. 4534 const auto *CE = cast<CXXConstructExpr>(E); 4535 if (!CE->isListInitialization() || CE->isStdInitListInitialization()) { 4536 assert( 4537 CE->getNumArgs() >= 1 && 4538 (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) && 4539 "implicit CXXConstructExpr must have one argument"); 4540 E = cast<CXXConstructExpr>(E)->getArg(0); 4541 goto recurse; 4542 } 4543 NotPrimaryExpr(); 4544 Out << "il"; 4545 for (auto *E : CE->arguments()) 4546 mangleExpression(E); 4547 Out << "E"; 4548 break; 4549 } 4550 4551 case Expr::CXXTemporaryObjectExprClass: { 4552 NotPrimaryExpr(); 4553 const auto *CE = cast<CXXTemporaryObjectExpr>(E); 4554 unsigned N = CE->getNumArgs(); 4555 bool List = CE->isListInitialization(); 4556 4557 if (List) 4558 Out << "tl"; 4559 else 4560 Out << "cv"; 4561 mangleType(CE->getType()); 4562 if (!List && N != 1) 4563 Out << '_'; 4564 if (CE->isStdInitListInitialization()) { 4565 // We implicitly created a std::initializer_list<T> for the first argument 4566 // of a constructor of type U in an expression of the form U{a, b, c}. 4567 // Strip all the semantic gunk off the initializer list. 4568 auto *SILE = 4569 cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit()); 4570 auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit()); 4571 mangleInitListElements(ILE); 4572 } else { 4573 for (auto *E : CE->arguments()) 4574 mangleExpression(E); 4575 } 4576 if (List || N != 1) 4577 Out << 'E'; 4578 break; 4579 } 4580 4581 case Expr::CXXScalarValueInitExprClass: 4582 NotPrimaryExpr(); 4583 Out << "cv"; 4584 mangleType(E->getType()); 4585 Out << "_E"; 4586 break; 4587 4588 case Expr::CXXNoexceptExprClass: 4589 NotPrimaryExpr(); 4590 Out << "nx"; 4591 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand()); 4592 break; 4593 4594 case Expr::UnaryExprOrTypeTraitExprClass: { 4595 // Non-instantiation-dependent traits are an <expr-primary> integer literal. 4596 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); 4597 4598 if (!SAE->isInstantiationDependent()) { 4599 // Itanium C++ ABI: 4600 // If the operand of a sizeof or alignof operator is not 4601 // instantiation-dependent it is encoded as an integer literal 4602 // reflecting the result of the operator. 4603 // 4604 // If the result of the operator is implicitly converted to a known 4605 // integer type, that type is used for the literal; otherwise, the type 4606 // of std::size_t or std::ptrdiff_t is used. 4607 QualType T = (ImplicitlyConvertedToType.isNull() || 4608 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() 4609 : ImplicitlyConvertedToType; 4610 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext()); 4611 mangleIntegerLiteral(T, V); 4612 break; 4613 } 4614 4615 NotPrimaryExpr(); // But otherwise, they are not. 4616 4617 auto MangleAlignofSizeofArg = [&] { 4618 if (SAE->isArgumentType()) { 4619 Out << 't'; 4620 mangleType(SAE->getArgumentType()); 4621 } else { 4622 Out << 'z'; 4623 mangleExpression(SAE->getArgumentExpr()); 4624 } 4625 }; 4626 4627 switch(SAE->getKind()) { 4628 case UETT_SizeOf: 4629 Out << 's'; 4630 MangleAlignofSizeofArg(); 4631 break; 4632 case UETT_PreferredAlignOf: 4633 // As of clang 12, we mangle __alignof__ differently than alignof. (They 4634 // have acted differently since Clang 8, but were previously mangled the 4635 // same.) 4636 if (Context.getASTContext().getLangOpts().getClangABICompat() > 4637 LangOptions::ClangABI::Ver11) { 4638 Out << "u11__alignof__"; 4639 if (SAE->isArgumentType()) 4640 mangleType(SAE->getArgumentType()); 4641 else 4642 mangleTemplateArgExpr(SAE->getArgumentExpr()); 4643 Out << 'E'; 4644 break; 4645 } 4646 LLVM_FALLTHROUGH; 4647 case UETT_AlignOf: 4648 Out << 'a'; 4649 MangleAlignofSizeofArg(); 4650 break; 4651 case UETT_VecStep: { 4652 DiagnosticsEngine &Diags = Context.getDiags(); 4653 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 4654 "cannot yet mangle vec_step expression"); 4655 Diags.Report(DiagID); 4656 return; 4657 } 4658 case UETT_OpenMPRequiredSimdAlign: { 4659 DiagnosticsEngine &Diags = Context.getDiags(); 4660 unsigned DiagID = Diags.getCustomDiagID( 4661 DiagnosticsEngine::Error, 4662 "cannot yet mangle __builtin_omp_required_simd_align expression"); 4663 Diags.Report(DiagID); 4664 return; 4665 } 4666 } 4667 break; 4668 } 4669 4670 case Expr::CXXThrowExprClass: { 4671 NotPrimaryExpr(); 4672 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); 4673 // <expression> ::= tw <expression> # throw expression 4674 // ::= tr # rethrow 4675 if (TE->getSubExpr()) { 4676 Out << "tw"; 4677 mangleExpression(TE->getSubExpr()); 4678 } else { 4679 Out << "tr"; 4680 } 4681 break; 4682 } 4683 4684 case Expr::CXXTypeidExprClass: { 4685 NotPrimaryExpr(); 4686 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); 4687 // <expression> ::= ti <type> # typeid (type) 4688 // ::= te <expression> # typeid (expression) 4689 if (TIE->isTypeOperand()) { 4690 Out << "ti"; 4691 mangleType(TIE->getTypeOperand(Context.getASTContext())); 4692 } else { 4693 Out << "te"; 4694 mangleExpression(TIE->getExprOperand()); 4695 } 4696 break; 4697 } 4698 4699 case Expr::CXXDeleteExprClass: { 4700 NotPrimaryExpr(); 4701 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); 4702 // <expression> ::= [gs] dl <expression> # [::] delete expr 4703 // ::= [gs] da <expression> # [::] delete [] expr 4704 if (DE->isGlobalDelete()) Out << "gs"; 4705 Out << (DE->isArrayForm() ? "da" : "dl"); 4706 mangleExpression(DE->getArgument()); 4707 break; 4708 } 4709 4710 case Expr::UnaryOperatorClass: { 4711 NotPrimaryExpr(); 4712 const UnaryOperator *UO = cast<UnaryOperator>(E); 4713 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), 4714 /*Arity=*/1); 4715 mangleExpression(UO->getSubExpr()); 4716 break; 4717 } 4718 4719 case Expr::ArraySubscriptExprClass: { 4720 NotPrimaryExpr(); 4721 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); 4722 4723 // Array subscript is treated as a syntactically weird form of 4724 // binary operator. 4725 Out << "ix"; 4726 mangleExpression(AE->getLHS()); 4727 mangleExpression(AE->getRHS()); 4728 break; 4729 } 4730 4731 case Expr::MatrixSubscriptExprClass: { 4732 NotPrimaryExpr(); 4733 const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E); 4734 Out << "ixix"; 4735 mangleExpression(ME->getBase()); 4736 mangleExpression(ME->getRowIdx()); 4737 mangleExpression(ME->getColumnIdx()); 4738 break; 4739 } 4740 4741 case Expr::CompoundAssignOperatorClass: // fallthrough 4742 case Expr::BinaryOperatorClass: { 4743 NotPrimaryExpr(); 4744 const BinaryOperator *BO = cast<BinaryOperator>(E); 4745 if (BO->getOpcode() == BO_PtrMemD) 4746 Out << "ds"; 4747 else 4748 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), 4749 /*Arity=*/2); 4750 mangleExpression(BO->getLHS()); 4751 mangleExpression(BO->getRHS()); 4752 break; 4753 } 4754 4755 case Expr::CXXRewrittenBinaryOperatorClass: { 4756 NotPrimaryExpr(); 4757 // The mangled form represents the original syntax. 4758 CXXRewrittenBinaryOperator::DecomposedForm Decomposed = 4759 cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm(); 4760 mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode), 4761 /*Arity=*/2); 4762 mangleExpression(Decomposed.LHS); 4763 mangleExpression(Decomposed.RHS); 4764 break; 4765 } 4766 4767 case Expr::ConditionalOperatorClass: { 4768 NotPrimaryExpr(); 4769 const ConditionalOperator *CO = cast<ConditionalOperator>(E); 4770 mangleOperatorName(OO_Conditional, /*Arity=*/3); 4771 mangleExpression(CO->getCond()); 4772 mangleExpression(CO->getLHS(), Arity); 4773 mangleExpression(CO->getRHS(), Arity); 4774 break; 4775 } 4776 4777 case Expr::ImplicitCastExprClass: { 4778 ImplicitlyConvertedToType = E->getType(); 4779 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 4780 goto recurse; 4781 } 4782 4783 case Expr::ObjCBridgedCastExprClass: { 4784 NotPrimaryExpr(); 4785 // Mangle ownership casts as a vendor extended operator __bridge, 4786 // __bridge_transfer, or __bridge_retain. 4787 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); 4788 Out << "v1U" << Kind.size() << Kind; 4789 mangleCastExpression(E, "cv"); 4790 break; 4791 } 4792 4793 case Expr::CStyleCastExprClass: 4794 NotPrimaryExpr(); 4795 mangleCastExpression(E, "cv"); 4796 break; 4797 4798 case Expr::CXXFunctionalCastExprClass: { 4799 NotPrimaryExpr(); 4800 auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit(); 4801 // FIXME: Add isImplicit to CXXConstructExpr. 4802 if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub)) 4803 if (CCE->getParenOrBraceRange().isInvalid()) 4804 Sub = CCE->getArg(0)->IgnoreImplicit(); 4805 if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub)) 4806 Sub = StdInitList->getSubExpr()->IgnoreImplicit(); 4807 if (auto *IL = dyn_cast<InitListExpr>(Sub)) { 4808 Out << "tl"; 4809 mangleType(E->getType()); 4810 mangleInitListElements(IL); 4811 Out << "E"; 4812 } else { 4813 mangleCastExpression(E, "cv"); 4814 } 4815 break; 4816 } 4817 4818 case Expr::CXXStaticCastExprClass: 4819 NotPrimaryExpr(); 4820 mangleCastExpression(E, "sc"); 4821 break; 4822 case Expr::CXXDynamicCastExprClass: 4823 NotPrimaryExpr(); 4824 mangleCastExpression(E, "dc"); 4825 break; 4826 case Expr::CXXReinterpretCastExprClass: 4827 NotPrimaryExpr(); 4828 mangleCastExpression(E, "rc"); 4829 break; 4830 case Expr::CXXConstCastExprClass: 4831 NotPrimaryExpr(); 4832 mangleCastExpression(E, "cc"); 4833 break; 4834 case Expr::CXXAddrspaceCastExprClass: 4835 NotPrimaryExpr(); 4836 mangleCastExpression(E, "ac"); 4837 break; 4838 4839 case Expr::CXXOperatorCallExprClass: { 4840 NotPrimaryExpr(); 4841 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); 4842 unsigned NumArgs = CE->getNumArgs(); 4843 // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax 4844 // (the enclosing MemberExpr covers the syntactic portion). 4845 if (CE->getOperator() != OO_Arrow) 4846 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs); 4847 // Mangle the arguments. 4848 for (unsigned i = 0; i != NumArgs; ++i) 4849 mangleExpression(CE->getArg(i)); 4850 break; 4851 } 4852 4853 case Expr::ParenExprClass: 4854 E = cast<ParenExpr>(E)->getSubExpr(); 4855 goto recurse; 4856 4857 case Expr::ConceptSpecializationExprClass: { 4858 // <expr-primary> ::= L <mangled-name> E # external name 4859 Out << "L_Z"; 4860 auto *CSE = cast<ConceptSpecializationExpr>(E); 4861 mangleTemplateName(CSE->getNamedConcept(), 4862 CSE->getTemplateArguments().data(), 4863 CSE->getTemplateArguments().size()); 4864 Out << 'E'; 4865 break; 4866 } 4867 4868 case Expr::DeclRefExprClass: 4869 // MangleDeclRefExpr helper handles primary-vs-nonprimary 4870 MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl()); 4871 break; 4872 4873 case Expr::SubstNonTypeTemplateParmPackExprClass: 4874 NotPrimaryExpr(); 4875 // FIXME: not clear how to mangle this! 4876 // template <unsigned N...> class A { 4877 // template <class U...> void foo(U (&x)[N]...); 4878 // }; 4879 Out << "_SUBSTPACK_"; 4880 break; 4881 4882 case Expr::FunctionParmPackExprClass: { 4883 NotPrimaryExpr(); 4884 // FIXME: not clear how to mangle this! 4885 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E); 4886 Out << "v110_SUBSTPACK"; 4887 MangleDeclRefExpr(FPPE->getParameterPack()); 4888 break; 4889 } 4890 4891 case Expr::DependentScopeDeclRefExprClass: { 4892 NotPrimaryExpr(); 4893 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); 4894 mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), 4895 DRE->getTemplateArgs(), DRE->getNumTemplateArgs(), 4896 Arity); 4897 break; 4898 } 4899 4900 case Expr::CXXBindTemporaryExprClass: 4901 E = cast<CXXBindTemporaryExpr>(E)->getSubExpr(); 4902 goto recurse; 4903 4904 case Expr::ExprWithCleanupsClass: 4905 E = cast<ExprWithCleanups>(E)->getSubExpr(); 4906 goto recurse; 4907 4908 case Expr::FloatingLiteralClass: { 4909 // <expr-primary> 4910 const FloatingLiteral *FL = cast<FloatingLiteral>(E); 4911 mangleFloatLiteral(FL->getType(), FL->getValue()); 4912 break; 4913 } 4914 4915 case Expr::FixedPointLiteralClass: 4916 // Currently unimplemented -- might be <expr-primary> in future? 4917 mangleFixedPointLiteral(); 4918 break; 4919 4920 case Expr::CharacterLiteralClass: 4921 // <expr-primary> 4922 Out << 'L'; 4923 mangleType(E->getType()); 4924 Out << cast<CharacterLiteral>(E)->getValue(); 4925 Out << 'E'; 4926 break; 4927 4928 // FIXME. __objc_yes/__objc_no are mangled same as true/false 4929 case Expr::ObjCBoolLiteralExprClass: 4930 // <expr-primary> 4931 Out << "Lb"; 4932 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 4933 Out << 'E'; 4934 break; 4935 4936 case Expr::CXXBoolLiteralExprClass: 4937 // <expr-primary> 4938 Out << "Lb"; 4939 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); 4940 Out << 'E'; 4941 break; 4942 4943 case Expr::IntegerLiteralClass: { 4944 // <expr-primary> 4945 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); 4946 if (E->getType()->isSignedIntegerType()) 4947 Value.setIsSigned(true); 4948 mangleIntegerLiteral(E->getType(), Value); 4949 break; 4950 } 4951 4952 case Expr::ImaginaryLiteralClass: { 4953 // <expr-primary> 4954 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); 4955 // Mangle as if a complex literal. 4956 // Proposal from David Vandevoorde, 2010.06.30. 4957 Out << 'L'; 4958 mangleType(E->getType()); 4959 if (const FloatingLiteral *Imag = 4960 dyn_cast<FloatingLiteral>(IE->getSubExpr())) { 4961 // Mangle a floating-point zero of the appropriate type. 4962 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics())); 4963 Out << '_'; 4964 mangleFloat(Imag->getValue()); 4965 } else { 4966 Out << "0_"; 4967 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); 4968 if (IE->getSubExpr()->getType()->isSignedIntegerType()) 4969 Value.setIsSigned(true); 4970 mangleNumber(Value); 4971 } 4972 Out << 'E'; 4973 break; 4974 } 4975 4976 case Expr::StringLiteralClass: { 4977 // <expr-primary> 4978 // Revised proposal from David Vandervoorde, 2010.07.15. 4979 Out << 'L'; 4980 assert(isa<ConstantArrayType>(E->getType())); 4981 mangleType(E->getType()); 4982 Out << 'E'; 4983 break; 4984 } 4985 4986 case Expr::GNUNullExprClass: 4987 // <expr-primary> 4988 // Mangle as if an integer literal 0. 4989 mangleIntegerLiteral(E->getType(), llvm::APSInt(32)); 4990 break; 4991 4992 case Expr::CXXNullPtrLiteralExprClass: { 4993 // <expr-primary> 4994 Out << "LDnE"; 4995 break; 4996 } 4997 4998 case Expr::LambdaExprClass: { 4999 // A lambda-expression can't appear in the signature of an 5000 // externally-visible declaration, so there's no standard mangling for 5001 // this, but mangling as a literal of the closure type seems reasonable. 5002 Out << "L"; 5003 mangleType(Context.getASTContext().getRecordType(cast<LambdaExpr>(E)->getLambdaClass())); 5004 Out << "E"; 5005 break; 5006 } 5007 5008 case Expr::PackExpansionExprClass: 5009 NotPrimaryExpr(); 5010 Out << "sp"; 5011 mangleExpression(cast<PackExpansionExpr>(E)->getPattern()); 5012 break; 5013 5014 case Expr::SizeOfPackExprClass: { 5015 NotPrimaryExpr(); 5016 auto *SPE = cast<SizeOfPackExpr>(E); 5017 if (SPE->isPartiallySubstituted()) { 5018 Out << "sP"; 5019 for (const auto &A : SPE->getPartialArguments()) 5020 mangleTemplateArg(A, false); 5021 Out << "E"; 5022 break; 5023 } 5024 5025 Out << "sZ"; 5026 const NamedDecl *Pack = SPE->getPack(); 5027 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) 5028 mangleTemplateParameter(TTP->getDepth(), TTP->getIndex()); 5029 else if (const NonTypeTemplateParmDecl *NTTP 5030 = dyn_cast<NonTypeTemplateParmDecl>(Pack)) 5031 mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex()); 5032 else if (const TemplateTemplateParmDecl *TempTP 5033 = dyn_cast<TemplateTemplateParmDecl>(Pack)) 5034 mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex()); 5035 else 5036 mangleFunctionParam(cast<ParmVarDecl>(Pack)); 5037 break; 5038 } 5039 5040 case Expr::MaterializeTemporaryExprClass: 5041 E = cast<MaterializeTemporaryExpr>(E)->getSubExpr(); 5042 goto recurse; 5043 5044 case Expr::CXXFoldExprClass: { 5045 NotPrimaryExpr(); 5046 auto *FE = cast<CXXFoldExpr>(E); 5047 if (FE->isLeftFold()) 5048 Out << (FE->getInit() ? "fL" : "fl"); 5049 else 5050 Out << (FE->getInit() ? "fR" : "fr"); 5051 5052 if (FE->getOperator() == BO_PtrMemD) 5053 Out << "ds"; 5054 else 5055 mangleOperatorName( 5056 BinaryOperator::getOverloadedOperator(FE->getOperator()), 5057 /*Arity=*/2); 5058 5059 if (FE->getLHS()) 5060 mangleExpression(FE->getLHS()); 5061 if (FE->getRHS()) 5062 mangleExpression(FE->getRHS()); 5063 break; 5064 } 5065 5066 case Expr::CXXThisExprClass: 5067 NotPrimaryExpr(); 5068 Out << "fpT"; 5069 break; 5070 5071 case Expr::CoawaitExprClass: 5072 // FIXME: Propose a non-vendor mangling. 5073 NotPrimaryExpr(); 5074 Out << "v18co_await"; 5075 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 5076 break; 5077 5078 case Expr::DependentCoawaitExprClass: 5079 // FIXME: Propose a non-vendor mangling. 5080 NotPrimaryExpr(); 5081 Out << "v18co_await"; 5082 mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand()); 5083 break; 5084 5085 case Expr::CoyieldExprClass: 5086 // FIXME: Propose a non-vendor mangling. 5087 NotPrimaryExpr(); 5088 Out << "v18co_yield"; 5089 mangleExpression(cast<CoawaitExpr>(E)->getOperand()); 5090 break; 5091 case Expr::SYCLUniqueStableNameExprClass: { 5092 const auto *USN = cast<SYCLUniqueStableNameExpr>(E); 5093 NotPrimaryExpr(); 5094 5095 Out << "u33__builtin_sycl_unique_stable_name"; 5096 mangleType(USN->getTypeSourceInfo()->getType()); 5097 5098 Out << "E"; 5099 break; 5100 } 5101 } 5102 5103 if (AsTemplateArg && !IsPrimaryExpr) 5104 Out << 'E'; 5105 } 5106 5107 /// Mangle an expression which refers to a parameter variable. 5108 /// 5109 /// <expression> ::= <function-param> 5110 /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 5111 /// <function-param> ::= fp <top-level CV-qualifiers> 5112 /// <parameter-2 non-negative number> _ # L == 0, I > 0 5113 /// <function-param> ::= fL <L-1 non-negative number> 5114 /// p <top-level CV-qualifiers> _ # L > 0, I == 0 5115 /// <function-param> ::= fL <L-1 non-negative number> 5116 /// p <top-level CV-qualifiers> 5117 /// <I-1 non-negative number> _ # L > 0, I > 0 5118 /// 5119 /// L is the nesting depth of the parameter, defined as 1 if the 5120 /// parameter comes from the innermost function prototype scope 5121 /// enclosing the current context, 2 if from the next enclosing 5122 /// function prototype scope, and so on, with one special case: if 5123 /// we've processed the full parameter clause for the innermost 5124 /// function type, then L is one less. This definition conveniently 5125 /// makes it irrelevant whether a function's result type was written 5126 /// trailing or leading, but is otherwise overly complicated; the 5127 /// numbering was first designed without considering references to 5128 /// parameter in locations other than return types, and then the 5129 /// mangling had to be generalized without changing the existing 5130 /// manglings. 5131 /// 5132 /// I is the zero-based index of the parameter within its parameter 5133 /// declaration clause. Note that the original ABI document describes 5134 /// this using 1-based ordinals. 5135 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { 5136 unsigned parmDepth = parm->getFunctionScopeDepth(); 5137 unsigned parmIndex = parm->getFunctionScopeIndex(); 5138 5139 // Compute 'L'. 5140 // parmDepth does not include the declaring function prototype. 5141 // FunctionTypeDepth does account for that. 5142 assert(parmDepth < FunctionTypeDepth.getDepth()); 5143 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; 5144 if (FunctionTypeDepth.isInResultType()) 5145 nestingDepth--; 5146 5147 if (nestingDepth == 0) { 5148 Out << "fp"; 5149 } else { 5150 Out << "fL" << (nestingDepth - 1) << 'p'; 5151 } 5152 5153 // Top-level qualifiers. We don't have to worry about arrays here, 5154 // because parameters declared as arrays should already have been 5155 // transformed to have pointer type. FIXME: apparently these don't 5156 // get mangled if used as an rvalue of a known non-class type? 5157 assert(!parm->getType()->isArrayType() 5158 && "parameter's type is still an array type?"); 5159 5160 if (const DependentAddressSpaceType *DAST = 5161 dyn_cast<DependentAddressSpaceType>(parm->getType())) { 5162 mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST); 5163 } else { 5164 mangleQualifiers(parm->getType().getQualifiers()); 5165 } 5166 5167 // Parameter index. 5168 if (parmIndex != 0) { 5169 Out << (parmIndex - 1); 5170 } 5171 Out << '_'; 5172 } 5173 5174 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T, 5175 const CXXRecordDecl *InheritedFrom) { 5176 // <ctor-dtor-name> ::= C1 # complete object constructor 5177 // ::= C2 # base object constructor 5178 // ::= CI1 <type> # complete inheriting constructor 5179 // ::= CI2 <type> # base inheriting constructor 5180 // 5181 // In addition, C5 is a comdat name with C1 and C2 in it. 5182 Out << 'C'; 5183 if (InheritedFrom) 5184 Out << 'I'; 5185 switch (T) { 5186 case Ctor_Complete: 5187 Out << '1'; 5188 break; 5189 case Ctor_Base: 5190 Out << '2'; 5191 break; 5192 case Ctor_Comdat: 5193 Out << '5'; 5194 break; 5195 case Ctor_DefaultClosure: 5196 case Ctor_CopyingClosure: 5197 llvm_unreachable("closure constructors don't exist for the Itanium ABI!"); 5198 } 5199 if (InheritedFrom) 5200 mangleName(InheritedFrom); 5201 } 5202 5203 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { 5204 // <ctor-dtor-name> ::= D0 # deleting destructor 5205 // ::= D1 # complete object destructor 5206 // ::= D2 # base object destructor 5207 // 5208 // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it. 5209 switch (T) { 5210 case Dtor_Deleting: 5211 Out << "D0"; 5212 break; 5213 case Dtor_Complete: 5214 Out << "D1"; 5215 break; 5216 case Dtor_Base: 5217 Out << "D2"; 5218 break; 5219 case Dtor_Comdat: 5220 Out << "D5"; 5221 break; 5222 } 5223 } 5224 5225 namespace { 5226 // Helper to provide ancillary information on a template used to mangle its 5227 // arguments. 5228 struct TemplateArgManglingInfo { 5229 TemplateDecl *ResolvedTemplate = nullptr; 5230 bool SeenPackExpansionIntoNonPack = false; 5231 const NamedDecl *UnresolvedExpandedPack = nullptr; 5232 5233 TemplateArgManglingInfo(TemplateName TN) { 5234 if (TemplateDecl *TD = TN.getAsTemplateDecl()) 5235 ResolvedTemplate = TD; 5236 } 5237 5238 /// Do we need to mangle template arguments with exactly correct types? 5239 /// 5240 /// This should be called exactly once for each parameter / argument pair, in 5241 /// order. 5242 bool needExactType(unsigned ParamIdx, const TemplateArgument &Arg) { 5243 // We need correct types when the template-name is unresolved or when it 5244 // names a template that is able to be overloaded. 5245 if (!ResolvedTemplate || SeenPackExpansionIntoNonPack) 5246 return true; 5247 5248 // Move to the next parameter. 5249 const NamedDecl *Param = UnresolvedExpandedPack; 5250 if (!Param) { 5251 assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() && 5252 "no parameter for argument"); 5253 Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx); 5254 5255 // If we reach an expanded parameter pack whose argument isn't in pack 5256 // form, that means Sema couldn't figure out which arguments belonged to 5257 // it, because it contains a pack expansion. Track the expanded pack for 5258 // all further template arguments until we hit that pack expansion. 5259 if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) { 5260 assert(getExpandedPackSize(Param) && 5261 "failed to form pack argument for parameter pack"); 5262 UnresolvedExpandedPack = Param; 5263 } 5264 } 5265 5266 // If we encounter a pack argument that is expanded into a non-pack 5267 // parameter, we can no longer track parameter / argument correspondence, 5268 // and need to use exact types from this point onwards. 5269 if (Arg.isPackExpansion() && 5270 (!Param->isParameterPack() || UnresolvedExpandedPack)) { 5271 SeenPackExpansionIntoNonPack = true; 5272 return true; 5273 } 5274 5275 // We need exact types for function template arguments because they might be 5276 // overloaded on template parameter type. As a special case, a member 5277 // function template of a generic lambda is not overloadable. 5278 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ResolvedTemplate)) { 5279 auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext()); 5280 if (!RD || !RD->isGenericLambda()) 5281 return true; 5282 } 5283 5284 // Otherwise, we only need a correct type if the parameter has a deduced 5285 // type. 5286 // 5287 // Note: for an expanded parameter pack, getType() returns the type prior 5288 // to expansion. We could ask for the expanded type with getExpansionType(), 5289 // but it doesn't matter because substitution and expansion don't affect 5290 // whether a deduced type appears in the type. 5291 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param); 5292 return NTTP && NTTP->getType()->getContainedDeducedType(); 5293 } 5294 }; 5295 } 5296 5297 void CXXNameMangler::mangleTemplateArgs(TemplateName TN, 5298 const TemplateArgumentLoc *TemplateArgs, 5299 unsigned NumTemplateArgs) { 5300 // <template-args> ::= I <template-arg>+ E 5301 Out << 'I'; 5302 TemplateArgManglingInfo Info(TN); 5303 for (unsigned i = 0; i != NumTemplateArgs; ++i) 5304 mangleTemplateArg(TemplateArgs[i].getArgument(), 5305 Info.needExactType(i, TemplateArgs[i].getArgument())); 5306 Out << 'E'; 5307 } 5308 5309 void CXXNameMangler::mangleTemplateArgs(TemplateName TN, 5310 const TemplateArgumentList &AL) { 5311 // <template-args> ::= I <template-arg>+ E 5312 Out << 'I'; 5313 TemplateArgManglingInfo Info(TN); 5314 for (unsigned i = 0, e = AL.size(); i != e; ++i) 5315 mangleTemplateArg(AL[i], Info.needExactType(i, AL[i])); 5316 Out << 'E'; 5317 } 5318 5319 void CXXNameMangler::mangleTemplateArgs(TemplateName TN, 5320 const TemplateArgument *TemplateArgs, 5321 unsigned NumTemplateArgs) { 5322 // <template-args> ::= I <template-arg>+ E 5323 Out << 'I'; 5324 TemplateArgManglingInfo Info(TN); 5325 for (unsigned i = 0; i != NumTemplateArgs; ++i) 5326 mangleTemplateArg(TemplateArgs[i], Info.needExactType(i, TemplateArgs[i])); 5327 Out << 'E'; 5328 } 5329 5330 void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) { 5331 // <template-arg> ::= <type> # type or template 5332 // ::= X <expression> E # expression 5333 // ::= <expr-primary> # simple expressions 5334 // ::= J <template-arg>* E # argument pack 5335 if (!A.isInstantiationDependent() || A.isDependent()) 5336 A = Context.getASTContext().getCanonicalTemplateArgument(A); 5337 5338 switch (A.getKind()) { 5339 case TemplateArgument::Null: 5340 llvm_unreachable("Cannot mangle NULL template argument"); 5341 5342 case TemplateArgument::Type: 5343 mangleType(A.getAsType()); 5344 break; 5345 case TemplateArgument::Template: 5346 // This is mangled as <type>. 5347 mangleType(A.getAsTemplate()); 5348 break; 5349 case TemplateArgument::TemplateExpansion: 5350 // <type> ::= Dp <type> # pack expansion (C++0x) 5351 Out << "Dp"; 5352 mangleType(A.getAsTemplateOrTemplatePattern()); 5353 break; 5354 case TemplateArgument::Expression: 5355 mangleTemplateArgExpr(A.getAsExpr()); 5356 break; 5357 case TemplateArgument::Integral: 5358 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral()); 5359 break; 5360 case TemplateArgument::Declaration: { 5361 // <expr-primary> ::= L <mangled-name> E # external name 5362 ValueDecl *D = A.getAsDecl(); 5363 5364 // Template parameter objects are modeled by reproducing a source form 5365 // produced as if by aggregate initialization. 5366 if (A.getParamTypeForDecl()->isRecordType()) { 5367 auto *TPO = cast<TemplateParamObjectDecl>(D); 5368 mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(), 5369 TPO->getValue(), /*TopLevel=*/true, 5370 NeedExactType); 5371 break; 5372 } 5373 5374 ASTContext &Ctx = Context.getASTContext(); 5375 APValue Value; 5376 if (D->isCXXInstanceMember()) 5377 // Simple pointer-to-member with no conversion. 5378 Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{}); 5379 else if (D->getType()->isArrayType() && 5380 Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()), 5381 A.getParamTypeForDecl()) && 5382 Ctx.getLangOpts().getClangABICompat() > 5383 LangOptions::ClangABI::Ver11) 5384 // Build a value corresponding to this implicit array-to-pointer decay. 5385 Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), 5386 {APValue::LValuePathEntry::ArrayIndex(0)}, 5387 /*OnePastTheEnd=*/false); 5388 else 5389 // Regular pointer or reference to a declaration. 5390 Value = APValue(APValue::LValueBase(D), CharUnits::Zero(), 5391 ArrayRef<APValue::LValuePathEntry>(), 5392 /*OnePastTheEnd=*/false); 5393 mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true, 5394 NeedExactType); 5395 break; 5396 } 5397 case TemplateArgument::NullPtr: { 5398 mangleNullPointer(A.getNullPtrType()); 5399 break; 5400 } 5401 case TemplateArgument::Pack: { 5402 // <template-arg> ::= J <template-arg>* E 5403 Out << 'J'; 5404 for (const auto &P : A.pack_elements()) 5405 mangleTemplateArg(P, NeedExactType); 5406 Out << 'E'; 5407 } 5408 } 5409 } 5410 5411 void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) { 5412 ASTContext &Ctx = Context.getASTContext(); 5413 if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver11) { 5414 mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true); 5415 return; 5416 } 5417 5418 // Prior to Clang 12, we didn't omit the X .. E around <expr-primary> 5419 // correctly in cases where the template argument was 5420 // constructed from an expression rather than an already-evaluated 5421 // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of 5422 // 'Li0E'. 5423 // 5424 // We did special-case DeclRefExpr to attempt to DTRT for that one 5425 // expression-kind, but while doing so, unfortunately handled ParmVarDecl 5426 // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of 5427 // the proper 'Xfp_E'. 5428 E = E->IgnoreParenImpCasts(); 5429 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 5430 const ValueDecl *D = DRE->getDecl(); 5431 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) { 5432 Out << 'L'; 5433 mangle(D); 5434 Out << 'E'; 5435 return; 5436 } 5437 } 5438 Out << 'X'; 5439 mangleExpression(E); 5440 Out << 'E'; 5441 } 5442 5443 /// Determine whether a given value is equivalent to zero-initialization for 5444 /// the purpose of discarding a trailing portion of a 'tl' mangling. 5445 /// 5446 /// Note that this is not in general equivalent to determining whether the 5447 /// value has an all-zeroes bit pattern. 5448 static bool isZeroInitialized(QualType T, const APValue &V) { 5449 // FIXME: mangleValueInTemplateArg has quadratic time complexity in 5450 // pathological cases due to using this, but it's a little awkward 5451 // to do this in linear time in general. 5452 switch (V.getKind()) { 5453 case APValue::None: 5454 case APValue::Indeterminate: 5455 case APValue::AddrLabelDiff: 5456 return false; 5457 5458 case APValue::Struct: { 5459 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5460 assert(RD && "unexpected type for record value"); 5461 unsigned I = 0; 5462 for (const CXXBaseSpecifier &BS : RD->bases()) { 5463 if (!isZeroInitialized(BS.getType(), V.getStructBase(I))) 5464 return false; 5465 ++I; 5466 } 5467 I = 0; 5468 for (const FieldDecl *FD : RD->fields()) { 5469 if (!FD->isUnnamedBitfield() && 5470 !isZeroInitialized(FD->getType(), V.getStructField(I))) 5471 return false; 5472 ++I; 5473 } 5474 return true; 5475 } 5476 5477 case APValue::Union: { 5478 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5479 assert(RD && "unexpected type for union value"); 5480 // Zero-initialization zeroes the first non-unnamed-bitfield field, if any. 5481 for (const FieldDecl *FD : RD->fields()) { 5482 if (!FD->isUnnamedBitfield()) 5483 return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) && 5484 isZeroInitialized(FD->getType(), V.getUnionValue()); 5485 } 5486 // If there are no fields (other than unnamed bitfields), the value is 5487 // necessarily zero-initialized. 5488 return true; 5489 } 5490 5491 case APValue::Array: { 5492 QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); 5493 for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) 5494 if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I))) 5495 return false; 5496 return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller()); 5497 } 5498 5499 case APValue::Vector: { 5500 const VectorType *VT = T->castAs<VectorType>(); 5501 for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I) 5502 if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I))) 5503 return false; 5504 return true; 5505 } 5506 5507 case APValue::Int: 5508 return !V.getInt(); 5509 5510 case APValue::Float: 5511 return V.getFloat().isPosZero(); 5512 5513 case APValue::FixedPoint: 5514 return !V.getFixedPoint().getValue(); 5515 5516 case APValue::ComplexFloat: 5517 return V.getComplexFloatReal().isPosZero() && 5518 V.getComplexFloatImag().isPosZero(); 5519 5520 case APValue::ComplexInt: 5521 return !V.getComplexIntReal() && !V.getComplexIntImag(); 5522 5523 case APValue::LValue: 5524 return V.isNullPointer(); 5525 5526 case APValue::MemberPointer: 5527 return !V.getMemberPointerDecl(); 5528 } 5529 5530 llvm_unreachable("Unhandled APValue::ValueKind enum"); 5531 } 5532 5533 static QualType getLValueType(ASTContext &Ctx, const APValue &LV) { 5534 QualType T = LV.getLValueBase().getType(); 5535 for (APValue::LValuePathEntry E : LV.getLValuePath()) { 5536 if (const ArrayType *AT = Ctx.getAsArrayType(T)) 5537 T = AT->getElementType(); 5538 else if (const FieldDecl *FD = 5539 dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer())) 5540 T = FD->getType(); 5541 else 5542 T = Ctx.getRecordType( 5543 cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer())); 5544 } 5545 return T; 5546 } 5547 5548 void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V, 5549 bool TopLevel, 5550 bool NeedExactType) { 5551 // Ignore all top-level cv-qualifiers, to match GCC. 5552 Qualifiers Quals; 5553 T = getASTContext().getUnqualifiedArrayType(T, Quals); 5554 5555 // A top-level expression that's not a primary expression is wrapped in X...E. 5556 bool IsPrimaryExpr = true; 5557 auto NotPrimaryExpr = [&] { 5558 if (TopLevel && IsPrimaryExpr) 5559 Out << 'X'; 5560 IsPrimaryExpr = false; 5561 }; 5562 5563 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63. 5564 switch (V.getKind()) { 5565 case APValue::None: 5566 case APValue::Indeterminate: 5567 Out << 'L'; 5568 mangleType(T); 5569 Out << 'E'; 5570 break; 5571 5572 case APValue::AddrLabelDiff: 5573 llvm_unreachable("unexpected value kind in template argument"); 5574 5575 case APValue::Struct: { 5576 const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5577 assert(RD && "unexpected type for record value"); 5578 5579 // Drop trailing zero-initialized elements. 5580 llvm::SmallVector<const FieldDecl *, 16> Fields(RD->field_begin(), 5581 RD->field_end()); 5582 while ( 5583 !Fields.empty() && 5584 (Fields.back()->isUnnamedBitfield() || 5585 isZeroInitialized(Fields.back()->getType(), 5586 V.getStructField(Fields.back()->getFieldIndex())))) { 5587 Fields.pop_back(); 5588 } 5589 llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end()); 5590 if (Fields.empty()) { 5591 while (!Bases.empty() && 5592 isZeroInitialized(Bases.back().getType(), 5593 V.getStructBase(Bases.size() - 1))) 5594 Bases = Bases.drop_back(); 5595 } 5596 5597 // <expression> ::= tl <type> <braced-expression>* E 5598 NotPrimaryExpr(); 5599 Out << "tl"; 5600 mangleType(T); 5601 for (unsigned I = 0, N = Bases.size(); I != N; ++I) 5602 mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false); 5603 for (unsigned I = 0, N = Fields.size(); I != N; ++I) { 5604 if (Fields[I]->isUnnamedBitfield()) 5605 continue; 5606 mangleValueInTemplateArg(Fields[I]->getType(), 5607 V.getStructField(Fields[I]->getFieldIndex()), 5608 false); 5609 } 5610 Out << 'E'; 5611 break; 5612 } 5613 5614 case APValue::Union: { 5615 assert(T->getAsCXXRecordDecl() && "unexpected type for union value"); 5616 const FieldDecl *FD = V.getUnionField(); 5617 5618 if (!FD) { 5619 Out << 'L'; 5620 mangleType(T); 5621 Out << 'E'; 5622 break; 5623 } 5624 5625 // <braced-expression> ::= di <field source-name> <braced-expression> 5626 NotPrimaryExpr(); 5627 Out << "tl"; 5628 mangleType(T); 5629 if (!isZeroInitialized(T, V)) { 5630 Out << "di"; 5631 mangleSourceName(FD->getIdentifier()); 5632 mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false); 5633 } 5634 Out << 'E'; 5635 break; 5636 } 5637 5638 case APValue::Array: { 5639 QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0); 5640 5641 NotPrimaryExpr(); 5642 Out << "tl"; 5643 mangleType(T); 5644 5645 // Drop trailing zero-initialized elements. 5646 unsigned N = V.getArraySize(); 5647 if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) { 5648 N = V.getArrayInitializedElts(); 5649 while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1))) 5650 --N; 5651 } 5652 5653 for (unsigned I = 0; I != N; ++I) { 5654 const APValue &Elem = I < V.getArrayInitializedElts() 5655 ? V.getArrayInitializedElt(I) 5656 : V.getArrayFiller(); 5657 mangleValueInTemplateArg(ElemT, Elem, false); 5658 } 5659 Out << 'E'; 5660 break; 5661 } 5662 5663 case APValue::Vector: { 5664 const VectorType *VT = T->castAs<VectorType>(); 5665 5666 NotPrimaryExpr(); 5667 Out << "tl"; 5668 mangleType(T); 5669 unsigned N = V.getVectorLength(); 5670 while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1))) 5671 --N; 5672 for (unsigned I = 0; I != N; ++I) 5673 mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false); 5674 Out << 'E'; 5675 break; 5676 } 5677 5678 case APValue::Int: 5679 mangleIntegerLiteral(T, V.getInt()); 5680 break; 5681 5682 case APValue::Float: 5683 mangleFloatLiteral(T, V.getFloat()); 5684 break; 5685 5686 case APValue::FixedPoint: 5687 mangleFixedPointLiteral(); 5688 break; 5689 5690 case APValue::ComplexFloat: { 5691 const ComplexType *CT = T->castAs<ComplexType>(); 5692 NotPrimaryExpr(); 5693 Out << "tl"; 5694 mangleType(T); 5695 if (!V.getComplexFloatReal().isPosZero() || 5696 !V.getComplexFloatImag().isPosZero()) 5697 mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal()); 5698 if (!V.getComplexFloatImag().isPosZero()) 5699 mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag()); 5700 Out << 'E'; 5701 break; 5702 } 5703 5704 case APValue::ComplexInt: { 5705 const ComplexType *CT = T->castAs<ComplexType>(); 5706 NotPrimaryExpr(); 5707 Out << "tl"; 5708 mangleType(T); 5709 if (V.getComplexIntReal().getBoolValue() || 5710 V.getComplexIntImag().getBoolValue()) 5711 mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal()); 5712 if (V.getComplexIntImag().getBoolValue()) 5713 mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag()); 5714 Out << 'E'; 5715 break; 5716 } 5717 5718 case APValue::LValue: { 5719 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. 5720 assert((T->isPointerType() || T->isReferenceType()) && 5721 "unexpected type for LValue template arg"); 5722 5723 if (V.isNullPointer()) { 5724 mangleNullPointer(T); 5725 break; 5726 } 5727 5728 APValue::LValueBase B = V.getLValueBase(); 5729 if (!B) { 5730 // Non-standard mangling for integer cast to a pointer; this can only 5731 // occur as an extension. 5732 CharUnits Offset = V.getLValueOffset(); 5733 if (Offset.isZero()) { 5734 // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as 5735 // a cast, because L <type> 0 E means something else. 5736 NotPrimaryExpr(); 5737 Out << "rc"; 5738 mangleType(T); 5739 Out << "Li0E"; 5740 if (TopLevel) 5741 Out << 'E'; 5742 } else { 5743 Out << "L"; 5744 mangleType(T); 5745 Out << Offset.getQuantity() << 'E'; 5746 } 5747 break; 5748 } 5749 5750 ASTContext &Ctx = Context.getASTContext(); 5751 5752 enum { Base, Offset, Path } Kind; 5753 if (!V.hasLValuePath()) { 5754 // Mangle as (T*)((char*)&base + N). 5755 if (T->isReferenceType()) { 5756 NotPrimaryExpr(); 5757 Out << "decvP"; 5758 mangleType(T->getPointeeType()); 5759 } else { 5760 NotPrimaryExpr(); 5761 Out << "cv"; 5762 mangleType(T); 5763 } 5764 Out << "plcvPcad"; 5765 Kind = Offset; 5766 } else { 5767 if (!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) { 5768 NotPrimaryExpr(); 5769 // A final conversion to the template parameter's type is usually 5770 // folded into the 'so' mangling, but we can't do that for 'void*' 5771 // parameters without introducing collisions. 5772 if (NeedExactType && T->isVoidPointerType()) { 5773 Out << "cv"; 5774 mangleType(T); 5775 } 5776 if (T->isPointerType()) 5777 Out << "ad"; 5778 Out << "so"; 5779 mangleType(T->isVoidPointerType() 5780 ? getLValueType(Ctx, V).getUnqualifiedType() 5781 : T->getPointeeType()); 5782 Kind = Path; 5783 } else { 5784 if (NeedExactType && 5785 !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) && 5786 Ctx.getLangOpts().getClangABICompat() > 5787 LangOptions::ClangABI::Ver11) { 5788 NotPrimaryExpr(); 5789 Out << "cv"; 5790 mangleType(T); 5791 } 5792 if (T->isPointerType()) { 5793 NotPrimaryExpr(); 5794 Out << "ad"; 5795 } 5796 Kind = Base; 5797 } 5798 } 5799 5800 QualType TypeSoFar = B.getType(); 5801 if (auto *VD = B.dyn_cast<const ValueDecl*>()) { 5802 Out << 'L'; 5803 mangle(VD); 5804 Out << 'E'; 5805 } else if (auto *E = B.dyn_cast<const Expr*>()) { 5806 NotPrimaryExpr(); 5807 mangleExpression(E); 5808 } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) { 5809 NotPrimaryExpr(); 5810 Out << "ti"; 5811 mangleType(QualType(TI.getType(), 0)); 5812 } else { 5813 // We should never see dynamic allocations here. 5814 llvm_unreachable("unexpected lvalue base kind in template argument"); 5815 } 5816 5817 switch (Kind) { 5818 case Base: 5819 break; 5820 5821 case Offset: 5822 Out << 'L'; 5823 mangleType(Ctx.getPointerDiffType()); 5824 mangleNumber(V.getLValueOffset().getQuantity()); 5825 Out << 'E'; 5826 break; 5827 5828 case Path: 5829 // <expression> ::= so <referent type> <expr> [<offset number>] 5830 // <union-selector>* [p] E 5831 if (!V.getLValueOffset().isZero()) 5832 mangleNumber(V.getLValueOffset().getQuantity()); 5833 5834 // We model a past-the-end array pointer as array indexing with index N, 5835 // not with the "past the end" flag. Compensate for that. 5836 bool OnePastTheEnd = V.isLValueOnePastTheEnd(); 5837 5838 for (APValue::LValuePathEntry E : V.getLValuePath()) { 5839 if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) { 5840 if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) 5841 OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex(); 5842 TypeSoFar = AT->getElementType(); 5843 } else { 5844 const Decl *D = E.getAsBaseOrMember().getPointer(); 5845 if (auto *FD = dyn_cast<FieldDecl>(D)) { 5846 // <union-selector> ::= _ <number> 5847 if (FD->getParent()->isUnion()) { 5848 Out << '_'; 5849 if (FD->getFieldIndex()) 5850 Out << (FD->getFieldIndex() - 1); 5851 } 5852 TypeSoFar = FD->getType(); 5853 } else { 5854 TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D)); 5855 } 5856 } 5857 } 5858 5859 if (OnePastTheEnd) 5860 Out << 'p'; 5861 Out << 'E'; 5862 break; 5863 } 5864 5865 break; 5866 } 5867 5868 case APValue::MemberPointer: 5869 // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47. 5870 if (!V.getMemberPointerDecl()) { 5871 mangleNullPointer(T); 5872 break; 5873 } 5874 5875 ASTContext &Ctx = Context.getASTContext(); 5876 5877 NotPrimaryExpr(); 5878 if (!V.getMemberPointerPath().empty()) { 5879 Out << "mc"; 5880 mangleType(T); 5881 } else if (NeedExactType && 5882 !Ctx.hasSameType( 5883 T->castAs<MemberPointerType>()->getPointeeType(), 5884 V.getMemberPointerDecl()->getType()) && 5885 Ctx.getLangOpts().getClangABICompat() > 5886 LangOptions::ClangABI::Ver11) { 5887 Out << "cv"; 5888 mangleType(T); 5889 } 5890 Out << "adL"; 5891 mangle(V.getMemberPointerDecl()); 5892 Out << 'E'; 5893 if (!V.getMemberPointerPath().empty()) { 5894 CharUnits Offset = 5895 Context.getASTContext().getMemberPointerPathAdjustment(V); 5896 if (!Offset.isZero()) 5897 mangleNumber(Offset.getQuantity()); 5898 Out << 'E'; 5899 } 5900 break; 5901 } 5902 5903 if (TopLevel && !IsPrimaryExpr) 5904 Out << 'E'; 5905 } 5906 5907 void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) { 5908 // <template-param> ::= T_ # first template parameter 5909 // ::= T <parameter-2 non-negative number> _ 5910 // ::= TL <L-1 non-negative number> __ 5911 // ::= TL <L-1 non-negative number> _ 5912 // <parameter-2 non-negative number> _ 5913 // 5914 // The latter two manglings are from a proposal here: 5915 // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117 5916 Out << 'T'; 5917 if (Depth != 0) 5918 Out << 'L' << (Depth - 1) << '_'; 5919 if (Index != 0) 5920 Out << (Index - 1); 5921 Out << '_'; 5922 } 5923 5924 void CXXNameMangler::mangleSeqID(unsigned SeqID) { 5925 if (SeqID == 0) { 5926 // Nothing. 5927 } else if (SeqID == 1) { 5928 Out << '0'; 5929 } else { 5930 SeqID--; 5931 5932 // <seq-id> is encoded in base-36, using digits and upper case letters. 5933 char Buffer[7]; // log(2**32) / log(36) ~= 7 5934 MutableArrayRef<char> BufferRef(Buffer); 5935 MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin(); 5936 5937 for (; SeqID != 0; SeqID /= 36) { 5938 unsigned C = SeqID % 36; 5939 *I++ = (C < 10 ? '0' + C : 'A' + C - 10); 5940 } 5941 5942 Out.write(I.base(), I - BufferRef.rbegin()); 5943 } 5944 Out << '_'; 5945 } 5946 5947 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { 5948 bool result = mangleSubstitution(tname); 5949 assert(result && "no existing substitution for template name"); 5950 (void) result; 5951 } 5952 5953 // <substitution> ::= S <seq-id> _ 5954 // ::= S_ 5955 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { 5956 // Try one of the standard substitutions first. 5957 if (mangleStandardSubstitution(ND)) 5958 return true; 5959 5960 ND = cast<NamedDecl>(ND->getCanonicalDecl()); 5961 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); 5962 } 5963 5964 /// Determine whether the given type has any qualifiers that are relevant for 5965 /// substitutions. 5966 static bool hasMangledSubstitutionQualifiers(QualType T) { 5967 Qualifiers Qs = T.getQualifiers(); 5968 return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned(); 5969 } 5970 5971 bool CXXNameMangler::mangleSubstitution(QualType T) { 5972 if (!hasMangledSubstitutionQualifiers(T)) { 5973 if (const RecordType *RT = T->getAs<RecordType>()) 5974 return mangleSubstitution(RT->getDecl()); 5975 } 5976 5977 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 5978 5979 return mangleSubstitution(TypePtr); 5980 } 5981 5982 bool CXXNameMangler::mangleSubstitution(TemplateName Template) { 5983 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 5984 return mangleSubstitution(TD); 5985 5986 Template = Context.getASTContext().getCanonicalTemplateName(Template); 5987 return mangleSubstitution( 5988 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 5989 } 5990 5991 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { 5992 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); 5993 if (I == Substitutions.end()) 5994 return false; 5995 5996 unsigned SeqID = I->second; 5997 Out << 'S'; 5998 mangleSeqID(SeqID); 5999 6000 return true; 6001 } 6002 6003 /// Returns whether S is a template specialization of std::Name with a single 6004 /// argument of type A. 6005 bool CXXNameMangler::isSpecializedAs(QualType S, llvm::StringRef Name, 6006 QualType A) { 6007 if (S.isNull()) 6008 return false; 6009 6010 const RecordType *RT = S->getAs<RecordType>(); 6011 if (!RT) 6012 return false; 6013 6014 const ClassTemplateSpecializationDecl *SD = 6015 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); 6016 if (!SD || !SD->getIdentifier()->isStr(Name)) 6017 return false; 6018 6019 if (!isStdNamespace(Context.getEffectiveDeclContext(SD))) 6020 return false; 6021 6022 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 6023 if (TemplateArgs.size() != 1) 6024 return false; 6025 6026 if (TemplateArgs[0].getAsType() != A) 6027 return false; 6028 6029 return true; 6030 } 6031 6032 /// Returns whether SD is a template specialization std::Name<char, 6033 /// std::char_traits<char> [, std::allocator<char>]> 6034 /// HasAllocator controls whether the 3rd template argument is needed. 6035 bool CXXNameMangler::isStdCharSpecialization( 6036 const ClassTemplateSpecializationDecl *SD, llvm::StringRef Name, 6037 bool HasAllocator) { 6038 if (!SD->getIdentifier()->isStr(Name)) 6039 return false; 6040 6041 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); 6042 if (TemplateArgs.size() != (HasAllocator ? 3 : 2)) 6043 return false; 6044 6045 QualType A = TemplateArgs[0].getAsType(); 6046 if (A.isNull()) 6047 return false; 6048 // Plain 'char' is named Char_S or Char_U depending on the target ABI. 6049 if (!A->isSpecificBuiltinType(BuiltinType::Char_S) && 6050 !A->isSpecificBuiltinType(BuiltinType::Char_U)) 6051 return false; 6052 6053 if (!isSpecializedAs(TemplateArgs[1].getAsType(), "char_traits", A)) 6054 return false; 6055 6056 if (HasAllocator && 6057 !isSpecializedAs(TemplateArgs[2].getAsType(), "allocator", A)) 6058 return false; 6059 6060 return true; 6061 } 6062 6063 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { 6064 // <substitution> ::= St # ::std:: 6065 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { 6066 if (isStd(NS)) { 6067 Out << "St"; 6068 return true; 6069 } 6070 return false; 6071 } 6072 6073 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { 6074 if (!isStdNamespace(Context.getEffectiveDeclContext(TD))) 6075 return false; 6076 6077 // <substitution> ::= Sa # ::std::allocator 6078 if (TD->getIdentifier()->isStr("allocator")) { 6079 Out << "Sa"; 6080 return true; 6081 } 6082 6083 // <<substitution> ::= Sb # ::std::basic_string 6084 if (TD->getIdentifier()->isStr("basic_string")) { 6085 Out << "Sb"; 6086 return true; 6087 } 6088 return false; 6089 } 6090 6091 if (const ClassTemplateSpecializationDecl *SD = 6092 dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 6093 if (!isStdNamespace(Context.getEffectiveDeclContext(SD))) 6094 return false; 6095 6096 // <substitution> ::= Ss # ::std::basic_string<char, 6097 // ::std::char_traits<char>, 6098 // ::std::allocator<char> > 6099 if (isStdCharSpecialization(SD, "basic_string", /*HasAllocator=*/true)) { 6100 Out << "Ss"; 6101 return true; 6102 } 6103 6104 // <substitution> ::= Si # ::std::basic_istream<char, 6105 // ::std::char_traits<char> > 6106 if (isStdCharSpecialization(SD, "basic_istream", /*HasAllocator=*/false)) { 6107 Out << "Si"; 6108 return true; 6109 } 6110 6111 // <substitution> ::= So # ::std::basic_ostream<char, 6112 // ::std::char_traits<char> > 6113 if (isStdCharSpecialization(SD, "basic_ostream", /*HasAllocator=*/false)) { 6114 Out << "So"; 6115 return true; 6116 } 6117 6118 // <substitution> ::= Sd # ::std::basic_iostream<char, 6119 // ::std::char_traits<char> > 6120 if (isStdCharSpecialization(SD, "basic_iostream", /*HasAllocator=*/false)) { 6121 Out << "Sd"; 6122 return true; 6123 } 6124 return false; 6125 } 6126 6127 return false; 6128 } 6129 6130 void CXXNameMangler::addSubstitution(QualType T) { 6131 if (!hasMangledSubstitutionQualifiers(T)) { 6132 if (const RecordType *RT = T->getAs<RecordType>()) { 6133 addSubstitution(RT->getDecl()); 6134 return; 6135 } 6136 } 6137 6138 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); 6139 addSubstitution(TypePtr); 6140 } 6141 6142 void CXXNameMangler::addSubstitution(TemplateName Template) { 6143 if (TemplateDecl *TD = Template.getAsTemplateDecl()) 6144 return addSubstitution(TD); 6145 6146 Template = Context.getASTContext().getCanonicalTemplateName(Template); 6147 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); 6148 } 6149 6150 void CXXNameMangler::addSubstitution(uintptr_t Ptr) { 6151 assert(!Substitutions.count(Ptr) && "Substitution already exists!"); 6152 Substitutions[Ptr] = SeqID++; 6153 } 6154 6155 void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) { 6156 assert(Other->SeqID >= SeqID && "Must be superset of substitutions!"); 6157 if (Other->SeqID > SeqID) { 6158 Substitutions.swap(Other->Substitutions); 6159 SeqID = Other->SeqID; 6160 } 6161 } 6162 6163 CXXNameMangler::AbiTagList 6164 CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) { 6165 // When derived abi tags are disabled there is no need to make any list. 6166 if (DisableDerivedAbiTags) 6167 return AbiTagList(); 6168 6169 llvm::raw_null_ostream NullOutStream; 6170 CXXNameMangler TrackReturnTypeTags(*this, NullOutStream); 6171 TrackReturnTypeTags.disableDerivedAbiTags(); 6172 6173 const FunctionProtoType *Proto = 6174 cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>()); 6175 FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push(); 6176 TrackReturnTypeTags.FunctionTypeDepth.enterResultType(); 6177 TrackReturnTypeTags.mangleType(Proto->getReturnType()); 6178 TrackReturnTypeTags.FunctionTypeDepth.leaveResultType(); 6179 TrackReturnTypeTags.FunctionTypeDepth.pop(saved); 6180 6181 return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 6182 } 6183 6184 CXXNameMangler::AbiTagList 6185 CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) { 6186 // When derived abi tags are disabled there is no need to make any list. 6187 if (DisableDerivedAbiTags) 6188 return AbiTagList(); 6189 6190 llvm::raw_null_ostream NullOutStream; 6191 CXXNameMangler TrackVariableType(*this, NullOutStream); 6192 TrackVariableType.disableDerivedAbiTags(); 6193 6194 TrackVariableType.mangleType(VD->getType()); 6195 6196 return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags(); 6197 } 6198 6199 bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C, 6200 const VarDecl *VD) { 6201 llvm::raw_null_ostream NullOutStream; 6202 CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true); 6203 TrackAbiTags.mangle(VD); 6204 return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size(); 6205 } 6206 6207 // 6208 6209 /// Mangles the name of the declaration D and emits that name to the given 6210 /// output stream. 6211 /// 6212 /// If the declaration D requires a mangled name, this routine will emit that 6213 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged 6214 /// and this routine will return false. In this case, the caller should just 6215 /// emit the identifier of the declaration (\c D->getIdentifier()) as its 6216 /// name. 6217 void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD, 6218 raw_ostream &Out) { 6219 const NamedDecl *D = cast<NamedDecl>(GD.getDecl()); 6220 assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) && 6221 "Invalid mangleName() call, argument is not a variable or function!"); 6222 6223 PrettyStackTraceDecl CrashInfo(D, SourceLocation(), 6224 getASTContext().getSourceManager(), 6225 "Mangling declaration"); 6226 6227 if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) { 6228 auto Type = GD.getCtorType(); 6229 CXXNameMangler Mangler(*this, Out, CD, Type); 6230 return Mangler.mangle(GlobalDecl(CD, Type)); 6231 } 6232 6233 if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) { 6234 auto Type = GD.getDtorType(); 6235 CXXNameMangler Mangler(*this, Out, DD, Type); 6236 return Mangler.mangle(GlobalDecl(DD, Type)); 6237 } 6238 6239 CXXNameMangler Mangler(*this, Out, D); 6240 Mangler.mangle(GD); 6241 } 6242 6243 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D, 6244 raw_ostream &Out) { 6245 CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat); 6246 Mangler.mangle(GlobalDecl(D, Ctor_Comdat)); 6247 } 6248 6249 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D, 6250 raw_ostream &Out) { 6251 CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat); 6252 Mangler.mangle(GlobalDecl(D, Dtor_Comdat)); 6253 } 6254 6255 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD, 6256 const ThunkInfo &Thunk, 6257 raw_ostream &Out) { 6258 // <special-name> ::= T <call-offset> <base encoding> 6259 // # base is the nominal target function of thunk 6260 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> 6261 // # base is the nominal target function of thunk 6262 // # first call-offset is 'this' adjustment 6263 // # second call-offset is result adjustment 6264 6265 assert(!isa<CXXDestructorDecl>(MD) && 6266 "Use mangleCXXDtor for destructor decls!"); 6267 CXXNameMangler Mangler(*this, Out); 6268 Mangler.getStream() << "_ZT"; 6269 if (!Thunk.Return.isEmpty()) 6270 Mangler.getStream() << 'c'; 6271 6272 // Mangle the 'this' pointer adjustment. 6273 Mangler.mangleCallOffset(Thunk.This.NonVirtual, 6274 Thunk.This.Virtual.Itanium.VCallOffsetOffset); 6275 6276 // Mangle the return pointer adjustment if there is one. 6277 if (!Thunk.Return.isEmpty()) 6278 Mangler.mangleCallOffset(Thunk.Return.NonVirtual, 6279 Thunk.Return.Virtual.Itanium.VBaseOffsetOffset); 6280 6281 Mangler.mangleFunctionEncoding(MD); 6282 } 6283 6284 void ItaniumMangleContextImpl::mangleCXXDtorThunk( 6285 const CXXDestructorDecl *DD, CXXDtorType Type, 6286 const ThisAdjustment &ThisAdjustment, raw_ostream &Out) { 6287 // <special-name> ::= T <call-offset> <base encoding> 6288 // # base is the nominal target function of thunk 6289 CXXNameMangler Mangler(*this, Out, DD, Type); 6290 Mangler.getStream() << "_ZT"; 6291 6292 // Mangle the 'this' pointer adjustment. 6293 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 6294 ThisAdjustment.Virtual.Itanium.VCallOffsetOffset); 6295 6296 Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type)); 6297 } 6298 6299 /// Returns the mangled name for a guard variable for the passed in VarDecl. 6300 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D, 6301 raw_ostream &Out) { 6302 // <special-name> ::= GV <object name> # Guard variable for one-time 6303 // # initialization 6304 CXXNameMangler Mangler(*this, Out); 6305 // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to 6306 // be a bug that is fixed in trunk. 6307 Mangler.getStream() << "_ZGV"; 6308 Mangler.mangleName(D); 6309 } 6310 6311 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD, 6312 raw_ostream &Out) { 6313 // These symbols are internal in the Itanium ABI, so the names don't matter. 6314 // Clang has traditionally used this symbol and allowed LLVM to adjust it to 6315 // avoid duplicate symbols. 6316 Out << "__cxx_global_var_init"; 6317 } 6318 6319 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D, 6320 raw_ostream &Out) { 6321 // Prefix the mangling of D with __dtor_. 6322 CXXNameMangler Mangler(*this, Out); 6323 Mangler.getStream() << "__dtor_"; 6324 if (shouldMangleDeclName(D)) 6325 Mangler.mangle(D); 6326 else 6327 Mangler.getStream() << D->getName(); 6328 } 6329 6330 void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D, 6331 raw_ostream &Out) { 6332 // Clang generates these internal-linkage functions as part of its 6333 // implementation of the XL ABI. 6334 CXXNameMangler Mangler(*this, Out); 6335 Mangler.getStream() << "__finalize_"; 6336 if (shouldMangleDeclName(D)) 6337 Mangler.mangle(D); 6338 else 6339 Mangler.getStream() << D->getName(); 6340 } 6341 6342 void ItaniumMangleContextImpl::mangleSEHFilterExpression( 6343 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 6344 CXXNameMangler Mangler(*this, Out); 6345 Mangler.getStream() << "__filt_"; 6346 if (shouldMangleDeclName(EnclosingDecl)) 6347 Mangler.mangle(EnclosingDecl); 6348 else 6349 Mangler.getStream() << EnclosingDecl->getName(); 6350 } 6351 6352 void ItaniumMangleContextImpl::mangleSEHFinallyBlock( 6353 const NamedDecl *EnclosingDecl, raw_ostream &Out) { 6354 CXXNameMangler Mangler(*this, Out); 6355 Mangler.getStream() << "__fin_"; 6356 if (shouldMangleDeclName(EnclosingDecl)) 6357 Mangler.mangle(EnclosingDecl); 6358 else 6359 Mangler.getStream() << EnclosingDecl->getName(); 6360 } 6361 6362 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D, 6363 raw_ostream &Out) { 6364 // <special-name> ::= TH <object name> 6365 CXXNameMangler Mangler(*this, Out); 6366 Mangler.getStream() << "_ZTH"; 6367 Mangler.mangleName(D); 6368 } 6369 6370 void 6371 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D, 6372 raw_ostream &Out) { 6373 // <special-name> ::= TW <object name> 6374 CXXNameMangler Mangler(*this, Out); 6375 Mangler.getStream() << "_ZTW"; 6376 Mangler.mangleName(D); 6377 } 6378 6379 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D, 6380 unsigned ManglingNumber, 6381 raw_ostream &Out) { 6382 // We match the GCC mangling here. 6383 // <special-name> ::= GR <object name> 6384 CXXNameMangler Mangler(*this, Out); 6385 Mangler.getStream() << "_ZGR"; 6386 Mangler.mangleName(D); 6387 assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!"); 6388 Mangler.mangleSeqID(ManglingNumber - 1); 6389 } 6390 6391 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD, 6392 raw_ostream &Out) { 6393 // <special-name> ::= TV <type> # virtual table 6394 CXXNameMangler Mangler(*this, Out); 6395 Mangler.getStream() << "_ZTV"; 6396 Mangler.mangleNameOrStandardSubstitution(RD); 6397 } 6398 6399 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD, 6400 raw_ostream &Out) { 6401 // <special-name> ::= TT <type> # VTT structure 6402 CXXNameMangler Mangler(*this, Out); 6403 Mangler.getStream() << "_ZTT"; 6404 Mangler.mangleNameOrStandardSubstitution(RD); 6405 } 6406 6407 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD, 6408 int64_t Offset, 6409 const CXXRecordDecl *Type, 6410 raw_ostream &Out) { 6411 // <special-name> ::= TC <type> <offset number> _ <base type> 6412 CXXNameMangler Mangler(*this, Out); 6413 Mangler.getStream() << "_ZTC"; 6414 Mangler.mangleNameOrStandardSubstitution(RD); 6415 Mangler.getStream() << Offset; 6416 Mangler.getStream() << '_'; 6417 Mangler.mangleNameOrStandardSubstitution(Type); 6418 } 6419 6420 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) { 6421 // <special-name> ::= TI <type> # typeinfo structure 6422 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); 6423 CXXNameMangler Mangler(*this, Out); 6424 Mangler.getStream() << "_ZTI"; 6425 Mangler.mangleType(Ty); 6426 } 6427 6428 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty, 6429 raw_ostream &Out) { 6430 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) 6431 CXXNameMangler Mangler(*this, Out); 6432 Mangler.getStream() << "_ZTS"; 6433 Mangler.mangleType(Ty); 6434 } 6435 6436 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) { 6437 mangleCXXRTTIName(Ty, Out); 6438 } 6439 6440 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) { 6441 llvm_unreachable("Can't mangle string literals"); 6442 } 6443 6444 void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda, 6445 raw_ostream &Out) { 6446 CXXNameMangler Mangler(*this, Out); 6447 Mangler.mangleLambdaSig(Lambda); 6448 } 6449 6450 ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context, 6451 DiagnosticsEngine &Diags) { 6452 return new ItaniumMangleContextImpl( 6453 Context, Diags, 6454 [](ASTContext &, const NamedDecl *) -> llvm::Optional<unsigned> { 6455 return llvm::None; 6456 }); 6457 } 6458 6459 ItaniumMangleContext * 6460 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags, 6461 DiscriminatorOverrideTy DiscriminatorOverride) { 6462 return new ItaniumMangleContextImpl(Context, Diags, DiscriminatorOverride); 6463 } 6464