1 //===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Compiler.h" 10 #include "ByteCodeEmitter.h" 11 #include "Context.h" 12 #include "Floating.h" 13 #include "Function.h" 14 #include "InterpShared.h" 15 #include "PrimType.h" 16 #include "Program.h" 17 #include "clang/AST/Attr.h" 18 19 using namespace clang; 20 using namespace clang::interp; 21 22 using APSInt = llvm::APSInt; 23 24 namespace clang { 25 namespace interp { 26 27 /// Scope used to handle temporaries in toplevel variable declarations. 28 template <class Emitter> class DeclScope final : public LocalScope<Emitter> { 29 public: 30 DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD) 31 : LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD), 32 OldGlobalDecl(Ctx->GlobalDecl), 33 OldInitializingDecl(Ctx->InitializingDecl) { 34 Ctx->GlobalDecl = Context::shouldBeGloballyIndexed(VD); 35 Ctx->InitializingDecl = VD; 36 Ctx->InitStack.push_back(InitLink::Decl(VD)); 37 } 38 39 void addExtended(const Scope::Local &Local) override { 40 return this->addLocal(Local); 41 } 42 43 ~DeclScope() { 44 this->Ctx->GlobalDecl = OldGlobalDecl; 45 this->Ctx->InitializingDecl = OldInitializingDecl; 46 this->Ctx->InitStack.pop_back(); 47 } 48 49 private: 50 Program::DeclScope Scope; 51 bool OldGlobalDecl; 52 const ValueDecl *OldInitializingDecl; 53 }; 54 55 /// Scope used to handle initialization methods. 56 template <class Emitter> class OptionScope final { 57 public: 58 /// Root constructor, compiling or discarding primitives. 59 OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult, 60 bool NewInitializing) 61 : Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult), 62 OldInitializing(Ctx->Initializing) { 63 Ctx->DiscardResult = NewDiscardResult; 64 Ctx->Initializing = NewInitializing; 65 } 66 67 ~OptionScope() { 68 Ctx->DiscardResult = OldDiscardResult; 69 Ctx->Initializing = OldInitializing; 70 } 71 72 private: 73 /// Parent context. 74 Compiler<Emitter> *Ctx; 75 /// Old discard flag to restore. 76 bool OldDiscardResult; 77 bool OldInitializing; 78 }; 79 80 template <class Emitter> 81 bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const { 82 switch (Kind) { 83 case K_This: 84 return Ctx->emitThis(E); 85 case K_Field: 86 // We're assuming there's a base pointer on the stack already. 87 return Ctx->emitGetPtrFieldPop(Offset, E); 88 case K_Temp: 89 return Ctx->emitGetPtrLocal(Offset, E); 90 case K_Decl: 91 return Ctx->visitDeclRef(D, E); 92 default: 93 llvm_unreachable("Unhandled InitLink kind"); 94 } 95 return true; 96 } 97 98 /// Scope managing label targets. 99 template <class Emitter> class LabelScope { 100 public: 101 virtual ~LabelScope() {} 102 103 protected: 104 LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {} 105 /// Compiler instance. 106 Compiler<Emitter> *Ctx; 107 }; 108 109 /// Sets the context for break/continue statements. 110 template <class Emitter> class LoopScope final : public LabelScope<Emitter> { 111 public: 112 using LabelTy = typename Compiler<Emitter>::LabelTy; 113 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 114 115 LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel) 116 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 117 OldContinueLabel(Ctx->ContinueLabel) { 118 this->Ctx->BreakLabel = BreakLabel; 119 this->Ctx->ContinueLabel = ContinueLabel; 120 } 121 122 ~LoopScope() { 123 this->Ctx->BreakLabel = OldBreakLabel; 124 this->Ctx->ContinueLabel = OldContinueLabel; 125 } 126 127 private: 128 OptLabelTy OldBreakLabel; 129 OptLabelTy OldContinueLabel; 130 }; 131 132 // Sets the context for a switch scope, mapping labels. 133 template <class Emitter> class SwitchScope final : public LabelScope<Emitter> { 134 public: 135 using LabelTy = typename Compiler<Emitter>::LabelTy; 136 using OptLabelTy = typename Compiler<Emitter>::OptLabelTy; 137 using CaseMap = typename Compiler<Emitter>::CaseMap; 138 139 SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel, 140 OptLabelTy DefaultLabel) 141 : LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel), 142 OldDefaultLabel(this->Ctx->DefaultLabel), 143 OldCaseLabels(std::move(this->Ctx->CaseLabels)) { 144 this->Ctx->BreakLabel = BreakLabel; 145 this->Ctx->DefaultLabel = DefaultLabel; 146 this->Ctx->CaseLabels = std::move(CaseLabels); 147 } 148 149 ~SwitchScope() { 150 this->Ctx->BreakLabel = OldBreakLabel; 151 this->Ctx->DefaultLabel = OldDefaultLabel; 152 this->Ctx->CaseLabels = std::move(OldCaseLabels); 153 } 154 155 private: 156 OptLabelTy OldBreakLabel; 157 OptLabelTy OldDefaultLabel; 158 CaseMap OldCaseLabels; 159 }; 160 161 template <class Emitter> class StmtExprScope final { 162 public: 163 StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) { 164 Ctx->InStmtExpr = true; 165 } 166 167 ~StmtExprScope() { Ctx->InStmtExpr = OldFlag; } 168 169 private: 170 Compiler<Emitter> *Ctx; 171 bool OldFlag; 172 }; 173 174 } // namespace interp 175 } // namespace clang 176 177 template <class Emitter> 178 bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) { 179 const Expr *SubExpr = CE->getSubExpr(); 180 switch (CE->getCastKind()) { 181 182 case CK_LValueToRValue: { 183 if (DiscardResult) 184 return this->discard(SubExpr); 185 186 std::optional<PrimType> SubExprT = classify(SubExpr->getType()); 187 // Prepare storage for the result. 188 if (!Initializing && !SubExprT) { 189 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 190 if (!LocalIndex) 191 return false; 192 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 193 return false; 194 } 195 196 if (!this->visit(SubExpr)) 197 return false; 198 199 if (SubExprT) 200 return this->emitLoadPop(*SubExprT, CE); 201 202 // If the subexpr type is not primitive, we need to perform a copy here. 203 // This happens for example in C when dereferencing a pointer of struct 204 // type. 205 return this->emitMemcpy(CE); 206 } 207 208 case CK_DerivedToBaseMemberPointer: { 209 assert(classifyPrim(CE->getType()) == PT_MemberPtr); 210 assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr); 211 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 212 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 213 214 unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0), 215 QualType(FromMP->getClass(), 0)); 216 217 if (!this->visit(SubExpr)) 218 return false; 219 220 return this->emitGetMemberPtrBasePop(DerivedOffset, CE); 221 } 222 223 case CK_BaseToDerivedMemberPointer: { 224 assert(classifyPrim(CE) == PT_MemberPtr); 225 assert(classifyPrim(SubExpr) == PT_MemberPtr); 226 const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>(); 227 const auto *ToMP = CE->getType()->getAs<MemberPointerType>(); 228 229 unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0), 230 QualType(ToMP->getClass(), 0)); 231 232 if (!this->visit(SubExpr)) 233 return false; 234 return this->emitGetMemberPtrBasePop(-DerivedOffset, CE); 235 } 236 237 case CK_UncheckedDerivedToBase: 238 case CK_DerivedToBase: { 239 if (!this->visit(SubExpr)) 240 return false; 241 242 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 243 if (const auto *PT = dyn_cast<PointerType>(Ty)) 244 return PT->getPointeeType()->getAsCXXRecordDecl(); 245 return Ty->getAsCXXRecordDecl(); 246 }; 247 248 // FIXME: We can express a series of non-virtual casts as a single 249 // GetPtrBasePop op. 250 QualType CurType = SubExpr->getType(); 251 for (const CXXBaseSpecifier *B : CE->path()) { 252 if (B->isVirtual()) { 253 if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE)) 254 return false; 255 CurType = B->getType(); 256 } else { 257 unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType); 258 if (!this->emitGetPtrBasePop(DerivedOffset, CE)) 259 return false; 260 CurType = B->getType(); 261 } 262 } 263 264 return true; 265 } 266 267 case CK_BaseToDerived: { 268 if (!this->visit(SubExpr)) 269 return false; 270 271 unsigned DerivedOffset = 272 collectBaseOffset(SubExpr->getType(), CE->getType()); 273 274 return this->emitGetPtrDerivedPop(DerivedOffset, CE); 275 } 276 277 case CK_FloatingCast: { 278 // HLSL uses CK_FloatingCast to cast between vectors. 279 if (!SubExpr->getType()->isFloatingType() || 280 !CE->getType()->isFloatingType()) 281 return false; 282 if (DiscardResult) 283 return this->discard(SubExpr); 284 if (!this->visit(SubExpr)) 285 return false; 286 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 287 return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE); 288 } 289 290 case CK_IntegralToFloating: { 291 if (DiscardResult) 292 return this->discard(SubExpr); 293 std::optional<PrimType> FromT = classify(SubExpr->getType()); 294 if (!FromT) 295 return false; 296 297 if (!this->visit(SubExpr)) 298 return false; 299 300 const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType()); 301 llvm::RoundingMode RM = getRoundingMode(CE); 302 return this->emitCastIntegralFloating(*FromT, TargetSemantics, RM, CE); 303 } 304 305 case CK_FloatingToBoolean: 306 case CK_FloatingToIntegral: { 307 if (DiscardResult) 308 return this->discard(SubExpr); 309 310 std::optional<PrimType> ToT = classify(CE->getType()); 311 312 if (!ToT) 313 return false; 314 315 if (!this->visit(SubExpr)) 316 return false; 317 318 if (ToT == PT_IntAP) 319 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()), 320 CE); 321 if (ToT == PT_IntAPS) 322 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()), 323 CE); 324 325 return this->emitCastFloatingIntegral(*ToT, CE); 326 } 327 328 case CK_NullToPointer: 329 case CK_NullToMemberPointer: { 330 if (DiscardResult) 331 return true; 332 333 const Descriptor *Desc = nullptr; 334 const QualType PointeeType = CE->getType()->getPointeeType(); 335 if (!PointeeType.isNull()) { 336 if (std::optional<PrimType> T = classify(PointeeType)) 337 Desc = P.createDescriptor(SubExpr, *T); 338 } 339 return this->emitNull(classifyPrim(CE->getType()), Desc, CE); 340 } 341 342 case CK_PointerToIntegral: { 343 if (DiscardResult) 344 return this->discard(SubExpr); 345 346 if (!this->visit(SubExpr)) 347 return false; 348 349 // If SubExpr doesn't result in a pointer, make it one. 350 if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) { 351 assert(isPtrType(FromT)); 352 if (!this->emitDecayPtr(FromT, PT_Ptr, CE)) 353 return false; 354 } 355 356 PrimType T = classifyPrim(CE->getType()); 357 if (T == PT_IntAP) 358 return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()), 359 CE); 360 if (T == PT_IntAPS) 361 return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()), 362 CE); 363 return this->emitCastPointerIntegral(T, CE); 364 } 365 366 case CK_ArrayToPointerDecay: { 367 if (!this->visit(SubExpr)) 368 return false; 369 if (!this->emitArrayDecay(CE)) 370 return false; 371 if (DiscardResult) 372 return this->emitPopPtr(CE); 373 return true; 374 } 375 376 case CK_IntegralToPointer: { 377 QualType IntType = SubExpr->getType(); 378 assert(IntType->isIntegralOrEnumerationType()); 379 if (!this->visit(SubExpr)) 380 return false; 381 // FIXME: I think the discard is wrong since the int->ptr cast might cause a 382 // diagnostic. 383 PrimType T = classifyPrim(IntType); 384 if (DiscardResult) 385 return this->emitPop(T, CE); 386 387 QualType PtrType = CE->getType(); 388 assert(PtrType->isPointerType()); 389 390 const Descriptor *Desc; 391 if (std::optional<PrimType> T = classify(PtrType->getPointeeType())) 392 Desc = P.createDescriptor(SubExpr, *T); 393 else if (PtrType->getPointeeType()->isVoidType()) 394 Desc = nullptr; 395 else 396 Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(), 397 Descriptor::InlineDescMD, true, false, 398 /*IsMutable=*/false, nullptr); 399 400 if (!this->emitGetIntPtr(T, Desc, CE)) 401 return false; 402 403 PrimType DestPtrT = classifyPrim(PtrType); 404 if (DestPtrT == PT_Ptr) 405 return true; 406 407 // In case we're converting the integer to a non-Pointer. 408 return this->emitDecayPtr(PT_Ptr, DestPtrT, CE); 409 } 410 411 case CK_AtomicToNonAtomic: 412 case CK_ConstructorConversion: 413 case CK_FunctionToPointerDecay: 414 case CK_NonAtomicToAtomic: 415 case CK_NoOp: 416 case CK_UserDefinedConversion: 417 case CK_AddressSpaceConversion: 418 return this->delegate(SubExpr); 419 420 case CK_BitCast: { 421 // Reject bitcasts to atomic types. 422 if (CE->getType()->isAtomicType()) { 423 if (!this->discard(SubExpr)) 424 return false; 425 return this->emitInvalidCast(CastKind::Reinterpret, CE); 426 } 427 428 if (DiscardResult) 429 return this->discard(SubExpr); 430 431 QualType SubExprTy = SubExpr->getType(); 432 std::optional<PrimType> FromT = classify(SubExprTy); 433 std::optional<PrimType> ToT = classify(CE->getType()); 434 if (!FromT || !ToT) 435 return false; 436 437 assert(isPtrType(*FromT)); 438 assert(isPtrType(*ToT)); 439 if (FromT == ToT) { 440 if (CE->getType()->isVoidPointerType()) 441 return this->delegate(SubExpr); 442 443 if (!this->visit(SubExpr)) 444 return false; 445 if (FromT == PT_Ptr) 446 return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE); 447 return true; 448 } 449 450 if (!this->visit(SubExpr)) 451 return false; 452 return this->emitDecayPtr(*FromT, *ToT, CE); 453 } 454 455 case CK_IntegralToBoolean: 456 case CK_BooleanToSignedIntegral: 457 case CK_IntegralCast: { 458 if (DiscardResult) 459 return this->discard(SubExpr); 460 std::optional<PrimType> FromT = classify(SubExpr->getType()); 461 std::optional<PrimType> ToT = classify(CE->getType()); 462 463 if (!FromT || !ToT) 464 return false; 465 466 if (!this->visit(SubExpr)) 467 return false; 468 469 // Possibly diagnose casts to enum types if the target type does not 470 // have a fixed size. 471 if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) { 472 if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>(); 473 ET && !ET->getDecl()->isFixed()) { 474 if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE)) 475 return false; 476 } 477 } 478 479 if (ToT == PT_IntAP) 480 return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE); 481 if (ToT == PT_IntAPS) 482 return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE); 483 484 if (FromT == ToT) 485 return true; 486 if (!this->emitCast(*FromT, *ToT, CE)) 487 return false; 488 489 if (CE->getCastKind() == CK_BooleanToSignedIntegral) 490 return this->emitNeg(*ToT, CE); 491 return true; 492 } 493 494 case CK_PointerToBoolean: 495 case CK_MemberPointerToBoolean: { 496 PrimType PtrT = classifyPrim(SubExpr->getType()); 497 498 // Just emit p != nullptr for this. 499 if (!this->visit(SubExpr)) 500 return false; 501 502 if (!this->emitNull(PtrT, nullptr, CE)) 503 return false; 504 505 return this->emitNE(PtrT, CE); 506 } 507 508 case CK_IntegralComplexToBoolean: 509 case CK_FloatingComplexToBoolean: { 510 if (DiscardResult) 511 return this->discard(SubExpr); 512 if (!this->visit(SubExpr)) 513 return false; 514 return this->emitComplexBoolCast(SubExpr); 515 } 516 517 case CK_IntegralComplexToReal: 518 case CK_FloatingComplexToReal: 519 return this->emitComplexReal(SubExpr); 520 521 case CK_IntegralRealToComplex: 522 case CK_FloatingRealToComplex: { 523 // We're creating a complex value here, so we need to 524 // allocate storage for it. 525 if (!Initializing) { 526 std::optional<unsigned> LocalIndex = allocateLocal(CE); 527 if (!LocalIndex) 528 return false; 529 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 530 return false; 531 } 532 533 // Init the complex value to {SubExpr, 0}. 534 if (!this->visitArrayElemInit(0, SubExpr)) 535 return false; 536 // Zero-init the second element. 537 PrimType T = classifyPrim(SubExpr->getType()); 538 if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr)) 539 return false; 540 return this->emitInitElem(T, 1, SubExpr); 541 } 542 543 case CK_IntegralComplexCast: 544 case CK_FloatingComplexCast: 545 case CK_IntegralComplexToFloatingComplex: 546 case CK_FloatingComplexToIntegralComplex: { 547 assert(CE->getType()->isAnyComplexType()); 548 assert(SubExpr->getType()->isAnyComplexType()); 549 if (DiscardResult) 550 return this->discard(SubExpr); 551 552 if (!Initializing) { 553 std::optional<unsigned> LocalIndex = allocateLocal(CE); 554 if (!LocalIndex) 555 return false; 556 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 557 return false; 558 } 559 560 // Location for the SubExpr. 561 // Since SubExpr is of complex type, visiting it results in a pointer 562 // anyway, so we just create a temporary pointer variable. 563 unsigned SubExprOffset = allocateLocalPrimitive( 564 SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 565 if (!this->visit(SubExpr)) 566 return false; 567 if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE)) 568 return false; 569 570 PrimType SourceElemT = classifyComplexElementType(SubExpr->getType()); 571 QualType DestElemType = 572 CE->getType()->getAs<ComplexType>()->getElementType(); 573 PrimType DestElemT = classifyPrim(DestElemType); 574 // Cast both elements individually. 575 for (unsigned I = 0; I != 2; ++I) { 576 if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE)) 577 return false; 578 if (!this->emitArrayElemPop(SourceElemT, I, CE)) 579 return false; 580 581 // Do the cast. 582 if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE)) 583 return false; 584 585 // Save the value. 586 if (!this->emitInitElem(DestElemT, I, CE)) 587 return false; 588 } 589 return true; 590 } 591 592 case CK_VectorSplat: { 593 assert(!classify(CE->getType())); 594 assert(classify(SubExpr->getType())); 595 assert(CE->getType()->isVectorType()); 596 597 if (DiscardResult) 598 return this->discard(SubExpr); 599 600 if (!Initializing) { 601 std::optional<unsigned> LocalIndex = allocateLocal(CE); 602 if (!LocalIndex) 603 return false; 604 if (!this->emitGetPtrLocal(*LocalIndex, CE)) 605 return false; 606 } 607 608 const auto *VT = CE->getType()->getAs<VectorType>(); 609 PrimType ElemT = classifyPrim(SubExpr->getType()); 610 unsigned ElemOffset = allocateLocalPrimitive( 611 SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false); 612 613 // Prepare a local variable for the scalar value. 614 if (!this->visit(SubExpr)) 615 return false; 616 if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE)) 617 return false; 618 619 if (!this->emitSetLocal(ElemT, ElemOffset, CE)) 620 return false; 621 622 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 623 if (!this->emitGetLocal(ElemT, ElemOffset, CE)) 624 return false; 625 if (!this->emitInitElem(ElemT, I, CE)) 626 return false; 627 } 628 629 return true; 630 } 631 632 case CK_ToVoid: 633 return discard(SubExpr); 634 635 default: 636 return this->emitInvalid(CE); 637 } 638 llvm_unreachable("Unhandled clang::CastKind enum"); 639 } 640 641 template <class Emitter> 642 bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) { 643 if (DiscardResult) 644 return true; 645 646 return this->emitConst(LE->getValue(), LE); 647 } 648 649 template <class Emitter> 650 bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) { 651 if (DiscardResult) 652 return true; 653 654 return this->emitConstFloat(E->getValue(), E); 655 } 656 657 template <class Emitter> 658 bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) { 659 assert(E->getType()->isAnyComplexType()); 660 if (DiscardResult) 661 return true; 662 663 if (!Initializing) { 664 std::optional<unsigned> LocalIndex = allocateLocal(E); 665 if (!LocalIndex) 666 return false; 667 if (!this->emitGetPtrLocal(*LocalIndex, E)) 668 return false; 669 } 670 671 const Expr *SubExpr = E->getSubExpr(); 672 PrimType SubExprT = classifyPrim(SubExpr->getType()); 673 674 if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr)) 675 return false; 676 if (!this->emitInitElem(SubExprT, 0, SubExpr)) 677 return false; 678 return this->visitArrayElemInit(1, SubExpr); 679 } 680 681 template <class Emitter> 682 bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) { 683 return this->delegate(E->getSubExpr()); 684 } 685 686 template <class Emitter> 687 bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) { 688 // Need short-circuiting for these. 689 if (BO->isLogicalOp()) 690 return this->VisitLogicalBinOp(BO); 691 692 const Expr *LHS = BO->getLHS(); 693 const Expr *RHS = BO->getRHS(); 694 695 // Handle comma operators. Just discard the LHS 696 // and delegate to RHS. 697 if (BO->isCommaOp()) { 698 if (!this->discard(LHS)) 699 return false; 700 if (RHS->getType()->isVoidType()) 701 return this->discard(RHS); 702 703 return this->delegate(RHS); 704 } 705 706 if (BO->getType()->isAnyComplexType()) 707 return this->VisitComplexBinOp(BO); 708 if ((LHS->getType()->isAnyComplexType() || 709 RHS->getType()->isAnyComplexType()) && 710 BO->isComparisonOp()) 711 return this->emitComplexComparison(LHS, RHS, BO); 712 713 if (BO->isPtrMemOp()) { 714 if (!this->visit(LHS)) 715 return false; 716 717 if (!this->visit(RHS)) 718 return false; 719 720 if (!this->emitToMemberPtr(BO)) 721 return false; 722 723 if (classifyPrim(BO) == PT_MemberPtr) 724 return true; 725 726 if (!this->emitCastMemberPtrPtr(BO)) 727 return false; 728 return DiscardResult ? this->emitPopPtr(BO) : true; 729 } 730 731 // Typecheck the args. 732 std::optional<PrimType> LT = classify(LHS->getType()); 733 std::optional<PrimType> RT = classify(RHS->getType()); 734 std::optional<PrimType> T = classify(BO->getType()); 735 736 // Special case for C++'s three-way/spaceship operator <=>, which 737 // returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't 738 // have a PrimType). 739 if (!T && BO->getOpcode() == BO_Cmp) { 740 if (DiscardResult) 741 return true; 742 const ComparisonCategoryInfo *CmpInfo = 743 Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType()); 744 assert(CmpInfo); 745 746 // We need a temporary variable holding our return value. 747 if (!Initializing) { 748 std::optional<unsigned> ResultIndex = this->allocateLocal(BO); 749 if (!this->emitGetPtrLocal(*ResultIndex, BO)) 750 return false; 751 } 752 753 if (!visit(LHS) || !visit(RHS)) 754 return false; 755 756 return this->emitCMP3(*LT, CmpInfo, BO); 757 } 758 759 if (!LT || !RT || !T) 760 return false; 761 762 // Pointer arithmetic special case. 763 if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) { 764 if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT))) 765 return this->VisitPointerArithBinOp(BO); 766 } 767 768 if (!visit(LHS) || !visit(RHS)) 769 return false; 770 771 // For languages such as C, cast the result of one 772 // of our comparision opcodes to T (which is usually int). 773 auto MaybeCastToBool = [this, T, BO](bool Result) { 774 if (!Result) 775 return false; 776 if (DiscardResult) 777 return this->emitPop(*T, BO); 778 if (T != PT_Bool) 779 return this->emitCast(PT_Bool, *T, BO); 780 return true; 781 }; 782 783 auto Discard = [this, T, BO](bool Result) { 784 if (!Result) 785 return false; 786 return DiscardResult ? this->emitPop(*T, BO) : true; 787 }; 788 789 switch (BO->getOpcode()) { 790 case BO_EQ: 791 return MaybeCastToBool(this->emitEQ(*LT, BO)); 792 case BO_NE: 793 return MaybeCastToBool(this->emitNE(*LT, BO)); 794 case BO_LT: 795 return MaybeCastToBool(this->emitLT(*LT, BO)); 796 case BO_LE: 797 return MaybeCastToBool(this->emitLE(*LT, BO)); 798 case BO_GT: 799 return MaybeCastToBool(this->emitGT(*LT, BO)); 800 case BO_GE: 801 return MaybeCastToBool(this->emitGE(*LT, BO)); 802 case BO_Sub: 803 if (BO->getType()->isFloatingType()) 804 return Discard(this->emitSubf(getRoundingMode(BO), BO)); 805 return Discard(this->emitSub(*T, BO)); 806 case BO_Add: 807 if (BO->getType()->isFloatingType()) 808 return Discard(this->emitAddf(getRoundingMode(BO), BO)); 809 return Discard(this->emitAdd(*T, BO)); 810 case BO_Mul: 811 if (BO->getType()->isFloatingType()) 812 return Discard(this->emitMulf(getRoundingMode(BO), BO)); 813 return Discard(this->emitMul(*T, BO)); 814 case BO_Rem: 815 return Discard(this->emitRem(*T, BO)); 816 case BO_Div: 817 if (BO->getType()->isFloatingType()) 818 return Discard(this->emitDivf(getRoundingMode(BO), BO)); 819 return Discard(this->emitDiv(*T, BO)); 820 case BO_Assign: 821 if (DiscardResult) 822 return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO) 823 : this->emitStorePop(*T, BO); 824 if (LHS->refersToBitField()) { 825 if (!this->emitStoreBitField(*T, BO)) 826 return false; 827 } else { 828 if (!this->emitStore(*T, BO)) 829 return false; 830 } 831 // Assignments aren't necessarily lvalues in C. 832 // Load from them in that case. 833 if (!BO->isLValue()) 834 return this->emitLoadPop(*T, BO); 835 return true; 836 case BO_And: 837 return Discard(this->emitBitAnd(*T, BO)); 838 case BO_Or: 839 return Discard(this->emitBitOr(*T, BO)); 840 case BO_Shl: 841 return Discard(this->emitShl(*LT, *RT, BO)); 842 case BO_Shr: 843 return Discard(this->emitShr(*LT, *RT, BO)); 844 case BO_Xor: 845 return Discard(this->emitBitXor(*T, BO)); 846 case BO_LOr: 847 case BO_LAnd: 848 llvm_unreachable("Already handled earlier"); 849 default: 850 return false; 851 } 852 853 llvm_unreachable("Unhandled binary op"); 854 } 855 856 /// Perform addition/subtraction of a pointer and an integer or 857 /// subtraction of two pointers. 858 template <class Emitter> 859 bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) { 860 BinaryOperatorKind Op = E->getOpcode(); 861 const Expr *LHS = E->getLHS(); 862 const Expr *RHS = E->getRHS(); 863 864 if ((Op != BO_Add && Op != BO_Sub) || 865 (!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType())) 866 return false; 867 868 std::optional<PrimType> LT = classify(LHS); 869 std::optional<PrimType> RT = classify(RHS); 870 871 if (!LT || !RT) 872 return false; 873 874 if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) { 875 if (Op != BO_Sub) 876 return false; 877 878 assert(E->getType()->isIntegerType()); 879 if (!visit(RHS) || !visit(LHS)) 880 return false; 881 882 return this->emitSubPtr(classifyPrim(E->getType()), E); 883 } 884 885 PrimType OffsetType; 886 if (LHS->getType()->isIntegerType()) { 887 if (!visit(RHS) || !visit(LHS)) 888 return false; 889 OffsetType = *LT; 890 } else if (RHS->getType()->isIntegerType()) { 891 if (!visit(LHS) || !visit(RHS)) 892 return false; 893 OffsetType = *RT; 894 } else { 895 return false; 896 } 897 898 if (Op == BO_Add) 899 return this->emitAddOffset(OffsetType, E); 900 else if (Op == BO_Sub) 901 return this->emitSubOffset(OffsetType, E); 902 903 return false; 904 } 905 906 template <class Emitter> 907 bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) { 908 assert(E->isLogicalOp()); 909 BinaryOperatorKind Op = E->getOpcode(); 910 const Expr *LHS = E->getLHS(); 911 const Expr *RHS = E->getRHS(); 912 std::optional<PrimType> T = classify(E->getType()); 913 914 if (Op == BO_LOr) { 915 // Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE. 916 LabelTy LabelTrue = this->getLabel(); 917 LabelTy LabelEnd = this->getLabel(); 918 919 if (!this->visitBool(LHS)) 920 return false; 921 if (!this->jumpTrue(LabelTrue)) 922 return false; 923 924 if (!this->visitBool(RHS)) 925 return false; 926 if (!this->jump(LabelEnd)) 927 return false; 928 929 this->emitLabel(LabelTrue); 930 this->emitConstBool(true, E); 931 this->fallthrough(LabelEnd); 932 this->emitLabel(LabelEnd); 933 934 } else { 935 assert(Op == BO_LAnd); 936 // Logical AND. 937 // Visit LHS. Only visit RHS if LHS was TRUE. 938 LabelTy LabelFalse = this->getLabel(); 939 LabelTy LabelEnd = this->getLabel(); 940 941 if (!this->visitBool(LHS)) 942 return false; 943 if (!this->jumpFalse(LabelFalse)) 944 return false; 945 946 if (!this->visitBool(RHS)) 947 return false; 948 if (!this->jump(LabelEnd)) 949 return false; 950 951 this->emitLabel(LabelFalse); 952 this->emitConstBool(false, E); 953 this->fallthrough(LabelEnd); 954 this->emitLabel(LabelEnd); 955 } 956 957 if (DiscardResult) 958 return this->emitPopBool(E); 959 960 // For C, cast back to integer type. 961 assert(T); 962 if (T != PT_Bool) 963 return this->emitCast(PT_Bool, *T, E); 964 return true; 965 } 966 967 template <class Emitter> 968 bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) { 969 // Prepare storage for result. 970 if (!Initializing) { 971 std::optional<unsigned> LocalIndex = allocateLocal(E); 972 if (!LocalIndex) 973 return false; 974 if (!this->emitGetPtrLocal(*LocalIndex, E)) 975 return false; 976 } 977 978 // Both LHS and RHS might _not_ be of complex type, but one of them 979 // needs to be. 980 const Expr *LHS = E->getLHS(); 981 const Expr *RHS = E->getRHS(); 982 983 PrimType ResultElemT = this->classifyComplexElementType(E->getType()); 984 unsigned ResultOffset = ~0u; 985 if (!DiscardResult) 986 ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false); 987 988 // Save result pointer in ResultOffset 989 if (!this->DiscardResult) { 990 if (!this->emitDupPtr(E)) 991 return false; 992 if (!this->emitSetLocal(PT_Ptr, ResultOffset, E)) 993 return false; 994 } 995 QualType LHSType = LHS->getType(); 996 if (const auto *AT = LHSType->getAs<AtomicType>()) 997 LHSType = AT->getValueType(); 998 QualType RHSType = RHS->getType(); 999 if (const auto *AT = RHSType->getAs<AtomicType>()) 1000 RHSType = AT->getValueType(); 1001 1002 bool LHSIsComplex = LHSType->isAnyComplexType(); 1003 unsigned LHSOffset; 1004 bool RHSIsComplex = RHSType->isAnyComplexType(); 1005 1006 // For ComplexComplex Mul, we have special ops to make their implementation 1007 // easier. 1008 BinaryOperatorKind Op = E->getOpcode(); 1009 if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) { 1010 assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) == 1011 classifyPrim(RHSType->getAs<ComplexType>()->getElementType())); 1012 PrimType ElemT = 1013 classifyPrim(LHSType->getAs<ComplexType>()->getElementType()); 1014 if (!this->visit(LHS)) 1015 return false; 1016 if (!this->visit(RHS)) 1017 return false; 1018 return this->emitMulc(ElemT, E); 1019 } 1020 1021 if (Op == BO_Div && RHSIsComplex) { 1022 QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType(); 1023 PrimType ElemT = classifyPrim(ElemQT); 1024 // If the LHS is not complex, we still need to do the full complex 1025 // division, so just stub create a complex value and stub it out with 1026 // the LHS and a zero. 1027 1028 if (!LHSIsComplex) { 1029 // This is using the RHS type for the fake-complex LHS. 1030 if (auto LHSO = allocateLocal(RHS)) 1031 LHSOffset = *LHSO; 1032 else 1033 return false; 1034 1035 if (!this->emitGetPtrLocal(LHSOffset, E)) 1036 return false; 1037 1038 if (!this->visit(LHS)) 1039 return false; 1040 // real is LHS 1041 if (!this->emitInitElem(ElemT, 0, E)) 1042 return false; 1043 // imag is zero 1044 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1045 return false; 1046 if (!this->emitInitElem(ElemT, 1, E)) 1047 return false; 1048 } else { 1049 if (!this->visit(LHS)) 1050 return false; 1051 } 1052 1053 if (!this->visit(RHS)) 1054 return false; 1055 return this->emitDivc(ElemT, E); 1056 } 1057 1058 // Evaluate LHS and save value to LHSOffset. 1059 if (LHSType->isAnyComplexType()) { 1060 LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false); 1061 if (!this->visit(LHS)) 1062 return false; 1063 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 1064 return false; 1065 } else { 1066 PrimType LHST = classifyPrim(LHSType); 1067 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 1068 if (!this->visit(LHS)) 1069 return false; 1070 if (!this->emitSetLocal(LHST, LHSOffset, E)) 1071 return false; 1072 } 1073 1074 // Same with RHS. 1075 unsigned RHSOffset; 1076 if (RHSType->isAnyComplexType()) { 1077 RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false); 1078 if (!this->visit(RHS)) 1079 return false; 1080 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 1081 return false; 1082 } else { 1083 PrimType RHST = classifyPrim(RHSType); 1084 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 1085 if (!this->visit(RHS)) 1086 return false; 1087 if (!this->emitSetLocal(RHST, RHSOffset, E)) 1088 return false; 1089 } 1090 1091 // For both LHS and RHS, either load the value from the complex pointer, or 1092 // directly from the local variable. For index 1 (i.e. the imaginary part), 1093 // just load 0 and do the operation anyway. 1094 auto loadComplexValue = [this](bool IsComplex, bool LoadZero, 1095 unsigned ElemIndex, unsigned Offset, 1096 const Expr *E) -> bool { 1097 if (IsComplex) { 1098 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 1099 return false; 1100 return this->emitArrayElemPop(classifyComplexElementType(E->getType()), 1101 ElemIndex, E); 1102 } 1103 if (ElemIndex == 0 || !LoadZero) 1104 return this->emitGetLocal(classifyPrim(E->getType()), Offset, E); 1105 return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(), 1106 E); 1107 }; 1108 1109 // Now we can get pointers to the LHS and RHS from the offsets above. 1110 for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) { 1111 // Result pointer for the store later. 1112 if (!this->DiscardResult) { 1113 if (!this->emitGetLocal(PT_Ptr, ResultOffset, E)) 1114 return false; 1115 } 1116 1117 // The actual operation. 1118 switch (Op) { 1119 case BO_Add: 1120 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1121 return false; 1122 1123 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1124 return false; 1125 if (ResultElemT == PT_Float) { 1126 if (!this->emitAddf(getRoundingMode(E), E)) 1127 return false; 1128 } else { 1129 if (!this->emitAdd(ResultElemT, E)) 1130 return false; 1131 } 1132 break; 1133 case BO_Sub: 1134 if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS)) 1135 return false; 1136 1137 if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS)) 1138 return false; 1139 if (ResultElemT == PT_Float) { 1140 if (!this->emitSubf(getRoundingMode(E), E)) 1141 return false; 1142 } else { 1143 if (!this->emitSub(ResultElemT, E)) 1144 return false; 1145 } 1146 break; 1147 case BO_Mul: 1148 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1149 return false; 1150 1151 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1152 return false; 1153 1154 if (ResultElemT == PT_Float) { 1155 if (!this->emitMulf(getRoundingMode(E), E)) 1156 return false; 1157 } else { 1158 if (!this->emitMul(ResultElemT, E)) 1159 return false; 1160 } 1161 break; 1162 case BO_Div: 1163 assert(!RHSIsComplex); 1164 if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS)) 1165 return false; 1166 1167 if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS)) 1168 return false; 1169 1170 if (ResultElemT == PT_Float) { 1171 if (!this->emitDivf(getRoundingMode(E), E)) 1172 return false; 1173 } else { 1174 if (!this->emitDiv(ResultElemT, E)) 1175 return false; 1176 } 1177 break; 1178 1179 default: 1180 return false; 1181 } 1182 1183 if (!this->DiscardResult) { 1184 // Initialize array element with the value we just computed. 1185 if (!this->emitInitElemPop(ResultElemT, ElemIndex, E)) 1186 return false; 1187 } else { 1188 if (!this->emitPop(ResultElemT, E)) 1189 return false; 1190 } 1191 } 1192 return true; 1193 } 1194 1195 template <class Emitter> 1196 bool Compiler<Emitter>::VisitImplicitValueInitExpr( 1197 const ImplicitValueInitExpr *E) { 1198 QualType QT = E->getType(); 1199 1200 if (std::optional<PrimType> T = classify(QT)) 1201 return this->visitZeroInitializer(*T, QT, E); 1202 1203 if (QT->isRecordType()) { 1204 const RecordDecl *RD = QT->getAsRecordDecl(); 1205 assert(RD); 1206 if (RD->isInvalidDecl()) 1207 return false; 1208 if (RD->isUnion()) { 1209 // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the 1210 // object's first non-static named data member is zero-initialized 1211 // FIXME 1212 return false; 1213 } 1214 1215 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1216 CXXRD && CXXRD->getNumVBases() > 0) { 1217 // TODO: Diagnose. 1218 return false; 1219 } 1220 1221 const Record *R = getRecord(QT); 1222 if (!R) 1223 return false; 1224 1225 assert(Initializing); 1226 return this->visitZeroRecordInitializer(R, E); 1227 } 1228 1229 if (QT->isIncompleteArrayType()) 1230 return true; 1231 1232 if (QT->isArrayType()) { 1233 const ArrayType *AT = QT->getAsArrayTypeUnsafe(); 1234 assert(AT); 1235 const auto *CAT = cast<ConstantArrayType>(AT); 1236 size_t NumElems = CAT->getZExtSize(); 1237 PrimType ElemT = classifyPrim(CAT->getElementType()); 1238 1239 for (size_t I = 0; I != NumElems; ++I) { 1240 if (!this->visitZeroInitializer(ElemT, CAT->getElementType(), E)) 1241 return false; 1242 if (!this->emitInitElem(ElemT, I, E)) 1243 return false; 1244 } 1245 1246 return true; 1247 } 1248 1249 if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) { 1250 assert(Initializing); 1251 QualType ElemQT = ComplexTy->getElementType(); 1252 PrimType ElemT = classifyPrim(ElemQT); 1253 for (unsigned I = 0; I < 2; ++I) { 1254 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1255 return false; 1256 if (!this->emitInitElem(ElemT, I, E)) 1257 return false; 1258 } 1259 return true; 1260 } 1261 1262 if (const auto *VecT = E->getType()->getAs<VectorType>()) { 1263 unsigned NumVecElements = VecT->getNumElements(); 1264 QualType ElemQT = VecT->getElementType(); 1265 PrimType ElemT = classifyPrim(ElemQT); 1266 1267 for (unsigned I = 0; I < NumVecElements; ++I) { 1268 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1269 return false; 1270 if (!this->emitInitElem(ElemT, I, E)) 1271 return false; 1272 } 1273 return true; 1274 } 1275 1276 return false; 1277 } 1278 1279 template <class Emitter> 1280 bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1281 const Expr *Base = E->getBase(); 1282 const Expr *Index = E->getIdx(); 1283 1284 if (DiscardResult) 1285 return this->discard(Base) && this->discard(Index); 1286 1287 // Take pointer of LHS, add offset from RHS. 1288 // What's left on the stack after this is a pointer. 1289 if (!this->visit(Base)) 1290 return false; 1291 1292 if (!this->visit(Index)) 1293 return false; 1294 1295 PrimType IndexT = classifyPrim(Index->getType()); 1296 return this->emitArrayElemPtrPop(IndexT, E); 1297 } 1298 1299 template <class Emitter> 1300 bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits, 1301 const Expr *ArrayFiller, const Expr *E) { 1302 1303 QualType QT = E->getType(); 1304 1305 if (const auto *AT = QT->getAs<AtomicType>()) 1306 QT = AT->getValueType(); 1307 1308 if (QT->isVoidType()) 1309 return this->emitInvalid(E); 1310 1311 // Handle discarding first. 1312 if (DiscardResult) { 1313 for (const Expr *Init : Inits) { 1314 if (!this->discard(Init)) 1315 return false; 1316 } 1317 return true; 1318 } 1319 1320 // Primitive values. 1321 if (std::optional<PrimType> T = classify(QT)) { 1322 assert(!DiscardResult); 1323 if (Inits.size() == 0) 1324 return this->visitZeroInitializer(*T, QT, E); 1325 assert(Inits.size() == 1); 1326 return this->delegate(Inits[0]); 1327 } 1328 1329 if (QT->isRecordType()) { 1330 const Record *R = getRecord(QT); 1331 1332 if (Inits.size() == 1 && E->getType() == Inits[0]->getType()) 1333 return this->delegate(Inits[0]); 1334 1335 auto initPrimitiveField = [=](const Record::Field *FieldToInit, 1336 const Expr *Init, PrimType T) -> bool { 1337 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1338 if (!this->visit(Init)) 1339 return false; 1340 1341 if (FieldToInit->isBitField()) 1342 return this->emitInitBitField(T, FieldToInit, E); 1343 return this->emitInitField(T, FieldToInit->Offset, E); 1344 }; 1345 1346 auto initCompositeField = [=](const Record::Field *FieldToInit, 1347 const Expr *Init) -> bool { 1348 InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init)); 1349 InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset)); 1350 // Non-primitive case. Get a pointer to the field-to-initialize 1351 // on the stack and recurse into visitInitializer(). 1352 if (!this->emitGetPtrField(FieldToInit->Offset, Init)) 1353 return false; 1354 if (!this->visitInitializer(Init)) 1355 return false; 1356 return this->emitPopPtr(E); 1357 }; 1358 1359 if (R->isUnion()) { 1360 if (Inits.size() == 0) { 1361 // Zero-initialize the first union field. 1362 if (R->getNumFields() == 0) 1363 return this->emitFinishInit(E); 1364 const Record::Field *FieldToInit = R->getField(0u); 1365 QualType FieldType = FieldToInit->Desc->getType(); 1366 if (std::optional<PrimType> T = classify(FieldType)) { 1367 if (!this->visitZeroInitializer(*T, FieldType, E)) 1368 return false; 1369 if (!this->emitInitField(*T, FieldToInit->Offset, E)) 1370 return false; 1371 } 1372 // FIXME: Non-primitive case? 1373 } else { 1374 const Expr *Init = Inits[0]; 1375 const FieldDecl *FToInit = nullptr; 1376 if (const auto *ILE = dyn_cast<InitListExpr>(E)) 1377 FToInit = ILE->getInitializedFieldInUnion(); 1378 else 1379 FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion(); 1380 1381 const Record::Field *FieldToInit = R->getField(FToInit); 1382 if (std::optional<PrimType> T = classify(Init)) { 1383 if (!initPrimitiveField(FieldToInit, Init, *T)) 1384 return false; 1385 } else { 1386 if (!initCompositeField(FieldToInit, Init)) 1387 return false; 1388 } 1389 } 1390 return this->emitFinishInit(E); 1391 } 1392 1393 assert(!R->isUnion()); 1394 unsigned InitIndex = 0; 1395 for (const Expr *Init : Inits) { 1396 // Skip unnamed bitfields. 1397 while (InitIndex < R->getNumFields() && 1398 R->getField(InitIndex)->Decl->isUnnamedBitField()) 1399 ++InitIndex; 1400 1401 if (std::optional<PrimType> T = classify(Init)) { 1402 const Record::Field *FieldToInit = R->getField(InitIndex); 1403 if (!initPrimitiveField(FieldToInit, Init, *T)) 1404 return false; 1405 ++InitIndex; 1406 } else { 1407 // Initializer for a direct base class. 1408 if (const Record::Base *B = R->getBase(Init->getType())) { 1409 if (!this->emitGetPtrBase(B->Offset, Init)) 1410 return false; 1411 1412 if (!this->visitInitializer(Init)) 1413 return false; 1414 1415 if (!this->emitFinishInitPop(E)) 1416 return false; 1417 // Base initializers don't increase InitIndex, since they don't count 1418 // into the Record's fields. 1419 } else { 1420 const Record::Field *FieldToInit = R->getField(InitIndex); 1421 if (!initCompositeField(FieldToInit, Init)) 1422 return false; 1423 ++InitIndex; 1424 } 1425 } 1426 } 1427 return this->emitFinishInit(E); 1428 } 1429 1430 if (QT->isArrayType()) { 1431 if (Inits.size() == 1 && QT == Inits[0]->getType()) 1432 return this->delegate(Inits[0]); 1433 1434 unsigned ElementIndex = 0; 1435 for (const Expr *Init : Inits) { 1436 if (const auto *EmbedS = 1437 dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { 1438 PrimType TargetT = classifyPrim(Init->getType()); 1439 1440 auto Eval = [&](const Expr *Init, unsigned ElemIndex) { 1441 PrimType InitT = classifyPrim(Init->getType()); 1442 if (!this->visit(Init)) 1443 return false; 1444 if (InitT != TargetT) { 1445 if (!this->emitCast(InitT, TargetT, E)) 1446 return false; 1447 } 1448 return this->emitInitElem(TargetT, ElemIndex, Init); 1449 }; 1450 if (!EmbedS->doForEachDataElement(Eval, ElementIndex)) 1451 return false; 1452 } else { 1453 if (!this->visitArrayElemInit(ElementIndex, Init)) 1454 return false; 1455 ++ElementIndex; 1456 } 1457 } 1458 1459 // Expand the filler expression. 1460 // FIXME: This should go away. 1461 if (ArrayFiller) { 1462 const ConstantArrayType *CAT = 1463 Ctx.getASTContext().getAsConstantArrayType(QT); 1464 uint64_t NumElems = CAT->getZExtSize(); 1465 1466 for (; ElementIndex != NumElems; ++ElementIndex) { 1467 if (!this->visitArrayElemInit(ElementIndex, ArrayFiller)) 1468 return false; 1469 } 1470 } 1471 1472 return this->emitFinishInit(E); 1473 } 1474 1475 if (const auto *ComplexTy = QT->getAs<ComplexType>()) { 1476 unsigned NumInits = Inits.size(); 1477 1478 if (NumInits == 1) 1479 return this->delegate(Inits[0]); 1480 1481 QualType ElemQT = ComplexTy->getElementType(); 1482 PrimType ElemT = classifyPrim(ElemQT); 1483 if (NumInits == 0) { 1484 // Zero-initialize both elements. 1485 for (unsigned I = 0; I < 2; ++I) { 1486 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1487 return false; 1488 if (!this->emitInitElem(ElemT, I, E)) 1489 return false; 1490 } 1491 } else if (NumInits == 2) { 1492 unsigned InitIndex = 0; 1493 for (const Expr *Init : Inits) { 1494 if (!this->visit(Init)) 1495 return false; 1496 1497 if (!this->emitInitElem(ElemT, InitIndex, E)) 1498 return false; 1499 ++InitIndex; 1500 } 1501 } 1502 return true; 1503 } 1504 1505 if (const auto *VecT = QT->getAs<VectorType>()) { 1506 unsigned NumVecElements = VecT->getNumElements(); 1507 assert(NumVecElements >= Inits.size()); 1508 1509 QualType ElemQT = VecT->getElementType(); 1510 PrimType ElemT = classifyPrim(ElemQT); 1511 1512 // All initializer elements. 1513 unsigned InitIndex = 0; 1514 for (const Expr *Init : Inits) { 1515 if (!this->visit(Init)) 1516 return false; 1517 1518 // If the initializer is of vector type itself, we have to deconstruct 1519 // that and initialize all the target fields from the initializer fields. 1520 if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) { 1521 if (!this->emitCopyArray(ElemT, 0, InitIndex, 1522 InitVecT->getNumElements(), E)) 1523 return false; 1524 InitIndex += InitVecT->getNumElements(); 1525 } else { 1526 if (!this->emitInitElem(ElemT, InitIndex, E)) 1527 return false; 1528 ++InitIndex; 1529 } 1530 } 1531 1532 assert(InitIndex <= NumVecElements); 1533 1534 // Fill the rest with zeroes. 1535 for (; InitIndex != NumVecElements; ++InitIndex) { 1536 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 1537 return false; 1538 if (!this->emitInitElem(ElemT, InitIndex, E)) 1539 return false; 1540 } 1541 return true; 1542 } 1543 1544 return false; 1545 } 1546 1547 /// Pointer to the array(not the element!) must be on the stack when calling 1548 /// this. 1549 template <class Emitter> 1550 bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex, 1551 const Expr *Init) { 1552 if (std::optional<PrimType> T = classify(Init->getType())) { 1553 // Visit the primitive element like normal. 1554 if (!this->visit(Init)) 1555 return false; 1556 return this->emitInitElem(*T, ElemIndex, Init); 1557 } 1558 1559 // Advance the pointer currently on the stack to the given 1560 // dimension. 1561 if (!this->emitConstUint32(ElemIndex, Init)) 1562 return false; 1563 if (!this->emitArrayElemPtrUint32(Init)) 1564 return false; 1565 if (!this->visitInitializer(Init)) 1566 return false; 1567 return this->emitFinishInitPop(Init); 1568 } 1569 1570 template <class Emitter> 1571 bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) { 1572 return this->visitInitList(E->inits(), E->getArrayFiller(), E); 1573 } 1574 1575 template <class Emitter> 1576 bool Compiler<Emitter>::VisitCXXParenListInitExpr( 1577 const CXXParenListInitExpr *E) { 1578 return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E); 1579 } 1580 1581 template <class Emitter> 1582 bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr( 1583 const SubstNonTypeTemplateParmExpr *E) { 1584 return this->delegate(E->getReplacement()); 1585 } 1586 1587 template <class Emitter> 1588 bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) { 1589 std::optional<PrimType> T = classify(E->getType()); 1590 if (T && E->hasAPValueResult()) { 1591 // Try to emit the APValue directly, without visiting the subexpr. 1592 // This will only fail if we can't emit the APValue, so won't emit any 1593 // diagnostics or any double values. 1594 if (DiscardResult) 1595 return true; 1596 1597 if (this->visitAPValue(E->getAPValueResult(), *T, E)) 1598 return true; 1599 } 1600 return this->delegate(E->getSubExpr()); 1601 } 1602 1603 template <class Emitter> 1604 bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) { 1605 auto It = E->begin(); 1606 return this->visit(*It); 1607 } 1608 1609 static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx, 1610 UnaryExprOrTypeTrait Kind) { 1611 bool AlignOfReturnsPreferred = 1612 ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; 1613 1614 // C++ [expr.alignof]p3: 1615 // When alignof is applied to a reference type, the result is the 1616 // alignment of the referenced type. 1617 if (const auto *Ref = T->getAs<ReferenceType>()) 1618 T = Ref->getPointeeType(); 1619 1620 if (T.getQualifiers().hasUnaligned()) 1621 return CharUnits::One(); 1622 1623 // __alignof is defined to return the preferred alignment. 1624 // Before 8, clang returned the preferred alignment for alignof and 1625 // _Alignof as well. 1626 if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) 1627 return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T)); 1628 1629 return ASTCtx.getTypeAlignInChars(T); 1630 } 1631 1632 template <class Emitter> 1633 bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr( 1634 const UnaryExprOrTypeTraitExpr *E) { 1635 UnaryExprOrTypeTrait Kind = E->getKind(); 1636 const ASTContext &ASTCtx = Ctx.getASTContext(); 1637 1638 if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { 1639 QualType ArgType = E->getTypeOfArgument(); 1640 1641 // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, 1642 // the result is the size of the referenced type." 1643 if (const auto *Ref = ArgType->getAs<ReferenceType>()) 1644 ArgType = Ref->getPointeeType(); 1645 1646 CharUnits Size; 1647 if (ArgType->isVoidType() || ArgType->isFunctionType()) 1648 Size = CharUnits::One(); 1649 else { 1650 if (ArgType->isDependentType() || !ArgType->isConstantSizeType()) 1651 return false; 1652 1653 if (Kind == UETT_SizeOf) 1654 Size = ASTCtx.getTypeSizeInChars(ArgType); 1655 else 1656 Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width; 1657 } 1658 1659 if (DiscardResult) 1660 return true; 1661 1662 return this->emitConst(Size.getQuantity(), E); 1663 } 1664 1665 if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) { 1666 CharUnits Size; 1667 1668 if (E->isArgumentType()) { 1669 QualType ArgType = E->getTypeOfArgument(); 1670 1671 Size = AlignOfType(ArgType, ASTCtx, Kind); 1672 } else { 1673 // Argument is an expression, not a type. 1674 const Expr *Arg = E->getArgumentExpr()->IgnoreParens(); 1675 1676 // The kinds of expressions that we have special-case logic here for 1677 // should be kept up to date with the special checks for those 1678 // expressions in Sema. 1679 1680 // alignof decl is always accepted, even if it doesn't make sense: we 1681 // default to 1 in those cases. 1682 if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg)) 1683 Size = ASTCtx.getDeclAlign(DRE->getDecl(), 1684 /*RefAsPointee*/ true); 1685 else if (const auto *ME = dyn_cast<MemberExpr>(Arg)) 1686 Size = ASTCtx.getDeclAlign(ME->getMemberDecl(), 1687 /*RefAsPointee*/ true); 1688 else 1689 Size = AlignOfType(Arg->getType(), ASTCtx, Kind); 1690 } 1691 1692 if (DiscardResult) 1693 return true; 1694 1695 return this->emitConst(Size.getQuantity(), E); 1696 } 1697 1698 if (Kind == UETT_VectorElements) { 1699 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) 1700 return this->emitConst(VT->getNumElements(), E); 1701 assert(E->getTypeOfArgument()->isSizelessVectorType()); 1702 return this->emitSizelessVectorElementSize(E); 1703 } 1704 1705 if (Kind == UETT_VecStep) { 1706 if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) { 1707 unsigned N = VT->getNumElements(); 1708 1709 // The vec_step built-in functions that take a 3-component 1710 // vector return 4. (OpenCL 1.1 spec 6.11.12) 1711 if (N == 3) 1712 N = 4; 1713 1714 return this->emitConst(N, E); 1715 } 1716 return this->emitConst(1, E); 1717 } 1718 1719 return false; 1720 } 1721 1722 template <class Emitter> 1723 bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) { 1724 // 'Base.Member' 1725 const Expr *Base = E->getBase(); 1726 const ValueDecl *Member = E->getMemberDecl(); 1727 1728 if (DiscardResult) 1729 return this->discard(Base); 1730 1731 // MemberExprs are almost always lvalues, in which case we don't need to 1732 // do the load. But sometimes they aren't. 1733 const auto maybeLoadValue = [&]() -> bool { 1734 if (E->isGLValue()) 1735 return true; 1736 if (std::optional<PrimType> T = classify(E)) 1737 return this->emitLoadPop(*T, E); 1738 return false; 1739 }; 1740 1741 if (const auto *VD = dyn_cast<VarDecl>(Member)) { 1742 // I am almost confident in saying that a var decl must be static 1743 // and therefore registered as a global variable. But this will probably 1744 // turn out to be wrong some time in the future, as always. 1745 if (auto GlobalIndex = P.getGlobal(VD)) 1746 return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue(); 1747 return false; 1748 } 1749 1750 if (!isa<FieldDecl>(Member)) 1751 return this->discard(Base) && this->visitDeclRef(Member, E); 1752 1753 if (Initializing) { 1754 if (!this->delegate(Base)) 1755 return false; 1756 } else { 1757 if (!this->visit(Base)) 1758 return false; 1759 } 1760 1761 // Base above gives us a pointer on the stack. 1762 const auto *FD = cast<FieldDecl>(Member); 1763 const RecordDecl *RD = FD->getParent(); 1764 const Record *R = getRecord(RD); 1765 if (!R) 1766 return false; 1767 const Record::Field *F = R->getField(FD); 1768 // Leave a pointer to the field on the stack. 1769 if (F->Decl->getType()->isReferenceType()) 1770 return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue(); 1771 return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue(); 1772 } 1773 1774 template <class Emitter> 1775 bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { 1776 // ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated 1777 // stand-alone, e.g. via EvaluateAsInt(). 1778 if (!ArrayIndex) 1779 return false; 1780 return this->emitConst(*ArrayIndex, E); 1781 } 1782 1783 template <class Emitter> 1784 bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { 1785 assert(Initializing); 1786 assert(!DiscardResult); 1787 1788 // We visit the common opaque expression here once so we have its value 1789 // cached. 1790 if (!this->discard(E->getCommonExpr())) 1791 return false; 1792 1793 // TODO: This compiles to quite a lot of bytecode if the array is larger. 1794 // Investigate compiling this to a loop. 1795 const Expr *SubExpr = E->getSubExpr(); 1796 size_t Size = E->getArraySize().getZExtValue(); 1797 1798 // So, every iteration, we execute an assignment here 1799 // where the LHS is on the stack (the target array) 1800 // and the RHS is our SubExpr. 1801 for (size_t I = 0; I != Size; ++I) { 1802 ArrayIndexScope<Emitter> IndexScope(this, I); 1803 BlockScope<Emitter> BS(this); 1804 1805 if (!this->visitArrayElemInit(I, SubExpr)) 1806 return false; 1807 if (!BS.destroyLocals()) 1808 return false; 1809 } 1810 return true; 1811 } 1812 1813 template <class Emitter> 1814 bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) { 1815 const Expr *SourceExpr = E->getSourceExpr(); 1816 if (!SourceExpr) 1817 return false; 1818 1819 if (Initializing) 1820 return this->visitInitializer(SourceExpr); 1821 1822 PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr); 1823 if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end()) 1824 return this->emitGetLocal(SubExprT, It->second, E); 1825 1826 if (!this->visit(SourceExpr)) 1827 return false; 1828 1829 // At this point we either have the evaluated source expression or a pointer 1830 // to an object on the stack. We want to create a local variable that stores 1831 // this value. 1832 unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true); 1833 if (!this->emitSetLocal(SubExprT, LocalIndex, E)) 1834 return false; 1835 1836 // Here the local variable is created but the value is removed from the stack, 1837 // so we put it back if the caller needs it. 1838 if (!DiscardResult) { 1839 if (!this->emitGetLocal(SubExprT, LocalIndex, E)) 1840 return false; 1841 } 1842 1843 // This is cleaned up when the local variable is destroyed. 1844 OpaqueExprs.insert({E, LocalIndex}); 1845 1846 return true; 1847 } 1848 1849 template <class Emitter> 1850 bool Compiler<Emitter>::VisitAbstractConditionalOperator( 1851 const AbstractConditionalOperator *E) { 1852 const Expr *Condition = E->getCond(); 1853 const Expr *TrueExpr = E->getTrueExpr(); 1854 const Expr *FalseExpr = E->getFalseExpr(); 1855 1856 LabelTy LabelEnd = this->getLabel(); // Label after the operator. 1857 LabelTy LabelFalse = this->getLabel(); // Label for the false expr. 1858 1859 if (!this->visitBool(Condition)) 1860 return false; 1861 1862 if (!this->jumpFalse(LabelFalse)) 1863 return false; 1864 1865 if (!this->delegate(TrueExpr)) 1866 return false; 1867 if (!this->jump(LabelEnd)) 1868 return false; 1869 1870 this->emitLabel(LabelFalse); 1871 1872 if (!this->delegate(FalseExpr)) 1873 return false; 1874 1875 this->fallthrough(LabelEnd); 1876 this->emitLabel(LabelEnd); 1877 1878 return true; 1879 } 1880 1881 template <class Emitter> 1882 bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) { 1883 if (DiscardResult) 1884 return true; 1885 1886 if (!Initializing) { 1887 unsigned StringIndex = P.createGlobalString(E); 1888 return this->emitGetPtrGlobal(StringIndex, E); 1889 } 1890 1891 // We are initializing an array on the stack. 1892 const ConstantArrayType *CAT = 1893 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 1894 assert(CAT && "a string literal that's not a constant array?"); 1895 1896 // If the initializer string is too long, a diagnostic has already been 1897 // emitted. Read only the array length from the string literal. 1898 unsigned ArraySize = CAT->getZExtSize(); 1899 unsigned N = std::min(ArraySize, E->getLength()); 1900 size_t CharWidth = E->getCharByteWidth(); 1901 1902 for (unsigned I = 0; I != N; ++I) { 1903 uint32_t CodeUnit = E->getCodeUnit(I); 1904 1905 if (CharWidth == 1) { 1906 this->emitConstSint8(CodeUnit, E); 1907 this->emitInitElemSint8(I, E); 1908 } else if (CharWidth == 2) { 1909 this->emitConstUint16(CodeUnit, E); 1910 this->emitInitElemUint16(I, E); 1911 } else if (CharWidth == 4) { 1912 this->emitConstUint32(CodeUnit, E); 1913 this->emitInitElemUint32(I, E); 1914 } else { 1915 llvm_unreachable("unsupported character width"); 1916 } 1917 } 1918 1919 // Fill up the rest of the char array with NUL bytes. 1920 for (unsigned I = N; I != ArraySize; ++I) { 1921 if (CharWidth == 1) { 1922 this->emitConstSint8(0, E); 1923 this->emitInitElemSint8(I, E); 1924 } else if (CharWidth == 2) { 1925 this->emitConstUint16(0, E); 1926 this->emitInitElemUint16(I, E); 1927 } else if (CharWidth == 4) { 1928 this->emitConstUint32(0, E); 1929 this->emitInitElemUint32(I, E); 1930 } else { 1931 llvm_unreachable("unsupported character width"); 1932 } 1933 } 1934 1935 return true; 1936 } 1937 1938 template <class Emitter> 1939 bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) { 1940 return this->delegate(E->getString()); 1941 } 1942 1943 template <class Emitter> 1944 bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { 1945 auto &A = Ctx.getASTContext(); 1946 std::string Str; 1947 A.getObjCEncodingForType(E->getEncodedType(), Str); 1948 StringLiteral *SL = 1949 StringLiteral::Create(A, Str, StringLiteralKind::Ordinary, 1950 /*Pascal=*/false, E->getType(), E->getAtLoc()); 1951 return this->delegate(SL); 1952 } 1953 1954 template <class Emitter> 1955 bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr( 1956 const SYCLUniqueStableNameExpr *E) { 1957 if (DiscardResult) 1958 return true; 1959 1960 assert(!Initializing); 1961 1962 auto &A = Ctx.getASTContext(); 1963 std::string ResultStr = E->ComputeName(A); 1964 1965 QualType CharTy = A.CharTy.withConst(); 1966 APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1); 1967 QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr, 1968 ArraySizeModifier::Normal, 0); 1969 1970 StringLiteral *SL = 1971 StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary, 1972 /*Pascal=*/false, ArrayTy, E->getLocation()); 1973 1974 unsigned StringIndex = P.createGlobalString(SL); 1975 return this->emitGetPtrGlobal(StringIndex, E); 1976 } 1977 1978 template <class Emitter> 1979 bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) { 1980 if (DiscardResult) 1981 return true; 1982 return this->emitConst(E->getValue(), E); 1983 } 1984 1985 template <class Emitter> 1986 bool Compiler<Emitter>::VisitFloatCompoundAssignOperator( 1987 const CompoundAssignOperator *E) { 1988 1989 const Expr *LHS = E->getLHS(); 1990 const Expr *RHS = E->getRHS(); 1991 QualType LHSType = LHS->getType(); 1992 QualType LHSComputationType = E->getComputationLHSType(); 1993 QualType ResultType = E->getComputationResultType(); 1994 std::optional<PrimType> LT = classify(LHSComputationType); 1995 std::optional<PrimType> RT = classify(ResultType); 1996 1997 assert(ResultType->isFloatingType()); 1998 1999 if (!LT || !RT) 2000 return false; 2001 2002 PrimType LHST = classifyPrim(LHSType); 2003 2004 // C++17 onwards require that we evaluate the RHS first. 2005 // Compute RHS and save it in a temporary variable so we can 2006 // load it again later. 2007 if (!visit(RHS)) 2008 return false; 2009 2010 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2011 if (!this->emitSetLocal(*RT, TempOffset, E)) 2012 return false; 2013 2014 // First, visit LHS. 2015 if (!visit(LHS)) 2016 return false; 2017 if (!this->emitLoad(LHST, E)) 2018 return false; 2019 2020 // If necessary, convert LHS to its computation type. 2021 if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType), 2022 LHSComputationType, E)) 2023 return false; 2024 2025 // Now load RHS. 2026 if (!this->emitGetLocal(*RT, TempOffset, E)) 2027 return false; 2028 2029 llvm::RoundingMode RM = getRoundingMode(E); 2030 switch (E->getOpcode()) { 2031 case BO_AddAssign: 2032 if (!this->emitAddf(RM, E)) 2033 return false; 2034 break; 2035 case BO_SubAssign: 2036 if (!this->emitSubf(RM, E)) 2037 return false; 2038 break; 2039 case BO_MulAssign: 2040 if (!this->emitMulf(RM, E)) 2041 return false; 2042 break; 2043 case BO_DivAssign: 2044 if (!this->emitDivf(RM, E)) 2045 return false; 2046 break; 2047 default: 2048 return false; 2049 } 2050 2051 if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E)) 2052 return false; 2053 2054 if (DiscardResult) 2055 return this->emitStorePop(LHST, E); 2056 return this->emitStore(LHST, E); 2057 } 2058 2059 template <class Emitter> 2060 bool Compiler<Emitter>::VisitPointerCompoundAssignOperator( 2061 const CompoundAssignOperator *E) { 2062 BinaryOperatorKind Op = E->getOpcode(); 2063 const Expr *LHS = E->getLHS(); 2064 const Expr *RHS = E->getRHS(); 2065 std::optional<PrimType> LT = classify(LHS->getType()); 2066 std::optional<PrimType> RT = classify(RHS->getType()); 2067 2068 if (Op != BO_AddAssign && Op != BO_SubAssign) 2069 return false; 2070 2071 if (!LT || !RT) 2072 return false; 2073 2074 if (!visit(LHS)) 2075 return false; 2076 2077 if (!this->emitLoad(*LT, LHS)) 2078 return false; 2079 2080 if (!visit(RHS)) 2081 return false; 2082 2083 if (Op == BO_AddAssign) { 2084 if (!this->emitAddOffset(*RT, E)) 2085 return false; 2086 } else { 2087 if (!this->emitSubOffset(*RT, E)) 2088 return false; 2089 } 2090 2091 if (DiscardResult) 2092 return this->emitStorePopPtr(E); 2093 return this->emitStorePtr(E); 2094 } 2095 2096 template <class Emitter> 2097 bool Compiler<Emitter>::VisitCompoundAssignOperator( 2098 const CompoundAssignOperator *E) { 2099 2100 const Expr *LHS = E->getLHS(); 2101 const Expr *RHS = E->getRHS(); 2102 std::optional<PrimType> LHSComputationT = 2103 classify(E->getComputationLHSType()); 2104 std::optional<PrimType> LT = classify(LHS->getType()); 2105 std::optional<PrimType> RT = classify(RHS->getType()); 2106 std::optional<PrimType> ResultT = classify(E->getType()); 2107 2108 if (!Ctx.getLangOpts().CPlusPlus14) 2109 return this->visit(RHS) && this->visit(LHS) && this->emitError(E); 2110 2111 if (!LT || !RT || !ResultT || !LHSComputationT) 2112 return false; 2113 2114 // Handle floating point operations separately here, since they 2115 // require special care. 2116 2117 if (ResultT == PT_Float || RT == PT_Float) 2118 return VisitFloatCompoundAssignOperator(E); 2119 2120 if (E->getType()->isPointerType()) 2121 return VisitPointerCompoundAssignOperator(E); 2122 2123 assert(!E->getType()->isPointerType() && "Handled above"); 2124 assert(!E->getType()->isFloatingType() && "Handled above"); 2125 2126 // C++17 onwards require that we evaluate the RHS first. 2127 // Compute RHS and save it in a temporary variable so we can 2128 // load it again later. 2129 // FIXME: Compound assignments are unsequenced in C, so we might 2130 // have to figure out how to reject them. 2131 if (!visit(RHS)) 2132 return false; 2133 2134 unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true); 2135 2136 if (!this->emitSetLocal(*RT, TempOffset, E)) 2137 return false; 2138 2139 // Get LHS pointer, load its value and cast it to the 2140 // computation type if necessary. 2141 if (!visit(LHS)) 2142 return false; 2143 if (!this->emitLoad(*LT, E)) 2144 return false; 2145 if (LT != LHSComputationT) { 2146 if (!this->emitCast(*LT, *LHSComputationT, E)) 2147 return false; 2148 } 2149 2150 // Get the RHS value on the stack. 2151 if (!this->emitGetLocal(*RT, TempOffset, E)) 2152 return false; 2153 2154 // Perform operation. 2155 switch (E->getOpcode()) { 2156 case BO_AddAssign: 2157 if (!this->emitAdd(*LHSComputationT, E)) 2158 return false; 2159 break; 2160 case BO_SubAssign: 2161 if (!this->emitSub(*LHSComputationT, E)) 2162 return false; 2163 break; 2164 case BO_MulAssign: 2165 if (!this->emitMul(*LHSComputationT, E)) 2166 return false; 2167 break; 2168 case BO_DivAssign: 2169 if (!this->emitDiv(*LHSComputationT, E)) 2170 return false; 2171 break; 2172 case BO_RemAssign: 2173 if (!this->emitRem(*LHSComputationT, E)) 2174 return false; 2175 break; 2176 case BO_ShlAssign: 2177 if (!this->emitShl(*LHSComputationT, *RT, E)) 2178 return false; 2179 break; 2180 case BO_ShrAssign: 2181 if (!this->emitShr(*LHSComputationT, *RT, E)) 2182 return false; 2183 break; 2184 case BO_AndAssign: 2185 if (!this->emitBitAnd(*LHSComputationT, E)) 2186 return false; 2187 break; 2188 case BO_XorAssign: 2189 if (!this->emitBitXor(*LHSComputationT, E)) 2190 return false; 2191 break; 2192 case BO_OrAssign: 2193 if (!this->emitBitOr(*LHSComputationT, E)) 2194 return false; 2195 break; 2196 default: 2197 llvm_unreachable("Unimplemented compound assign operator"); 2198 } 2199 2200 // And now cast from LHSComputationT to ResultT. 2201 if (ResultT != LHSComputationT) { 2202 if (!this->emitCast(*LHSComputationT, *ResultT, E)) 2203 return false; 2204 } 2205 2206 // And store the result in LHS. 2207 if (DiscardResult) { 2208 if (LHS->refersToBitField()) 2209 return this->emitStoreBitFieldPop(*ResultT, E); 2210 return this->emitStorePop(*ResultT, E); 2211 } 2212 if (LHS->refersToBitField()) 2213 return this->emitStoreBitField(*ResultT, E); 2214 return this->emitStore(*ResultT, E); 2215 } 2216 2217 template <class Emitter> 2218 bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) { 2219 LocalScope<Emitter> ES(this); 2220 const Expr *SubExpr = E->getSubExpr(); 2221 2222 assert(E->getNumObjects() == 0 && "TODO: Implement cleanups"); 2223 2224 return this->delegate(SubExpr) && ES.destroyLocals(); 2225 } 2226 2227 template <class Emitter> 2228 bool Compiler<Emitter>::VisitMaterializeTemporaryExpr( 2229 const MaterializeTemporaryExpr *E) { 2230 const Expr *SubExpr = E->getSubExpr(); 2231 2232 if (Initializing) { 2233 // We already have a value, just initialize that. 2234 return this->delegate(SubExpr); 2235 } 2236 // If we don't end up using the materialized temporary anyway, don't 2237 // bother creating it. 2238 if (DiscardResult) 2239 return this->discard(SubExpr); 2240 2241 // When we're initializing a global variable *or* the storage duration of 2242 // the temporary is explicitly static, create a global variable. 2243 std::optional<PrimType> SubExprT = classify(SubExpr); 2244 bool IsStatic = E->getStorageDuration() == SD_Static; 2245 if (GlobalDecl || IsStatic) { 2246 std::optional<unsigned> GlobalIndex = P.createGlobal(E); 2247 if (!GlobalIndex) 2248 return false; 2249 2250 const LifetimeExtendedTemporaryDecl *TempDecl = 2251 E->getLifetimeExtendedTemporaryDecl(); 2252 if (IsStatic) 2253 assert(TempDecl); 2254 2255 if (SubExprT) { 2256 if (!this->visit(SubExpr)) 2257 return false; 2258 if (IsStatic) { 2259 if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E)) 2260 return false; 2261 } else { 2262 if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E)) 2263 return false; 2264 } 2265 return this->emitGetPtrGlobal(*GlobalIndex, E); 2266 } 2267 2268 // Non-primitive values. 2269 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2270 return false; 2271 if (!this->visitInitializer(SubExpr)) 2272 return false; 2273 if (IsStatic) 2274 return this->emitInitGlobalTempComp(TempDecl, E); 2275 return true; 2276 } 2277 2278 // For everyhing else, use local variables. 2279 if (SubExprT) { 2280 unsigned LocalIndex = allocateLocalPrimitive( 2281 SubExpr, *SubExprT, /*IsConst=*/true, /*IsExtended=*/true); 2282 if (!this->visit(SubExpr)) 2283 return false; 2284 if (!this->emitSetLocal(*SubExprT, LocalIndex, E)) 2285 return false; 2286 return this->emitGetPtrLocal(LocalIndex, E); 2287 } else { 2288 const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments(); 2289 if (std::optional<unsigned> LocalIndex = 2290 allocateLocal(Inner, E->getExtendingDecl())) { 2291 InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex)); 2292 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2293 return false; 2294 return this->visitInitializer(SubExpr); 2295 } 2296 } 2297 return false; 2298 } 2299 2300 template <class Emitter> 2301 bool Compiler<Emitter>::VisitCXXBindTemporaryExpr( 2302 const CXXBindTemporaryExpr *E) { 2303 return this->delegate(E->getSubExpr()); 2304 } 2305 2306 template <class Emitter> 2307 bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { 2308 const Expr *Init = E->getInitializer(); 2309 if (Initializing) { 2310 // We already have a value, just initialize that. 2311 return this->visitInitializer(Init) && this->emitFinishInit(E); 2312 } 2313 2314 std::optional<PrimType> T = classify(E->getType()); 2315 if (E->isFileScope()) { 2316 // Avoid creating a variable if this is a primitive RValue anyway. 2317 if (T && !E->isLValue()) 2318 return this->delegate(Init); 2319 2320 if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) { 2321 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2322 return false; 2323 2324 if (T) { 2325 if (!this->visit(Init)) 2326 return false; 2327 return this->emitInitGlobal(*T, *GlobalIndex, E); 2328 } 2329 2330 return this->visitInitializer(Init) && this->emitFinishInit(E); 2331 } 2332 2333 return false; 2334 } 2335 2336 // Otherwise, use a local variable. 2337 if (T && !E->isLValue()) { 2338 // For primitive types, we just visit the initializer. 2339 return this->delegate(Init); 2340 } else { 2341 unsigned LocalIndex; 2342 2343 if (T) 2344 LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false); 2345 else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init)) 2346 LocalIndex = *MaybeIndex; 2347 else 2348 return false; 2349 2350 if (!this->emitGetPtrLocal(LocalIndex, E)) 2351 return false; 2352 2353 if (T) { 2354 if (!this->visit(Init)) { 2355 return false; 2356 } 2357 return this->emitInit(*T, E); 2358 } else { 2359 if (!this->visitInitializer(Init) || !this->emitFinishInit(E)) 2360 return false; 2361 } 2362 2363 if (DiscardResult) 2364 return this->emitPopPtr(E); 2365 return true; 2366 } 2367 2368 return false; 2369 } 2370 2371 template <class Emitter> 2372 bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) { 2373 if (DiscardResult) 2374 return true; 2375 if (E->getType()->isBooleanType()) 2376 return this->emitConstBool(E->getValue(), E); 2377 return this->emitConst(E->getValue(), E); 2378 } 2379 2380 template <class Emitter> 2381 bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 2382 if (DiscardResult) 2383 return true; 2384 return this->emitConst(E->getValue(), E); 2385 } 2386 2387 template <class Emitter> 2388 bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) { 2389 if (DiscardResult) 2390 return true; 2391 2392 assert(Initializing); 2393 const Record *R = P.getOrCreateRecord(E->getLambdaClass()); 2394 2395 auto *CaptureInitIt = E->capture_init_begin(); 2396 // Initialize all fields (which represent lambda captures) of the 2397 // record with their initializers. 2398 for (const Record::Field &F : R->fields()) { 2399 const Expr *Init = *CaptureInitIt; 2400 ++CaptureInitIt; 2401 2402 if (!Init) 2403 continue; 2404 2405 if (std::optional<PrimType> T = classify(Init)) { 2406 if (!this->visit(Init)) 2407 return false; 2408 2409 if (!this->emitInitField(*T, F.Offset, E)) 2410 return false; 2411 } else { 2412 if (!this->emitGetPtrField(F.Offset, E)) 2413 return false; 2414 2415 if (!this->visitInitializer(Init)) 2416 return false; 2417 2418 if (!this->emitPopPtr(E)) 2419 return false; 2420 } 2421 } 2422 2423 return true; 2424 } 2425 2426 template <class Emitter> 2427 bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) { 2428 if (DiscardResult) 2429 return true; 2430 2431 return this->delegate(E->getFunctionName()); 2432 } 2433 2434 template <class Emitter> 2435 bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) { 2436 if (E->getSubExpr() && !this->discard(E->getSubExpr())) 2437 return false; 2438 2439 return this->emitInvalid(E); 2440 } 2441 2442 template <class Emitter> 2443 bool Compiler<Emitter>::VisitCXXReinterpretCastExpr( 2444 const CXXReinterpretCastExpr *E) { 2445 if (!this->discard(E->getSubExpr())) 2446 return false; 2447 2448 return this->emitInvalidCast(CastKind::Reinterpret, E); 2449 } 2450 2451 template <class Emitter> 2452 bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 2453 assert(E->getType()->isBooleanType()); 2454 2455 if (DiscardResult) 2456 return true; 2457 return this->emitConstBool(E->getValue(), E); 2458 } 2459 2460 template <class Emitter> 2461 bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) { 2462 QualType T = E->getType(); 2463 assert(!classify(T)); 2464 2465 if (T->isRecordType()) { 2466 const CXXConstructorDecl *Ctor = E->getConstructor(); 2467 2468 // Trivial copy/move constructor. Avoid copy. 2469 if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() && 2470 Ctor->isTrivial() && 2471 E->getArg(0)->isTemporaryObject(Ctx.getASTContext(), 2472 T->getAsCXXRecordDecl())) 2473 return this->visitInitializer(E->getArg(0)); 2474 2475 // If we're discarding a construct expression, we still need 2476 // to allocate a variable and call the constructor and destructor. 2477 if (DiscardResult) { 2478 if (Ctor->isTrivial()) 2479 return true; 2480 assert(!Initializing); 2481 std::optional<unsigned> LocalIndex = allocateLocal(E); 2482 2483 if (!LocalIndex) 2484 return false; 2485 2486 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2487 return false; 2488 } 2489 2490 // Zero initialization. 2491 if (E->requiresZeroInitialization()) { 2492 const Record *R = getRecord(E->getType()); 2493 2494 if (!this->visitZeroRecordInitializer(R, E)) 2495 return false; 2496 2497 // If the constructor is trivial anyway, we're done. 2498 if (Ctor->isTrivial()) 2499 return true; 2500 } 2501 2502 const Function *Func = getFunction(Ctor); 2503 2504 if (!Func) 2505 return false; 2506 2507 assert(Func->hasThisPointer()); 2508 assert(!Func->hasRVO()); 2509 2510 // The This pointer is already on the stack because this is an initializer, 2511 // but we need to dup() so the call() below has its own copy. 2512 if (!this->emitDupPtr(E)) 2513 return false; 2514 2515 // Constructor arguments. 2516 for (const auto *Arg : E->arguments()) { 2517 if (!this->visit(Arg)) 2518 return false; 2519 } 2520 2521 if (Func->isVariadic()) { 2522 uint32_t VarArgSize = 0; 2523 unsigned NumParams = Func->getNumWrittenParams(); 2524 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) { 2525 VarArgSize += 2526 align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr))); 2527 } 2528 if (!this->emitCallVar(Func, VarArgSize, E)) 2529 return false; 2530 } else { 2531 if (!this->emitCall(Func, 0, E)) 2532 return false; 2533 } 2534 2535 // Immediately call the destructor if we have to. 2536 if (DiscardResult) { 2537 if (!this->emitRecordDestruction(getRecord(E->getType()))) 2538 return false; 2539 if (!this->emitPopPtr(E)) 2540 return false; 2541 } 2542 return true; 2543 } 2544 2545 if (T->isArrayType()) { 2546 const ConstantArrayType *CAT = 2547 Ctx.getASTContext().getAsConstantArrayType(E->getType()); 2548 if (!CAT) 2549 return false; 2550 2551 size_t NumElems = CAT->getZExtSize(); 2552 const Function *Func = getFunction(E->getConstructor()); 2553 if (!Func || !Func->isConstexpr()) 2554 return false; 2555 2556 // FIXME(perf): We're calling the constructor once per array element here, 2557 // in the old intepreter we had a special-case for trivial constructors. 2558 for (size_t I = 0; I != NumElems; ++I) { 2559 if (!this->emitConstUint64(I, E)) 2560 return false; 2561 if (!this->emitArrayElemPtrUint64(E)) 2562 return false; 2563 2564 // Constructor arguments. 2565 for (const auto *Arg : E->arguments()) { 2566 if (!this->visit(Arg)) 2567 return false; 2568 } 2569 2570 if (!this->emitCall(Func, 0, E)) 2571 return false; 2572 } 2573 return true; 2574 } 2575 2576 return false; 2577 } 2578 2579 template <class Emitter> 2580 bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) { 2581 if (DiscardResult) 2582 return true; 2583 2584 const APValue Val = 2585 E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr); 2586 2587 // Things like __builtin_LINE(). 2588 if (E->getType()->isIntegerType()) { 2589 assert(Val.isInt()); 2590 const APSInt &I = Val.getInt(); 2591 return this->emitConst(I, E); 2592 } 2593 // Otherwise, the APValue is an LValue, with only one element. 2594 // Theoretically, we don't need the APValue at all of course. 2595 assert(E->getType()->isPointerType()); 2596 assert(Val.isLValue()); 2597 const APValue::LValueBase &Base = Val.getLValueBase(); 2598 if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>()) 2599 return this->visit(LValueExpr); 2600 2601 // Otherwise, we have a decl (which is the case for 2602 // __builtin_source_location). 2603 assert(Base.is<const ValueDecl *>()); 2604 assert(Val.getLValuePath().size() == 0); 2605 const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>(); 2606 assert(BaseDecl); 2607 2608 auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl); 2609 2610 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD); 2611 if (!GlobalIndex) 2612 return false; 2613 2614 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2615 return false; 2616 2617 const Record *R = getRecord(E->getType()); 2618 const APValue &V = UGCD->getValue(); 2619 for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) { 2620 const Record::Field *F = R->getField(I); 2621 const APValue &FieldValue = V.getStructField(I); 2622 2623 PrimType FieldT = classifyPrim(F->Decl->getType()); 2624 2625 if (!this->visitAPValue(FieldValue, FieldT, E)) 2626 return false; 2627 if (!this->emitInitField(FieldT, F->Offset, E)) 2628 return false; 2629 } 2630 2631 // Leave the pointer to the global on the stack. 2632 return true; 2633 } 2634 2635 template <class Emitter> 2636 bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) { 2637 unsigned N = E->getNumComponents(); 2638 if (N == 0) 2639 return false; 2640 2641 for (unsigned I = 0; I != N; ++I) { 2642 const OffsetOfNode &Node = E->getComponent(I); 2643 if (Node.getKind() == OffsetOfNode::Array) { 2644 const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex()); 2645 PrimType IndexT = classifyPrim(ArrayIndexExpr->getType()); 2646 2647 if (DiscardResult) { 2648 if (!this->discard(ArrayIndexExpr)) 2649 return false; 2650 continue; 2651 } 2652 2653 if (!this->visit(ArrayIndexExpr)) 2654 return false; 2655 // Cast to Sint64. 2656 if (IndexT != PT_Sint64) { 2657 if (!this->emitCast(IndexT, PT_Sint64, E)) 2658 return false; 2659 } 2660 } 2661 } 2662 2663 if (DiscardResult) 2664 return true; 2665 2666 PrimType T = classifyPrim(E->getType()); 2667 return this->emitOffsetOf(T, E, E); 2668 } 2669 2670 template <class Emitter> 2671 bool Compiler<Emitter>::VisitCXXScalarValueInitExpr( 2672 const CXXScalarValueInitExpr *E) { 2673 QualType Ty = E->getType(); 2674 2675 if (DiscardResult || Ty->isVoidType()) 2676 return true; 2677 2678 if (std::optional<PrimType> T = classify(Ty)) 2679 return this->visitZeroInitializer(*T, Ty, E); 2680 2681 if (const auto *CT = Ty->getAs<ComplexType>()) { 2682 if (!Initializing) { 2683 std::optional<unsigned> LocalIndex = allocateLocal(E); 2684 if (!LocalIndex) 2685 return false; 2686 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2687 return false; 2688 } 2689 2690 // Initialize both fields to 0. 2691 QualType ElemQT = CT->getElementType(); 2692 PrimType ElemT = classifyPrim(ElemQT); 2693 2694 for (unsigned I = 0; I != 2; ++I) { 2695 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 2696 return false; 2697 if (!this->emitInitElem(ElemT, I, E)) 2698 return false; 2699 } 2700 return true; 2701 } 2702 2703 if (const auto *VT = Ty->getAs<VectorType>()) { 2704 // FIXME: Code duplication with the _Complex case above. 2705 if (!Initializing) { 2706 std::optional<unsigned> LocalIndex = allocateLocal(E); 2707 if (!LocalIndex) 2708 return false; 2709 if (!this->emitGetPtrLocal(*LocalIndex, E)) 2710 return false; 2711 } 2712 2713 // Initialize all fields to 0. 2714 QualType ElemQT = VT->getElementType(); 2715 PrimType ElemT = classifyPrim(ElemQT); 2716 2717 for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) { 2718 if (!this->visitZeroInitializer(ElemT, ElemQT, E)) 2719 return false; 2720 if (!this->emitInitElem(ElemT, I, E)) 2721 return false; 2722 } 2723 return true; 2724 } 2725 2726 return false; 2727 } 2728 2729 template <class Emitter> 2730 bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { 2731 return this->emitConst(E->getPackLength(), E); 2732 } 2733 2734 template <class Emitter> 2735 bool Compiler<Emitter>::VisitGenericSelectionExpr( 2736 const GenericSelectionExpr *E) { 2737 return this->delegate(E->getResultExpr()); 2738 } 2739 2740 template <class Emitter> 2741 bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) { 2742 return this->delegate(E->getChosenSubExpr()); 2743 } 2744 2745 template <class Emitter> 2746 bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 2747 if (DiscardResult) 2748 return true; 2749 2750 return this->emitConst(E->getValue(), E); 2751 } 2752 2753 template <class Emitter> 2754 bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr( 2755 const CXXInheritedCtorInitExpr *E) { 2756 const CXXConstructorDecl *Ctor = E->getConstructor(); 2757 assert(!Ctor->isTrivial() && 2758 "Trivial CXXInheritedCtorInitExpr, implement. (possible?)"); 2759 const Function *F = this->getFunction(Ctor); 2760 assert(F); 2761 assert(!F->hasRVO()); 2762 assert(F->hasThisPointer()); 2763 2764 if (!this->emitDupPtr(SourceInfo{})) 2765 return false; 2766 2767 // Forward all arguments of the current function (which should be a 2768 // constructor itself) to the inherited ctor. 2769 // This is necessary because the calling code has pushed the pointer 2770 // of the correct base for us already, but the arguments need 2771 // to come after. 2772 unsigned Offset = align(primSize(PT_Ptr)); // instance pointer. 2773 for (const ParmVarDecl *PD : Ctor->parameters()) { 2774 PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr); 2775 2776 if (!this->emitGetParam(PT, Offset, E)) 2777 return false; 2778 Offset += align(primSize(PT)); 2779 } 2780 2781 return this->emitCall(F, 0, E); 2782 } 2783 2784 template <class Emitter> 2785 bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) { 2786 assert(classifyPrim(E->getType()) == PT_Ptr); 2787 const Expr *Init = E->getInitializer(); 2788 QualType ElementType = E->getAllocatedType(); 2789 std::optional<PrimType> ElemT = classify(ElementType); 2790 unsigned PlacementArgs = E->getNumPlacementArgs(); 2791 bool IsNoThrow = false; 2792 2793 // FIXME: Better diagnostic. diag::note_constexpr_new_placement 2794 if (PlacementArgs != 0) { 2795 // The only new-placement list we support is of the form (std::nothrow). 2796 // 2797 // FIXME: There is no restriction on this, but it's not clear that any 2798 // other form makes any sense. We get here for cases such as: 2799 // 2800 // new (std::align_val_t{N}) X(int) 2801 // 2802 // (which should presumably be valid only if N is a multiple of 2803 // alignof(int), and in any case can't be deallocated unless N is 2804 // alignof(X) and X has new-extended alignment). 2805 if (PlacementArgs != 1 || !E->getPlacementArg(0)->getType()->isNothrowT()) 2806 return this->emitInvalid(E); 2807 2808 if (!this->discard(E->getPlacementArg(0))) 2809 return false; 2810 IsNoThrow = true; 2811 } 2812 2813 const Descriptor *Desc; 2814 if (ElemT) { 2815 if (E->isArray()) 2816 Desc = nullptr; // We're not going to use it in this case. 2817 else 2818 Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD, 2819 /*IsConst=*/false, /*IsTemporary=*/false, 2820 /*IsMutable=*/false); 2821 } else { 2822 Desc = P.createDescriptor( 2823 E, ElementType.getTypePtr(), 2824 E->isArray() ? std::nullopt : Descriptor::InlineDescMD, 2825 /*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init); 2826 } 2827 2828 if (E->isArray()) { 2829 std::optional<const Expr *> ArraySizeExpr = E->getArraySize(); 2830 if (!ArraySizeExpr) 2831 return false; 2832 2833 const Expr *Stripped = *ArraySizeExpr; 2834 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); 2835 Stripped = ICE->getSubExpr()) 2836 if (ICE->getCastKind() != CK_NoOp && 2837 ICE->getCastKind() != CK_IntegralCast) 2838 break; 2839 2840 PrimType SizeT = classifyPrim(Stripped->getType()); 2841 2842 if (!this->visit(Stripped)) 2843 return false; 2844 2845 if (ElemT) { 2846 // N primitive elements. 2847 if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E)) 2848 return false; 2849 } else { 2850 // N Composite elements. 2851 if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E)) 2852 return false; 2853 } 2854 2855 if (Init && !this->visitInitializer(Init)) 2856 return false; 2857 2858 } else { 2859 // Allocate just one element. 2860 if (!this->emitAlloc(Desc, E)) 2861 return false; 2862 2863 if (Init) { 2864 if (ElemT) { 2865 if (!this->visit(Init)) 2866 return false; 2867 2868 if (!this->emitInit(*ElemT, E)) 2869 return false; 2870 } else { 2871 // Composite. 2872 if (!this->visitInitializer(Init)) 2873 return false; 2874 } 2875 } 2876 } 2877 2878 if (DiscardResult) 2879 return this->emitPopPtr(E); 2880 2881 return true; 2882 } 2883 2884 template <class Emitter> 2885 bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 2886 const Expr *Arg = E->getArgument(); 2887 2888 // Arg must be an lvalue. 2889 if (!this->visit(Arg)) 2890 return false; 2891 2892 return this->emitFree(E->isArrayForm(), E); 2893 } 2894 2895 template <class Emitter> 2896 bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 2897 assert(Ctx.getLangOpts().CPlusPlus); 2898 return this->emitConstBool(E->getValue(), E); 2899 } 2900 2901 template <class Emitter> 2902 bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { 2903 if (DiscardResult) 2904 return true; 2905 assert(!Initializing); 2906 2907 const MSGuidDecl *GuidDecl = E->getGuidDecl(); 2908 const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl(); 2909 assert(RD); 2910 // If the definiton of the result type is incomplete, just return a dummy. 2911 // If (and when) that is read from, we will fail, but not now. 2912 if (!RD->isCompleteDefinition()) { 2913 if (std::optional<unsigned> I = P.getOrCreateDummy(GuidDecl)) 2914 return this->emitGetPtrGlobal(*I, E); 2915 return false; 2916 } 2917 2918 std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl); 2919 if (!GlobalIndex) 2920 return false; 2921 if (!this->emitGetPtrGlobal(*GlobalIndex, E)) 2922 return false; 2923 2924 assert(this->getRecord(E->getType())); 2925 2926 const APValue &V = GuidDecl->getAsAPValue(); 2927 if (V.getKind() == APValue::None) 2928 return true; 2929 2930 assert(V.isStruct()); 2931 assert(V.getStructNumBases() == 0); 2932 if (!this->visitAPValueInitializer(V, E)) 2933 return false; 2934 2935 return this->emitFinishInit(E); 2936 } 2937 2938 template <class Emitter> 2939 bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) { 2940 assert(classifyPrim(E->getType()) == PT_Bool); 2941 if (DiscardResult) 2942 return true; 2943 return this->emitConstBool(E->isSatisfied(), E); 2944 } 2945 2946 template <class Emitter> 2947 bool Compiler<Emitter>::VisitConceptSpecializationExpr( 2948 const ConceptSpecializationExpr *E) { 2949 assert(classifyPrim(E->getType()) == PT_Bool); 2950 if (DiscardResult) 2951 return true; 2952 return this->emitConstBool(E->isSatisfied(), E); 2953 } 2954 2955 template <class Emitter> 2956 bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator( 2957 const CXXRewrittenBinaryOperator *E) { 2958 return this->delegate(E->getSemanticForm()); 2959 } 2960 2961 template <class Emitter> 2962 bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) { 2963 2964 for (const Expr *SemE : E->semantics()) { 2965 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { 2966 if (SemE == E->getResultExpr()) 2967 return false; 2968 2969 if (OVE->isUnique()) 2970 continue; 2971 2972 if (!this->discard(OVE)) 2973 return false; 2974 } else if (SemE == E->getResultExpr()) { 2975 if (!this->delegate(SemE)) 2976 return false; 2977 } else { 2978 if (!this->discard(SemE)) 2979 return false; 2980 } 2981 } 2982 return true; 2983 } 2984 2985 template <class Emitter> 2986 bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) { 2987 return this->delegate(E->getSelectedExpr()); 2988 } 2989 2990 template <class Emitter> 2991 bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) { 2992 return this->emitError(E); 2993 } 2994 2995 template <class Emitter> 2996 bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) { 2997 assert(E->getType()->isVoidPointerType()); 2998 2999 unsigned Offset = allocateLocalPrimitive( 3000 E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3001 3002 return this->emitGetLocal(PT_Ptr, Offset, E); 3003 } 3004 3005 template <class Emitter> 3006 bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) { 3007 assert(Initializing); 3008 const auto *VT = E->getType()->castAs<VectorType>(); 3009 QualType ElemType = VT->getElementType(); 3010 PrimType ElemT = classifyPrim(ElemType); 3011 const Expr *Src = E->getSrcExpr(); 3012 PrimType SrcElemT = 3013 classifyPrim(Src->getType()->castAs<VectorType>()->getElementType()); 3014 3015 unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false); 3016 if (!this->visit(Src)) 3017 return false; 3018 if (!this->emitSetLocal(PT_Ptr, SrcOffset, E)) 3019 return false; 3020 3021 for (unsigned I = 0; I != VT->getNumElements(); ++I) { 3022 if (!this->emitGetLocal(PT_Ptr, SrcOffset, E)) 3023 return false; 3024 if (!this->emitArrayElemPop(SrcElemT, I, E)) 3025 return false; 3026 if (SrcElemT != ElemT) { 3027 if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E)) 3028 return false; 3029 } 3030 if (!this->emitInitElem(ElemT, I, E)) 3031 return false; 3032 } 3033 3034 return true; 3035 } 3036 3037 template <class Emitter> 3038 bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { 3039 assert(Initializing); 3040 assert(E->getNumSubExprs() > 2); 3041 3042 const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)}; 3043 const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>(); 3044 PrimType ElemT = classifyPrim(VT->getElementType()); 3045 unsigned NumInputElems = VT->getNumElements(); 3046 unsigned NumOutputElems = E->getNumSubExprs() - 2; 3047 assert(NumOutputElems > 0); 3048 3049 // Save both input vectors to a local variable. 3050 unsigned VectorOffsets[2]; 3051 for (unsigned I = 0; I != 2; ++I) { 3052 VectorOffsets[I] = this->allocateLocalPrimitive( 3053 Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false); 3054 if (!this->visit(Vecs[I])) 3055 return false; 3056 if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E)) 3057 return false; 3058 } 3059 for (unsigned I = 0; I != NumOutputElems; ++I) { 3060 APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I); 3061 if (ShuffleIndex == -1) 3062 return this->emitInvalid(E); // FIXME: Better diagnostic. 3063 3064 assert(ShuffleIndex < (NumInputElems * 2)); 3065 if (!this->emitGetLocal(PT_Ptr, 3066 VectorOffsets[ShuffleIndex >= NumInputElems], E)) 3067 return false; 3068 unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems; 3069 if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E)) 3070 return false; 3071 3072 if (!this->emitInitElem(ElemT, I, E)) 3073 return false; 3074 } 3075 3076 return true; 3077 } 3078 3079 template <class Emitter> 3080 bool Compiler<Emitter>::VisitExtVectorElementExpr( 3081 const ExtVectorElementExpr *E) { 3082 const Expr *Base = E->getBase(); 3083 assert( 3084 Base->getType()->isVectorType() || 3085 Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType()); 3086 3087 SmallVector<uint32_t, 4> Indices; 3088 E->getEncodedElementAccess(Indices); 3089 3090 if (Indices.size() == 1) { 3091 if (!this->visit(Base)) 3092 return false; 3093 3094 if (E->isGLValue()) { 3095 if (!this->emitConstUint32(Indices[0], E)) 3096 return false; 3097 return this->emitArrayElemPtrPop(PT_Uint32, E); 3098 } 3099 // Else, also load the value. 3100 return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E); 3101 } 3102 3103 // Create a local variable for the base. 3104 unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true, 3105 /*IsExtended=*/false); 3106 if (!this->visit(Base)) 3107 return false; 3108 if (!this->emitSetLocal(PT_Ptr, BaseOffset, E)) 3109 return false; 3110 3111 // Now the vector variable for the return value. 3112 if (!Initializing) { 3113 std::optional<unsigned> ResultIndex; 3114 ResultIndex = allocateLocal(E); 3115 if (!ResultIndex) 3116 return false; 3117 if (!this->emitGetPtrLocal(*ResultIndex, E)) 3118 return false; 3119 } 3120 3121 assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements()); 3122 3123 PrimType ElemT = 3124 classifyPrim(E->getType()->getAs<VectorType>()->getElementType()); 3125 uint32_t DstIndex = 0; 3126 for (uint32_t I : Indices) { 3127 if (!this->emitGetLocal(PT_Ptr, BaseOffset, E)) 3128 return false; 3129 if (!this->emitArrayElemPop(ElemT, I, E)) 3130 return false; 3131 if (!this->emitInitElem(ElemT, DstIndex, E)) 3132 return false; 3133 ++DstIndex; 3134 } 3135 3136 // Leave the result pointer on the stack. 3137 assert(!DiscardResult); 3138 return true; 3139 } 3140 3141 template <class Emitter> 3142 bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { 3143 if (!E->isExpressibleAsConstantInitializer()) 3144 return this->emitInvalid(E); 3145 3146 return this->delegate(E->getSubExpr()); 3147 } 3148 3149 template <class Emitter> 3150 bool Compiler<Emitter>::VisitCXXStdInitializerListExpr( 3151 const CXXStdInitializerListExpr *E) { 3152 const Expr *SubExpr = E->getSubExpr(); 3153 const ConstantArrayType *ArrayType = 3154 Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType()); 3155 const Record *R = getRecord(E->getType()); 3156 assert(Initializing); 3157 assert(SubExpr->isGLValue()); 3158 3159 if (!this->visit(SubExpr)) 3160 return false; 3161 if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E)) 3162 return false; 3163 3164 PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType()); 3165 if (isIntegralType(SecondFieldT)) { 3166 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), 3167 SecondFieldT, E)) 3168 return false; 3169 return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E); 3170 } 3171 assert(SecondFieldT == PT_Ptr); 3172 3173 if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E)) 3174 return false; 3175 if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E)) 3176 return false; 3177 if (!this->emitArrayElemPtrPop(PT_Uint64, E)) 3178 return false; 3179 return this->emitInitFieldPtr(R->getField(1u)->Offset, E); 3180 } 3181 3182 template <class Emitter> 3183 bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) { 3184 BlockScope<Emitter> BS(this); 3185 StmtExprScope<Emitter> SS(this); 3186 3187 const CompoundStmt *CS = E->getSubStmt(); 3188 const Stmt *Result = CS->getStmtExprResult(); 3189 for (const Stmt *S : CS->body()) { 3190 if (S != Result) { 3191 if (!this->visitStmt(S)) 3192 return false; 3193 continue; 3194 } 3195 3196 assert(S == Result); 3197 if (const Expr *ResultExpr = dyn_cast<Expr>(S)) { 3198 if (DiscardResult) 3199 return this->discard(ResultExpr); 3200 return this->delegate(ResultExpr); 3201 } 3202 3203 return this->visitStmt(S); 3204 } 3205 3206 return BS.destroyLocals(); 3207 } 3208 3209 template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) { 3210 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true, 3211 /*NewInitializing=*/false); 3212 return this->Visit(E); 3213 } 3214 3215 template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) { 3216 if (E->containsErrors()) 3217 return this->emitError(E); 3218 3219 // We're basically doing: 3220 // OptionScope<Emitter> Scope(this, DicardResult, Initializing); 3221 // but that's unnecessary of course. 3222 return this->Visit(E); 3223 } 3224 3225 template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) { 3226 if (E->getType().isNull()) 3227 return false; 3228 3229 if (E->getType()->isVoidType()) 3230 return this->discard(E); 3231 3232 // Create local variable to hold the return value. 3233 if (!E->isGLValue() && !E->getType()->isAnyComplexType() && 3234 !classify(E->getType())) { 3235 std::optional<unsigned> LocalIndex = allocateLocal(E); 3236 if (!LocalIndex) 3237 return false; 3238 3239 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3240 return false; 3241 return this->visitInitializer(E); 3242 } 3243 3244 // Otherwise,we have a primitive return value, produce the value directly 3245 // and push it on the stack. 3246 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3247 /*NewInitializing=*/false); 3248 return this->Visit(E); 3249 } 3250 3251 template <class Emitter> 3252 bool Compiler<Emitter>::visitInitializer(const Expr *E) { 3253 assert(!classify(E->getType())); 3254 3255 if (E->containsErrors()) 3256 return this->emitError(E); 3257 3258 OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false, 3259 /*NewInitializing=*/true); 3260 return this->Visit(E); 3261 } 3262 3263 template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) { 3264 std::optional<PrimType> T = classify(E->getType()); 3265 if (!T) { 3266 // Convert complex values to bool. 3267 if (E->getType()->isAnyComplexType()) { 3268 if (!this->visit(E)) 3269 return false; 3270 return this->emitComplexBoolCast(E); 3271 } 3272 return false; 3273 } 3274 3275 if (!this->visit(E)) 3276 return false; 3277 3278 if (T == PT_Bool) 3279 return true; 3280 3281 // Convert pointers to bool. 3282 if (T == PT_Ptr || T == PT_FnPtr) { 3283 if (!this->emitNull(*T, nullptr, E)) 3284 return false; 3285 return this->emitNE(*T, E); 3286 } 3287 3288 // Or Floats. 3289 if (T == PT_Float) 3290 return this->emitCastFloatingIntegralBool(E); 3291 3292 // Or anything else we can. 3293 return this->emitCast(*T, PT_Bool, E); 3294 } 3295 3296 template <class Emitter> 3297 bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT, 3298 const Expr *E) { 3299 switch (T) { 3300 case PT_Bool: 3301 return this->emitZeroBool(E); 3302 case PT_Sint8: 3303 return this->emitZeroSint8(E); 3304 case PT_Uint8: 3305 return this->emitZeroUint8(E); 3306 case PT_Sint16: 3307 return this->emitZeroSint16(E); 3308 case PT_Uint16: 3309 return this->emitZeroUint16(E); 3310 case PT_Sint32: 3311 return this->emitZeroSint32(E); 3312 case PT_Uint32: 3313 return this->emitZeroUint32(E); 3314 case PT_Sint64: 3315 return this->emitZeroSint64(E); 3316 case PT_Uint64: 3317 return this->emitZeroUint64(E); 3318 case PT_IntAP: 3319 return this->emitZeroIntAP(Ctx.getBitWidth(QT), E); 3320 case PT_IntAPS: 3321 return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E); 3322 case PT_Ptr: 3323 return this->emitNullPtr(nullptr, E); 3324 case PT_FnPtr: 3325 return this->emitNullFnPtr(nullptr, E); 3326 case PT_MemberPtr: 3327 return this->emitNullMemberPtr(nullptr, E); 3328 case PT_Float: { 3329 return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E); 3330 } 3331 } 3332 llvm_unreachable("unknown primitive type"); 3333 } 3334 3335 template <class Emitter> 3336 bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R, 3337 const Expr *E) { 3338 assert(E); 3339 assert(R); 3340 // Fields 3341 for (const Record::Field &Field : R->fields()) { 3342 const Descriptor *D = Field.Desc; 3343 if (D->isPrimitive()) { 3344 QualType QT = D->getType(); 3345 PrimType T = classifyPrim(D->getType()); 3346 if (!this->visitZeroInitializer(T, QT, E)) 3347 return false; 3348 if (!this->emitInitField(T, Field.Offset, E)) 3349 return false; 3350 continue; 3351 } 3352 3353 if (!this->emitGetPtrField(Field.Offset, E)) 3354 return false; 3355 3356 if (D->isPrimitiveArray()) { 3357 QualType ET = D->getElemQualType(); 3358 PrimType T = classifyPrim(ET); 3359 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3360 if (!this->visitZeroInitializer(T, ET, E)) 3361 return false; 3362 if (!this->emitInitElem(T, I, E)) 3363 return false; 3364 } 3365 } else if (D->isCompositeArray()) { 3366 const Record *ElemRecord = D->ElemDesc->ElemRecord; 3367 assert(D->ElemDesc->ElemRecord); 3368 for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) { 3369 if (!this->emitConstUint32(I, E)) 3370 return false; 3371 if (!this->emitArrayElemPtr(PT_Uint32, E)) 3372 return false; 3373 if (!this->visitZeroRecordInitializer(ElemRecord, E)) 3374 return false; 3375 if (!this->emitPopPtr(E)) 3376 return false; 3377 } 3378 } else if (D->isRecord()) { 3379 if (!this->visitZeroRecordInitializer(D->ElemRecord, E)) 3380 return false; 3381 } else { 3382 assert(false); 3383 } 3384 3385 if (!this->emitPopPtr(E)) 3386 return false; 3387 } 3388 3389 for (const Record::Base &B : R->bases()) { 3390 if (!this->emitGetPtrBase(B.Offset, E)) 3391 return false; 3392 if (!this->visitZeroRecordInitializer(B.R, E)) 3393 return false; 3394 if (!this->emitFinishInitPop(E)) 3395 return false; 3396 } 3397 3398 // FIXME: Virtual bases. 3399 3400 return true; 3401 } 3402 3403 template <class Emitter> 3404 template <typename T> 3405 bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) { 3406 switch (Ty) { 3407 case PT_Sint8: 3408 return this->emitConstSint8(Value, E); 3409 case PT_Uint8: 3410 return this->emitConstUint8(Value, E); 3411 case PT_Sint16: 3412 return this->emitConstSint16(Value, E); 3413 case PT_Uint16: 3414 return this->emitConstUint16(Value, E); 3415 case PT_Sint32: 3416 return this->emitConstSint32(Value, E); 3417 case PT_Uint32: 3418 return this->emitConstUint32(Value, E); 3419 case PT_Sint64: 3420 return this->emitConstSint64(Value, E); 3421 case PT_Uint64: 3422 return this->emitConstUint64(Value, E); 3423 case PT_Bool: 3424 return this->emitConstBool(Value, E); 3425 case PT_Ptr: 3426 case PT_FnPtr: 3427 case PT_MemberPtr: 3428 case PT_Float: 3429 case PT_IntAP: 3430 case PT_IntAPS: 3431 llvm_unreachable("Invalid integral type"); 3432 break; 3433 } 3434 llvm_unreachable("unknown primitive type"); 3435 } 3436 3437 template <class Emitter> 3438 template <typename T> 3439 bool Compiler<Emitter>::emitConst(T Value, const Expr *E) { 3440 return this->emitConst(Value, classifyPrim(E->getType()), E); 3441 } 3442 3443 template <class Emitter> 3444 bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty, 3445 const Expr *E) { 3446 if (Ty == PT_IntAPS) 3447 return this->emitConstIntAPS(Value, E); 3448 if (Ty == PT_IntAP) 3449 return this->emitConstIntAP(Value, E); 3450 3451 if (Value.isSigned()) 3452 return this->emitConst(Value.getSExtValue(), Ty, E); 3453 return this->emitConst(Value.getZExtValue(), Ty, E); 3454 } 3455 3456 template <class Emitter> 3457 bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) { 3458 return this->emitConst(Value, classifyPrim(E->getType()), E); 3459 } 3460 3461 template <class Emitter> 3462 unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty, 3463 bool IsConst, 3464 bool IsExtended) { 3465 // Make sure we don't accidentally register the same decl twice. 3466 if (const auto *VD = 3467 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3468 assert(!P.getGlobal(VD)); 3469 assert(!Locals.contains(VD)); 3470 (void)VD; 3471 } 3472 3473 // FIXME: There are cases where Src.is<Expr*>() is wrong, e.g. 3474 // (int){12} in C. Consider using Expr::isTemporaryObject() instead 3475 // or isa<MaterializeTemporaryExpr>(). 3476 Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst, 3477 Src.is<const Expr *>()); 3478 Scope::Local Local = this->createLocal(D); 3479 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) 3480 Locals.insert({VD, Local}); 3481 VarScope->add(Local, IsExtended); 3482 return Local.Offset; 3483 } 3484 3485 template <class Emitter> 3486 std::optional<unsigned> 3487 Compiler<Emitter>::allocateLocal(DeclTy &&Src, const ValueDecl *ExtendingDecl) { 3488 // Make sure we don't accidentally register the same decl twice. 3489 if ([[maybe_unused]] const auto *VD = 3490 dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3491 assert(!P.getGlobal(VD)); 3492 assert(!Locals.contains(VD)); 3493 } 3494 3495 QualType Ty; 3496 const ValueDecl *Key = nullptr; 3497 const Expr *Init = nullptr; 3498 bool IsTemporary = false; 3499 if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) { 3500 Key = VD; 3501 Ty = VD->getType(); 3502 3503 if (const auto *VarD = dyn_cast<VarDecl>(VD)) 3504 Init = VarD->getInit(); 3505 } 3506 if (auto *E = Src.dyn_cast<const Expr *>()) { 3507 IsTemporary = true; 3508 Ty = E->getType(); 3509 } 3510 3511 Descriptor *D = P.createDescriptor( 3512 Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(), 3513 IsTemporary, /*IsMutable=*/false, Init); 3514 if (!D) 3515 return std::nullopt; 3516 3517 Scope::Local Local = this->createLocal(D); 3518 if (Key) 3519 Locals.insert({Key, Local}); 3520 if (ExtendingDecl) 3521 VarScope->addExtended(Local, ExtendingDecl); 3522 else 3523 VarScope->add(Local, false); 3524 return Local.Offset; 3525 } 3526 3527 template <class Emitter> 3528 const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) { 3529 if (const PointerType *PT = dyn_cast<PointerType>(Ty)) 3530 return PT->getPointeeType()->getAs<RecordType>(); 3531 return Ty->getAs<RecordType>(); 3532 } 3533 3534 template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) { 3535 if (const auto *RecordTy = getRecordTy(Ty)) 3536 return getRecord(RecordTy->getDecl()); 3537 return nullptr; 3538 } 3539 3540 template <class Emitter> 3541 Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) { 3542 return P.getOrCreateRecord(RD); 3543 } 3544 3545 template <class Emitter> 3546 const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) { 3547 return Ctx.getOrCreateFunction(FD); 3548 } 3549 3550 template <class Emitter> bool Compiler<Emitter>::visitExpr(const Expr *E) { 3551 LocalScope<Emitter> RootScope(this); 3552 // Void expressions. 3553 if (E->getType()->isVoidType()) { 3554 if (!visit(E)) 3555 return false; 3556 return this->emitRetVoid(E) && RootScope.destroyLocals(); 3557 } 3558 3559 // Expressions with a primitive return type. 3560 if (std::optional<PrimType> T = classify(E)) { 3561 if (!visit(E)) 3562 return false; 3563 return this->emitRet(*T, E) && RootScope.destroyLocals(); 3564 } 3565 3566 // Expressions with a composite return type. 3567 // For us, that means everything we don't 3568 // have a PrimType for. 3569 if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) { 3570 if (!this->emitGetPtrLocal(*LocalOffset, E)) 3571 return false; 3572 3573 if (!visitInitializer(E)) 3574 return false; 3575 3576 if (!this->emitFinishInit(E)) 3577 return false; 3578 // We are destroying the locals AFTER the Ret op. 3579 // The Ret op needs to copy the (alive) values, but the 3580 // destructors may still turn the entire expression invalid. 3581 return this->emitRetValue(E) && RootScope.destroyLocals(); 3582 } 3583 3584 RootScope.destroyLocals(); 3585 return false; 3586 } 3587 3588 template <class Emitter> 3589 VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) { 3590 3591 auto R = this->visitVarDecl(VD, /*Toplevel=*/true); 3592 3593 if (R.notCreated()) 3594 return R; 3595 3596 if (R) 3597 return true; 3598 3599 if (!R && Context::shouldBeGloballyIndexed(VD)) { 3600 if (auto GlobalIndex = P.getGlobal(VD)) { 3601 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 3602 GlobalInlineDescriptor &GD = 3603 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 3604 3605 GD.InitState = GlobalInitState::InitializerFailed; 3606 GlobalBlock->invokeDtor(); 3607 } 3608 } 3609 3610 return R; 3611 } 3612 3613 /// Toplevel visitDeclAndReturn(). 3614 /// We get here from evaluateAsInitializer(). 3615 /// We need to evaluate the initializer and return its value. 3616 template <class Emitter> 3617 bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD, 3618 bool ConstantContext) { 3619 std::optional<PrimType> VarT = classify(VD->getType()); 3620 3621 // We only create variables if we're evaluating in a constant context. 3622 // Otherwise, just evaluate the initializer and return it. 3623 if (!ConstantContext) { 3624 DeclScope<Emitter> LS(this, VD); 3625 if (!this->visit(VD->getAnyInitializer())) 3626 return false; 3627 return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals(); 3628 } 3629 3630 LocalScope<Emitter> VDScope(this, VD); 3631 if (!this->visitVarDecl(VD, /*Toplevel=*/true)) 3632 return false; 3633 3634 if (Context::shouldBeGloballyIndexed(VD)) { 3635 auto GlobalIndex = P.getGlobal(VD); 3636 assert(GlobalIndex); // visitVarDecl() didn't return false. 3637 if (VarT) { 3638 if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD)) 3639 return false; 3640 } else { 3641 if (!this->emitGetPtrGlobal(*GlobalIndex, VD)) 3642 return false; 3643 } 3644 } else { 3645 auto Local = Locals.find(VD); 3646 assert(Local != Locals.end()); // Same here. 3647 if (VarT) { 3648 if (!this->emitGetLocal(*VarT, Local->second.Offset, VD)) 3649 return false; 3650 } else { 3651 if (!this->emitGetPtrLocal(Local->second.Offset, VD)) 3652 return false; 3653 } 3654 } 3655 3656 // Return the value. 3657 if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) { 3658 // If the Ret above failed and this is a global variable, mark it as 3659 // uninitialized, even everything else succeeded. 3660 if (Context::shouldBeGloballyIndexed(VD)) { 3661 auto GlobalIndex = P.getGlobal(VD); 3662 assert(GlobalIndex); 3663 Block *GlobalBlock = P.getGlobal(*GlobalIndex); 3664 GlobalInlineDescriptor &GD = 3665 *reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData()); 3666 3667 GD.InitState = GlobalInitState::InitializerFailed; 3668 GlobalBlock->invokeDtor(); 3669 } 3670 return false; 3671 } 3672 3673 return VDScope.destroyLocals(); 3674 } 3675 3676 template <class Emitter> 3677 VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD, bool Toplevel) { 3678 // We don't know what to do with these, so just return false. 3679 if (VD->getType().isNull()) 3680 return false; 3681 3682 // This case is EvalEmitter-only. If we won't create any instructions for the 3683 // initializer anyway, don't bother creating the variable in the first place. 3684 if (!this->isActive()) 3685 return VarCreationState::NotCreated(); 3686 3687 const Expr *Init = VD->getInit(); 3688 std::optional<PrimType> VarT = classify(VD->getType()); 3689 3690 if (Context::shouldBeGloballyIndexed(VD)) { 3691 auto checkDecl = [&]() -> bool { 3692 bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal(); 3693 return !NeedsOp || this->emitCheckDecl(VD, VD); 3694 }; 3695 3696 auto initGlobal = [&](unsigned GlobalIndex) -> bool { 3697 assert(Init); 3698 DeclScope<Emitter> LocalScope(this, VD); 3699 3700 if (VarT) { 3701 if (!this->visit(Init)) 3702 return checkDecl() && false; 3703 3704 return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD); 3705 } 3706 3707 if (!checkDecl()) 3708 return false; 3709 3710 if (!this->emitGetPtrGlobal(GlobalIndex, Init)) 3711 return false; 3712 3713 if (!visitInitializer(Init)) 3714 return false; 3715 3716 if (!this->emitFinishInit(Init)) 3717 return false; 3718 3719 return this->emitPopPtr(Init); 3720 }; 3721 3722 // We've already seen and initialized this global. 3723 if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) { 3724 if (P.getPtrGlobal(*GlobalIndex).isInitialized()) 3725 return checkDecl(); 3726 3727 // The previous attempt at initialization might've been unsuccessful, 3728 // so let's try this one. 3729 return Init && checkDecl() && initGlobal(*GlobalIndex); 3730 } 3731 3732 std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init); 3733 3734 if (!GlobalIndex) 3735 return false; 3736 3737 return !Init || (checkDecl() && initGlobal(*GlobalIndex)); 3738 } else { 3739 InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD)); 3740 3741 if (VarT) { 3742 unsigned Offset = this->allocateLocalPrimitive( 3743 VD, *VarT, VD->getType().isConstQualified()); 3744 if (Init) { 3745 // If this is a toplevel declaration, create a scope for the 3746 // initializer. 3747 if (Toplevel) { 3748 LocalScope<Emitter> Scope(this); 3749 if (!this->visit(Init)) 3750 return false; 3751 return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals(); 3752 } else { 3753 if (!this->visit(Init)) 3754 return false; 3755 return this->emitSetLocal(*VarT, Offset, VD); 3756 } 3757 } 3758 } else { 3759 if (std::optional<unsigned> Offset = this->allocateLocal(VD)) { 3760 if (!Init) 3761 return true; 3762 3763 if (!this->emitGetPtrLocal(*Offset, Init)) 3764 return false; 3765 3766 if (!visitInitializer(Init)) 3767 return false; 3768 3769 if (!this->emitFinishInit(Init)) 3770 return false; 3771 3772 return this->emitPopPtr(Init); 3773 } 3774 return false; 3775 } 3776 return true; 3777 } 3778 3779 return false; 3780 } 3781 3782 template <class Emitter> 3783 bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType, 3784 const Expr *E) { 3785 assert(!DiscardResult); 3786 if (Val.isInt()) 3787 return this->emitConst(Val.getInt(), ValType, E); 3788 else if (Val.isFloat()) 3789 return this->emitConstFloat(Val.getFloat(), E); 3790 3791 if (Val.isLValue()) { 3792 if (Val.isNullPointer()) 3793 return this->emitNull(ValType, nullptr, E); 3794 APValue::LValueBase Base = Val.getLValueBase(); 3795 if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>()) 3796 return this->visit(BaseExpr); 3797 else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) { 3798 return this->visitDeclRef(VD, E); 3799 } 3800 } else if (Val.isMemberPointer()) { 3801 if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl()) 3802 return this->emitGetMemberPtr(MemberDecl, E); 3803 return this->emitNullMemberPtr(nullptr, E); 3804 } 3805 3806 return false; 3807 } 3808 3809 template <class Emitter> 3810 bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val, 3811 const Expr *E) { 3812 3813 if (Val.isStruct()) { 3814 const Record *R = this->getRecord(E->getType()); 3815 assert(R); 3816 for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) { 3817 const APValue &F = Val.getStructField(I); 3818 const Record::Field *RF = R->getField(I); 3819 3820 if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) { 3821 PrimType T = classifyPrim(RF->Decl->getType()); 3822 if (!this->visitAPValue(F, T, E)) 3823 return false; 3824 if (!this->emitInitField(T, RF->Offset, E)) 3825 return false; 3826 } else if (F.isArray()) { 3827 assert(RF->Desc->isPrimitiveArray()); 3828 const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe(); 3829 PrimType ElemT = classifyPrim(ArrType->getElementType()); 3830 assert(ArrType); 3831 3832 if (!this->emitGetPtrField(RF->Offset, E)) 3833 return false; 3834 3835 for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) { 3836 if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E)) 3837 return false; 3838 if (!this->emitInitElem(ElemT, A, E)) 3839 return false; 3840 } 3841 3842 if (!this->emitPopPtr(E)) 3843 return false; 3844 } else if (F.isStruct() || F.isUnion()) { 3845 if (!this->emitGetPtrField(RF->Offset, E)) 3846 return false; 3847 if (!this->visitAPValueInitializer(F, E)) 3848 return false; 3849 if (!this->emitPopPtr(E)) 3850 return false; 3851 } else { 3852 assert(false && "I don't think this should be possible"); 3853 } 3854 } 3855 return true; 3856 } else if (Val.isUnion()) { 3857 const FieldDecl *UnionField = Val.getUnionField(); 3858 const Record *R = this->getRecord(UnionField->getParent()); 3859 assert(R); 3860 const APValue &F = Val.getUnionValue(); 3861 const Record::Field *RF = R->getField(UnionField); 3862 PrimType T = classifyPrim(RF->Decl->getType()); 3863 if (!this->visitAPValue(F, T, E)) 3864 return false; 3865 return this->emitInitField(T, RF->Offset, E); 3866 } 3867 // TODO: Other types. 3868 3869 return false; 3870 } 3871 3872 template <class Emitter> 3873 bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E) { 3874 const Function *Func = getFunction(E->getDirectCallee()); 3875 if (!Func) 3876 return false; 3877 3878 // For these, we're expected to ultimately return an APValue pointing 3879 // to the CallExpr. This is needed to get the correct codegen. 3880 unsigned Builtin = E->getBuiltinCallee(); 3881 if (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || 3882 Builtin == Builtin::BI__builtin___NSStringMakeConstantString || 3883 Builtin == Builtin::BI__builtin_ptrauth_sign_constant || 3884 Builtin == Builtin::BI__builtin_function_start) { 3885 if (std::optional<unsigned> GlobalOffset = P.createGlobal(E)) { 3886 if (!this->emitGetPtrGlobal(*GlobalOffset, E)) 3887 return false; 3888 3889 if (PrimType PT = classifyPrim(E); PT != PT_Ptr && isPtrType(PT)) 3890 return this->emitDecayPtr(PT_Ptr, PT, E); 3891 return true; 3892 } 3893 return false; 3894 } 3895 3896 QualType ReturnType = E->getType(); 3897 std::optional<PrimType> ReturnT = classify(E); 3898 3899 // Non-primitive return type. Prepare storage. 3900 if (!Initializing && !ReturnT && !ReturnType->isVoidType()) { 3901 std::optional<unsigned> LocalIndex = allocateLocal(E); 3902 if (!LocalIndex) 3903 return false; 3904 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3905 return false; 3906 } 3907 3908 if (!Func->isUnevaluatedBuiltin()) { 3909 // Put arguments on the stack. 3910 for (const auto *Arg : E->arguments()) { 3911 if (!this->visit(Arg)) 3912 return false; 3913 } 3914 } 3915 3916 if (!this->emitCallBI(Func, E, E)) 3917 return false; 3918 3919 if (DiscardResult && !ReturnType->isVoidType()) { 3920 assert(ReturnT); 3921 return this->emitPop(*ReturnT, E); 3922 } 3923 3924 return true; 3925 } 3926 3927 template <class Emitter> 3928 bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) { 3929 if (E->getBuiltinCallee()) 3930 return VisitBuiltinCallExpr(E); 3931 3932 QualType ReturnType = E->getCallReturnType(Ctx.getASTContext()); 3933 std::optional<PrimType> T = classify(ReturnType); 3934 bool HasRVO = !ReturnType->isVoidType() && !T; 3935 const FunctionDecl *FuncDecl = E->getDirectCallee(); 3936 3937 if (HasRVO) { 3938 if (DiscardResult) { 3939 // If we need to discard the return value but the function returns its 3940 // value via an RVO pointer, we need to create one such pointer just 3941 // for this call. 3942 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 3943 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3944 return false; 3945 } 3946 } else { 3947 // We need the result. Prepare a pointer to return or 3948 // dup the current one. 3949 if (!Initializing) { 3950 if (std::optional<unsigned> LocalIndex = allocateLocal(E)) { 3951 if (!this->emitGetPtrLocal(*LocalIndex, E)) 3952 return false; 3953 } 3954 } 3955 if (!this->emitDupPtr(E)) 3956 return false; 3957 } 3958 } 3959 3960 auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs()); 3961 // Calling a static operator will still 3962 // pass the instance, but we don't need it. 3963 // Discard it here. 3964 if (isa<CXXOperatorCallExpr>(E)) { 3965 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl); 3966 MD && MD->isStatic()) { 3967 if (!this->discard(E->getArg(0))) 3968 return false; 3969 Args = Args.drop_front(); 3970 } 3971 } 3972 3973 std::optional<unsigned> CalleeOffset; 3974 // Add the (optional, implicit) This pointer. 3975 if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) { 3976 if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) { 3977 // If we end up creating a CallPtr op for this, we need the base of the 3978 // member pointer as the instance pointer, and later extract the function 3979 // decl as the function pointer. 3980 const Expr *Callee = E->getCallee(); 3981 CalleeOffset = 3982 this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false); 3983 if (!this->visit(Callee)) 3984 return false; 3985 if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E)) 3986 return false; 3987 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 3988 return false; 3989 if (!this->emitGetMemberPtrBase(E)) 3990 return false; 3991 } else if (!this->visit(MC->getImplicitObjectArgument())) { 3992 return false; 3993 } 3994 } 3995 3996 llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args); 3997 // Put arguments on the stack. 3998 unsigned ArgIndex = 0; 3999 for (const auto *Arg : Args) { 4000 if (!this->visit(Arg)) 4001 return false; 4002 4003 // If we know the callee already, check the known parametrs for nullability. 4004 if (FuncDecl && NonNullArgs[ArgIndex]) { 4005 PrimType ArgT = classify(Arg).value_or(PT_Ptr); 4006 if (ArgT == PT_Ptr || ArgT == PT_FnPtr) { 4007 if (!this->emitCheckNonNullArg(ArgT, Arg)) 4008 return false; 4009 } 4010 } 4011 ++ArgIndex; 4012 } 4013 4014 if (FuncDecl) { 4015 const Function *Func = getFunction(FuncDecl); 4016 if (!Func) 4017 return false; 4018 assert(HasRVO == Func->hasRVO()); 4019 4020 bool HasQualifier = false; 4021 if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee())) 4022 HasQualifier = ME->hasQualifier(); 4023 4024 bool IsVirtual = false; 4025 if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) 4026 IsVirtual = MD->isVirtual(); 4027 4028 // In any case call the function. The return value will end up on the stack 4029 // and if the function has RVO, we already have the pointer on the stack to 4030 // write the result into. 4031 if (IsVirtual && !HasQualifier) { 4032 uint32_t VarArgSize = 0; 4033 unsigned NumParams = 4034 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4035 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4036 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4037 4038 if (!this->emitCallVirt(Func, VarArgSize, E)) 4039 return false; 4040 } else if (Func->isVariadic()) { 4041 uint32_t VarArgSize = 0; 4042 unsigned NumParams = 4043 Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E); 4044 for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) 4045 VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4046 if (!this->emitCallVar(Func, VarArgSize, E)) 4047 return false; 4048 } else { 4049 if (!this->emitCall(Func, 0, E)) 4050 return false; 4051 } 4052 } else { 4053 // Indirect call. Visit the callee, which will leave a FunctionPointer on 4054 // the stack. Cleanup of the returned value if necessary will be done after 4055 // the function call completed. 4056 4057 // Sum the size of all args from the call expr. 4058 uint32_t ArgSize = 0; 4059 for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I) 4060 ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr))); 4061 4062 // Get the callee, either from a member pointer saved in CalleeOffset, 4063 // or by just visiting the Callee expr. 4064 if (CalleeOffset) { 4065 if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E)) 4066 return false; 4067 if (!this->emitGetMemberPtrDecl(E)) 4068 return false; 4069 if (!this->emitCallPtr(ArgSize, E, E)) 4070 return false; 4071 } else { 4072 if (!this->visit(E->getCallee())) 4073 return false; 4074 4075 if (!this->emitCallPtr(ArgSize, E, E)) 4076 return false; 4077 } 4078 } 4079 4080 // Cleanup for discarded return values. 4081 if (DiscardResult && !ReturnType->isVoidType() && T) 4082 return this->emitPop(*T, E); 4083 4084 return true; 4085 } 4086 4087 template <class Emitter> 4088 bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { 4089 SourceLocScope<Emitter> SLS(this, E); 4090 4091 return this->delegate(E->getExpr()); 4092 } 4093 4094 template <class Emitter> 4095 bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { 4096 SourceLocScope<Emitter> SLS(this, E); 4097 4098 const Expr *SubExpr = E->getExpr(); 4099 if (std::optional<PrimType> T = classify(E->getExpr())) 4100 return this->visit(SubExpr); 4101 4102 assert(Initializing); 4103 return this->visitInitializer(SubExpr); 4104 } 4105 4106 template <class Emitter> 4107 bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 4108 if (DiscardResult) 4109 return true; 4110 4111 return this->emitConstBool(E->getValue(), E); 4112 } 4113 4114 template <class Emitter> 4115 bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr( 4116 const CXXNullPtrLiteralExpr *E) { 4117 if (DiscardResult) 4118 return true; 4119 4120 return this->emitNullPtr(nullptr, E); 4121 } 4122 4123 template <class Emitter> 4124 bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) { 4125 if (DiscardResult) 4126 return true; 4127 4128 assert(E->getType()->isIntegerType()); 4129 4130 PrimType T = classifyPrim(E->getType()); 4131 return this->emitZero(T, E); 4132 } 4133 4134 template <class Emitter> 4135 bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) { 4136 if (DiscardResult) 4137 return true; 4138 4139 if (this->LambdaThisCapture.Offset > 0) { 4140 if (this->LambdaThisCapture.IsPtr) 4141 return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E); 4142 return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E); 4143 } 4144 4145 // In some circumstances, the 'this' pointer does not actually refer to the 4146 // instance pointer of the current function frame, but e.g. to the declaration 4147 // currently being initialized. Here we emit the necessary instruction(s) for 4148 // this scenario. 4149 if (!InitStackActive || !E->isImplicit()) 4150 return this->emitThis(E); 4151 4152 if (InitStackActive && !InitStack.empty()) { 4153 unsigned StartIndex = 0; 4154 for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) { 4155 if (InitStack[StartIndex].Kind != InitLink::K_Field) 4156 break; 4157 } 4158 4159 for (unsigned I = StartIndex, N = InitStack.size(); I != N; ++I) { 4160 if (!InitStack[I].template emit<Emitter>(this, E)) 4161 return false; 4162 } 4163 return true; 4164 } 4165 return this->emitThis(E); 4166 } 4167 4168 template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) { 4169 switch (S->getStmtClass()) { 4170 case Stmt::CompoundStmtClass: 4171 return visitCompoundStmt(cast<CompoundStmt>(S)); 4172 case Stmt::DeclStmtClass: 4173 return visitDeclStmt(cast<DeclStmt>(S)); 4174 case Stmt::ReturnStmtClass: 4175 return visitReturnStmt(cast<ReturnStmt>(S)); 4176 case Stmt::IfStmtClass: 4177 return visitIfStmt(cast<IfStmt>(S)); 4178 case Stmt::WhileStmtClass: 4179 return visitWhileStmt(cast<WhileStmt>(S)); 4180 case Stmt::DoStmtClass: 4181 return visitDoStmt(cast<DoStmt>(S)); 4182 case Stmt::ForStmtClass: 4183 return visitForStmt(cast<ForStmt>(S)); 4184 case Stmt::CXXForRangeStmtClass: 4185 return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); 4186 case Stmt::BreakStmtClass: 4187 return visitBreakStmt(cast<BreakStmt>(S)); 4188 case Stmt::ContinueStmtClass: 4189 return visitContinueStmt(cast<ContinueStmt>(S)); 4190 case Stmt::SwitchStmtClass: 4191 return visitSwitchStmt(cast<SwitchStmt>(S)); 4192 case Stmt::CaseStmtClass: 4193 return visitCaseStmt(cast<CaseStmt>(S)); 4194 case Stmt::DefaultStmtClass: 4195 return visitDefaultStmt(cast<DefaultStmt>(S)); 4196 case Stmt::AttributedStmtClass: 4197 return visitAttributedStmt(cast<AttributedStmt>(S)); 4198 case Stmt::CXXTryStmtClass: 4199 return visitCXXTryStmt(cast<CXXTryStmt>(S)); 4200 case Stmt::NullStmtClass: 4201 return true; 4202 // Always invalid statements. 4203 case Stmt::GCCAsmStmtClass: 4204 case Stmt::MSAsmStmtClass: 4205 case Stmt::GotoStmtClass: 4206 return this->emitInvalid(S); 4207 case Stmt::LabelStmtClass: 4208 return this->visitStmt(cast<LabelStmt>(S)->getSubStmt()); 4209 default: { 4210 if (const auto *E = dyn_cast<Expr>(S)) 4211 return this->discard(E); 4212 return false; 4213 } 4214 } 4215 } 4216 4217 /// Visits the given statment without creating a variable 4218 /// scope for it in case it is a compound statement. 4219 template <class Emitter> bool Compiler<Emitter>::visitLoopBody(const Stmt *S) { 4220 if (isa<NullStmt>(S)) 4221 return true; 4222 4223 if (const auto *CS = dyn_cast<CompoundStmt>(S)) { 4224 for (const auto *InnerStmt : CS->body()) 4225 if (!visitStmt(InnerStmt)) 4226 return false; 4227 return true; 4228 } 4229 4230 return this->visitStmt(S); 4231 } 4232 4233 template <class Emitter> 4234 bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) { 4235 BlockScope<Emitter> Scope(this); 4236 for (const auto *InnerStmt : S->body()) 4237 if (!visitStmt(InnerStmt)) 4238 return false; 4239 return Scope.destroyLocals(); 4240 } 4241 4242 template <class Emitter> 4243 bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) { 4244 for (const auto *D : DS->decls()) { 4245 if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl, 4246 FunctionDecl>(D)) 4247 continue; 4248 4249 const auto *VD = dyn_cast<VarDecl>(D); 4250 if (!VD) 4251 return false; 4252 if (!this->visitVarDecl(VD)) 4253 return false; 4254 } 4255 4256 return true; 4257 } 4258 4259 template <class Emitter> 4260 bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) { 4261 if (this->InStmtExpr) 4262 return this->emitUnsupported(RS); 4263 4264 if (const Expr *RE = RS->getRetValue()) { 4265 LocalScope<Emitter> RetScope(this); 4266 if (ReturnType) { 4267 // Primitive types are simply returned. 4268 if (!this->visit(RE)) 4269 return false; 4270 this->emitCleanup(); 4271 return this->emitRet(*ReturnType, RS); 4272 } else if (RE->getType()->isVoidType()) { 4273 if (!this->visit(RE)) 4274 return false; 4275 } else { 4276 // RVO - construct the value in the return location. 4277 if (!this->emitRVOPtr(RE)) 4278 return false; 4279 if (!this->visitInitializer(RE)) 4280 return false; 4281 if (!this->emitPopPtr(RE)) 4282 return false; 4283 4284 this->emitCleanup(); 4285 return this->emitRetVoid(RS); 4286 } 4287 } 4288 4289 // Void return. 4290 this->emitCleanup(); 4291 return this->emitRetVoid(RS); 4292 } 4293 4294 template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) { 4295 BlockScope<Emitter> IfScope(this); 4296 4297 if (IS->isNonNegatedConsteval()) 4298 return visitStmt(IS->getThen()); 4299 if (IS->isNegatedConsteval()) 4300 return IS->getElse() ? visitStmt(IS->getElse()) : true; 4301 4302 if (auto *CondInit = IS->getInit()) 4303 if (!visitStmt(CondInit)) 4304 return false; 4305 4306 if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt()) 4307 if (!visitDeclStmt(CondDecl)) 4308 return false; 4309 4310 if (!this->visitBool(IS->getCond())) 4311 return false; 4312 4313 if (const Stmt *Else = IS->getElse()) { 4314 LabelTy LabelElse = this->getLabel(); 4315 LabelTy LabelEnd = this->getLabel(); 4316 if (!this->jumpFalse(LabelElse)) 4317 return false; 4318 if (!visitStmt(IS->getThen())) 4319 return false; 4320 if (!this->jump(LabelEnd)) 4321 return false; 4322 this->emitLabel(LabelElse); 4323 if (!visitStmt(Else)) 4324 return false; 4325 this->emitLabel(LabelEnd); 4326 } else { 4327 LabelTy LabelEnd = this->getLabel(); 4328 if (!this->jumpFalse(LabelEnd)) 4329 return false; 4330 if (!visitStmt(IS->getThen())) 4331 return false; 4332 this->emitLabel(LabelEnd); 4333 } 4334 4335 return IfScope.destroyLocals(); 4336 } 4337 4338 template <class Emitter> 4339 bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) { 4340 const Expr *Cond = S->getCond(); 4341 const Stmt *Body = S->getBody(); 4342 4343 LabelTy CondLabel = this->getLabel(); // Label before the condition. 4344 LabelTy EndLabel = this->getLabel(); // Label after the loop. 4345 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4346 4347 this->fallthrough(CondLabel); 4348 this->emitLabel(CondLabel); 4349 4350 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4351 if (!visitDeclStmt(CondDecl)) 4352 return false; 4353 4354 if (!this->visitBool(Cond)) 4355 return false; 4356 if (!this->jumpFalse(EndLabel)) 4357 return false; 4358 4359 LocalScope<Emitter> Scope(this); 4360 { 4361 DestructorScope<Emitter> DS(Scope); 4362 if (!this->visitLoopBody(Body)) 4363 return false; 4364 } 4365 4366 if (!this->jump(CondLabel)) 4367 return false; 4368 this->emitLabel(EndLabel); 4369 4370 return true; 4371 } 4372 4373 template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) { 4374 const Expr *Cond = S->getCond(); 4375 const Stmt *Body = S->getBody(); 4376 4377 LabelTy StartLabel = this->getLabel(); 4378 LabelTy EndLabel = this->getLabel(); 4379 LabelTy CondLabel = this->getLabel(); 4380 LoopScope<Emitter> LS(this, EndLabel, CondLabel); 4381 LocalScope<Emitter> Scope(this); 4382 4383 this->fallthrough(StartLabel); 4384 this->emitLabel(StartLabel); 4385 { 4386 DestructorScope<Emitter> DS(Scope); 4387 4388 if (!this->visitLoopBody(Body)) 4389 return false; 4390 this->fallthrough(CondLabel); 4391 this->emitLabel(CondLabel); 4392 if (!this->visitBool(Cond)) 4393 return false; 4394 } 4395 if (!this->jumpTrue(StartLabel)) 4396 return false; 4397 4398 this->fallthrough(EndLabel); 4399 this->emitLabel(EndLabel); 4400 return true; 4401 } 4402 4403 template <class Emitter> 4404 bool Compiler<Emitter>::visitForStmt(const ForStmt *S) { 4405 // for (Init; Cond; Inc) { Body } 4406 const Stmt *Init = S->getInit(); 4407 const Expr *Cond = S->getCond(); 4408 const Expr *Inc = S->getInc(); 4409 const Stmt *Body = S->getBody(); 4410 4411 LabelTy EndLabel = this->getLabel(); 4412 LabelTy CondLabel = this->getLabel(); 4413 LabelTy IncLabel = this->getLabel(); 4414 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4415 LocalScope<Emitter> Scope(this); 4416 4417 if (Init && !this->visitStmt(Init)) 4418 return false; 4419 this->fallthrough(CondLabel); 4420 this->emitLabel(CondLabel); 4421 4422 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4423 if (!visitDeclStmt(CondDecl)) 4424 return false; 4425 4426 if (Cond) { 4427 if (!this->visitBool(Cond)) 4428 return false; 4429 if (!this->jumpFalse(EndLabel)) 4430 return false; 4431 } 4432 4433 { 4434 DestructorScope<Emitter> DS(Scope); 4435 4436 if (Body && !this->visitLoopBody(Body)) 4437 return false; 4438 this->fallthrough(IncLabel); 4439 this->emitLabel(IncLabel); 4440 if (Inc && !this->discard(Inc)) 4441 return false; 4442 } 4443 4444 if (!this->jump(CondLabel)) 4445 return false; 4446 this->fallthrough(EndLabel); 4447 this->emitLabel(EndLabel); 4448 return true; 4449 } 4450 4451 template <class Emitter> 4452 bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) { 4453 const Stmt *Init = S->getInit(); 4454 const Expr *Cond = S->getCond(); 4455 const Expr *Inc = S->getInc(); 4456 const Stmt *Body = S->getBody(); 4457 const Stmt *BeginStmt = S->getBeginStmt(); 4458 const Stmt *RangeStmt = S->getRangeStmt(); 4459 const Stmt *EndStmt = S->getEndStmt(); 4460 const VarDecl *LoopVar = S->getLoopVariable(); 4461 4462 LabelTy EndLabel = this->getLabel(); 4463 LabelTy CondLabel = this->getLabel(); 4464 LabelTy IncLabel = this->getLabel(); 4465 LoopScope<Emitter> LS(this, EndLabel, IncLabel); 4466 4467 // Emit declarations needed in the loop. 4468 if (Init && !this->visitStmt(Init)) 4469 return false; 4470 if (!this->visitStmt(RangeStmt)) 4471 return false; 4472 if (!this->visitStmt(BeginStmt)) 4473 return false; 4474 if (!this->visitStmt(EndStmt)) 4475 return false; 4476 4477 // Now the condition as well as the loop variable assignment. 4478 this->fallthrough(CondLabel); 4479 this->emitLabel(CondLabel); 4480 if (!this->visitBool(Cond)) 4481 return false; 4482 if (!this->jumpFalse(EndLabel)) 4483 return false; 4484 4485 if (!this->visitVarDecl(LoopVar)) 4486 return false; 4487 4488 // Body. 4489 LocalScope<Emitter> Scope(this); 4490 { 4491 DestructorScope<Emitter> DS(Scope); 4492 4493 if (!this->visitLoopBody(Body)) 4494 return false; 4495 this->fallthrough(IncLabel); 4496 this->emitLabel(IncLabel); 4497 if (!this->discard(Inc)) 4498 return false; 4499 } 4500 4501 if (!this->jump(CondLabel)) 4502 return false; 4503 4504 this->fallthrough(EndLabel); 4505 this->emitLabel(EndLabel); 4506 return true; 4507 } 4508 4509 template <class Emitter> 4510 bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) { 4511 if (!BreakLabel) 4512 return false; 4513 4514 this->VarScope->emitDestructors(); 4515 return this->jump(*BreakLabel); 4516 } 4517 4518 template <class Emitter> 4519 bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) { 4520 if (!ContinueLabel) 4521 return false; 4522 4523 this->VarScope->emitDestructors(); 4524 return this->jump(*ContinueLabel); 4525 } 4526 4527 template <class Emitter> 4528 bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) { 4529 const Expr *Cond = S->getCond(); 4530 PrimType CondT = this->classifyPrim(Cond->getType()); 4531 4532 LabelTy EndLabel = this->getLabel(); 4533 OptLabelTy DefaultLabel = std::nullopt; 4534 unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false); 4535 4536 if (const auto *CondInit = S->getInit()) 4537 if (!visitStmt(CondInit)) 4538 return false; 4539 4540 if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt()) 4541 if (!visitDeclStmt(CondDecl)) 4542 return false; 4543 4544 // Initialize condition variable. 4545 if (!this->visit(Cond)) 4546 return false; 4547 if (!this->emitSetLocal(CondT, CondVar, S)) 4548 return false; 4549 4550 CaseMap CaseLabels; 4551 // Create labels and comparison ops for all case statements. 4552 for (const SwitchCase *SC = S->getSwitchCaseList(); SC; 4553 SC = SC->getNextSwitchCase()) { 4554 if (const auto *CS = dyn_cast<CaseStmt>(SC)) { 4555 // FIXME: Implement ranges. 4556 if (CS->caseStmtIsGNURange()) 4557 return false; 4558 CaseLabels[SC] = this->getLabel(); 4559 4560 const Expr *Value = CS->getLHS(); 4561 PrimType ValueT = this->classifyPrim(Value->getType()); 4562 4563 // Compare the case statement's value to the switch condition. 4564 if (!this->emitGetLocal(CondT, CondVar, CS)) 4565 return false; 4566 if (!this->visit(Value)) 4567 return false; 4568 4569 // Compare and jump to the case label. 4570 if (!this->emitEQ(ValueT, S)) 4571 return false; 4572 if (!this->jumpTrue(CaseLabels[CS])) 4573 return false; 4574 } else { 4575 assert(!DefaultLabel); 4576 DefaultLabel = this->getLabel(); 4577 } 4578 } 4579 4580 // If none of the conditions above were true, fall through to the default 4581 // statement or jump after the switch statement. 4582 if (DefaultLabel) { 4583 if (!this->jump(*DefaultLabel)) 4584 return false; 4585 } else { 4586 if (!this->jump(EndLabel)) 4587 return false; 4588 } 4589 4590 SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel); 4591 if (!this->visitStmt(S->getBody())) 4592 return false; 4593 this->emitLabel(EndLabel); 4594 return true; 4595 } 4596 4597 template <class Emitter> 4598 bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) { 4599 this->emitLabel(CaseLabels[S]); 4600 return this->visitStmt(S->getSubStmt()); 4601 } 4602 4603 template <class Emitter> 4604 bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) { 4605 this->emitLabel(*DefaultLabel); 4606 return this->visitStmt(S->getSubStmt()); 4607 } 4608 4609 template <class Emitter> 4610 bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) { 4611 if (this->Ctx.getLangOpts().CXXAssumptions && 4612 !this->Ctx.getLangOpts().MSVCCompat) { 4613 for (const Attr *A : S->getAttrs()) { 4614 auto *AA = dyn_cast<CXXAssumeAttr>(A); 4615 if (!AA) 4616 continue; 4617 4618 assert(isa<NullStmt>(S->getSubStmt())); 4619 4620 const Expr *Assumption = AA->getAssumption(); 4621 if (Assumption->isValueDependent()) 4622 return false; 4623 4624 if (Assumption->HasSideEffects(this->Ctx.getASTContext())) 4625 continue; 4626 4627 // Evaluate assumption. 4628 if (!this->visitBool(Assumption)) 4629 return false; 4630 4631 if (!this->emitAssume(Assumption)) 4632 return false; 4633 } 4634 } 4635 4636 // Ignore other attributes. 4637 return this->visitStmt(S->getSubStmt()); 4638 } 4639 4640 template <class Emitter> 4641 bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) { 4642 // Ignore all handlers. 4643 return this->visitStmt(S->getTryBlock()); 4644 } 4645 4646 template <class Emitter> 4647 bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) { 4648 assert(MD->isLambdaStaticInvoker()); 4649 assert(MD->hasBody()); 4650 assert(cast<CompoundStmt>(MD->getBody())->body_empty()); 4651 4652 const CXXRecordDecl *ClosureClass = MD->getParent(); 4653 const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator(); 4654 assert(ClosureClass->captures_begin() == ClosureClass->captures_end()); 4655 const Function *Func = this->getFunction(LambdaCallOp); 4656 if (!Func) 4657 return false; 4658 assert(Func->hasThisPointer()); 4659 assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO())); 4660 4661 if (Func->hasRVO()) { 4662 if (!this->emitRVOPtr(MD)) 4663 return false; 4664 } 4665 4666 // The lambda call operator needs an instance pointer, but we don't have 4667 // one here, and we don't need one either because the lambda cannot have 4668 // any captures, as verified above. Emit a null pointer. This is then 4669 // special-cased when interpreting to not emit any misleading diagnostics. 4670 if (!this->emitNullPtr(nullptr, MD)) 4671 return false; 4672 4673 // Forward all arguments from the static invoker to the lambda call operator. 4674 for (const ParmVarDecl *PVD : MD->parameters()) { 4675 auto It = this->Params.find(PVD); 4676 assert(It != this->Params.end()); 4677 4678 // We do the lvalue-to-rvalue conversion manually here, so no need 4679 // to care about references. 4680 PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr); 4681 if (!this->emitGetParam(ParamType, It->second.Offset, MD)) 4682 return false; 4683 } 4684 4685 if (!this->emitCall(Func, 0, LambdaCallOp)) 4686 return false; 4687 4688 this->emitCleanup(); 4689 if (ReturnType) 4690 return this->emitRet(*ReturnType, MD); 4691 4692 // Nothing to do, since we emitted the RVO pointer above. 4693 return this->emitRetVoid(MD); 4694 } 4695 4696 template <class Emitter> 4697 bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) { 4698 // Classify the return type. 4699 ReturnType = this->classify(F->getReturnType()); 4700 4701 auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset, 4702 const Expr *InitExpr) -> bool { 4703 // We don't know what to do with these, so just return false. 4704 if (InitExpr->getType().isNull()) 4705 return false; 4706 4707 if (std::optional<PrimType> T = this->classify(InitExpr)) { 4708 if (!this->visit(InitExpr)) 4709 return false; 4710 4711 if (F->isBitField()) 4712 return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr); 4713 return this->emitInitThisField(*T, FieldOffset, InitExpr); 4714 } 4715 // Non-primitive case. Get a pointer to the field-to-initialize 4716 // on the stack and call visitInitialzer() for it. 4717 InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset)); 4718 if (!this->emitGetPtrThisField(FieldOffset, InitExpr)) 4719 return false; 4720 4721 if (!this->visitInitializer(InitExpr)) 4722 return false; 4723 4724 return this->emitPopPtr(InitExpr); 4725 }; 4726 4727 // Emit custom code if this is a lambda static invoker. 4728 if (const auto *MD = dyn_cast<CXXMethodDecl>(F); 4729 MD && MD->isLambdaStaticInvoker()) 4730 return this->emitLambdaStaticInvokerBody(MD); 4731 4732 // Constructor. Set up field initializers. 4733 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F)) { 4734 const RecordDecl *RD = Ctor->getParent(); 4735 const Record *R = this->getRecord(RD); 4736 if (!R) 4737 return false; 4738 4739 InitLinkScope<Emitter> InitScope(this, InitLink::This()); 4740 for (const auto *Init : Ctor->inits()) { 4741 // Scope needed for the initializers. 4742 BlockScope<Emitter> Scope(this); 4743 4744 const Expr *InitExpr = Init->getInit(); 4745 if (const FieldDecl *Member = Init->getMember()) { 4746 const Record::Field *F = R->getField(Member); 4747 4748 if (!emitFieldInitializer(F, F->Offset, InitExpr)) 4749 return false; 4750 } else if (const Type *Base = Init->getBaseClass()) { 4751 const auto *BaseDecl = Base->getAsCXXRecordDecl(); 4752 assert(BaseDecl); 4753 4754 if (Init->isBaseVirtual()) { 4755 assert(R->getVirtualBase(BaseDecl)); 4756 if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr)) 4757 return false; 4758 4759 } else { 4760 // Base class initializer. 4761 // Get This Base and call initializer on it. 4762 const Record::Base *B = R->getBase(BaseDecl); 4763 assert(B); 4764 if (!this->emitGetPtrThisBase(B->Offset, InitExpr)) 4765 return false; 4766 } 4767 4768 if (!this->visitInitializer(InitExpr)) 4769 return false; 4770 if (!this->emitFinishInitPop(InitExpr)) 4771 return false; 4772 } else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) { 4773 assert(IFD->getChainingSize() >= 2); 4774 4775 unsigned NestedFieldOffset = 0; 4776 const Record::Field *NestedField = nullptr; 4777 for (const NamedDecl *ND : IFD->chain()) { 4778 const auto *FD = cast<FieldDecl>(ND); 4779 const Record *FieldRecord = 4780 this->P.getOrCreateRecord(FD->getParent()); 4781 assert(FieldRecord); 4782 4783 NestedField = FieldRecord->getField(FD); 4784 assert(NestedField); 4785 4786 NestedFieldOffset += NestedField->Offset; 4787 } 4788 assert(NestedField); 4789 4790 if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr)) 4791 return false; 4792 } else { 4793 assert(Init->isDelegatingInitializer()); 4794 if (!this->emitThis(InitExpr)) 4795 return false; 4796 if (!this->visitInitializer(Init->getInit())) 4797 return false; 4798 if (!this->emitPopPtr(InitExpr)) 4799 return false; 4800 } 4801 4802 if (!Scope.destroyLocals()) 4803 return false; 4804 } 4805 } 4806 4807 if (const auto *Body = F->getBody()) 4808 if (!visitStmt(Body)) 4809 return false; 4810 4811 // Emit a guard return to protect against a code path missing one. 4812 if (F->getReturnType()->isVoidType()) 4813 return this->emitRetVoid(SourceInfo{}); 4814 return this->emitNoRet(SourceInfo{}); 4815 } 4816 4817 template <class Emitter> 4818 bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) { 4819 const Expr *SubExpr = E->getSubExpr(); 4820 if (SubExpr->getType()->isAnyComplexType()) 4821 return this->VisitComplexUnaryOperator(E); 4822 std::optional<PrimType> T = classify(SubExpr->getType()); 4823 4824 switch (E->getOpcode()) { 4825 case UO_PostInc: { // x++ 4826 if (!Ctx.getLangOpts().CPlusPlus14) 4827 return this->emitInvalid(E); 4828 if (!T) 4829 return this->emitError(E); 4830 4831 if (!this->visit(SubExpr)) 4832 return false; 4833 4834 if (T == PT_Ptr || T == PT_FnPtr) { 4835 if (!this->emitIncPtr(E)) 4836 return false; 4837 4838 return DiscardResult ? this->emitPopPtr(E) : true; 4839 } 4840 4841 if (T == PT_Float) { 4842 return DiscardResult ? this->emitIncfPop(getRoundingMode(E), E) 4843 : this->emitIncf(getRoundingMode(E), E); 4844 } 4845 4846 return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E); 4847 } 4848 case UO_PostDec: { // x-- 4849 if (!Ctx.getLangOpts().CPlusPlus14) 4850 return this->emitInvalid(E); 4851 if (!T) 4852 return this->emitError(E); 4853 4854 if (!this->visit(SubExpr)) 4855 return false; 4856 4857 if (T == PT_Ptr || T == PT_FnPtr) { 4858 if (!this->emitDecPtr(E)) 4859 return false; 4860 4861 return DiscardResult ? this->emitPopPtr(E) : true; 4862 } 4863 4864 if (T == PT_Float) { 4865 return DiscardResult ? this->emitDecfPop(getRoundingMode(E), E) 4866 : this->emitDecf(getRoundingMode(E), E); 4867 } 4868 4869 return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E); 4870 } 4871 case UO_PreInc: { // ++x 4872 if (!Ctx.getLangOpts().CPlusPlus14) 4873 return this->emitInvalid(E); 4874 if (!T) 4875 return this->emitError(E); 4876 4877 if (!this->visit(SubExpr)) 4878 return false; 4879 4880 if (T == PT_Ptr || T == PT_FnPtr) { 4881 if (!this->emitLoadPtr(E)) 4882 return false; 4883 if (!this->emitConstUint8(1, E)) 4884 return false; 4885 if (!this->emitAddOffsetUint8(E)) 4886 return false; 4887 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 4888 } 4889 4890 // Post-inc and pre-inc are the same if the value is to be discarded. 4891 if (DiscardResult) { 4892 if (T == PT_Float) 4893 return this->emitIncfPop(getRoundingMode(E), E); 4894 return this->emitIncPop(*T, E); 4895 } 4896 4897 if (T == PT_Float) { 4898 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 4899 if (!this->emitLoadFloat(E)) 4900 return false; 4901 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 4902 return false; 4903 if (!this->emitAddf(getRoundingMode(E), E)) 4904 return false; 4905 if (!this->emitStoreFloat(E)) 4906 return false; 4907 } else { 4908 assert(isIntegralType(*T)); 4909 if (!this->emitLoad(*T, E)) 4910 return false; 4911 if (!this->emitConst(1, E)) 4912 return false; 4913 if (!this->emitAdd(*T, E)) 4914 return false; 4915 if (!this->emitStore(*T, E)) 4916 return false; 4917 } 4918 return E->isGLValue() || this->emitLoadPop(*T, E); 4919 } 4920 case UO_PreDec: { // --x 4921 if (!Ctx.getLangOpts().CPlusPlus14) 4922 return this->emitInvalid(E); 4923 if (!T) 4924 return this->emitError(E); 4925 4926 if (!this->visit(SubExpr)) 4927 return false; 4928 4929 if (T == PT_Ptr || T == PT_FnPtr) { 4930 if (!this->emitLoadPtr(E)) 4931 return false; 4932 if (!this->emitConstUint8(1, E)) 4933 return false; 4934 if (!this->emitSubOffsetUint8(E)) 4935 return false; 4936 return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E); 4937 } 4938 4939 // Post-dec and pre-dec are the same if the value is to be discarded. 4940 if (DiscardResult) { 4941 if (T == PT_Float) 4942 return this->emitDecfPop(getRoundingMode(E), E); 4943 return this->emitDecPop(*T, E); 4944 } 4945 4946 if (T == PT_Float) { 4947 const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType()); 4948 if (!this->emitLoadFloat(E)) 4949 return false; 4950 if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E)) 4951 return false; 4952 if (!this->emitSubf(getRoundingMode(E), E)) 4953 return false; 4954 if (!this->emitStoreFloat(E)) 4955 return false; 4956 } else { 4957 assert(isIntegralType(*T)); 4958 if (!this->emitLoad(*T, E)) 4959 return false; 4960 if (!this->emitConst(1, E)) 4961 return false; 4962 if (!this->emitSub(*T, E)) 4963 return false; 4964 if (!this->emitStore(*T, E)) 4965 return false; 4966 } 4967 return E->isGLValue() || this->emitLoadPop(*T, E); 4968 } 4969 case UO_LNot: // !x 4970 if (!T) 4971 return this->emitError(E); 4972 4973 if (DiscardResult) 4974 return this->discard(SubExpr); 4975 4976 if (!this->visitBool(SubExpr)) 4977 return false; 4978 4979 if (!this->emitInvBool(E)) 4980 return false; 4981 4982 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 4983 return this->emitCast(PT_Bool, ET, E); 4984 return true; 4985 case UO_Minus: // -x 4986 if (!T) 4987 return this->emitError(E); 4988 4989 if (!this->visit(SubExpr)) 4990 return false; 4991 return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E); 4992 case UO_Plus: // +x 4993 if (!T) 4994 return this->emitError(E); 4995 4996 if (!this->visit(SubExpr)) // noop 4997 return false; 4998 return DiscardResult ? this->emitPop(*T, E) : true; 4999 case UO_AddrOf: // &x 5000 if (E->getType()->isMemberPointerType()) { 5001 // C++11 [expr.unary.op]p3 has very strict rules on how the address of a 5002 // member can be formed. 5003 return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E); 5004 } 5005 // We should already have a pointer when we get here. 5006 return this->delegate(SubExpr); 5007 case UO_Deref: // *x 5008 if (DiscardResult) 5009 return this->discard(SubExpr); 5010 return this->visit(SubExpr); 5011 case UO_Not: // ~x 5012 if (!T) 5013 return this->emitError(E); 5014 5015 if (!this->visit(SubExpr)) 5016 return false; 5017 return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E); 5018 case UO_Real: // __real x 5019 assert(T); 5020 return this->delegate(SubExpr); 5021 case UO_Imag: { // __imag x 5022 assert(T); 5023 if (!this->discard(SubExpr)) 5024 return false; 5025 return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr); 5026 } 5027 case UO_Extension: 5028 return this->delegate(SubExpr); 5029 case UO_Coawait: 5030 assert(false && "Unhandled opcode"); 5031 } 5032 5033 return false; 5034 } 5035 5036 template <class Emitter> 5037 bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) { 5038 const Expr *SubExpr = E->getSubExpr(); 5039 assert(SubExpr->getType()->isAnyComplexType()); 5040 5041 if (DiscardResult) 5042 return this->discard(SubExpr); 5043 5044 std::optional<PrimType> ResT = classify(E); 5045 auto prepareResult = [=]() -> bool { 5046 if (!ResT && !Initializing) { 5047 std::optional<unsigned> LocalIndex = allocateLocal(SubExpr); 5048 if (!LocalIndex) 5049 return false; 5050 return this->emitGetPtrLocal(*LocalIndex, E); 5051 } 5052 5053 return true; 5054 }; 5055 5056 // The offset of the temporary, if we created one. 5057 unsigned SubExprOffset = ~0u; 5058 auto createTemp = [=, &SubExprOffset]() -> bool { 5059 SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false); 5060 if (!this->visit(SubExpr)) 5061 return false; 5062 return this->emitSetLocal(PT_Ptr, SubExprOffset, E); 5063 }; 5064 5065 PrimType ElemT = classifyComplexElementType(SubExpr->getType()); 5066 auto getElem = [=](unsigned Offset, unsigned Index) -> bool { 5067 if (!this->emitGetLocal(PT_Ptr, Offset, E)) 5068 return false; 5069 return this->emitArrayElemPop(ElemT, Index, E); 5070 }; 5071 5072 switch (E->getOpcode()) { 5073 case UO_Minus: 5074 if (!prepareResult()) 5075 return false; 5076 if (!createTemp()) 5077 return false; 5078 for (unsigned I = 0; I != 2; ++I) { 5079 if (!getElem(SubExprOffset, I)) 5080 return false; 5081 if (!this->emitNeg(ElemT, E)) 5082 return false; 5083 if (!this->emitInitElem(ElemT, I, E)) 5084 return false; 5085 } 5086 break; 5087 5088 case UO_Plus: // +x 5089 case UO_AddrOf: // &x 5090 case UO_Deref: // *x 5091 return this->delegate(SubExpr); 5092 5093 case UO_LNot: 5094 if (!this->visit(SubExpr)) 5095 return false; 5096 if (!this->emitComplexBoolCast(SubExpr)) 5097 return false; 5098 if (!this->emitInvBool(E)) 5099 return false; 5100 if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool) 5101 return this->emitCast(PT_Bool, ET, E); 5102 return true; 5103 5104 case UO_Real: 5105 return this->emitComplexReal(SubExpr); 5106 5107 case UO_Imag: 5108 if (!this->visit(SubExpr)) 5109 return false; 5110 5111 if (SubExpr->isLValue()) { 5112 if (!this->emitConstUint8(1, E)) 5113 return false; 5114 return this->emitArrayElemPtrPopUint8(E); 5115 } 5116 5117 // Since our _Complex implementation does not map to a primitive type, 5118 // we sometimes have to do the lvalue-to-rvalue conversion here manually. 5119 return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E); 5120 5121 case UO_Not: // ~x 5122 if (!this->visit(SubExpr)) 5123 return false; 5124 // Negate the imaginary component. 5125 if (!this->emitArrayElem(ElemT, 1, E)) 5126 return false; 5127 if (!this->emitNeg(ElemT, E)) 5128 return false; 5129 if (!this->emitInitElem(ElemT, 1, E)) 5130 return false; 5131 return DiscardResult ? this->emitPopPtr(E) : true; 5132 5133 case UO_Extension: 5134 return this->delegate(SubExpr); 5135 5136 default: 5137 return this->emitInvalid(E); 5138 } 5139 5140 return true; 5141 } 5142 5143 template <class Emitter> 5144 bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) { 5145 if (DiscardResult) 5146 return true; 5147 5148 if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) { 5149 return this->emitConst(ECD->getInitVal(), E); 5150 } else if (const auto *BD = dyn_cast<BindingDecl>(D)) { 5151 return this->visit(BD->getBinding()); 5152 } else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) { 5153 const Function *F = getFunction(FuncDecl); 5154 return F && this->emitGetFnPtr(F, E); 5155 } else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) { 5156 if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) { 5157 if (!this->emitGetPtrGlobal(*Index, E)) 5158 return false; 5159 if (std::optional<PrimType> T = classify(E->getType())) { 5160 if (!this->visitAPValue(TPOD->getValue(), *T, E)) 5161 return false; 5162 return this->emitInitGlobal(*T, *Index, E); 5163 } 5164 return this->visitAPValueInitializer(TPOD->getValue(), E); 5165 } 5166 return false; 5167 } 5168 5169 // References are implemented via pointers, so when we see a DeclRefExpr 5170 // pointing to a reference, we need to get its value directly (i.e. the 5171 // pointer to the actual value) instead of a pointer to the pointer to the 5172 // value. 5173 bool IsReference = D->getType()->isReferenceType(); 5174 5175 // Check for local/global variables and parameters. 5176 if (auto It = Locals.find(D); It != Locals.end()) { 5177 const unsigned Offset = It->second.Offset; 5178 if (IsReference) 5179 return this->emitGetLocal(PT_Ptr, Offset, E); 5180 return this->emitGetPtrLocal(Offset, E); 5181 } else if (auto GlobalIndex = P.getGlobal(D)) { 5182 if (IsReference) { 5183 if (!Ctx.getLangOpts().CPlusPlus11) 5184 return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E); 5185 return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E); 5186 } 5187 5188 return this->emitGetPtrGlobal(*GlobalIndex, E); 5189 } else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { 5190 if (auto It = this->Params.find(PVD); It != this->Params.end()) { 5191 if (IsReference || !It->second.IsPtr) 5192 return this->emitGetParam(classifyPrim(E), It->second.Offset, E); 5193 5194 return this->emitGetPtrParam(It->second.Offset, E); 5195 } 5196 } 5197 5198 // In case we need to re-visit a declaration. 5199 auto revisit = [&](const VarDecl *VD) -> bool { 5200 auto VarState = this->visitDecl(VD); 5201 5202 if (VarState.notCreated()) 5203 return true; 5204 if (!VarState) 5205 return false; 5206 // Retry. 5207 return this->visitDeclRef(D, E); 5208 }; 5209 5210 // Handle lambda captures. 5211 if (auto It = this->LambdaCaptures.find(D); 5212 It != this->LambdaCaptures.end()) { 5213 auto [Offset, IsPtr] = It->second; 5214 5215 if (IsPtr) 5216 return this->emitGetThisFieldPtr(Offset, E); 5217 return this->emitGetPtrThisField(Offset, E); 5218 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(E); 5219 DRE && DRE->refersToEnclosingVariableOrCapture()) { 5220 if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture()) 5221 return revisit(VD); 5222 } 5223 5224 if (D != InitializingDecl) { 5225 // Try to lazily visit (or emit dummy pointers for) declarations 5226 // we haven't seen yet. 5227 if (Ctx.getLangOpts().CPlusPlus) { 5228 if (const auto *VD = dyn_cast<VarDecl>(D)) { 5229 const auto typeShouldBeVisited = [&](QualType T) -> bool { 5230 if (T.isConstant(Ctx.getASTContext())) 5231 return true; 5232 if (const auto *RT = T->getAs<ReferenceType>()) 5233 return RT->getPointeeType().isConstQualified(); 5234 return false; 5235 }; 5236 5237 // Visit local const variables like normal. 5238 if ((VD->hasGlobalStorage() || VD->isLocalVarDecl() || 5239 VD->isStaticDataMember()) && 5240 typeShouldBeVisited(VD->getType())) 5241 return revisit(VD); 5242 } 5243 } else { 5244 if (const auto *VD = dyn_cast<VarDecl>(D); 5245 VD && VD->getAnyInitializer() && 5246 VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak()) 5247 return revisit(VD); 5248 } 5249 } 5250 5251 if (std::optional<unsigned> I = P.getOrCreateDummy(D)) { 5252 if (!this->emitGetPtrGlobal(*I, E)) 5253 return false; 5254 if (E->getType()->isVoidType()) 5255 return true; 5256 // Convert the dummy pointer to another pointer type if we have to. 5257 if (PrimType PT = classifyPrim(E); PT != PT_Ptr) { 5258 if (isPtrType(PT)) 5259 return this->emitDecayPtr(PT_Ptr, PT, E); 5260 return false; 5261 } 5262 return true; 5263 } 5264 5265 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 5266 return this->emitInvalidDeclRef(DRE, E); 5267 return false; 5268 } 5269 5270 template <class Emitter> 5271 bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) { 5272 const auto *D = E->getDecl(); 5273 return this->visitDeclRef(D, E); 5274 } 5275 5276 template <class Emitter> void Compiler<Emitter>::emitCleanup() { 5277 for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent()) 5278 C->emitDestruction(); 5279 } 5280 5281 template <class Emitter> 5282 unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType, 5283 const QualType DerivedType) { 5284 const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * { 5285 if (const auto *PT = dyn_cast<PointerType>(Ty)) 5286 return PT->getPointeeType()->getAsCXXRecordDecl(); 5287 return Ty->getAsCXXRecordDecl(); 5288 }; 5289 const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType); 5290 const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType); 5291 5292 return Ctx.collectBaseOffset(BaseDecl, DerivedDecl); 5293 } 5294 5295 /// Emit casts from a PrimType to another PrimType. 5296 template <class Emitter> 5297 bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT, 5298 QualType ToQT, const Expr *E) { 5299 5300 if (FromT == PT_Float) { 5301 // Floating to floating. 5302 if (ToT == PT_Float) { 5303 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 5304 return this->emitCastFP(ToSem, getRoundingMode(E), E); 5305 } 5306 5307 if (ToT == PT_IntAP) 5308 return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT), E); 5309 if (ToT == PT_IntAPS) 5310 return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT), E); 5311 5312 // Float to integral. 5313 if (isIntegralType(ToT) || ToT == PT_Bool) 5314 return this->emitCastFloatingIntegral(ToT, E); 5315 } 5316 5317 if (isIntegralType(FromT) || FromT == PT_Bool) { 5318 if (ToT == PT_IntAP) 5319 return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E); 5320 if (ToT == PT_IntAPS) 5321 return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E); 5322 5323 // Integral to integral. 5324 if (isIntegralType(ToT) || ToT == PT_Bool) 5325 return FromT != ToT ? this->emitCast(FromT, ToT, E) : true; 5326 5327 if (ToT == PT_Float) { 5328 // Integral to floating. 5329 const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT); 5330 return this->emitCastIntegralFloating(FromT, ToSem, getRoundingMode(E), 5331 E); 5332 } 5333 } 5334 5335 return false; 5336 } 5337 5338 /// Emits __real(SubExpr) 5339 template <class Emitter> 5340 bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) { 5341 assert(SubExpr->getType()->isAnyComplexType()); 5342 5343 if (DiscardResult) 5344 return this->discard(SubExpr); 5345 5346 if (!this->visit(SubExpr)) 5347 return false; 5348 if (SubExpr->isLValue()) { 5349 if (!this->emitConstUint8(0, SubExpr)) 5350 return false; 5351 return this->emitArrayElemPtrPopUint8(SubExpr); 5352 } 5353 5354 // Rvalue, load the actual element. 5355 return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()), 5356 0, SubExpr); 5357 } 5358 5359 template <class Emitter> 5360 bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) { 5361 assert(!DiscardResult); 5362 PrimType ElemT = classifyComplexElementType(E->getType()); 5363 // We emit the expression (__real(E) != 0 || __imag(E) != 0) 5364 // for us, that means (bool)E[0] || (bool)E[1] 5365 if (!this->emitArrayElem(ElemT, 0, E)) 5366 return false; 5367 if (ElemT == PT_Float) { 5368 if (!this->emitCastFloatingIntegral(PT_Bool, E)) 5369 return false; 5370 } else { 5371 if (!this->emitCast(ElemT, PT_Bool, E)) 5372 return false; 5373 } 5374 5375 // We now have the bool value of E[0] on the stack. 5376 LabelTy LabelTrue = this->getLabel(); 5377 if (!this->jumpTrue(LabelTrue)) 5378 return false; 5379 5380 if (!this->emitArrayElemPop(ElemT, 1, E)) 5381 return false; 5382 if (ElemT == PT_Float) { 5383 if (!this->emitCastFloatingIntegral(PT_Bool, E)) 5384 return false; 5385 } else { 5386 if (!this->emitCast(ElemT, PT_Bool, E)) 5387 return false; 5388 } 5389 // Leave the boolean value of E[1] on the stack. 5390 LabelTy EndLabel = this->getLabel(); 5391 this->jump(EndLabel); 5392 5393 this->emitLabel(LabelTrue); 5394 if (!this->emitPopPtr(E)) 5395 return false; 5396 if (!this->emitConstBool(true, E)) 5397 return false; 5398 5399 this->fallthrough(EndLabel); 5400 this->emitLabel(EndLabel); 5401 5402 return true; 5403 } 5404 5405 template <class Emitter> 5406 bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS, 5407 const BinaryOperator *E) { 5408 assert(E->isComparisonOp()); 5409 assert(!Initializing); 5410 assert(!DiscardResult); 5411 5412 PrimType ElemT; 5413 bool LHSIsComplex; 5414 unsigned LHSOffset; 5415 if (LHS->getType()->isAnyComplexType()) { 5416 LHSIsComplex = true; 5417 ElemT = classifyComplexElementType(LHS->getType()); 5418 LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true, 5419 /*IsExtended=*/false); 5420 if (!this->visit(LHS)) 5421 return false; 5422 if (!this->emitSetLocal(PT_Ptr, LHSOffset, E)) 5423 return false; 5424 } else { 5425 LHSIsComplex = false; 5426 PrimType LHST = classifyPrim(LHS->getType()); 5427 LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false); 5428 if (!this->visit(LHS)) 5429 return false; 5430 if (!this->emitSetLocal(LHST, LHSOffset, E)) 5431 return false; 5432 } 5433 5434 bool RHSIsComplex; 5435 unsigned RHSOffset; 5436 if (RHS->getType()->isAnyComplexType()) { 5437 RHSIsComplex = true; 5438 ElemT = classifyComplexElementType(RHS->getType()); 5439 RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true, 5440 /*IsExtended=*/false); 5441 if (!this->visit(RHS)) 5442 return false; 5443 if (!this->emitSetLocal(PT_Ptr, RHSOffset, E)) 5444 return false; 5445 } else { 5446 RHSIsComplex = false; 5447 PrimType RHST = classifyPrim(RHS->getType()); 5448 RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false); 5449 if (!this->visit(RHS)) 5450 return false; 5451 if (!this->emitSetLocal(RHST, RHSOffset, E)) 5452 return false; 5453 } 5454 5455 auto getElem = [&](unsigned LocalOffset, unsigned Index, 5456 bool IsComplex) -> bool { 5457 if (IsComplex) { 5458 if (!this->emitGetLocal(PT_Ptr, LocalOffset, E)) 5459 return false; 5460 return this->emitArrayElemPop(ElemT, Index, E); 5461 } 5462 return this->emitGetLocal(ElemT, LocalOffset, E); 5463 }; 5464 5465 for (unsigned I = 0; I != 2; ++I) { 5466 // Get both values. 5467 if (!getElem(LHSOffset, I, LHSIsComplex)) 5468 return false; 5469 if (!getElem(RHSOffset, I, RHSIsComplex)) 5470 return false; 5471 // And compare them. 5472 if (!this->emitEQ(ElemT, E)) 5473 return false; 5474 5475 if (!this->emitCastBoolUint8(E)) 5476 return false; 5477 } 5478 5479 // We now have two bool values on the stack. Compare those. 5480 if (!this->emitAddUint8(E)) 5481 return false; 5482 if (!this->emitConstUint8(2, E)) 5483 return false; 5484 5485 if (E->getOpcode() == BO_EQ) { 5486 if (!this->emitEQUint8(E)) 5487 return false; 5488 } else if (E->getOpcode() == BO_NE) { 5489 if (!this->emitNEUint8(E)) 5490 return false; 5491 } else 5492 return false; 5493 5494 // In C, this returns an int. 5495 if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool) 5496 return this->emitCast(PT_Bool, ResT, E); 5497 return true; 5498 } 5499 5500 /// When calling this, we have a pointer of the local-to-destroy 5501 /// on the stack. 5502 /// Emit destruction of record types (or arrays of record types). 5503 template <class Emitter> 5504 bool Compiler<Emitter>::emitRecordDestruction(const Record *R) { 5505 assert(R); 5506 // First, destroy all fields. 5507 for (const Record::Field &Field : llvm::reverse(R->fields())) { 5508 const Descriptor *D = Field.Desc; 5509 if (!D->isPrimitive() && !D->isPrimitiveArray()) { 5510 if (!this->emitGetPtrField(Field.Offset, SourceInfo{})) 5511 return false; 5512 if (!this->emitDestruction(D)) 5513 return false; 5514 if (!this->emitPopPtr(SourceInfo{})) 5515 return false; 5516 } 5517 } 5518 5519 // FIXME: Unions need to be handled differently here. We don't want to 5520 // call the destructor of its members. 5521 5522 // Now emit the destructor and recurse into base classes. 5523 if (const CXXDestructorDecl *Dtor = R->getDestructor(); 5524 Dtor && !Dtor->isTrivial()) { 5525 const Function *DtorFunc = getFunction(Dtor); 5526 if (!DtorFunc) 5527 return false; 5528 assert(DtorFunc->hasThisPointer()); 5529 assert(DtorFunc->getNumParams() == 1); 5530 if (!this->emitDupPtr(SourceInfo{})) 5531 return false; 5532 if (!this->emitCall(DtorFunc, 0, SourceInfo{})) 5533 return false; 5534 } 5535 5536 for (const Record::Base &Base : llvm::reverse(R->bases())) { 5537 if (!this->emitGetPtrBase(Base.Offset, SourceInfo{})) 5538 return false; 5539 if (!this->emitRecordDestruction(Base.R)) 5540 return false; 5541 if (!this->emitPopPtr(SourceInfo{})) 5542 return false; 5543 } 5544 5545 // FIXME: Virtual bases. 5546 return true; 5547 } 5548 /// When calling this, we have a pointer of the local-to-destroy 5549 /// on the stack. 5550 /// Emit destruction of record types (or arrays of record types). 5551 template <class Emitter> 5552 bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc) { 5553 assert(Desc); 5554 assert(!Desc->isPrimitive()); 5555 assert(!Desc->isPrimitiveArray()); 5556 5557 // Arrays. 5558 if (Desc->isArray()) { 5559 const Descriptor *ElemDesc = Desc->ElemDesc; 5560 assert(ElemDesc); 5561 5562 // Don't need to do anything for these. 5563 if (ElemDesc->isPrimitiveArray()) 5564 return true; 5565 5566 // If this is an array of record types, check if we need 5567 // to call the element destructors at all. If not, try 5568 // to save the work. 5569 if (const Record *ElemRecord = ElemDesc->ElemRecord) { 5570 if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor(); 5571 !Dtor || Dtor->isTrivial()) 5572 return true; 5573 } 5574 5575 for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) { 5576 if (!this->emitConstUint64(I, SourceInfo{})) 5577 return false; 5578 if (!this->emitArrayElemPtrUint64(SourceInfo{})) 5579 return false; 5580 if (!this->emitDestruction(ElemDesc)) 5581 return false; 5582 if (!this->emitPopPtr(SourceInfo{})) 5583 return false; 5584 } 5585 return true; 5586 } 5587 5588 assert(Desc->ElemRecord); 5589 return this->emitRecordDestruction(Desc->ElemRecord); 5590 } 5591 5592 namespace clang { 5593 namespace interp { 5594 5595 template class Compiler<ByteCodeEmitter>; 5596 template class Compiler<EvalEmitter>; 5597 5598 } // namespace interp 5599 } // namespace clang 5600