xref: /freebsd/contrib/llvm-project/clang/lib/AST/Expr.cpp (revision 1ac55f4cb0001fed92329746c730aa9a947c09a5)
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/ComputeDependence.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/DependenceFlags.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/IgnoreExpr.h"
25 #include "clang/AST/Mangle.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CharInfo.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Lexer.h"
33 #include "clang/Lex/LiteralSupport.h"
34 #include "clang/Lex/Preprocessor.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cstring>
40 #include <optional>
41 using namespace clang;
42 
43 const Expr *Expr::getBestDynamicClassTypeExpr() const {
44   const Expr *E = this;
45   while (true) {
46     E = E->IgnoreParenBaseCasts();
47 
48     // Follow the RHS of a comma operator.
49     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
50       if (BO->getOpcode() == BO_Comma) {
51         E = BO->getRHS();
52         continue;
53       }
54     }
55 
56     // Step into initializer for materialized temporaries.
57     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
58       E = MTE->getSubExpr();
59       continue;
60     }
61 
62     break;
63   }
64 
65   return E;
66 }
67 
68 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
69   const Expr *E = getBestDynamicClassTypeExpr();
70   QualType DerivedType = E->getType();
71   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
72     DerivedType = PTy->getPointeeType();
73 
74   if (DerivedType->isDependentType())
75     return nullptr;
76 
77   const RecordType *Ty = DerivedType->castAs<RecordType>();
78   Decl *D = Ty->getDecl();
79   return cast<CXXRecordDecl>(D);
80 }
81 
82 const Expr *Expr::skipRValueSubobjectAdjustments(
83     SmallVectorImpl<const Expr *> &CommaLHSs,
84     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
85   const Expr *E = this;
86   while (true) {
87     E = E->IgnoreParens();
88 
89     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
90       if ((CE->getCastKind() == CK_DerivedToBase ||
91            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
92           E->getType()->isRecordType()) {
93         E = CE->getSubExpr();
94         auto *Derived =
95             cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
96         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
97         continue;
98       }
99 
100       if (CE->getCastKind() == CK_NoOp) {
101         E = CE->getSubExpr();
102         continue;
103       }
104     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
105       if (!ME->isArrow()) {
106         assert(ME->getBase()->getType()->isRecordType());
107         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
108           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
109             E = ME->getBase();
110             Adjustments.push_back(SubobjectAdjustment(Field));
111             continue;
112           }
113         }
114       }
115     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
116       if (BO->getOpcode() == BO_PtrMemD) {
117         assert(BO->getRHS()->isPRValue());
118         E = BO->getLHS();
119         const MemberPointerType *MPT =
120           BO->getRHS()->getType()->getAs<MemberPointerType>();
121         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
122         continue;
123       }
124       if (BO->getOpcode() == BO_Comma) {
125         CommaLHSs.push_back(BO->getLHS());
126         E = BO->getRHS();
127         continue;
128       }
129     }
130 
131     // Nothing changed.
132     break;
133   }
134   return E;
135 }
136 
137 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
138   const Expr *E = IgnoreParens();
139 
140   // If this value has _Bool type, it is obvious 0/1.
141   if (E->getType()->isBooleanType()) return true;
142   // If this is a non-scalar-integer type, we don't care enough to try.
143   if (!E->getType()->isIntegralOrEnumerationType()) return false;
144 
145   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
146     switch (UO->getOpcode()) {
147     case UO_Plus:
148       return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
149     case UO_LNot:
150       return true;
151     default:
152       return false;
153     }
154   }
155 
156   // Only look through implicit casts.  If the user writes
157   // '(int) (a && b)' treat it as an arbitrary int.
158   // FIXME: Should we look through any cast expression in !Semantic mode?
159   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
160     return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
161 
162   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
163     switch (BO->getOpcode()) {
164     default: return false;
165     case BO_LT:   // Relational operators.
166     case BO_GT:
167     case BO_LE:
168     case BO_GE:
169     case BO_EQ:   // Equality operators.
170     case BO_NE:
171     case BO_LAnd: // AND operator.
172     case BO_LOr:  // Logical OR operator.
173       return true;
174 
175     case BO_And:  // Bitwise AND operator.
176     case BO_Xor:  // Bitwise XOR operator.
177     case BO_Or:   // Bitwise OR operator.
178       // Handle things like (x==2)|(y==12).
179       return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
180              BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
181 
182     case BO_Comma:
183     case BO_Assign:
184       return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
185     }
186   }
187 
188   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
189     return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
190            CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
191 
192   if (isa<ObjCBoolLiteralExpr>(E))
193     return true;
194 
195   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
196     return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
197 
198   if (const FieldDecl *FD = E->getSourceBitField())
199     if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
200         !FD->getBitWidth()->isValueDependent() &&
201         FD->getBitWidthValue(FD->getASTContext()) == 1)
202       return true;
203 
204   return false;
205 }
206 
207 bool Expr::isFlexibleArrayMemberLike(
208     ASTContext &Context,
209     LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
210     bool IgnoreTemplateOrMacroSubstitution) const {
211 
212   // For compatibility with existing code, we treat arrays of length 0 or
213   // 1 as flexible array members.
214   const auto *CAT = Context.getAsConstantArrayType(getType());
215   if (CAT) {
216     llvm::APInt Size = CAT->getSize();
217 
218     using FAMKind = LangOptions::StrictFlexArraysLevelKind;
219 
220     if (StrictFlexArraysLevel == FAMKind::IncompleteOnly)
221       return false;
222 
223     // GCC extension, only allowed to represent a FAM.
224     if (Size == 0)
225       return true;
226 
227     if (StrictFlexArraysLevel == FAMKind::ZeroOrIncomplete && Size.uge(1))
228       return false;
229 
230     if (StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete && Size.uge(2))
231       return false;
232   } else if (!Context.getAsIncompleteArrayType(getType()))
233     return false;
234 
235   const Expr *E = IgnoreParens();
236 
237   const NamedDecl *ND = nullptr;
238   if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
239     ND = DRE->getDecl();
240   else if (const auto *ME = dyn_cast<MemberExpr>(E))
241     ND = ME->getMemberDecl();
242   else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
243     return IRE->getDecl()->getNextIvar() == nullptr;
244 
245   if (!ND)
246     return false;
247 
248   // A flexible array member must be the last member in the class.
249   // FIXME: If the base type of the member expr is not FD->getParent(),
250   // this should not be treated as a flexible array member access.
251   if (const auto *FD = dyn_cast<FieldDecl>(ND)) {
252     // GCC treats an array memeber of a union as an FAM if the size is one or
253     // zero.
254     if (CAT) {
255       llvm::APInt Size = CAT->getSize();
256       if (FD->getParent()->isUnion() && (Size.isZero() || Size.isOne()))
257         return true;
258     }
259 
260     // Don't consider sizes resulting from macro expansions or template argument
261     // substitution to form C89 tail-padded arrays.
262     if (IgnoreTemplateOrMacroSubstitution) {
263       TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
264       while (TInfo) {
265         TypeLoc TL = TInfo->getTypeLoc();
266         // Look through typedefs.
267         if (TypedefTypeLoc TTL = TL.getAsAdjusted<TypedefTypeLoc>()) {
268           const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
269           TInfo = TDL->getTypeSourceInfo();
270           continue;
271         }
272         if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
273           const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
274           if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
275             return false;
276         }
277         break;
278       }
279     }
280 
281     RecordDecl::field_iterator FI(
282         DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
283     return ++FI == FD->getParent()->field_end();
284   }
285 
286   return false;
287 }
288 
289 const ValueDecl *
290 Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const {
291   Expr::EvalResult Eval;
292 
293   if (EvaluateAsConstantExpr(Eval, Context)) {
294     APValue &Value = Eval.Val;
295 
296     if (Value.isMemberPointer())
297       return Value.getMemberPointerDecl();
298 
299     if (Value.isLValue() && Value.getLValueOffset().isZero())
300       return Value.getLValueBase().dyn_cast<const ValueDecl *>();
301   }
302 
303   return nullptr;
304 }
305 
306 // Amusing macro metaprogramming hack: check whether a class provides
307 // a more specific implementation of getExprLoc().
308 //
309 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
310 namespace {
311   /// This implementation is used when a class provides a custom
312   /// implementation of getExprLoc.
313   template <class E, class T>
314   SourceLocation getExprLocImpl(const Expr *expr,
315                                 SourceLocation (T::*v)() const) {
316     return static_cast<const E*>(expr)->getExprLoc();
317   }
318 
319   /// This implementation is used when a class doesn't provide
320   /// a custom implementation of getExprLoc.  Overload resolution
321   /// should pick it over the implementation above because it's
322   /// more specialized according to function template partial ordering.
323   template <class E>
324   SourceLocation getExprLocImpl(const Expr *expr,
325                                 SourceLocation (Expr::*v)() const) {
326     return static_cast<const E *>(expr)->getBeginLoc();
327   }
328 }
329 
330 SourceLocation Expr::getExprLoc() const {
331   switch (getStmtClass()) {
332   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
333 #define ABSTRACT_STMT(type)
334 #define STMT(type, base) \
335   case Stmt::type##Class: break;
336 #define EXPR(type, base) \
337   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
338 #include "clang/AST/StmtNodes.inc"
339   }
340   llvm_unreachable("unknown expression kind");
341 }
342 
343 //===----------------------------------------------------------------------===//
344 // Primary Expressions.
345 //===----------------------------------------------------------------------===//
346 
347 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
348   assert((Kind == ConstantExpr::RSK_APValue ||
349           Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
350          "Invalid StorageKind Value");
351   (void)Kind;
352 }
353 
354 ConstantExpr::ResultStorageKind
355 ConstantExpr::getStorageKind(const APValue &Value) {
356   switch (Value.getKind()) {
357   case APValue::None:
358   case APValue::Indeterminate:
359     return ConstantExpr::RSK_None;
360   case APValue::Int:
361     if (!Value.getInt().needsCleanup())
362       return ConstantExpr::RSK_Int64;
363     [[fallthrough]];
364   default:
365     return ConstantExpr::RSK_APValue;
366   }
367 }
368 
369 ConstantExpr::ResultStorageKind
370 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
371   if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
372     return ConstantExpr::RSK_Int64;
373   return ConstantExpr::RSK_APValue;
374 }
375 
376 ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind,
377                            bool IsImmediateInvocation)
378     : FullExpr(ConstantExprClass, SubExpr) {
379   ConstantExprBits.ResultKind = StorageKind;
380   ConstantExprBits.APValueKind = APValue::None;
381   ConstantExprBits.IsUnsigned = false;
382   ConstantExprBits.BitWidth = 0;
383   ConstantExprBits.HasCleanup = false;
384   ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
385 
386   if (StorageKind == ConstantExpr::RSK_APValue)
387     ::new (getTrailingObjects<APValue>()) APValue();
388 }
389 
390 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
391                                    ResultStorageKind StorageKind,
392                                    bool IsImmediateInvocation) {
393   assert(!isa<ConstantExpr>(E));
394   AssertResultStorageKind(StorageKind);
395 
396   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
397       StorageKind == ConstantExpr::RSK_APValue,
398       StorageKind == ConstantExpr::RSK_Int64);
399   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
400   return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
401 }
402 
403 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
404                                    const APValue &Result) {
405   ResultStorageKind StorageKind = getStorageKind(Result);
406   ConstantExpr *Self = Create(Context, E, StorageKind);
407   Self->SetResult(Result, Context);
408   return Self;
409 }
410 
411 ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind)
412     : FullExpr(ConstantExprClass, Empty) {
413   ConstantExprBits.ResultKind = StorageKind;
414 
415   if (StorageKind == ConstantExpr::RSK_APValue)
416     ::new (getTrailingObjects<APValue>()) APValue();
417 }
418 
419 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
420                                         ResultStorageKind StorageKind) {
421   AssertResultStorageKind(StorageKind);
422 
423   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
424       StorageKind == ConstantExpr::RSK_APValue,
425       StorageKind == ConstantExpr::RSK_Int64);
426   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
427   return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
428 }
429 
430 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
431   assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
432          "Invalid storage for this value kind");
433   ConstantExprBits.APValueKind = Value.getKind();
434   switch (ConstantExprBits.ResultKind) {
435   case RSK_None:
436     return;
437   case RSK_Int64:
438     Int64Result() = *Value.getInt().getRawData();
439     ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
440     ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
441     return;
442   case RSK_APValue:
443     if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
444       ConstantExprBits.HasCleanup = true;
445       Context.addDestruction(&APValueResult());
446     }
447     APValueResult() = std::move(Value);
448     return;
449   }
450   llvm_unreachable("Invalid ResultKind Bits");
451 }
452 
453 llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
454   switch (ConstantExprBits.ResultKind) {
455   case ConstantExpr::RSK_APValue:
456     return APValueResult().getInt();
457   case ConstantExpr::RSK_Int64:
458     return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
459                         ConstantExprBits.IsUnsigned);
460   default:
461     llvm_unreachable("invalid Accessor");
462   }
463 }
464 
465 APValue ConstantExpr::getAPValueResult() const {
466 
467   switch (ConstantExprBits.ResultKind) {
468   case ConstantExpr::RSK_APValue:
469     return APValueResult();
470   case ConstantExpr::RSK_Int64:
471     return APValue(
472         llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
473                      ConstantExprBits.IsUnsigned));
474   case ConstantExpr::RSK_None:
475     if (ConstantExprBits.APValueKind == APValue::Indeterminate)
476       return APValue::IndeterminateValue();
477     return APValue();
478   }
479   llvm_unreachable("invalid ResultKind");
480 }
481 
482 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
483                          bool RefersToEnclosingVariableOrCapture, QualType T,
484                          ExprValueKind VK, SourceLocation L,
485                          const DeclarationNameLoc &LocInfo,
486                          NonOdrUseReason NOUR)
487     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
488   DeclRefExprBits.HasQualifier = false;
489   DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
490   DeclRefExprBits.HasFoundDecl = false;
491   DeclRefExprBits.HadMultipleCandidates = false;
492   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
493       RefersToEnclosingVariableOrCapture;
494   DeclRefExprBits.NonOdrUseReason = NOUR;
495   DeclRefExprBits.Loc = L;
496   setDependence(computeDependence(this, Ctx));
497 }
498 
499 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
500                          NestedNameSpecifierLoc QualifierLoc,
501                          SourceLocation TemplateKWLoc, ValueDecl *D,
502                          bool RefersToEnclosingVariableOrCapture,
503                          const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
504                          const TemplateArgumentListInfo *TemplateArgs,
505                          QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
506     : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
507       DNLoc(NameInfo.getInfo()) {
508   DeclRefExprBits.Loc = NameInfo.getLoc();
509   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
510   if (QualifierLoc)
511     new (getTrailingObjects<NestedNameSpecifierLoc>())
512         NestedNameSpecifierLoc(QualifierLoc);
513   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
514   if (FoundD)
515     *getTrailingObjects<NamedDecl *>() = FoundD;
516   DeclRefExprBits.HasTemplateKWAndArgsInfo
517     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
518   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
519       RefersToEnclosingVariableOrCapture;
520   DeclRefExprBits.NonOdrUseReason = NOUR;
521   if (TemplateArgs) {
522     auto Deps = TemplateArgumentDependence::None;
523     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
524         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
525         Deps);
526     assert(!(Deps & TemplateArgumentDependence::Dependent) &&
527            "built a DeclRefExpr with dependent template args");
528   } else if (TemplateKWLoc.isValid()) {
529     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
530         TemplateKWLoc);
531   }
532   DeclRefExprBits.HadMultipleCandidates = 0;
533   setDependence(computeDependence(this, Ctx));
534 }
535 
536 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
537                                  NestedNameSpecifierLoc QualifierLoc,
538                                  SourceLocation TemplateKWLoc, ValueDecl *D,
539                                  bool RefersToEnclosingVariableOrCapture,
540                                  SourceLocation NameLoc, QualType T,
541                                  ExprValueKind VK, NamedDecl *FoundD,
542                                  const TemplateArgumentListInfo *TemplateArgs,
543                                  NonOdrUseReason NOUR) {
544   return Create(Context, QualifierLoc, TemplateKWLoc, D,
545                 RefersToEnclosingVariableOrCapture,
546                 DeclarationNameInfo(D->getDeclName(), NameLoc),
547                 T, VK, FoundD, TemplateArgs, NOUR);
548 }
549 
550 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
551                                  NestedNameSpecifierLoc QualifierLoc,
552                                  SourceLocation TemplateKWLoc, ValueDecl *D,
553                                  bool RefersToEnclosingVariableOrCapture,
554                                  const DeclarationNameInfo &NameInfo,
555                                  QualType T, ExprValueKind VK,
556                                  NamedDecl *FoundD,
557                                  const TemplateArgumentListInfo *TemplateArgs,
558                                  NonOdrUseReason NOUR) {
559   // Filter out cases where the found Decl is the same as the value refenenced.
560   if (D == FoundD)
561     FoundD = nullptr;
562 
563   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
564   std::size_t Size =
565       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
566                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
567           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
568           HasTemplateKWAndArgsInfo ? 1 : 0,
569           TemplateArgs ? TemplateArgs->size() : 0);
570 
571   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
572   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
573                                RefersToEnclosingVariableOrCapture, NameInfo,
574                                FoundD, TemplateArgs, T, VK, NOUR);
575 }
576 
577 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
578                                       bool HasQualifier,
579                                       bool HasFoundDecl,
580                                       bool HasTemplateKWAndArgsInfo,
581                                       unsigned NumTemplateArgs) {
582   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
583   std::size_t Size =
584       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
585                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
586           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
587           NumTemplateArgs);
588   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
589   return new (Mem) DeclRefExpr(EmptyShell());
590 }
591 
592 void DeclRefExpr::setDecl(ValueDecl *NewD) {
593   D = NewD;
594   if (getType()->isUndeducedType())
595     setType(NewD->getType());
596   setDependence(computeDependence(this, NewD->getASTContext()));
597 }
598 
599 SourceLocation DeclRefExpr::getBeginLoc() const {
600   if (hasQualifier())
601     return getQualifierLoc().getBeginLoc();
602   return getNameInfo().getBeginLoc();
603 }
604 SourceLocation DeclRefExpr::getEndLoc() const {
605   if (hasExplicitTemplateArgs())
606     return getRAngleLoc();
607   return getNameInfo().getEndLoc();
608 }
609 
610 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
611                                                    SourceLocation LParen,
612                                                    SourceLocation RParen,
613                                                    QualType ResultTy,
614                                                    TypeSourceInfo *TSI)
615     : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
616       OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
617   setTypeSourceInfo(TSI);
618   setDependence(computeDependence(this));
619 }
620 
621 SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
622                                                    QualType ResultTy)
623     : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
624 
625 SYCLUniqueStableNameExpr *
626 SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc,
627                                  SourceLocation LParen, SourceLocation RParen,
628                                  TypeSourceInfo *TSI) {
629   QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
630   return new (Ctx)
631       SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
632 }
633 
634 SYCLUniqueStableNameExpr *
635 SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) {
636   QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
637   return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
638 }
639 
640 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const {
641   return SYCLUniqueStableNameExpr::ComputeName(Context,
642                                                getTypeSourceInfo()->getType());
643 }
644 
645 std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context,
646                                                   QualType Ty) {
647   auto MangleCallback = [](ASTContext &Ctx,
648                            const NamedDecl *ND) -> std::optional<unsigned> {
649     if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
650       return RD->getDeviceLambdaManglingNumber();
651     return std::nullopt;
652   };
653 
654   std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
655       Context, Context.getDiagnostics(), MangleCallback)};
656 
657   std::string Buffer;
658   Buffer.reserve(128);
659   llvm::raw_string_ostream Out(Buffer);
660   Ctx->mangleTypeName(Ty, Out);
661 
662   return Out.str();
663 }
664 
665 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
666                                StringLiteral *SL)
667     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
668   PredefinedExprBits.Kind = IK;
669   assert((getIdentKind() == IK) &&
670          "IdentKind do not fit in PredefinedExprBitfields!");
671   bool HasFunctionName = SL != nullptr;
672   PredefinedExprBits.HasFunctionName = HasFunctionName;
673   PredefinedExprBits.Loc = L;
674   if (HasFunctionName)
675     setFunctionName(SL);
676   setDependence(computeDependence(this));
677 }
678 
679 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
680     : Expr(PredefinedExprClass, Empty) {
681   PredefinedExprBits.HasFunctionName = HasFunctionName;
682 }
683 
684 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
685                                        QualType FNTy, IdentKind IK,
686                                        StringLiteral *SL) {
687   bool HasFunctionName = SL != nullptr;
688   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
689                            alignof(PredefinedExpr));
690   return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
691 }
692 
693 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
694                                             bool HasFunctionName) {
695   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
696                            alignof(PredefinedExpr));
697   return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
698 }
699 
700 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
701   switch (IK) {
702   case Func:
703     return "__func__";
704   case Function:
705     return "__FUNCTION__";
706   case FuncDName:
707     return "__FUNCDNAME__";
708   case LFunction:
709     return "L__FUNCTION__";
710   case PrettyFunction:
711     return "__PRETTY_FUNCTION__";
712   case FuncSig:
713     return "__FUNCSIG__";
714   case LFuncSig:
715     return "L__FUNCSIG__";
716   case PrettyFunctionNoVirtual:
717     break;
718   }
719   llvm_unreachable("Unknown ident kind for PredefinedExpr");
720 }
721 
722 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
723 // expr" policy instead.
724 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
725   ASTContext &Context = CurrentDecl->getASTContext();
726 
727   if (IK == PredefinedExpr::FuncDName) {
728     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
729       std::unique_ptr<MangleContext> MC;
730       MC.reset(Context.createMangleContext());
731 
732       if (MC->shouldMangleDeclName(ND)) {
733         SmallString<256> Buffer;
734         llvm::raw_svector_ostream Out(Buffer);
735         GlobalDecl GD;
736         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
737           GD = GlobalDecl(CD, Ctor_Base);
738         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
739           GD = GlobalDecl(DD, Dtor_Base);
740         else if (ND->hasAttr<CUDAGlobalAttr>())
741           GD = GlobalDecl(cast<FunctionDecl>(ND));
742         else
743           GD = GlobalDecl(ND);
744         MC->mangleName(GD, Out);
745 
746         if (!Buffer.empty() && Buffer.front() == '\01')
747           return std::string(Buffer.substr(1));
748         return std::string(Buffer.str());
749       }
750       return std::string(ND->getIdentifier()->getName());
751     }
752     return "";
753   }
754   if (isa<BlockDecl>(CurrentDecl)) {
755     // For blocks we only emit something if it is enclosed in a function
756     // For top-level block we'd like to include the name of variable, but we
757     // don't have it at this point.
758     auto DC = CurrentDecl->getDeclContext();
759     if (DC->isFileContext())
760       return "";
761 
762     SmallString<256> Buffer;
763     llvm::raw_svector_ostream Out(Buffer);
764     if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
765       // For nested blocks, propagate up to the parent.
766       Out << ComputeName(IK, DCBlock);
767     else if (auto *DCDecl = dyn_cast<Decl>(DC))
768       Out << ComputeName(IK, DCDecl) << "_block_invoke";
769     return std::string(Out.str());
770   }
771   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
772     if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
773         IK != FuncSig && IK != LFuncSig)
774       return FD->getNameAsString();
775 
776     SmallString<256> Name;
777     llvm::raw_svector_ostream Out(Name);
778 
779     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
780       if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
781         Out << "virtual ";
782       if (MD->isStatic())
783         Out << "static ";
784     }
785 
786     PrintingPolicy Policy(Context.getLangOpts());
787     std::string Proto;
788     llvm::raw_string_ostream POut(Proto);
789 
790     const FunctionDecl *Decl = FD;
791     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
792       Decl = Pattern;
793     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
794     const FunctionProtoType *FT = nullptr;
795     if (FD->hasWrittenPrototype())
796       FT = dyn_cast<FunctionProtoType>(AFT);
797 
798     if (IK == FuncSig || IK == LFuncSig) {
799       switch (AFT->getCallConv()) {
800       case CC_C: POut << "__cdecl "; break;
801       case CC_X86StdCall: POut << "__stdcall "; break;
802       case CC_X86FastCall: POut << "__fastcall "; break;
803       case CC_X86ThisCall: POut << "__thiscall "; break;
804       case CC_X86VectorCall: POut << "__vectorcall "; break;
805       case CC_X86RegCall: POut << "__regcall "; break;
806       // Only bother printing the conventions that MSVC knows about.
807       default: break;
808       }
809     }
810 
811     FD->printQualifiedName(POut, Policy);
812 
813     POut << "(";
814     if (FT) {
815       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
816         if (i) POut << ", ";
817         POut << Decl->getParamDecl(i)->getType().stream(Policy);
818       }
819 
820       if (FT->isVariadic()) {
821         if (FD->getNumParams()) POut << ", ";
822         POut << "...";
823       } else if ((IK == FuncSig || IK == LFuncSig ||
824                   !Context.getLangOpts().CPlusPlus) &&
825                  !Decl->getNumParams()) {
826         POut << "void";
827       }
828     }
829     POut << ")";
830 
831     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
832       assert(FT && "We must have a written prototype in this case.");
833       if (FT->isConst())
834         POut << " const";
835       if (FT->isVolatile())
836         POut << " volatile";
837       RefQualifierKind Ref = MD->getRefQualifier();
838       if (Ref == RQ_LValue)
839         POut << " &";
840       else if (Ref == RQ_RValue)
841         POut << " &&";
842     }
843 
844     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
845     SpecsTy Specs;
846     const DeclContext *Ctx = FD->getDeclContext();
847     while (Ctx && isa<NamedDecl>(Ctx)) {
848       const ClassTemplateSpecializationDecl *Spec
849                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
850       if (Spec && !Spec->isExplicitSpecialization())
851         Specs.push_back(Spec);
852       Ctx = Ctx->getParent();
853     }
854 
855     std::string TemplateParams;
856     llvm::raw_string_ostream TOut(TemplateParams);
857     for (const ClassTemplateSpecializationDecl *D : llvm::reverse(Specs)) {
858       const TemplateParameterList *Params =
859           D->getSpecializedTemplate()->getTemplateParameters();
860       const TemplateArgumentList &Args = D->getTemplateArgs();
861       assert(Params->size() == Args.size());
862       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
863         StringRef Param = Params->getParam(i)->getName();
864         if (Param.empty()) continue;
865         TOut << Param << " = ";
866         Args.get(i).print(Policy, TOut,
867                           TemplateParameterList::shouldIncludeTypeForArgument(
868                               Policy, Params, i));
869         TOut << ", ";
870       }
871     }
872 
873     FunctionTemplateSpecializationInfo *FSI
874                                           = FD->getTemplateSpecializationInfo();
875     if (FSI && !FSI->isExplicitSpecialization()) {
876       const TemplateParameterList* Params
877                                   = FSI->getTemplate()->getTemplateParameters();
878       const TemplateArgumentList* Args = FSI->TemplateArguments;
879       assert(Params->size() == Args->size());
880       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
881         StringRef Param = Params->getParam(i)->getName();
882         if (Param.empty()) continue;
883         TOut << Param << " = ";
884         Args->get(i).print(Policy, TOut, /*IncludeType*/ true);
885         TOut << ", ";
886       }
887     }
888 
889     TOut.flush();
890     if (!TemplateParams.empty()) {
891       // remove the trailing comma and space
892       TemplateParams.resize(TemplateParams.size() - 2);
893       POut << " [" << TemplateParams << "]";
894     }
895 
896     POut.flush();
897 
898     // Print "auto" for all deduced return types. This includes C++1y return
899     // type deduction and lambdas. For trailing return types resolve the
900     // decltype expression. Otherwise print the real type when this is
901     // not a constructor or destructor.
902     if (isa<CXXMethodDecl>(FD) &&
903          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
904       Proto = "auto " + Proto;
905     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
906       FT->getReturnType()
907           ->getAs<DecltypeType>()
908           ->getUnderlyingType()
909           .getAsStringInternal(Proto, Policy);
910     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
911       AFT->getReturnType().getAsStringInternal(Proto, Policy);
912 
913     Out << Proto;
914 
915     return std::string(Name);
916   }
917   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
918     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
919       // Skip to its enclosing function or method, but not its enclosing
920       // CapturedDecl.
921       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
922         const Decl *D = Decl::castFromDeclContext(DC);
923         return ComputeName(IK, D);
924       }
925     llvm_unreachable("CapturedDecl not inside a function or method");
926   }
927   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
928     SmallString<256> Name;
929     llvm::raw_svector_ostream Out(Name);
930     Out << (MD->isInstanceMethod() ? '-' : '+');
931     Out << '[';
932 
933     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
934     // a null check to avoid a crash.
935     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
936       Out << *ID;
937 
938     if (const ObjCCategoryImplDecl *CID =
939         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
940       Out << '(' << *CID << ')';
941 
942     Out <<  ' ';
943     MD->getSelector().print(Out);
944     Out <<  ']';
945 
946     return std::string(Name);
947   }
948   if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
949     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
950     return "top level";
951   }
952   return "";
953 }
954 
955 void APNumericStorage::setIntValue(const ASTContext &C,
956                                    const llvm::APInt &Val) {
957   if (hasAllocation())
958     C.Deallocate(pVal);
959 
960   BitWidth = Val.getBitWidth();
961   unsigned NumWords = Val.getNumWords();
962   const uint64_t* Words = Val.getRawData();
963   if (NumWords > 1) {
964     pVal = new (C) uint64_t[NumWords];
965     std::copy(Words, Words + NumWords, pVal);
966   } else if (NumWords == 1)
967     VAL = Words[0];
968   else
969     VAL = 0;
970 }
971 
972 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
973                                QualType type, SourceLocation l)
974     : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
975   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
976   assert(V.getBitWidth() == C.getIntWidth(type) &&
977          "Integer type is not the correct size for constant.");
978   setValue(C, V);
979   setDependence(ExprDependence::None);
980 }
981 
982 IntegerLiteral *
983 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
984                        QualType type, SourceLocation l) {
985   return new (C) IntegerLiteral(C, V, type, l);
986 }
987 
988 IntegerLiteral *
989 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
990   return new (C) IntegerLiteral(Empty);
991 }
992 
993 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
994                                      QualType type, SourceLocation l,
995                                      unsigned Scale)
996     : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
997       Scale(Scale) {
998   assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
999   assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
1000          "Fixed point type is not the correct size for constant.");
1001   setValue(C, V);
1002   setDependence(ExprDependence::None);
1003 }
1004 
1005 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
1006                                                        const llvm::APInt &V,
1007                                                        QualType type,
1008                                                        SourceLocation l,
1009                                                        unsigned Scale) {
1010   return new (C) FixedPointLiteral(C, V, type, l, Scale);
1011 }
1012 
1013 FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
1014                                              EmptyShell Empty) {
1015   return new (C) FixedPointLiteral(Empty);
1016 }
1017 
1018 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
1019   // Currently the longest decimal number that can be printed is the max for an
1020   // unsigned long _Accum: 4294967295.99999999976716935634613037109375
1021   // which is 43 characters.
1022   SmallString<64> S;
1023   FixedPointValueToString(
1024       S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
1025   return std::string(S.str());
1026 }
1027 
1028 void CharacterLiteral::print(unsigned Val, CharacterKind Kind,
1029                              raw_ostream &OS) {
1030   switch (Kind) {
1031   case CharacterLiteral::Ascii:
1032     break; // no prefix.
1033   case CharacterLiteral::Wide:
1034     OS << 'L';
1035     break;
1036   case CharacterLiteral::UTF8:
1037     OS << "u8";
1038     break;
1039   case CharacterLiteral::UTF16:
1040     OS << 'u';
1041     break;
1042   case CharacterLiteral::UTF32:
1043     OS << 'U';
1044     break;
1045   }
1046 
1047   StringRef Escaped = escapeCStyle<EscapeChar::Single>(Val);
1048   if (!Escaped.empty()) {
1049     OS << "'" << Escaped << "'";
1050   } else {
1051     // A character literal might be sign-extended, which
1052     // would result in an invalid \U escape sequence.
1053     // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1054     // are not correctly handled.
1055     if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteral::Ascii)
1056       Val &= 0xFFu;
1057     if (Val < 256 && isPrintable((unsigned char)Val))
1058       OS << "'" << (char)Val << "'";
1059     else if (Val < 256)
1060       OS << "'\\x" << llvm::format("%02x", Val) << "'";
1061     else if (Val <= 0xFFFF)
1062       OS << "'\\u" << llvm::format("%04x", Val) << "'";
1063     else
1064       OS << "'\\U" << llvm::format("%08x", Val) << "'";
1065   }
1066 }
1067 
1068 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1069                                  bool isexact, QualType Type, SourceLocation L)
1070     : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1071   setSemantics(V.getSemantics());
1072   FloatingLiteralBits.IsExact = isexact;
1073   setValue(C, V);
1074   setDependence(ExprDependence::None);
1075 }
1076 
1077 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1078   : Expr(FloatingLiteralClass, Empty) {
1079   setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1080   FloatingLiteralBits.IsExact = false;
1081 }
1082 
1083 FloatingLiteral *
1084 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1085                         bool isexact, QualType Type, SourceLocation L) {
1086   return new (C) FloatingLiteral(C, V, isexact, Type, L);
1087 }
1088 
1089 FloatingLiteral *
1090 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1091   return new (C) FloatingLiteral(C, Empty);
1092 }
1093 
1094 /// getValueAsApproximateDouble - This returns the value as an inaccurate
1095 /// double.  Note that this may cause loss of precision, but is useful for
1096 /// debugging dumps, etc.
1097 double FloatingLiteral::getValueAsApproximateDouble() const {
1098   llvm::APFloat V = getValue();
1099   bool ignored;
1100   V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1101             &ignored);
1102   return V.convertToDouble();
1103 }
1104 
1105 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1106                                          StringKind SK) {
1107   unsigned CharByteWidth = 0;
1108   switch (SK) {
1109   case Ordinary:
1110   case UTF8:
1111     CharByteWidth = Target.getCharWidth();
1112     break;
1113   case Wide:
1114     CharByteWidth = Target.getWCharWidth();
1115     break;
1116   case UTF16:
1117     CharByteWidth = Target.getChar16Width();
1118     break;
1119   case UTF32:
1120     CharByteWidth = Target.getChar32Width();
1121     break;
1122   }
1123   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1124   CharByteWidth /= 8;
1125   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1126          "The only supported character byte widths are 1,2 and 4!");
1127   return CharByteWidth;
1128 }
1129 
1130 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1131                              StringKind Kind, bool Pascal, QualType Ty,
1132                              const SourceLocation *Loc,
1133                              unsigned NumConcatenated)
1134     : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1135   assert(Ctx.getAsConstantArrayType(Ty) &&
1136          "StringLiteral must be of constant array type!");
1137   unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1138   unsigned ByteLength = Str.size();
1139   assert((ByteLength % CharByteWidth == 0) &&
1140          "The size of the data must be a multiple of CharByteWidth!");
1141 
1142   // Avoid the expensive division. The compiler should be able to figure it
1143   // out by itself. However as of clang 7, even with the appropriate
1144   // llvm_unreachable added just here, it is not able to do so.
1145   unsigned Length;
1146   switch (CharByteWidth) {
1147   case 1:
1148     Length = ByteLength;
1149     break;
1150   case 2:
1151     Length = ByteLength / 2;
1152     break;
1153   case 4:
1154     Length = ByteLength / 4;
1155     break;
1156   default:
1157     llvm_unreachable("Unsupported character width!");
1158   }
1159 
1160   StringLiteralBits.Kind = Kind;
1161   StringLiteralBits.CharByteWidth = CharByteWidth;
1162   StringLiteralBits.IsPascal = Pascal;
1163   StringLiteralBits.NumConcatenated = NumConcatenated;
1164   *getTrailingObjects<unsigned>() = Length;
1165 
1166   // Initialize the trailing array of SourceLocation.
1167   // This is safe since SourceLocation is POD-like.
1168   std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1169               NumConcatenated * sizeof(SourceLocation));
1170 
1171   // Initialize the trailing array of char holding the string data.
1172   std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
1173 
1174   setDependence(ExprDependence::None);
1175 }
1176 
1177 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1178                              unsigned Length, unsigned CharByteWidth)
1179     : Expr(StringLiteralClass, Empty) {
1180   StringLiteralBits.CharByteWidth = CharByteWidth;
1181   StringLiteralBits.NumConcatenated = NumConcatenated;
1182   *getTrailingObjects<unsigned>() = Length;
1183 }
1184 
1185 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1186                                      StringKind Kind, bool Pascal, QualType Ty,
1187                                      const SourceLocation *Loc,
1188                                      unsigned NumConcatenated) {
1189   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1190                                1, NumConcatenated, Str.size()),
1191                            alignof(StringLiteral));
1192   return new (Mem)
1193       StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1194 }
1195 
1196 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1197                                           unsigned NumConcatenated,
1198                                           unsigned Length,
1199                                           unsigned CharByteWidth) {
1200   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1201                                1, NumConcatenated, Length * CharByteWidth),
1202                            alignof(StringLiteral));
1203   return new (Mem)
1204       StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1205 }
1206 
1207 void StringLiteral::outputString(raw_ostream &OS) const {
1208   switch (getKind()) {
1209   case Ordinary:
1210     break; // no prefix.
1211   case Wide:  OS << 'L'; break;
1212   case UTF8:  OS << "u8"; break;
1213   case UTF16: OS << 'u'; break;
1214   case UTF32: OS << 'U'; break;
1215   }
1216   OS << '"';
1217   static const char Hex[] = "0123456789ABCDEF";
1218 
1219   unsigned LastSlashX = getLength();
1220   for (unsigned I = 0, N = getLength(); I != N; ++I) {
1221     uint32_t Char = getCodeUnit(I);
1222     StringRef Escaped = escapeCStyle<EscapeChar::Double>(Char);
1223     if (Escaped.empty()) {
1224       // FIXME: Convert UTF-8 back to codepoints before rendering.
1225 
1226       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1227       // Leave invalid surrogates alone; we'll use \x for those.
1228       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1229           Char <= 0xdbff) {
1230         uint32_t Trail = getCodeUnit(I + 1);
1231         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1232           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1233           ++I;
1234         }
1235       }
1236 
1237       if (Char > 0xff) {
1238         // If this is a wide string, output characters over 0xff using \x
1239         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1240         // codepoint: use \x escapes for invalid codepoints.
1241         if (getKind() == Wide ||
1242             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1243           // FIXME: Is this the best way to print wchar_t?
1244           OS << "\\x";
1245           int Shift = 28;
1246           while ((Char >> Shift) == 0)
1247             Shift -= 4;
1248           for (/**/; Shift >= 0; Shift -= 4)
1249             OS << Hex[(Char >> Shift) & 15];
1250           LastSlashX = I;
1251           continue;
1252         }
1253 
1254         if (Char > 0xffff)
1255           OS << "\\U00"
1256              << Hex[(Char >> 20) & 15]
1257              << Hex[(Char >> 16) & 15];
1258         else
1259           OS << "\\u";
1260         OS << Hex[(Char >> 12) & 15]
1261            << Hex[(Char >>  8) & 15]
1262            << Hex[(Char >>  4) & 15]
1263            << Hex[(Char >>  0) & 15];
1264         continue;
1265       }
1266 
1267       // If we used \x... for the previous character, and this character is a
1268       // hexadecimal digit, prevent it being slurped as part of the \x.
1269       if (LastSlashX + 1 == I) {
1270         switch (Char) {
1271           case '0': case '1': case '2': case '3': case '4':
1272           case '5': case '6': case '7': case '8': case '9':
1273           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1274           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1275             OS << "\"\"";
1276         }
1277       }
1278 
1279       assert(Char <= 0xff &&
1280              "Characters above 0xff should already have been handled.");
1281 
1282       if (isPrintable(Char))
1283         OS << (char)Char;
1284       else  // Output anything hard as an octal escape.
1285         OS << '\\'
1286            << (char)('0' + ((Char >> 6) & 7))
1287            << (char)('0' + ((Char >> 3) & 7))
1288            << (char)('0' + ((Char >> 0) & 7));
1289     } else {
1290       // Handle some common non-printable cases to make dumps prettier.
1291       OS << Escaped;
1292     }
1293   }
1294   OS << '"';
1295 }
1296 
1297 /// getLocationOfByte - Return a source location that points to the specified
1298 /// byte of this string literal.
1299 ///
1300 /// Strings are amazingly complex.  They can be formed from multiple tokens and
1301 /// can have escape sequences in them in addition to the usual trigraph and
1302 /// escaped newline business.  This routine handles this complexity.
1303 ///
1304 /// The *StartToken sets the first token to be searched in this function and
1305 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1306 /// returning, it updates the *StartToken to the TokNo of the token being found
1307 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1308 /// string.
1309 /// Using these two parameters can reduce the time complexity from O(n^2) to
1310 /// O(n) if one wants to get the location of byte for all the tokens in a
1311 /// string.
1312 ///
1313 SourceLocation
1314 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1315                                  const LangOptions &Features,
1316                                  const TargetInfo &Target, unsigned *StartToken,
1317                                  unsigned *StartTokenByteOffset) const {
1318   assert((getKind() == StringLiteral::Ordinary ||
1319           getKind() == StringLiteral::UTF8) &&
1320          "Only narrow string literals are currently supported");
1321 
1322   // Loop over all of the tokens in this string until we find the one that
1323   // contains the byte we're looking for.
1324   unsigned TokNo = 0;
1325   unsigned StringOffset = 0;
1326   if (StartToken)
1327     TokNo = *StartToken;
1328   if (StartTokenByteOffset) {
1329     StringOffset = *StartTokenByteOffset;
1330     ByteNo -= StringOffset;
1331   }
1332   while (true) {
1333     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1334     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1335 
1336     // Get the spelling of the string so that we can get the data that makes up
1337     // the string literal, not the identifier for the macro it is potentially
1338     // expanded through.
1339     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1340 
1341     // Re-lex the token to get its length and original spelling.
1342     std::pair<FileID, unsigned> LocInfo =
1343         SM.getDecomposedLoc(StrTokSpellingLoc);
1344     bool Invalid = false;
1345     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1346     if (Invalid) {
1347       if (StartTokenByteOffset != nullptr)
1348         *StartTokenByteOffset = StringOffset;
1349       if (StartToken != nullptr)
1350         *StartToken = TokNo;
1351       return StrTokSpellingLoc;
1352     }
1353 
1354     const char *StrData = Buffer.data()+LocInfo.second;
1355 
1356     // Create a lexer starting at the beginning of this token.
1357     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1358                    Buffer.begin(), StrData, Buffer.end());
1359     Token TheTok;
1360     TheLexer.LexFromRawLexer(TheTok);
1361 
1362     // Use the StringLiteralParser to compute the length of the string in bytes.
1363     StringLiteralParser SLP(TheTok, SM, Features, Target);
1364     unsigned TokNumBytes = SLP.GetStringLength();
1365 
1366     // If the byte is in this token, return the location of the byte.
1367     if (ByteNo < TokNumBytes ||
1368         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1369       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1370 
1371       // Now that we know the offset of the token in the spelling, use the
1372       // preprocessor to get the offset in the original source.
1373       if (StartTokenByteOffset != nullptr)
1374         *StartTokenByteOffset = StringOffset;
1375       if (StartToken != nullptr)
1376         *StartToken = TokNo;
1377       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1378     }
1379 
1380     // Move to the next string token.
1381     StringOffset += TokNumBytes;
1382     ++TokNo;
1383     ByteNo -= TokNumBytes;
1384   }
1385 }
1386 
1387 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1388 /// corresponds to, e.g. "sizeof" or "[pre]++".
1389 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1390   switch (Op) {
1391 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1392 #include "clang/AST/OperationKinds.def"
1393   }
1394   llvm_unreachable("Unknown unary operator");
1395 }
1396 
1397 UnaryOperatorKind
1398 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1399   switch (OO) {
1400   default: llvm_unreachable("No unary operator for overloaded function");
1401   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1402   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1403   case OO_Amp:        return UO_AddrOf;
1404   case OO_Star:       return UO_Deref;
1405   case OO_Plus:       return UO_Plus;
1406   case OO_Minus:      return UO_Minus;
1407   case OO_Tilde:      return UO_Not;
1408   case OO_Exclaim:    return UO_LNot;
1409   case OO_Coawait:    return UO_Coawait;
1410   }
1411 }
1412 
1413 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1414   switch (Opc) {
1415   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1416   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1417   case UO_AddrOf: return OO_Amp;
1418   case UO_Deref: return OO_Star;
1419   case UO_Plus: return OO_Plus;
1420   case UO_Minus: return OO_Minus;
1421   case UO_Not: return OO_Tilde;
1422   case UO_LNot: return OO_Exclaim;
1423   case UO_Coawait: return OO_Coawait;
1424   default: return OO_None;
1425   }
1426 }
1427 
1428 
1429 //===----------------------------------------------------------------------===//
1430 // Postfix Operators.
1431 //===----------------------------------------------------------------------===//
1432 
1433 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1434                    ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1435                    SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1436                    unsigned MinNumArgs, ADLCallKind UsesADL)
1437     : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1438   NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1439   unsigned NumPreArgs = PreArgs.size();
1440   CallExprBits.NumPreArgs = NumPreArgs;
1441   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1442 
1443   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1444   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1445   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1446          "OffsetToTrailingObjects overflow!");
1447 
1448   CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1449 
1450   setCallee(Fn);
1451   for (unsigned I = 0; I != NumPreArgs; ++I)
1452     setPreArg(I, PreArgs[I]);
1453   for (unsigned I = 0; I != Args.size(); ++I)
1454     setArg(I, Args[I]);
1455   for (unsigned I = Args.size(); I != NumArgs; ++I)
1456     setArg(I, nullptr);
1457 
1458   this->computeDependence();
1459 
1460   CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1461   if (hasStoredFPFeatures())
1462     setStoredFPFeatures(FPFeatures);
1463 }
1464 
1465 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1466                    bool HasFPFeatures, EmptyShell Empty)
1467     : Expr(SC, Empty), NumArgs(NumArgs) {
1468   CallExprBits.NumPreArgs = NumPreArgs;
1469   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1470 
1471   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1472   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1473   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1474          "OffsetToTrailingObjects overflow!");
1475   CallExprBits.HasFPFeatures = HasFPFeatures;
1476 }
1477 
1478 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1479                            ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1480                            SourceLocation RParenLoc,
1481                            FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1482                            ADLCallKind UsesADL) {
1483   unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1484   unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1485       /*NumPreArgs=*/0, NumArgs, FPFeatures.requiresTrailingStorage());
1486   void *Mem =
1487       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1488   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1489                             RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1490 }
1491 
1492 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1493                                     ExprValueKind VK, SourceLocation RParenLoc,
1494                                     ADLCallKind UsesADL) {
1495   assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1496          "Misaligned memory in CallExpr::CreateTemporary!");
1497   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1498                             VK, RParenLoc, FPOptionsOverride(),
1499                             /*MinNumArgs=*/0, UsesADL);
1500 }
1501 
1502 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1503                                 bool HasFPFeatures, EmptyShell Empty) {
1504   unsigned SizeOfTrailingObjects =
1505       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1506   void *Mem =
1507       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1508   return new (Mem)
1509       CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1510 }
1511 
1512 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1513   switch (SC) {
1514   case CallExprClass:
1515     return sizeof(CallExpr);
1516   case CXXOperatorCallExprClass:
1517     return sizeof(CXXOperatorCallExpr);
1518   case CXXMemberCallExprClass:
1519     return sizeof(CXXMemberCallExpr);
1520   case UserDefinedLiteralClass:
1521     return sizeof(UserDefinedLiteral);
1522   case CUDAKernelCallExprClass:
1523     return sizeof(CUDAKernelCallExpr);
1524   default:
1525     llvm_unreachable("unexpected class deriving from CallExpr!");
1526   }
1527 }
1528 
1529 Decl *Expr::getReferencedDeclOfCallee() {
1530   Expr *CEE = IgnoreParenImpCasts();
1531 
1532   while (SubstNonTypeTemplateParmExpr *NTTP =
1533              dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1534     CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1535   }
1536 
1537   // If we're calling a dereference, look at the pointer instead.
1538   while (true) {
1539     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1540       if (BO->isPtrMemOp()) {
1541         CEE = BO->getRHS()->IgnoreParenImpCasts();
1542         continue;
1543       }
1544     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1545       if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1546           UO->getOpcode() == UO_Plus) {
1547         CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1548         continue;
1549       }
1550     }
1551     break;
1552   }
1553 
1554   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1555     return DRE->getDecl();
1556   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1557     return ME->getMemberDecl();
1558   if (auto *BE = dyn_cast<BlockExpr>(CEE))
1559     return BE->getBlockDecl();
1560 
1561   return nullptr;
1562 }
1563 
1564 /// If this is a call to a builtin, return the builtin ID. If not, return 0.
1565 unsigned CallExpr::getBuiltinCallee() const {
1566   auto *FDecl = getDirectCallee();
1567   return FDecl ? FDecl->getBuiltinID() : 0;
1568 }
1569 
1570 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1571   if (unsigned BI = getBuiltinCallee())
1572     return Ctx.BuiltinInfo.isUnevaluated(BI);
1573   return false;
1574 }
1575 
1576 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1577   const Expr *Callee = getCallee();
1578   QualType CalleeType = Callee->getType();
1579   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1580     CalleeType = FnTypePtr->getPointeeType();
1581   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1582     CalleeType = BPT->getPointeeType();
1583   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1584     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1585       return Ctx.VoidTy;
1586 
1587     if (isa<UnresolvedMemberExpr>(Callee->IgnoreParens()))
1588       return Ctx.DependentTy;
1589 
1590     // This should never be overloaded and so should never return null.
1591     CalleeType = Expr::findBoundMemberType(Callee);
1592     assert(!CalleeType.isNull());
1593   } else if (CalleeType->isDependentType() ||
1594              CalleeType->isSpecificPlaceholderType(BuiltinType::Overload)) {
1595     return Ctx.DependentTy;
1596   }
1597 
1598   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1599   return FnType->getReturnType();
1600 }
1601 
1602 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1603   // If the return type is a struct, union, or enum that is marked nodiscard,
1604   // then return the return type attribute.
1605   if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1606     if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1607       return A;
1608 
1609   for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD;
1610        TD = TD->desugar()->getAs<TypedefType>())
1611     if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1612       return A;
1613 
1614   // Otherwise, see if the callee is marked nodiscard and return that attribute
1615   // instead.
1616   const Decl *D = getCalleeDecl();
1617   return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1618 }
1619 
1620 SourceLocation CallExpr::getBeginLoc() const {
1621   if (isa<CXXOperatorCallExpr>(this))
1622     return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1623 
1624   SourceLocation begin = getCallee()->getBeginLoc();
1625   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1626     begin = getArg(0)->getBeginLoc();
1627   return begin;
1628 }
1629 SourceLocation CallExpr::getEndLoc() const {
1630   if (isa<CXXOperatorCallExpr>(this))
1631     return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1632 
1633   SourceLocation end = getRParenLoc();
1634   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1635     end = getArg(getNumArgs() - 1)->getEndLoc();
1636   return end;
1637 }
1638 
1639 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1640                                    SourceLocation OperatorLoc,
1641                                    TypeSourceInfo *tsi,
1642                                    ArrayRef<OffsetOfNode> comps,
1643                                    ArrayRef<Expr*> exprs,
1644                                    SourceLocation RParenLoc) {
1645   void *Mem = C.Allocate(
1646       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1647 
1648   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1649                                 RParenLoc);
1650 }
1651 
1652 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1653                                         unsigned numComps, unsigned numExprs) {
1654   void *Mem =
1655       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1656   return new (Mem) OffsetOfExpr(numComps, numExprs);
1657 }
1658 
1659 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1660                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1661                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1662                            SourceLocation RParenLoc)
1663     : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1664       OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1665       NumComps(comps.size()), NumExprs(exprs.size()) {
1666   for (unsigned i = 0; i != comps.size(); ++i)
1667     setComponent(i, comps[i]);
1668   for (unsigned i = 0; i != exprs.size(); ++i)
1669     setIndexExpr(i, exprs[i]);
1670 
1671   setDependence(computeDependence(this));
1672 }
1673 
1674 IdentifierInfo *OffsetOfNode::getFieldName() const {
1675   assert(getKind() == Field || getKind() == Identifier);
1676   if (getKind() == Field)
1677     return getField()->getIdentifier();
1678 
1679   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1680 }
1681 
1682 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1683     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1684     SourceLocation op, SourceLocation rp)
1685     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1686       OpLoc(op), RParenLoc(rp) {
1687   assert(ExprKind <= UETT_Last && "invalid enum value!");
1688   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1689   assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1690          "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1691   UnaryExprOrTypeTraitExprBits.IsType = false;
1692   Argument.Ex = E;
1693   setDependence(computeDependence(this));
1694 }
1695 
1696 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1697                        ValueDecl *MemberDecl,
1698                        const DeclarationNameInfo &NameInfo, QualType T,
1699                        ExprValueKind VK, ExprObjectKind OK,
1700                        NonOdrUseReason NOUR)
1701     : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1702       MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1703   assert(!NameInfo.getName() ||
1704          MemberDecl->getDeclName() == NameInfo.getName());
1705   MemberExprBits.IsArrow = IsArrow;
1706   MemberExprBits.HasQualifierOrFoundDecl = false;
1707   MemberExprBits.HasTemplateKWAndArgsInfo = false;
1708   MemberExprBits.HadMultipleCandidates = false;
1709   MemberExprBits.NonOdrUseReason = NOUR;
1710   MemberExprBits.OperatorLoc = OperatorLoc;
1711   setDependence(computeDependence(this));
1712 }
1713 
1714 MemberExpr *MemberExpr::Create(
1715     const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1716     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1717     ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1718     DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1719     QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1720   bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1721                         FoundDecl.getAccess() != MemberDecl->getAccess();
1722   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1723   std::size_t Size =
1724       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1725                        TemplateArgumentLoc>(
1726           HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1727           TemplateArgs ? TemplateArgs->size() : 0);
1728 
1729   void *Mem = C.Allocate(Size, alignof(MemberExpr));
1730   MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1731                                        NameInfo, T, VK, OK, NOUR);
1732 
1733   // FIXME: remove remaining dependence computation to computeDependence().
1734   auto Deps = E->getDependence();
1735   if (HasQualOrFound) {
1736     // FIXME: Wrong. We should be looking at the member declaration we found.
1737     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent())
1738       Deps |= ExprDependence::TypeValueInstantiation;
1739     else if (QualifierLoc &&
1740              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1741       Deps |= ExprDependence::Instantiation;
1742 
1743     E->MemberExprBits.HasQualifierOrFoundDecl = true;
1744 
1745     MemberExprNameQualifier *NQ =
1746         E->getTrailingObjects<MemberExprNameQualifier>();
1747     NQ->QualifierLoc = QualifierLoc;
1748     NQ->FoundDecl = FoundDecl;
1749   }
1750 
1751   E->MemberExprBits.HasTemplateKWAndArgsInfo =
1752       TemplateArgs || TemplateKWLoc.isValid();
1753 
1754   if (TemplateArgs) {
1755     auto TemplateArgDeps = TemplateArgumentDependence::None;
1756     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1757         TemplateKWLoc, *TemplateArgs,
1758         E->getTrailingObjects<TemplateArgumentLoc>(), TemplateArgDeps);
1759     if (TemplateArgDeps & TemplateArgumentDependence::Instantiation)
1760       Deps |= ExprDependence::Instantiation;
1761   } else if (TemplateKWLoc.isValid()) {
1762     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1763         TemplateKWLoc);
1764   }
1765   E->setDependence(Deps);
1766 
1767   return E;
1768 }
1769 
1770 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1771                                     bool HasQualifier, bool HasFoundDecl,
1772                                     bool HasTemplateKWAndArgsInfo,
1773                                     unsigned NumTemplateArgs) {
1774   assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1775          "template args but no template arg info?");
1776   bool HasQualOrFound = HasQualifier || HasFoundDecl;
1777   std::size_t Size =
1778       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1779                        TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1780                                             HasTemplateKWAndArgsInfo ? 1 : 0,
1781                                             NumTemplateArgs);
1782   void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1783   return new (Mem) MemberExpr(EmptyShell());
1784 }
1785 
1786 void MemberExpr::setMemberDecl(ValueDecl *NewD) {
1787   MemberDecl = NewD;
1788   if (getType()->isUndeducedType())
1789     setType(NewD->getType());
1790   setDependence(computeDependence(this));
1791 }
1792 
1793 SourceLocation MemberExpr::getBeginLoc() const {
1794   if (isImplicitAccess()) {
1795     if (hasQualifier())
1796       return getQualifierLoc().getBeginLoc();
1797     return MemberLoc;
1798   }
1799 
1800   // FIXME: We don't want this to happen. Rather, we should be able to
1801   // detect all kinds of implicit accesses more cleanly.
1802   SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1803   if (BaseStartLoc.isValid())
1804     return BaseStartLoc;
1805   return MemberLoc;
1806 }
1807 SourceLocation MemberExpr::getEndLoc() const {
1808   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1809   if (hasExplicitTemplateArgs())
1810     EndLoc = getRAngleLoc();
1811   else if (EndLoc.isInvalid())
1812     EndLoc = getBase()->getEndLoc();
1813   return EndLoc;
1814 }
1815 
1816 bool CastExpr::CastConsistency() const {
1817   switch (getCastKind()) {
1818   case CK_DerivedToBase:
1819   case CK_UncheckedDerivedToBase:
1820   case CK_DerivedToBaseMemberPointer:
1821   case CK_BaseToDerived:
1822   case CK_BaseToDerivedMemberPointer:
1823     assert(!path_empty() && "Cast kind should have a base path!");
1824     break;
1825 
1826   case CK_CPointerToObjCPointerCast:
1827     assert(getType()->isObjCObjectPointerType());
1828     assert(getSubExpr()->getType()->isPointerType());
1829     goto CheckNoBasePath;
1830 
1831   case CK_BlockPointerToObjCPointerCast:
1832     assert(getType()->isObjCObjectPointerType());
1833     assert(getSubExpr()->getType()->isBlockPointerType());
1834     goto CheckNoBasePath;
1835 
1836   case CK_ReinterpretMemberPointer:
1837     assert(getType()->isMemberPointerType());
1838     assert(getSubExpr()->getType()->isMemberPointerType());
1839     goto CheckNoBasePath;
1840 
1841   case CK_BitCast:
1842     // Arbitrary casts to C pointer types count as bitcasts.
1843     // Otherwise, we should only have block and ObjC pointer casts
1844     // here if they stay within the type kind.
1845     if (!getType()->isPointerType()) {
1846       assert(getType()->isObjCObjectPointerType() ==
1847              getSubExpr()->getType()->isObjCObjectPointerType());
1848       assert(getType()->isBlockPointerType() ==
1849              getSubExpr()->getType()->isBlockPointerType());
1850     }
1851     goto CheckNoBasePath;
1852 
1853   case CK_AnyPointerToBlockPointerCast:
1854     assert(getType()->isBlockPointerType());
1855     assert(getSubExpr()->getType()->isAnyPointerType() &&
1856            !getSubExpr()->getType()->isBlockPointerType());
1857     goto CheckNoBasePath;
1858 
1859   case CK_CopyAndAutoreleaseBlockObject:
1860     assert(getType()->isBlockPointerType());
1861     assert(getSubExpr()->getType()->isBlockPointerType());
1862     goto CheckNoBasePath;
1863 
1864   case CK_FunctionToPointerDecay:
1865     assert(getType()->isPointerType());
1866     assert(getSubExpr()->getType()->isFunctionType());
1867     goto CheckNoBasePath;
1868 
1869   case CK_AddressSpaceConversion: {
1870     auto Ty = getType();
1871     auto SETy = getSubExpr()->getType();
1872     assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1873     if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1874       Ty = Ty->getPointeeType();
1875       SETy = SETy->getPointeeType();
1876     }
1877     assert((Ty->isDependentType() || SETy->isDependentType()) ||
1878            (!Ty.isNull() && !SETy.isNull() &&
1879             Ty.getAddressSpace() != SETy.getAddressSpace()));
1880     goto CheckNoBasePath;
1881   }
1882   // These should not have an inheritance path.
1883   case CK_Dynamic:
1884   case CK_ToUnion:
1885   case CK_ArrayToPointerDecay:
1886   case CK_NullToMemberPointer:
1887   case CK_NullToPointer:
1888   case CK_ConstructorConversion:
1889   case CK_IntegralToPointer:
1890   case CK_PointerToIntegral:
1891   case CK_ToVoid:
1892   case CK_VectorSplat:
1893   case CK_IntegralCast:
1894   case CK_BooleanToSignedIntegral:
1895   case CK_IntegralToFloating:
1896   case CK_FloatingToIntegral:
1897   case CK_FloatingCast:
1898   case CK_ObjCObjectLValueCast:
1899   case CK_FloatingRealToComplex:
1900   case CK_FloatingComplexToReal:
1901   case CK_FloatingComplexCast:
1902   case CK_FloatingComplexToIntegralComplex:
1903   case CK_IntegralRealToComplex:
1904   case CK_IntegralComplexToReal:
1905   case CK_IntegralComplexCast:
1906   case CK_IntegralComplexToFloatingComplex:
1907   case CK_ARCProduceObject:
1908   case CK_ARCConsumeObject:
1909   case CK_ARCReclaimReturnedObject:
1910   case CK_ARCExtendBlockObject:
1911   case CK_ZeroToOCLOpaqueType:
1912   case CK_IntToOCLSampler:
1913   case CK_FloatingToFixedPoint:
1914   case CK_FixedPointToFloating:
1915   case CK_FixedPointCast:
1916   case CK_FixedPointToIntegral:
1917   case CK_IntegralToFixedPoint:
1918   case CK_MatrixCast:
1919     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1920     goto CheckNoBasePath;
1921 
1922   case CK_Dependent:
1923   case CK_LValueToRValue:
1924   case CK_NoOp:
1925   case CK_AtomicToNonAtomic:
1926   case CK_NonAtomicToAtomic:
1927   case CK_PointerToBoolean:
1928   case CK_IntegralToBoolean:
1929   case CK_FloatingToBoolean:
1930   case CK_MemberPointerToBoolean:
1931   case CK_FloatingComplexToBoolean:
1932   case CK_IntegralComplexToBoolean:
1933   case CK_LValueBitCast:            // -> bool&
1934   case CK_LValueToRValueBitCast:
1935   case CK_UserDefinedConversion:    // operator bool()
1936   case CK_BuiltinFnToFnPtr:
1937   case CK_FixedPointToBoolean:
1938   CheckNoBasePath:
1939     assert(path_empty() && "Cast kind should not have a base path!");
1940     break;
1941   }
1942   return true;
1943 }
1944 
1945 const char *CastExpr::getCastKindName(CastKind CK) {
1946   switch (CK) {
1947 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1948 #include "clang/AST/OperationKinds.def"
1949   }
1950   llvm_unreachable("Unhandled cast kind!");
1951 }
1952 
1953 namespace {
1954 // Skip over implicit nodes produced as part of semantic analysis.
1955 // Designed for use with IgnoreExprNodes.
1956 Expr *ignoreImplicitSemaNodes(Expr *E) {
1957   if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1958     return Materialize->getSubExpr();
1959 
1960   if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1961     return Binder->getSubExpr();
1962 
1963   if (auto *Full = dyn_cast<FullExpr>(E))
1964     return Full->getSubExpr();
1965 
1966   return E;
1967 }
1968 } // namespace
1969 
1970 Expr *CastExpr::getSubExprAsWritten() {
1971   const Expr *SubExpr = nullptr;
1972 
1973   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1974     SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
1975 
1976     // Conversions by constructor and conversion functions have a
1977     // subexpression describing the call; strip it off.
1978     if (E->getCastKind() == CK_ConstructorConversion) {
1979       SubExpr = IgnoreExprNodes(cast<CXXConstructExpr>(SubExpr)->getArg(0),
1980                                 ignoreImplicitSemaNodes);
1981     } else if (E->getCastKind() == CK_UserDefinedConversion) {
1982       assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) &&
1983              "Unexpected SubExpr for CK_UserDefinedConversion.");
1984       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1985         SubExpr = MCE->getImplicitObjectArgument();
1986     }
1987   }
1988 
1989   return const_cast<Expr *>(SubExpr);
1990 }
1991 
1992 NamedDecl *CastExpr::getConversionFunction() const {
1993   const Expr *SubExpr = nullptr;
1994 
1995   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1996     SubExpr = IgnoreExprNodes(E->getSubExpr(), ignoreImplicitSemaNodes);
1997 
1998     if (E->getCastKind() == CK_ConstructorConversion)
1999       return cast<CXXConstructExpr>(SubExpr)->getConstructor();
2000 
2001     if (E->getCastKind() == CK_UserDefinedConversion) {
2002       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
2003         return MCE->getMethodDecl();
2004     }
2005   }
2006 
2007   return nullptr;
2008 }
2009 
2010 CXXBaseSpecifier **CastExpr::path_buffer() {
2011   switch (getStmtClass()) {
2012 #define ABSTRACT_STMT(x)
2013 #define CASTEXPR(Type, Base)                                                   \
2014   case Stmt::Type##Class:                                                      \
2015     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
2016 #define STMT(Type, Base)
2017 #include "clang/AST/StmtNodes.inc"
2018   default:
2019     llvm_unreachable("non-cast expressions not possible here");
2020   }
2021 }
2022 
2023 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
2024                                                         QualType opType) {
2025   auto RD = unionType->castAs<RecordType>()->getDecl();
2026   return getTargetFieldForToUnionCast(RD, opType);
2027 }
2028 
2029 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
2030                                                         QualType OpType) {
2031   auto &Ctx = RD->getASTContext();
2032   RecordDecl::field_iterator Field, FieldEnd;
2033   for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2034        Field != FieldEnd; ++Field) {
2035     if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
2036         !Field->isUnnamedBitfield()) {
2037       return *Field;
2038     }
2039   }
2040   return nullptr;
2041 }
2042 
2043 FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
2044   assert(hasStoredFPFeatures());
2045   switch (getStmtClass()) {
2046   case ImplicitCastExprClass:
2047     return static_cast<ImplicitCastExpr *>(this)
2048         ->getTrailingObjects<FPOptionsOverride>();
2049   case CStyleCastExprClass:
2050     return static_cast<CStyleCastExpr *>(this)
2051         ->getTrailingObjects<FPOptionsOverride>();
2052   case CXXFunctionalCastExprClass:
2053     return static_cast<CXXFunctionalCastExpr *>(this)
2054         ->getTrailingObjects<FPOptionsOverride>();
2055   case CXXStaticCastExprClass:
2056     return static_cast<CXXStaticCastExpr *>(this)
2057         ->getTrailingObjects<FPOptionsOverride>();
2058   default:
2059     llvm_unreachable("Cast does not have FPFeatures");
2060   }
2061 }
2062 
2063 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
2064                                            CastKind Kind, Expr *Operand,
2065                                            const CXXCastPath *BasePath,
2066                                            ExprValueKind VK,
2067                                            FPOptionsOverride FPO) {
2068   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2069   void *Buffer =
2070       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2071           PathSize, FPO.requiresTrailingStorage()));
2072   // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2073   // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2074   assert((Kind != CK_LValueToRValue ||
2075           !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2076          "invalid type for lvalue-to-rvalue conversion");
2077   ImplicitCastExpr *E =
2078       new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2079   if (PathSize)
2080     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2081                               E->getTrailingObjects<CXXBaseSpecifier *>());
2082   return E;
2083 }
2084 
2085 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2086                                                 unsigned PathSize,
2087                                                 bool HasFPFeatures) {
2088   void *Buffer =
2089       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2090           PathSize, HasFPFeatures));
2091   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2092 }
2093 
2094 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2095                                        ExprValueKind VK, CastKind K, Expr *Op,
2096                                        const CXXCastPath *BasePath,
2097                                        FPOptionsOverride FPO,
2098                                        TypeSourceInfo *WrittenTy,
2099                                        SourceLocation L, SourceLocation R) {
2100   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2101   void *Buffer =
2102       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2103           PathSize, FPO.requiresTrailingStorage()));
2104   CStyleCastExpr *E =
2105       new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2106   if (PathSize)
2107     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2108                               E->getTrailingObjects<CXXBaseSpecifier *>());
2109   return E;
2110 }
2111 
2112 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2113                                             unsigned PathSize,
2114                                             bool HasFPFeatures) {
2115   void *Buffer =
2116       C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2117           PathSize, HasFPFeatures));
2118   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2119 }
2120 
2121 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2122 /// corresponds to, e.g. "<<=".
2123 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2124   switch (Op) {
2125 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2126 #include "clang/AST/OperationKinds.def"
2127   }
2128   llvm_unreachable("Invalid OpCode!");
2129 }
2130 
2131 BinaryOperatorKind
2132 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2133   switch (OO) {
2134   default: llvm_unreachable("Not an overloadable binary operator");
2135   case OO_Plus: return BO_Add;
2136   case OO_Minus: return BO_Sub;
2137   case OO_Star: return BO_Mul;
2138   case OO_Slash: return BO_Div;
2139   case OO_Percent: return BO_Rem;
2140   case OO_Caret: return BO_Xor;
2141   case OO_Amp: return BO_And;
2142   case OO_Pipe: return BO_Or;
2143   case OO_Equal: return BO_Assign;
2144   case OO_Spaceship: return BO_Cmp;
2145   case OO_Less: return BO_LT;
2146   case OO_Greater: return BO_GT;
2147   case OO_PlusEqual: return BO_AddAssign;
2148   case OO_MinusEqual: return BO_SubAssign;
2149   case OO_StarEqual: return BO_MulAssign;
2150   case OO_SlashEqual: return BO_DivAssign;
2151   case OO_PercentEqual: return BO_RemAssign;
2152   case OO_CaretEqual: return BO_XorAssign;
2153   case OO_AmpEqual: return BO_AndAssign;
2154   case OO_PipeEqual: return BO_OrAssign;
2155   case OO_LessLess: return BO_Shl;
2156   case OO_GreaterGreater: return BO_Shr;
2157   case OO_LessLessEqual: return BO_ShlAssign;
2158   case OO_GreaterGreaterEqual: return BO_ShrAssign;
2159   case OO_EqualEqual: return BO_EQ;
2160   case OO_ExclaimEqual: return BO_NE;
2161   case OO_LessEqual: return BO_LE;
2162   case OO_GreaterEqual: return BO_GE;
2163   case OO_AmpAmp: return BO_LAnd;
2164   case OO_PipePipe: return BO_LOr;
2165   case OO_Comma: return BO_Comma;
2166   case OO_ArrowStar: return BO_PtrMemI;
2167   }
2168 }
2169 
2170 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2171   static const OverloadedOperatorKind OverOps[] = {
2172     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2173     OO_Star, OO_Slash, OO_Percent,
2174     OO_Plus, OO_Minus,
2175     OO_LessLess, OO_GreaterGreater,
2176     OO_Spaceship,
2177     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2178     OO_EqualEqual, OO_ExclaimEqual,
2179     OO_Amp,
2180     OO_Caret,
2181     OO_Pipe,
2182     OO_AmpAmp,
2183     OO_PipePipe,
2184     OO_Equal, OO_StarEqual,
2185     OO_SlashEqual, OO_PercentEqual,
2186     OO_PlusEqual, OO_MinusEqual,
2187     OO_LessLessEqual, OO_GreaterGreaterEqual,
2188     OO_AmpEqual, OO_CaretEqual,
2189     OO_PipeEqual,
2190     OO_Comma
2191   };
2192   return OverOps[Opc];
2193 }
2194 
2195 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2196                                                       Opcode Opc,
2197                                                       Expr *LHS, Expr *RHS) {
2198   if (Opc != BO_Add)
2199     return false;
2200 
2201   // Check that we have one pointer and one integer operand.
2202   Expr *PExp;
2203   if (LHS->getType()->isPointerType()) {
2204     if (!RHS->getType()->isIntegerType())
2205       return false;
2206     PExp = LHS;
2207   } else if (RHS->getType()->isPointerType()) {
2208     if (!LHS->getType()->isIntegerType())
2209       return false;
2210     PExp = RHS;
2211   } else {
2212     return false;
2213   }
2214 
2215   // Check that the pointer is a nullptr.
2216   if (!PExp->IgnoreParenCasts()
2217           ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2218     return false;
2219 
2220   // Check that the pointee type is char-sized.
2221   const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2222   if (!PTy || !PTy->getPointeeType()->isCharType())
2223     return false;
2224 
2225   return true;
2226 }
2227 
2228 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
2229                              QualType ResultTy, SourceLocation BLoc,
2230                              SourceLocation RParenLoc,
2231                              DeclContext *ParentContext)
2232     : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2233       BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2234   SourceLocExprBits.Kind = Kind;
2235   setDependence(ExprDependence::None);
2236 }
2237 
2238 StringRef SourceLocExpr::getBuiltinStr() const {
2239   switch (getIdentKind()) {
2240   case File:
2241     return "__builtin_FILE";
2242   case Function:
2243     return "__builtin_FUNCTION";
2244   case Line:
2245     return "__builtin_LINE";
2246   case Column:
2247     return "__builtin_COLUMN";
2248   case SourceLocStruct:
2249     return "__builtin_source_location";
2250   }
2251   llvm_unreachable("unexpected IdentKind!");
2252 }
2253 
2254 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2255                                          const Expr *DefaultExpr) const {
2256   SourceLocation Loc;
2257   const DeclContext *Context;
2258 
2259   std::tie(Loc,
2260            Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2261     if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2262       return {DIE->getUsedLocation(), DIE->getUsedContext()};
2263     if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2264       return {DAE->getUsedLocation(), DAE->getUsedContext()};
2265     return {this->getLocation(), this->getParentContext()};
2266   }();
2267 
2268   PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2269       Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2270 
2271   auto MakeStringLiteral = [&](StringRef Tmp) {
2272     using LValuePathEntry = APValue::LValuePathEntry;
2273     StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2274     // Decay the string to a pointer to the first character.
2275     LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2276     return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2277   };
2278 
2279   switch (getIdentKind()) {
2280   case SourceLocExpr::File: {
2281     SmallString<256> Path(PLoc.getFilename());
2282     clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2283                                                  Ctx.getTargetInfo());
2284     return MakeStringLiteral(Path);
2285   }
2286   case SourceLocExpr::Function: {
2287     const auto *CurDecl = dyn_cast<Decl>(Context);
2288     return MakeStringLiteral(
2289         CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
2290                 : std::string(""));
2291   }
2292   case SourceLocExpr::Line:
2293   case SourceLocExpr::Column: {
2294     llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2295                         /*isUnsigned=*/true);
2296     IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2297                                                    : PLoc.getColumn();
2298     return APValue(IntVal);
2299   }
2300   case SourceLocExpr::SourceLocStruct: {
2301     // Fill in a std::source_location::__impl structure, by creating an
2302     // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2303     // that.
2304     const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2305     assert(ImplDecl);
2306 
2307     // Construct an APValue for the __impl struct, and get or create a Decl
2308     // corresponding to that. Note that we've already verified that the shape of
2309     // the ImplDecl type is as expected.
2310 
2311     APValue Value(APValue::UninitStruct(), 0, 4);
2312     for (FieldDecl *F : ImplDecl->fields()) {
2313       StringRef Name = F->getName();
2314       if (Name == "_M_file_name") {
2315         SmallString<256> Path(PLoc.getFilename());
2316         clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2317                                                      Ctx.getTargetInfo());
2318         Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path);
2319       } else if (Name == "_M_function_name") {
2320         // Note: this emits the PrettyFunction name -- different than what
2321         // __builtin_FUNCTION() above returns!
2322         const auto *CurDecl = dyn_cast<Decl>(Context);
2323         Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(
2324             CurDecl && !isa<TranslationUnitDecl>(CurDecl)
2325                 ? StringRef(PredefinedExpr::ComputeName(
2326                       PredefinedExpr::PrettyFunction, CurDecl))
2327                 : "");
2328       } else if (Name == "_M_line") {
2329         QualType Ty = F->getType();
2330         llvm::APSInt IntVal(Ctx.getIntWidth(Ty),
2331                             Ty->hasUnsignedIntegerRepresentation());
2332         IntVal = PLoc.getLine();
2333         Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2334       } else if (Name == "_M_column") {
2335         QualType Ty = F->getType();
2336         llvm::APSInt IntVal(Ctx.getIntWidth(Ty),
2337                             Ty->hasUnsignedIntegerRepresentation());
2338         IntVal = PLoc.getColumn();
2339         Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2340       }
2341     }
2342 
2343     UnnamedGlobalConstantDecl *GV =
2344         Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value);
2345 
2346     return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{},
2347                    false);
2348   }
2349   }
2350   llvm_unreachable("unhandled case");
2351 }
2352 
2353 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2354                            ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2355     : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2356       InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2357       RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2358   sawArrayRangeDesignator(false);
2359   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2360 
2361   setDependence(computeDependence(this));
2362 }
2363 
2364 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2365   if (NumInits > InitExprs.size())
2366     InitExprs.reserve(C, NumInits);
2367 }
2368 
2369 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2370   InitExprs.resize(C, NumInits, nullptr);
2371 }
2372 
2373 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2374   if (Init >= InitExprs.size()) {
2375     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2376     setInit(Init, expr);
2377     return nullptr;
2378   }
2379 
2380   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2381   setInit(Init, expr);
2382   return Result;
2383 }
2384 
2385 void InitListExpr::setArrayFiller(Expr *filler) {
2386   assert(!hasArrayFiller() && "Filler already set!");
2387   ArrayFillerOrUnionFieldInit = filler;
2388   // Fill out any "holes" in the array due to designated initializers.
2389   Expr **inits = getInits();
2390   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2391     if (inits[i] == nullptr)
2392       inits[i] = filler;
2393 }
2394 
2395 bool InitListExpr::isStringLiteralInit() const {
2396   if (getNumInits() != 1)
2397     return false;
2398   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2399   if (!AT || !AT->getElementType()->isIntegerType())
2400     return false;
2401   // It is possible for getInit() to return null.
2402   const Expr *Init = getInit(0);
2403   if (!Init)
2404     return false;
2405   Init = Init->IgnoreParenImpCasts();
2406   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2407 }
2408 
2409 bool InitListExpr::isTransparent() const {
2410   assert(isSemanticForm() && "syntactic form never semantically transparent");
2411 
2412   // A glvalue InitListExpr is always just sugar.
2413   if (isGLValue()) {
2414     assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2415     return true;
2416   }
2417 
2418   // Otherwise, we're sugar if and only if we have exactly one initializer that
2419   // is of the same type.
2420   if (getNumInits() != 1 || !getInit(0))
2421     return false;
2422 
2423   // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2424   // transparent struct copy.
2425   if (!getInit(0)->isPRValue() && getType()->isRecordType())
2426     return false;
2427 
2428   return getType().getCanonicalType() ==
2429          getInit(0)->getType().getCanonicalType();
2430 }
2431 
2432 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2433   assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2434 
2435   if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2436     return false;
2437   }
2438 
2439   const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2440   return Lit && Lit->getValue() == 0;
2441 }
2442 
2443 SourceLocation InitListExpr::getBeginLoc() const {
2444   if (InitListExpr *SyntacticForm = getSyntacticForm())
2445     return SyntacticForm->getBeginLoc();
2446   SourceLocation Beg = LBraceLoc;
2447   if (Beg.isInvalid()) {
2448     // Find the first non-null initializer.
2449     for (InitExprsTy::const_iterator I = InitExprs.begin(),
2450                                      E = InitExprs.end();
2451       I != E; ++I) {
2452       if (Stmt *S = *I) {
2453         Beg = S->getBeginLoc();
2454         break;
2455       }
2456     }
2457   }
2458   return Beg;
2459 }
2460 
2461 SourceLocation InitListExpr::getEndLoc() const {
2462   if (InitListExpr *SyntacticForm = getSyntacticForm())
2463     return SyntacticForm->getEndLoc();
2464   SourceLocation End = RBraceLoc;
2465   if (End.isInvalid()) {
2466     // Find the first non-null initializer from the end.
2467     for (Stmt *S : llvm::reverse(InitExprs)) {
2468       if (S) {
2469         End = S->getEndLoc();
2470         break;
2471       }
2472     }
2473   }
2474   return End;
2475 }
2476 
2477 /// getFunctionType - Return the underlying function type for this block.
2478 ///
2479 const FunctionProtoType *BlockExpr::getFunctionType() const {
2480   // The block pointer is never sugared, but the function type might be.
2481   return cast<BlockPointerType>(getType())
2482            ->getPointeeType()->castAs<FunctionProtoType>();
2483 }
2484 
2485 SourceLocation BlockExpr::getCaretLocation() const {
2486   return TheBlock->getCaretLocation();
2487 }
2488 const Stmt *BlockExpr::getBody() const {
2489   return TheBlock->getBody();
2490 }
2491 Stmt *BlockExpr::getBody() {
2492   return TheBlock->getBody();
2493 }
2494 
2495 
2496 //===----------------------------------------------------------------------===//
2497 // Generic Expression Routines
2498 //===----------------------------------------------------------------------===//
2499 
2500 bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2501   // In C++11, discarded-value expressions of a certain form are special,
2502   // according to [expr]p10:
2503   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
2504   //   expression is a glvalue of volatile-qualified type and it has
2505   //   one of the following forms:
2506   if (!isGLValue() || !getType().isVolatileQualified())
2507     return false;
2508 
2509   const Expr *E = IgnoreParens();
2510 
2511   //   - id-expression (5.1.1),
2512   if (isa<DeclRefExpr>(E))
2513     return true;
2514 
2515   //   - subscripting (5.2.1),
2516   if (isa<ArraySubscriptExpr>(E))
2517     return true;
2518 
2519   //   - class member access (5.2.5),
2520   if (isa<MemberExpr>(E))
2521     return true;
2522 
2523   //   - indirection (5.3.1),
2524   if (auto *UO = dyn_cast<UnaryOperator>(E))
2525     if (UO->getOpcode() == UO_Deref)
2526       return true;
2527 
2528   if (auto *BO = dyn_cast<BinaryOperator>(E)) {
2529     //   - pointer-to-member operation (5.5),
2530     if (BO->isPtrMemOp())
2531       return true;
2532 
2533     //   - comma expression (5.18) where the right operand is one of the above.
2534     if (BO->getOpcode() == BO_Comma)
2535       return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2536   }
2537 
2538   //   - conditional expression (5.16) where both the second and the third
2539   //     operands are one of the above, or
2540   if (auto *CO = dyn_cast<ConditionalOperator>(E))
2541     return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2542            CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2543   // The related edge case of "*x ?: *x".
2544   if (auto *BCO =
2545           dyn_cast<BinaryConditionalOperator>(E)) {
2546     if (auto *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
2547       return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2548              BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2549   }
2550 
2551   // Objective-C++ extensions to the rule.
2552   if (isa<ObjCIvarRefExpr>(E))
2553     return true;
2554   if (const auto *POE = dyn_cast<PseudoObjectExpr>(E)) {
2555     if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(POE->getSyntacticForm()))
2556       return true;
2557   }
2558 
2559   return false;
2560 }
2561 
2562 /// isUnusedResultAWarning - Return true if this immediate expression should
2563 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
2564 /// with location to warn on and the source range[s] to report with the
2565 /// warning.
2566 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2567                                   SourceRange &R1, SourceRange &R2,
2568                                   ASTContext &Ctx) const {
2569   // Don't warn if the expr is type dependent. The type could end up
2570   // instantiating to void.
2571   if (isTypeDependent())
2572     return false;
2573 
2574   switch (getStmtClass()) {
2575   default:
2576     if (getType()->isVoidType())
2577       return false;
2578     WarnE = this;
2579     Loc = getExprLoc();
2580     R1 = getSourceRange();
2581     return true;
2582   case ParenExprClass:
2583     return cast<ParenExpr>(this)->getSubExpr()->
2584       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2585   case GenericSelectionExprClass:
2586     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2587       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2588   case CoawaitExprClass:
2589   case CoyieldExprClass:
2590     return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2591       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2592   case ChooseExprClass:
2593     return cast<ChooseExpr>(this)->getChosenSubExpr()->
2594       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2595   case UnaryOperatorClass: {
2596     const UnaryOperator *UO = cast<UnaryOperator>(this);
2597 
2598     switch (UO->getOpcode()) {
2599     case UO_Plus:
2600     case UO_Minus:
2601     case UO_AddrOf:
2602     case UO_Not:
2603     case UO_LNot:
2604     case UO_Deref:
2605       break;
2606     case UO_Coawait:
2607       // This is just the 'operator co_await' call inside the guts of a
2608       // dependent co_await call.
2609     case UO_PostInc:
2610     case UO_PostDec:
2611     case UO_PreInc:
2612     case UO_PreDec:                 // ++/--
2613       return false;  // Not a warning.
2614     case UO_Real:
2615     case UO_Imag:
2616       // accessing a piece of a volatile complex is a side-effect.
2617       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2618           .isVolatileQualified())
2619         return false;
2620       break;
2621     case UO_Extension:
2622       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2623     }
2624     WarnE = this;
2625     Loc = UO->getOperatorLoc();
2626     R1 = UO->getSubExpr()->getSourceRange();
2627     return true;
2628   }
2629   case BinaryOperatorClass: {
2630     const BinaryOperator *BO = cast<BinaryOperator>(this);
2631     switch (BO->getOpcode()) {
2632       default:
2633         break;
2634       // Consider the RHS of comma for side effects. LHS was checked by
2635       // Sema::CheckCommaOperands.
2636       case BO_Comma:
2637         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2638         // lvalue-ness) of an assignment written in a macro.
2639         if (IntegerLiteral *IE =
2640               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2641           if (IE->getValue() == 0)
2642             return false;
2643         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2644       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2645       case BO_LAnd:
2646       case BO_LOr:
2647         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2648             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2649           return false;
2650         break;
2651     }
2652     if (BO->isAssignmentOp())
2653       return false;
2654     WarnE = this;
2655     Loc = BO->getOperatorLoc();
2656     R1 = BO->getLHS()->getSourceRange();
2657     R2 = BO->getRHS()->getSourceRange();
2658     return true;
2659   }
2660   case CompoundAssignOperatorClass:
2661   case VAArgExprClass:
2662   case AtomicExprClass:
2663     return false;
2664 
2665   case ConditionalOperatorClass: {
2666     // If only one of the LHS or RHS is a warning, the operator might
2667     // be being used for control flow. Only warn if both the LHS and
2668     // RHS are warnings.
2669     const auto *Exp = cast<ConditionalOperator>(this);
2670     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2671            Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2672   }
2673   case BinaryConditionalOperatorClass: {
2674     const auto *Exp = cast<BinaryConditionalOperator>(this);
2675     return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2676   }
2677 
2678   case MemberExprClass:
2679     WarnE = this;
2680     Loc = cast<MemberExpr>(this)->getMemberLoc();
2681     R1 = SourceRange(Loc, Loc);
2682     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2683     return true;
2684 
2685   case ArraySubscriptExprClass:
2686     WarnE = this;
2687     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2688     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2689     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2690     return true;
2691 
2692   case CXXOperatorCallExprClass: {
2693     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2694     // overloads as there is no reasonable way to define these such that they
2695     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2696     // warning: operators == and != are commonly typo'ed, and so warning on them
2697     // provides additional value as well. If this list is updated,
2698     // DiagnoseUnusedComparison should be as well.
2699     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2700     switch (Op->getOperator()) {
2701     default:
2702       break;
2703     case OO_EqualEqual:
2704     case OO_ExclaimEqual:
2705     case OO_Less:
2706     case OO_Greater:
2707     case OO_GreaterEqual:
2708     case OO_LessEqual:
2709       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2710           Op->getCallReturnType(Ctx)->isVoidType())
2711         break;
2712       WarnE = this;
2713       Loc = Op->getOperatorLoc();
2714       R1 = Op->getSourceRange();
2715       return true;
2716     }
2717 
2718     // Fallthrough for generic call handling.
2719     [[fallthrough]];
2720   }
2721   case CallExprClass:
2722   case CXXMemberCallExprClass:
2723   case UserDefinedLiteralClass: {
2724     // If this is a direct call, get the callee.
2725     const CallExpr *CE = cast<CallExpr>(this);
2726     if (const Decl *FD = CE->getCalleeDecl()) {
2727       // If the callee has attribute pure, const, or warn_unused_result, warn
2728       // about it. void foo() { strlen("bar"); } should warn.
2729       //
2730       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2731       // updated to match for QoI.
2732       if (CE->hasUnusedResultAttr(Ctx) ||
2733           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2734         WarnE = this;
2735         Loc = CE->getCallee()->getBeginLoc();
2736         R1 = CE->getCallee()->getSourceRange();
2737 
2738         if (unsigned NumArgs = CE->getNumArgs())
2739           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2740                            CE->getArg(NumArgs - 1)->getEndLoc());
2741         return true;
2742       }
2743     }
2744     return false;
2745   }
2746 
2747   // If we don't know precisely what we're looking at, let's not warn.
2748   case UnresolvedLookupExprClass:
2749   case CXXUnresolvedConstructExprClass:
2750   case RecoveryExprClass:
2751     return false;
2752 
2753   case CXXTemporaryObjectExprClass:
2754   case CXXConstructExprClass: {
2755     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2756       const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2757       if (Type->hasAttr<WarnUnusedAttr>() ||
2758           (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2759         WarnE = this;
2760         Loc = getBeginLoc();
2761         R1 = getSourceRange();
2762         return true;
2763       }
2764     }
2765 
2766     const auto *CE = cast<CXXConstructExpr>(this);
2767     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2768       const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2769       if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2770         WarnE = this;
2771         Loc = getBeginLoc();
2772         R1 = getSourceRange();
2773 
2774         if (unsigned NumArgs = CE->getNumArgs())
2775           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2776                            CE->getArg(NumArgs - 1)->getEndLoc());
2777         return true;
2778       }
2779     }
2780 
2781     return false;
2782   }
2783 
2784   case ObjCMessageExprClass: {
2785     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2786     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2787         ME->isInstanceMessage() &&
2788         !ME->getType()->isVoidType() &&
2789         ME->getMethodFamily() == OMF_init) {
2790       WarnE = this;
2791       Loc = getExprLoc();
2792       R1 = ME->getSourceRange();
2793       return true;
2794     }
2795 
2796     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2797       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2798         WarnE = this;
2799         Loc = getExprLoc();
2800         return true;
2801       }
2802 
2803     return false;
2804   }
2805 
2806   case ObjCPropertyRefExprClass:
2807   case ObjCSubscriptRefExprClass:
2808     WarnE = this;
2809     Loc = getExprLoc();
2810     R1 = getSourceRange();
2811     return true;
2812 
2813   case PseudoObjectExprClass: {
2814     const auto *POE = cast<PseudoObjectExpr>(this);
2815 
2816     // For some syntactic forms, we should always warn.
2817     if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(
2818             POE->getSyntacticForm())) {
2819       WarnE = this;
2820       Loc = getExprLoc();
2821       R1 = getSourceRange();
2822       return true;
2823     }
2824 
2825     // For others, we should never warn.
2826     if (auto *BO = dyn_cast<BinaryOperator>(POE->getSyntacticForm()))
2827       if (BO->isAssignmentOp())
2828         return false;
2829     if (auto *UO = dyn_cast<UnaryOperator>(POE->getSyntacticForm()))
2830       if (UO->isIncrementDecrementOp())
2831         return false;
2832 
2833     // Otherwise, warn if the result expression would warn.
2834     const Expr *Result = POE->getResultExpr();
2835     return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2836   }
2837 
2838   case StmtExprClass: {
2839     // Statement exprs don't logically have side effects themselves, but are
2840     // sometimes used in macros in ways that give them a type that is unused.
2841     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2842     // however, if the result of the stmt expr is dead, we don't want to emit a
2843     // warning.
2844     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2845     if (!CS->body_empty()) {
2846       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2847         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2848       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2849         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2850           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2851     }
2852 
2853     if (getType()->isVoidType())
2854       return false;
2855     WarnE = this;
2856     Loc = cast<StmtExpr>(this)->getLParenLoc();
2857     R1 = getSourceRange();
2858     return true;
2859   }
2860   case CXXFunctionalCastExprClass:
2861   case CStyleCastExprClass: {
2862     // Ignore an explicit cast to void, except in C++98 if the operand is a
2863     // volatile glvalue for which we would trigger an implicit read in any
2864     // other language mode. (Such an implicit read always happens as part of
2865     // the lvalue conversion in C, and happens in C++ for expressions of all
2866     // forms where it seems likely the user intended to trigger a volatile
2867     // load.)
2868     const CastExpr *CE = cast<CastExpr>(this);
2869     const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2870     if (CE->getCastKind() == CK_ToVoid) {
2871       if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2872           SubE->isReadIfDiscardedInCPlusPlus11()) {
2873         // Suppress the "unused value" warning for idiomatic usage of
2874         // '(void)var;' used to suppress "unused variable" warnings.
2875         if (auto *DRE = dyn_cast<DeclRefExpr>(SubE))
2876           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2877             if (!VD->isExternallyVisible())
2878               return false;
2879 
2880         // The lvalue-to-rvalue conversion would have no effect for an array.
2881         // It's implausible that the programmer expected this to result in a
2882         // volatile array load, so don't warn.
2883         if (SubE->getType()->isArrayType())
2884           return false;
2885 
2886         return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2887       }
2888       return false;
2889     }
2890 
2891     // If this is a cast to a constructor conversion, check the operand.
2892     // Otherwise, the result of the cast is unused.
2893     if (CE->getCastKind() == CK_ConstructorConversion)
2894       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2895     if (CE->getCastKind() == CK_Dependent)
2896       return false;
2897 
2898     WarnE = this;
2899     if (const CXXFunctionalCastExpr *CXXCE =
2900             dyn_cast<CXXFunctionalCastExpr>(this)) {
2901       Loc = CXXCE->getBeginLoc();
2902       R1 = CXXCE->getSubExpr()->getSourceRange();
2903     } else {
2904       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2905       Loc = CStyleCE->getLParenLoc();
2906       R1 = CStyleCE->getSubExpr()->getSourceRange();
2907     }
2908     return true;
2909   }
2910   case ImplicitCastExprClass: {
2911     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2912 
2913     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2914     if (ICE->getCastKind() == CK_LValueToRValue &&
2915         ICE->getSubExpr()->getType().isVolatileQualified())
2916       return false;
2917 
2918     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2919   }
2920   case CXXDefaultArgExprClass:
2921     return (cast<CXXDefaultArgExpr>(this)
2922             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2923   case CXXDefaultInitExprClass:
2924     return (cast<CXXDefaultInitExpr>(this)
2925             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2926 
2927   case CXXNewExprClass:
2928     // FIXME: In theory, there might be new expressions that don't have side
2929     // effects (e.g. a placement new with an uninitialized POD).
2930   case CXXDeleteExprClass:
2931     return false;
2932   case MaterializeTemporaryExprClass:
2933     return cast<MaterializeTemporaryExpr>(this)
2934         ->getSubExpr()
2935         ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2936   case CXXBindTemporaryExprClass:
2937     return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2938                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2939   case ExprWithCleanupsClass:
2940     return cast<ExprWithCleanups>(this)->getSubExpr()
2941                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2942   }
2943 }
2944 
2945 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2946 /// returns true, if it is; false otherwise.
2947 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2948   const Expr *E = IgnoreParens();
2949   switch (E->getStmtClass()) {
2950   default:
2951     return false;
2952   case ObjCIvarRefExprClass:
2953     return true;
2954   case Expr::UnaryOperatorClass:
2955     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2956   case ImplicitCastExprClass:
2957     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2958   case MaterializeTemporaryExprClass:
2959     return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2960         Ctx);
2961   case CStyleCastExprClass:
2962     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2963   case DeclRefExprClass: {
2964     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2965 
2966     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2967       if (VD->hasGlobalStorage())
2968         return true;
2969       QualType T = VD->getType();
2970       // dereferencing to a  pointer is always a gc'able candidate,
2971       // unless it is __weak.
2972       return T->isPointerType() &&
2973              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2974     }
2975     return false;
2976   }
2977   case MemberExprClass: {
2978     const MemberExpr *M = cast<MemberExpr>(E);
2979     return M->getBase()->isOBJCGCCandidate(Ctx);
2980   }
2981   case ArraySubscriptExprClass:
2982     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2983   }
2984 }
2985 
2986 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2987   if (isTypeDependent())
2988     return false;
2989   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2990 }
2991 
2992 QualType Expr::findBoundMemberType(const Expr *expr) {
2993   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2994 
2995   // Bound member expressions are always one of these possibilities:
2996   //   x->m      x.m      x->*y      x.*y
2997   // (possibly parenthesized)
2998 
2999   expr = expr->IgnoreParens();
3000   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
3001     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
3002     return mem->getMemberDecl()->getType();
3003   }
3004 
3005   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
3006     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
3007                       ->getPointeeType();
3008     assert(type->isFunctionType());
3009     return type;
3010   }
3011 
3012   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
3013   return QualType();
3014 }
3015 
3016 Expr *Expr::IgnoreImpCasts() {
3017   return IgnoreExprNodes(this, IgnoreImplicitCastsSingleStep);
3018 }
3019 
3020 Expr *Expr::IgnoreCasts() {
3021   return IgnoreExprNodes(this, IgnoreCastsSingleStep);
3022 }
3023 
3024 Expr *Expr::IgnoreImplicit() {
3025   return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
3026 }
3027 
3028 Expr *Expr::IgnoreImplicitAsWritten() {
3029   return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
3030 }
3031 
3032 Expr *Expr::IgnoreParens() {
3033   return IgnoreExprNodes(this, IgnoreParensSingleStep);
3034 }
3035 
3036 Expr *Expr::IgnoreParenImpCasts() {
3037   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3038                          IgnoreImplicitCastsExtraSingleStep);
3039 }
3040 
3041 Expr *Expr::IgnoreParenCasts() {
3042   return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
3043 }
3044 
3045 Expr *Expr::IgnoreConversionOperatorSingleStep() {
3046   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
3047     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
3048       return MCE->getImplicitObjectArgument();
3049   }
3050   return this;
3051 }
3052 
3053 Expr *Expr::IgnoreParenLValueCasts() {
3054   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3055                          IgnoreLValueCastsSingleStep);
3056 }
3057 
3058 Expr *Expr::IgnoreParenBaseCasts() {
3059   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3060                          IgnoreBaseCastsSingleStep);
3061 }
3062 
3063 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
3064   auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
3065     if (auto *CE = dyn_cast<CastExpr>(E)) {
3066       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3067       // ptr<->int casts of the same width. We also ignore all identity casts.
3068       Expr *SubExpr = CE->getSubExpr();
3069       bool IsIdentityCast =
3070           Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
3071       bool IsSameWidthCast = (E->getType()->isPointerType() ||
3072                               E->getType()->isIntegralType(Ctx)) &&
3073                              (SubExpr->getType()->isPointerType() ||
3074                               SubExpr->getType()->isIntegralType(Ctx)) &&
3075                              (Ctx.getTypeSize(E->getType()) ==
3076                               Ctx.getTypeSize(SubExpr->getType()));
3077 
3078       if (IsIdentityCast || IsSameWidthCast)
3079         return SubExpr;
3080     } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
3081       return NTTP->getReplacement();
3082 
3083     return E;
3084   };
3085   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3086                          IgnoreNoopCastsSingleStep);
3087 }
3088 
3089 Expr *Expr::IgnoreUnlessSpelledInSource() {
3090   auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
3091     if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(E)) {
3092       auto *SE = Cast->getSubExpr();
3093       if (SE->getSourceRange() == E->getSourceRange())
3094         return SE;
3095     }
3096 
3097     if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
3098       auto NumArgs = C->getNumArgs();
3099       if (NumArgs == 1 ||
3100           (NumArgs > 1 && isa<CXXDefaultArgExpr>(C->getArg(1)))) {
3101         Expr *A = C->getArg(0);
3102         if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3103           return A;
3104       }
3105     }
3106     return E;
3107   };
3108   auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3109     if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
3110       Expr *ExprNode = C->getImplicitObjectArgument();
3111       if (ExprNode->getSourceRange() == E->getSourceRange()) {
3112         return ExprNode;
3113       }
3114       if (auto *PE = dyn_cast<ParenExpr>(ExprNode)) {
3115         if (PE->getSourceRange() == C->getSourceRange()) {
3116           return cast<Expr>(PE);
3117         }
3118       }
3119       ExprNode = ExprNode->IgnoreParenImpCasts();
3120       if (ExprNode->getSourceRange() == E->getSourceRange())
3121         return ExprNode;
3122     }
3123     return E;
3124   };
3125   return IgnoreExprNodes(
3126       this, IgnoreImplicitSingleStep, IgnoreImplicitCastsExtraSingleStep,
3127       IgnoreParensOnlySingleStep, IgnoreImplicitConstructorSingleStep,
3128       IgnoreImplicitMemberCallSingleStep);
3129 }
3130 
3131 bool Expr::isDefaultArgument() const {
3132   const Expr *E = this;
3133   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3134     E = M->getSubExpr();
3135 
3136   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3137     E = ICE->getSubExprAsWritten();
3138 
3139   return isa<CXXDefaultArgExpr>(E);
3140 }
3141 
3142 /// Skip over any no-op casts and any temporary-binding
3143 /// expressions.
3144 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3145   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3146     E = M->getSubExpr();
3147 
3148   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3149     if (ICE->getCastKind() == CK_NoOp)
3150       E = ICE->getSubExpr();
3151     else
3152       break;
3153   }
3154 
3155   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3156     E = BE->getSubExpr();
3157 
3158   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3159     if (ICE->getCastKind() == CK_NoOp)
3160       E = ICE->getSubExpr();
3161     else
3162       break;
3163   }
3164 
3165   return E->IgnoreParens();
3166 }
3167 
3168 /// isTemporaryObject - Determines if this expression produces a
3169 /// temporary of the given class type.
3170 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3171   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3172     return false;
3173 
3174   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
3175 
3176   // Temporaries are by definition pr-values of class type.
3177   if (!E->Classify(C).isPRValue()) {
3178     // In this context, property reference is a message call and is pr-value.
3179     if (!isa<ObjCPropertyRefExpr>(E))
3180       return false;
3181   }
3182 
3183   // Black-list a few cases which yield pr-values of class type that don't
3184   // refer to temporaries of that type:
3185 
3186   // - implicit derived-to-base conversions
3187   if (isa<ImplicitCastExpr>(E)) {
3188     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3189     case CK_DerivedToBase:
3190     case CK_UncheckedDerivedToBase:
3191       return false;
3192     default:
3193       break;
3194     }
3195   }
3196 
3197   // - member expressions (all)
3198   if (isa<MemberExpr>(E))
3199     return false;
3200 
3201   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3202     if (BO->isPtrMemOp())
3203       return false;
3204 
3205   // - opaque values (all)
3206   if (isa<OpaqueValueExpr>(E))
3207     return false;
3208 
3209   return true;
3210 }
3211 
3212 bool Expr::isImplicitCXXThis() const {
3213   const Expr *E = this;
3214 
3215   // Strip away parentheses and casts we don't care about.
3216   while (true) {
3217     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3218       E = Paren->getSubExpr();
3219       continue;
3220     }
3221 
3222     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3223       if (ICE->getCastKind() == CK_NoOp ||
3224           ICE->getCastKind() == CK_LValueToRValue ||
3225           ICE->getCastKind() == CK_DerivedToBase ||
3226           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3227         E = ICE->getSubExpr();
3228         continue;
3229       }
3230     }
3231 
3232     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3233       if (UnOp->getOpcode() == UO_Extension) {
3234         E = UnOp->getSubExpr();
3235         continue;
3236       }
3237     }
3238 
3239     if (const MaterializeTemporaryExpr *M
3240                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
3241       E = M->getSubExpr();
3242       continue;
3243     }
3244 
3245     break;
3246   }
3247 
3248   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3249     return This->isImplicit();
3250 
3251   return false;
3252 }
3253 
3254 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3255 /// in Exprs is type-dependent.
3256 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3257   for (unsigned I = 0; I < Exprs.size(); ++I)
3258     if (Exprs[I]->isTypeDependent())
3259       return true;
3260 
3261   return false;
3262 }
3263 
3264 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3265                                  const Expr **Culprit) const {
3266   assert(!isValueDependent() &&
3267          "Expression evaluator can't be called on a dependent expression.");
3268 
3269   // This function is attempting whether an expression is an initializer
3270   // which can be evaluated at compile-time. It very closely parallels
3271   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3272   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
3273   // to isEvaluatable most of the time.
3274   //
3275   // If we ever capture reference-binding directly in the AST, we can
3276   // kill the second parameter.
3277 
3278   if (IsForRef) {
3279     EvalResult Result;
3280     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3281       return true;
3282     if (Culprit)
3283       *Culprit = this;
3284     return false;
3285   }
3286 
3287   switch (getStmtClass()) {
3288   default: break;
3289   case Stmt::ExprWithCleanupsClass:
3290     return cast<ExprWithCleanups>(this)->getSubExpr()->isConstantInitializer(
3291         Ctx, IsForRef, Culprit);
3292   case StringLiteralClass:
3293   case ObjCEncodeExprClass:
3294     return true;
3295   case CXXTemporaryObjectExprClass:
3296   case CXXConstructExprClass: {
3297     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3298 
3299     if (CE->getConstructor()->isTrivial() &&
3300         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3301       // Trivial default constructor
3302       if (!CE->getNumArgs()) return true;
3303 
3304       // Trivial copy constructor
3305       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3306       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3307     }
3308 
3309     break;
3310   }
3311   case ConstantExprClass: {
3312     // FIXME: We should be able to return "true" here, but it can lead to extra
3313     // error messages. E.g. in Sema/array-init.c.
3314     const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3315     return Exp->isConstantInitializer(Ctx, false, Culprit);
3316   }
3317   case CompoundLiteralExprClass: {
3318     // This handles gcc's extension that allows global initializers like
3319     // "struct x {int x;} x = (struct x) {};".
3320     // FIXME: This accepts other cases it shouldn't!
3321     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3322     return Exp->isConstantInitializer(Ctx, false, Culprit);
3323   }
3324   case DesignatedInitUpdateExprClass: {
3325     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3326     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3327            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3328   }
3329   case InitListExprClass: {
3330     const InitListExpr *ILE = cast<InitListExpr>(this);
3331     assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3332     if (ILE->getType()->isArrayType()) {
3333       unsigned numInits = ILE->getNumInits();
3334       for (unsigned i = 0; i < numInits; i++) {
3335         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3336           return false;
3337       }
3338       return true;
3339     }
3340 
3341     if (ILE->getType()->isRecordType()) {
3342       unsigned ElementNo = 0;
3343       RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3344       for (const auto *Field : RD->fields()) {
3345         // If this is a union, skip all the fields that aren't being initialized.
3346         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3347           continue;
3348 
3349         // Don't emit anonymous bitfields, they just affect layout.
3350         if (Field->isUnnamedBitfield())
3351           continue;
3352 
3353         if (ElementNo < ILE->getNumInits()) {
3354           const Expr *Elt = ILE->getInit(ElementNo++);
3355           if (Field->isBitField()) {
3356             // Bitfields have to evaluate to an integer.
3357             EvalResult Result;
3358             if (!Elt->EvaluateAsInt(Result, Ctx)) {
3359               if (Culprit)
3360                 *Culprit = Elt;
3361               return false;
3362             }
3363           } else {
3364             bool RefType = Field->getType()->isReferenceType();
3365             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3366               return false;
3367           }
3368         }
3369       }
3370       return true;
3371     }
3372 
3373     break;
3374   }
3375   case ImplicitValueInitExprClass:
3376   case NoInitExprClass:
3377     return true;
3378   case ParenExprClass:
3379     return cast<ParenExpr>(this)->getSubExpr()
3380       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3381   case GenericSelectionExprClass:
3382     return cast<GenericSelectionExpr>(this)->getResultExpr()
3383       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3384   case ChooseExprClass:
3385     if (cast<ChooseExpr>(this)->isConditionDependent()) {
3386       if (Culprit)
3387         *Culprit = this;
3388       return false;
3389     }
3390     return cast<ChooseExpr>(this)->getChosenSubExpr()
3391       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3392   case UnaryOperatorClass: {
3393     const UnaryOperator* Exp = cast<UnaryOperator>(this);
3394     if (Exp->getOpcode() == UO_Extension)
3395       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3396     break;
3397   }
3398   case CXXFunctionalCastExprClass:
3399   case CXXStaticCastExprClass:
3400   case ImplicitCastExprClass:
3401   case CStyleCastExprClass:
3402   case ObjCBridgedCastExprClass:
3403   case CXXDynamicCastExprClass:
3404   case CXXReinterpretCastExprClass:
3405   case CXXAddrspaceCastExprClass:
3406   case CXXConstCastExprClass: {
3407     const CastExpr *CE = cast<CastExpr>(this);
3408 
3409     // Handle misc casts we want to ignore.
3410     if (CE->getCastKind() == CK_NoOp ||
3411         CE->getCastKind() == CK_LValueToRValue ||
3412         CE->getCastKind() == CK_ToUnion ||
3413         CE->getCastKind() == CK_ConstructorConversion ||
3414         CE->getCastKind() == CK_NonAtomicToAtomic ||
3415         CE->getCastKind() == CK_AtomicToNonAtomic ||
3416         CE->getCastKind() == CK_IntToOCLSampler)
3417       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3418 
3419     break;
3420   }
3421   case MaterializeTemporaryExprClass:
3422     return cast<MaterializeTemporaryExpr>(this)
3423         ->getSubExpr()
3424         ->isConstantInitializer(Ctx, false, Culprit);
3425 
3426   case SubstNonTypeTemplateParmExprClass:
3427     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3428       ->isConstantInitializer(Ctx, false, Culprit);
3429   case CXXDefaultArgExprClass:
3430     return cast<CXXDefaultArgExpr>(this)->getExpr()
3431       ->isConstantInitializer(Ctx, false, Culprit);
3432   case CXXDefaultInitExprClass:
3433     return cast<CXXDefaultInitExpr>(this)->getExpr()
3434       ->isConstantInitializer(Ctx, false, Culprit);
3435   }
3436   // Allow certain forms of UB in constant initializers: signed integer
3437   // overflow and floating-point division by zero. We'll give a warning on
3438   // these, but they're common enough that we have to accept them.
3439   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3440     return true;
3441   if (Culprit)
3442     *Culprit = this;
3443   return false;
3444 }
3445 
3446 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3447   unsigned BuiltinID = getBuiltinCallee();
3448   if (BuiltinID != Builtin::BI__assume &&
3449       BuiltinID != Builtin::BI__builtin_assume)
3450     return false;
3451 
3452   const Expr* Arg = getArg(0);
3453   bool ArgVal;
3454   return !Arg->isValueDependent() &&
3455          Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3456 }
3457 
3458 bool CallExpr::isCallToStdMove() const {
3459   return getBuiltinCallee() == Builtin::BImove;
3460 }
3461 
3462 namespace {
3463   /// Look for any side effects within a Stmt.
3464   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3465     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3466     const bool IncludePossibleEffects;
3467     bool HasSideEffects;
3468 
3469   public:
3470     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3471       : Inherited(Context),
3472         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3473 
3474     bool hasSideEffects() const { return HasSideEffects; }
3475 
3476     void VisitDecl(const Decl *D) {
3477       if (!D)
3478         return;
3479 
3480       // We assume the caller checks subexpressions (eg, the initializer, VLA
3481       // bounds) for side-effects on our behalf.
3482       if (auto *VD = dyn_cast<VarDecl>(D)) {
3483         // Registering a destructor is a side-effect.
3484         if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3485             VD->needsDestruction(Context))
3486           HasSideEffects = true;
3487       }
3488     }
3489 
3490     void VisitDeclStmt(const DeclStmt *DS) {
3491       for (auto *D : DS->decls())
3492         VisitDecl(D);
3493       Inherited::VisitDeclStmt(DS);
3494     }
3495 
3496     void VisitExpr(const Expr *E) {
3497       if (!HasSideEffects &&
3498           E->HasSideEffects(Context, IncludePossibleEffects))
3499         HasSideEffects = true;
3500     }
3501   };
3502 }
3503 
3504 bool Expr::HasSideEffects(const ASTContext &Ctx,
3505                           bool IncludePossibleEffects) const {
3506   // In circumstances where we care about definite side effects instead of
3507   // potential side effects, we want to ignore expressions that are part of a
3508   // macro expansion as a potential side effect.
3509   if (!IncludePossibleEffects && getExprLoc().isMacroID())
3510     return false;
3511 
3512   switch (getStmtClass()) {
3513   case NoStmtClass:
3514   #define ABSTRACT_STMT(Type)
3515   #define STMT(Type, Base) case Type##Class:
3516   #define EXPR(Type, Base)
3517   #include "clang/AST/StmtNodes.inc"
3518     llvm_unreachable("unexpected Expr kind");
3519 
3520   case DependentScopeDeclRefExprClass:
3521   case CXXUnresolvedConstructExprClass:
3522   case CXXDependentScopeMemberExprClass:
3523   case UnresolvedLookupExprClass:
3524   case UnresolvedMemberExprClass:
3525   case PackExpansionExprClass:
3526   case SubstNonTypeTemplateParmPackExprClass:
3527   case FunctionParmPackExprClass:
3528   case TypoExprClass:
3529   case RecoveryExprClass:
3530   case CXXFoldExprClass:
3531     // Make a conservative assumption for dependent nodes.
3532     return IncludePossibleEffects;
3533 
3534   case DeclRefExprClass:
3535   case ObjCIvarRefExprClass:
3536   case PredefinedExprClass:
3537   case IntegerLiteralClass:
3538   case FixedPointLiteralClass:
3539   case FloatingLiteralClass:
3540   case ImaginaryLiteralClass:
3541   case StringLiteralClass:
3542   case CharacterLiteralClass:
3543   case OffsetOfExprClass:
3544   case ImplicitValueInitExprClass:
3545   case UnaryExprOrTypeTraitExprClass:
3546   case AddrLabelExprClass:
3547   case GNUNullExprClass:
3548   case ArrayInitIndexExprClass:
3549   case NoInitExprClass:
3550   case CXXBoolLiteralExprClass:
3551   case CXXNullPtrLiteralExprClass:
3552   case CXXThisExprClass:
3553   case CXXScalarValueInitExprClass:
3554   case TypeTraitExprClass:
3555   case ArrayTypeTraitExprClass:
3556   case ExpressionTraitExprClass:
3557   case CXXNoexceptExprClass:
3558   case SizeOfPackExprClass:
3559   case ObjCStringLiteralClass:
3560   case ObjCEncodeExprClass:
3561   case ObjCBoolLiteralExprClass:
3562   case ObjCAvailabilityCheckExprClass:
3563   case CXXUuidofExprClass:
3564   case OpaqueValueExprClass:
3565   case SourceLocExprClass:
3566   case ConceptSpecializationExprClass:
3567   case RequiresExprClass:
3568   case SYCLUniqueStableNameExprClass:
3569     // These never have a side-effect.
3570     return false;
3571 
3572   case ConstantExprClass:
3573     // FIXME: Move this into the "return false;" block above.
3574     return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3575         Ctx, IncludePossibleEffects);
3576 
3577   case CallExprClass:
3578   case CXXOperatorCallExprClass:
3579   case CXXMemberCallExprClass:
3580   case CUDAKernelCallExprClass:
3581   case UserDefinedLiteralClass: {
3582     // We don't know a call definitely has side effects, except for calls
3583     // to pure/const functions that definitely don't.
3584     // If the call itself is considered side-effect free, check the operands.
3585     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3586     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3587     if (IsPure || !IncludePossibleEffects)
3588       break;
3589     return true;
3590   }
3591 
3592   case BlockExprClass:
3593   case CXXBindTemporaryExprClass:
3594     if (!IncludePossibleEffects)
3595       break;
3596     return true;
3597 
3598   case MSPropertyRefExprClass:
3599   case MSPropertySubscriptExprClass:
3600   case CompoundAssignOperatorClass:
3601   case VAArgExprClass:
3602   case AtomicExprClass:
3603   case CXXThrowExprClass:
3604   case CXXNewExprClass:
3605   case CXXDeleteExprClass:
3606   case CoawaitExprClass:
3607   case DependentCoawaitExprClass:
3608   case CoyieldExprClass:
3609     // These always have a side-effect.
3610     return true;
3611 
3612   case StmtExprClass: {
3613     // StmtExprs have a side-effect if any substatement does.
3614     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3615     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3616     return Finder.hasSideEffects();
3617   }
3618 
3619   case ExprWithCleanupsClass:
3620     if (IncludePossibleEffects)
3621       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3622         return true;
3623     break;
3624 
3625   case ParenExprClass:
3626   case ArraySubscriptExprClass:
3627   case MatrixSubscriptExprClass:
3628   case OMPArraySectionExprClass:
3629   case OMPArrayShapingExprClass:
3630   case OMPIteratorExprClass:
3631   case MemberExprClass:
3632   case ConditionalOperatorClass:
3633   case BinaryConditionalOperatorClass:
3634   case CompoundLiteralExprClass:
3635   case ExtVectorElementExprClass:
3636   case DesignatedInitExprClass:
3637   case DesignatedInitUpdateExprClass:
3638   case ArrayInitLoopExprClass:
3639   case ParenListExprClass:
3640   case CXXPseudoDestructorExprClass:
3641   case CXXRewrittenBinaryOperatorClass:
3642   case CXXStdInitializerListExprClass:
3643   case SubstNonTypeTemplateParmExprClass:
3644   case MaterializeTemporaryExprClass:
3645   case ShuffleVectorExprClass:
3646   case ConvertVectorExprClass:
3647   case AsTypeExprClass:
3648   case CXXParenListInitExprClass:
3649     // These have a side-effect if any subexpression does.
3650     break;
3651 
3652   case UnaryOperatorClass:
3653     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3654       return true;
3655     break;
3656 
3657   case BinaryOperatorClass:
3658     if (cast<BinaryOperator>(this)->isAssignmentOp())
3659       return true;
3660     break;
3661 
3662   case InitListExprClass:
3663     // FIXME: The children for an InitListExpr doesn't include the array filler.
3664     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3665       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3666         return true;
3667     break;
3668 
3669   case GenericSelectionExprClass:
3670     return cast<GenericSelectionExpr>(this)->getResultExpr()->
3671         HasSideEffects(Ctx, IncludePossibleEffects);
3672 
3673   case ChooseExprClass:
3674     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3675         Ctx, IncludePossibleEffects);
3676 
3677   case CXXDefaultArgExprClass:
3678     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3679         Ctx, IncludePossibleEffects);
3680 
3681   case CXXDefaultInitExprClass: {
3682     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3683     if (const Expr *E = FD->getInClassInitializer())
3684       return E->HasSideEffects(Ctx, IncludePossibleEffects);
3685     // If we've not yet parsed the initializer, assume it has side-effects.
3686     return true;
3687   }
3688 
3689   case CXXDynamicCastExprClass: {
3690     // A dynamic_cast expression has side-effects if it can throw.
3691     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3692     if (DCE->getTypeAsWritten()->isReferenceType() &&
3693         DCE->getCastKind() == CK_Dynamic)
3694       return true;
3695     }
3696     [[fallthrough]];
3697   case ImplicitCastExprClass:
3698   case CStyleCastExprClass:
3699   case CXXStaticCastExprClass:
3700   case CXXReinterpretCastExprClass:
3701   case CXXConstCastExprClass:
3702   case CXXAddrspaceCastExprClass:
3703   case CXXFunctionalCastExprClass:
3704   case BuiltinBitCastExprClass: {
3705     // While volatile reads are side-effecting in both C and C++, we treat them
3706     // as having possible (not definite) side-effects. This allows idiomatic
3707     // code to behave without warning, such as sizeof(*v) for a volatile-
3708     // qualified pointer.
3709     if (!IncludePossibleEffects)
3710       break;
3711 
3712     const CastExpr *CE = cast<CastExpr>(this);
3713     if (CE->getCastKind() == CK_LValueToRValue &&
3714         CE->getSubExpr()->getType().isVolatileQualified())
3715       return true;
3716     break;
3717   }
3718 
3719   case CXXTypeidExprClass:
3720     // typeid might throw if its subexpression is potentially-evaluated, so has
3721     // side-effects in that case whether or not its subexpression does.
3722     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3723 
3724   case CXXConstructExprClass:
3725   case CXXTemporaryObjectExprClass: {
3726     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3727     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3728       return true;
3729     // A trivial constructor does not add any side-effects of its own. Just look
3730     // at its arguments.
3731     break;
3732   }
3733 
3734   case CXXInheritedCtorInitExprClass: {
3735     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3736     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3737       return true;
3738     break;
3739   }
3740 
3741   case LambdaExprClass: {
3742     const LambdaExpr *LE = cast<LambdaExpr>(this);
3743     for (Expr *E : LE->capture_inits())
3744       if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3745         return true;
3746     return false;
3747   }
3748 
3749   case PseudoObjectExprClass: {
3750     // Only look for side-effects in the semantic form, and look past
3751     // OpaqueValueExpr bindings in that form.
3752     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3753     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3754                                                     E = PO->semantics_end();
3755          I != E; ++I) {
3756       const Expr *Subexpr = *I;
3757       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3758         Subexpr = OVE->getSourceExpr();
3759       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3760         return true;
3761     }
3762     return false;
3763   }
3764 
3765   case ObjCBoxedExprClass:
3766   case ObjCArrayLiteralClass:
3767   case ObjCDictionaryLiteralClass:
3768   case ObjCSelectorExprClass:
3769   case ObjCProtocolExprClass:
3770   case ObjCIsaExprClass:
3771   case ObjCIndirectCopyRestoreExprClass:
3772   case ObjCSubscriptRefExprClass:
3773   case ObjCBridgedCastExprClass:
3774   case ObjCMessageExprClass:
3775   case ObjCPropertyRefExprClass:
3776   // FIXME: Classify these cases better.
3777     if (IncludePossibleEffects)
3778       return true;
3779     break;
3780   }
3781 
3782   // Recurse to children.
3783   for (const Stmt *SubStmt : children())
3784     if (SubStmt &&
3785         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3786       return true;
3787 
3788   return false;
3789 }
3790 
3791 FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3792   if (auto Call = dyn_cast<CallExpr>(this))
3793     return Call->getFPFeaturesInEffect(LO);
3794   if (auto UO = dyn_cast<UnaryOperator>(this))
3795     return UO->getFPFeaturesInEffect(LO);
3796   if (auto BO = dyn_cast<BinaryOperator>(this))
3797     return BO->getFPFeaturesInEffect(LO);
3798   if (auto Cast = dyn_cast<CastExpr>(this))
3799     return Cast->getFPFeaturesInEffect(LO);
3800   return FPOptions::defaultWithoutTrailingStorage(LO);
3801 }
3802 
3803 namespace {
3804   /// Look for a call to a non-trivial function within an expression.
3805   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3806   {
3807     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3808 
3809     bool NonTrivial;
3810 
3811   public:
3812     explicit NonTrivialCallFinder(const ASTContext &Context)
3813       : Inherited(Context), NonTrivial(false) { }
3814 
3815     bool hasNonTrivialCall() const { return NonTrivial; }
3816 
3817     void VisitCallExpr(const CallExpr *E) {
3818       if (const CXXMethodDecl *Method
3819           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3820         if (Method->isTrivial()) {
3821           // Recurse to children of the call.
3822           Inherited::VisitStmt(E);
3823           return;
3824         }
3825       }
3826 
3827       NonTrivial = true;
3828     }
3829 
3830     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3831       if (E->getConstructor()->isTrivial()) {
3832         // Recurse to children of the call.
3833         Inherited::VisitStmt(E);
3834         return;
3835       }
3836 
3837       NonTrivial = true;
3838     }
3839 
3840     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3841       if (E->getTemporary()->getDestructor()->isTrivial()) {
3842         Inherited::VisitStmt(E);
3843         return;
3844       }
3845 
3846       NonTrivial = true;
3847     }
3848   };
3849 }
3850 
3851 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3852   NonTrivialCallFinder Finder(Ctx);
3853   Finder.Visit(this);
3854   return Finder.hasNonTrivialCall();
3855 }
3856 
3857 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3858 /// pointer constant or not, as well as the specific kind of constant detected.
3859 /// Null pointer constants can be integer constant expressions with the
3860 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3861 /// (a GNU extension).
3862 Expr::NullPointerConstantKind
3863 Expr::isNullPointerConstant(ASTContext &Ctx,
3864                             NullPointerConstantValueDependence NPC) const {
3865   if (isValueDependent() &&
3866       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3867     // Error-dependent expr should never be a null pointer.
3868     if (containsErrors())
3869       return NPCK_NotNull;
3870     switch (NPC) {
3871     case NPC_NeverValueDependent:
3872       llvm_unreachable("Unexpected value dependent expression!");
3873     case NPC_ValueDependentIsNull:
3874       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3875         return NPCK_ZeroExpression;
3876       else
3877         return NPCK_NotNull;
3878 
3879     case NPC_ValueDependentIsNotNull:
3880       return NPCK_NotNull;
3881     }
3882   }
3883 
3884   // Strip off a cast to void*, if it exists. Except in C++.
3885   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3886     if (!Ctx.getLangOpts().CPlusPlus) {
3887       // Check that it is a cast to void*.
3888       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3889         QualType Pointee = PT->getPointeeType();
3890         Qualifiers Qs = Pointee.getQualifiers();
3891         // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3892         // has non-default address space it is not treated as nullptr.
3893         // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3894         // since it cannot be assigned to a pointer to constant address space.
3895         if (Ctx.getLangOpts().OpenCL &&
3896             Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace())
3897           Qs.removeAddressSpace();
3898 
3899         if (Pointee->isVoidType() && Qs.empty() && // to void*
3900             CE->getSubExpr()->getType()->isIntegerType()) // from int
3901           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3902       }
3903     }
3904   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3905     // Ignore the ImplicitCastExpr type entirely.
3906     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3907   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3908     // Accept ((void*)0) as a null pointer constant, as many other
3909     // implementations do.
3910     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3911   } else if (const GenericSelectionExpr *GE =
3912                dyn_cast<GenericSelectionExpr>(this)) {
3913     if (GE->isResultDependent())
3914       return NPCK_NotNull;
3915     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3916   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3917     if (CE->isConditionDependent())
3918       return NPCK_NotNull;
3919     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3920   } else if (const CXXDefaultArgExpr *DefaultArg
3921                = dyn_cast<CXXDefaultArgExpr>(this)) {
3922     // See through default argument expressions.
3923     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3924   } else if (const CXXDefaultInitExpr *DefaultInit
3925                = dyn_cast<CXXDefaultInitExpr>(this)) {
3926     // See through default initializer expressions.
3927     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3928   } else if (isa<GNUNullExpr>(this)) {
3929     // The GNU __null extension is always a null pointer constant.
3930     return NPCK_GNUNull;
3931   } else if (const MaterializeTemporaryExpr *M
3932                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3933     return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3934   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3935     if (const Expr *Source = OVE->getSourceExpr())
3936       return Source->isNullPointerConstant(Ctx, NPC);
3937   }
3938 
3939   // If the expression has no type information, it cannot be a null pointer
3940   // constant.
3941   if (getType().isNull())
3942     return NPCK_NotNull;
3943 
3944   // C++11/C2x nullptr_t is always a null pointer constant.
3945   if (getType()->isNullPtrType())
3946     return NPCK_CXX11_nullptr;
3947 
3948   if (const RecordType *UT = getType()->getAsUnionType())
3949     if (!Ctx.getLangOpts().CPlusPlus11 &&
3950         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3951       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3952         const Expr *InitExpr = CLE->getInitializer();
3953         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3954           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3955       }
3956   // This expression must be an integer type.
3957   if (!getType()->isIntegerType() ||
3958       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3959     return NPCK_NotNull;
3960 
3961   if (Ctx.getLangOpts().CPlusPlus11) {
3962     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3963     // value zero or a prvalue of type std::nullptr_t.
3964     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3965     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3966     if (Lit && !Lit->getValue())
3967       return NPCK_ZeroLiteral;
3968     if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3969       return NPCK_NotNull;
3970   } else {
3971     // If we have an integer constant expression, we need to *evaluate* it and
3972     // test for the value 0.
3973     if (!isIntegerConstantExpr(Ctx))
3974       return NPCK_NotNull;
3975   }
3976 
3977   if (EvaluateKnownConstInt(Ctx) != 0)
3978     return NPCK_NotNull;
3979 
3980   if (isa<IntegerLiteral>(this))
3981     return NPCK_ZeroLiteral;
3982   return NPCK_ZeroExpression;
3983 }
3984 
3985 /// If this expression is an l-value for an Objective C
3986 /// property, find the underlying property reference expression.
3987 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3988   const Expr *E = this;
3989   while (true) {
3990     assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
3991            "expression is not a property reference");
3992     E = E->IgnoreParenCasts();
3993     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3994       if (BO->getOpcode() == BO_Comma) {
3995         E = BO->getRHS();
3996         continue;
3997       }
3998     }
3999 
4000     break;
4001   }
4002 
4003   return cast<ObjCPropertyRefExpr>(E);
4004 }
4005 
4006 bool Expr::isObjCSelfExpr() const {
4007   const Expr *E = IgnoreParenImpCasts();
4008 
4009   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
4010   if (!DRE)
4011     return false;
4012 
4013   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
4014   if (!Param)
4015     return false;
4016 
4017   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
4018   if (!M)
4019     return false;
4020 
4021   return M->getSelfDecl() == Param;
4022 }
4023 
4024 FieldDecl *Expr::getSourceBitField() {
4025   Expr *E = this->IgnoreParens();
4026 
4027   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4028     if (ICE->getCastKind() == CK_LValueToRValue ||
4029         (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
4030       E = ICE->getSubExpr()->IgnoreParens();
4031     else
4032       break;
4033   }
4034 
4035   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
4036     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
4037       if (Field->isBitField())
4038         return Field;
4039 
4040   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
4041     FieldDecl *Ivar = IvarRef->getDecl();
4042     if (Ivar->isBitField())
4043       return Ivar;
4044   }
4045 
4046   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
4047     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
4048       if (Field->isBitField())
4049         return Field;
4050 
4051     if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
4052       if (Expr *E = BD->getBinding())
4053         return E->getSourceBitField();
4054   }
4055 
4056   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
4057     if (BinOp->isAssignmentOp() && BinOp->getLHS())
4058       return BinOp->getLHS()->getSourceBitField();
4059 
4060     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
4061       return BinOp->getRHS()->getSourceBitField();
4062   }
4063 
4064   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
4065     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
4066       return UnOp->getSubExpr()->getSourceBitField();
4067 
4068   return nullptr;
4069 }
4070 
4071 bool Expr::refersToVectorElement() const {
4072   // FIXME: Why do we not just look at the ObjectKind here?
4073   const Expr *E = this->IgnoreParens();
4074 
4075   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
4076     if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
4077       E = ICE->getSubExpr()->IgnoreParens();
4078     else
4079       break;
4080   }
4081 
4082   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
4083     return ASE->getBase()->getType()->isVectorType();
4084 
4085   if (isa<ExtVectorElementExpr>(E))
4086     return true;
4087 
4088   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
4089     if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
4090       if (auto *E = BD->getBinding())
4091         return E->refersToVectorElement();
4092 
4093   return false;
4094 }
4095 
4096 bool Expr::refersToGlobalRegisterVar() const {
4097   const Expr *E = this->IgnoreParenImpCasts();
4098 
4099   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
4100     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
4101       if (VD->getStorageClass() == SC_Register &&
4102           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4103         return true;
4104 
4105   return false;
4106 }
4107 
4108 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4109   E1 = E1->IgnoreParens();
4110   E2 = E2->IgnoreParens();
4111 
4112   if (E1->getStmtClass() != E2->getStmtClass())
4113     return false;
4114 
4115   switch (E1->getStmtClass()) {
4116     default:
4117       return false;
4118     case CXXThisExprClass:
4119       return true;
4120     case DeclRefExprClass: {
4121       // DeclRefExpr without an ImplicitCastExpr can happen for integral
4122       // template parameters.
4123       const auto *DRE1 = cast<DeclRefExpr>(E1);
4124       const auto *DRE2 = cast<DeclRefExpr>(E2);
4125       return DRE1->isPRValue() && DRE2->isPRValue() &&
4126              DRE1->getDecl() == DRE2->getDecl();
4127     }
4128     case ImplicitCastExprClass: {
4129       // Peel off implicit casts.
4130       while (true) {
4131         const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4132         const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4133         if (!ICE1 || !ICE2)
4134           return false;
4135         if (ICE1->getCastKind() != ICE2->getCastKind())
4136           return false;
4137         E1 = ICE1->getSubExpr()->IgnoreParens();
4138         E2 = ICE2->getSubExpr()->IgnoreParens();
4139         // The final cast must be one of these types.
4140         if (ICE1->getCastKind() == CK_LValueToRValue ||
4141             ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4142             ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4143           break;
4144         }
4145       }
4146 
4147       const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4148       const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4149       if (DRE1 && DRE2)
4150         return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4151 
4152       const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4153       const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4154       if (Ivar1 && Ivar2) {
4155         return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4156                declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4157       }
4158 
4159       const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4160       const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4161       if (Array1 && Array2) {
4162         if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4163           return false;
4164 
4165         auto Idx1 = Array1->getIdx();
4166         auto Idx2 = Array2->getIdx();
4167         const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4168         const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4169         if (Integer1 && Integer2) {
4170           if (!llvm::APInt::isSameValue(Integer1->getValue(),
4171                                         Integer2->getValue()))
4172             return false;
4173         } else {
4174           if (!isSameComparisonOperand(Idx1, Idx2))
4175             return false;
4176         }
4177 
4178         return true;
4179       }
4180 
4181       // Walk the MemberExpr chain.
4182       while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4183         const auto *ME1 = cast<MemberExpr>(E1);
4184         const auto *ME2 = cast<MemberExpr>(E2);
4185         if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4186           return false;
4187         if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4188           if (D->isStaticDataMember())
4189             return true;
4190         E1 = ME1->getBase()->IgnoreParenImpCasts();
4191         E2 = ME2->getBase()->IgnoreParenImpCasts();
4192       }
4193 
4194       if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4195         return true;
4196 
4197       // A static member variable can end the MemberExpr chain with either
4198       // a MemberExpr or a DeclRefExpr.
4199       auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4200         if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4201           return DRE->getDecl();
4202         if (const auto *ME = dyn_cast<MemberExpr>(E))
4203           return ME->getMemberDecl();
4204         return nullptr;
4205       };
4206 
4207       const ValueDecl *VD1 = getAnyDecl(E1);
4208       const ValueDecl *VD2 = getAnyDecl(E2);
4209       return declaresSameEntity(VD1, VD2);
4210     }
4211   }
4212 }
4213 
4214 /// isArrow - Return true if the base expression is a pointer to vector,
4215 /// return false if the base expression is a vector.
4216 bool ExtVectorElementExpr::isArrow() const {
4217   return getBase()->getType()->isPointerType();
4218 }
4219 
4220 unsigned ExtVectorElementExpr::getNumElements() const {
4221   if (const VectorType *VT = getType()->getAs<VectorType>())
4222     return VT->getNumElements();
4223   return 1;
4224 }
4225 
4226 /// containsDuplicateElements - Return true if any element access is repeated.
4227 bool ExtVectorElementExpr::containsDuplicateElements() const {
4228   // FIXME: Refactor this code to an accessor on the AST node which returns the
4229   // "type" of component access, and share with code below and in Sema.
4230   StringRef Comp = Accessor->getName();
4231 
4232   // Halving swizzles do not contain duplicate elements.
4233   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4234     return false;
4235 
4236   // Advance past s-char prefix on hex swizzles.
4237   if (Comp[0] == 's' || Comp[0] == 'S')
4238     Comp = Comp.substr(1);
4239 
4240   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4241     if (Comp.substr(i + 1).contains(Comp[i]))
4242         return true;
4243 
4244   return false;
4245 }
4246 
4247 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4248 void ExtVectorElementExpr::getEncodedElementAccess(
4249     SmallVectorImpl<uint32_t> &Elts) const {
4250   StringRef Comp = Accessor->getName();
4251   bool isNumericAccessor = false;
4252   if (Comp[0] == 's' || Comp[0] == 'S') {
4253     Comp = Comp.substr(1);
4254     isNumericAccessor = true;
4255   }
4256 
4257   bool isHi =   Comp == "hi";
4258   bool isLo =   Comp == "lo";
4259   bool isEven = Comp == "even";
4260   bool isOdd  = Comp == "odd";
4261 
4262   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4263     uint64_t Index;
4264 
4265     if (isHi)
4266       Index = e + i;
4267     else if (isLo)
4268       Index = i;
4269     else if (isEven)
4270       Index = 2 * i;
4271     else if (isOdd)
4272       Index = 2 * i + 1;
4273     else
4274       Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4275 
4276     Elts.push_back(Index);
4277   }
4278 }
4279 
4280 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4281                                      QualType Type, SourceLocation BLoc,
4282                                      SourceLocation RP)
4283     : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4284       BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4285   SubExprs = new (C) Stmt*[args.size()];
4286   for (unsigned i = 0; i != args.size(); i++)
4287     SubExprs[i] = args[i];
4288 
4289   setDependence(computeDependence(this));
4290 }
4291 
4292 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4293   if (SubExprs) C.Deallocate(SubExprs);
4294 
4295   this->NumExprs = Exprs.size();
4296   SubExprs = new (C) Stmt*[NumExprs];
4297   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4298 }
4299 
4300 GenericSelectionExpr::GenericSelectionExpr(
4301     const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4302     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4303     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4304     bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4305     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4306            AssocExprs[ResultIndex]->getValueKind(),
4307            AssocExprs[ResultIndex]->getObjectKind()),
4308       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4309       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4310   assert(AssocTypes.size() == AssocExprs.size() &&
4311          "Must have the same number of association expressions"
4312          " and TypeSourceInfo!");
4313   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4314 
4315   GenericSelectionExprBits.GenericLoc = GenericLoc;
4316   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4317   std::copy(AssocExprs.begin(), AssocExprs.end(),
4318             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4319   std::copy(AssocTypes.begin(), AssocTypes.end(),
4320             getTrailingObjects<TypeSourceInfo *>());
4321 
4322   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4323 }
4324 
4325 GenericSelectionExpr::GenericSelectionExpr(
4326     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4327     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4328     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4329     bool ContainsUnexpandedParameterPack)
4330     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4331            OK_Ordinary),
4332       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4333       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4334   assert(AssocTypes.size() == AssocExprs.size() &&
4335          "Must have the same number of association expressions"
4336          " and TypeSourceInfo!");
4337 
4338   GenericSelectionExprBits.GenericLoc = GenericLoc;
4339   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4340   std::copy(AssocExprs.begin(), AssocExprs.end(),
4341             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4342   std::copy(AssocTypes.begin(), AssocTypes.end(),
4343             getTrailingObjects<TypeSourceInfo *>());
4344 
4345   setDependence(computeDependence(this, ContainsUnexpandedParameterPack));
4346 }
4347 
4348 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4349     : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4350 
4351 GenericSelectionExpr *GenericSelectionExpr::Create(
4352     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4353     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4354     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4355     bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4356   unsigned NumAssocs = AssocExprs.size();
4357   void *Mem = Context.Allocate(
4358       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4359       alignof(GenericSelectionExpr));
4360   return new (Mem) GenericSelectionExpr(
4361       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4362       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4363 }
4364 
4365 GenericSelectionExpr *GenericSelectionExpr::Create(
4366     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4367     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4368     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4369     bool ContainsUnexpandedParameterPack) {
4370   unsigned NumAssocs = AssocExprs.size();
4371   void *Mem = Context.Allocate(
4372       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4373       alignof(GenericSelectionExpr));
4374   return new (Mem) GenericSelectionExpr(
4375       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4376       RParenLoc, ContainsUnexpandedParameterPack);
4377 }
4378 
4379 GenericSelectionExpr *
4380 GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4381                                   unsigned NumAssocs) {
4382   void *Mem = Context.Allocate(
4383       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4384       alignof(GenericSelectionExpr));
4385   return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4386 }
4387 
4388 //===----------------------------------------------------------------------===//
4389 //  DesignatedInitExpr
4390 //===----------------------------------------------------------------------===//
4391 
4392 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4393   assert(Kind == FieldDesignator && "Only valid on a field designator");
4394   if (Field.NameOrField & 0x01)
4395     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField & ~0x01);
4396   return getField()->getIdentifier();
4397 }
4398 
4399 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4400                                        llvm::ArrayRef<Designator> Designators,
4401                                        SourceLocation EqualOrColonLoc,
4402                                        bool GNUSyntax,
4403                                        ArrayRef<Expr *> IndexExprs, Expr *Init)
4404     : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4405            Init->getObjectKind()),
4406       EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4407       NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4408   this->Designators = new (C) Designator[NumDesignators];
4409 
4410   // Record the initializer itself.
4411   child_iterator Child = child_begin();
4412   *Child++ = Init;
4413 
4414   // Copy the designators and their subexpressions, computing
4415   // value-dependence along the way.
4416   unsigned IndexIdx = 0;
4417   for (unsigned I = 0; I != NumDesignators; ++I) {
4418     this->Designators[I] = Designators[I];
4419     if (this->Designators[I].isArrayDesignator()) {
4420       // Copy the index expressions into permanent storage.
4421       *Child++ = IndexExprs[IndexIdx++];
4422     } else if (this->Designators[I].isArrayRangeDesignator()) {
4423       // Copy the start/end expressions into permanent storage.
4424       *Child++ = IndexExprs[IndexIdx++];
4425       *Child++ = IndexExprs[IndexIdx++];
4426     }
4427   }
4428 
4429   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4430   setDependence(computeDependence(this));
4431 }
4432 
4433 DesignatedInitExpr *
4434 DesignatedInitExpr::Create(const ASTContext &C,
4435                            llvm::ArrayRef<Designator> Designators,
4436                            ArrayRef<Expr*> IndexExprs,
4437                            SourceLocation ColonOrEqualLoc,
4438                            bool UsesColonSyntax, Expr *Init) {
4439   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4440                          alignof(DesignatedInitExpr));
4441   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4442                                       ColonOrEqualLoc, UsesColonSyntax,
4443                                       IndexExprs, Init);
4444 }
4445 
4446 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4447                                                     unsigned NumIndexExprs) {
4448   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4449                          alignof(DesignatedInitExpr));
4450   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4451 }
4452 
4453 void DesignatedInitExpr::setDesignators(const ASTContext &C,
4454                                         const Designator *Desigs,
4455                                         unsigned NumDesigs) {
4456   Designators = new (C) Designator[NumDesigs];
4457   NumDesignators = NumDesigs;
4458   for (unsigned I = 0; I != NumDesigs; ++I)
4459     Designators[I] = Desigs[I];
4460 }
4461 
4462 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4463   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4464   if (size() == 1)
4465     return DIE->getDesignator(0)->getSourceRange();
4466   return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4467                      DIE->getDesignator(size() - 1)->getEndLoc());
4468 }
4469 
4470 SourceLocation DesignatedInitExpr::getBeginLoc() const {
4471   SourceLocation StartLoc;
4472   auto *DIE = const_cast<DesignatedInitExpr *>(this);
4473   Designator &First = *DIE->getDesignator(0);
4474   if (First.isFieldDesignator())
4475     StartLoc = GNUSyntax ? First.Field.FieldLoc : First.Field.DotLoc;
4476   else
4477     StartLoc = First.ArrayOrRange.LBracketLoc;
4478   return StartLoc;
4479 }
4480 
4481 SourceLocation DesignatedInitExpr::getEndLoc() const {
4482   return getInit()->getEndLoc();
4483 }
4484 
4485 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4486   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
4487   return getSubExpr(D.ArrayOrRange.Index + 1);
4488 }
4489 
4490 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4491   assert(D.Kind == Designator::ArrayRangeDesignator &&
4492          "Requires array range designator");
4493   return getSubExpr(D.ArrayOrRange.Index + 1);
4494 }
4495 
4496 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4497   assert(D.Kind == Designator::ArrayRangeDesignator &&
4498          "Requires array range designator");
4499   return getSubExpr(D.ArrayOrRange.Index + 2);
4500 }
4501 
4502 /// Replaces the designator at index @p Idx with the series
4503 /// of designators in [First, Last).
4504 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4505                                           const Designator *First,
4506                                           const Designator *Last) {
4507   unsigned NumNewDesignators = Last - First;
4508   if (NumNewDesignators == 0) {
4509     std::copy_backward(Designators + Idx + 1,
4510                        Designators + NumDesignators,
4511                        Designators + Idx);
4512     --NumNewDesignators;
4513     return;
4514   }
4515   if (NumNewDesignators == 1) {
4516     Designators[Idx] = *First;
4517     return;
4518   }
4519 
4520   Designator *NewDesignators
4521     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4522   std::copy(Designators, Designators + Idx, NewDesignators);
4523   std::copy(First, Last, NewDesignators + Idx);
4524   std::copy(Designators + Idx + 1, Designators + NumDesignators,
4525             NewDesignators + Idx + NumNewDesignators);
4526   Designators = NewDesignators;
4527   NumDesignators = NumDesignators - 1 + NumNewDesignators;
4528 }
4529 
4530 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4531                                                    SourceLocation lBraceLoc,
4532                                                    Expr *baseExpr,
4533                                                    SourceLocation rBraceLoc)
4534     : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4535            OK_Ordinary) {
4536   BaseAndUpdaterExprs[0] = baseExpr;
4537 
4538   InitListExpr *ILE =
4539       new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc);
4540   ILE->setType(baseExpr->getType());
4541   BaseAndUpdaterExprs[1] = ILE;
4542 
4543   // FIXME: this is wrong, set it correctly.
4544   setDependence(ExprDependence::None);
4545 }
4546 
4547 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4548   return getBase()->getBeginLoc();
4549 }
4550 
4551 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4552   return getBase()->getEndLoc();
4553 }
4554 
4555 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4556                              SourceLocation RParenLoc)
4557     : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4558       LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4559   ParenListExprBits.NumExprs = Exprs.size();
4560 
4561   for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4562     getTrailingObjects<Stmt *>()[I] = Exprs[I];
4563   setDependence(computeDependence(this));
4564 }
4565 
4566 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4567     : Expr(ParenListExprClass, Empty) {
4568   ParenListExprBits.NumExprs = NumExprs;
4569 }
4570 
4571 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4572                                      SourceLocation LParenLoc,
4573                                      ArrayRef<Expr *> Exprs,
4574                                      SourceLocation RParenLoc) {
4575   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4576                            alignof(ParenListExpr));
4577   return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4578 }
4579 
4580 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4581                                           unsigned NumExprs) {
4582   void *Mem =
4583       Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4584   return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4585 }
4586 
4587 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4588                                Opcode opc, QualType ResTy, ExprValueKind VK,
4589                                ExprObjectKind OK, SourceLocation opLoc,
4590                                FPOptionsOverride FPFeatures)
4591     : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4592   BinaryOperatorBits.Opc = opc;
4593   assert(!isCompoundAssignmentOp() &&
4594          "Use CompoundAssignOperator for compound assignments");
4595   BinaryOperatorBits.OpLoc = opLoc;
4596   SubExprs[LHS] = lhs;
4597   SubExprs[RHS] = rhs;
4598   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4599   if (hasStoredFPFeatures())
4600     setStoredFPFeatures(FPFeatures);
4601   setDependence(computeDependence(this));
4602 }
4603 
4604 BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4605                                Opcode opc, QualType ResTy, ExprValueKind VK,
4606                                ExprObjectKind OK, SourceLocation opLoc,
4607                                FPOptionsOverride FPFeatures, bool dead2)
4608     : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4609   BinaryOperatorBits.Opc = opc;
4610   assert(isCompoundAssignmentOp() &&
4611          "Use CompoundAssignOperator for compound assignments");
4612   BinaryOperatorBits.OpLoc = opLoc;
4613   SubExprs[LHS] = lhs;
4614   SubExprs[RHS] = rhs;
4615   BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4616   if (hasStoredFPFeatures())
4617     setStoredFPFeatures(FPFeatures);
4618   setDependence(computeDependence(this));
4619 }
4620 
4621 BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4622                                             bool HasFPFeatures) {
4623   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4624   void *Mem =
4625       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4626   return new (Mem) BinaryOperator(EmptyShell());
4627 }
4628 
4629 BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4630                                        Expr *rhs, Opcode opc, QualType ResTy,
4631                                        ExprValueKind VK, ExprObjectKind OK,
4632                                        SourceLocation opLoc,
4633                                        FPOptionsOverride FPFeatures) {
4634   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4635   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4636   void *Mem =
4637       C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator));
4638   return new (Mem)
4639       BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4640 }
4641 
4642 CompoundAssignOperator *
4643 CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4644   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4645   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4646                          alignof(CompoundAssignOperator));
4647   return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4648 }
4649 
4650 CompoundAssignOperator *
4651 CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4652                                Opcode opc, QualType ResTy, ExprValueKind VK,
4653                                ExprObjectKind OK, SourceLocation opLoc,
4654                                FPOptionsOverride FPFeatures,
4655                                QualType CompLHSType, QualType CompResultType) {
4656   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4657   unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4658   void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra,
4659                          alignof(CompoundAssignOperator));
4660   return new (Mem)
4661       CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4662                              CompLHSType, CompResultType);
4663 }
4664 
4665 UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4666                                           bool hasFPFeatures) {
4667   void *Mem = C.Allocate(totalSizeToAlloc<FPOptionsOverride>(hasFPFeatures),
4668                          alignof(UnaryOperator));
4669   return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4670 }
4671 
4672 UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4673                              QualType type, ExprValueKind VK, ExprObjectKind OK,
4674                              SourceLocation l, bool CanOverflow,
4675                              FPOptionsOverride FPFeatures)
4676     : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4677   UnaryOperatorBits.Opc = opc;
4678   UnaryOperatorBits.CanOverflow = CanOverflow;
4679   UnaryOperatorBits.Loc = l;
4680   UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4681   if (hasStoredFPFeatures())
4682     setStoredFPFeatures(FPFeatures);
4683   setDependence(computeDependence(this, Ctx));
4684 }
4685 
4686 UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4687                                      Opcode opc, QualType type,
4688                                      ExprValueKind VK, ExprObjectKind OK,
4689                                      SourceLocation l, bool CanOverflow,
4690                                      FPOptionsOverride FPFeatures) {
4691   bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4692   unsigned Size = totalSizeToAlloc<FPOptionsOverride>(HasFPFeatures);
4693   void *Mem = C.Allocate(Size, alignof(UnaryOperator));
4694   return new (Mem)
4695       UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4696 }
4697 
4698 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4699   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4700     e = ewc->getSubExpr();
4701   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4702     e = m->getSubExpr();
4703   e = cast<CXXConstructExpr>(e)->getArg(0);
4704   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4705     e = ice->getSubExpr();
4706   return cast<OpaqueValueExpr>(e);
4707 }
4708 
4709 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4710                                            EmptyShell sh,
4711                                            unsigned numSemanticExprs) {
4712   void *buffer =
4713       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4714                        alignof(PseudoObjectExpr));
4715   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4716 }
4717 
4718 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4719   : Expr(PseudoObjectExprClass, shell) {
4720   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4721 }
4722 
4723 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4724                                            ArrayRef<Expr*> semantics,
4725                                            unsigned resultIndex) {
4726   assert(syntax && "no syntactic expression!");
4727   assert(semantics.size() && "no semantic expressions!");
4728 
4729   QualType type;
4730   ExprValueKind VK;
4731   if (resultIndex == NoResult) {
4732     type = C.VoidTy;
4733     VK = VK_PRValue;
4734   } else {
4735     assert(resultIndex < semantics.size());
4736     type = semantics[resultIndex]->getType();
4737     VK = semantics[resultIndex]->getValueKind();
4738     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4739   }
4740 
4741   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4742                             alignof(PseudoObjectExpr));
4743   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4744                                       resultIndex);
4745 }
4746 
4747 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4748                                    Expr *syntax, ArrayRef<Expr *> semantics,
4749                                    unsigned resultIndex)
4750     : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4751   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4752   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4753 
4754   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4755     Expr *E = (i == 0 ? syntax : semantics[i-1]);
4756     getSubExprsBuffer()[i] = E;
4757 
4758     if (isa<OpaqueValueExpr>(E))
4759       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4760              "opaque-value semantic expressions for pseudo-object "
4761              "operations must have sources");
4762   }
4763 
4764   setDependence(computeDependence(this));
4765 }
4766 
4767 //===----------------------------------------------------------------------===//
4768 //  Child Iterators for iterating over subexpressions/substatements
4769 //===----------------------------------------------------------------------===//
4770 
4771 // UnaryExprOrTypeTraitExpr
4772 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4773   const_child_range CCR =
4774       const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4775   return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4776 }
4777 
4778 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4779   // If this is of a type and the type is a VLA type (and not a typedef), the
4780   // size expression of the VLA needs to be treated as an executable expression.
4781   // Why isn't this weirdness documented better in StmtIterator?
4782   if (isArgumentType()) {
4783     if (const VariableArrayType *T =
4784             dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4785       return const_child_range(const_child_iterator(T), const_child_iterator());
4786     return const_child_range(const_child_iterator(), const_child_iterator());
4787   }
4788   return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4789 }
4790 
4791 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4792                        AtomicOp op, SourceLocation RP)
4793     : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
4794       NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4795   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4796   for (unsigned i = 0; i != args.size(); i++)
4797     SubExprs[i] = args[i];
4798   setDependence(computeDependence(this));
4799 }
4800 
4801 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4802   switch (Op) {
4803   case AO__c11_atomic_init:
4804   case AO__opencl_atomic_init:
4805   case AO__c11_atomic_load:
4806   case AO__atomic_load_n:
4807     return 2;
4808 
4809   case AO__opencl_atomic_load:
4810   case AO__hip_atomic_load:
4811   case AO__c11_atomic_store:
4812   case AO__c11_atomic_exchange:
4813   case AO__atomic_load:
4814   case AO__atomic_store:
4815   case AO__atomic_store_n:
4816   case AO__atomic_exchange_n:
4817   case AO__c11_atomic_fetch_add:
4818   case AO__c11_atomic_fetch_sub:
4819   case AO__c11_atomic_fetch_and:
4820   case AO__c11_atomic_fetch_or:
4821   case AO__c11_atomic_fetch_xor:
4822   case AO__c11_atomic_fetch_nand:
4823   case AO__c11_atomic_fetch_max:
4824   case AO__c11_atomic_fetch_min:
4825   case AO__atomic_fetch_add:
4826   case AO__atomic_fetch_sub:
4827   case AO__atomic_fetch_and:
4828   case AO__atomic_fetch_or:
4829   case AO__atomic_fetch_xor:
4830   case AO__atomic_fetch_nand:
4831   case AO__atomic_add_fetch:
4832   case AO__atomic_sub_fetch:
4833   case AO__atomic_and_fetch:
4834   case AO__atomic_or_fetch:
4835   case AO__atomic_xor_fetch:
4836   case AO__atomic_nand_fetch:
4837   case AO__atomic_min_fetch:
4838   case AO__atomic_max_fetch:
4839   case AO__atomic_fetch_min:
4840   case AO__atomic_fetch_max:
4841     return 3;
4842 
4843   case AO__hip_atomic_exchange:
4844   case AO__hip_atomic_fetch_add:
4845   case AO__hip_atomic_fetch_and:
4846   case AO__hip_atomic_fetch_or:
4847   case AO__hip_atomic_fetch_xor:
4848   case AO__hip_atomic_fetch_min:
4849   case AO__hip_atomic_fetch_max:
4850   case AO__opencl_atomic_store:
4851   case AO__hip_atomic_store:
4852   case AO__opencl_atomic_exchange:
4853   case AO__opencl_atomic_fetch_add:
4854   case AO__opencl_atomic_fetch_sub:
4855   case AO__opencl_atomic_fetch_and:
4856   case AO__opencl_atomic_fetch_or:
4857   case AO__opencl_atomic_fetch_xor:
4858   case AO__opencl_atomic_fetch_min:
4859   case AO__opencl_atomic_fetch_max:
4860   case AO__atomic_exchange:
4861     return 4;
4862 
4863   case AO__c11_atomic_compare_exchange_strong:
4864   case AO__c11_atomic_compare_exchange_weak:
4865     return 5;
4866   case AO__hip_atomic_compare_exchange_strong:
4867   case AO__opencl_atomic_compare_exchange_strong:
4868   case AO__opencl_atomic_compare_exchange_weak:
4869   case AO__hip_atomic_compare_exchange_weak:
4870   case AO__atomic_compare_exchange:
4871   case AO__atomic_compare_exchange_n:
4872     return 6;
4873   }
4874   llvm_unreachable("unknown atomic op");
4875 }
4876 
4877 QualType AtomicExpr::getValueType() const {
4878   auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4879   if (auto AT = T->getAs<AtomicType>())
4880     return AT->getValueType();
4881   return T;
4882 }
4883 
4884 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
4885   unsigned ArraySectionCount = 0;
4886   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4887     Base = OASE->getBase();
4888     ++ArraySectionCount;
4889   }
4890   while (auto *ASE =
4891              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4892     Base = ASE->getBase();
4893     ++ArraySectionCount;
4894   }
4895   Base = Base->IgnoreParenImpCasts();
4896   auto OriginalTy = Base->getType();
4897   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4898     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4899       OriginalTy = PVD->getOriginalType().getNonReferenceType();
4900 
4901   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4902     if (OriginalTy->isAnyPointerType())
4903       OriginalTy = OriginalTy->getPointeeType();
4904     else {
4905       assert (OriginalTy->isArrayType());
4906       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4907     }
4908   }
4909   return OriginalTy;
4910 }
4911 
4912 RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
4913                            SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
4914     : Expr(RecoveryExprClass, T.getNonReferenceType(),
4915            T->isDependentType() ? VK_LValue : getValueKindForType(T),
4916            OK_Ordinary),
4917       BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
4918   assert(!T.isNull());
4919   assert(!llvm::is_contained(SubExprs, nullptr));
4920 
4921   llvm::copy(SubExprs, getTrailingObjects<Expr *>());
4922   setDependence(computeDependence(this));
4923 }
4924 
4925 RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
4926                                    SourceLocation BeginLoc,
4927                                    SourceLocation EndLoc,
4928                                    ArrayRef<Expr *> SubExprs) {
4929   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
4930                            alignof(RecoveryExpr));
4931   return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
4932 }
4933 
4934 RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
4935   void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
4936                            alignof(RecoveryExpr));
4937   return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
4938 }
4939 
4940 void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
4941   assert(
4942       NumDims == Dims.size() &&
4943       "Preallocated number of dimensions is different from the provided one.");
4944   llvm::copy(Dims, getTrailingObjects<Expr *>());
4945 }
4946 
4947 void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
4948   assert(
4949       NumDims == BR.size() &&
4950       "Preallocated number of dimensions is different from the provided one.");
4951   llvm::copy(BR, getTrailingObjects<SourceRange>());
4952 }
4953 
4954 OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
4955                                          SourceLocation L, SourceLocation R,
4956                                          ArrayRef<Expr *> Dims)
4957     : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
4958       RPLoc(R), NumDims(Dims.size()) {
4959   setBase(Op);
4960   setDimensions(Dims);
4961   setDependence(computeDependence(this));
4962 }
4963 
4964 OMPArrayShapingExpr *
4965 OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
4966                             SourceLocation L, SourceLocation R,
4967                             ArrayRef<Expr *> Dims,
4968                             ArrayRef<SourceRange> BracketRanges) {
4969   assert(Dims.size() == BracketRanges.size() &&
4970          "Different number of dimensions and brackets ranges.");
4971   void *Mem = Context.Allocate(
4972       totalSizeToAlloc<Expr *, SourceRange>(Dims.size() + 1, Dims.size()),
4973       alignof(OMPArrayShapingExpr));
4974   auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
4975   E->setBracketsRanges(BracketRanges);
4976   return E;
4977 }
4978 
4979 OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
4980                                                       unsigned NumDims) {
4981   void *Mem = Context.Allocate(
4982       totalSizeToAlloc<Expr *, SourceRange>(NumDims + 1, NumDims),
4983       alignof(OMPArrayShapingExpr));
4984   return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
4985 }
4986 
4987 void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
4988   assert(I < NumIterators &&
4989          "Idx is greater or equal the number of iterators definitions.");
4990   getTrailingObjects<Decl *>()[I] = D;
4991 }
4992 
4993 void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
4994   assert(I < NumIterators &&
4995          "Idx is greater or equal the number of iterators definitions.");
4996   getTrailingObjects<
4997       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
4998                         static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
4999 }
5000 
5001 void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
5002                                        SourceLocation ColonLoc, Expr *End,
5003                                        SourceLocation SecondColonLoc,
5004                                        Expr *Step) {
5005   assert(I < NumIterators &&
5006          "Idx is greater or equal the number of iterators definitions.");
5007   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5008                                static_cast<int>(RangeExprOffset::Begin)] =
5009       Begin;
5010   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5011                                static_cast<int>(RangeExprOffset::End)] = End;
5012   getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5013                                static_cast<int>(RangeExprOffset::Step)] = Step;
5014   getTrailingObjects<
5015       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5016                         static_cast<int>(RangeLocOffset::FirstColonLoc)] =
5017       ColonLoc;
5018   getTrailingObjects<
5019       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5020                         static_cast<int>(RangeLocOffset::SecondColonLoc)] =
5021       SecondColonLoc;
5022 }
5023 
5024 Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
5025   return getTrailingObjects<Decl *>()[I];
5026 }
5027 
5028 OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
5029   IteratorRange Res;
5030   Res.Begin =
5031       getTrailingObjects<Expr *>()[I * static_cast<int>(
5032                                            RangeExprOffset::Total) +
5033                                    static_cast<int>(RangeExprOffset::Begin)];
5034   Res.End =
5035       getTrailingObjects<Expr *>()[I * static_cast<int>(
5036                                            RangeExprOffset::Total) +
5037                                    static_cast<int>(RangeExprOffset::End)];
5038   Res.Step =
5039       getTrailingObjects<Expr *>()[I * static_cast<int>(
5040                                            RangeExprOffset::Total) +
5041                                    static_cast<int>(RangeExprOffset::Step)];
5042   return Res;
5043 }
5044 
5045 SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
5046   return getTrailingObjects<
5047       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5048                         static_cast<int>(RangeLocOffset::AssignLoc)];
5049 }
5050 
5051 SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
5052   return getTrailingObjects<
5053       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5054                         static_cast<int>(RangeLocOffset::FirstColonLoc)];
5055 }
5056 
5057 SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
5058   return getTrailingObjects<
5059       SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5060                         static_cast<int>(RangeLocOffset::SecondColonLoc)];
5061 }
5062 
5063 void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
5064   getTrailingObjects<OMPIteratorHelperData>()[I] = D;
5065 }
5066 
5067 OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
5068   return getTrailingObjects<OMPIteratorHelperData>()[I];
5069 }
5070 
5071 const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
5072   return getTrailingObjects<OMPIteratorHelperData>()[I];
5073 }
5074 
5075 OMPIteratorExpr::OMPIteratorExpr(
5076     QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
5077     SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5078     ArrayRef<OMPIteratorHelperData> Helpers)
5079     : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
5080       IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
5081       NumIterators(Data.size()) {
5082   for (unsigned I = 0, E = Data.size(); I < E; ++I) {
5083     const IteratorDefinition &D = Data[I];
5084     setIteratorDeclaration(I, D.IteratorDecl);
5085     setAssignmentLoc(I, D.AssignmentLoc);
5086     setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End,
5087                      D.SecondColonLoc, D.Range.Step);
5088     setHelper(I, Helpers[I]);
5089   }
5090   setDependence(computeDependence(this));
5091 }
5092 
5093 OMPIteratorExpr *
5094 OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
5095                         SourceLocation IteratorKwLoc, SourceLocation L,
5096                         SourceLocation R,
5097                         ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5098                         ArrayRef<OMPIteratorHelperData> Helpers) {
5099   assert(Data.size() == Helpers.size() &&
5100          "Data and helpers must have the same size.");
5101   void *Mem = Context.Allocate(
5102       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5103           Data.size(), Data.size() * static_cast<int>(RangeExprOffset::Total),
5104           Data.size() * static_cast<int>(RangeLocOffset::Total),
5105           Helpers.size()),
5106       alignof(OMPIteratorExpr));
5107   return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5108 }
5109 
5110 OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
5111                                               unsigned NumIterators) {
5112   void *Mem = Context.Allocate(
5113       totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5114           NumIterators, NumIterators * static_cast<int>(RangeExprOffset::Total),
5115           NumIterators * static_cast<int>(RangeLocOffset::Total), NumIterators),
5116       alignof(OMPIteratorExpr));
5117   return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5118 }
5119