1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Decl subclasses. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/Decl.h" 14 #include "Linkage.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTDiagnostic.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/ASTMutationListener.h" 19 #include "clang/AST/Attr.h" 20 #include "clang/AST/CanonicalType.h" 21 #include "clang/AST/DeclBase.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclOpenMP.h" 25 #include "clang/AST/DeclTemplate.h" 26 #include "clang/AST/DeclarationName.h" 27 #include "clang/AST/Expr.h" 28 #include "clang/AST/ExprCXX.h" 29 #include "clang/AST/ExternalASTSource.h" 30 #include "clang/AST/ODRHash.h" 31 #include "clang/AST/PrettyDeclStackTrace.h" 32 #include "clang/AST/PrettyPrinter.h" 33 #include "clang/AST/Randstruct.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/Redeclarable.h" 36 #include "clang/AST/Stmt.h" 37 #include "clang/AST/TemplateBase.h" 38 #include "clang/AST/Type.h" 39 #include "clang/AST/TypeLoc.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/IdentifierTable.h" 42 #include "clang/Basic/LLVM.h" 43 #include "clang/Basic/LangOptions.h" 44 #include "clang/Basic/Linkage.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/NoSanitizeList.h" 47 #include "clang/Basic/PartialDiagnostic.h" 48 #include "clang/Basic/Sanitizers.h" 49 #include "clang/Basic/SourceLocation.h" 50 #include "clang/Basic/SourceManager.h" 51 #include "clang/Basic/Specifiers.h" 52 #include "clang/Basic/TargetCXXABI.h" 53 #include "clang/Basic/TargetInfo.h" 54 #include "clang/Basic/Visibility.h" 55 #include "llvm/ADT/APSInt.h" 56 #include "llvm/ADT/ArrayRef.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/StringRef.h" 60 #include "llvm/ADT/StringSwitch.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/TargetParser/Triple.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstring> 69 #include <memory> 70 #include <optional> 71 #include <string> 72 #include <tuple> 73 #include <type_traits> 74 75 using namespace clang; 76 77 Decl *clang::getPrimaryMergedDecl(Decl *D) { 78 return D->getASTContext().getPrimaryMergedDecl(D); 79 } 80 81 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { 82 SourceLocation Loc = this->Loc; 83 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); 84 if (Loc.isValid()) { 85 Loc.print(OS, Context.getSourceManager()); 86 OS << ": "; 87 } 88 OS << Message; 89 90 if (auto *ND = dyn_cast_if_present<NamedDecl>(TheDecl)) { 91 OS << " '"; 92 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); 93 OS << "'"; 94 } 95 96 OS << '\n'; 97 } 98 99 // Defined here so that it can be inlined into its direct callers. 100 bool Decl::isOutOfLine() const { 101 return !getLexicalDeclContext()->Equals(getDeclContext()); 102 } 103 104 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) 105 : Decl(TranslationUnit, nullptr, SourceLocation()), 106 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {} 107 108 //===----------------------------------------------------------------------===// 109 // NamedDecl Implementation 110 //===----------------------------------------------------------------------===// 111 112 // Visibility rules aren't rigorously externally specified, but here 113 // are the basic principles behind what we implement: 114 // 115 // 1. An explicit visibility attribute is generally a direct expression 116 // of the user's intent and should be honored. Only the innermost 117 // visibility attribute applies. If no visibility attribute applies, 118 // global visibility settings are considered. 119 // 120 // 2. There is one caveat to the above: on or in a template pattern, 121 // an explicit visibility attribute is just a default rule, and 122 // visibility can be decreased by the visibility of template 123 // arguments. But this, too, has an exception: an attribute on an 124 // explicit specialization or instantiation causes all the visibility 125 // restrictions of the template arguments to be ignored. 126 // 127 // 3. A variable that does not otherwise have explicit visibility can 128 // be restricted by the visibility of its type. 129 // 130 // 4. A visibility restriction is explicit if it comes from an 131 // attribute (or something like it), not a global visibility setting. 132 // When emitting a reference to an external symbol, visibility 133 // restrictions are ignored unless they are explicit. 134 // 135 // 5. When computing the visibility of a non-type, including a 136 // non-type member of a class, only non-type visibility restrictions 137 // are considered: the 'visibility' attribute, global value-visibility 138 // settings, and a few special cases like __private_extern. 139 // 140 // 6. When computing the visibility of a type, including a type member 141 // of a class, only type visibility restrictions are considered: 142 // the 'type_visibility' attribute and global type-visibility settings. 143 // However, a 'visibility' attribute counts as a 'type_visibility' 144 // attribute on any declaration that only has the former. 145 // 146 // The visibility of a "secondary" entity, like a template argument, 147 // is computed using the kind of that entity, not the kind of the 148 // primary entity for which we are computing visibility. For example, 149 // the visibility of a specialization of either of these templates: 150 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); 151 // template <class T, bool (&compare)(T, X)> class matcher; 152 // is restricted according to the type visibility of the argument 'T', 153 // the type visibility of 'bool(&)(T,X)', and the value visibility of 154 // the argument function 'compare'. That 'has_match' is a value 155 // and 'matcher' is a type only matters when looking for attributes 156 // and settings from the immediate context. 157 158 /// Does this computation kind permit us to consider additional 159 /// visibility settings from attributes and the like? 160 static bool hasExplicitVisibilityAlready(LVComputationKind computation) { 161 return computation.IgnoreExplicitVisibility; 162 } 163 164 /// Given an LVComputationKind, return one of the same type/value sort 165 /// that records that it already has explicit visibility. 166 static LVComputationKind 167 withExplicitVisibilityAlready(LVComputationKind Kind) { 168 Kind.IgnoreExplicitVisibility = true; 169 return Kind; 170 } 171 172 static std::optional<Visibility> getExplicitVisibility(const NamedDecl *D, 173 LVComputationKind kind) { 174 assert(!kind.IgnoreExplicitVisibility && 175 "asking for explicit visibility when we shouldn't be"); 176 return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); 177 } 178 179 /// Is the given declaration a "type" or a "value" for the purposes of 180 /// visibility computation? 181 static bool usesTypeVisibility(const NamedDecl *D) { 182 return isa<TypeDecl>(D) || 183 isa<ClassTemplateDecl>(D) || 184 isa<ObjCInterfaceDecl>(D); 185 } 186 187 /// Does the given declaration have member specialization information, 188 /// and if so, is it an explicit specialization? 189 template <class T> 190 static std::enable_if_t<!std::is_base_of_v<RedeclarableTemplateDecl, T>, bool> 191 isExplicitMemberSpecialization(const T *D) { 192 if (const MemberSpecializationInfo *member = 193 D->getMemberSpecializationInfo()) { 194 return member->isExplicitSpecialization(); 195 } 196 return false; 197 } 198 199 /// For templates, this question is easier: a member template can't be 200 /// explicitly instantiated, so there's a single bit indicating whether 201 /// or not this is an explicit member specialization. 202 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { 203 return D->isMemberSpecialization(); 204 } 205 206 /// Given a visibility attribute, return the explicit visibility 207 /// associated with it. 208 template <class T> 209 static Visibility getVisibilityFromAttr(const T *attr) { 210 switch (attr->getVisibility()) { 211 case T::Default: 212 return DefaultVisibility; 213 case T::Hidden: 214 return HiddenVisibility; 215 case T::Protected: 216 return ProtectedVisibility; 217 } 218 llvm_unreachable("bad visibility kind"); 219 } 220 221 /// Return the explicit visibility of the given declaration. 222 static std::optional<Visibility> 223 getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) { 224 // If we're ultimately computing the visibility of a type, look for 225 // a 'type_visibility' attribute before looking for 'visibility'. 226 if (kind == NamedDecl::VisibilityForType) { 227 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { 228 return getVisibilityFromAttr(A); 229 } 230 } 231 232 // If this declaration has an explicit visibility attribute, use it. 233 if (const auto *A = D->getAttr<VisibilityAttr>()) { 234 return getVisibilityFromAttr(A); 235 } 236 237 return std::nullopt; 238 } 239 240 LinkageInfo LinkageComputer::getLVForType(const Type &T, 241 LVComputationKind computation) { 242 if (computation.IgnoreAllVisibility) 243 return LinkageInfo(T.getLinkage(), DefaultVisibility, true); 244 return getTypeLinkageAndVisibility(&T); 245 } 246 247 /// Get the most restrictive linkage for the types in the given 248 /// template parameter list. For visibility purposes, template 249 /// parameters are part of the signature of a template. 250 LinkageInfo LinkageComputer::getLVForTemplateParameterList( 251 const TemplateParameterList *Params, LVComputationKind computation) { 252 LinkageInfo LV; 253 for (const NamedDecl *P : *Params) { 254 // Template type parameters are the most common and never 255 // contribute to visibility, pack or not. 256 if (isa<TemplateTypeParmDecl>(P)) 257 continue; 258 259 // Non-type template parameters can be restricted by the value type, e.g. 260 // template <enum X> class A { ... }; 261 // We have to be careful here, though, because we can be dealing with 262 // dependent types. 263 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { 264 // Handle the non-pack case first. 265 if (!NTTP->isExpandedParameterPack()) { 266 if (!NTTP->getType()->isDependentType()) { 267 LV.merge(getLVForType(*NTTP->getType(), computation)); 268 } 269 continue; 270 } 271 272 // Look at all the types in an expanded pack. 273 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { 274 QualType type = NTTP->getExpansionType(i); 275 if (!type->isDependentType()) 276 LV.merge(getTypeLinkageAndVisibility(type)); 277 } 278 continue; 279 } 280 281 // Template template parameters can be restricted by their 282 // template parameters, recursively. 283 const auto *TTP = cast<TemplateTemplateParmDecl>(P); 284 285 // Handle the non-pack case first. 286 if (!TTP->isExpandedParameterPack()) { 287 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), 288 computation)); 289 continue; 290 } 291 292 // Look at all expansions in an expanded pack. 293 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); 294 i != n; ++i) { 295 LV.merge(getLVForTemplateParameterList( 296 TTP->getExpansionTemplateParameters(i), computation)); 297 } 298 } 299 300 return LV; 301 } 302 303 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { 304 const Decl *Ret = nullptr; 305 const DeclContext *DC = D->getDeclContext(); 306 while (DC->getDeclKind() != Decl::TranslationUnit) { 307 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) 308 Ret = cast<Decl>(DC); 309 DC = DC->getParent(); 310 } 311 return Ret; 312 } 313 314 /// Get the most restrictive linkage for the types and 315 /// declarations in the given template argument list. 316 /// 317 /// Note that we don't take an LVComputationKind because we always 318 /// want to honor the visibility of template arguments in the same way. 319 LinkageInfo 320 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, 321 LVComputationKind computation) { 322 LinkageInfo LV; 323 324 for (const TemplateArgument &Arg : Args) { 325 switch (Arg.getKind()) { 326 case TemplateArgument::Null: 327 case TemplateArgument::Integral: 328 case TemplateArgument::Expression: 329 continue; 330 331 case TemplateArgument::Type: 332 LV.merge(getLVForType(*Arg.getAsType(), computation)); 333 continue; 334 335 case TemplateArgument::Declaration: { 336 const NamedDecl *ND = Arg.getAsDecl(); 337 assert(!usesTypeVisibility(ND)); 338 LV.merge(getLVForDecl(ND, computation)); 339 continue; 340 } 341 342 case TemplateArgument::NullPtr: 343 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); 344 continue; 345 346 case TemplateArgument::StructuralValue: 347 LV.merge(getLVForValue(Arg.getAsStructuralValue(), computation)); 348 continue; 349 350 case TemplateArgument::Template: 351 case TemplateArgument::TemplateExpansion: 352 if (TemplateDecl *Template = 353 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) 354 LV.merge(getLVForDecl(Template, computation)); 355 continue; 356 357 case TemplateArgument::Pack: 358 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); 359 continue; 360 } 361 llvm_unreachable("bad template argument kind"); 362 } 363 364 return LV; 365 } 366 367 LinkageInfo 368 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, 369 LVComputationKind computation) { 370 return getLVForTemplateArgumentList(TArgs.asArray(), computation); 371 } 372 373 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, 374 const FunctionTemplateSpecializationInfo *specInfo) { 375 // Include visibility from the template parameters and arguments 376 // only if this is not an explicit instantiation or specialization 377 // with direct explicit visibility. (Implicit instantiations won't 378 // have a direct attribute.) 379 if (!specInfo->isExplicitInstantiationOrSpecialization()) 380 return true; 381 382 return !fn->hasAttr<VisibilityAttr>(); 383 } 384 385 /// Merge in template-related linkage and visibility for the given 386 /// function template specialization. 387 /// 388 /// We don't need a computation kind here because we can assume 389 /// LVForValue. 390 /// 391 /// \param[out] LV the computation to use for the parent 392 void LinkageComputer::mergeTemplateLV( 393 LinkageInfo &LV, const FunctionDecl *fn, 394 const FunctionTemplateSpecializationInfo *specInfo, 395 LVComputationKind computation) { 396 bool considerVisibility = 397 shouldConsiderTemplateVisibility(fn, specInfo); 398 399 FunctionTemplateDecl *temp = specInfo->getTemplate(); 400 // Merge information from the template declaration. 401 LinkageInfo tempLV = getLVForDecl(temp, computation); 402 // The linkage of the specialization should be consistent with the 403 // template declaration. 404 LV.setLinkage(tempLV.getLinkage()); 405 406 // Merge information from the template parameters. 407 LinkageInfo paramsLV = 408 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 409 LV.mergeMaybeWithVisibility(paramsLV, considerVisibility); 410 411 // Merge information from the template arguments. 412 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; 413 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 414 LV.mergeMaybeWithVisibility(argsLV, considerVisibility); 415 } 416 417 /// Does the given declaration have a direct visibility attribute 418 /// that would match the given rules? 419 static bool hasDirectVisibilityAttribute(const NamedDecl *D, 420 LVComputationKind computation) { 421 if (computation.IgnoreAllVisibility) 422 return false; 423 424 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || 425 D->hasAttr<VisibilityAttr>(); 426 } 427 428 /// Should we consider visibility associated with the template 429 /// arguments and parameters of the given class template specialization? 430 static bool shouldConsiderTemplateVisibility( 431 const ClassTemplateSpecializationDecl *spec, 432 LVComputationKind computation) { 433 // Include visibility from the template parameters and arguments 434 // only if this is not an explicit instantiation or specialization 435 // with direct explicit visibility (and note that implicit 436 // instantiations won't have a direct attribute). 437 // 438 // Furthermore, we want to ignore template parameters and arguments 439 // for an explicit specialization when computing the visibility of a 440 // member thereof with explicit visibility. 441 // 442 // This is a bit complex; let's unpack it. 443 // 444 // An explicit class specialization is an independent, top-level 445 // declaration. As such, if it or any of its members has an 446 // explicit visibility attribute, that must directly express the 447 // user's intent, and we should honor it. The same logic applies to 448 // an explicit instantiation of a member of such a thing. 449 450 // Fast path: if this is not an explicit instantiation or 451 // specialization, we always want to consider template-related 452 // visibility restrictions. 453 if (!spec->isExplicitInstantiationOrSpecialization()) 454 return true; 455 456 // This is the 'member thereof' check. 457 if (spec->isExplicitSpecialization() && 458 hasExplicitVisibilityAlready(computation)) 459 return false; 460 461 return !hasDirectVisibilityAttribute(spec, computation); 462 } 463 464 /// Merge in template-related linkage and visibility for the given 465 /// class template specialization. 466 void LinkageComputer::mergeTemplateLV( 467 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, 468 LVComputationKind computation) { 469 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 470 471 // Merge information from the template parameters, but ignore 472 // visibility if we're only considering template arguments. 473 ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 474 // Merge information from the template declaration. 475 LinkageInfo tempLV = getLVForDecl(temp, computation); 476 // The linkage of the specialization should be consistent with the 477 // template declaration. 478 LV.setLinkage(tempLV.getLinkage()); 479 480 LinkageInfo paramsLV = 481 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 482 LV.mergeMaybeWithVisibility(paramsLV, 483 considerVisibility && !hasExplicitVisibilityAlready(computation)); 484 485 // Merge information from the template arguments. We ignore 486 // template-argument visibility if we've got an explicit 487 // instantiation with a visibility attribute. 488 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 489 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 490 if (considerVisibility) 491 LV.mergeVisibility(argsLV); 492 LV.mergeExternalVisibility(argsLV); 493 } 494 495 /// Should we consider visibility associated with the template 496 /// arguments and parameters of the given variable template 497 /// specialization? As usual, follow class template specialization 498 /// logic up to initialization. 499 static bool shouldConsiderTemplateVisibility( 500 const VarTemplateSpecializationDecl *spec, 501 LVComputationKind computation) { 502 // Include visibility from the template parameters and arguments 503 // only if this is not an explicit instantiation or specialization 504 // with direct explicit visibility (and note that implicit 505 // instantiations won't have a direct attribute). 506 if (!spec->isExplicitInstantiationOrSpecialization()) 507 return true; 508 509 // An explicit variable specialization is an independent, top-level 510 // declaration. As such, if it has an explicit visibility attribute, 511 // that must directly express the user's intent, and we should honor 512 // it. 513 if (spec->isExplicitSpecialization() && 514 hasExplicitVisibilityAlready(computation)) 515 return false; 516 517 return !hasDirectVisibilityAttribute(spec, computation); 518 } 519 520 /// Merge in template-related linkage and visibility for the given 521 /// variable template specialization. As usual, follow class template 522 /// specialization logic up to initialization. 523 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, 524 const VarTemplateSpecializationDecl *spec, 525 LVComputationKind computation) { 526 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); 527 528 // Merge information from the template parameters, but ignore 529 // visibility if we're only considering template arguments. 530 VarTemplateDecl *temp = spec->getSpecializedTemplate(); 531 LinkageInfo tempLV = 532 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 533 LV.mergeMaybeWithVisibility(tempLV, 534 considerVisibility && !hasExplicitVisibilityAlready(computation)); 535 536 // Merge information from the template arguments. We ignore 537 // template-argument visibility if we've got an explicit 538 // instantiation with a visibility attribute. 539 const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); 540 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); 541 if (considerVisibility) 542 LV.mergeVisibility(argsLV); 543 LV.mergeExternalVisibility(argsLV); 544 } 545 546 static bool useInlineVisibilityHidden(const NamedDecl *D) { 547 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. 548 const LangOptions &Opts = D->getASTContext().getLangOpts(); 549 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) 550 return false; 551 552 const auto *FD = dyn_cast<FunctionDecl>(D); 553 if (!FD) 554 return false; 555 556 TemplateSpecializationKind TSK = TSK_Undeclared; 557 if (FunctionTemplateSpecializationInfo *spec 558 = FD->getTemplateSpecializationInfo()) { 559 TSK = spec->getTemplateSpecializationKind(); 560 } else if (MemberSpecializationInfo *MSI = 561 FD->getMemberSpecializationInfo()) { 562 TSK = MSI->getTemplateSpecializationKind(); 563 } 564 565 const FunctionDecl *Def = nullptr; 566 // InlineVisibilityHidden only applies to definitions, and 567 // isInlined() only gives meaningful answers on definitions 568 // anyway. 569 return TSK != TSK_ExplicitInstantiationDeclaration && 570 TSK != TSK_ExplicitInstantiationDefinition && 571 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); 572 } 573 574 template <typename T> static bool isFirstInExternCContext(T *D) { 575 const T *First = D->getFirstDecl(); 576 return First->isInExternCContext(); 577 } 578 579 static bool isSingleLineLanguageLinkage(const Decl &D) { 580 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) 581 if (!SD->hasBraces()) 582 return true; 583 return false; 584 } 585 586 static bool isDeclaredInModuleInterfaceOrPartition(const NamedDecl *D) { 587 if (auto *M = D->getOwningModule()) 588 return M->isInterfaceOrPartition(); 589 return false; 590 } 591 592 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { 593 return LinkageInfo::external(); 594 } 595 596 static StorageClass getStorageClass(const Decl *D) { 597 if (auto *TD = dyn_cast<TemplateDecl>(D)) 598 D = TD->getTemplatedDecl(); 599 if (D) { 600 if (auto *VD = dyn_cast<VarDecl>(D)) 601 return VD->getStorageClass(); 602 if (auto *FD = dyn_cast<FunctionDecl>(D)) 603 return FD->getStorageClass(); 604 } 605 return SC_None; 606 } 607 608 LinkageInfo 609 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, 610 LVComputationKind computation, 611 bool IgnoreVarTypeLinkage) { 612 assert(D->getDeclContext()->getRedeclContext()->isFileContext() && 613 "Not a name having namespace scope"); 614 ASTContext &Context = D->getASTContext(); 615 616 // C++ [basic.link]p3: 617 // A name having namespace scope (3.3.6) has internal linkage if it 618 // is the name of 619 620 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { 621 // - a variable, variable template, function, or function template 622 // that is explicitly declared static; or 623 // (This bullet corresponds to C99 6.2.2p3.) 624 return LinkageInfo::internal(); 625 } 626 627 if (const auto *Var = dyn_cast<VarDecl>(D)) { 628 // - a non-template variable of non-volatile const-qualified type, unless 629 // - it is explicitly declared extern, or 630 // - it is declared in the purview of a module interface unit 631 // (outside the private-module-fragment, if any) or module partition, or 632 // - it is inline, or 633 // - it was previously declared and the prior declaration did not have 634 // internal linkage 635 // (There is no equivalent in C99.) 636 if (Context.getLangOpts().CPlusPlus && Var->getType().isConstQualified() && 637 !Var->getType().isVolatileQualified() && !Var->isInline() && 638 !isDeclaredInModuleInterfaceOrPartition(Var) && 639 !isa<VarTemplateSpecializationDecl>(Var) && 640 !Var->getDescribedVarTemplate()) { 641 const VarDecl *PrevVar = Var->getPreviousDecl(); 642 if (PrevVar) 643 return getLVForDecl(PrevVar, computation); 644 645 if (Var->getStorageClass() != SC_Extern && 646 Var->getStorageClass() != SC_PrivateExtern && 647 !isSingleLineLanguageLinkage(*Var)) 648 return LinkageInfo::internal(); 649 } 650 651 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; 652 PrevVar = PrevVar->getPreviousDecl()) { 653 if (PrevVar->getStorageClass() == SC_PrivateExtern && 654 Var->getStorageClass() == SC_None) 655 return getDeclLinkageAndVisibility(PrevVar); 656 // Explicitly declared static. 657 if (PrevVar->getStorageClass() == SC_Static) 658 return LinkageInfo::internal(); 659 } 660 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { 661 // - a data member of an anonymous union. 662 const VarDecl *VD = IFD->getVarDecl(); 663 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); 664 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); 665 } 666 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); 667 668 // FIXME: This gives internal linkage to names that should have no linkage 669 // (those not covered by [basic.link]p6). 670 if (D->isInAnonymousNamespace()) { 671 const auto *Var = dyn_cast<VarDecl>(D); 672 const auto *Func = dyn_cast<FunctionDecl>(D); 673 // FIXME: The check for extern "C" here is not justified by the standard 674 // wording, but we retain it from the pre-DR1113 model to avoid breaking 675 // code. 676 // 677 // C++11 [basic.link]p4: 678 // An unnamed namespace or a namespace declared directly or indirectly 679 // within an unnamed namespace has internal linkage. 680 if ((!Var || !isFirstInExternCContext(Var)) && 681 (!Func || !isFirstInExternCContext(Func))) 682 return LinkageInfo::internal(); 683 } 684 685 // Set up the defaults. 686 687 // C99 6.2.2p5: 688 // If the declaration of an identifier for an object has file 689 // scope and no storage-class specifier, its linkage is 690 // external. 691 LinkageInfo LV = getExternalLinkageFor(D); 692 693 if (!hasExplicitVisibilityAlready(computation)) { 694 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) { 695 LV.mergeVisibility(*Vis, true); 696 } else { 697 // If we're declared in a namespace with a visibility attribute, 698 // use that namespace's visibility, and it still counts as explicit. 699 for (const DeclContext *DC = D->getDeclContext(); 700 !isa<TranslationUnitDecl>(DC); 701 DC = DC->getParent()) { 702 const auto *ND = dyn_cast<NamespaceDecl>(DC); 703 if (!ND) continue; 704 if (std::optional<Visibility> Vis = 705 getExplicitVisibility(ND, computation)) { 706 LV.mergeVisibility(*Vis, true); 707 break; 708 } 709 } 710 } 711 712 // Add in global settings if the above didn't give us direct visibility. 713 if (!LV.isVisibilityExplicit()) { 714 // Use global type/value visibility as appropriate. 715 Visibility globalVisibility = 716 computation.isValueVisibility() 717 ? Context.getLangOpts().getValueVisibilityMode() 718 : Context.getLangOpts().getTypeVisibilityMode(); 719 LV.mergeVisibility(globalVisibility, /*explicit*/ false); 720 721 // If we're paying attention to global visibility, apply 722 // -finline-visibility-hidden if this is an inline method. 723 if (useInlineVisibilityHidden(D)) 724 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 725 } 726 } 727 728 // C++ [basic.link]p4: 729 730 // A name having namespace scope that has not been given internal linkage 731 // above and that is the name of 732 // [...bullets...] 733 // has its linkage determined as follows: 734 // - if the enclosing namespace has internal linkage, the name has 735 // internal linkage; [handled above] 736 // - otherwise, if the declaration of the name is attached to a named 737 // module and is not exported, the name has module linkage; 738 // - otherwise, the name has external linkage. 739 // LV is currently set up to handle the last two bullets. 740 // 741 // The bullets are: 742 743 // - a variable; or 744 if (const auto *Var = dyn_cast<VarDecl>(D)) { 745 // GCC applies the following optimization to variables and static 746 // data members, but not to functions: 747 // 748 // Modify the variable's LV by the LV of its type unless this is 749 // C or extern "C". This follows from [basic.link]p9: 750 // A type without linkage shall not be used as the type of a 751 // variable or function with external linkage unless 752 // - the entity has C language linkage, or 753 // - the entity is declared within an unnamed namespace, or 754 // - the entity is not used or is defined in the same 755 // translation unit. 756 // and [basic.link]p10: 757 // ...the types specified by all declarations referring to a 758 // given variable or function shall be identical... 759 // C does not have an equivalent rule. 760 // 761 // Ignore this if we've got an explicit attribute; the user 762 // probably knows what they're doing. 763 // 764 // Note that we don't want to make the variable non-external 765 // because of this, but unique-external linkage suits us. 766 767 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && 768 !IgnoreVarTypeLinkage) { 769 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); 770 if (!isExternallyVisible(TypeLV.getLinkage())) 771 return LinkageInfo::uniqueExternal(); 772 if (!LV.isVisibilityExplicit()) 773 LV.mergeVisibility(TypeLV); 774 } 775 776 if (Var->getStorageClass() == SC_PrivateExtern) 777 LV.mergeVisibility(HiddenVisibility, true); 778 779 // Note that Sema::MergeVarDecl already takes care of implementing 780 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have 781 // to do it here. 782 783 // As per function and class template specializations (below), 784 // consider LV for the template and template arguments. We're at file 785 // scope, so we do not need to worry about nested specializations. 786 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { 787 mergeTemplateLV(LV, spec, computation); 788 } 789 790 // - a function; or 791 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 792 // In theory, we can modify the function's LV by the LV of its 793 // type unless it has C linkage (see comment above about variables 794 // for justification). In practice, GCC doesn't do this, so it's 795 // just too painful to make work. 796 797 if (Function->getStorageClass() == SC_PrivateExtern) 798 LV.mergeVisibility(HiddenVisibility, true); 799 800 // OpenMP target declare device functions are not callable from the host so 801 // they should not be exported from the device image. This applies to all 802 // functions as the host-callable kernel functions are emitted at codegen. 803 if (Context.getLangOpts().OpenMP && 804 Context.getLangOpts().OpenMPIsTargetDevice && 805 ((Context.getTargetInfo().getTriple().isAMDGPU() || 806 Context.getTargetInfo().getTriple().isNVPTX()) || 807 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Function))) 808 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false); 809 810 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 811 // merging storage classes and visibility attributes, so we don't have to 812 // look at previous decls in here. 813 814 // In C++, then if the type of the function uses a type with 815 // unique-external linkage, it's not legally usable from outside 816 // this translation unit. However, we should use the C linkage 817 // rules instead for extern "C" declarations. 818 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { 819 // Only look at the type-as-written. Otherwise, deducing the return type 820 // of a function could change its linkage. 821 QualType TypeAsWritten = Function->getType(); 822 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) 823 TypeAsWritten = TSI->getType(); 824 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 825 return LinkageInfo::uniqueExternal(); 826 } 827 828 // Consider LV from the template and the template arguments. 829 // We're at file scope, so we do not need to worry about nested 830 // specializations. 831 if (FunctionTemplateSpecializationInfo *specInfo 832 = Function->getTemplateSpecializationInfo()) { 833 mergeTemplateLV(LV, Function, specInfo, computation); 834 } 835 836 // - a named class (Clause 9), or an unnamed class defined in a 837 // typedef declaration in which the class has the typedef name 838 // for linkage purposes (7.1.3); or 839 // - a named enumeration (7.2), or an unnamed enumeration 840 // defined in a typedef declaration in which the enumeration 841 // has the typedef name for linkage purposes (7.1.3); or 842 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { 843 // Unnamed tags have no linkage. 844 if (!Tag->hasNameForLinkage()) 845 return LinkageInfo::none(); 846 847 // If this is a class template specialization, consider the 848 // linkage of the template and template arguments. We're at file 849 // scope, so we do not need to worry about nested specializations. 850 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { 851 mergeTemplateLV(LV, spec, computation); 852 } 853 854 // FIXME: This is not part of the C++ standard any more. 855 // - an enumerator belonging to an enumeration with external linkage; or 856 } else if (isa<EnumConstantDecl>(D)) { 857 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), 858 computation); 859 if (!isExternalFormalLinkage(EnumLV.getLinkage())) 860 return LinkageInfo::none(); 861 LV.merge(EnumLV); 862 863 // - a template 864 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 865 bool considerVisibility = !hasExplicitVisibilityAlready(computation); 866 LinkageInfo tempLV = 867 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 868 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 869 870 // An unnamed namespace or a namespace declared directly or indirectly 871 // within an unnamed namespace has internal linkage. All other namespaces 872 // have external linkage. 873 // 874 // We handled names in anonymous namespaces above. 875 } else if (isa<NamespaceDecl>(D)) { 876 return LV; 877 878 // By extension, we assign external linkage to Objective-C 879 // interfaces. 880 } else if (isa<ObjCInterfaceDecl>(D)) { 881 // fallout 882 883 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 884 // A typedef declaration has linkage if it gives a type a name for 885 // linkage purposes. 886 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 887 return LinkageInfo::none(); 888 889 } else if (isa<MSGuidDecl>(D)) { 890 // A GUID behaves like an inline variable with external linkage. Fall 891 // through. 892 893 // Everything not covered here has no linkage. 894 } else { 895 return LinkageInfo::none(); 896 } 897 898 // If we ended up with non-externally-visible linkage, visibility should 899 // always be default. 900 if (!isExternallyVisible(LV.getLinkage())) 901 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); 902 903 return LV; 904 } 905 906 LinkageInfo 907 LinkageComputer::getLVForClassMember(const NamedDecl *D, 908 LVComputationKind computation, 909 bool IgnoreVarTypeLinkage) { 910 // Only certain class members have linkage. Note that fields don't 911 // really have linkage, but it's convenient to say they do for the 912 // purposes of calculating linkage of pointer-to-data-member 913 // template arguments. 914 // 915 // Templates also don't officially have linkage, but since we ignore 916 // the C++ standard and look at template arguments when determining 917 // linkage and visibility of a template specialization, we might hit 918 // a template template argument that way. If we do, we need to 919 // consider its linkage. 920 if (!(isa<CXXMethodDecl>(D) || 921 isa<VarDecl>(D) || 922 isa<FieldDecl>(D) || 923 isa<IndirectFieldDecl>(D) || 924 isa<TagDecl>(D) || 925 isa<TemplateDecl>(D))) 926 return LinkageInfo::none(); 927 928 LinkageInfo LV; 929 930 // If we have an explicit visibility attribute, merge that in. 931 if (!hasExplicitVisibilityAlready(computation)) { 932 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) 933 LV.mergeVisibility(*Vis, true); 934 // If we're paying attention to global visibility, apply 935 // -finline-visibility-hidden if this is an inline method. 936 // 937 // Note that we do this before merging information about 938 // the class visibility. 939 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) 940 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); 941 } 942 943 // If this class member has an explicit visibility attribute, the only 944 // thing that can change its visibility is the template arguments, so 945 // only look for them when processing the class. 946 LVComputationKind classComputation = computation; 947 if (LV.isVisibilityExplicit()) 948 classComputation = withExplicitVisibilityAlready(computation); 949 950 LinkageInfo classLV = 951 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); 952 // The member has the same linkage as the class. If that's not externally 953 // visible, we don't need to compute anything about the linkage. 954 // FIXME: If we're only computing linkage, can we bail out here? 955 if (!isExternallyVisible(classLV.getLinkage())) 956 return classLV; 957 958 959 // Otherwise, don't merge in classLV yet, because in certain cases 960 // we need to completely ignore the visibility from it. 961 962 // Specifically, if this decl exists and has an explicit attribute. 963 const NamedDecl *explicitSpecSuppressor = nullptr; 964 965 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { 966 // Only look at the type-as-written. Otherwise, deducing the return type 967 // of a function could change its linkage. 968 QualType TypeAsWritten = MD->getType(); 969 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) 970 TypeAsWritten = TSI->getType(); 971 if (!isExternallyVisible(TypeAsWritten->getLinkage())) 972 return LinkageInfo::uniqueExternal(); 973 974 // If this is a method template specialization, use the linkage for 975 // the template parameters and arguments. 976 if (FunctionTemplateSpecializationInfo *spec 977 = MD->getTemplateSpecializationInfo()) { 978 mergeTemplateLV(LV, MD, spec, computation); 979 if (spec->isExplicitSpecialization()) { 980 explicitSpecSuppressor = MD; 981 } else if (isExplicitMemberSpecialization(spec->getTemplate())) { 982 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); 983 } 984 } else if (isExplicitMemberSpecialization(MD)) { 985 explicitSpecSuppressor = MD; 986 } 987 988 // OpenMP target declare device functions are not callable from the host so 989 // they should not be exported from the device image. This applies to all 990 // functions as the host-callable kernel functions are emitted at codegen. 991 ASTContext &Context = D->getASTContext(); 992 if (Context.getLangOpts().OpenMP && 993 Context.getLangOpts().OpenMPIsTargetDevice && 994 ((Context.getTargetInfo().getTriple().isAMDGPU() || 995 Context.getTargetInfo().getTriple().isNVPTX()) || 996 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(MD))) 997 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false); 998 999 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { 1000 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { 1001 mergeTemplateLV(LV, spec, computation); 1002 if (spec->isExplicitSpecialization()) { 1003 explicitSpecSuppressor = spec; 1004 } else { 1005 const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); 1006 if (isExplicitMemberSpecialization(temp)) { 1007 explicitSpecSuppressor = temp->getTemplatedDecl(); 1008 } 1009 } 1010 } else if (isExplicitMemberSpecialization(RD)) { 1011 explicitSpecSuppressor = RD; 1012 } 1013 1014 // Static data members. 1015 } else if (const auto *VD = dyn_cast<VarDecl>(D)) { 1016 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) 1017 mergeTemplateLV(LV, spec, computation); 1018 1019 // Modify the variable's linkage by its type, but ignore the 1020 // type's visibility unless it's a definition. 1021 if (!IgnoreVarTypeLinkage) { 1022 LinkageInfo typeLV = getLVForType(*VD->getType(), computation); 1023 // FIXME: If the type's linkage is not externally visible, we can 1024 // give this static data member UniqueExternalLinkage. 1025 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) 1026 LV.mergeVisibility(typeLV); 1027 LV.mergeExternalVisibility(typeLV); 1028 } 1029 1030 if (isExplicitMemberSpecialization(VD)) { 1031 explicitSpecSuppressor = VD; 1032 } 1033 1034 // Template members. 1035 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { 1036 bool considerVisibility = 1037 (!LV.isVisibilityExplicit() && 1038 !classLV.isVisibilityExplicit() && 1039 !hasExplicitVisibilityAlready(computation)); 1040 LinkageInfo tempLV = 1041 getLVForTemplateParameterList(temp->getTemplateParameters(), computation); 1042 LV.mergeMaybeWithVisibility(tempLV, considerVisibility); 1043 1044 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { 1045 if (isExplicitMemberSpecialization(redeclTemp)) { 1046 explicitSpecSuppressor = temp->getTemplatedDecl(); 1047 } 1048 } 1049 } 1050 1051 // We should never be looking for an attribute directly on a template. 1052 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); 1053 1054 // If this member is an explicit member specialization, and it has 1055 // an explicit attribute, ignore visibility from the parent. 1056 bool considerClassVisibility = true; 1057 if (explicitSpecSuppressor && 1058 // optimization: hasDVA() is true only with explicit visibility. 1059 LV.isVisibilityExplicit() && 1060 classLV.getVisibility() != DefaultVisibility && 1061 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { 1062 considerClassVisibility = false; 1063 } 1064 1065 // Finally, merge in information from the class. 1066 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); 1067 return LV; 1068 } 1069 1070 void NamedDecl::anchor() {} 1071 1072 bool NamedDecl::isLinkageValid() const { 1073 if (!hasCachedLinkage()) 1074 return true; 1075 1076 Linkage L = LinkageComputer{} 1077 .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) 1078 .getLinkage(); 1079 return L == getCachedLinkage(); 1080 } 1081 1082 bool NamedDecl::isPlaceholderVar(const LangOptions &LangOpts) const { 1083 // [C++2c] [basic.scope.scope]/p5 1084 // A declaration is name-independent if its name is _ and it declares 1085 // - a variable with automatic storage duration, 1086 // - a structured binding not inhabiting a namespace scope, 1087 // - the variable introduced by an init-capture 1088 // - or a non-static data member. 1089 1090 if (!LangOpts.CPlusPlus || !getIdentifier() || 1091 !getIdentifier()->isPlaceholder()) 1092 return false; 1093 if (isa<FieldDecl>(this)) 1094 return true; 1095 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(this)) { 1096 if (!getDeclContext()->isFunctionOrMethod() && 1097 !getDeclContext()->isRecord()) 1098 return false; 1099 const VarDecl *VD = IFD->getVarDecl(); 1100 return !VD || VD->getStorageDuration() == SD_Automatic; 1101 } 1102 // and it declares a variable with automatic storage duration 1103 if (const auto *VD = dyn_cast<VarDecl>(this)) { 1104 if (isa<ParmVarDecl>(VD)) 1105 return false; 1106 if (VD->isInitCapture()) 1107 return true; 1108 return VD->getStorageDuration() == StorageDuration::SD_Automatic; 1109 } 1110 if (const auto *BD = dyn_cast<BindingDecl>(this); 1111 BD && getDeclContext()->isFunctionOrMethod()) { 1112 const VarDecl *VD = BD->getHoldingVar(); 1113 return !VD || VD->getStorageDuration() == StorageDuration::SD_Automatic; 1114 } 1115 return false; 1116 } 1117 1118 ReservedIdentifierStatus 1119 NamedDecl::isReserved(const LangOptions &LangOpts) const { 1120 const IdentifierInfo *II = getIdentifier(); 1121 1122 // This triggers at least for CXXLiteralIdentifiers, which we already checked 1123 // at lexing time. 1124 if (!II) 1125 return ReservedIdentifierStatus::NotReserved; 1126 1127 ReservedIdentifierStatus Status = II->isReserved(LangOpts); 1128 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) { 1129 // This name is only reserved at global scope. Check if this declaration 1130 // conflicts with a global scope declaration. 1131 if (isa<ParmVarDecl>(this) || isTemplateParameter()) 1132 return ReservedIdentifierStatus::NotReserved; 1133 1134 // C++ [dcl.link]/7: 1135 // Two declarations [conflict] if [...] one declares a function or 1136 // variable with C language linkage, and the other declares [...] a 1137 // variable that belongs to the global scope. 1138 // 1139 // Therefore names that are reserved at global scope are also reserved as 1140 // names of variables and functions with C language linkage. 1141 const DeclContext *DC = getDeclContext()->getRedeclContext(); 1142 if (DC->isTranslationUnit()) 1143 return Status; 1144 if (auto *VD = dyn_cast<VarDecl>(this)) 1145 if (VD->isExternC()) 1146 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1147 if (auto *FD = dyn_cast<FunctionDecl>(this)) 1148 if (FD->isExternC()) 1149 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC; 1150 return ReservedIdentifierStatus::NotReserved; 1151 } 1152 1153 return Status; 1154 } 1155 1156 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { 1157 StringRef name = getName(); 1158 if (name.empty()) return SFF_None; 1159 1160 if (name.front() == 'C') 1161 if (name == "CFStringCreateWithFormat" || 1162 name == "CFStringCreateWithFormatAndArguments" || 1163 name == "CFStringAppendFormat" || 1164 name == "CFStringAppendFormatAndArguments") 1165 return SFF_CFString; 1166 return SFF_None; 1167 } 1168 1169 Linkage NamedDecl::getLinkageInternal() const { 1170 // We don't care about visibility here, so ask for the cheapest 1171 // possible visibility analysis. 1172 return LinkageComputer{} 1173 .getLVForDecl(this, LVComputationKind::forLinkageOnly()) 1174 .getLinkage(); 1175 } 1176 1177 /// Determine whether D is attached to a named module. 1178 static bool isInNamedModule(const NamedDecl *D) { 1179 if (auto *M = D->getOwningModule()) 1180 return M->isNamedModule(); 1181 return false; 1182 } 1183 1184 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { 1185 // FIXME: Handle isModulePrivate. 1186 switch (D->getModuleOwnershipKind()) { 1187 case Decl::ModuleOwnershipKind::Unowned: 1188 case Decl::ModuleOwnershipKind::ReachableWhenImported: 1189 case Decl::ModuleOwnershipKind::ModulePrivate: 1190 return false; 1191 case Decl::ModuleOwnershipKind::Visible: 1192 case Decl::ModuleOwnershipKind::VisibleWhenImported: 1193 return isInNamedModule(D); 1194 } 1195 llvm_unreachable("unexpected module ownership kind"); 1196 } 1197 1198 /// Get the linkage from a semantic point of view. Entities in 1199 /// anonymous namespaces are external (in c++98). 1200 Linkage NamedDecl::getFormalLinkage() const { 1201 Linkage InternalLinkage = getLinkageInternal(); 1202 1203 // C++ [basic.link]p4.8: 1204 // - if the declaration of the name is attached to a named module and is not 1205 // exported 1206 // the name has module linkage; 1207 // 1208 // [basic.namespace.general]/p2 1209 // A namespace is never attached to a named module and never has a name with 1210 // module linkage. 1211 if (isInNamedModule(this) && InternalLinkage == Linkage::External && 1212 !isExportedFromModuleInterfaceUnit( 1213 cast<NamedDecl>(this->getCanonicalDecl())) && 1214 !isa<NamespaceDecl>(this)) 1215 InternalLinkage = Linkage::Module; 1216 1217 return clang::getFormalLinkage(InternalLinkage); 1218 } 1219 1220 LinkageInfo NamedDecl::getLinkageAndVisibility() const { 1221 return LinkageComputer{}.getDeclLinkageAndVisibility(this); 1222 } 1223 1224 static std::optional<Visibility> 1225 getExplicitVisibilityAux(const NamedDecl *ND, 1226 NamedDecl::ExplicitVisibilityKind kind, 1227 bool IsMostRecent) { 1228 assert(!IsMostRecent || ND == ND->getMostRecentDecl()); 1229 1230 // Check the declaration itself first. 1231 if (std::optional<Visibility> V = getVisibilityOf(ND, kind)) 1232 return V; 1233 1234 // If this is a member class of a specialization of a class template 1235 // and the corresponding decl has explicit visibility, use that. 1236 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { 1237 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); 1238 if (InstantiatedFrom) 1239 return getVisibilityOf(InstantiatedFrom, kind); 1240 } 1241 1242 // If there wasn't explicit visibility there, and this is a 1243 // specialization of a class template, check for visibility 1244 // on the pattern. 1245 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { 1246 // Walk all the template decl till this point to see if there are 1247 // explicit visibility attributes. 1248 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); 1249 while (TD != nullptr) { 1250 auto Vis = getVisibilityOf(TD, kind); 1251 if (Vis != std::nullopt) 1252 return Vis; 1253 TD = TD->getPreviousDecl(); 1254 } 1255 return std::nullopt; 1256 } 1257 1258 // Use the most recent declaration. 1259 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { 1260 const NamedDecl *MostRecent = ND->getMostRecentDecl(); 1261 if (MostRecent != ND) 1262 return getExplicitVisibilityAux(MostRecent, kind, true); 1263 } 1264 1265 if (const auto *Var = dyn_cast<VarDecl>(ND)) { 1266 if (Var->isStaticDataMember()) { 1267 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); 1268 if (InstantiatedFrom) 1269 return getVisibilityOf(InstantiatedFrom, kind); 1270 } 1271 1272 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) 1273 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), 1274 kind); 1275 1276 return std::nullopt; 1277 } 1278 // Also handle function template specializations. 1279 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { 1280 // If the function is a specialization of a template with an 1281 // explicit visibility attribute, use that. 1282 if (FunctionTemplateSpecializationInfo *templateInfo 1283 = fn->getTemplateSpecializationInfo()) 1284 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), 1285 kind); 1286 1287 // If the function is a member of a specialization of a class template 1288 // and the corresponding decl has explicit visibility, use that. 1289 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); 1290 if (InstantiatedFrom) 1291 return getVisibilityOf(InstantiatedFrom, kind); 1292 1293 return std::nullopt; 1294 } 1295 1296 // The visibility of a template is stored in the templated decl. 1297 if (const auto *TD = dyn_cast<TemplateDecl>(ND)) 1298 return getVisibilityOf(TD->getTemplatedDecl(), kind); 1299 1300 return std::nullopt; 1301 } 1302 1303 std::optional<Visibility> 1304 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { 1305 return getExplicitVisibilityAux(this, kind, false); 1306 } 1307 1308 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, 1309 Decl *ContextDecl, 1310 LVComputationKind computation) { 1311 // This lambda has its linkage/visibility determined by its owner. 1312 const NamedDecl *Owner; 1313 if (!ContextDecl) 1314 Owner = dyn_cast<NamedDecl>(DC); 1315 else if (isa<ParmVarDecl>(ContextDecl)) 1316 Owner = 1317 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); 1318 else if (isa<ImplicitConceptSpecializationDecl>(ContextDecl)) { 1319 // Replace with the concept's owning decl, which is either a namespace or a 1320 // TU, so this needs a dyn_cast. 1321 Owner = dyn_cast<NamedDecl>(ContextDecl->getDeclContext()); 1322 } else { 1323 Owner = cast<NamedDecl>(ContextDecl); 1324 } 1325 1326 if (!Owner) 1327 return LinkageInfo::none(); 1328 1329 // If the owner has a deduced type, we need to skip querying the linkage and 1330 // visibility of that type, because it might involve this closure type. The 1331 // only effect of this is that we might give a lambda VisibleNoLinkage rather 1332 // than NoLinkage when we don't strictly need to, which is benign. 1333 auto *VD = dyn_cast<VarDecl>(Owner); 1334 LinkageInfo OwnerLV = 1335 VD && VD->getType()->getContainedDeducedType() 1336 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) 1337 : getLVForDecl(Owner, computation); 1338 1339 // A lambda never formally has linkage. But if the owner is externally 1340 // visible, then the lambda is too. We apply the same rules to blocks. 1341 if (!isExternallyVisible(OwnerLV.getLinkage())) 1342 return LinkageInfo::none(); 1343 return LinkageInfo(Linkage::VisibleNone, OwnerLV.getVisibility(), 1344 OwnerLV.isVisibilityExplicit()); 1345 } 1346 1347 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, 1348 LVComputationKind computation) { 1349 if (const auto *Function = dyn_cast<FunctionDecl>(D)) { 1350 if (Function->isInAnonymousNamespace() && 1351 !isFirstInExternCContext(Function)) 1352 return LinkageInfo::internal(); 1353 1354 // This is a "void f();" which got merged with a file static. 1355 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) 1356 return LinkageInfo::internal(); 1357 1358 LinkageInfo LV; 1359 if (!hasExplicitVisibilityAlready(computation)) { 1360 if (std::optional<Visibility> Vis = 1361 getExplicitVisibility(Function, computation)) 1362 LV.mergeVisibility(*Vis, true); 1363 } 1364 1365 // Note that Sema::MergeCompatibleFunctionDecls already takes care of 1366 // merging storage classes and visibility attributes, so we don't have to 1367 // look at previous decls in here. 1368 1369 return LV; 1370 } 1371 1372 if (const auto *Var = dyn_cast<VarDecl>(D)) { 1373 if (Var->hasExternalStorage()) { 1374 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) 1375 return LinkageInfo::internal(); 1376 1377 LinkageInfo LV; 1378 if (Var->getStorageClass() == SC_PrivateExtern) 1379 LV.mergeVisibility(HiddenVisibility, true); 1380 else if (!hasExplicitVisibilityAlready(computation)) { 1381 if (std::optional<Visibility> Vis = 1382 getExplicitVisibility(Var, computation)) 1383 LV.mergeVisibility(*Vis, true); 1384 } 1385 1386 if (const VarDecl *Prev = Var->getPreviousDecl()) { 1387 LinkageInfo PrevLV = getLVForDecl(Prev, computation); 1388 if (PrevLV.getLinkage() != Linkage::Invalid) 1389 LV.setLinkage(PrevLV.getLinkage()); 1390 LV.mergeVisibility(PrevLV); 1391 } 1392 1393 return LV; 1394 } 1395 1396 if (!Var->isStaticLocal()) 1397 return LinkageInfo::none(); 1398 } 1399 1400 ASTContext &Context = D->getASTContext(); 1401 if (!Context.getLangOpts().CPlusPlus) 1402 return LinkageInfo::none(); 1403 1404 const Decl *OuterD = getOutermostFuncOrBlockContext(D); 1405 if (!OuterD || OuterD->isInvalidDecl()) 1406 return LinkageInfo::none(); 1407 1408 LinkageInfo LV; 1409 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { 1410 if (!BD->getBlockManglingNumber()) 1411 return LinkageInfo::none(); 1412 1413 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), 1414 BD->getBlockManglingContextDecl(), computation); 1415 } else { 1416 const auto *FD = cast<FunctionDecl>(OuterD); 1417 if (!FD->isInlined() && 1418 !isTemplateInstantiation(FD->getTemplateSpecializationKind())) 1419 return LinkageInfo::none(); 1420 1421 // If a function is hidden by -fvisibility-inlines-hidden option and 1422 // is not explicitly attributed as a hidden function, 1423 // we should not make static local variables in the function hidden. 1424 LV = getLVForDecl(FD, computation); 1425 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && 1426 !LV.isVisibilityExplicit() && 1427 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) { 1428 assert(cast<VarDecl>(D)->isStaticLocal()); 1429 // If this was an implicitly hidden inline method, check again for 1430 // explicit visibility on the parent class, and use that for static locals 1431 // if present. 1432 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1433 LV = getLVForDecl(MD->getParent(), computation); 1434 if (!LV.isVisibilityExplicit()) { 1435 Visibility globalVisibility = 1436 computation.isValueVisibility() 1437 ? Context.getLangOpts().getValueVisibilityMode() 1438 : Context.getLangOpts().getTypeVisibilityMode(); 1439 return LinkageInfo(Linkage::VisibleNone, globalVisibility, 1440 /*visibilityExplicit=*/false); 1441 } 1442 } 1443 } 1444 if (!isExternallyVisible(LV.getLinkage())) 1445 return LinkageInfo::none(); 1446 return LinkageInfo(Linkage::VisibleNone, LV.getVisibility(), 1447 LV.isVisibilityExplicit()); 1448 } 1449 1450 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, 1451 LVComputationKind computation, 1452 bool IgnoreVarTypeLinkage) { 1453 // Internal_linkage attribute overrides other considerations. 1454 if (D->hasAttr<InternalLinkageAttr>()) 1455 return LinkageInfo::internal(); 1456 1457 // Objective-C: treat all Objective-C declarations as having external 1458 // linkage. 1459 switch (D->getKind()) { 1460 default: 1461 break; 1462 1463 // Per C++ [basic.link]p2, only the names of objects, references, 1464 // functions, types, templates, namespaces, and values ever have linkage. 1465 // 1466 // Note that the name of a typedef, namespace alias, using declaration, 1467 // and so on are not the name of the corresponding type, namespace, or 1468 // declaration, so they do *not* have linkage. 1469 case Decl::ImplicitParam: 1470 case Decl::Label: 1471 case Decl::NamespaceAlias: 1472 case Decl::ParmVar: 1473 case Decl::Using: 1474 case Decl::UsingEnum: 1475 case Decl::UsingShadow: 1476 case Decl::UsingDirective: 1477 return LinkageInfo::none(); 1478 1479 case Decl::EnumConstant: 1480 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. 1481 if (D->getASTContext().getLangOpts().CPlusPlus) 1482 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); 1483 return LinkageInfo::visible_none(); 1484 1485 case Decl::Typedef: 1486 case Decl::TypeAlias: 1487 // A typedef declaration has linkage if it gives a type a name for 1488 // linkage purposes. 1489 if (!cast<TypedefNameDecl>(D) 1490 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) 1491 return LinkageInfo::none(); 1492 break; 1493 1494 case Decl::TemplateTemplateParm: // count these as external 1495 case Decl::NonTypeTemplateParm: 1496 case Decl::ObjCAtDefsField: 1497 case Decl::ObjCCategory: 1498 case Decl::ObjCCategoryImpl: 1499 case Decl::ObjCCompatibleAlias: 1500 case Decl::ObjCImplementation: 1501 case Decl::ObjCMethod: 1502 case Decl::ObjCProperty: 1503 case Decl::ObjCPropertyImpl: 1504 case Decl::ObjCProtocol: 1505 return getExternalLinkageFor(D); 1506 1507 case Decl::CXXRecord: { 1508 const auto *Record = cast<CXXRecordDecl>(D); 1509 if (Record->isLambda()) { 1510 if (Record->hasKnownLambdaInternalLinkage() || 1511 !Record->getLambdaManglingNumber()) { 1512 // This lambda has no mangling number, so it's internal. 1513 return LinkageInfo::internal(); 1514 } 1515 1516 return getLVForClosure( 1517 Record->getDeclContext()->getRedeclContext(), 1518 Record->getLambdaContextDecl(), computation); 1519 } 1520 1521 break; 1522 } 1523 1524 case Decl::TemplateParamObject: { 1525 // The template parameter object can be referenced from anywhere its type 1526 // and value can be referenced. 1527 auto *TPO = cast<TemplateParamObjectDecl>(D); 1528 LinkageInfo LV = getLVForType(*TPO->getType(), computation); 1529 LV.merge(getLVForValue(TPO->getValue(), computation)); 1530 return LV; 1531 } 1532 } 1533 1534 // Handle linkage for namespace-scope names. 1535 if (D->getDeclContext()->getRedeclContext()->isFileContext()) 1536 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); 1537 1538 // C++ [basic.link]p5: 1539 // In addition, a member function, static data member, a named 1540 // class or enumeration of class scope, or an unnamed class or 1541 // enumeration defined in a class-scope typedef declaration such 1542 // that the class or enumeration has the typedef name for linkage 1543 // purposes (7.1.3), has external linkage if the name of the class 1544 // has external linkage. 1545 if (D->getDeclContext()->isRecord()) 1546 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); 1547 1548 // C++ [basic.link]p6: 1549 // The name of a function declared in block scope and the name of 1550 // an object declared by a block scope extern declaration have 1551 // linkage. If there is a visible declaration of an entity with 1552 // linkage having the same name and type, ignoring entities 1553 // declared outside the innermost enclosing namespace scope, the 1554 // block scope declaration declares that same entity and receives 1555 // the linkage of the previous declaration. If there is more than 1556 // one such matching entity, the program is ill-formed. Otherwise, 1557 // if no matching entity is found, the block scope entity receives 1558 // external linkage. 1559 if (D->getDeclContext()->isFunctionOrMethod()) 1560 return getLVForLocalDecl(D, computation); 1561 1562 // C++ [basic.link]p6: 1563 // Names not covered by these rules have no linkage. 1564 return LinkageInfo::none(); 1565 } 1566 1567 /// getLVForDecl - Get the linkage and visibility for the given declaration. 1568 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, 1569 LVComputationKind computation) { 1570 // Internal_linkage attribute overrides other considerations. 1571 if (D->hasAttr<InternalLinkageAttr>()) 1572 return LinkageInfo::internal(); 1573 1574 if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) 1575 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); 1576 1577 if (std::optional<LinkageInfo> LI = lookup(D, computation)) 1578 return *LI; 1579 1580 LinkageInfo LV = computeLVForDecl(D, computation); 1581 if (D->hasCachedLinkage()) 1582 assert(D->getCachedLinkage() == LV.getLinkage()); 1583 1584 D->setCachedLinkage(LV.getLinkage()); 1585 cache(D, computation, LV); 1586 1587 #ifndef NDEBUG 1588 // In C (because of gnu inline) and in c++ with microsoft extensions an 1589 // static can follow an extern, so we can have two decls with different 1590 // linkages. 1591 const LangOptions &Opts = D->getASTContext().getLangOpts(); 1592 if (!Opts.CPlusPlus || Opts.MicrosoftExt) 1593 return LV; 1594 1595 // We have just computed the linkage for this decl. By induction we know 1596 // that all other computed linkages match, check that the one we just 1597 // computed also does. 1598 NamedDecl *Old = nullptr; 1599 for (auto *I : D->redecls()) { 1600 auto *T = cast<NamedDecl>(I); 1601 if (T == D) 1602 continue; 1603 if (!T->isInvalidDecl() && T->hasCachedLinkage()) { 1604 Old = T; 1605 break; 1606 } 1607 } 1608 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); 1609 #endif 1610 1611 return LV; 1612 } 1613 1614 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { 1615 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D) 1616 ? NamedDecl::VisibilityForType 1617 : NamedDecl::VisibilityForValue; 1618 LVComputationKind CK(EK); 1619 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility 1620 ? CK.forLinkageOnly() 1621 : CK); 1622 } 1623 1624 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { 1625 if (isa<NamespaceDecl>(this)) 1626 // Namespaces never have module linkage. It is the entities within them 1627 // that [may] do. 1628 return nullptr; 1629 1630 Module *M = getOwningModule(); 1631 if (!M) 1632 return nullptr; 1633 1634 switch (M->Kind) { 1635 case Module::ModuleMapModule: 1636 // Module map modules have no special linkage semantics. 1637 return nullptr; 1638 1639 case Module::ModuleInterfaceUnit: 1640 case Module::ModuleImplementationUnit: 1641 case Module::ModulePartitionInterface: 1642 case Module::ModulePartitionImplementation: 1643 return M; 1644 1645 case Module::ModuleHeaderUnit: 1646 case Module::ExplicitGlobalModuleFragment: 1647 case Module::ImplicitGlobalModuleFragment: { 1648 // External linkage declarations in the global module have no owning module 1649 // for linkage purposes. But internal linkage declarations in the global 1650 // module fragment of a particular module are owned by that module for 1651 // linkage purposes. 1652 // FIXME: p1815 removes the need for this distinction -- there are no 1653 // internal linkage declarations that need to be referred to from outside 1654 // this TU. 1655 if (IgnoreLinkage) 1656 return nullptr; 1657 bool InternalLinkage; 1658 if (auto *ND = dyn_cast<NamedDecl>(this)) 1659 InternalLinkage = !ND->hasExternalFormalLinkage(); 1660 else 1661 InternalLinkage = isInAnonymousNamespace(); 1662 return InternalLinkage ? M->Kind == Module::ModuleHeaderUnit ? M : M->Parent 1663 : nullptr; 1664 } 1665 1666 case Module::PrivateModuleFragment: 1667 // The private module fragment is part of its containing module for linkage 1668 // purposes. 1669 return M->Parent; 1670 } 1671 1672 llvm_unreachable("unknown module kind"); 1673 } 1674 1675 void NamedDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const { 1676 Name.print(OS, Policy); 1677 } 1678 1679 void NamedDecl::printName(raw_ostream &OS) const { 1680 printName(OS, getASTContext().getPrintingPolicy()); 1681 } 1682 1683 std::string NamedDecl::getQualifiedNameAsString() const { 1684 std::string QualName; 1685 llvm::raw_string_ostream OS(QualName); 1686 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1687 return QualName; 1688 } 1689 1690 void NamedDecl::printQualifiedName(raw_ostream &OS) const { 1691 printQualifiedName(OS, getASTContext().getPrintingPolicy()); 1692 } 1693 1694 void NamedDecl::printQualifiedName(raw_ostream &OS, 1695 const PrintingPolicy &P) const { 1696 if (getDeclContext()->isFunctionOrMethod()) { 1697 // We do not print '(anonymous)' for function parameters without name. 1698 printName(OS, P); 1699 return; 1700 } 1701 printNestedNameSpecifier(OS, P); 1702 if (getDeclName()) 1703 OS << *this; 1704 else { 1705 // Give the printName override a chance to pick a different name before we 1706 // fall back to "(anonymous)". 1707 SmallString<64> NameBuffer; 1708 llvm::raw_svector_ostream NameOS(NameBuffer); 1709 printName(NameOS, P); 1710 if (NameBuffer.empty()) 1711 OS << "(anonymous)"; 1712 else 1713 OS << NameBuffer; 1714 } 1715 } 1716 1717 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { 1718 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); 1719 } 1720 1721 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, 1722 const PrintingPolicy &P) const { 1723 const DeclContext *Ctx = getDeclContext(); 1724 1725 // For ObjC methods and properties, look through categories and use the 1726 // interface as context. 1727 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) { 1728 if (auto *ID = MD->getClassInterface()) 1729 Ctx = ID; 1730 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { 1731 if (auto *MD = PD->getGetterMethodDecl()) 1732 if (auto *ID = MD->getClassInterface()) 1733 Ctx = ID; 1734 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) { 1735 if (auto *CI = ID->getContainingInterface()) 1736 Ctx = CI; 1737 } 1738 1739 if (Ctx->isFunctionOrMethod()) 1740 return; 1741 1742 using ContextsTy = SmallVector<const DeclContext *, 8>; 1743 ContextsTy Contexts; 1744 1745 // Collect named contexts. 1746 DeclarationName NameInScope = getDeclName(); 1747 for (; Ctx; Ctx = Ctx->getParent()) { 1748 // Suppress anonymous namespace if requested. 1749 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) && 1750 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace()) 1751 continue; 1752 1753 // Suppress inline namespace if it doesn't make the result ambiguous. 1754 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope && 1755 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope)) 1756 continue; 1757 1758 // Skip non-named contexts such as linkage specifications and ExportDecls. 1759 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx); 1760 if (!ND) 1761 continue; 1762 1763 Contexts.push_back(Ctx); 1764 NameInScope = ND->getDeclName(); 1765 } 1766 1767 for (const DeclContext *DC : llvm::reverse(Contexts)) { 1768 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { 1769 OS << Spec->getName(); 1770 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); 1771 printTemplateArgumentList( 1772 OS, TemplateArgs.asArray(), P, 1773 Spec->getSpecializedTemplate()->getTemplateParameters()); 1774 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { 1775 if (ND->isAnonymousNamespace()) { 1776 OS << (P.MSVCFormatting ? "`anonymous namespace\'" 1777 : "(anonymous namespace)"); 1778 } 1779 else 1780 OS << *ND; 1781 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { 1782 if (!RD->getIdentifier()) 1783 OS << "(anonymous " << RD->getKindName() << ')'; 1784 else 1785 OS << *RD; 1786 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1787 const FunctionProtoType *FT = nullptr; 1788 if (FD->hasWrittenPrototype()) 1789 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); 1790 1791 OS << *FD << '('; 1792 if (FT) { 1793 unsigned NumParams = FD->getNumParams(); 1794 for (unsigned i = 0; i < NumParams; ++i) { 1795 if (i) 1796 OS << ", "; 1797 OS << FD->getParamDecl(i)->getType().stream(P); 1798 } 1799 1800 if (FT->isVariadic()) { 1801 if (NumParams > 0) 1802 OS << ", "; 1803 OS << "..."; 1804 } 1805 } 1806 OS << ')'; 1807 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { 1808 // C++ [dcl.enum]p10: Each enum-name and each unscoped 1809 // enumerator is declared in the scope that immediately contains 1810 // the enum-specifier. Each scoped enumerator is declared in the 1811 // scope of the enumeration. 1812 // For the case of unscoped enumerator, do not include in the qualified 1813 // name any information about its enum enclosing scope, as its visibility 1814 // is global. 1815 if (ED->isScoped()) 1816 OS << *ED; 1817 else 1818 continue; 1819 } else { 1820 OS << *cast<NamedDecl>(DC); 1821 } 1822 OS << "::"; 1823 } 1824 } 1825 1826 void NamedDecl::getNameForDiagnostic(raw_ostream &OS, 1827 const PrintingPolicy &Policy, 1828 bool Qualified) const { 1829 if (Qualified) 1830 printQualifiedName(OS, Policy); 1831 else 1832 printName(OS, Policy); 1833 } 1834 1835 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { 1836 return true; 1837 } 1838 static bool isRedeclarableImpl(...) { return false; } 1839 static bool isRedeclarable(Decl::Kind K) { 1840 switch (K) { 1841 #define DECL(Type, Base) \ 1842 case Decl::Type: \ 1843 return isRedeclarableImpl((Type##Decl *)nullptr); 1844 #define ABSTRACT_DECL(DECL) 1845 #include "clang/AST/DeclNodes.inc" 1846 } 1847 llvm_unreachable("unknown decl kind"); 1848 } 1849 1850 bool NamedDecl::declarationReplaces(const NamedDecl *OldD, 1851 bool IsKnownNewer) const { 1852 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); 1853 1854 // Never replace one imported declaration with another; we need both results 1855 // when re-exporting. 1856 if (OldD->isFromASTFile() && isFromASTFile()) 1857 return false; 1858 1859 // A kind mismatch implies that the declaration is not replaced. 1860 if (OldD->getKind() != getKind()) 1861 return false; 1862 1863 // For method declarations, we never replace. (Why?) 1864 if (isa<ObjCMethodDecl>(this)) 1865 return false; 1866 1867 // For parameters, pick the newer one. This is either an error or (in 1868 // Objective-C) permitted as an extension. 1869 if (isa<ParmVarDecl>(this)) 1870 return true; 1871 1872 // Inline namespaces can give us two declarations with the same 1873 // name and kind in the same scope but different contexts; we should 1874 // keep both declarations in this case. 1875 if (!this->getDeclContext()->getRedeclContext()->Equals( 1876 OldD->getDeclContext()->getRedeclContext())) 1877 return false; 1878 1879 // Using declarations can be replaced if they import the same name from the 1880 // same context. 1881 if (const auto *UD = dyn_cast<UsingDecl>(this)) { 1882 ASTContext &Context = getASTContext(); 1883 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == 1884 Context.getCanonicalNestedNameSpecifier( 1885 cast<UsingDecl>(OldD)->getQualifier()); 1886 } 1887 if (const auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { 1888 ASTContext &Context = getASTContext(); 1889 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == 1890 Context.getCanonicalNestedNameSpecifier( 1891 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); 1892 } 1893 1894 if (isRedeclarable(getKind())) { 1895 if (getCanonicalDecl() != OldD->getCanonicalDecl()) 1896 return false; 1897 1898 if (IsKnownNewer) 1899 return true; 1900 1901 // Check whether this is actually newer than OldD. We want to keep the 1902 // newer declaration. This loop will usually only iterate once, because 1903 // OldD is usually the previous declaration. 1904 for (const auto *D : redecls()) { 1905 if (D == OldD) 1906 break; 1907 1908 // If we reach the canonical declaration, then OldD is not actually older 1909 // than this one. 1910 // 1911 // FIXME: In this case, we should not add this decl to the lookup table. 1912 if (D->isCanonicalDecl()) 1913 return false; 1914 } 1915 1916 // It's a newer declaration of the same kind of declaration in the same 1917 // scope: we want this decl instead of the existing one. 1918 return true; 1919 } 1920 1921 // In all other cases, we need to keep both declarations in case they have 1922 // different visibility. Any attempt to use the name will result in an 1923 // ambiguity if more than one is visible. 1924 return false; 1925 } 1926 1927 bool NamedDecl::hasLinkage() const { 1928 switch (getFormalLinkage()) { 1929 case Linkage::Invalid: 1930 llvm_unreachable("Linkage hasn't been computed!"); 1931 case Linkage::None: 1932 return false; 1933 case Linkage::Internal: 1934 return true; 1935 case Linkage::UniqueExternal: 1936 case Linkage::VisibleNone: 1937 llvm_unreachable("Non-formal linkage is not allowed here!"); 1938 case Linkage::Module: 1939 case Linkage::External: 1940 return true; 1941 } 1942 llvm_unreachable("Unhandled Linkage enum"); 1943 } 1944 1945 NamedDecl *NamedDecl::getUnderlyingDeclImpl() { 1946 NamedDecl *ND = this; 1947 if (auto *UD = dyn_cast<UsingShadowDecl>(ND)) 1948 ND = UD->getTargetDecl(); 1949 1950 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) 1951 return AD->getClassInterface(); 1952 1953 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) 1954 return AD->getNamespace(); 1955 1956 return ND; 1957 } 1958 1959 bool NamedDecl::isCXXInstanceMember() const { 1960 if (!isCXXClassMember()) 1961 return false; 1962 1963 const NamedDecl *D = this; 1964 if (isa<UsingShadowDecl>(D)) 1965 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 1966 1967 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) 1968 return true; 1969 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(D->getAsFunction())) 1970 return MD->isInstance(); 1971 return false; 1972 } 1973 1974 //===----------------------------------------------------------------------===// 1975 // DeclaratorDecl Implementation 1976 //===----------------------------------------------------------------------===// 1977 1978 template <typename DeclT> 1979 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { 1980 if (decl->getNumTemplateParameterLists() > 0) 1981 return decl->getTemplateParameterList(0)->getTemplateLoc(); 1982 return decl->getInnerLocStart(); 1983 } 1984 1985 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { 1986 TypeSourceInfo *TSI = getTypeSourceInfo(); 1987 if (TSI) return TSI->getTypeLoc().getBeginLoc(); 1988 return SourceLocation(); 1989 } 1990 1991 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const { 1992 TypeSourceInfo *TSI = getTypeSourceInfo(); 1993 if (TSI) return TSI->getTypeLoc().getEndLoc(); 1994 return SourceLocation(); 1995 } 1996 1997 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 1998 if (QualifierLoc) { 1999 // Make sure the extended decl info is allocated. 2000 if (!hasExtInfo()) { 2001 // Save (non-extended) type source info pointer. 2002 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 2003 // Allocate external info struct. 2004 DeclInfo = new (getASTContext()) ExtInfo; 2005 // Restore savedTInfo into (extended) decl info. 2006 getExtInfo()->TInfo = savedTInfo; 2007 } 2008 // Set qualifier info. 2009 getExtInfo()->QualifierLoc = QualifierLoc; 2010 } else if (hasExtInfo()) { 2011 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 2012 getExtInfo()->QualifierLoc = QualifierLoc; 2013 } 2014 } 2015 2016 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) { 2017 assert(TrailingRequiresClause); 2018 // Make sure the extended decl info is allocated. 2019 if (!hasExtInfo()) { 2020 // Save (non-extended) type source info pointer. 2021 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 2022 // Allocate external info struct. 2023 DeclInfo = new (getASTContext()) ExtInfo; 2024 // Restore savedTInfo into (extended) decl info. 2025 getExtInfo()->TInfo = savedTInfo; 2026 } 2027 // Set requires clause info. 2028 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause; 2029 } 2030 2031 void DeclaratorDecl::setTemplateParameterListsInfo( 2032 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 2033 assert(!TPLists.empty()); 2034 // Make sure the extended decl info is allocated. 2035 if (!hasExtInfo()) { 2036 // Save (non-extended) type source info pointer. 2037 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); 2038 // Allocate external info struct. 2039 DeclInfo = new (getASTContext()) ExtInfo; 2040 // Restore savedTInfo into (extended) decl info. 2041 getExtInfo()->TInfo = savedTInfo; 2042 } 2043 // Set the template parameter lists info. 2044 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 2045 } 2046 2047 SourceLocation DeclaratorDecl::getOuterLocStart() const { 2048 return getTemplateOrInnerLocStart(this); 2049 } 2050 2051 // Helper function: returns true if QT is or contains a type 2052 // having a postfix component. 2053 static bool typeIsPostfix(QualType QT) { 2054 while (true) { 2055 const Type* T = QT.getTypePtr(); 2056 switch (T->getTypeClass()) { 2057 default: 2058 return false; 2059 case Type::Pointer: 2060 QT = cast<PointerType>(T)->getPointeeType(); 2061 break; 2062 case Type::BlockPointer: 2063 QT = cast<BlockPointerType>(T)->getPointeeType(); 2064 break; 2065 case Type::MemberPointer: 2066 QT = cast<MemberPointerType>(T)->getPointeeType(); 2067 break; 2068 case Type::LValueReference: 2069 case Type::RValueReference: 2070 QT = cast<ReferenceType>(T)->getPointeeType(); 2071 break; 2072 case Type::PackExpansion: 2073 QT = cast<PackExpansionType>(T)->getPattern(); 2074 break; 2075 case Type::Paren: 2076 case Type::ConstantArray: 2077 case Type::DependentSizedArray: 2078 case Type::IncompleteArray: 2079 case Type::VariableArray: 2080 case Type::FunctionProto: 2081 case Type::FunctionNoProto: 2082 return true; 2083 } 2084 } 2085 } 2086 2087 SourceRange DeclaratorDecl::getSourceRange() const { 2088 SourceLocation RangeEnd = getLocation(); 2089 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 2090 // If the declaration has no name or the type extends past the name take the 2091 // end location of the type. 2092 if (!getDeclName() || typeIsPostfix(TInfo->getType())) 2093 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 2094 } 2095 return SourceRange(getOuterLocStart(), RangeEnd); 2096 } 2097 2098 void QualifierInfo::setTemplateParameterListsInfo( 2099 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 2100 // Free previous template parameters (if any). 2101 if (NumTemplParamLists > 0) { 2102 Context.Deallocate(TemplParamLists); 2103 TemplParamLists = nullptr; 2104 NumTemplParamLists = 0; 2105 } 2106 // Set info on matched template parameter lists (if any). 2107 if (!TPLists.empty()) { 2108 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; 2109 NumTemplParamLists = TPLists.size(); 2110 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); 2111 } 2112 } 2113 2114 //===----------------------------------------------------------------------===// 2115 // VarDecl Implementation 2116 //===----------------------------------------------------------------------===// 2117 2118 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { 2119 switch (SC) { 2120 case SC_None: break; 2121 case SC_Auto: return "auto"; 2122 case SC_Extern: return "extern"; 2123 case SC_PrivateExtern: return "__private_extern__"; 2124 case SC_Register: return "register"; 2125 case SC_Static: return "static"; 2126 } 2127 2128 llvm_unreachable("Invalid storage class"); 2129 } 2130 2131 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, 2132 SourceLocation StartLoc, SourceLocation IdLoc, 2133 const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, 2134 StorageClass SC) 2135 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), 2136 redeclarable_base(C) { 2137 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), 2138 "VarDeclBitfields too large!"); 2139 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), 2140 "ParmVarDeclBitfields too large!"); 2141 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), 2142 "NonParmVarDeclBitfields too large!"); 2143 AllBits = 0; 2144 VarDeclBits.SClass = SC; 2145 // Everything else is implicitly initialized to false. 2146 } 2147 2148 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL, 2149 SourceLocation IdL, const IdentifierInfo *Id, 2150 QualType T, TypeSourceInfo *TInfo, StorageClass S) { 2151 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); 2152 } 2153 2154 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2155 return new (C, ID) 2156 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, 2157 QualType(), nullptr, SC_None); 2158 } 2159 2160 void VarDecl::setStorageClass(StorageClass SC) { 2161 assert(isLegalForVariable(SC)); 2162 VarDeclBits.SClass = SC; 2163 } 2164 2165 VarDecl::TLSKind VarDecl::getTLSKind() const { 2166 switch (VarDeclBits.TSCSpec) { 2167 case TSCS_unspecified: 2168 if (!hasAttr<ThreadAttr>() && 2169 !(getASTContext().getLangOpts().OpenMPUseTLS && 2170 getASTContext().getTargetInfo().isTLSSupported() && 2171 hasAttr<OMPThreadPrivateDeclAttr>())) 2172 return TLS_None; 2173 return ((getASTContext().getLangOpts().isCompatibleWithMSVC( 2174 LangOptions::MSVC2015)) || 2175 hasAttr<OMPThreadPrivateDeclAttr>()) 2176 ? TLS_Dynamic 2177 : TLS_Static; 2178 case TSCS___thread: // Fall through. 2179 case TSCS__Thread_local: 2180 return TLS_Static; 2181 case TSCS_thread_local: 2182 return TLS_Dynamic; 2183 } 2184 llvm_unreachable("Unknown thread storage class specifier!"); 2185 } 2186 2187 SourceRange VarDecl::getSourceRange() const { 2188 if (const Expr *Init = getInit()) { 2189 SourceLocation InitEnd = Init->getEndLoc(); 2190 // If Init is implicit, ignore its source range and fallback on 2191 // DeclaratorDecl::getSourceRange() to handle postfix elements. 2192 if (InitEnd.isValid() && InitEnd != getLocation()) 2193 return SourceRange(getOuterLocStart(), InitEnd); 2194 } 2195 return DeclaratorDecl::getSourceRange(); 2196 } 2197 2198 template<typename T> 2199 static LanguageLinkage getDeclLanguageLinkage(const T &D) { 2200 // C++ [dcl.link]p1: All function types, function names with external linkage, 2201 // and variable names with external linkage have a language linkage. 2202 if (!D.hasExternalFormalLinkage()) 2203 return NoLanguageLinkage; 2204 2205 // Language linkage is a C++ concept, but saying that everything else in C has 2206 // C language linkage fits the implementation nicely. 2207 if (!D.getASTContext().getLangOpts().CPlusPlus) 2208 return CLanguageLinkage; 2209 2210 // C++ [dcl.link]p4: A C language linkage is ignored in determining the 2211 // language linkage of the names of class members and the function type of 2212 // class member functions. 2213 const DeclContext *DC = D.getDeclContext(); 2214 if (DC->isRecord()) 2215 return CXXLanguageLinkage; 2216 2217 // If the first decl is in an extern "C" context, any other redeclaration 2218 // will have C language linkage. If the first one is not in an extern "C" 2219 // context, we would have reported an error for any other decl being in one. 2220 if (isFirstInExternCContext(&D)) 2221 return CLanguageLinkage; 2222 return CXXLanguageLinkage; 2223 } 2224 2225 template<typename T> 2226 static bool isDeclExternC(const T &D) { 2227 // Since the context is ignored for class members, they can only have C++ 2228 // language linkage or no language linkage. 2229 const DeclContext *DC = D.getDeclContext(); 2230 if (DC->isRecord()) { 2231 assert(D.getASTContext().getLangOpts().CPlusPlus); 2232 return false; 2233 } 2234 2235 return D.getLanguageLinkage() == CLanguageLinkage; 2236 } 2237 2238 LanguageLinkage VarDecl::getLanguageLinkage() const { 2239 return getDeclLanguageLinkage(*this); 2240 } 2241 2242 bool VarDecl::isExternC() const { 2243 return isDeclExternC(*this); 2244 } 2245 2246 bool VarDecl::isInExternCContext() const { 2247 return getLexicalDeclContext()->isExternCContext(); 2248 } 2249 2250 bool VarDecl::isInExternCXXContext() const { 2251 return getLexicalDeclContext()->isExternCXXContext(); 2252 } 2253 2254 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } 2255 2256 VarDecl::DefinitionKind 2257 VarDecl::isThisDeclarationADefinition(ASTContext &C) const { 2258 if (isThisDeclarationADemotedDefinition()) 2259 return DeclarationOnly; 2260 2261 // C++ [basic.def]p2: 2262 // A declaration is a definition unless [...] it contains the 'extern' 2263 // specifier or a linkage-specification and neither an initializer [...], 2264 // it declares a non-inline static data member in a class declaration [...], 2265 // it declares a static data member outside a class definition and the variable 2266 // was defined within the class with the constexpr specifier [...], 2267 // C++1y [temp.expl.spec]p15: 2268 // An explicit specialization of a static data member or an explicit 2269 // specialization of a static data member template is a definition if the 2270 // declaration includes an initializer; otherwise, it is a declaration. 2271 // 2272 // FIXME: How do you declare (but not define) a partial specialization of 2273 // a static data member template outside the containing class? 2274 if (isStaticDataMember()) { 2275 if (isOutOfLine() && 2276 !(getCanonicalDecl()->isInline() && 2277 getCanonicalDecl()->isConstexpr()) && 2278 (hasInit() || 2279 // If the first declaration is out-of-line, this may be an 2280 // instantiation of an out-of-line partial specialization of a variable 2281 // template for which we have not yet instantiated the initializer. 2282 (getFirstDecl()->isOutOfLine() 2283 ? getTemplateSpecializationKind() == TSK_Undeclared 2284 : getTemplateSpecializationKind() != 2285 TSK_ExplicitSpecialization) || 2286 isa<VarTemplatePartialSpecializationDecl>(this))) 2287 return Definition; 2288 if (!isOutOfLine() && isInline()) 2289 return Definition; 2290 return DeclarationOnly; 2291 } 2292 // C99 6.7p5: 2293 // A definition of an identifier is a declaration for that identifier that 2294 // [...] causes storage to be reserved for that object. 2295 // Note: that applies for all non-file-scope objects. 2296 // C99 6.9.2p1: 2297 // If the declaration of an identifier for an object has file scope and an 2298 // initializer, the declaration is an external definition for the identifier 2299 if (hasInit()) 2300 return Definition; 2301 2302 if (hasDefiningAttr()) 2303 return Definition; 2304 2305 if (const auto *SAA = getAttr<SelectAnyAttr>()) 2306 if (!SAA->isInherited()) 2307 return Definition; 2308 2309 // A variable template specialization (other than a static data member 2310 // template or an explicit specialization) is a declaration until we 2311 // instantiate its initializer. 2312 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { 2313 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2314 !isa<VarTemplatePartialSpecializationDecl>(VTSD) && 2315 !VTSD->IsCompleteDefinition) 2316 return DeclarationOnly; 2317 } 2318 2319 if (hasExternalStorage()) 2320 return DeclarationOnly; 2321 2322 // [dcl.link] p7: 2323 // A declaration directly contained in a linkage-specification is treated 2324 // as if it contains the extern specifier for the purpose of determining 2325 // the linkage of the declared name and whether it is a definition. 2326 if (isSingleLineLanguageLinkage(*this)) 2327 return DeclarationOnly; 2328 2329 // C99 6.9.2p2: 2330 // A declaration of an object that has file scope without an initializer, 2331 // and without a storage class specifier or the scs 'static', constitutes 2332 // a tentative definition. 2333 // No such thing in C++. 2334 if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) 2335 return TentativeDefinition; 2336 2337 // What's left is (in C, block-scope) declarations without initializers or 2338 // external storage. These are definitions. 2339 return Definition; 2340 } 2341 2342 VarDecl *VarDecl::getActingDefinition() { 2343 DefinitionKind Kind = isThisDeclarationADefinition(); 2344 if (Kind != TentativeDefinition) 2345 return nullptr; 2346 2347 VarDecl *LastTentative = nullptr; 2348 2349 // Loop through the declaration chain, starting with the most recent. 2350 for (VarDecl *Decl = getMostRecentDecl(); Decl; 2351 Decl = Decl->getPreviousDecl()) { 2352 Kind = Decl->isThisDeclarationADefinition(); 2353 if (Kind == Definition) 2354 return nullptr; 2355 // Record the first (most recent) TentativeDefinition that is encountered. 2356 if (Kind == TentativeDefinition && !LastTentative) 2357 LastTentative = Decl; 2358 } 2359 2360 return LastTentative; 2361 } 2362 2363 VarDecl *VarDecl::getDefinition(ASTContext &C) { 2364 VarDecl *First = getFirstDecl(); 2365 for (auto *I : First->redecls()) { 2366 if (I->isThisDeclarationADefinition(C) == Definition) 2367 return I; 2368 } 2369 return nullptr; 2370 } 2371 2372 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { 2373 DefinitionKind Kind = DeclarationOnly; 2374 2375 const VarDecl *First = getFirstDecl(); 2376 for (auto *I : First->redecls()) { 2377 Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); 2378 if (Kind == Definition) 2379 break; 2380 } 2381 2382 return Kind; 2383 } 2384 2385 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { 2386 for (auto *I : redecls()) { 2387 if (auto Expr = I->getInit()) { 2388 D = I; 2389 return Expr; 2390 } 2391 } 2392 return nullptr; 2393 } 2394 2395 bool VarDecl::hasInit() const { 2396 if (auto *P = dyn_cast<ParmVarDecl>(this)) 2397 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) 2398 return false; 2399 2400 return !Init.isNull(); 2401 } 2402 2403 Expr *VarDecl::getInit() { 2404 if (!hasInit()) 2405 return nullptr; 2406 2407 if (auto *S = Init.dyn_cast<Stmt *>()) 2408 return cast<Expr>(S); 2409 2410 auto *Eval = getEvaluatedStmt(); 2411 return cast<Expr>(Eval->Value.isOffset() 2412 ? Eval->Value.get(getASTContext().getExternalSource()) 2413 : Eval->Value.get(nullptr)); 2414 } 2415 2416 Stmt **VarDecl::getInitAddress() { 2417 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) 2418 return ES->Value.getAddressOfPointer(getASTContext().getExternalSource()); 2419 2420 return Init.getAddrOfPtr1(); 2421 } 2422 2423 VarDecl *VarDecl::getInitializingDeclaration() { 2424 VarDecl *Def = nullptr; 2425 for (auto *I : redecls()) { 2426 if (I->hasInit()) 2427 return I; 2428 2429 if (I->isThisDeclarationADefinition()) { 2430 if (isStaticDataMember()) 2431 return I; 2432 Def = I; 2433 } 2434 } 2435 return Def; 2436 } 2437 2438 bool VarDecl::isOutOfLine() const { 2439 if (Decl::isOutOfLine()) 2440 return true; 2441 2442 if (!isStaticDataMember()) 2443 return false; 2444 2445 // If this static data member was instantiated from a static data member of 2446 // a class template, check whether that static data member was defined 2447 // out-of-line. 2448 if (VarDecl *VD = getInstantiatedFromStaticDataMember()) 2449 return VD->isOutOfLine(); 2450 2451 return false; 2452 } 2453 2454 void VarDecl::setInit(Expr *I) { 2455 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { 2456 Eval->~EvaluatedStmt(); 2457 getASTContext().Deallocate(Eval); 2458 } 2459 2460 Init = I; 2461 } 2462 2463 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const { 2464 const LangOptions &Lang = C.getLangOpts(); 2465 2466 // OpenCL permits const integral variables to be used in constant 2467 // expressions, like in C++98. 2468 if (!Lang.CPlusPlus && !Lang.OpenCL) 2469 return false; 2470 2471 // Function parameters are never usable in constant expressions. 2472 if (isa<ParmVarDecl>(this)) 2473 return false; 2474 2475 // The values of weak variables are never usable in constant expressions. 2476 if (isWeak()) 2477 return false; 2478 2479 // In C++11, any variable of reference type can be used in a constant 2480 // expression if it is initialized by a constant expression. 2481 if (Lang.CPlusPlus11 && getType()->isReferenceType()) 2482 return true; 2483 2484 // Only const objects can be used in constant expressions in C++. C++98 does 2485 // not require the variable to be non-volatile, but we consider this to be a 2486 // defect. 2487 if (!getType().isConstant(C) || getType().isVolatileQualified()) 2488 return false; 2489 2490 // In C++, const, non-volatile variables of integral or enumeration types 2491 // can be used in constant expressions. 2492 if (getType()->isIntegralOrEnumerationType()) 2493 return true; 2494 2495 // Additionally, in C++11, non-volatile constexpr variables can be used in 2496 // constant expressions. 2497 return Lang.CPlusPlus11 && isConstexpr(); 2498 } 2499 2500 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const { 2501 // C++2a [expr.const]p3: 2502 // A variable is usable in constant expressions after its initializing 2503 // declaration is encountered... 2504 const VarDecl *DefVD = nullptr; 2505 const Expr *Init = getAnyInitializer(DefVD); 2506 if (!Init || Init->isValueDependent() || getType()->isDependentType()) 2507 return false; 2508 // ... if it is a constexpr variable, or it is of reference type or of 2509 // const-qualified integral or enumeration type, ... 2510 if (!DefVD->mightBeUsableInConstantExpressions(Context)) 2511 return false; 2512 // ... and its initializer is a constant initializer. 2513 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization()) 2514 return false; 2515 // C++98 [expr.const]p1: 2516 // An integral constant-expression can involve only [...] const variables 2517 // or static data members of integral or enumeration types initialized with 2518 // [integer] constant expressions (dcl.init) 2519 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) && 2520 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context)) 2521 return false; 2522 return true; 2523 } 2524 2525 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt 2526 /// form, which contains extra information on the evaluated value of the 2527 /// initializer. 2528 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { 2529 auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); 2530 if (!Eval) { 2531 // Note: EvaluatedStmt contains an APValue, which usually holds 2532 // resources not allocated from the ASTContext. We need to do some 2533 // work to avoid leaking those, but we do so in VarDecl::evaluateValue 2534 // where we can detect whether there's anything to clean up or not. 2535 Eval = new (getASTContext()) EvaluatedStmt; 2536 Eval->Value = Init.get<Stmt *>(); 2537 Init = Eval; 2538 } 2539 return Eval; 2540 } 2541 2542 EvaluatedStmt *VarDecl::getEvaluatedStmt() const { 2543 return Init.dyn_cast<EvaluatedStmt *>(); 2544 } 2545 2546 APValue *VarDecl::evaluateValue() const { 2547 SmallVector<PartialDiagnosticAt, 8> Notes; 2548 return evaluateValueImpl(Notes, hasConstantInitialization()); 2549 } 2550 2551 APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes, 2552 bool IsConstantInitialization) const { 2553 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2554 2555 const auto *Init = getInit(); 2556 assert(!Init->isValueDependent()); 2557 2558 // We only produce notes indicating why an initializer is non-constant the 2559 // first time it is evaluated. FIXME: The notes won't always be emitted the 2560 // first time we try evaluation, so might not be produced at all. 2561 if (Eval->WasEvaluated) 2562 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; 2563 2564 if (Eval->IsEvaluating) { 2565 // FIXME: Produce a diagnostic for self-initialization. 2566 return nullptr; 2567 } 2568 2569 Eval->IsEvaluating = true; 2570 2571 ASTContext &Ctx = getASTContext(); 2572 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes, 2573 IsConstantInitialization); 2574 2575 // In C++, this isn't a constant initializer if we produced notes. In that 2576 // case, we can't keep the result, because it may only be correct under the 2577 // assumption that the initializer is a constant context. 2578 if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus && 2579 !Notes.empty()) 2580 Result = false; 2581 2582 // Ensure the computed APValue is cleaned up later if evaluation succeeded, 2583 // or that it's empty (so that there's nothing to clean up) if evaluation 2584 // failed. 2585 if (!Result) 2586 Eval->Evaluated = APValue(); 2587 else if (Eval->Evaluated.needsCleanup()) 2588 Ctx.addDestruction(&Eval->Evaluated); 2589 2590 Eval->IsEvaluating = false; 2591 Eval->WasEvaluated = true; 2592 2593 return Result ? &Eval->Evaluated : nullptr; 2594 } 2595 2596 APValue *VarDecl::getEvaluatedValue() const { 2597 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2598 if (Eval->WasEvaluated) 2599 return &Eval->Evaluated; 2600 2601 return nullptr; 2602 } 2603 2604 bool VarDecl::hasICEInitializer(const ASTContext &Context) const { 2605 const Expr *Init = getInit(); 2606 assert(Init && "no initializer"); 2607 2608 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2609 if (!Eval->CheckedForICEInit) { 2610 Eval->CheckedForICEInit = true; 2611 Eval->HasICEInit = Init->isIntegerConstantExpr(Context); 2612 } 2613 return Eval->HasICEInit; 2614 } 2615 2616 bool VarDecl::hasConstantInitialization() const { 2617 // In C, all globals (and only globals) have constant initialization. 2618 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus) 2619 return true; 2620 2621 // In C++, it depends on whether the evaluation at the point of definition 2622 // was evaluatable as a constant initializer. 2623 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2624 return Eval->HasConstantInitialization; 2625 2626 return false; 2627 } 2628 2629 bool VarDecl::checkForConstantInitialization( 2630 SmallVectorImpl<PartialDiagnosticAt> &Notes) const { 2631 EvaluatedStmt *Eval = ensureEvaluatedStmt(); 2632 // If we ask for the value before we know whether we have a constant 2633 // initializer, we can compute the wrong value (for example, due to 2634 // std::is_constant_evaluated()). 2635 assert(!Eval->WasEvaluated && 2636 "already evaluated var value before checking for constant init"); 2637 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++"); 2638 2639 assert(!getInit()->isValueDependent()); 2640 2641 // Evaluate the initializer to check whether it's a constant expression. 2642 Eval->HasConstantInitialization = 2643 evaluateValueImpl(Notes, true) && Notes.empty(); 2644 2645 // If evaluation as a constant initializer failed, allow re-evaluation as a 2646 // non-constant initializer if we later find we want the value. 2647 if (!Eval->HasConstantInitialization) 2648 Eval->WasEvaluated = false; 2649 2650 return Eval->HasConstantInitialization; 2651 } 2652 2653 bool VarDecl::isParameterPack() const { 2654 return isa<PackExpansionType>(getType()); 2655 } 2656 2657 template<typename DeclT> 2658 static DeclT *getDefinitionOrSelf(DeclT *D) { 2659 assert(D); 2660 if (auto *Def = D->getDefinition()) 2661 return Def; 2662 return D; 2663 } 2664 2665 bool VarDecl::isEscapingByref() const { 2666 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; 2667 } 2668 2669 bool VarDecl::isNonEscapingByref() const { 2670 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; 2671 } 2672 2673 bool VarDecl::hasDependentAlignment() const { 2674 QualType T = getType(); 2675 return T->isDependentType() || T->isUndeducedType() || 2676 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) { 2677 return AA->isAlignmentDependent(); 2678 }); 2679 } 2680 2681 VarDecl *VarDecl::getTemplateInstantiationPattern() const { 2682 const VarDecl *VD = this; 2683 2684 // If this is an instantiated member, walk back to the template from which 2685 // it was instantiated. 2686 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { 2687 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 2688 VD = VD->getInstantiatedFromStaticDataMember(); 2689 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) 2690 VD = NewVD; 2691 } 2692 } 2693 2694 // If it's an instantiated variable template specialization, find the 2695 // template or partial specialization from which it was instantiated. 2696 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { 2697 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { 2698 auto From = VDTemplSpec->getInstantiatedFrom(); 2699 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { 2700 while (!VTD->isMemberSpecialization()) { 2701 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); 2702 if (!NewVTD) 2703 break; 2704 VTD = NewVTD; 2705 } 2706 return getDefinitionOrSelf(VTD->getTemplatedDecl()); 2707 } 2708 if (auto *VTPSD = 2709 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { 2710 while (!VTPSD->isMemberSpecialization()) { 2711 auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); 2712 if (!NewVTPSD) 2713 break; 2714 VTPSD = NewVTPSD; 2715 } 2716 return getDefinitionOrSelf<VarDecl>(VTPSD); 2717 } 2718 } 2719 } 2720 2721 // If this is the pattern of a variable template, find where it was 2722 // instantiated from. FIXME: Is this necessary? 2723 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { 2724 while (!VarTemplate->isMemberSpecialization()) { 2725 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); 2726 if (!NewVT) 2727 break; 2728 VarTemplate = NewVT; 2729 } 2730 2731 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); 2732 } 2733 2734 if (VD == this) 2735 return nullptr; 2736 return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); 2737 } 2738 2739 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { 2740 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2741 return cast<VarDecl>(MSI->getInstantiatedFrom()); 2742 2743 return nullptr; 2744 } 2745 2746 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { 2747 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2748 return Spec->getSpecializationKind(); 2749 2750 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2751 return MSI->getTemplateSpecializationKind(); 2752 2753 return TSK_Undeclared; 2754 } 2755 2756 TemplateSpecializationKind 2757 VarDecl::getTemplateSpecializationKindForInstantiation() const { 2758 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2759 return MSI->getTemplateSpecializationKind(); 2760 2761 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2762 return Spec->getSpecializationKind(); 2763 2764 return TSK_Undeclared; 2765 } 2766 2767 SourceLocation VarDecl::getPointOfInstantiation() const { 2768 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) 2769 return Spec->getPointOfInstantiation(); 2770 2771 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 2772 return MSI->getPointOfInstantiation(); 2773 2774 return SourceLocation(); 2775 } 2776 2777 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { 2778 return getASTContext().getTemplateOrSpecializationInfo(this) 2779 .dyn_cast<VarTemplateDecl *>(); 2780 } 2781 2782 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { 2783 getASTContext().setTemplateOrSpecializationInfo(this, Template); 2784 } 2785 2786 bool VarDecl::isKnownToBeDefined() const { 2787 const auto &LangOpts = getASTContext().getLangOpts(); 2788 // In CUDA mode without relocatable device code, variables of form 'extern 2789 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared 2790 // memory pool. These are never undefined variables, even if they appear 2791 // inside of an anon namespace or static function. 2792 // 2793 // With CUDA relocatable device code enabled, these variables don't get 2794 // special handling; they're treated like regular extern variables. 2795 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && 2796 hasExternalStorage() && hasAttr<CUDASharedAttr>() && 2797 isa<IncompleteArrayType>(getType())) 2798 return true; 2799 2800 return hasDefinition(); 2801 } 2802 2803 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { 2804 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || 2805 (!Ctx.getLangOpts().RegisterStaticDestructors && 2806 !hasAttr<AlwaysDestroyAttr>())); 2807 } 2808 2809 QualType::DestructionKind 2810 VarDecl::needsDestruction(const ASTContext &Ctx) const { 2811 if (EvaluatedStmt *Eval = getEvaluatedStmt()) 2812 if (Eval->HasConstantDestruction) 2813 return QualType::DK_none; 2814 2815 if (isNoDestroy(Ctx)) 2816 return QualType::DK_none; 2817 2818 return getType().isDestructedType(); 2819 } 2820 2821 bool VarDecl::hasFlexibleArrayInit(const ASTContext &Ctx) const { 2822 assert(hasInit() && "Expect initializer to check for flexible array init"); 2823 auto *Ty = getType()->getAs<RecordType>(); 2824 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember()) 2825 return false; 2826 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens()); 2827 if (!List) 2828 return false; 2829 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1); 2830 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType()); 2831 if (!InitTy) 2832 return false; 2833 return InitTy->getSize() != 0; 2834 } 2835 2836 CharUnits VarDecl::getFlexibleArrayInitChars(const ASTContext &Ctx) const { 2837 assert(hasInit() && "Expect initializer to check for flexible array init"); 2838 auto *Ty = getType()->getAs<RecordType>(); 2839 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember()) 2840 return CharUnits::Zero(); 2841 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens()); 2842 if (!List || List->getNumInits() == 0) 2843 return CharUnits::Zero(); 2844 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1); 2845 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType()); 2846 if (!InitTy) 2847 return CharUnits::Zero(); 2848 CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy); 2849 const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl()); 2850 CharUnits FlexibleArrayOffset = 2851 Ctx.toCharUnitsFromBits(RL.getFieldOffset(RL.getFieldCount() - 1)); 2852 if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize()) 2853 return CharUnits::Zero(); 2854 return FlexibleArrayOffset + FlexibleArraySize - RL.getSize(); 2855 } 2856 2857 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { 2858 if (isStaticDataMember()) 2859 // FIXME: Remove ? 2860 // return getASTContext().getInstantiatedFromStaticDataMember(this); 2861 return getASTContext().getTemplateOrSpecializationInfo(this) 2862 .dyn_cast<MemberSpecializationInfo *>(); 2863 return nullptr; 2864 } 2865 2866 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 2867 SourceLocation PointOfInstantiation) { 2868 assert((isa<VarTemplateSpecializationDecl>(this) || 2869 getMemberSpecializationInfo()) && 2870 "not a variable or static data member template specialization"); 2871 2872 if (VarTemplateSpecializationDecl *Spec = 2873 dyn_cast<VarTemplateSpecializationDecl>(this)) { 2874 Spec->setSpecializationKind(TSK); 2875 if (TSK != TSK_ExplicitSpecialization && 2876 PointOfInstantiation.isValid() && 2877 Spec->getPointOfInstantiation().isInvalid()) { 2878 Spec->setPointOfInstantiation(PointOfInstantiation); 2879 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2880 L->InstantiationRequested(this); 2881 } 2882 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { 2883 MSI->setTemplateSpecializationKind(TSK); 2884 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && 2885 MSI->getPointOfInstantiation().isInvalid()) { 2886 MSI->setPointOfInstantiation(PointOfInstantiation); 2887 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 2888 L->InstantiationRequested(this); 2889 } 2890 } 2891 } 2892 2893 void 2894 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, 2895 TemplateSpecializationKind TSK) { 2896 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && 2897 "Previous template or instantiation?"); 2898 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); 2899 } 2900 2901 //===----------------------------------------------------------------------===// 2902 // ParmVarDecl Implementation 2903 //===----------------------------------------------------------------------===// 2904 2905 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, 2906 SourceLocation StartLoc, 2907 SourceLocation IdLoc, IdentifierInfo *Id, 2908 QualType T, TypeSourceInfo *TInfo, 2909 StorageClass S, Expr *DefArg) { 2910 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, 2911 S, DefArg); 2912 } 2913 2914 QualType ParmVarDecl::getOriginalType() const { 2915 TypeSourceInfo *TSI = getTypeSourceInfo(); 2916 QualType T = TSI ? TSI->getType() : getType(); 2917 if (const auto *DT = dyn_cast<DecayedType>(T)) 2918 return DT->getOriginalType(); 2919 return T; 2920 } 2921 2922 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 2923 return new (C, ID) 2924 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), 2925 nullptr, QualType(), nullptr, SC_None, nullptr); 2926 } 2927 2928 SourceRange ParmVarDecl::getSourceRange() const { 2929 if (!hasInheritedDefaultArg()) { 2930 SourceRange ArgRange = getDefaultArgRange(); 2931 if (ArgRange.isValid()) 2932 return SourceRange(getOuterLocStart(), ArgRange.getEnd()); 2933 } 2934 2935 // DeclaratorDecl considers the range of postfix types as overlapping with the 2936 // declaration name, but this is not the case with parameters in ObjC methods. 2937 if (isa<ObjCMethodDecl>(getDeclContext())) 2938 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); 2939 2940 return DeclaratorDecl::getSourceRange(); 2941 } 2942 2943 bool ParmVarDecl::isDestroyedInCallee() const { 2944 // ns_consumed only affects code generation in ARC 2945 if (hasAttr<NSConsumedAttr>()) 2946 return getASTContext().getLangOpts().ObjCAutoRefCount; 2947 2948 // FIXME: isParamDestroyedInCallee() should probably imply 2949 // isDestructedType() 2950 const auto *RT = getType()->getAs<RecordType>(); 2951 if (RT && RT->getDecl()->isParamDestroyedInCallee() && 2952 getType().isDestructedType()) 2953 return true; 2954 2955 return false; 2956 } 2957 2958 Expr *ParmVarDecl::getDefaultArg() { 2959 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); 2960 assert(!hasUninstantiatedDefaultArg() && 2961 "Default argument is not yet instantiated!"); 2962 2963 Expr *Arg = getInit(); 2964 if (auto *E = dyn_cast_if_present<FullExpr>(Arg)) 2965 return E->getSubExpr(); 2966 2967 return Arg; 2968 } 2969 2970 void ParmVarDecl::setDefaultArg(Expr *defarg) { 2971 ParmVarDeclBits.DefaultArgKind = DAK_Normal; 2972 Init = defarg; 2973 } 2974 2975 SourceRange ParmVarDecl::getDefaultArgRange() const { 2976 switch (ParmVarDeclBits.DefaultArgKind) { 2977 case DAK_None: 2978 case DAK_Unparsed: 2979 // Nothing we can do here. 2980 return SourceRange(); 2981 2982 case DAK_Uninstantiated: 2983 return getUninstantiatedDefaultArg()->getSourceRange(); 2984 2985 case DAK_Normal: 2986 if (const Expr *E = getInit()) 2987 return E->getSourceRange(); 2988 2989 // Missing an actual expression, may be invalid. 2990 return SourceRange(); 2991 } 2992 llvm_unreachable("Invalid default argument kind."); 2993 } 2994 2995 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { 2996 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; 2997 Init = arg; 2998 } 2999 3000 Expr *ParmVarDecl::getUninstantiatedDefaultArg() { 3001 assert(hasUninstantiatedDefaultArg() && 3002 "Wrong kind of initialization expression!"); 3003 return cast_if_present<Expr>(Init.get<Stmt *>()); 3004 } 3005 3006 bool ParmVarDecl::hasDefaultArg() const { 3007 // FIXME: We should just return false for DAK_None here once callers are 3008 // prepared for the case that we encountered an invalid default argument and 3009 // were unable to even build an invalid expression. 3010 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || 3011 !Init.isNull(); 3012 } 3013 3014 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { 3015 getASTContext().setParameterIndex(this, parameterIndex); 3016 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; 3017 } 3018 3019 unsigned ParmVarDecl::getParameterIndexLarge() const { 3020 return getASTContext().getParameterIndex(this); 3021 } 3022 3023 //===----------------------------------------------------------------------===// 3024 // FunctionDecl Implementation 3025 //===----------------------------------------------------------------------===// 3026 3027 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, 3028 SourceLocation StartLoc, 3029 const DeclarationNameInfo &NameInfo, QualType T, 3030 TypeSourceInfo *TInfo, StorageClass S, 3031 bool UsesFPIntrin, bool isInlineSpecified, 3032 ConstexprSpecKind ConstexprKind, 3033 Expr *TrailingRequiresClause) 3034 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, 3035 StartLoc), 3036 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0), 3037 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { 3038 assert(T.isNull() || T->isFunctionType()); 3039 FunctionDeclBits.SClass = S; 3040 FunctionDeclBits.IsInline = isInlineSpecified; 3041 FunctionDeclBits.IsInlineSpecified = isInlineSpecified; 3042 FunctionDeclBits.IsVirtualAsWritten = false; 3043 FunctionDeclBits.IsPureVirtual = false; 3044 FunctionDeclBits.HasInheritedPrototype = false; 3045 FunctionDeclBits.HasWrittenPrototype = true; 3046 FunctionDeclBits.IsDeleted = false; 3047 FunctionDeclBits.IsTrivial = false; 3048 FunctionDeclBits.IsTrivialForCall = false; 3049 FunctionDeclBits.IsDefaulted = false; 3050 FunctionDeclBits.IsExplicitlyDefaulted = false; 3051 FunctionDeclBits.HasDefaultedFunctionInfo = false; 3052 FunctionDeclBits.IsIneligibleOrNotSelected = false; 3053 FunctionDeclBits.HasImplicitReturnZero = false; 3054 FunctionDeclBits.IsLateTemplateParsed = false; 3055 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind); 3056 FunctionDeclBits.BodyContainsImmediateEscalatingExpression = false; 3057 FunctionDeclBits.InstantiationIsPending = false; 3058 FunctionDeclBits.UsesSEHTry = false; 3059 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin; 3060 FunctionDeclBits.HasSkippedBody = false; 3061 FunctionDeclBits.WillHaveBody = false; 3062 FunctionDeclBits.IsMultiVersion = false; 3063 FunctionDeclBits.DeductionCandidateKind = 3064 static_cast<unsigned char>(DeductionCandidate::Normal); 3065 FunctionDeclBits.HasODRHash = false; 3066 FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = false; 3067 if (TrailingRequiresClause) 3068 setTrailingRequiresClause(TrailingRequiresClause); 3069 } 3070 3071 void FunctionDecl::getNameForDiagnostic( 3072 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { 3073 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); 3074 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); 3075 if (TemplateArgs) 3076 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); 3077 } 3078 3079 bool FunctionDecl::isVariadic() const { 3080 if (const auto *FT = getType()->getAs<FunctionProtoType>()) 3081 return FT->isVariadic(); 3082 return false; 3083 } 3084 3085 FunctionDecl::DefaultedFunctionInfo * 3086 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context, 3087 ArrayRef<DeclAccessPair> Lookups) { 3088 DefaultedFunctionInfo *Info = new (Context.Allocate( 3089 totalSizeToAlloc<DeclAccessPair>(Lookups.size()), 3090 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair)))) 3091 DefaultedFunctionInfo; 3092 Info->NumLookups = Lookups.size(); 3093 std::uninitialized_copy(Lookups.begin(), Lookups.end(), 3094 Info->getTrailingObjects<DeclAccessPair>()); 3095 return Info; 3096 } 3097 3098 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) { 3099 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"); 3100 assert(!Body && "can't replace function body with defaulted function info"); 3101 3102 FunctionDeclBits.HasDefaultedFunctionInfo = true; 3103 DefaultedInfo = Info; 3104 } 3105 3106 FunctionDecl::DefaultedFunctionInfo * 3107 FunctionDecl::getDefaultedFunctionInfo() const { 3108 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr; 3109 } 3110 3111 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { 3112 for (const auto *I : redecls()) { 3113 if (I->doesThisDeclarationHaveABody()) { 3114 Definition = I; 3115 return true; 3116 } 3117 } 3118 3119 return false; 3120 } 3121 3122 bool FunctionDecl::hasTrivialBody() const { 3123 const Stmt *S = getBody(); 3124 if (!S) { 3125 // Since we don't have a body for this function, we don't know if it's 3126 // trivial or not. 3127 return false; 3128 } 3129 3130 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) 3131 return true; 3132 return false; 3133 } 3134 3135 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const { 3136 if (!getFriendObjectKind()) 3137 return false; 3138 3139 // Check for a friend function instantiated from a friend function 3140 // definition in a templated class. 3141 if (const FunctionDecl *InstantiatedFrom = 3142 getInstantiatedFromMemberFunction()) 3143 return InstantiatedFrom->getFriendObjectKind() && 3144 InstantiatedFrom->isThisDeclarationADefinition(); 3145 3146 // Check for a friend function template instantiated from a friend 3147 // function template definition in a templated class. 3148 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) { 3149 if (const FunctionTemplateDecl *InstantiatedFrom = 3150 Template->getInstantiatedFromMemberTemplate()) 3151 return InstantiatedFrom->getFriendObjectKind() && 3152 InstantiatedFrom->isThisDeclarationADefinition(); 3153 } 3154 3155 return false; 3156 } 3157 3158 bool FunctionDecl::isDefined(const FunctionDecl *&Definition, 3159 bool CheckForPendingFriendDefinition) const { 3160 for (const FunctionDecl *FD : redecls()) { 3161 if (FD->isThisDeclarationADefinition()) { 3162 Definition = FD; 3163 return true; 3164 } 3165 3166 // If this is a friend function defined in a class template, it does not 3167 // have a body until it is used, nevertheless it is a definition, see 3168 // [temp.inst]p2: 3169 // 3170 // ... for the purpose of determining whether an instantiated redeclaration 3171 // is valid according to [basic.def.odr] and [class.mem], a declaration that 3172 // corresponds to a definition in the template is considered to be a 3173 // definition. 3174 // 3175 // The following code must produce redefinition error: 3176 // 3177 // template<typename T> struct C20 { friend void func_20() {} }; 3178 // C20<int> c20i; 3179 // void func_20() {} 3180 // 3181 if (CheckForPendingFriendDefinition && 3182 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { 3183 Definition = FD; 3184 return true; 3185 } 3186 } 3187 3188 return false; 3189 } 3190 3191 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { 3192 if (!hasBody(Definition)) 3193 return nullptr; 3194 3195 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && 3196 "definition should not have a body"); 3197 if (Definition->Body) 3198 return Definition->Body.get(getASTContext().getExternalSource()); 3199 3200 return nullptr; 3201 } 3202 3203 void FunctionDecl::setBody(Stmt *B) { 3204 FunctionDeclBits.HasDefaultedFunctionInfo = false; 3205 Body = LazyDeclStmtPtr(B); 3206 if (B) 3207 EndRangeLoc = B->getEndLoc(); 3208 } 3209 3210 void FunctionDecl::setIsPureVirtual(bool P) { 3211 FunctionDeclBits.IsPureVirtual = P; 3212 if (P) 3213 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) 3214 Parent->markedVirtualFunctionPure(); 3215 } 3216 3217 template<std::size_t Len> 3218 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { 3219 const IdentifierInfo *II = ND->getIdentifier(); 3220 return II && II->isStr(Str); 3221 } 3222 3223 bool FunctionDecl::isImmediateEscalating() const { 3224 // C++23 [expr.const]/p17 3225 // An immediate-escalating function is 3226 // - the call operator of a lambda that is not declared with the consteval 3227 // specifier, 3228 if (isLambdaCallOperator(this) && !isConsteval()) 3229 return true; 3230 // - a defaulted special member function that is not declared with the 3231 // consteval specifier, 3232 if (isDefaulted() && !isConsteval()) 3233 return true; 3234 // - a function that results from the instantiation of a templated entity 3235 // defined with the constexpr specifier. 3236 TemplatedKind TK = getTemplatedKind(); 3237 if (TK != TK_NonTemplate && TK != TK_DependentNonTemplate && 3238 isConstexprSpecified()) 3239 return true; 3240 return false; 3241 } 3242 3243 bool FunctionDecl::isImmediateFunction() const { 3244 // C++23 [expr.const]/p18 3245 // An immediate function is a function or constructor that is 3246 // - declared with the consteval specifier 3247 if (isConsteval()) 3248 return true; 3249 // - an immediate-escalating function F whose function body contains an 3250 // immediate-escalating expression 3251 if (isImmediateEscalating() && BodyContainsImmediateEscalatingExpressions()) 3252 return true; 3253 3254 if (const auto *MD = dyn_cast<CXXMethodDecl>(this); 3255 MD && MD->isLambdaStaticInvoker()) 3256 return MD->getParent()->getLambdaCallOperator()->isImmediateFunction(); 3257 3258 return false; 3259 } 3260 3261 bool FunctionDecl::isMain() const { 3262 const TranslationUnitDecl *tunit = 3263 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3264 return tunit && 3265 !tunit->getASTContext().getLangOpts().Freestanding && 3266 isNamed(this, "main"); 3267 } 3268 3269 bool FunctionDecl::isMSVCRTEntryPoint() const { 3270 const TranslationUnitDecl *TUnit = 3271 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); 3272 if (!TUnit) 3273 return false; 3274 3275 // Even though we aren't really targeting MSVCRT if we are freestanding, 3276 // semantic analysis for these functions remains the same. 3277 3278 // MSVCRT entry points only exist on MSVCRT targets. 3279 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) 3280 return false; 3281 3282 // Nameless functions like constructors cannot be entry points. 3283 if (!getIdentifier()) 3284 return false; 3285 3286 return llvm::StringSwitch<bool>(getName()) 3287 .Cases("main", // an ANSI console app 3288 "wmain", // a Unicode console App 3289 "WinMain", // an ANSI GUI app 3290 "wWinMain", // a Unicode GUI app 3291 "DllMain", // a DLL 3292 true) 3293 .Default(false); 3294 } 3295 3296 bool FunctionDecl::isReservedGlobalPlacementOperator() const { 3297 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 3298 return false; 3299 if (getDeclName().getCXXOverloadedOperator() != OO_New && 3300 getDeclName().getCXXOverloadedOperator() != OO_Delete && 3301 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 3302 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 3303 return false; 3304 3305 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3306 return false; 3307 3308 const auto *proto = getType()->castAs<FunctionProtoType>(); 3309 if (proto->getNumParams() != 2 || proto->isVariadic()) 3310 return false; 3311 3312 const ASTContext &Context = 3313 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) 3314 ->getASTContext(); 3315 3316 // The result type and first argument type are constant across all 3317 // these operators. The second argument must be exactly void*. 3318 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); 3319 } 3320 3321 bool FunctionDecl::isReplaceableGlobalAllocationFunction( 3322 std::optional<unsigned> *AlignmentParam, bool *IsNothrow) const { 3323 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) 3324 return false; 3325 if (getDeclName().getCXXOverloadedOperator() != OO_New && 3326 getDeclName().getCXXOverloadedOperator() != OO_Delete && 3327 getDeclName().getCXXOverloadedOperator() != OO_Array_New && 3328 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 3329 return false; 3330 3331 if (isa<CXXRecordDecl>(getDeclContext())) 3332 return false; 3333 3334 // This can only fail for an invalid 'operator new' declaration. 3335 if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) 3336 return false; 3337 3338 const auto *FPT = getType()->castAs<FunctionProtoType>(); 3339 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 4 || FPT->isVariadic()) 3340 return false; 3341 3342 // If this is a single-parameter function, it must be a replaceable global 3343 // allocation or deallocation function. 3344 if (FPT->getNumParams() == 1) 3345 return true; 3346 3347 unsigned Params = 1; 3348 QualType Ty = FPT->getParamType(Params); 3349 const ASTContext &Ctx = getASTContext(); 3350 3351 auto Consume = [&] { 3352 ++Params; 3353 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); 3354 }; 3355 3356 // In C++14, the next parameter can be a 'std::size_t' for sized delete. 3357 bool IsSizedDelete = false; 3358 if (Ctx.getLangOpts().SizedDeallocation && 3359 (getDeclName().getCXXOverloadedOperator() == OO_Delete || 3360 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && 3361 Ctx.hasSameType(Ty, Ctx.getSizeType())) { 3362 IsSizedDelete = true; 3363 Consume(); 3364 } 3365 3366 // In C++17, the next parameter can be a 'std::align_val_t' for aligned 3367 // new/delete. 3368 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { 3369 Consume(); 3370 if (AlignmentParam) 3371 *AlignmentParam = Params; 3372 } 3373 3374 // If this is not a sized delete, the next parameter can be a 3375 // 'const std::nothrow_t&'. 3376 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { 3377 Ty = Ty->getPointeeType(); 3378 if (Ty.getCVRQualifiers() != Qualifiers::Const) 3379 return false; 3380 if (Ty->isNothrowT()) { 3381 if (IsNothrow) 3382 *IsNothrow = true; 3383 Consume(); 3384 } 3385 } 3386 3387 // Finally, recognize the not yet standard versions of new that take a 3388 // hot/cold allocation hint (__hot_cold_t). These are currently supported by 3389 // tcmalloc (see 3390 // https://github.com/google/tcmalloc/blob/220043886d4e2efff7a5702d5172cb8065253664/tcmalloc/malloc_extension.h#L53). 3391 if (!IsSizedDelete && !Ty.isNull() && Ty->isEnumeralType()) { 3392 QualType T = Ty; 3393 while (const auto *TD = T->getAs<TypedefType>()) 3394 T = TD->getDecl()->getUnderlyingType(); 3395 const IdentifierInfo *II = 3396 T->castAs<EnumType>()->getDecl()->getIdentifier(); 3397 if (II && II->isStr("__hot_cold_t")) 3398 Consume(); 3399 } 3400 3401 return Params == FPT->getNumParams(); 3402 } 3403 3404 bool FunctionDecl::isInlineBuiltinDeclaration() const { 3405 if (!getBuiltinID()) 3406 return false; 3407 3408 const FunctionDecl *Definition; 3409 if (!hasBody(Definition)) 3410 return false; 3411 3412 if (!Definition->isInlineSpecified() || 3413 !Definition->hasAttr<AlwaysInlineAttr>()) 3414 return false; 3415 3416 ASTContext &Context = getASTContext(); 3417 switch (Context.GetGVALinkageForFunction(Definition)) { 3418 case GVA_Internal: 3419 case GVA_DiscardableODR: 3420 case GVA_StrongODR: 3421 return false; 3422 case GVA_AvailableExternally: 3423 case GVA_StrongExternal: 3424 return true; 3425 } 3426 llvm_unreachable("Unknown GVALinkage"); 3427 } 3428 3429 bool FunctionDecl::isDestroyingOperatorDelete() const { 3430 // C++ P0722: 3431 // Within a class C, a single object deallocation function with signature 3432 // (T, std::destroying_delete_t, <more params>) 3433 // is a destroying operator delete. 3434 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || 3435 getNumParams() < 2) 3436 return false; 3437 3438 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); 3439 return RD && RD->isInStdNamespace() && RD->getIdentifier() && 3440 RD->getIdentifier()->isStr("destroying_delete_t"); 3441 } 3442 3443 LanguageLinkage FunctionDecl::getLanguageLinkage() const { 3444 return getDeclLanguageLinkage(*this); 3445 } 3446 3447 bool FunctionDecl::isExternC() const { 3448 return isDeclExternC(*this); 3449 } 3450 3451 bool FunctionDecl::isInExternCContext() const { 3452 if (hasAttr<OpenCLKernelAttr>()) 3453 return true; 3454 return getLexicalDeclContext()->isExternCContext(); 3455 } 3456 3457 bool FunctionDecl::isInExternCXXContext() const { 3458 return getLexicalDeclContext()->isExternCXXContext(); 3459 } 3460 3461 bool FunctionDecl::isGlobal() const { 3462 if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) 3463 return Method->isStatic(); 3464 3465 if (getCanonicalDecl()->getStorageClass() == SC_Static) 3466 return false; 3467 3468 for (const DeclContext *DC = getDeclContext(); 3469 DC->isNamespace(); 3470 DC = DC->getParent()) { 3471 if (const auto *Namespace = cast<NamespaceDecl>(DC)) { 3472 if (!Namespace->getDeclName()) 3473 return false; 3474 } 3475 } 3476 3477 return true; 3478 } 3479 3480 bool FunctionDecl::isNoReturn() const { 3481 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || 3482 hasAttr<C11NoReturnAttr>()) 3483 return true; 3484 3485 if (auto *FnTy = getType()->getAs<FunctionType>()) 3486 return FnTy->getNoReturnAttr(); 3487 3488 return false; 3489 } 3490 3491 bool FunctionDecl::isMemberLikeConstrainedFriend() const { 3492 // C++20 [temp.friend]p9: 3493 // A non-template friend declaration with a requires-clause [or] 3494 // a friend function template with a constraint that depends on a template 3495 // parameter from an enclosing template [...] does not declare the same 3496 // function or function template as a declaration in any other scope. 3497 3498 // If this isn't a friend then it's not a member-like constrained friend. 3499 if (!getFriendObjectKind()) { 3500 return false; 3501 } 3502 3503 if (!getDescribedFunctionTemplate()) { 3504 // If these friends don't have constraints, they aren't constrained, and 3505 // thus don't fall under temp.friend p9. Else the simple presence of a 3506 // constraint makes them unique. 3507 return getTrailingRequiresClause(); 3508 } 3509 3510 return FriendConstraintRefersToEnclosingTemplate(); 3511 } 3512 3513 MultiVersionKind FunctionDecl::getMultiVersionKind() const { 3514 if (hasAttr<TargetAttr>()) 3515 return MultiVersionKind::Target; 3516 if (hasAttr<TargetVersionAttr>()) 3517 return MultiVersionKind::TargetVersion; 3518 if (hasAttr<CPUDispatchAttr>()) 3519 return MultiVersionKind::CPUDispatch; 3520 if (hasAttr<CPUSpecificAttr>()) 3521 return MultiVersionKind::CPUSpecific; 3522 if (hasAttr<TargetClonesAttr>()) 3523 return MultiVersionKind::TargetClones; 3524 return MultiVersionKind::None; 3525 } 3526 3527 bool FunctionDecl::isCPUDispatchMultiVersion() const { 3528 return isMultiVersion() && hasAttr<CPUDispatchAttr>(); 3529 } 3530 3531 bool FunctionDecl::isCPUSpecificMultiVersion() const { 3532 return isMultiVersion() && hasAttr<CPUSpecificAttr>(); 3533 } 3534 3535 bool FunctionDecl::isTargetMultiVersion() const { 3536 return isMultiVersion() && 3537 (hasAttr<TargetAttr>() || hasAttr<TargetVersionAttr>()); 3538 } 3539 3540 bool FunctionDecl::isTargetClonesMultiVersion() const { 3541 return isMultiVersion() && hasAttr<TargetClonesAttr>(); 3542 } 3543 3544 void 3545 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { 3546 redeclarable_base::setPreviousDecl(PrevDecl); 3547 3548 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { 3549 FunctionTemplateDecl *PrevFunTmpl 3550 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; 3551 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); 3552 FunTmpl->setPreviousDecl(PrevFunTmpl); 3553 } 3554 3555 if (PrevDecl && PrevDecl->isInlined()) 3556 setImplicitlyInline(true); 3557 } 3558 3559 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } 3560 3561 /// Returns a value indicating whether this function corresponds to a builtin 3562 /// function. 3563 /// 3564 /// The function corresponds to a built-in function if it is declared at 3565 /// translation scope or within an extern "C" block and its name matches with 3566 /// the name of a builtin. The returned value will be 0 for functions that do 3567 /// not correspond to a builtin, a value of type \c Builtin::ID if in the 3568 /// target-independent range \c [1,Builtin::First), or a target-specific builtin 3569 /// value. 3570 /// 3571 /// \param ConsiderWrapperFunctions If true, we should consider wrapper 3572 /// functions as their wrapped builtins. This shouldn't be done in general, but 3573 /// it's useful in Sema to diagnose calls to wrappers based on their semantics. 3574 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const { 3575 unsigned BuiltinID = 0; 3576 3577 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) { 3578 BuiltinID = ABAA->getBuiltinName()->getBuiltinID(); 3579 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) { 3580 BuiltinID = BAA->getBuiltinName()->getBuiltinID(); 3581 } else if (const auto *A = getAttr<BuiltinAttr>()) { 3582 BuiltinID = A->getID(); 3583 } 3584 3585 if (!BuiltinID) 3586 return 0; 3587 3588 // If the function is marked "overloadable", it has a different mangled name 3589 // and is not the C library function. 3590 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() && 3591 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>())) 3592 return 0; 3593 3594 const ASTContext &Context = getASTContext(); 3595 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3596 return BuiltinID; 3597 3598 // This function has the name of a known C library 3599 // function. Determine whether it actually refers to the C library 3600 // function or whether it just has the same name. 3601 3602 // If this is a static function, it's not a builtin. 3603 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static) 3604 return 0; 3605 3606 // OpenCL v1.2 s6.9.f - The library functions defined in 3607 // the C99 standard headers are not available. 3608 if (Context.getLangOpts().OpenCL && 3609 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 3610 return 0; 3611 3612 // CUDA does not have device-side standard library. printf and malloc are the 3613 // only special cases that are supported by device-side runtime. 3614 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && 3615 !hasAttr<CUDAHostAttr>() && 3616 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3617 return 0; 3618 3619 // As AMDGCN implementation of OpenMP does not have a device-side standard 3620 // library, none of the predefined library functions except printf and malloc 3621 // should be treated as a builtin i.e. 0 should be returned for them. 3622 if (Context.getTargetInfo().getTriple().isAMDGCN() && 3623 Context.getLangOpts().OpenMPIsTargetDevice && 3624 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 3625 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) 3626 return 0; 3627 3628 return BuiltinID; 3629 } 3630 3631 /// getNumParams - Return the number of parameters this function must have 3632 /// based on its FunctionType. This is the length of the ParamInfo array 3633 /// after it has been created. 3634 unsigned FunctionDecl::getNumParams() const { 3635 const auto *FPT = getType()->getAs<FunctionProtoType>(); 3636 return FPT ? FPT->getNumParams() : 0; 3637 } 3638 3639 void FunctionDecl::setParams(ASTContext &C, 3640 ArrayRef<ParmVarDecl *> NewParamInfo) { 3641 assert(!ParamInfo && "Already has param info!"); 3642 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); 3643 3644 // Zero params -> null pointer. 3645 if (!NewParamInfo.empty()) { 3646 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; 3647 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 3648 } 3649 } 3650 3651 /// getMinRequiredArguments - Returns the minimum number of arguments 3652 /// needed to call this function. This may be fewer than the number of 3653 /// function parameters, if some of the parameters have default 3654 /// arguments (in C++) or are parameter packs (C++11). 3655 unsigned FunctionDecl::getMinRequiredArguments() const { 3656 if (!getASTContext().getLangOpts().CPlusPlus) 3657 return getNumParams(); 3658 3659 // Note that it is possible for a parameter with no default argument to 3660 // follow a parameter with a default argument. 3661 unsigned NumRequiredArgs = 0; 3662 unsigned MinParamsSoFar = 0; 3663 for (auto *Param : parameters()) { 3664 if (!Param->isParameterPack()) { 3665 ++MinParamsSoFar; 3666 if (!Param->hasDefaultArg()) 3667 NumRequiredArgs = MinParamsSoFar; 3668 } 3669 } 3670 return NumRequiredArgs; 3671 } 3672 3673 bool FunctionDecl::hasCXXExplicitFunctionObjectParameter() const { 3674 return getNumParams() != 0 && getParamDecl(0)->isExplicitObjectParameter(); 3675 } 3676 3677 unsigned FunctionDecl::getNumNonObjectParams() const { 3678 return getNumParams() - 3679 static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter()); 3680 } 3681 3682 unsigned FunctionDecl::getMinRequiredExplicitArguments() const { 3683 return getMinRequiredArguments() - 3684 static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter()); 3685 } 3686 3687 bool FunctionDecl::hasOneParamOrDefaultArgs() const { 3688 return getNumParams() == 1 || 3689 (getNumParams() > 1 && 3690 llvm::all_of(llvm::drop_begin(parameters()), 3691 [](ParmVarDecl *P) { return P->hasDefaultArg(); })); 3692 } 3693 3694 /// The combination of the extern and inline keywords under MSVC forces 3695 /// the function to be required. 3696 /// 3697 /// Note: This function assumes that we will only get called when isInlined() 3698 /// would return true for this FunctionDecl. 3699 bool FunctionDecl::isMSExternInline() const { 3700 assert(isInlined() && "expected to get called on an inlined function!"); 3701 3702 const ASTContext &Context = getASTContext(); 3703 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && 3704 !hasAttr<DLLExportAttr>()) 3705 return false; 3706 3707 for (const FunctionDecl *FD = getMostRecentDecl(); FD; 3708 FD = FD->getPreviousDecl()) 3709 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3710 return true; 3711 3712 return false; 3713 } 3714 3715 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { 3716 if (Redecl->getStorageClass() != SC_Extern) 3717 return false; 3718 3719 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; 3720 FD = FD->getPreviousDecl()) 3721 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) 3722 return false; 3723 3724 return true; 3725 } 3726 3727 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { 3728 // Only consider file-scope declarations in this test. 3729 if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) 3730 return false; 3731 3732 // Only consider explicit declarations; the presence of a builtin for a 3733 // libcall shouldn't affect whether a definition is externally visible. 3734 if (Redecl->isImplicit()) 3735 return false; 3736 3737 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 3738 return true; // Not an inline definition 3739 3740 return false; 3741 } 3742 3743 /// For a function declaration in C or C++, determine whether this 3744 /// declaration causes the definition to be externally visible. 3745 /// 3746 /// For instance, this determines if adding the current declaration to the set 3747 /// of redeclarations of the given functions causes 3748 /// isInlineDefinitionExternallyVisible to change from false to true. 3749 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { 3750 assert(!doesThisDeclarationHaveABody() && 3751 "Must have a declaration without a body."); 3752 3753 const ASTContext &Context = getASTContext(); 3754 3755 if (Context.getLangOpts().MSVCCompat) { 3756 const FunctionDecl *Definition; 3757 if (hasBody(Definition) && Definition->isInlined() && 3758 redeclForcesDefMSVC(this)) 3759 return true; 3760 } 3761 3762 if (Context.getLangOpts().CPlusPlus) 3763 return false; 3764 3765 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3766 // With GNU inlining, a declaration with 'inline' but not 'extern', forces 3767 // an externally visible definition. 3768 // 3769 // FIXME: What happens if gnu_inline gets added on after the first 3770 // declaration? 3771 if (!isInlineSpecified() || getStorageClass() == SC_Extern) 3772 return false; 3773 3774 const FunctionDecl *Prev = this; 3775 bool FoundBody = false; 3776 while ((Prev = Prev->getPreviousDecl())) { 3777 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3778 3779 if (Prev->doesThisDeclarationHaveABody()) { 3780 // If it's not the case that both 'inline' and 'extern' are 3781 // specified on the definition, then it is always externally visible. 3782 if (!Prev->isInlineSpecified() || 3783 Prev->getStorageClass() != SC_Extern) 3784 return false; 3785 } else if (Prev->isInlineSpecified() && 3786 Prev->getStorageClass() != SC_Extern) { 3787 return false; 3788 } 3789 } 3790 return FoundBody; 3791 } 3792 3793 // C99 6.7.4p6: 3794 // [...] If all of the file scope declarations for a function in a 3795 // translation unit include the inline function specifier without extern, 3796 // then the definition in that translation unit is an inline definition. 3797 if (isInlineSpecified() && getStorageClass() != SC_Extern) 3798 return false; 3799 const FunctionDecl *Prev = this; 3800 bool FoundBody = false; 3801 while ((Prev = Prev->getPreviousDecl())) { 3802 FoundBody |= Prev->doesThisDeclarationHaveABody(); 3803 if (RedeclForcesDefC99(Prev)) 3804 return false; 3805 } 3806 return FoundBody; 3807 } 3808 3809 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const { 3810 const TypeSourceInfo *TSI = getTypeSourceInfo(); 3811 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>() 3812 : FunctionTypeLoc(); 3813 } 3814 3815 SourceRange FunctionDecl::getReturnTypeSourceRange() const { 3816 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3817 if (!FTL) 3818 return SourceRange(); 3819 3820 // Skip self-referential return types. 3821 const SourceManager &SM = getASTContext().getSourceManager(); 3822 SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); 3823 SourceLocation Boundary = getNameInfo().getBeginLoc(); 3824 if (RTRange.isInvalid() || Boundary.isInvalid() || 3825 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) 3826 return SourceRange(); 3827 3828 return RTRange; 3829 } 3830 3831 SourceRange FunctionDecl::getParametersSourceRange() const { 3832 unsigned NP = getNumParams(); 3833 SourceLocation EllipsisLoc = getEllipsisLoc(); 3834 3835 if (NP == 0 && EllipsisLoc.isInvalid()) 3836 return SourceRange(); 3837 3838 SourceLocation Begin = 3839 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc; 3840 SourceLocation End = EllipsisLoc.isValid() 3841 ? EllipsisLoc 3842 : ParamInfo[NP - 1]->getSourceRange().getEnd(); 3843 3844 return SourceRange(Begin, End); 3845 } 3846 3847 SourceRange FunctionDecl::getExceptionSpecSourceRange() const { 3848 FunctionTypeLoc FTL = getFunctionTypeLoc(); 3849 return FTL ? FTL.getExceptionSpecRange() : SourceRange(); 3850 } 3851 3852 /// For an inline function definition in C, or for a gnu_inline function 3853 /// in C++, determine whether the definition will be externally visible. 3854 /// 3855 /// Inline function definitions are always available for inlining optimizations. 3856 /// However, depending on the language dialect, declaration specifiers, and 3857 /// attributes, the definition of an inline function may or may not be 3858 /// "externally" visible to other translation units in the program. 3859 /// 3860 /// In C99, inline definitions are not externally visible by default. However, 3861 /// if even one of the global-scope declarations is marked "extern inline", the 3862 /// inline definition becomes externally visible (C99 6.7.4p6). 3863 /// 3864 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function 3865 /// definition, we use the GNU semantics for inline, which are nearly the 3866 /// opposite of C99 semantics. In particular, "inline" by itself will create 3867 /// an externally visible symbol, but "extern inline" will not create an 3868 /// externally visible symbol. 3869 bool FunctionDecl::isInlineDefinitionExternallyVisible() const { 3870 assert((doesThisDeclarationHaveABody() || willHaveBody() || 3871 hasAttr<AliasAttr>()) && 3872 "Must be a function definition"); 3873 assert(isInlined() && "Function must be inline"); 3874 ASTContext &Context = getASTContext(); 3875 3876 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { 3877 // Note: If you change the logic here, please change 3878 // doesDeclarationForceExternallyVisibleDefinition as well. 3879 // 3880 // If it's not the case that both 'inline' and 'extern' are 3881 // specified on the definition, then this inline definition is 3882 // externally visible. 3883 if (Context.getLangOpts().CPlusPlus) 3884 return false; 3885 if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) 3886 return true; 3887 3888 // If any declaration is 'inline' but not 'extern', then this definition 3889 // is externally visible. 3890 for (auto *Redecl : redecls()) { 3891 if (Redecl->isInlineSpecified() && 3892 Redecl->getStorageClass() != SC_Extern) 3893 return true; 3894 } 3895 3896 return false; 3897 } 3898 3899 // The rest of this function is C-only. 3900 assert(!Context.getLangOpts().CPlusPlus && 3901 "should not use C inline rules in C++"); 3902 3903 // C99 6.7.4p6: 3904 // [...] If all of the file scope declarations for a function in a 3905 // translation unit include the inline function specifier without extern, 3906 // then the definition in that translation unit is an inline definition. 3907 for (auto *Redecl : redecls()) { 3908 if (RedeclForcesDefC99(Redecl)) 3909 return true; 3910 } 3911 3912 // C99 6.7.4p6: 3913 // An inline definition does not provide an external definition for the 3914 // function, and does not forbid an external definition in another 3915 // translation unit. 3916 return false; 3917 } 3918 3919 /// getOverloadedOperator - Which C++ overloaded operator this 3920 /// function represents, if any. 3921 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { 3922 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 3923 return getDeclName().getCXXOverloadedOperator(); 3924 return OO_None; 3925 } 3926 3927 /// getLiteralIdentifier - The literal suffix identifier this function 3928 /// represents, if any. 3929 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { 3930 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) 3931 return getDeclName().getCXXLiteralIdentifier(); 3932 return nullptr; 3933 } 3934 3935 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { 3936 if (TemplateOrSpecialization.isNull()) 3937 return TK_NonTemplate; 3938 if (const auto *ND = TemplateOrSpecialization.dyn_cast<NamedDecl *>()) { 3939 if (isa<FunctionDecl>(ND)) 3940 return TK_DependentNonTemplate; 3941 assert(isa<FunctionTemplateDecl>(ND) && 3942 "No other valid types in NamedDecl"); 3943 return TK_FunctionTemplate; 3944 } 3945 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) 3946 return TK_MemberSpecialization; 3947 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) 3948 return TK_FunctionTemplateSpecialization; 3949 if (TemplateOrSpecialization.is 3950 <DependentFunctionTemplateSpecializationInfo*>()) 3951 return TK_DependentFunctionTemplateSpecialization; 3952 3953 llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); 3954 } 3955 3956 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { 3957 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) 3958 return cast<FunctionDecl>(Info->getInstantiatedFrom()); 3959 3960 return nullptr; 3961 } 3962 3963 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { 3964 if (auto *MSI = 3965 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 3966 return MSI; 3967 if (auto *FTSI = TemplateOrSpecialization 3968 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 3969 return FTSI->getMemberSpecializationInfo(); 3970 return nullptr; 3971 } 3972 3973 void 3974 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, 3975 FunctionDecl *FD, 3976 TemplateSpecializationKind TSK) { 3977 assert(TemplateOrSpecialization.isNull() && 3978 "Member function is already a specialization"); 3979 MemberSpecializationInfo *Info 3980 = new (C) MemberSpecializationInfo(FD, TSK); 3981 TemplateOrSpecialization = Info; 3982 } 3983 3984 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { 3985 return dyn_cast_if_present<FunctionTemplateDecl>( 3986 TemplateOrSpecialization.dyn_cast<NamedDecl *>()); 3987 } 3988 3989 void FunctionDecl::setDescribedFunctionTemplate( 3990 FunctionTemplateDecl *Template) { 3991 assert(TemplateOrSpecialization.isNull() && 3992 "Member function is already a specialization"); 3993 TemplateOrSpecialization = Template; 3994 } 3995 3996 bool FunctionDecl::isFunctionTemplateSpecialization() const { 3997 return TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>() || 3998 TemplateOrSpecialization 3999 .is<DependentFunctionTemplateSpecializationInfo *>(); 4000 } 4001 4002 void FunctionDecl::setInstantiatedFromDecl(FunctionDecl *FD) { 4003 assert(TemplateOrSpecialization.isNull() && 4004 "Function is already a specialization"); 4005 TemplateOrSpecialization = FD; 4006 } 4007 4008 FunctionDecl *FunctionDecl::getInstantiatedFromDecl() const { 4009 return dyn_cast_if_present<FunctionDecl>( 4010 TemplateOrSpecialization.dyn_cast<NamedDecl *>()); 4011 } 4012 4013 bool FunctionDecl::isImplicitlyInstantiable() const { 4014 // If the function is invalid, it can't be implicitly instantiated. 4015 if (isInvalidDecl()) 4016 return false; 4017 4018 switch (getTemplateSpecializationKindForInstantiation()) { 4019 case TSK_Undeclared: 4020 case TSK_ExplicitInstantiationDefinition: 4021 case TSK_ExplicitSpecialization: 4022 return false; 4023 4024 case TSK_ImplicitInstantiation: 4025 return true; 4026 4027 case TSK_ExplicitInstantiationDeclaration: 4028 // Handled below. 4029 break; 4030 } 4031 4032 // Find the actual template from which we will instantiate. 4033 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); 4034 bool HasPattern = false; 4035 if (PatternDecl) 4036 HasPattern = PatternDecl->hasBody(PatternDecl); 4037 4038 // C++0x [temp.explicit]p9: 4039 // Except for inline functions, other explicit instantiation declarations 4040 // have the effect of suppressing the implicit instantiation of the entity 4041 // to which they refer. 4042 if (!HasPattern || !PatternDecl) 4043 return true; 4044 4045 return PatternDecl->isInlined(); 4046 } 4047 4048 bool FunctionDecl::isTemplateInstantiation() const { 4049 // FIXME: Remove this, it's not clear what it means. (Which template 4050 // specialization kind?) 4051 return clang::isTemplateInstantiation(getTemplateSpecializationKind()); 4052 } 4053 4054 FunctionDecl * 4055 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const { 4056 // If this is a generic lambda call operator specialization, its 4057 // instantiation pattern is always its primary template's pattern 4058 // even if its primary template was instantiated from another 4059 // member template (which happens with nested generic lambdas). 4060 // Since a lambda's call operator's body is transformed eagerly, 4061 // we don't have to go hunting for a prototype definition template 4062 // (i.e. instantiated-from-member-template) to use as an instantiation 4063 // pattern. 4064 4065 if (isGenericLambdaCallOperatorSpecialization( 4066 dyn_cast<CXXMethodDecl>(this))) { 4067 assert(getPrimaryTemplate() && "not a generic lambda call operator?"); 4068 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); 4069 } 4070 4071 // Check for a declaration of this function that was instantiated from a 4072 // friend definition. 4073 const FunctionDecl *FD = nullptr; 4074 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true)) 4075 FD = this; 4076 4077 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) { 4078 if (ForDefinition && 4079 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind())) 4080 return nullptr; 4081 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom())); 4082 } 4083 4084 if (ForDefinition && 4085 !clang::isTemplateInstantiation(getTemplateSpecializationKind())) 4086 return nullptr; 4087 4088 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { 4089 // If we hit a point where the user provided a specialization of this 4090 // template, we're done looking. 4091 while (!ForDefinition || !Primary->isMemberSpecialization()) { 4092 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate(); 4093 if (!NewPrimary) 4094 break; 4095 Primary = NewPrimary; 4096 } 4097 4098 return getDefinitionOrSelf(Primary->getTemplatedDecl()); 4099 } 4100 4101 return nullptr; 4102 } 4103 4104 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { 4105 if (FunctionTemplateSpecializationInfo *Info 4106 = TemplateOrSpecialization 4107 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 4108 return Info->getTemplate(); 4109 } 4110 return nullptr; 4111 } 4112 4113 FunctionTemplateSpecializationInfo * 4114 FunctionDecl::getTemplateSpecializationInfo() const { 4115 return TemplateOrSpecialization 4116 .dyn_cast<FunctionTemplateSpecializationInfo *>(); 4117 } 4118 4119 const TemplateArgumentList * 4120 FunctionDecl::getTemplateSpecializationArgs() const { 4121 if (FunctionTemplateSpecializationInfo *Info 4122 = TemplateOrSpecialization 4123 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 4124 return Info->TemplateArguments; 4125 } 4126 return nullptr; 4127 } 4128 4129 const ASTTemplateArgumentListInfo * 4130 FunctionDecl::getTemplateSpecializationArgsAsWritten() const { 4131 if (FunctionTemplateSpecializationInfo *Info 4132 = TemplateOrSpecialization 4133 .dyn_cast<FunctionTemplateSpecializationInfo*>()) { 4134 return Info->TemplateArgumentsAsWritten; 4135 } 4136 if (DependentFunctionTemplateSpecializationInfo *Info = 4137 TemplateOrSpecialization 4138 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>()) { 4139 return Info->TemplateArgumentsAsWritten; 4140 } 4141 return nullptr; 4142 } 4143 4144 void 4145 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, 4146 FunctionTemplateDecl *Template, 4147 const TemplateArgumentList *TemplateArgs, 4148 void *InsertPos, 4149 TemplateSpecializationKind TSK, 4150 const TemplateArgumentListInfo *TemplateArgsAsWritten, 4151 SourceLocation PointOfInstantiation) { 4152 assert((TemplateOrSpecialization.isNull() || 4153 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && 4154 "Member function is already a specialization"); 4155 assert(TSK != TSK_Undeclared && 4156 "Must specify the type of function template specialization"); 4157 assert((TemplateOrSpecialization.isNull() || 4158 getFriendObjectKind() != FOK_None || 4159 TSK == TSK_ExplicitSpecialization) && 4160 "Member specialization must be an explicit specialization"); 4161 FunctionTemplateSpecializationInfo *Info = 4162 FunctionTemplateSpecializationInfo::Create( 4163 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, 4164 PointOfInstantiation, 4165 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()); 4166 TemplateOrSpecialization = Info; 4167 Template->addSpecialization(Info, InsertPos); 4168 } 4169 4170 void FunctionDecl::setDependentTemplateSpecialization( 4171 ASTContext &Context, const UnresolvedSetImpl &Templates, 4172 const TemplateArgumentListInfo *TemplateArgs) { 4173 assert(TemplateOrSpecialization.isNull()); 4174 DependentFunctionTemplateSpecializationInfo *Info = 4175 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, 4176 TemplateArgs); 4177 TemplateOrSpecialization = Info; 4178 } 4179 4180 DependentFunctionTemplateSpecializationInfo * 4181 FunctionDecl::getDependentSpecializationInfo() const { 4182 return TemplateOrSpecialization 4183 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); 4184 } 4185 4186 DependentFunctionTemplateSpecializationInfo * 4187 DependentFunctionTemplateSpecializationInfo::Create( 4188 ASTContext &Context, const UnresolvedSetImpl &Candidates, 4189 const TemplateArgumentListInfo *TArgs) { 4190 const auto *TArgsWritten = 4191 TArgs ? ASTTemplateArgumentListInfo::Create(Context, *TArgs) : nullptr; 4192 return new (Context.Allocate( 4193 totalSizeToAlloc<FunctionTemplateDecl *>(Candidates.size()))) 4194 DependentFunctionTemplateSpecializationInfo(Candidates, TArgsWritten); 4195 } 4196 4197 DependentFunctionTemplateSpecializationInfo:: 4198 DependentFunctionTemplateSpecializationInfo( 4199 const UnresolvedSetImpl &Candidates, 4200 const ASTTemplateArgumentListInfo *TemplateArgsWritten) 4201 : NumCandidates(Candidates.size()), 4202 TemplateArgumentsAsWritten(TemplateArgsWritten) { 4203 std::transform(Candidates.begin(), Candidates.end(), 4204 getTrailingObjects<FunctionTemplateDecl *>(), 4205 [](NamedDecl *ND) { 4206 return cast<FunctionTemplateDecl>(ND->getUnderlyingDecl()); 4207 }); 4208 } 4209 4210 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { 4211 // For a function template specialization, query the specialization 4212 // information object. 4213 if (FunctionTemplateSpecializationInfo *FTSInfo = 4214 TemplateOrSpecialization 4215 .dyn_cast<FunctionTemplateSpecializationInfo *>()) 4216 return FTSInfo->getTemplateSpecializationKind(); 4217 4218 if (MemberSpecializationInfo *MSInfo = 4219 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 4220 return MSInfo->getTemplateSpecializationKind(); 4221 4222 // A dependent function template specialization is an explicit specialization, 4223 // except when it's a friend declaration. 4224 if (TemplateOrSpecialization 4225 .is<DependentFunctionTemplateSpecializationInfo *>() && 4226 getFriendObjectKind() == FOK_None) 4227 return TSK_ExplicitSpecialization; 4228 4229 return TSK_Undeclared; 4230 } 4231 4232 TemplateSpecializationKind 4233 FunctionDecl::getTemplateSpecializationKindForInstantiation() const { 4234 // This is the same as getTemplateSpecializationKind(), except that for a 4235 // function that is both a function template specialization and a member 4236 // specialization, we prefer the member specialization information. Eg: 4237 // 4238 // template<typename T> struct A { 4239 // template<typename U> void f() {} 4240 // template<> void f<int>() {} 4241 // }; 4242 // 4243 // Within the templated CXXRecordDecl, A<T>::f<int> is a dependent function 4244 // template specialization; both getTemplateSpecializationKind() and 4245 // getTemplateSpecializationKindForInstantiation() will return 4246 // TSK_ExplicitSpecialization. 4247 // 4248 // For A<int>::f<int>(): 4249 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization 4250 // * getTemplateSpecializationKindForInstantiation() will return 4251 // TSK_ImplicitInstantiation 4252 // 4253 // This reflects the facts that A<int>::f<int> is an explicit specialization 4254 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated 4255 // from A::f<int> if a definition is needed. 4256 if (FunctionTemplateSpecializationInfo *FTSInfo = 4257 TemplateOrSpecialization 4258 .dyn_cast<FunctionTemplateSpecializationInfo *>()) { 4259 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo()) 4260 return MSInfo->getTemplateSpecializationKind(); 4261 return FTSInfo->getTemplateSpecializationKind(); 4262 } 4263 4264 if (MemberSpecializationInfo *MSInfo = 4265 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 4266 return MSInfo->getTemplateSpecializationKind(); 4267 4268 if (TemplateOrSpecialization 4269 .is<DependentFunctionTemplateSpecializationInfo *>() && 4270 getFriendObjectKind() == FOK_None) 4271 return TSK_ExplicitSpecialization; 4272 4273 return TSK_Undeclared; 4274 } 4275 4276 void 4277 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4278 SourceLocation PointOfInstantiation) { 4279 if (FunctionTemplateSpecializationInfo *FTSInfo 4280 = TemplateOrSpecialization.dyn_cast< 4281 FunctionTemplateSpecializationInfo*>()) { 4282 FTSInfo->setTemplateSpecializationKind(TSK); 4283 if (TSK != TSK_ExplicitSpecialization && 4284 PointOfInstantiation.isValid() && 4285 FTSInfo->getPointOfInstantiation().isInvalid()) { 4286 FTSInfo->setPointOfInstantiation(PointOfInstantiation); 4287 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 4288 L->InstantiationRequested(this); 4289 } 4290 } else if (MemberSpecializationInfo *MSInfo 4291 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { 4292 MSInfo->setTemplateSpecializationKind(TSK); 4293 if (TSK != TSK_ExplicitSpecialization && 4294 PointOfInstantiation.isValid() && 4295 MSInfo->getPointOfInstantiation().isInvalid()) { 4296 MSInfo->setPointOfInstantiation(PointOfInstantiation); 4297 if (ASTMutationListener *L = getASTContext().getASTMutationListener()) 4298 L->InstantiationRequested(this); 4299 } 4300 } else 4301 llvm_unreachable("Function cannot have a template specialization kind"); 4302 } 4303 4304 SourceLocation FunctionDecl::getPointOfInstantiation() const { 4305 if (FunctionTemplateSpecializationInfo *FTSInfo 4306 = TemplateOrSpecialization.dyn_cast< 4307 FunctionTemplateSpecializationInfo*>()) 4308 return FTSInfo->getPointOfInstantiation(); 4309 if (MemberSpecializationInfo *MSInfo = 4310 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) 4311 return MSInfo->getPointOfInstantiation(); 4312 4313 return SourceLocation(); 4314 } 4315 4316 bool FunctionDecl::isOutOfLine() const { 4317 if (Decl::isOutOfLine()) 4318 return true; 4319 4320 // If this function was instantiated from a member function of a 4321 // class template, check whether that member function was defined out-of-line. 4322 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { 4323 const FunctionDecl *Definition; 4324 if (FD->hasBody(Definition)) 4325 return Definition->isOutOfLine(); 4326 } 4327 4328 // If this function was instantiated from a function template, 4329 // check whether that function template was defined out-of-line. 4330 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { 4331 const FunctionDecl *Definition; 4332 if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) 4333 return Definition->isOutOfLine(); 4334 } 4335 4336 return false; 4337 } 4338 4339 SourceRange FunctionDecl::getSourceRange() const { 4340 return SourceRange(getOuterLocStart(), EndRangeLoc); 4341 } 4342 4343 unsigned FunctionDecl::getMemoryFunctionKind() const { 4344 IdentifierInfo *FnInfo = getIdentifier(); 4345 4346 if (!FnInfo) 4347 return 0; 4348 4349 // Builtin handling. 4350 switch (getBuiltinID()) { 4351 case Builtin::BI__builtin_memset: 4352 case Builtin::BI__builtin___memset_chk: 4353 case Builtin::BImemset: 4354 return Builtin::BImemset; 4355 4356 case Builtin::BI__builtin_memcpy: 4357 case Builtin::BI__builtin___memcpy_chk: 4358 case Builtin::BImemcpy: 4359 return Builtin::BImemcpy; 4360 4361 case Builtin::BI__builtin_mempcpy: 4362 case Builtin::BI__builtin___mempcpy_chk: 4363 case Builtin::BImempcpy: 4364 return Builtin::BImempcpy; 4365 4366 case Builtin::BI__builtin_memmove: 4367 case Builtin::BI__builtin___memmove_chk: 4368 case Builtin::BImemmove: 4369 return Builtin::BImemmove; 4370 4371 case Builtin::BIstrlcpy: 4372 case Builtin::BI__builtin___strlcpy_chk: 4373 return Builtin::BIstrlcpy; 4374 4375 case Builtin::BIstrlcat: 4376 case Builtin::BI__builtin___strlcat_chk: 4377 return Builtin::BIstrlcat; 4378 4379 case Builtin::BI__builtin_memcmp: 4380 case Builtin::BImemcmp: 4381 return Builtin::BImemcmp; 4382 4383 case Builtin::BI__builtin_bcmp: 4384 case Builtin::BIbcmp: 4385 return Builtin::BIbcmp; 4386 4387 case Builtin::BI__builtin_strncpy: 4388 case Builtin::BI__builtin___strncpy_chk: 4389 case Builtin::BIstrncpy: 4390 return Builtin::BIstrncpy; 4391 4392 case Builtin::BI__builtin_strncmp: 4393 case Builtin::BIstrncmp: 4394 return Builtin::BIstrncmp; 4395 4396 case Builtin::BI__builtin_strncasecmp: 4397 case Builtin::BIstrncasecmp: 4398 return Builtin::BIstrncasecmp; 4399 4400 case Builtin::BI__builtin_strncat: 4401 case Builtin::BI__builtin___strncat_chk: 4402 case Builtin::BIstrncat: 4403 return Builtin::BIstrncat; 4404 4405 case Builtin::BI__builtin_strndup: 4406 case Builtin::BIstrndup: 4407 return Builtin::BIstrndup; 4408 4409 case Builtin::BI__builtin_strlen: 4410 case Builtin::BIstrlen: 4411 return Builtin::BIstrlen; 4412 4413 case Builtin::BI__builtin_bzero: 4414 case Builtin::BIbzero: 4415 return Builtin::BIbzero; 4416 4417 case Builtin::BI__builtin_bcopy: 4418 case Builtin::BIbcopy: 4419 return Builtin::BIbcopy; 4420 4421 case Builtin::BIfree: 4422 return Builtin::BIfree; 4423 4424 default: 4425 if (isExternC()) { 4426 if (FnInfo->isStr("memset")) 4427 return Builtin::BImemset; 4428 if (FnInfo->isStr("memcpy")) 4429 return Builtin::BImemcpy; 4430 if (FnInfo->isStr("mempcpy")) 4431 return Builtin::BImempcpy; 4432 if (FnInfo->isStr("memmove")) 4433 return Builtin::BImemmove; 4434 if (FnInfo->isStr("memcmp")) 4435 return Builtin::BImemcmp; 4436 if (FnInfo->isStr("bcmp")) 4437 return Builtin::BIbcmp; 4438 if (FnInfo->isStr("strncpy")) 4439 return Builtin::BIstrncpy; 4440 if (FnInfo->isStr("strncmp")) 4441 return Builtin::BIstrncmp; 4442 if (FnInfo->isStr("strncasecmp")) 4443 return Builtin::BIstrncasecmp; 4444 if (FnInfo->isStr("strncat")) 4445 return Builtin::BIstrncat; 4446 if (FnInfo->isStr("strndup")) 4447 return Builtin::BIstrndup; 4448 if (FnInfo->isStr("strlen")) 4449 return Builtin::BIstrlen; 4450 if (FnInfo->isStr("bzero")) 4451 return Builtin::BIbzero; 4452 if (FnInfo->isStr("bcopy")) 4453 return Builtin::BIbcopy; 4454 } else if (isInStdNamespace()) { 4455 if (FnInfo->isStr("free")) 4456 return Builtin::BIfree; 4457 } 4458 break; 4459 } 4460 return 0; 4461 } 4462 4463 unsigned FunctionDecl::getODRHash() const { 4464 assert(hasODRHash()); 4465 return ODRHash; 4466 } 4467 4468 unsigned FunctionDecl::getODRHash() { 4469 if (hasODRHash()) 4470 return ODRHash; 4471 4472 if (auto *FT = getInstantiatedFromMemberFunction()) { 4473 setHasODRHash(true); 4474 ODRHash = FT->getODRHash(); 4475 return ODRHash; 4476 } 4477 4478 class ODRHash Hash; 4479 Hash.AddFunctionDecl(this, /*SkipBody=*/shouldSkipCheckingODR()); 4480 setHasODRHash(true); 4481 ODRHash = Hash.CalculateHash(); 4482 return ODRHash; 4483 } 4484 4485 //===----------------------------------------------------------------------===// 4486 // FieldDecl Implementation 4487 //===----------------------------------------------------------------------===// 4488 4489 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, 4490 SourceLocation StartLoc, SourceLocation IdLoc, 4491 IdentifierInfo *Id, QualType T, 4492 TypeSourceInfo *TInfo, Expr *BW, bool Mutable, 4493 InClassInitStyle InitStyle) { 4494 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, 4495 BW, Mutable, InitStyle); 4496 } 4497 4498 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4499 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), 4500 SourceLocation(), nullptr, QualType(), nullptr, 4501 nullptr, false, ICIS_NoInit); 4502 } 4503 4504 bool FieldDecl::isAnonymousStructOrUnion() const { 4505 if (!isImplicit() || getDeclName()) 4506 return false; 4507 4508 if (const auto *Record = getType()->getAs<RecordType>()) 4509 return Record->getDecl()->isAnonymousStructOrUnion(); 4510 4511 return false; 4512 } 4513 4514 Expr *FieldDecl::getInClassInitializer() const { 4515 if (!hasInClassInitializer()) 4516 return nullptr; 4517 4518 LazyDeclStmtPtr InitPtr = BitField ? InitAndBitWidth->Init : Init; 4519 return cast_if_present<Expr>( 4520 InitPtr.isOffset() ? InitPtr.get(getASTContext().getExternalSource()) 4521 : InitPtr.get(nullptr)); 4522 } 4523 4524 void FieldDecl::setInClassInitializer(Expr *NewInit) { 4525 setLazyInClassInitializer(LazyDeclStmtPtr(NewInit)); 4526 } 4527 4528 void FieldDecl::setLazyInClassInitializer(LazyDeclStmtPtr NewInit) { 4529 assert(hasInClassInitializer() && !getInClassInitializer()); 4530 if (BitField) 4531 InitAndBitWidth->Init = NewInit; 4532 else 4533 Init = NewInit; 4534 } 4535 4536 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { 4537 assert(isBitField() && "not a bitfield"); 4538 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); 4539 } 4540 4541 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { 4542 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && 4543 getBitWidthValue(Ctx) == 0; 4544 } 4545 4546 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const { 4547 if (isZeroLengthBitField(Ctx)) 4548 return true; 4549 4550 // C++2a [intro.object]p7: 4551 // An object has nonzero size if it 4552 // -- is not a potentially-overlapping subobject, or 4553 if (!hasAttr<NoUniqueAddressAttr>()) 4554 return false; 4555 4556 // -- is not of class type, or 4557 const auto *RT = getType()->getAs<RecordType>(); 4558 if (!RT) 4559 return false; 4560 const RecordDecl *RD = RT->getDecl()->getDefinition(); 4561 if (!RD) { 4562 assert(isInvalidDecl() && "valid field has incomplete type"); 4563 return false; 4564 } 4565 4566 // -- [has] virtual member functions or virtual base classes, or 4567 // -- has subobjects of nonzero size or bit-fields of nonzero length 4568 const auto *CXXRD = cast<CXXRecordDecl>(RD); 4569 if (!CXXRD->isEmpty()) 4570 return false; 4571 4572 // Otherwise, [...] the circumstances under which the object has zero size 4573 // are implementation-defined. 4574 if (!Ctx.getTargetInfo().getCXXABI().isMicrosoft()) 4575 return true; 4576 4577 // MS ABI: has nonzero size if it is a class type with class type fields, 4578 // whether or not they have nonzero size 4579 return !llvm::any_of(CXXRD->fields(), [](const FieldDecl *Field) { 4580 return Field->getType()->getAs<RecordType>(); 4581 }); 4582 } 4583 4584 bool FieldDecl::isPotentiallyOverlapping() const { 4585 return hasAttr<NoUniqueAddressAttr>() && getType()->getAsCXXRecordDecl(); 4586 } 4587 4588 unsigned FieldDecl::getFieldIndex() const { 4589 const FieldDecl *Canonical = getCanonicalDecl(); 4590 if (Canonical != this) 4591 return Canonical->getFieldIndex(); 4592 4593 if (CachedFieldIndex) return CachedFieldIndex - 1; 4594 4595 unsigned Index = 0; 4596 const RecordDecl *RD = getParent()->getDefinition(); 4597 assert(RD && "requested index for field of struct with no definition"); 4598 4599 for (auto *Field : RD->fields()) { 4600 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; 4601 assert(Field->getCanonicalDecl()->CachedFieldIndex == Index + 1 && 4602 "overflow in field numbering"); 4603 ++Index; 4604 } 4605 4606 assert(CachedFieldIndex && "failed to find field in parent"); 4607 return CachedFieldIndex - 1; 4608 } 4609 4610 SourceRange FieldDecl::getSourceRange() const { 4611 const Expr *FinalExpr = getInClassInitializer(); 4612 if (!FinalExpr) 4613 FinalExpr = getBitWidth(); 4614 if (FinalExpr) 4615 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc()); 4616 return DeclaratorDecl::getSourceRange(); 4617 } 4618 4619 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { 4620 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && 4621 "capturing type in non-lambda or captured record."); 4622 assert(StorageKind == ISK_NoInit && !BitField && 4623 "bit-field or field with default member initializer cannot capture " 4624 "VLA type"); 4625 StorageKind = ISK_CapturedVLAType; 4626 CapturedVLAType = VLAType; 4627 } 4628 4629 void FieldDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const { 4630 // Print unnamed members using name of their type. 4631 if (isAnonymousStructOrUnion()) { 4632 this->getType().print(OS, Policy); 4633 return; 4634 } 4635 // Otherwise, do the normal printing. 4636 DeclaratorDecl::printName(OS, Policy); 4637 } 4638 4639 //===----------------------------------------------------------------------===// 4640 // TagDecl Implementation 4641 //===----------------------------------------------------------------------===// 4642 4643 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, 4644 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, 4645 SourceLocation StartL) 4646 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C), 4647 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) { 4648 assert((DK != Enum || TK == TagTypeKind::Enum) && 4649 "EnumDecl not matched with TagTypeKind::Enum"); 4650 setPreviousDecl(PrevDecl); 4651 setTagKind(TK); 4652 setCompleteDefinition(false); 4653 setBeingDefined(false); 4654 setEmbeddedInDeclarator(false); 4655 setFreeStanding(false); 4656 setCompleteDefinitionRequired(false); 4657 TagDeclBits.IsThisDeclarationADemotedDefinition = false; 4658 } 4659 4660 SourceLocation TagDecl::getOuterLocStart() const { 4661 return getTemplateOrInnerLocStart(this); 4662 } 4663 4664 SourceRange TagDecl::getSourceRange() const { 4665 SourceLocation RBraceLoc = BraceRange.getEnd(); 4666 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); 4667 return SourceRange(getOuterLocStart(), E); 4668 } 4669 4670 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } 4671 4672 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { 4673 TypedefNameDeclOrQualifier = TDD; 4674 if (const Type *T = getTypeForDecl()) { 4675 (void)T; 4676 assert(T->isLinkageValid()); 4677 } 4678 assert(isLinkageValid()); 4679 } 4680 4681 void TagDecl::startDefinition() { 4682 setBeingDefined(true); 4683 4684 if (auto *D = dyn_cast<CXXRecordDecl>(this)) { 4685 struct CXXRecordDecl::DefinitionData *Data = 4686 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); 4687 for (auto *I : redecls()) 4688 cast<CXXRecordDecl>(I)->DefinitionData = Data; 4689 } 4690 } 4691 4692 void TagDecl::completeDefinition() { 4693 assert((!isa<CXXRecordDecl>(this) || 4694 cast<CXXRecordDecl>(this)->hasDefinition()) && 4695 "definition completed but not started"); 4696 4697 setCompleteDefinition(true); 4698 setBeingDefined(false); 4699 4700 if (ASTMutationListener *L = getASTMutationListener()) 4701 L->CompletedTagDefinition(this); 4702 } 4703 4704 TagDecl *TagDecl::getDefinition() const { 4705 if (isCompleteDefinition()) 4706 return const_cast<TagDecl *>(this); 4707 4708 // If it's possible for us to have an out-of-date definition, check now. 4709 if (mayHaveOutOfDateDef()) { 4710 if (IdentifierInfo *II = getIdentifier()) { 4711 if (II->isOutOfDate()) { 4712 updateOutOfDate(*II); 4713 } 4714 } 4715 } 4716 4717 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) 4718 return CXXRD->getDefinition(); 4719 4720 for (auto *R : redecls()) 4721 if (R->isCompleteDefinition()) 4722 return R; 4723 4724 return nullptr; 4725 } 4726 4727 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { 4728 if (QualifierLoc) { 4729 // Make sure the extended qualifier info is allocated. 4730 if (!hasExtInfo()) 4731 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4732 // Set qualifier info. 4733 getExtInfo()->QualifierLoc = QualifierLoc; 4734 } else { 4735 // Here Qualifier == 0, i.e., we are removing the qualifier (if any). 4736 if (hasExtInfo()) { 4737 if (getExtInfo()->NumTemplParamLists == 0) { 4738 getASTContext().Deallocate(getExtInfo()); 4739 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; 4740 } 4741 else 4742 getExtInfo()->QualifierLoc = QualifierLoc; 4743 } 4744 } 4745 } 4746 4747 void TagDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const { 4748 DeclarationName Name = getDeclName(); 4749 // If the name is supposed to have an identifier but does not have one, then 4750 // the tag is anonymous and we should print it differently. 4751 if (Name.isIdentifier() && !Name.getAsIdentifierInfo()) { 4752 // If the caller wanted to print a qualified name, they've already printed 4753 // the scope. And if the caller doesn't want that, the scope information 4754 // is already printed as part of the type. 4755 PrintingPolicy Copy(Policy); 4756 Copy.SuppressScope = true; 4757 getASTContext().getTagDeclType(this).print(OS, Copy); 4758 return; 4759 } 4760 // Otherwise, do the normal printing. 4761 Name.print(OS, Policy); 4762 } 4763 4764 void TagDecl::setTemplateParameterListsInfo( 4765 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { 4766 assert(!TPLists.empty()); 4767 // Make sure the extended decl info is allocated. 4768 if (!hasExtInfo()) 4769 // Allocate external info struct. 4770 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; 4771 // Set the template parameter lists info. 4772 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); 4773 } 4774 4775 //===----------------------------------------------------------------------===// 4776 // EnumDecl Implementation 4777 //===----------------------------------------------------------------------===// 4778 4779 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 4780 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, 4781 bool Scoped, bool ScopedUsingClassTag, bool Fixed) 4782 : TagDecl(Enum, TagTypeKind::Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4783 assert(Scoped || !ScopedUsingClassTag); 4784 IntegerType = nullptr; 4785 setNumPositiveBits(0); 4786 setNumNegativeBits(0); 4787 setScoped(Scoped); 4788 setScopedUsingClassTag(ScopedUsingClassTag); 4789 setFixed(Fixed); 4790 setHasODRHash(false); 4791 ODRHash = 0; 4792 } 4793 4794 void EnumDecl::anchor() {} 4795 4796 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, 4797 SourceLocation StartLoc, SourceLocation IdLoc, 4798 IdentifierInfo *Id, 4799 EnumDecl *PrevDecl, bool IsScoped, 4800 bool IsScopedUsingClassTag, bool IsFixed) { 4801 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, 4802 IsScoped, IsScopedUsingClassTag, IsFixed); 4803 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4804 C.getTypeDeclType(Enum, PrevDecl); 4805 return Enum; 4806 } 4807 4808 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 4809 EnumDecl *Enum = 4810 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), 4811 nullptr, nullptr, false, false, false); 4812 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4813 return Enum; 4814 } 4815 4816 SourceRange EnumDecl::getIntegerTypeRange() const { 4817 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) 4818 return TI->getTypeLoc().getSourceRange(); 4819 return SourceRange(); 4820 } 4821 4822 void EnumDecl::completeDefinition(QualType NewType, 4823 QualType NewPromotionType, 4824 unsigned NumPositiveBits, 4825 unsigned NumNegativeBits) { 4826 assert(!isCompleteDefinition() && "Cannot redefine enums!"); 4827 if (!IntegerType) 4828 IntegerType = NewType.getTypePtr(); 4829 PromotionType = NewPromotionType; 4830 setNumPositiveBits(NumPositiveBits); 4831 setNumNegativeBits(NumNegativeBits); 4832 TagDecl::completeDefinition(); 4833 } 4834 4835 bool EnumDecl::isClosed() const { 4836 if (const auto *A = getAttr<EnumExtensibilityAttr>()) 4837 return A->getExtensibility() == EnumExtensibilityAttr::Closed; 4838 return true; 4839 } 4840 4841 bool EnumDecl::isClosedFlag() const { 4842 return isClosed() && hasAttr<FlagEnumAttr>(); 4843 } 4844 4845 bool EnumDecl::isClosedNonFlag() const { 4846 return isClosed() && !hasAttr<FlagEnumAttr>(); 4847 } 4848 4849 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { 4850 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) 4851 return MSI->getTemplateSpecializationKind(); 4852 4853 return TSK_Undeclared; 4854 } 4855 4856 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, 4857 SourceLocation PointOfInstantiation) { 4858 MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); 4859 assert(MSI && "Not an instantiated member enumeration?"); 4860 MSI->setTemplateSpecializationKind(TSK); 4861 if (TSK != TSK_ExplicitSpecialization && 4862 PointOfInstantiation.isValid() && 4863 MSI->getPointOfInstantiation().isInvalid()) 4864 MSI->setPointOfInstantiation(PointOfInstantiation); 4865 } 4866 4867 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { 4868 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { 4869 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { 4870 EnumDecl *ED = getInstantiatedFromMemberEnum(); 4871 while (auto *NewED = ED->getInstantiatedFromMemberEnum()) 4872 ED = NewED; 4873 return getDefinitionOrSelf(ED); 4874 } 4875 } 4876 4877 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && 4878 "couldn't find pattern for enum instantiation"); 4879 return nullptr; 4880 } 4881 4882 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { 4883 if (SpecializationInfo) 4884 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); 4885 4886 return nullptr; 4887 } 4888 4889 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, 4890 TemplateSpecializationKind TSK) { 4891 assert(!SpecializationInfo && "Member enum is already a specialization"); 4892 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); 4893 } 4894 4895 unsigned EnumDecl::getODRHash() { 4896 if (hasODRHash()) 4897 return ODRHash; 4898 4899 class ODRHash Hash; 4900 Hash.AddEnumDecl(this); 4901 setHasODRHash(true); 4902 ODRHash = Hash.CalculateHash(); 4903 return ODRHash; 4904 } 4905 4906 SourceRange EnumDecl::getSourceRange() const { 4907 auto Res = TagDecl::getSourceRange(); 4908 // Set end-point to enum-base, e.g. enum foo : ^bar 4909 if (auto *TSI = getIntegerTypeSourceInfo()) { 4910 // TagDecl doesn't know about the enum base. 4911 if (!getBraceRange().getEnd().isValid()) 4912 Res.setEnd(TSI->getTypeLoc().getEndLoc()); 4913 } 4914 return Res; 4915 } 4916 4917 void EnumDecl::getValueRange(llvm::APInt &Max, llvm::APInt &Min) const { 4918 unsigned Bitwidth = getASTContext().getIntWidth(getIntegerType()); 4919 unsigned NumNegativeBits = getNumNegativeBits(); 4920 unsigned NumPositiveBits = getNumPositiveBits(); 4921 4922 if (NumNegativeBits) { 4923 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 4924 Max = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 4925 Min = -Max; 4926 } else { 4927 Max = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 4928 Min = llvm::APInt::getZero(Bitwidth); 4929 } 4930 } 4931 4932 //===----------------------------------------------------------------------===// 4933 // RecordDecl Implementation 4934 //===----------------------------------------------------------------------===// 4935 4936 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, 4937 DeclContext *DC, SourceLocation StartLoc, 4938 SourceLocation IdLoc, IdentifierInfo *Id, 4939 RecordDecl *PrevDecl) 4940 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { 4941 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!"); 4942 setHasFlexibleArrayMember(false); 4943 setAnonymousStructOrUnion(false); 4944 setHasObjectMember(false); 4945 setHasVolatileMember(false); 4946 setHasLoadedFieldsFromExternalStorage(false); 4947 setNonTrivialToPrimitiveDefaultInitialize(false); 4948 setNonTrivialToPrimitiveCopy(false); 4949 setNonTrivialToPrimitiveDestroy(false); 4950 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false); 4951 setHasNonTrivialToPrimitiveDestructCUnion(false); 4952 setHasNonTrivialToPrimitiveCopyCUnion(false); 4953 setParamDestroyedInCallee(false); 4954 setArgPassingRestrictions(RecordArgPassingKind::CanPassInRegs); 4955 setIsRandomized(false); 4956 setODRHash(0); 4957 } 4958 4959 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, 4960 SourceLocation StartLoc, SourceLocation IdLoc, 4961 IdentifierInfo *Id, RecordDecl* PrevDecl) { 4962 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, 4963 StartLoc, IdLoc, Id, PrevDecl); 4964 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4965 4966 C.getTypeDeclType(R, PrevDecl); 4967 return R; 4968 } 4969 4970 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { 4971 RecordDecl *R = new (C, ID) 4972 RecordDecl(Record, TagTypeKind::Struct, C, nullptr, SourceLocation(), 4973 SourceLocation(), nullptr, nullptr); 4974 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); 4975 return R; 4976 } 4977 4978 bool RecordDecl::isInjectedClassName() const { 4979 return isImplicit() && getDeclName() && getDeclContext()->isRecord() && 4980 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); 4981 } 4982 4983 bool RecordDecl::isLambda() const { 4984 if (auto RD = dyn_cast<CXXRecordDecl>(this)) 4985 return RD->isLambda(); 4986 return false; 4987 } 4988 4989 bool RecordDecl::isCapturedRecord() const { 4990 return hasAttr<CapturedRecordAttr>(); 4991 } 4992 4993 void RecordDecl::setCapturedRecord() { 4994 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); 4995 } 4996 4997 bool RecordDecl::isOrContainsUnion() const { 4998 if (isUnion()) 4999 return true; 5000 5001 if (const RecordDecl *Def = getDefinition()) { 5002 for (const FieldDecl *FD : Def->fields()) { 5003 const RecordType *RT = FD->getType()->getAs<RecordType>(); 5004 if (RT && RT->getDecl()->isOrContainsUnion()) 5005 return true; 5006 } 5007 } 5008 5009 return false; 5010 } 5011 5012 RecordDecl::field_iterator RecordDecl::field_begin() const { 5013 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage()) 5014 LoadFieldsFromExternalStorage(); 5015 // This is necessary for correctness for C++ with modules. 5016 // FIXME: Come up with a test case that breaks without definition. 5017 if (RecordDecl *D = getDefinition(); D && D != this) 5018 return D->field_begin(); 5019 return field_iterator(decl_iterator(FirstDecl)); 5020 } 5021 5022 /// completeDefinition - Notes that the definition of this type is now 5023 /// complete. 5024 void RecordDecl::completeDefinition() { 5025 assert(!isCompleteDefinition() && "Cannot redefine record!"); 5026 TagDecl::completeDefinition(); 5027 5028 ASTContext &Ctx = getASTContext(); 5029 5030 // Layouts are dumped when computed, so if we are dumping for all complete 5031 // types, we need to force usage to get types that wouldn't be used elsewhere. 5032 if (Ctx.getLangOpts().DumpRecordLayoutsComplete) 5033 (void)Ctx.getASTRecordLayout(this); 5034 } 5035 5036 /// isMsStruct - Get whether or not this record uses ms_struct layout. 5037 /// This which can be turned on with an attribute, pragma, or the 5038 /// -mms-bitfields command-line option. 5039 bool RecordDecl::isMsStruct(const ASTContext &C) const { 5040 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; 5041 } 5042 5043 void RecordDecl::reorderDecls(const SmallVectorImpl<Decl *> &Decls) { 5044 std::tie(FirstDecl, LastDecl) = DeclContext::BuildDeclChain(Decls, false); 5045 LastDecl->NextInContextAndBits.setPointer(nullptr); 5046 setIsRandomized(true); 5047 } 5048 5049 void RecordDecl::LoadFieldsFromExternalStorage() const { 5050 ExternalASTSource *Source = getASTContext().getExternalSource(); 5051 assert(hasExternalLexicalStorage() && Source && "No external storage?"); 5052 5053 // Notify that we have a RecordDecl doing some initialization. 5054 ExternalASTSource::Deserializing TheFields(Source); 5055 5056 SmallVector<Decl*, 64> Decls; 5057 setHasLoadedFieldsFromExternalStorage(true); 5058 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { 5059 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); 5060 }, Decls); 5061 5062 #ifndef NDEBUG 5063 // Check that all decls we got were FieldDecls. 5064 for (unsigned i=0, e=Decls.size(); i != e; ++i) 5065 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); 5066 #endif 5067 5068 if (Decls.empty()) 5069 return; 5070 5071 auto [ExternalFirst, ExternalLast] = 5072 BuildDeclChain(Decls, 5073 /*FieldsAlreadyLoaded=*/false); 5074 ExternalLast->NextInContextAndBits.setPointer(FirstDecl); 5075 FirstDecl = ExternalFirst; 5076 if (!LastDecl) 5077 LastDecl = ExternalLast; 5078 } 5079 5080 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { 5081 ASTContext &Context = getASTContext(); 5082 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & 5083 (SanitizerKind::Address | SanitizerKind::KernelAddress); 5084 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) 5085 return false; 5086 const auto &NoSanitizeList = Context.getNoSanitizeList(); 5087 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); 5088 // We may be able to relax some of these requirements. 5089 int ReasonToReject = -1; 5090 if (!CXXRD || CXXRD->isExternCContext()) 5091 ReasonToReject = 0; // is not C++. 5092 else if (CXXRD->hasAttr<PackedAttr>()) 5093 ReasonToReject = 1; // is packed. 5094 else if (CXXRD->isUnion()) 5095 ReasonToReject = 2; // is a union. 5096 else if (CXXRD->isTriviallyCopyable()) 5097 ReasonToReject = 3; // is trivially copyable. 5098 else if (CXXRD->hasTrivialDestructor()) 5099 ReasonToReject = 4; // has trivial destructor. 5100 else if (CXXRD->isStandardLayout()) 5101 ReasonToReject = 5; // is standard layout. 5102 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(), 5103 "field-padding")) 5104 ReasonToReject = 6; // is in an excluded file. 5105 else if (NoSanitizeList.containsType( 5106 EnabledAsanMask, getQualifiedNameAsString(), "field-padding")) 5107 ReasonToReject = 7; // The type is excluded. 5108 5109 if (EmitRemark) { 5110 if (ReasonToReject >= 0) 5111 Context.getDiagnostics().Report( 5112 getLocation(), 5113 diag::remark_sanitize_address_insert_extra_padding_rejected) 5114 << getQualifiedNameAsString() << ReasonToReject; 5115 else 5116 Context.getDiagnostics().Report( 5117 getLocation(), 5118 diag::remark_sanitize_address_insert_extra_padding_accepted) 5119 << getQualifiedNameAsString(); 5120 } 5121 return ReasonToReject < 0; 5122 } 5123 5124 const FieldDecl *RecordDecl::findFirstNamedDataMember() const { 5125 for (const auto *I : fields()) { 5126 if (I->getIdentifier()) 5127 return I; 5128 5129 if (const auto *RT = I->getType()->getAs<RecordType>()) 5130 if (const FieldDecl *NamedDataMember = 5131 RT->getDecl()->findFirstNamedDataMember()) 5132 return NamedDataMember; 5133 } 5134 5135 // We didn't find a named data member. 5136 return nullptr; 5137 } 5138 5139 unsigned RecordDecl::getODRHash() { 5140 if (hasODRHash()) 5141 return RecordDeclBits.ODRHash; 5142 5143 // Only calculate hash on first call of getODRHash per record. 5144 ODRHash Hash; 5145 Hash.AddRecordDecl(this); 5146 // For RecordDecl the ODRHash is stored in the remaining 26 5147 // bit of RecordDeclBits, adjust the hash to accomodate. 5148 setODRHash(Hash.CalculateHash() >> 6); 5149 return RecordDeclBits.ODRHash; 5150 } 5151 5152 //===----------------------------------------------------------------------===// 5153 // BlockDecl Implementation 5154 //===----------------------------------------------------------------------===// 5155 5156 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc) 5157 : Decl(Block, DC, CaretLoc), DeclContext(Block) { 5158 setIsVariadic(false); 5159 setCapturesCXXThis(false); 5160 setBlockMissingReturnType(true); 5161 setIsConversionFromLambda(false); 5162 setDoesNotEscape(false); 5163 setCanAvoidCopyToHeap(false); 5164 } 5165 5166 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { 5167 assert(!ParamInfo && "Already has param info!"); 5168 5169 // Zero params -> null pointer. 5170 if (!NewParamInfo.empty()) { 5171 NumParams = NewParamInfo.size(); 5172 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; 5173 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); 5174 } 5175 } 5176 5177 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, 5178 bool CapturesCXXThis) { 5179 this->setCapturesCXXThis(CapturesCXXThis); 5180 this->NumCaptures = Captures.size(); 5181 5182 if (Captures.empty()) { 5183 this->Captures = nullptr; 5184 return; 5185 } 5186 5187 this->Captures = Captures.copy(Context).data(); 5188 } 5189 5190 bool BlockDecl::capturesVariable(const VarDecl *variable) const { 5191 for (const auto &I : captures()) 5192 // Only auto vars can be captured, so no redeclaration worries. 5193 if (I.getVariable() == variable) 5194 return true; 5195 5196 return false; 5197 } 5198 5199 SourceRange BlockDecl::getSourceRange() const { 5200 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation()); 5201 } 5202 5203 //===----------------------------------------------------------------------===// 5204 // Other Decl Allocation/Deallocation Method Implementations 5205 //===----------------------------------------------------------------------===// 5206 5207 void TranslationUnitDecl::anchor() {} 5208 5209 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { 5210 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); 5211 } 5212 5213 void PragmaCommentDecl::anchor() {} 5214 5215 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, 5216 TranslationUnitDecl *DC, 5217 SourceLocation CommentLoc, 5218 PragmaMSCommentKind CommentKind, 5219 StringRef Arg) { 5220 PragmaCommentDecl *PCD = 5221 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) 5222 PragmaCommentDecl(DC, CommentLoc, CommentKind); 5223 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); 5224 PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; 5225 return PCD; 5226 } 5227 5228 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, 5229 unsigned ID, 5230 unsigned ArgSize) { 5231 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) 5232 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); 5233 } 5234 5235 void PragmaDetectMismatchDecl::anchor() {} 5236 5237 PragmaDetectMismatchDecl * 5238 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, 5239 SourceLocation Loc, StringRef Name, 5240 StringRef Value) { 5241 size_t ValueStart = Name.size() + 1; 5242 PragmaDetectMismatchDecl *PDMD = 5243 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) 5244 PragmaDetectMismatchDecl(DC, Loc, ValueStart); 5245 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); 5246 PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; 5247 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), 5248 Value.size()); 5249 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; 5250 return PDMD; 5251 } 5252 5253 PragmaDetectMismatchDecl * 5254 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5255 unsigned NameValueSize) { 5256 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) 5257 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); 5258 } 5259 5260 void ExternCContextDecl::anchor() {} 5261 5262 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, 5263 TranslationUnitDecl *DC) { 5264 return new (C, DC) ExternCContextDecl(DC); 5265 } 5266 5267 void LabelDecl::anchor() {} 5268 5269 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 5270 SourceLocation IdentL, IdentifierInfo *II) { 5271 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); 5272 } 5273 5274 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, 5275 SourceLocation IdentL, IdentifierInfo *II, 5276 SourceLocation GnuLabelL) { 5277 assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); 5278 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); 5279 } 5280 5281 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5282 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, 5283 SourceLocation()); 5284 } 5285 5286 void LabelDecl::setMSAsmLabel(StringRef Name) { 5287 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; 5288 memcpy(Buffer, Name.data(), Name.size()); 5289 Buffer[Name.size()] = '\0'; 5290 MSAsmName = Buffer; 5291 } 5292 5293 void ValueDecl::anchor() {} 5294 5295 bool ValueDecl::isWeak() const { 5296 auto *MostRecent = getMostRecentDecl(); 5297 return MostRecent->hasAttr<WeakAttr>() || 5298 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported(); 5299 } 5300 5301 bool ValueDecl::isInitCapture() const { 5302 if (auto *Var = llvm::dyn_cast<VarDecl>(this)) 5303 return Var->isInitCapture(); 5304 return false; 5305 } 5306 5307 void ImplicitParamDecl::anchor() {} 5308 5309 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, 5310 SourceLocation IdLoc, 5311 IdentifierInfo *Id, QualType Type, 5312 ImplicitParamKind ParamKind) { 5313 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); 5314 } 5315 5316 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, 5317 ImplicitParamKind ParamKind) { 5318 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); 5319 } 5320 5321 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, 5322 unsigned ID) { 5323 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); 5324 } 5325 5326 FunctionDecl * 5327 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, 5328 const DeclarationNameInfo &NameInfo, QualType T, 5329 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, 5330 bool isInlineSpecified, bool hasWrittenPrototype, 5331 ConstexprSpecKind ConstexprKind, 5332 Expr *TrailingRequiresClause) { 5333 FunctionDecl *New = new (C, DC) FunctionDecl( 5334 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, 5335 isInlineSpecified, ConstexprKind, TrailingRequiresClause); 5336 New->setHasWrittenPrototype(hasWrittenPrototype); 5337 return New; 5338 } 5339 5340 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5341 return new (C, ID) FunctionDecl( 5342 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), 5343 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr); 5344 } 5345 5346 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 5347 return new (C, DC) BlockDecl(DC, L); 5348 } 5349 5350 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5351 return new (C, ID) BlockDecl(nullptr, SourceLocation()); 5352 } 5353 5354 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) 5355 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), 5356 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} 5357 5358 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, 5359 unsigned NumParams) { 5360 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 5361 CapturedDecl(DC, NumParams); 5362 } 5363 5364 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5365 unsigned NumParams) { 5366 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) 5367 CapturedDecl(nullptr, NumParams); 5368 } 5369 5370 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } 5371 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } 5372 5373 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } 5374 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } 5375 5376 EnumConstantDecl::EnumConstantDecl(const ASTContext &C, DeclContext *DC, 5377 SourceLocation L, IdentifierInfo *Id, 5378 QualType T, Expr *E, const llvm::APSInt &V) 5379 : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt *)E) { 5380 setInitVal(C, V); 5381 } 5382 5383 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, 5384 SourceLocation L, 5385 IdentifierInfo *Id, QualType T, 5386 Expr *E, const llvm::APSInt &V) { 5387 return new (C, CD) EnumConstantDecl(C, CD, L, Id, T, E, V); 5388 } 5389 5390 EnumConstantDecl * 5391 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5392 return new (C, ID) EnumConstantDecl(C, nullptr, SourceLocation(), nullptr, 5393 QualType(), nullptr, llvm::APSInt()); 5394 } 5395 5396 void IndirectFieldDecl::anchor() {} 5397 5398 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, 5399 SourceLocation L, DeclarationName N, 5400 QualType T, 5401 MutableArrayRef<NamedDecl *> CH) 5402 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), 5403 ChainingSize(CH.size()) { 5404 // In C++, indirect field declarations conflict with tag declarations in the 5405 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. 5406 if (C.getLangOpts().CPlusPlus) 5407 IdentifierNamespace |= IDNS_Tag; 5408 } 5409 5410 IndirectFieldDecl * 5411 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, 5412 IdentifierInfo *Id, QualType T, 5413 llvm::MutableArrayRef<NamedDecl *> CH) { 5414 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); 5415 } 5416 5417 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, 5418 unsigned ID) { 5419 return new (C, ID) 5420 IndirectFieldDecl(C, nullptr, SourceLocation(), DeclarationName(), 5421 QualType(), std::nullopt); 5422 } 5423 5424 SourceRange EnumConstantDecl::getSourceRange() const { 5425 SourceLocation End = getLocation(); 5426 if (Init) 5427 End = Init->getEndLoc(); 5428 return SourceRange(getLocation(), End); 5429 } 5430 5431 void TypeDecl::anchor() {} 5432 5433 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, 5434 SourceLocation StartLoc, SourceLocation IdLoc, 5435 IdentifierInfo *Id, TypeSourceInfo *TInfo) { 5436 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5437 } 5438 5439 void TypedefNameDecl::anchor() {} 5440 5441 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { 5442 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { 5443 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); 5444 auto *ThisTypedef = this; 5445 if (AnyRedecl && OwningTypedef) { 5446 OwningTypedef = OwningTypedef->getCanonicalDecl(); 5447 ThisTypedef = ThisTypedef->getCanonicalDecl(); 5448 } 5449 if (OwningTypedef == ThisTypedef) 5450 return TT->getDecl(); 5451 } 5452 5453 return nullptr; 5454 } 5455 5456 bool TypedefNameDecl::isTransparentTagSlow() const { 5457 auto determineIsTransparent = [&]() { 5458 if (auto *TT = getUnderlyingType()->getAs<TagType>()) { 5459 if (auto *TD = TT->getDecl()) { 5460 if (TD->getName() != getName()) 5461 return false; 5462 SourceLocation TTLoc = getLocation(); 5463 SourceLocation TDLoc = TD->getLocation(); 5464 if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) 5465 return false; 5466 SourceManager &SM = getASTContext().getSourceManager(); 5467 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); 5468 } 5469 } 5470 return false; 5471 }; 5472 5473 bool isTransparent = determineIsTransparent(); 5474 MaybeModedTInfo.setInt((isTransparent << 1) | 1); 5475 return isTransparent; 5476 } 5477 5478 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5479 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), 5480 nullptr, nullptr); 5481 } 5482 5483 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, 5484 SourceLocation StartLoc, 5485 SourceLocation IdLoc, IdentifierInfo *Id, 5486 TypeSourceInfo *TInfo) { 5487 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); 5488 } 5489 5490 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5491 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), 5492 SourceLocation(), nullptr, nullptr); 5493 } 5494 5495 SourceRange TypedefDecl::getSourceRange() const { 5496 SourceLocation RangeEnd = getLocation(); 5497 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { 5498 if (typeIsPostfix(TInfo->getType())) 5499 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5500 } 5501 return SourceRange(getBeginLoc(), RangeEnd); 5502 } 5503 5504 SourceRange TypeAliasDecl::getSourceRange() const { 5505 SourceLocation RangeEnd = getBeginLoc(); 5506 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) 5507 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); 5508 return SourceRange(getBeginLoc(), RangeEnd); 5509 } 5510 5511 void FileScopeAsmDecl::anchor() {} 5512 5513 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, 5514 StringLiteral *Str, 5515 SourceLocation AsmLoc, 5516 SourceLocation RParenLoc) { 5517 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); 5518 } 5519 5520 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, 5521 unsigned ID) { 5522 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), 5523 SourceLocation()); 5524 } 5525 5526 void TopLevelStmtDecl::anchor() {} 5527 5528 TopLevelStmtDecl *TopLevelStmtDecl::Create(ASTContext &C, Stmt *Statement) { 5529 assert(Statement); 5530 assert(C.getLangOpts().IncrementalExtensions && 5531 "Must be used only in incremental mode"); 5532 5533 SourceLocation BeginLoc = Statement->getBeginLoc(); 5534 DeclContext *DC = C.getTranslationUnitDecl(); 5535 5536 return new (C, DC) TopLevelStmtDecl(DC, BeginLoc, Statement); 5537 } 5538 5539 TopLevelStmtDecl *TopLevelStmtDecl::CreateDeserialized(ASTContext &C, 5540 unsigned ID) { 5541 return new (C, ID) 5542 TopLevelStmtDecl(/*DC=*/nullptr, SourceLocation(), /*S=*/nullptr); 5543 } 5544 5545 SourceRange TopLevelStmtDecl::getSourceRange() const { 5546 return SourceRange(getLocation(), Statement->getEndLoc()); 5547 } 5548 5549 void EmptyDecl::anchor() {} 5550 5551 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { 5552 return new (C, DC) EmptyDecl(DC, L); 5553 } 5554 5555 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5556 return new (C, ID) EmptyDecl(nullptr, SourceLocation()); 5557 } 5558 5559 HLSLBufferDecl::HLSLBufferDecl(DeclContext *DC, bool CBuffer, 5560 SourceLocation KwLoc, IdentifierInfo *ID, 5561 SourceLocation IDLoc, SourceLocation LBrace) 5562 : NamedDecl(Decl::Kind::HLSLBuffer, DC, IDLoc, DeclarationName(ID)), 5563 DeclContext(Decl::Kind::HLSLBuffer), LBraceLoc(LBrace), KwLoc(KwLoc), 5564 IsCBuffer(CBuffer) {} 5565 5566 HLSLBufferDecl *HLSLBufferDecl::Create(ASTContext &C, 5567 DeclContext *LexicalParent, bool CBuffer, 5568 SourceLocation KwLoc, IdentifierInfo *ID, 5569 SourceLocation IDLoc, 5570 SourceLocation LBrace) { 5571 // For hlsl like this 5572 // cbuffer A { 5573 // cbuffer B { 5574 // } 5575 // } 5576 // compiler should treat it as 5577 // cbuffer A { 5578 // } 5579 // cbuffer B { 5580 // } 5581 // FIXME: support nested buffers if required for back-compat. 5582 DeclContext *DC = LexicalParent; 5583 HLSLBufferDecl *Result = 5584 new (C, DC) HLSLBufferDecl(DC, CBuffer, KwLoc, ID, IDLoc, LBrace); 5585 return Result; 5586 } 5587 5588 HLSLBufferDecl *HLSLBufferDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5589 return new (C, ID) HLSLBufferDecl(nullptr, false, SourceLocation(), nullptr, 5590 SourceLocation(), SourceLocation()); 5591 } 5592 5593 //===----------------------------------------------------------------------===// 5594 // ImportDecl Implementation 5595 //===----------------------------------------------------------------------===// 5596 5597 /// Retrieve the number of module identifiers needed to name the given 5598 /// module. 5599 static unsigned getNumModuleIdentifiers(Module *Mod) { 5600 unsigned Result = 1; 5601 while (Mod->Parent) { 5602 Mod = Mod->Parent; 5603 ++Result; 5604 } 5605 return Result; 5606 } 5607 5608 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5609 Module *Imported, 5610 ArrayRef<SourceLocation> IdentifierLocs) 5611 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5612 NextLocalImportAndComplete(nullptr, true) { 5613 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); 5614 auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5615 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), 5616 StoredLocs); 5617 } 5618 5619 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 5620 Module *Imported, SourceLocation EndLoc) 5621 : Decl(Import, DC, StartLoc), ImportedModule(Imported), 5622 NextLocalImportAndComplete(nullptr, false) { 5623 *getTrailingObjects<SourceLocation>() = EndLoc; 5624 } 5625 5626 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, 5627 SourceLocation StartLoc, Module *Imported, 5628 ArrayRef<SourceLocation> IdentifierLocs) { 5629 return new (C, DC, 5630 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) 5631 ImportDecl(DC, StartLoc, Imported, IdentifierLocs); 5632 } 5633 5634 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, 5635 SourceLocation StartLoc, 5636 Module *Imported, 5637 SourceLocation EndLoc) { 5638 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) 5639 ImportDecl(DC, StartLoc, Imported, EndLoc); 5640 Import->setImplicit(); 5641 return Import; 5642 } 5643 5644 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, 5645 unsigned NumLocations) { 5646 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) 5647 ImportDecl(EmptyShell()); 5648 } 5649 5650 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { 5651 if (!isImportComplete()) 5652 return std::nullopt; 5653 5654 const auto *StoredLocs = getTrailingObjects<SourceLocation>(); 5655 return llvm::ArrayRef(StoredLocs, 5656 getNumModuleIdentifiers(getImportedModule())); 5657 } 5658 5659 SourceRange ImportDecl::getSourceRange() const { 5660 if (!isImportComplete()) 5661 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); 5662 5663 return SourceRange(getLocation(), getIdentifierLocs().back()); 5664 } 5665 5666 //===----------------------------------------------------------------------===// 5667 // ExportDecl Implementation 5668 //===----------------------------------------------------------------------===// 5669 5670 void ExportDecl::anchor() {} 5671 5672 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, 5673 SourceLocation ExportLoc) { 5674 return new (C, DC) ExportDecl(DC, ExportLoc); 5675 } 5676 5677 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { 5678 return new (C, ID) ExportDecl(nullptr, SourceLocation()); 5679 } 5680