xref: /freebsd/contrib/llvm-project/clang/lib/AST/ASTContext.cpp (revision d9a42747950146bf03cda7f6e25d219253f8a57a)
1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/DependenceFlags.h"
33 #include "clang/AST/Expr.h"
34 #include "clang/AST/ExprCXX.h"
35 #include "clang/AST/ExprConcepts.h"
36 #include "clang/AST/ExternalASTSource.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/MangleNumberingContext.h"
39 #include "clang/AST/NestedNameSpecifier.h"
40 #include "clang/AST/ParentMapContext.h"
41 #include "clang/AST/RawCommentList.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/Stmt.h"
44 #include "clang/AST/TemplateBase.h"
45 #include "clang/AST/TemplateName.h"
46 #include "clang/AST/Type.h"
47 #include "clang/AST/TypeLoc.h"
48 #include "clang/AST/UnresolvedSet.h"
49 #include "clang/AST/VTableBuilder.h"
50 #include "clang/Basic/AddressSpaces.h"
51 #include "clang/Basic/Builtins.h"
52 #include "clang/Basic/CommentOptions.h"
53 #include "clang/Basic/ExceptionSpecificationType.h"
54 #include "clang/Basic/IdentifierTable.h"
55 #include "clang/Basic/LLVM.h"
56 #include "clang/Basic/LangOptions.h"
57 #include "clang/Basic/Linkage.h"
58 #include "clang/Basic/Module.h"
59 #include "clang/Basic/NoSanitizeList.h"
60 #include "clang/Basic/ObjCRuntime.h"
61 #include "clang/Basic/SourceLocation.h"
62 #include "clang/Basic/SourceManager.h"
63 #include "clang/Basic/Specifiers.h"
64 #include "clang/Basic/TargetCXXABI.h"
65 #include "clang/Basic/TargetInfo.h"
66 #include "clang/Basic/XRayLists.h"
67 #include "llvm/ADT/APFixedPoint.h"
68 #include "llvm/ADT/APInt.h"
69 #include "llvm/ADT/APSInt.h"
70 #include "llvm/ADT/ArrayRef.h"
71 #include "llvm/ADT/DenseMap.h"
72 #include "llvm/ADT/DenseSet.h"
73 #include "llvm/ADT/FoldingSet.h"
74 #include "llvm/ADT/None.h"
75 #include "llvm/ADT/Optional.h"
76 #include "llvm/ADT/PointerUnion.h"
77 #include "llvm/ADT/STLExtras.h"
78 #include "llvm/ADT/SmallPtrSet.h"
79 #include "llvm/ADT/SmallVector.h"
80 #include "llvm/ADT/StringExtras.h"
81 #include "llvm/ADT/StringRef.h"
82 #include "llvm/ADT/Triple.h"
83 #include "llvm/Support/Capacity.h"
84 #include "llvm/Support/Casting.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/MD5.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstddef>
93 #include <cstdint>
94 #include <cstdlib>
95 #include <map>
96 #include <memory>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 
101 using namespace clang;
102 
103 enum FloatingRank {
104   BFloat16Rank,
105   Float16Rank,
106   HalfRank,
107   FloatRank,
108   DoubleRank,
109   LongDoubleRank,
110   Float128Rank,
111   Ibm128Rank
112 };
113 
114 /// \returns location that is relevant when searching for Doc comments related
115 /// to \p D.
116 static SourceLocation getDeclLocForCommentSearch(const Decl *D,
117                                                  SourceManager &SourceMgr) {
118   assert(D);
119 
120   // User can not attach documentation to implicit declarations.
121   if (D->isImplicit())
122     return {};
123 
124   // User can not attach documentation to implicit instantiations.
125   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
126     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
127       return {};
128   }
129 
130   if (const auto *VD = dyn_cast<VarDecl>(D)) {
131     if (VD->isStaticDataMember() &&
132         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
133       return {};
134   }
135 
136   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
137     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
138       return {};
139   }
140 
141   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
142     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
143     if (TSK == TSK_ImplicitInstantiation ||
144         TSK == TSK_Undeclared)
145       return {};
146   }
147 
148   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
149     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
150       return {};
151   }
152   if (const auto *TD = dyn_cast<TagDecl>(D)) {
153     // When tag declaration (but not definition!) is part of the
154     // decl-specifier-seq of some other declaration, it doesn't get comment
155     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
156       return {};
157   }
158   // TODO: handle comments for function parameters properly.
159   if (isa<ParmVarDecl>(D))
160     return {};
161 
162   // TODO: we could look up template parameter documentation in the template
163   // documentation.
164   if (isa<TemplateTypeParmDecl>(D) ||
165       isa<NonTypeTemplateParmDecl>(D) ||
166       isa<TemplateTemplateParmDecl>(D))
167     return {};
168 
169   // Find declaration location.
170   // For Objective-C declarations we generally don't expect to have multiple
171   // declarators, thus use declaration starting location as the "declaration
172   // location".
173   // For all other declarations multiple declarators are used quite frequently,
174   // so we use the location of the identifier as the "declaration location".
175   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
176       isa<ObjCPropertyDecl>(D) ||
177       isa<RedeclarableTemplateDecl>(D) ||
178       isa<ClassTemplateSpecializationDecl>(D) ||
179       // Allow association with Y across {} in `typedef struct X {} Y`.
180       isa<TypedefDecl>(D))
181     return D->getBeginLoc();
182 
183   const SourceLocation DeclLoc = D->getLocation();
184   if (DeclLoc.isMacroID()) {
185     if (isa<TypedefDecl>(D)) {
186       // If location of the typedef name is in a macro, it is because being
187       // declared via a macro. Try using declaration's starting location as
188       // the "declaration location".
189       return D->getBeginLoc();
190     }
191 
192     if (const auto *TD = dyn_cast<TagDecl>(D)) {
193       // If location of the tag decl is inside a macro, but the spelling of
194       // the tag name comes from a macro argument, it looks like a special
195       // macro like NS_ENUM is being used to define the tag decl.  In that
196       // case, adjust the source location to the expansion loc so that we can
197       // attach the comment to the tag decl.
198       if (SourceMgr.isMacroArgExpansion(DeclLoc) && TD->isCompleteDefinition())
199         return SourceMgr.getExpansionLoc(DeclLoc);
200     }
201   }
202 
203   return DeclLoc;
204 }
205 
206 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
207     const Decl *D, const SourceLocation RepresentativeLocForDecl,
208     const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
209   // If the declaration doesn't map directly to a location in a file, we
210   // can't find the comment.
211   if (RepresentativeLocForDecl.isInvalid() ||
212       !RepresentativeLocForDecl.isFileID())
213     return nullptr;
214 
215   // If there are no comments anywhere, we won't find anything.
216   if (CommentsInTheFile.empty())
217     return nullptr;
218 
219   // Decompose the location for the declaration and find the beginning of the
220   // file buffer.
221   const std::pair<FileID, unsigned> DeclLocDecomp =
222       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
223 
224   // Slow path.
225   auto OffsetCommentBehindDecl =
226       CommentsInTheFile.lower_bound(DeclLocDecomp.second);
227 
228   // First check whether we have a trailing comment.
229   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
230     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
231     if ((CommentBehindDecl->isDocumentation() ||
232          LangOpts.CommentOpts.ParseAllComments) &&
233         CommentBehindDecl->isTrailingComment() &&
234         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
235          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
236 
237       // Check that Doxygen trailing comment comes after the declaration, starts
238       // on the same line and in the same file as the declaration.
239       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
240           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
241                                        OffsetCommentBehindDecl->first)) {
242         return CommentBehindDecl;
243       }
244     }
245   }
246 
247   // The comment just after the declaration was not a trailing comment.
248   // Let's look at the previous comment.
249   if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
250     return nullptr;
251 
252   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
253   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
254 
255   // Check that we actually have a non-member Doxygen comment.
256   if (!(CommentBeforeDecl->isDocumentation() ||
257         LangOpts.CommentOpts.ParseAllComments) ||
258       CommentBeforeDecl->isTrailingComment())
259     return nullptr;
260 
261   // Decompose the end of the comment.
262   const unsigned CommentEndOffset =
263       Comments.getCommentEndOffset(CommentBeforeDecl);
264 
265   // Get the corresponding buffer.
266   bool Invalid = false;
267   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
268                                                &Invalid).data();
269   if (Invalid)
270     return nullptr;
271 
272   // Extract text between the comment and declaration.
273   StringRef Text(Buffer + CommentEndOffset,
274                  DeclLocDecomp.second - CommentEndOffset);
275 
276   // There should be no other declarations or preprocessor directives between
277   // comment and declaration.
278   if (Text.find_first_of(";{}#@") != StringRef::npos)
279     return nullptr;
280 
281   return CommentBeforeDecl;
282 }
283 
284 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
285   const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
286 
287   // If the declaration doesn't map directly to a location in a file, we
288   // can't find the comment.
289   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
290     return nullptr;
291 
292   if (ExternalSource && !CommentsLoaded) {
293     ExternalSource->ReadComments();
294     CommentsLoaded = true;
295   }
296 
297   if (Comments.empty())
298     return nullptr;
299 
300   const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
301   const auto CommentsInThisFile = Comments.getCommentsInFile(File);
302   if (!CommentsInThisFile || CommentsInThisFile->empty())
303     return nullptr;
304 
305   return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
306 }
307 
308 void ASTContext::addComment(const RawComment &RC) {
309   assert(LangOpts.RetainCommentsFromSystemHeaders ||
310          !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
311   Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
312 }
313 
314 /// If we have a 'templated' declaration for a template, adjust 'D' to
315 /// refer to the actual template.
316 /// If we have an implicit instantiation, adjust 'D' to refer to template.
317 static const Decl &adjustDeclToTemplate(const Decl &D) {
318   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
319     // Is this function declaration part of a function template?
320     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
321       return *FTD;
322 
323     // Nothing to do if function is not an implicit instantiation.
324     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
325       return D;
326 
327     // Function is an implicit instantiation of a function template?
328     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
329       return *FTD;
330 
331     // Function is instantiated from a member definition of a class template?
332     if (const FunctionDecl *MemberDecl =
333             FD->getInstantiatedFromMemberFunction())
334       return *MemberDecl;
335 
336     return D;
337   }
338   if (const auto *VD = dyn_cast<VarDecl>(&D)) {
339     // Static data member is instantiated from a member definition of a class
340     // template?
341     if (VD->isStaticDataMember())
342       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
343         return *MemberDecl;
344 
345     return D;
346   }
347   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
348     // Is this class declaration part of a class template?
349     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
350       return *CTD;
351 
352     // Class is an implicit instantiation of a class template or partial
353     // specialization?
354     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
355       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
356         return D;
357       llvm::PointerUnion<ClassTemplateDecl *,
358                          ClassTemplatePartialSpecializationDecl *>
359           PU = CTSD->getSpecializedTemplateOrPartial();
360       return PU.is<ClassTemplateDecl *>()
361                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
362                  : *static_cast<const Decl *>(
363                        PU.get<ClassTemplatePartialSpecializationDecl *>());
364     }
365 
366     // Class is instantiated from a member definition of a class template?
367     if (const MemberSpecializationInfo *Info =
368             CRD->getMemberSpecializationInfo())
369       return *Info->getInstantiatedFrom();
370 
371     return D;
372   }
373   if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
374     // Enum is instantiated from a member definition of a class template?
375     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
376       return *MemberDecl;
377 
378     return D;
379   }
380   // FIXME: Adjust alias templates?
381   return D;
382 }
383 
384 const RawComment *ASTContext::getRawCommentForAnyRedecl(
385                                                 const Decl *D,
386                                                 const Decl **OriginalDecl) const {
387   if (!D) {
388     if (OriginalDecl)
389       OriginalDecl = nullptr;
390     return nullptr;
391   }
392 
393   D = &adjustDeclToTemplate(*D);
394 
395   // Any comment directly attached to D?
396   {
397     auto DeclComment = DeclRawComments.find(D);
398     if (DeclComment != DeclRawComments.end()) {
399       if (OriginalDecl)
400         *OriginalDecl = D;
401       return DeclComment->second;
402     }
403   }
404 
405   // Any comment attached to any redeclaration of D?
406   const Decl *CanonicalD = D->getCanonicalDecl();
407   if (!CanonicalD)
408     return nullptr;
409 
410   {
411     auto RedeclComment = RedeclChainComments.find(CanonicalD);
412     if (RedeclComment != RedeclChainComments.end()) {
413       if (OriginalDecl)
414         *OriginalDecl = RedeclComment->second;
415       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
416       assert(CommentAtRedecl != DeclRawComments.end() &&
417              "This decl is supposed to have comment attached.");
418       return CommentAtRedecl->second;
419     }
420   }
421 
422   // Any redeclarations of D that we haven't checked for comments yet?
423   // We can't use DenseMap::iterator directly since it'd get invalid.
424   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
425     auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
426     if (LookupRes != CommentlessRedeclChains.end())
427       return LookupRes->second;
428     return nullptr;
429   }();
430 
431   for (const auto Redecl : D->redecls()) {
432     assert(Redecl);
433     // Skip all redeclarations that have been checked previously.
434     if (LastCheckedRedecl) {
435       if (LastCheckedRedecl == Redecl) {
436         LastCheckedRedecl = nullptr;
437       }
438       continue;
439     }
440     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
441     if (RedeclComment) {
442       cacheRawCommentForDecl(*Redecl, *RedeclComment);
443       if (OriginalDecl)
444         *OriginalDecl = Redecl;
445       return RedeclComment;
446     }
447     CommentlessRedeclChains[CanonicalD] = Redecl;
448   }
449 
450   if (OriginalDecl)
451     *OriginalDecl = nullptr;
452   return nullptr;
453 }
454 
455 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
456                                         const RawComment &Comment) const {
457   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
458   DeclRawComments.try_emplace(&OriginalD, &Comment);
459   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
460   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
461   CommentlessRedeclChains.erase(CanonicalDecl);
462 }
463 
464 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
465                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
466   const DeclContext *DC = ObjCMethod->getDeclContext();
467   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
468     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
469     if (!ID)
470       return;
471     // Add redeclared method here.
472     for (const auto *Ext : ID->known_extensions()) {
473       if (ObjCMethodDecl *RedeclaredMethod =
474             Ext->getMethod(ObjCMethod->getSelector(),
475                                   ObjCMethod->isInstanceMethod()))
476         Redeclared.push_back(RedeclaredMethod);
477     }
478   }
479 }
480 
481 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
482                                                  const Preprocessor *PP) {
483   if (Comments.empty() || Decls.empty())
484     return;
485 
486   FileID File;
487   for (Decl *D : Decls) {
488     SourceLocation Loc = D->getLocation();
489     if (Loc.isValid()) {
490       // See if there are any new comments that are not attached to a decl.
491       // The location doesn't have to be precise - we care only about the file.
492       File = SourceMgr.getDecomposedLoc(Loc).first;
493       break;
494     }
495   }
496 
497   if (File.isInvalid())
498     return;
499 
500   auto CommentsInThisFile = Comments.getCommentsInFile(File);
501   if (!CommentsInThisFile || CommentsInThisFile->empty() ||
502       CommentsInThisFile->rbegin()->second->isAttached())
503     return;
504 
505   // There is at least one comment not attached to a decl.
506   // Maybe it should be attached to one of Decls?
507   //
508   // Note that this way we pick up not only comments that precede the
509   // declaration, but also comments that *follow* the declaration -- thanks to
510   // the lookahead in the lexer: we've consumed the semicolon and looked
511   // ahead through comments.
512 
513   for (const Decl *D : Decls) {
514     assert(D);
515     if (D->isInvalidDecl())
516       continue;
517 
518     D = &adjustDeclToTemplate(*D);
519 
520     const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
521 
522     if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
523       continue;
524 
525     if (DeclRawComments.count(D) > 0)
526       continue;
527 
528     if (RawComment *const DocComment =
529             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
530       cacheRawCommentForDecl(*D, *DocComment);
531       comments::FullComment *FC = DocComment->parse(*this, PP, D);
532       ParsedComments[D->getCanonicalDecl()] = FC;
533     }
534   }
535 }
536 
537 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
538                                                     const Decl *D) const {
539   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
540   ThisDeclInfo->CommentDecl = D;
541   ThisDeclInfo->IsFilled = false;
542   ThisDeclInfo->fill();
543   ThisDeclInfo->CommentDecl = FC->getDecl();
544   if (!ThisDeclInfo->TemplateParameters)
545     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
546   comments::FullComment *CFC =
547     new (*this) comments::FullComment(FC->getBlocks(),
548                                       ThisDeclInfo);
549   return CFC;
550 }
551 
552 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
553   const RawComment *RC = getRawCommentForDeclNoCache(D);
554   return RC ? RC->parse(*this, nullptr, D) : nullptr;
555 }
556 
557 comments::FullComment *ASTContext::getCommentForDecl(
558                                               const Decl *D,
559                                               const Preprocessor *PP) const {
560   if (!D || D->isInvalidDecl())
561     return nullptr;
562   D = &adjustDeclToTemplate(*D);
563 
564   const Decl *Canonical = D->getCanonicalDecl();
565   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
566       ParsedComments.find(Canonical);
567 
568   if (Pos != ParsedComments.end()) {
569     if (Canonical != D) {
570       comments::FullComment *FC = Pos->second;
571       comments::FullComment *CFC = cloneFullComment(FC, D);
572       return CFC;
573     }
574     return Pos->second;
575   }
576 
577   const Decl *OriginalDecl = nullptr;
578 
579   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
580   if (!RC) {
581     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
582       SmallVector<const NamedDecl*, 8> Overridden;
583       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
584       if (OMD && OMD->isPropertyAccessor())
585         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
586           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
587             return cloneFullComment(FC, D);
588       if (OMD)
589         addRedeclaredMethods(OMD, Overridden);
590       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
591       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
592         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
593           return cloneFullComment(FC, D);
594     }
595     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
596       // Attach any tag type's documentation to its typedef if latter
597       // does not have one of its own.
598       QualType QT = TD->getUnderlyingType();
599       if (const auto *TT = QT->getAs<TagType>())
600         if (const Decl *TD = TT->getDecl())
601           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
602             return cloneFullComment(FC, D);
603     }
604     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
605       while (IC->getSuperClass()) {
606         IC = IC->getSuperClass();
607         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
608           return cloneFullComment(FC, D);
609       }
610     }
611     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
612       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
613         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
614           return cloneFullComment(FC, D);
615     }
616     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
617       if (!(RD = RD->getDefinition()))
618         return nullptr;
619       // Check non-virtual bases.
620       for (const auto &I : RD->bases()) {
621         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
622           continue;
623         QualType Ty = I.getType();
624         if (Ty.isNull())
625           continue;
626         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
627           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
628             continue;
629 
630           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
631             return cloneFullComment(FC, D);
632         }
633       }
634       // Check virtual bases.
635       for (const auto &I : RD->vbases()) {
636         if (I.getAccessSpecifier() != AS_public)
637           continue;
638         QualType Ty = I.getType();
639         if (Ty.isNull())
640           continue;
641         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
642           if (!(VirtualBase= VirtualBase->getDefinition()))
643             continue;
644           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
645             return cloneFullComment(FC, D);
646         }
647       }
648     }
649     return nullptr;
650   }
651 
652   // If the RawComment was attached to other redeclaration of this Decl, we
653   // should parse the comment in context of that other Decl.  This is important
654   // because comments can contain references to parameter names which can be
655   // different across redeclarations.
656   if (D != OriginalDecl && OriginalDecl)
657     return getCommentForDecl(OriginalDecl, PP);
658 
659   comments::FullComment *FC = RC->parse(*this, PP, D);
660   ParsedComments[Canonical] = FC;
661   return FC;
662 }
663 
664 void
665 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
666                                                    const ASTContext &C,
667                                                TemplateTemplateParmDecl *Parm) {
668   ID.AddInteger(Parm->getDepth());
669   ID.AddInteger(Parm->getPosition());
670   ID.AddBoolean(Parm->isParameterPack());
671 
672   TemplateParameterList *Params = Parm->getTemplateParameters();
673   ID.AddInteger(Params->size());
674   for (TemplateParameterList::const_iterator P = Params->begin(),
675                                           PEnd = Params->end();
676        P != PEnd; ++P) {
677     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
678       ID.AddInteger(0);
679       ID.AddBoolean(TTP->isParameterPack());
680       const TypeConstraint *TC = TTP->getTypeConstraint();
681       ID.AddBoolean(TC != nullptr);
682       if (TC)
683         TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
684                                                         /*Canonical=*/true);
685       if (TTP->isExpandedParameterPack()) {
686         ID.AddBoolean(true);
687         ID.AddInteger(TTP->getNumExpansionParameters());
688       } else
689         ID.AddBoolean(false);
690       continue;
691     }
692 
693     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
694       ID.AddInteger(1);
695       ID.AddBoolean(NTTP->isParameterPack());
696       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
697       if (NTTP->isExpandedParameterPack()) {
698         ID.AddBoolean(true);
699         ID.AddInteger(NTTP->getNumExpansionTypes());
700         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
701           QualType T = NTTP->getExpansionType(I);
702           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
703         }
704       } else
705         ID.AddBoolean(false);
706       continue;
707     }
708 
709     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
710     ID.AddInteger(2);
711     Profile(ID, C, TTP);
712   }
713   Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
714   ID.AddBoolean(RequiresClause != nullptr);
715   if (RequiresClause)
716     RequiresClause->Profile(ID, C, /*Canonical=*/true);
717 }
718 
719 static Expr *
720 canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
721                                           QualType ConstrainedType) {
722   // This is a bit ugly - we need to form a new immediately-declared
723   // constraint that references the new parameter; this would ideally
724   // require semantic analysis (e.g. template<C T> struct S {}; - the
725   // converted arguments of C<T> could be an argument pack if C is
726   // declared as template<typename... T> concept C = ...).
727   // We don't have semantic analysis here so we dig deep into the
728   // ready-made constraint expr and change the thing manually.
729   ConceptSpecializationExpr *CSE;
730   if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
731     CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
732   else
733     CSE = cast<ConceptSpecializationExpr>(IDC);
734   ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
735   SmallVector<TemplateArgument, 3> NewConverted;
736   NewConverted.reserve(OldConverted.size());
737   if (OldConverted.front().getKind() == TemplateArgument::Pack) {
738     // The case:
739     // template<typename... T> concept C = true;
740     // template<C<int> T> struct S; -> constraint is C<{T, int}>
741     NewConverted.push_back(ConstrainedType);
742     llvm::append_range(NewConverted,
743                        OldConverted.front().pack_elements().drop_front(1));
744     TemplateArgument NewPack(NewConverted);
745 
746     NewConverted.clear();
747     NewConverted.push_back(NewPack);
748     assert(OldConverted.size() == 1 &&
749            "Template parameter pack should be the last parameter");
750   } else {
751     assert(OldConverted.front().getKind() == TemplateArgument::Type &&
752            "Unexpected first argument kind for immediately-declared "
753            "constraint");
754     NewConverted.push_back(ConstrainedType);
755     llvm::append_range(NewConverted, OldConverted.drop_front(1));
756   }
757   Expr *NewIDC = ConceptSpecializationExpr::Create(
758       C, CSE->getNamedConcept(), NewConverted, nullptr,
759       CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
760 
761   if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
762     NewIDC = new (C) CXXFoldExpr(
763         OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC,
764         BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr,
765         SourceLocation(), /*NumExpansions=*/None);
766   return NewIDC;
767 }
768 
769 TemplateTemplateParmDecl *
770 ASTContext::getCanonicalTemplateTemplateParmDecl(
771                                           TemplateTemplateParmDecl *TTP) const {
772   // Check if we already have a canonical template template parameter.
773   llvm::FoldingSetNodeID ID;
774   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
775   void *InsertPos = nullptr;
776   CanonicalTemplateTemplateParm *Canonical
777     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
778   if (Canonical)
779     return Canonical->getParam();
780 
781   // Build a canonical template parameter list.
782   TemplateParameterList *Params = TTP->getTemplateParameters();
783   SmallVector<NamedDecl *, 4> CanonParams;
784   CanonParams.reserve(Params->size());
785   for (TemplateParameterList::const_iterator P = Params->begin(),
786                                           PEnd = Params->end();
787        P != PEnd; ++P) {
788     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
789       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
790           getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
791           TTP->getDepth(), TTP->getIndex(), nullptr, false,
792           TTP->isParameterPack(), TTP->hasTypeConstraint(),
793           TTP->isExpandedParameterPack() ?
794           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
795       if (const auto *TC = TTP->getTypeConstraint()) {
796         QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
797         Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
798                 *this, TC->getImmediatelyDeclaredConstraint(),
799                 ParamAsArgument);
800         TemplateArgumentListInfo CanonArgsAsWritten;
801         if (auto *Args = TC->getTemplateArgsAsWritten())
802           for (const auto &ArgLoc : Args->arguments())
803             CanonArgsAsWritten.addArgument(
804                 TemplateArgumentLoc(ArgLoc.getArgument(),
805                                     TemplateArgumentLocInfo()));
806         NewTTP->setTypeConstraint(
807             NestedNameSpecifierLoc(),
808             DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
809                                 SourceLocation()), /*FoundDecl=*/nullptr,
810             // Actually canonicalizing a TemplateArgumentLoc is difficult so we
811             // simply omit the ArgsAsWritten
812             TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
813       }
814       CanonParams.push_back(NewTTP);
815     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
816       QualType T = getCanonicalType(NTTP->getType());
817       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
818       NonTypeTemplateParmDecl *Param;
819       if (NTTP->isExpandedParameterPack()) {
820         SmallVector<QualType, 2> ExpandedTypes;
821         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
822         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
823           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
824           ExpandedTInfos.push_back(
825                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
826         }
827 
828         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
829                                                 SourceLocation(),
830                                                 SourceLocation(),
831                                                 NTTP->getDepth(),
832                                                 NTTP->getPosition(), nullptr,
833                                                 T,
834                                                 TInfo,
835                                                 ExpandedTypes,
836                                                 ExpandedTInfos);
837       } else {
838         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
839                                                 SourceLocation(),
840                                                 SourceLocation(),
841                                                 NTTP->getDepth(),
842                                                 NTTP->getPosition(), nullptr,
843                                                 T,
844                                                 NTTP->isParameterPack(),
845                                                 TInfo);
846       }
847       if (AutoType *AT = T->getContainedAutoType()) {
848         if (AT->isConstrained()) {
849           Param->setPlaceholderTypeConstraint(
850               canonicalizeImmediatelyDeclaredConstraint(
851                   *this, NTTP->getPlaceholderTypeConstraint(), T));
852         }
853       }
854       CanonParams.push_back(Param);
855 
856     } else
857       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
858                                            cast<TemplateTemplateParmDecl>(*P)));
859   }
860 
861   Expr *CanonRequiresClause = nullptr;
862   if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
863     CanonRequiresClause = RequiresClause;
864 
865   TemplateTemplateParmDecl *CanonTTP
866     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
867                                        SourceLocation(), TTP->getDepth(),
868                                        TTP->getPosition(),
869                                        TTP->isParameterPack(),
870                                        nullptr,
871                          TemplateParameterList::Create(*this, SourceLocation(),
872                                                        SourceLocation(),
873                                                        CanonParams,
874                                                        SourceLocation(),
875                                                        CanonRequiresClause));
876 
877   // Get the new insert position for the node we care about.
878   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
879   assert(!Canonical && "Shouldn't be in the map!");
880   (void)Canonical;
881 
882   // Create the canonical template template parameter entry.
883   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
884   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
885   return CanonTTP;
886 }
887 
888 TargetCXXABI::Kind ASTContext::getCXXABIKind() const {
889   auto Kind = getTargetInfo().getCXXABI().getKind();
890   return getLangOpts().CXXABI.value_or(Kind);
891 }
892 
893 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
894   if (!LangOpts.CPlusPlus) return nullptr;
895 
896   switch (getCXXABIKind()) {
897   case TargetCXXABI::AppleARM64:
898   case TargetCXXABI::Fuchsia:
899   case TargetCXXABI::GenericARM: // Same as Itanium at this level
900   case TargetCXXABI::iOS:
901   case TargetCXXABI::WatchOS:
902   case TargetCXXABI::GenericAArch64:
903   case TargetCXXABI::GenericMIPS:
904   case TargetCXXABI::GenericItanium:
905   case TargetCXXABI::WebAssembly:
906   case TargetCXXABI::XL:
907     return CreateItaniumCXXABI(*this);
908   case TargetCXXABI::Microsoft:
909     return CreateMicrosoftCXXABI(*this);
910   }
911   llvm_unreachable("Invalid CXXABI type!");
912 }
913 
914 interp::Context &ASTContext::getInterpContext() {
915   if (!InterpContext) {
916     InterpContext.reset(new interp::Context(*this));
917   }
918   return *InterpContext.get();
919 }
920 
921 ParentMapContext &ASTContext::getParentMapContext() {
922   if (!ParentMapCtx)
923     ParentMapCtx.reset(new ParentMapContext(*this));
924   return *ParentMapCtx.get();
925 }
926 
927 static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
928                                            const LangOptions &LOpts) {
929   if (LOpts.FakeAddressSpaceMap) {
930     // The fake address space map must have a distinct entry for each
931     // language-specific address space.
932     static const unsigned FakeAddrSpaceMap[] = {
933         0,  // Default
934         1,  // opencl_global
935         3,  // opencl_local
936         2,  // opencl_constant
937         0,  // opencl_private
938         4,  // opencl_generic
939         5,  // opencl_global_device
940         6,  // opencl_global_host
941         7,  // cuda_device
942         8,  // cuda_constant
943         9,  // cuda_shared
944         1,  // sycl_global
945         5,  // sycl_global_device
946         6,  // sycl_global_host
947         3,  // sycl_local
948         0,  // sycl_private
949         10, // ptr32_sptr
950         11, // ptr32_uptr
951         12  // ptr64
952     };
953     return &FakeAddrSpaceMap;
954   } else {
955     return &T.getAddressSpaceMap();
956   }
957 }
958 
959 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
960                                           const LangOptions &LangOpts) {
961   switch (LangOpts.getAddressSpaceMapMangling()) {
962   case LangOptions::ASMM_Target:
963     return TI.useAddressSpaceMapMangling();
964   case LangOptions::ASMM_On:
965     return true;
966   case LangOptions::ASMM_Off:
967     return false;
968   }
969   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
970 }
971 
972 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
973                        IdentifierTable &idents, SelectorTable &sels,
974                        Builtin::Context &builtins, TranslationUnitKind TUKind)
975     : ConstantArrayTypes(this_(), ConstantArrayTypesLog2InitSize),
976       FunctionProtoTypes(this_(), FunctionProtoTypesLog2InitSize),
977       TemplateSpecializationTypes(this_()),
978       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
979       SubstTemplateTemplateParmPacks(this_()),
980       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
981       NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)),
982       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
983                                         LangOpts.XRayNeverInstrumentFiles,
984                                         LangOpts.XRayAttrListFiles, SM)),
985       ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)),
986       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
987       BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this),
988       Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
989       CompCategories(this_()), LastSDM(nullptr, 0) {
990   addTranslationUnitDecl();
991 }
992 
993 void ASTContext::cleanup() {
994   // Release the DenseMaps associated with DeclContext objects.
995   // FIXME: Is this the ideal solution?
996   ReleaseDeclContextMaps();
997 
998   // Call all of the deallocation functions on all of their targets.
999   for (auto &Pair : Deallocations)
1000     (Pair.first)(Pair.second);
1001   Deallocations.clear();
1002 
1003   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
1004   // because they can contain DenseMaps.
1005   for (llvm::DenseMap<const ObjCContainerDecl*,
1006        const ASTRecordLayout*>::iterator
1007        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
1008     // Increment in loop to prevent using deallocated memory.
1009     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1010       R->Destroy(*this);
1011   ObjCLayouts.clear();
1012 
1013   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
1014        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
1015     // Increment in loop to prevent using deallocated memory.
1016     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1017       R->Destroy(*this);
1018   }
1019   ASTRecordLayouts.clear();
1020 
1021   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
1022                                                     AEnd = DeclAttrs.end();
1023        A != AEnd; ++A)
1024     A->second->~AttrVec();
1025   DeclAttrs.clear();
1026 
1027   for (const auto &Value : ModuleInitializers)
1028     Value.second->~PerModuleInitializers();
1029   ModuleInitializers.clear();
1030 }
1031 
1032 ASTContext::~ASTContext() { cleanup(); }
1033 
1034 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
1035   TraversalScope = TopLevelDecls;
1036   getParentMapContext().clear();
1037 }
1038 
1039 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
1040   Deallocations.push_back({Callback, Data});
1041 }
1042 
1043 void
1044 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1045   ExternalSource = std::move(Source);
1046 }
1047 
1048 void ASTContext::PrintStats() const {
1049   llvm::errs() << "\n*** AST Context Stats:\n";
1050   llvm::errs() << "  " << Types.size() << " types total.\n";
1051 
1052   unsigned counts[] = {
1053 #define TYPE(Name, Parent) 0,
1054 #define ABSTRACT_TYPE(Name, Parent)
1055 #include "clang/AST/TypeNodes.inc"
1056     0 // Extra
1057   };
1058 
1059   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1060     Type *T = Types[i];
1061     counts[(unsigned)T->getTypeClass()]++;
1062   }
1063 
1064   unsigned Idx = 0;
1065   unsigned TotalBytes = 0;
1066 #define TYPE(Name, Parent)                                              \
1067   if (counts[Idx])                                                      \
1068     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
1069                  << " types, " << sizeof(Name##Type) << " each "        \
1070                  << "(" << counts[Idx] * sizeof(Name##Type)             \
1071                  << " bytes)\n";                                        \
1072   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
1073   ++Idx;
1074 #define ABSTRACT_TYPE(Name, Parent)
1075 #include "clang/AST/TypeNodes.inc"
1076 
1077   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1078 
1079   // Implicit special member functions.
1080   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1081                << NumImplicitDefaultConstructors
1082                << " implicit default constructors created\n";
1083   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1084                << NumImplicitCopyConstructors
1085                << " implicit copy constructors created\n";
1086   if (getLangOpts().CPlusPlus)
1087     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1088                  << NumImplicitMoveConstructors
1089                  << " implicit move constructors created\n";
1090   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1091                << NumImplicitCopyAssignmentOperators
1092                << " implicit copy assignment operators created\n";
1093   if (getLangOpts().CPlusPlus)
1094     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1095                  << NumImplicitMoveAssignmentOperators
1096                  << " implicit move assignment operators created\n";
1097   llvm::errs() << NumImplicitDestructorsDeclared << "/"
1098                << NumImplicitDestructors
1099                << " implicit destructors created\n";
1100 
1101   if (ExternalSource) {
1102     llvm::errs() << "\n";
1103     ExternalSource->PrintStats();
1104   }
1105 
1106   BumpAlloc.PrintStats();
1107 }
1108 
1109 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1110                                            bool NotifyListeners) {
1111   if (NotifyListeners)
1112     if (auto *Listener = getASTMutationListener())
1113       Listener->RedefinedHiddenDefinition(ND, M);
1114 
1115   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1116 }
1117 
1118 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1119   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1120   if (It == MergedDefModules.end())
1121     return;
1122 
1123   auto &Merged = It->second;
1124   llvm::DenseSet<Module*> Found;
1125   for (Module *&M : Merged)
1126     if (!Found.insert(M).second)
1127       M = nullptr;
1128   llvm::erase_value(Merged, nullptr);
1129 }
1130 
1131 ArrayRef<Module *>
1132 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1133   auto MergedIt =
1134       MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1135   if (MergedIt == MergedDefModules.end())
1136     return None;
1137   return MergedIt->second;
1138 }
1139 
1140 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1141   if (LazyInitializers.empty())
1142     return;
1143 
1144   auto *Source = Ctx.getExternalSource();
1145   assert(Source && "lazy initializers but no external source");
1146 
1147   auto LazyInits = std::move(LazyInitializers);
1148   LazyInitializers.clear();
1149 
1150   for (auto ID : LazyInits)
1151     Initializers.push_back(Source->GetExternalDecl(ID));
1152 
1153   assert(LazyInitializers.empty() &&
1154          "GetExternalDecl for lazy module initializer added more inits");
1155 }
1156 
1157 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1158   // One special case: if we add a module initializer that imports another
1159   // module, and that module's only initializer is an ImportDecl, simplify.
1160   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1161     auto It = ModuleInitializers.find(ID->getImportedModule());
1162 
1163     // Maybe the ImportDecl does nothing at all. (Common case.)
1164     if (It == ModuleInitializers.end())
1165       return;
1166 
1167     // Maybe the ImportDecl only imports another ImportDecl.
1168     auto &Imported = *It->second;
1169     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1170       Imported.resolve(*this);
1171       auto *OnlyDecl = Imported.Initializers.front();
1172       if (isa<ImportDecl>(OnlyDecl))
1173         D = OnlyDecl;
1174     }
1175   }
1176 
1177   auto *&Inits = ModuleInitializers[M];
1178   if (!Inits)
1179     Inits = new (*this) PerModuleInitializers;
1180   Inits->Initializers.push_back(D);
1181 }
1182 
1183 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1184   auto *&Inits = ModuleInitializers[M];
1185   if (!Inits)
1186     Inits = new (*this) PerModuleInitializers;
1187   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1188                                  IDs.begin(), IDs.end());
1189 }
1190 
1191 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1192   auto It = ModuleInitializers.find(M);
1193   if (It == ModuleInitializers.end())
1194     return None;
1195 
1196   auto *Inits = It->second;
1197   Inits->resolve(*this);
1198   return Inits->Initializers;
1199 }
1200 
1201 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1202   if (!ExternCContext)
1203     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1204 
1205   return ExternCContext;
1206 }
1207 
1208 BuiltinTemplateDecl *
1209 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1210                                      const IdentifierInfo *II) const {
1211   auto *BuiltinTemplate =
1212       BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK);
1213   BuiltinTemplate->setImplicit();
1214   getTranslationUnitDecl()->addDecl(BuiltinTemplate);
1215 
1216   return BuiltinTemplate;
1217 }
1218 
1219 BuiltinTemplateDecl *
1220 ASTContext::getMakeIntegerSeqDecl() const {
1221   if (!MakeIntegerSeqDecl)
1222     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1223                                                   getMakeIntegerSeqName());
1224   return MakeIntegerSeqDecl;
1225 }
1226 
1227 BuiltinTemplateDecl *
1228 ASTContext::getTypePackElementDecl() const {
1229   if (!TypePackElementDecl)
1230     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1231                                                    getTypePackElementName());
1232   return TypePackElementDecl;
1233 }
1234 
1235 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1236                                             RecordDecl::TagKind TK) const {
1237   SourceLocation Loc;
1238   RecordDecl *NewDecl;
1239   if (getLangOpts().CPlusPlus)
1240     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1241                                     Loc, &Idents.get(Name));
1242   else
1243     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1244                                  &Idents.get(Name));
1245   NewDecl->setImplicit();
1246   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1247       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1248   return NewDecl;
1249 }
1250 
1251 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1252                                               StringRef Name) const {
1253   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1254   TypedefDecl *NewDecl = TypedefDecl::Create(
1255       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1256       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1257   NewDecl->setImplicit();
1258   return NewDecl;
1259 }
1260 
1261 TypedefDecl *ASTContext::getInt128Decl() const {
1262   if (!Int128Decl)
1263     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1264   return Int128Decl;
1265 }
1266 
1267 TypedefDecl *ASTContext::getUInt128Decl() const {
1268   if (!UInt128Decl)
1269     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1270   return UInt128Decl;
1271 }
1272 
1273 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1274   auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1275   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1276   Types.push_back(Ty);
1277 }
1278 
1279 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1280                                   const TargetInfo *AuxTarget) {
1281   assert((!this->Target || this->Target == &Target) &&
1282          "Incorrect target reinitialization");
1283   assert(VoidTy.isNull() && "Context reinitialized?");
1284 
1285   this->Target = &Target;
1286   this->AuxTarget = AuxTarget;
1287 
1288   ABI.reset(createCXXABI(Target));
1289   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1290   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1291 
1292   // C99 6.2.5p19.
1293   InitBuiltinType(VoidTy,              BuiltinType::Void);
1294 
1295   // C99 6.2.5p2.
1296   InitBuiltinType(BoolTy,              BuiltinType::Bool);
1297   // C99 6.2.5p3.
1298   if (LangOpts.CharIsSigned)
1299     InitBuiltinType(CharTy,            BuiltinType::Char_S);
1300   else
1301     InitBuiltinType(CharTy,            BuiltinType::Char_U);
1302   // C99 6.2.5p4.
1303   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1304   InitBuiltinType(ShortTy,             BuiltinType::Short);
1305   InitBuiltinType(IntTy,               BuiltinType::Int);
1306   InitBuiltinType(LongTy,              BuiltinType::Long);
1307   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1308 
1309   // C99 6.2.5p6.
1310   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1311   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1312   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1313   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1314   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1315 
1316   // C99 6.2.5p10.
1317   InitBuiltinType(FloatTy,             BuiltinType::Float);
1318   InitBuiltinType(DoubleTy,            BuiltinType::Double);
1319   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1320 
1321   // GNU extension, __float128 for IEEE quadruple precision
1322   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1323 
1324   // __ibm128 for IBM extended precision
1325   InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128);
1326 
1327   // C11 extension ISO/IEC TS 18661-3
1328   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1329 
1330   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1331   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1332   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1333   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1334   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1335   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1336   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1337   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1338   InitBuiltinType(FractTy,                 BuiltinType::Fract);
1339   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1340   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1341   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1342   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1343   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1344   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1345   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1346   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1347   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1348   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1349   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1350   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1351   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1352   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1353   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1354   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1355 
1356   // GNU extension, 128-bit integers.
1357   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1358   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1359 
1360   // C++ 3.9.1p5
1361   if (TargetInfo::isTypeSigned(Target.getWCharType()))
1362     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1363   else  // -fshort-wchar makes wchar_t be unsigned.
1364     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1365   if (LangOpts.CPlusPlus && LangOpts.WChar)
1366     WideCharTy = WCharTy;
1367   else {
1368     // C99 (or C++ using -fno-wchar).
1369     WideCharTy = getFromTargetType(Target.getWCharType());
1370   }
1371 
1372   WIntTy = getFromTargetType(Target.getWIntType());
1373 
1374   // C++20 (proposed)
1375   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1376 
1377   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1378     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1379   else // C99
1380     Char16Ty = getFromTargetType(Target.getChar16Type());
1381 
1382   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1383     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1384   else // C99
1385     Char32Ty = getFromTargetType(Target.getChar32Type());
1386 
1387   // Placeholder type for type-dependent expressions whose type is
1388   // completely unknown. No code should ever check a type against
1389   // DependentTy and users should never see it; however, it is here to
1390   // help diagnose failures to properly check for type-dependent
1391   // expressions.
1392   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1393 
1394   // Placeholder type for functions.
1395   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1396 
1397   // Placeholder type for bound members.
1398   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1399 
1400   // Placeholder type for pseudo-objects.
1401   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1402 
1403   // "any" type; useful for debugger-like clients.
1404   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1405 
1406   // Placeholder type for unbridged ARC casts.
1407   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1408 
1409   // Placeholder type for builtin functions.
1410   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1411 
1412   // Placeholder type for OMP array sections.
1413   if (LangOpts.OpenMP) {
1414     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1415     InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1416     InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1417   }
1418   if (LangOpts.MatrixTypes)
1419     InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1420 
1421   // Builtin types for 'id', 'Class', and 'SEL'.
1422   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1423   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1424   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1425 
1426   if (LangOpts.OpenCL) {
1427 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1428     InitBuiltinType(SingletonId, BuiltinType::Id);
1429 #include "clang/Basic/OpenCLImageTypes.def"
1430 
1431     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1432     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1433     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1434     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1435     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1436 
1437 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1438     InitBuiltinType(Id##Ty, BuiltinType::Id);
1439 #include "clang/Basic/OpenCLExtensionTypes.def"
1440   }
1441 
1442   if (Target.hasAArch64SVETypes()) {
1443 #define SVE_TYPE(Name, Id, SingletonId) \
1444     InitBuiltinType(SingletonId, BuiltinType::Id);
1445 #include "clang/Basic/AArch64SVEACLETypes.def"
1446   }
1447 
1448   if (Target.getTriple().isPPC64()) {
1449 #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
1450       InitBuiltinType(Id##Ty, BuiltinType::Id);
1451 #include "clang/Basic/PPCTypes.def"
1452 #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
1453     InitBuiltinType(Id##Ty, BuiltinType::Id);
1454 #include "clang/Basic/PPCTypes.def"
1455   }
1456 
1457   if (Target.hasRISCVVTypes()) {
1458 #define RVV_TYPE(Name, Id, SingletonId)                                        \
1459   InitBuiltinType(SingletonId, BuiltinType::Id);
1460 #include "clang/Basic/RISCVVTypes.def"
1461   }
1462 
1463   // Builtin type for __objc_yes and __objc_no
1464   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1465                        SignedCharTy : BoolTy);
1466 
1467   ObjCConstantStringType = QualType();
1468 
1469   ObjCSuperType = QualType();
1470 
1471   // void * type
1472   if (LangOpts.OpenCLGenericAddressSpace) {
1473     auto Q = VoidTy.getQualifiers();
1474     Q.setAddressSpace(LangAS::opencl_generic);
1475     VoidPtrTy = getPointerType(getCanonicalType(
1476         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1477   } else {
1478     VoidPtrTy = getPointerType(VoidTy);
1479   }
1480 
1481   // nullptr type (C++0x 2.14.7)
1482   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1483 
1484   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1485   InitBuiltinType(HalfTy, BuiltinType::Half);
1486 
1487   InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1488 
1489   // Builtin type used to help define __builtin_va_list.
1490   VaListTagDecl = nullptr;
1491 
1492   // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1493   if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1494     MSGuidTagDecl = buildImplicitRecord("_GUID");
1495     getTranslationUnitDecl()->addDecl(MSGuidTagDecl);
1496   }
1497 }
1498 
1499 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1500   return SourceMgr.getDiagnostics();
1501 }
1502 
1503 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1504   AttrVec *&Result = DeclAttrs[D];
1505   if (!Result) {
1506     void *Mem = Allocate(sizeof(AttrVec));
1507     Result = new (Mem) AttrVec;
1508   }
1509 
1510   return *Result;
1511 }
1512 
1513 /// Erase the attributes corresponding to the given declaration.
1514 void ASTContext::eraseDeclAttrs(const Decl *D) {
1515   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1516   if (Pos != DeclAttrs.end()) {
1517     Pos->second->~AttrVec();
1518     DeclAttrs.erase(Pos);
1519   }
1520 }
1521 
1522 // FIXME: Remove ?
1523 MemberSpecializationInfo *
1524 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1525   assert(Var->isStaticDataMember() && "Not a static data member");
1526   return getTemplateOrSpecializationInfo(Var)
1527       .dyn_cast<MemberSpecializationInfo *>();
1528 }
1529 
1530 ASTContext::TemplateOrSpecializationInfo
1531 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1532   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1533       TemplateOrInstantiation.find(Var);
1534   if (Pos == TemplateOrInstantiation.end())
1535     return {};
1536 
1537   return Pos->second;
1538 }
1539 
1540 void
1541 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1542                                                 TemplateSpecializationKind TSK,
1543                                           SourceLocation PointOfInstantiation) {
1544   assert(Inst->isStaticDataMember() && "Not a static data member");
1545   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1546   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1547                                             Tmpl, TSK, PointOfInstantiation));
1548 }
1549 
1550 void
1551 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1552                                             TemplateOrSpecializationInfo TSI) {
1553   assert(!TemplateOrInstantiation[Inst] &&
1554          "Already noted what the variable was instantiated from");
1555   TemplateOrInstantiation[Inst] = TSI;
1556 }
1557 
1558 NamedDecl *
1559 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1560   auto Pos = InstantiatedFromUsingDecl.find(UUD);
1561   if (Pos == InstantiatedFromUsingDecl.end())
1562     return nullptr;
1563 
1564   return Pos->second;
1565 }
1566 
1567 void
1568 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1569   assert((isa<UsingDecl>(Pattern) ||
1570           isa<UnresolvedUsingValueDecl>(Pattern) ||
1571           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1572          "pattern decl is not a using decl");
1573   assert((isa<UsingDecl>(Inst) ||
1574           isa<UnresolvedUsingValueDecl>(Inst) ||
1575           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1576          "instantiation did not produce a using decl");
1577   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1578   InstantiatedFromUsingDecl[Inst] = Pattern;
1579 }
1580 
1581 UsingEnumDecl *
1582 ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) {
1583   auto Pos = InstantiatedFromUsingEnumDecl.find(UUD);
1584   if (Pos == InstantiatedFromUsingEnumDecl.end())
1585     return nullptr;
1586 
1587   return Pos->second;
1588 }
1589 
1590 void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
1591                                                   UsingEnumDecl *Pattern) {
1592   assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists");
1593   InstantiatedFromUsingEnumDecl[Inst] = Pattern;
1594 }
1595 
1596 UsingShadowDecl *
1597 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1598   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1599     = InstantiatedFromUsingShadowDecl.find(Inst);
1600   if (Pos == InstantiatedFromUsingShadowDecl.end())
1601     return nullptr;
1602 
1603   return Pos->second;
1604 }
1605 
1606 void
1607 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1608                                                UsingShadowDecl *Pattern) {
1609   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1610   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1611 }
1612 
1613 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1614   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1615     = InstantiatedFromUnnamedFieldDecl.find(Field);
1616   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1617     return nullptr;
1618 
1619   return Pos->second;
1620 }
1621 
1622 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1623                                                      FieldDecl *Tmpl) {
1624   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1625   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1626   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1627          "Already noted what unnamed field was instantiated from");
1628 
1629   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1630 }
1631 
1632 ASTContext::overridden_cxx_method_iterator
1633 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1634   return overridden_methods(Method).begin();
1635 }
1636 
1637 ASTContext::overridden_cxx_method_iterator
1638 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1639   return overridden_methods(Method).end();
1640 }
1641 
1642 unsigned
1643 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1644   auto Range = overridden_methods(Method);
1645   return Range.end() - Range.begin();
1646 }
1647 
1648 ASTContext::overridden_method_range
1649 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1650   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1651       OverriddenMethods.find(Method->getCanonicalDecl());
1652   if (Pos == OverriddenMethods.end())
1653     return overridden_method_range(nullptr, nullptr);
1654   return overridden_method_range(Pos->second.begin(), Pos->second.end());
1655 }
1656 
1657 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1658                                      const CXXMethodDecl *Overridden) {
1659   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1660   OverriddenMethods[Method].push_back(Overridden);
1661 }
1662 
1663 void ASTContext::getOverriddenMethods(
1664                       const NamedDecl *D,
1665                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1666   assert(D);
1667 
1668   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1669     Overridden.append(overridden_methods_begin(CXXMethod),
1670                       overridden_methods_end(CXXMethod));
1671     return;
1672   }
1673 
1674   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1675   if (!Method)
1676     return;
1677 
1678   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1679   Method->getOverriddenMethods(OverDecls);
1680   Overridden.append(OverDecls.begin(), OverDecls.end());
1681 }
1682 
1683 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1684   assert(!Import->getNextLocalImport() &&
1685          "Import declaration already in the chain");
1686   assert(!Import->isFromASTFile() && "Non-local import declaration");
1687   if (!FirstLocalImport) {
1688     FirstLocalImport = Import;
1689     LastLocalImport = Import;
1690     return;
1691   }
1692 
1693   LastLocalImport->setNextLocalImport(Import);
1694   LastLocalImport = Import;
1695 }
1696 
1697 //===----------------------------------------------------------------------===//
1698 //                         Type Sizing and Analysis
1699 //===----------------------------------------------------------------------===//
1700 
1701 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1702 /// scalar floating point type.
1703 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1704   switch (T->castAs<BuiltinType>()->getKind()) {
1705   default:
1706     llvm_unreachable("Not a floating point type!");
1707   case BuiltinType::BFloat16:
1708     return Target->getBFloat16Format();
1709   case BuiltinType::Float16:
1710     return Target->getHalfFormat();
1711   case BuiltinType::Half:
1712     // For HLSL, when the native half type is disabled, half will be treat as
1713     // float.
1714     if (getLangOpts().HLSL)
1715       if (getLangOpts().NativeHalfType)
1716         return Target->getHalfFormat();
1717       else
1718         return Target->getFloatFormat();
1719     else
1720       return Target->getHalfFormat();
1721   case BuiltinType::Float:      return Target->getFloatFormat();
1722   case BuiltinType::Double:     return Target->getDoubleFormat();
1723   case BuiltinType::Ibm128:
1724     return Target->getIbm128Format();
1725   case BuiltinType::LongDouble:
1726     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1727       return AuxTarget->getLongDoubleFormat();
1728     return Target->getLongDoubleFormat();
1729   case BuiltinType::Float128:
1730     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1731       return AuxTarget->getFloat128Format();
1732     return Target->getFloat128Format();
1733   }
1734 }
1735 
1736 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1737   unsigned Align = Target->getCharWidth();
1738 
1739   bool UseAlignAttrOnly = false;
1740   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1741     Align = AlignFromAttr;
1742 
1743     // __attribute__((aligned)) can increase or decrease alignment
1744     // *except* on a struct or struct member, where it only increases
1745     // alignment unless 'packed' is also specified.
1746     //
1747     // It is an error for alignas to decrease alignment, so we can
1748     // ignore that possibility;  Sema should diagnose it.
1749     if (isa<FieldDecl>(D)) {
1750       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1751         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1752     } else {
1753       UseAlignAttrOnly = true;
1754     }
1755   }
1756   else if (isa<FieldDecl>(D))
1757       UseAlignAttrOnly =
1758         D->hasAttr<PackedAttr>() ||
1759         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1760 
1761   // If we're using the align attribute only, just ignore everything
1762   // else about the declaration and its type.
1763   if (UseAlignAttrOnly) {
1764     // do nothing
1765   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1766     QualType T = VD->getType();
1767     if (const auto *RT = T->getAs<ReferenceType>()) {
1768       if (ForAlignof)
1769         T = RT->getPointeeType();
1770       else
1771         T = getPointerType(RT->getPointeeType());
1772     }
1773     QualType BaseT = getBaseElementType(T);
1774     if (T->isFunctionType())
1775       Align = getTypeInfoImpl(T.getTypePtr()).Align;
1776     else if (!BaseT->isIncompleteType()) {
1777       // Adjust alignments of declarations with array type by the
1778       // large-array alignment on the target.
1779       if (const ArrayType *arrayType = getAsArrayType(T)) {
1780         unsigned MinWidth = Target->getLargeArrayMinWidth();
1781         if (!ForAlignof && MinWidth) {
1782           if (isa<VariableArrayType>(arrayType))
1783             Align = std::max(Align, Target->getLargeArrayAlign());
1784           else if (isa<ConstantArrayType>(arrayType) &&
1785                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1786             Align = std::max(Align, Target->getLargeArrayAlign());
1787         }
1788       }
1789       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1790       if (BaseT.getQualifiers().hasUnaligned())
1791         Align = Target->getCharWidth();
1792       if (const auto *VD = dyn_cast<VarDecl>(D)) {
1793         if (VD->hasGlobalStorage() && !ForAlignof) {
1794           uint64_t TypeSize = getTypeSize(T.getTypePtr());
1795           Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1796         }
1797       }
1798     }
1799 
1800     // Fields can be subject to extra alignment constraints, like if
1801     // the field is packed, the struct is packed, or the struct has a
1802     // a max-field-alignment constraint (#pragma pack).  So calculate
1803     // the actual alignment of the field within the struct, and then
1804     // (as we're expected to) constrain that by the alignment of the type.
1805     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1806       const RecordDecl *Parent = Field->getParent();
1807       // We can only produce a sensible answer if the record is valid.
1808       if (!Parent->isInvalidDecl()) {
1809         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1810 
1811         // Start with the record's overall alignment.
1812         unsigned FieldAlign = toBits(Layout.getAlignment());
1813 
1814         // Use the GCD of that and the offset within the record.
1815         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1816         if (Offset > 0) {
1817           // Alignment is always a power of 2, so the GCD will be a power of 2,
1818           // which means we get to do this crazy thing instead of Euclid's.
1819           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1820           if (LowBitOfOffset < FieldAlign)
1821             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1822         }
1823 
1824         Align = std::min(Align, FieldAlign);
1825       }
1826     }
1827   }
1828 
1829   // Some targets have hard limitation on the maximum requestable alignment in
1830   // aligned attribute for static variables.
1831   const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute();
1832   const auto *VD = dyn_cast<VarDecl>(D);
1833   if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static)
1834     Align = std::min(Align, MaxAlignedAttr);
1835 
1836   return toCharUnitsFromBits(Align);
1837 }
1838 
1839 CharUnits ASTContext::getExnObjectAlignment() const {
1840   return toCharUnitsFromBits(Target->getExnObjectAlignment());
1841 }
1842 
1843 // getTypeInfoDataSizeInChars - Return the size of a type, in
1844 // chars. If the type is a record, its data size is returned.  This is
1845 // the size of the memcpy that's performed when assigning this type
1846 // using a trivial copy/move assignment operator.
1847 TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1848   TypeInfoChars Info = getTypeInfoInChars(T);
1849 
1850   // In C++, objects can sometimes be allocated into the tail padding
1851   // of a base-class subobject.  We decide whether that's possible
1852   // during class layout, so here we can just trust the layout results.
1853   if (getLangOpts().CPlusPlus) {
1854     if (const auto *RT = T->getAs<RecordType>()) {
1855       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1856       Info.Width = layout.getDataSize();
1857     }
1858   }
1859 
1860   return Info;
1861 }
1862 
1863 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1864 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1865 TypeInfoChars
1866 static getConstantArrayInfoInChars(const ASTContext &Context,
1867                                    const ConstantArrayType *CAT) {
1868   TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
1869   uint64_t Size = CAT->getSize().getZExtValue();
1870   assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
1871               (uint64_t)(-1)/Size) &&
1872          "Overflow in array type char size evaluation");
1873   uint64_t Width = EltInfo.Width.getQuantity() * Size;
1874   unsigned Align = EltInfo.Align.getQuantity();
1875   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1876       Context.getTargetInfo().getPointerWidth(0) == 64)
1877     Width = llvm::alignTo(Width, Align);
1878   return TypeInfoChars(CharUnits::fromQuantity(Width),
1879                        CharUnits::fromQuantity(Align),
1880                        EltInfo.AlignRequirement);
1881 }
1882 
1883 TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
1884   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1885     return getConstantArrayInfoInChars(*this, CAT);
1886   TypeInfo Info = getTypeInfo(T);
1887   return TypeInfoChars(toCharUnitsFromBits(Info.Width),
1888                        toCharUnitsFromBits(Info.Align), Info.AlignRequirement);
1889 }
1890 
1891 TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
1892   return getTypeInfoInChars(T.getTypePtr());
1893 }
1894 
1895 bool ASTContext::isAlignmentRequired(const Type *T) const {
1896   return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None;
1897 }
1898 
1899 bool ASTContext::isAlignmentRequired(QualType T) const {
1900   return isAlignmentRequired(T.getTypePtr());
1901 }
1902 
1903 unsigned ASTContext::getTypeAlignIfKnown(QualType T,
1904                                          bool NeedsPreferredAlignment) const {
1905   // An alignment on a typedef overrides anything else.
1906   if (const auto *TT = T->getAs<TypedefType>())
1907     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1908       return Align;
1909 
1910   // If we have an (array of) complete type, we're done.
1911   T = getBaseElementType(T);
1912   if (!T->isIncompleteType())
1913     return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
1914 
1915   // If we had an array type, its element type might be a typedef
1916   // type with an alignment attribute.
1917   if (const auto *TT = T->getAs<TypedefType>())
1918     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1919       return Align;
1920 
1921   // Otherwise, see if the declaration of the type had an attribute.
1922   if (const auto *TT = T->getAs<TagType>())
1923     return TT->getDecl()->getMaxAlignment();
1924 
1925   return 0;
1926 }
1927 
1928 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1929   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1930   if (I != MemoizedTypeInfo.end())
1931     return I->second;
1932 
1933   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1934   TypeInfo TI = getTypeInfoImpl(T);
1935   MemoizedTypeInfo[T] = TI;
1936   return TI;
1937 }
1938 
1939 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1940 /// method does not work on incomplete types.
1941 ///
1942 /// FIXME: Pointers into different addr spaces could have different sizes and
1943 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1944 /// should take a QualType, &c.
1945 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1946   uint64_t Width = 0;
1947   unsigned Align = 8;
1948   AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1949   unsigned AS = 0;
1950   switch (T->getTypeClass()) {
1951 #define TYPE(Class, Base)
1952 #define ABSTRACT_TYPE(Class, Base)
1953 #define NON_CANONICAL_TYPE(Class, Base)
1954 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1955 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1956   case Type::Class:                                                            \
1957   assert(!T->isDependentType() && "should not see dependent types here");      \
1958   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1959 #include "clang/AST/TypeNodes.inc"
1960     llvm_unreachable("Should not see dependent types");
1961 
1962   case Type::FunctionNoProto:
1963   case Type::FunctionProto:
1964     // GCC extension: alignof(function) = 32 bits
1965     Width = 0;
1966     Align = 32;
1967     break;
1968 
1969   case Type::IncompleteArray:
1970   case Type::VariableArray:
1971   case Type::ConstantArray: {
1972     // Model non-constant sized arrays as size zero, but track the alignment.
1973     uint64_t Size = 0;
1974     if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1975       Size = CAT->getSize().getZExtValue();
1976 
1977     TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1978     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1979            "Overflow in array type bit size evaluation");
1980     Width = EltInfo.Width * Size;
1981     Align = EltInfo.Align;
1982     AlignRequirement = EltInfo.AlignRequirement;
1983     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1984         getTargetInfo().getPointerWidth(0) == 64)
1985       Width = llvm::alignTo(Width, Align);
1986     break;
1987   }
1988 
1989   case Type::ExtVector:
1990   case Type::Vector: {
1991     const auto *VT = cast<VectorType>(T);
1992     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1993     Width = VT->isExtVectorBoolType() ? VT->getNumElements()
1994                                       : EltInfo.Width * VT->getNumElements();
1995     // Enforce at least byte alignment.
1996     Align = std::max<unsigned>(8, Width);
1997 
1998     // If the alignment is not a power of 2, round up to the next power of 2.
1999     // This happens for non-power-of-2 length vectors.
2000     if (Align & (Align-1)) {
2001       Align = llvm::NextPowerOf2(Align);
2002       Width = llvm::alignTo(Width, Align);
2003     }
2004     // Adjust the alignment based on the target max.
2005     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
2006     if (TargetVectorAlign && TargetVectorAlign < Align)
2007       Align = TargetVectorAlign;
2008     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
2009       // Adjust the alignment for fixed-length SVE vectors. This is important
2010       // for non-power-of-2 vector lengths.
2011       Align = 128;
2012     else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
2013       // Adjust the alignment for fixed-length SVE predicates.
2014       Align = 16;
2015     break;
2016   }
2017 
2018   case Type::ConstantMatrix: {
2019     const auto *MT = cast<ConstantMatrixType>(T);
2020     TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
2021     // The internal layout of a matrix value is implementation defined.
2022     // Initially be ABI compatible with arrays with respect to alignment and
2023     // size.
2024     Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
2025     Align = ElementInfo.Align;
2026     break;
2027   }
2028 
2029   case Type::Builtin:
2030     switch (cast<BuiltinType>(T)->getKind()) {
2031     default: llvm_unreachable("Unknown builtin type!");
2032     case BuiltinType::Void:
2033       // GCC extension: alignof(void) = 8 bits.
2034       Width = 0;
2035       Align = 8;
2036       break;
2037     case BuiltinType::Bool:
2038       Width = Target->getBoolWidth();
2039       Align = Target->getBoolAlign();
2040       break;
2041     case BuiltinType::Char_S:
2042     case BuiltinType::Char_U:
2043     case BuiltinType::UChar:
2044     case BuiltinType::SChar:
2045     case BuiltinType::Char8:
2046       Width = Target->getCharWidth();
2047       Align = Target->getCharAlign();
2048       break;
2049     case BuiltinType::WChar_S:
2050     case BuiltinType::WChar_U:
2051       Width = Target->getWCharWidth();
2052       Align = Target->getWCharAlign();
2053       break;
2054     case BuiltinType::Char16:
2055       Width = Target->getChar16Width();
2056       Align = Target->getChar16Align();
2057       break;
2058     case BuiltinType::Char32:
2059       Width = Target->getChar32Width();
2060       Align = Target->getChar32Align();
2061       break;
2062     case BuiltinType::UShort:
2063     case BuiltinType::Short:
2064       Width = Target->getShortWidth();
2065       Align = Target->getShortAlign();
2066       break;
2067     case BuiltinType::UInt:
2068     case BuiltinType::Int:
2069       Width = Target->getIntWidth();
2070       Align = Target->getIntAlign();
2071       break;
2072     case BuiltinType::ULong:
2073     case BuiltinType::Long:
2074       Width = Target->getLongWidth();
2075       Align = Target->getLongAlign();
2076       break;
2077     case BuiltinType::ULongLong:
2078     case BuiltinType::LongLong:
2079       Width = Target->getLongLongWidth();
2080       Align = Target->getLongLongAlign();
2081       break;
2082     case BuiltinType::Int128:
2083     case BuiltinType::UInt128:
2084       Width = 128;
2085       Align = 128; // int128_t is 128-bit aligned on all targets.
2086       break;
2087     case BuiltinType::ShortAccum:
2088     case BuiltinType::UShortAccum:
2089     case BuiltinType::SatShortAccum:
2090     case BuiltinType::SatUShortAccum:
2091       Width = Target->getShortAccumWidth();
2092       Align = Target->getShortAccumAlign();
2093       break;
2094     case BuiltinType::Accum:
2095     case BuiltinType::UAccum:
2096     case BuiltinType::SatAccum:
2097     case BuiltinType::SatUAccum:
2098       Width = Target->getAccumWidth();
2099       Align = Target->getAccumAlign();
2100       break;
2101     case BuiltinType::LongAccum:
2102     case BuiltinType::ULongAccum:
2103     case BuiltinType::SatLongAccum:
2104     case BuiltinType::SatULongAccum:
2105       Width = Target->getLongAccumWidth();
2106       Align = Target->getLongAccumAlign();
2107       break;
2108     case BuiltinType::ShortFract:
2109     case BuiltinType::UShortFract:
2110     case BuiltinType::SatShortFract:
2111     case BuiltinType::SatUShortFract:
2112       Width = Target->getShortFractWidth();
2113       Align = Target->getShortFractAlign();
2114       break;
2115     case BuiltinType::Fract:
2116     case BuiltinType::UFract:
2117     case BuiltinType::SatFract:
2118     case BuiltinType::SatUFract:
2119       Width = Target->getFractWidth();
2120       Align = Target->getFractAlign();
2121       break;
2122     case BuiltinType::LongFract:
2123     case BuiltinType::ULongFract:
2124     case BuiltinType::SatLongFract:
2125     case BuiltinType::SatULongFract:
2126       Width = Target->getLongFractWidth();
2127       Align = Target->getLongFractAlign();
2128       break;
2129     case BuiltinType::BFloat16:
2130       if (Target->hasBFloat16Type()) {
2131         Width = Target->getBFloat16Width();
2132         Align = Target->getBFloat16Align();
2133       }
2134       break;
2135     case BuiltinType::Float16:
2136     case BuiltinType::Half:
2137       if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2138           !getLangOpts().OpenMPIsDevice) {
2139         Width = Target->getHalfWidth();
2140         Align = Target->getHalfAlign();
2141       } else {
2142         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2143                "Expected OpenMP device compilation.");
2144         Width = AuxTarget->getHalfWidth();
2145         Align = AuxTarget->getHalfAlign();
2146       }
2147       break;
2148     case BuiltinType::Float:
2149       Width = Target->getFloatWidth();
2150       Align = Target->getFloatAlign();
2151       break;
2152     case BuiltinType::Double:
2153       Width = Target->getDoubleWidth();
2154       Align = Target->getDoubleAlign();
2155       break;
2156     case BuiltinType::Ibm128:
2157       Width = Target->getIbm128Width();
2158       Align = Target->getIbm128Align();
2159       break;
2160     case BuiltinType::LongDouble:
2161       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2162           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2163            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2164         Width = AuxTarget->getLongDoubleWidth();
2165         Align = AuxTarget->getLongDoubleAlign();
2166       } else {
2167         Width = Target->getLongDoubleWidth();
2168         Align = Target->getLongDoubleAlign();
2169       }
2170       break;
2171     case BuiltinType::Float128:
2172       if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2173           !getLangOpts().OpenMPIsDevice) {
2174         Width = Target->getFloat128Width();
2175         Align = Target->getFloat128Align();
2176       } else {
2177         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2178                "Expected OpenMP device compilation.");
2179         Width = AuxTarget->getFloat128Width();
2180         Align = AuxTarget->getFloat128Align();
2181       }
2182       break;
2183     case BuiltinType::NullPtr:
2184       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
2185       Align = Target->getPointerAlign(0); //   == sizeof(void*)
2186       break;
2187     case BuiltinType::ObjCId:
2188     case BuiltinType::ObjCClass:
2189     case BuiltinType::ObjCSel:
2190       Width = Target->getPointerWidth(0);
2191       Align = Target->getPointerAlign(0);
2192       break;
2193     case BuiltinType::OCLSampler:
2194     case BuiltinType::OCLEvent:
2195     case BuiltinType::OCLClkEvent:
2196     case BuiltinType::OCLQueue:
2197     case BuiltinType::OCLReserveID:
2198 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2199     case BuiltinType::Id:
2200 #include "clang/Basic/OpenCLImageTypes.def"
2201 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2202   case BuiltinType::Id:
2203 #include "clang/Basic/OpenCLExtensionTypes.def"
2204       AS = getTargetAddressSpace(
2205           Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
2206       Width = Target->getPointerWidth(AS);
2207       Align = Target->getPointerAlign(AS);
2208       break;
2209     // The SVE types are effectively target-specific.  The length of an
2210     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2211     // of 128 bits.  There is one predicate bit for each vector byte, so the
2212     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2213     //
2214     // Because the length is only known at runtime, we use a dummy value
2215     // of 0 for the static length.  The alignment values are those defined
2216     // by the Procedure Call Standard for the Arm Architecture.
2217 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
2218                         IsSigned, IsFP, IsBF)                                  \
2219   case BuiltinType::Id:                                                        \
2220     Width = 0;                                                                 \
2221     Align = 128;                                                               \
2222     break;
2223 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
2224   case BuiltinType::Id:                                                        \
2225     Width = 0;                                                                 \
2226     Align = 16;                                                                \
2227     break;
2228 #include "clang/Basic/AArch64SVEACLETypes.def"
2229 #define PPC_VECTOR_TYPE(Name, Id, Size)                                        \
2230   case BuiltinType::Id:                                                        \
2231     Width = Size;                                                              \
2232     Align = Size;                                                              \
2233     break;
2234 #include "clang/Basic/PPCTypes.def"
2235 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned,   \
2236                         IsFP)                                                  \
2237   case BuiltinType::Id:                                                        \
2238     Width = 0;                                                                 \
2239     Align = ElBits;                                                            \
2240     break;
2241 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind)                      \
2242   case BuiltinType::Id:                                                        \
2243     Width = 0;                                                                 \
2244     Align = 8;                                                                 \
2245     break;
2246 #include "clang/Basic/RISCVVTypes.def"
2247     }
2248     break;
2249   case Type::ObjCObjectPointer:
2250     Width = Target->getPointerWidth(0);
2251     Align = Target->getPointerAlign(0);
2252     break;
2253   case Type::BlockPointer:
2254     AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
2255     Width = Target->getPointerWidth(AS);
2256     Align = Target->getPointerAlign(AS);
2257     break;
2258   case Type::LValueReference:
2259   case Type::RValueReference:
2260     // alignof and sizeof should never enter this code path here, so we go
2261     // the pointer route.
2262     AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
2263     Width = Target->getPointerWidth(AS);
2264     Align = Target->getPointerAlign(AS);
2265     break;
2266   case Type::Pointer:
2267     AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
2268     Width = Target->getPointerWidth(AS);
2269     Align = Target->getPointerAlign(AS);
2270     break;
2271   case Type::MemberPointer: {
2272     const auto *MPT = cast<MemberPointerType>(T);
2273     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2274     Width = MPI.Width;
2275     Align = MPI.Align;
2276     break;
2277   }
2278   case Type::Complex: {
2279     // Complex types have the same alignment as their elements, but twice the
2280     // size.
2281     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2282     Width = EltInfo.Width * 2;
2283     Align = EltInfo.Align;
2284     break;
2285   }
2286   case Type::ObjCObject:
2287     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2288   case Type::Adjusted:
2289   case Type::Decayed:
2290     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2291   case Type::ObjCInterface: {
2292     const auto *ObjCI = cast<ObjCInterfaceType>(T);
2293     if (ObjCI->getDecl()->isInvalidDecl()) {
2294       Width = 8;
2295       Align = 8;
2296       break;
2297     }
2298     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2299     Width = toBits(Layout.getSize());
2300     Align = toBits(Layout.getAlignment());
2301     break;
2302   }
2303   case Type::BitInt: {
2304     const auto *EIT = cast<BitIntType>(T);
2305     Align =
2306         std::min(static_cast<unsigned>(std::max(
2307                      getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))),
2308                  Target->getLongLongAlign());
2309     Width = llvm::alignTo(EIT->getNumBits(), Align);
2310     break;
2311   }
2312   case Type::Record:
2313   case Type::Enum: {
2314     const auto *TT = cast<TagType>(T);
2315 
2316     if (TT->getDecl()->isInvalidDecl()) {
2317       Width = 8;
2318       Align = 8;
2319       break;
2320     }
2321 
2322     if (const auto *ET = dyn_cast<EnumType>(TT)) {
2323       const EnumDecl *ED = ET->getDecl();
2324       TypeInfo Info =
2325           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2326       if (unsigned AttrAlign = ED->getMaxAlignment()) {
2327         Info.Align = AttrAlign;
2328         Info.AlignRequirement = AlignRequirementKind::RequiredByEnum;
2329       }
2330       return Info;
2331     }
2332 
2333     const auto *RT = cast<RecordType>(TT);
2334     const RecordDecl *RD = RT->getDecl();
2335     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2336     Width = toBits(Layout.getSize());
2337     Align = toBits(Layout.getAlignment());
2338     AlignRequirement = RD->hasAttr<AlignedAttr>()
2339                            ? AlignRequirementKind::RequiredByRecord
2340                            : AlignRequirementKind::None;
2341     break;
2342   }
2343 
2344   case Type::SubstTemplateTypeParm:
2345     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2346                        getReplacementType().getTypePtr());
2347 
2348   case Type::Auto:
2349   case Type::DeducedTemplateSpecialization: {
2350     const auto *A = cast<DeducedType>(T);
2351     assert(!A->getDeducedType().isNull() &&
2352            "cannot request the size of an undeduced or dependent auto type");
2353     return getTypeInfo(A->getDeducedType().getTypePtr());
2354   }
2355 
2356   case Type::Paren:
2357     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2358 
2359   case Type::MacroQualified:
2360     return getTypeInfo(
2361         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2362 
2363   case Type::ObjCTypeParam:
2364     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2365 
2366   case Type::Using:
2367     return getTypeInfo(cast<UsingType>(T)->desugar().getTypePtr());
2368 
2369   case Type::Typedef: {
2370     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2371     TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2372     // If the typedef has an aligned attribute on it, it overrides any computed
2373     // alignment we have.  This violates the GCC documentation (which says that
2374     // attribute(aligned) can only round up) but matches its implementation.
2375     if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2376       Align = AttrAlign;
2377       AlignRequirement = AlignRequirementKind::RequiredByTypedef;
2378     } else {
2379       Align = Info.Align;
2380       AlignRequirement = Info.AlignRequirement;
2381     }
2382     Width = Info.Width;
2383     break;
2384   }
2385 
2386   case Type::Elaborated:
2387     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2388 
2389   case Type::Attributed:
2390     return getTypeInfo(
2391                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2392 
2393   case Type::BTFTagAttributed:
2394     return getTypeInfo(
2395         cast<BTFTagAttributedType>(T)->getWrappedType().getTypePtr());
2396 
2397   case Type::Atomic: {
2398     // Start with the base type information.
2399     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2400     Width = Info.Width;
2401     Align = Info.Align;
2402 
2403     if (!Width) {
2404       // An otherwise zero-sized type should still generate an
2405       // atomic operation.
2406       Width = Target->getCharWidth();
2407       assert(Align);
2408     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2409       // If the size of the type doesn't exceed the platform's max
2410       // atomic promotion width, make the size and alignment more
2411       // favorable to atomic operations:
2412 
2413       // Round the size up to a power of 2.
2414       if (!llvm::isPowerOf2_64(Width))
2415         Width = llvm::NextPowerOf2(Width);
2416 
2417       // Set the alignment equal to the size.
2418       Align = static_cast<unsigned>(Width);
2419     }
2420   }
2421   break;
2422 
2423   case Type::Pipe:
2424     Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2425     Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2426     break;
2427   }
2428 
2429   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2430   return TypeInfo(Width, Align, AlignRequirement);
2431 }
2432 
2433 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2434   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2435   if (I != MemoizedUnadjustedAlign.end())
2436     return I->second;
2437 
2438   unsigned UnadjustedAlign;
2439   if (const auto *RT = T->getAs<RecordType>()) {
2440     const RecordDecl *RD = RT->getDecl();
2441     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2442     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2443   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2444     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2445     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2446   } else {
2447     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2448   }
2449 
2450   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2451   return UnadjustedAlign;
2452 }
2453 
2454 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2455   unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2456   return SimdAlign;
2457 }
2458 
2459 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2460 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2461   return CharUnits::fromQuantity(BitSize / getCharWidth());
2462 }
2463 
2464 /// toBits - Convert a size in characters to a size in characters.
2465 int64_t ASTContext::toBits(CharUnits CharSize) const {
2466   return CharSize.getQuantity() * getCharWidth();
2467 }
2468 
2469 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2470 /// This method does not work on incomplete types.
2471 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2472   return getTypeInfoInChars(T).Width;
2473 }
2474 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2475   return getTypeInfoInChars(T).Width;
2476 }
2477 
2478 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2479 /// characters. This method does not work on incomplete types.
2480 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2481   return toCharUnitsFromBits(getTypeAlign(T));
2482 }
2483 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2484   return toCharUnitsFromBits(getTypeAlign(T));
2485 }
2486 
2487 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2488 /// type, in characters, before alignment adustments. This method does
2489 /// not work on incomplete types.
2490 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2491   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2492 }
2493 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2494   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2495 }
2496 
2497 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2498 /// type for the current target in bits.  This can be different than the ABI
2499 /// alignment in cases where it is beneficial for performance or backwards
2500 /// compatibility preserving to overalign a data type. (Note: despite the name,
2501 /// the preferred alignment is ABI-impacting, and not an optimization.)
2502 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2503   TypeInfo TI = getTypeInfo(T);
2504   unsigned ABIAlign = TI.Align;
2505 
2506   T = T->getBaseElementTypeUnsafe();
2507 
2508   // The preferred alignment of member pointers is that of a pointer.
2509   if (T->isMemberPointerType())
2510     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2511 
2512   if (!Target->allowsLargerPreferedTypeAlignment())
2513     return ABIAlign;
2514 
2515   if (const auto *RT = T->getAs<RecordType>()) {
2516     const RecordDecl *RD = RT->getDecl();
2517 
2518     // When used as part of a typedef, or together with a 'packed' attribute,
2519     // the 'aligned' attribute can be used to decrease alignment. Note that the
2520     // 'packed' case is already taken into consideration when computing the
2521     // alignment, we only need to handle the typedef case here.
2522     if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
2523         RD->isInvalidDecl())
2524       return ABIAlign;
2525 
2526     unsigned PreferredAlign = static_cast<unsigned>(
2527         toBits(getASTRecordLayout(RD).PreferredAlignment));
2528     assert(PreferredAlign >= ABIAlign &&
2529            "PreferredAlign should be at least as large as ABIAlign.");
2530     return PreferredAlign;
2531   }
2532 
2533   // Double (and, for targets supporting AIX `power` alignment, long double) and
2534   // long long should be naturally aligned (despite requiring less alignment) if
2535   // possible.
2536   if (const auto *CT = T->getAs<ComplexType>())
2537     T = CT->getElementType().getTypePtr();
2538   if (const auto *ET = T->getAs<EnumType>())
2539     T = ET->getDecl()->getIntegerType().getTypePtr();
2540   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2541       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2542       T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2543       (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
2544        Target->defaultsToAIXPowerAlignment()))
2545     // Don't increase the alignment if an alignment attribute was specified on a
2546     // typedef declaration.
2547     if (!TI.isAlignRequired())
2548       return std::max(ABIAlign, (unsigned)getTypeSize(T));
2549 
2550   return ABIAlign;
2551 }
2552 
2553 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2554 /// for __attribute__((aligned)) on this target, to be used if no alignment
2555 /// value is specified.
2556 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2557   return getTargetInfo().getDefaultAlignForAttributeAligned();
2558 }
2559 
2560 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2561 /// to a global variable of the specified type.
2562 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2563   uint64_t TypeSize = getTypeSize(T.getTypePtr());
2564   return std::max(getPreferredTypeAlign(T),
2565                   getTargetInfo().getMinGlobalAlign(TypeSize));
2566 }
2567 
2568 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2569 /// should be given to a global variable of the specified type.
2570 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2571   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2572 }
2573 
2574 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2575   CharUnits Offset = CharUnits::Zero();
2576   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2577   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2578     Offset += Layout->getBaseClassOffset(Base);
2579     Layout = &getASTRecordLayout(Base);
2580   }
2581   return Offset;
2582 }
2583 
2584 CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
2585   const ValueDecl *MPD = MP.getMemberPointerDecl();
2586   CharUnits ThisAdjustment = CharUnits::Zero();
2587   ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
2588   bool DerivedMember = MP.isMemberPointerToDerivedMember();
2589   const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
2590   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
2591     const CXXRecordDecl *Base = RD;
2592     const CXXRecordDecl *Derived = Path[I];
2593     if (DerivedMember)
2594       std::swap(Base, Derived);
2595     ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
2596     RD = Path[I];
2597   }
2598   if (DerivedMember)
2599     ThisAdjustment = -ThisAdjustment;
2600   return ThisAdjustment;
2601 }
2602 
2603 /// DeepCollectObjCIvars -
2604 /// This routine first collects all declared, but not synthesized, ivars in
2605 /// super class and then collects all ivars, including those synthesized for
2606 /// current class. This routine is used for implementation of current class
2607 /// when all ivars, declared and synthesized are known.
2608 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2609                                       bool leafClass,
2610                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2611   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2612     DeepCollectObjCIvars(SuperClass, false, Ivars);
2613   if (!leafClass) {
2614     llvm::append_range(Ivars, OI->ivars());
2615   } else {
2616     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2617     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2618          Iv= Iv->getNextIvar())
2619       Ivars.push_back(Iv);
2620   }
2621 }
2622 
2623 /// CollectInheritedProtocols - Collect all protocols in current class and
2624 /// those inherited by it.
2625 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2626                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2627   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2628     // We can use protocol_iterator here instead of
2629     // all_referenced_protocol_iterator since we are walking all categories.
2630     for (auto *Proto : OI->all_referenced_protocols()) {
2631       CollectInheritedProtocols(Proto, Protocols);
2632     }
2633 
2634     // Categories of this Interface.
2635     for (const auto *Cat : OI->visible_categories())
2636       CollectInheritedProtocols(Cat, Protocols);
2637 
2638     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2639       while (SD) {
2640         CollectInheritedProtocols(SD, Protocols);
2641         SD = SD->getSuperClass();
2642       }
2643   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2644     for (auto *Proto : OC->protocols()) {
2645       CollectInheritedProtocols(Proto, Protocols);
2646     }
2647   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2648     // Insert the protocol.
2649     if (!Protocols.insert(
2650           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2651       return;
2652 
2653     for (auto *Proto : OP->protocols())
2654       CollectInheritedProtocols(Proto, Protocols);
2655   }
2656 }
2657 
2658 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2659                                                 const RecordDecl *RD) {
2660   assert(RD->isUnion() && "Must be union type");
2661   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2662 
2663   for (const auto *Field : RD->fields()) {
2664     if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2665       return false;
2666     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2667     if (FieldSize != UnionSize)
2668       return false;
2669   }
2670   return !RD->field_empty();
2671 }
2672 
2673 static int64_t getSubobjectOffset(const FieldDecl *Field,
2674                                   const ASTContext &Context,
2675                                   const clang::ASTRecordLayout & /*Layout*/) {
2676   return Context.getFieldOffset(Field);
2677 }
2678 
2679 static int64_t getSubobjectOffset(const CXXRecordDecl *RD,
2680                                   const ASTContext &Context,
2681                                   const clang::ASTRecordLayout &Layout) {
2682   return Context.toBits(Layout.getBaseClassOffset(RD));
2683 }
2684 
2685 static llvm::Optional<int64_t>
2686 structHasUniqueObjectRepresentations(const ASTContext &Context,
2687                                      const RecordDecl *RD);
2688 
2689 static llvm::Optional<int64_t>
2690 getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context) {
2691   if (Field->getType()->isRecordType()) {
2692     const RecordDecl *RD = Field->getType()->getAsRecordDecl();
2693     if (!RD->isUnion())
2694       return structHasUniqueObjectRepresentations(Context, RD);
2695   }
2696 
2697   // A _BitInt type may not be unique if it has padding bits
2698   // but if it is a bitfield the padding bits are not used.
2699   bool IsBitIntType = Field->getType()->isBitIntType();
2700   if (!Field->getType()->isReferenceType() && !IsBitIntType &&
2701       !Context.hasUniqueObjectRepresentations(Field->getType()))
2702     return llvm::None;
2703 
2704   int64_t FieldSizeInBits =
2705       Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2706   if (Field->isBitField()) {
2707     int64_t BitfieldSize = Field->getBitWidthValue(Context);
2708     if (IsBitIntType) {
2709       if ((unsigned)BitfieldSize >
2710           cast<BitIntType>(Field->getType())->getNumBits())
2711         return llvm::None;
2712     } else if (BitfieldSize > FieldSizeInBits) {
2713       return llvm::None;
2714     }
2715     FieldSizeInBits = BitfieldSize;
2716   } else if (IsBitIntType &&
2717              !Context.hasUniqueObjectRepresentations(Field->getType())) {
2718     return llvm::None;
2719   }
2720   return FieldSizeInBits;
2721 }
2722 
2723 static llvm::Optional<int64_t>
2724 getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context) {
2725   return structHasUniqueObjectRepresentations(Context, RD);
2726 }
2727 
2728 template <typename RangeT>
2729 static llvm::Optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations(
2730     const RangeT &Subobjects, int64_t CurOffsetInBits,
2731     const ASTContext &Context, const clang::ASTRecordLayout &Layout) {
2732   for (const auto *Subobject : Subobjects) {
2733     llvm::Optional<int64_t> SizeInBits =
2734         getSubobjectSizeInBits(Subobject, Context);
2735     if (!SizeInBits)
2736       return llvm::None;
2737     if (*SizeInBits != 0) {
2738       int64_t Offset = getSubobjectOffset(Subobject, Context, Layout);
2739       if (Offset != CurOffsetInBits)
2740         return llvm::None;
2741       CurOffsetInBits += *SizeInBits;
2742     }
2743   }
2744   return CurOffsetInBits;
2745 }
2746 
2747 static llvm::Optional<int64_t>
2748 structHasUniqueObjectRepresentations(const ASTContext &Context,
2749                                      const RecordDecl *RD) {
2750   assert(!RD->isUnion() && "Must be struct/class type");
2751   const auto &Layout = Context.getASTRecordLayout(RD);
2752 
2753   int64_t CurOffsetInBits = 0;
2754   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2755     if (ClassDecl->isDynamicClass())
2756       return llvm::None;
2757 
2758     SmallVector<CXXRecordDecl *, 4> Bases;
2759     for (const auto &Base : ClassDecl->bases()) {
2760       // Empty types can be inherited from, and non-empty types can potentially
2761       // have tail padding, so just make sure there isn't an error.
2762       Bases.emplace_back(Base.getType()->getAsCXXRecordDecl());
2763     }
2764 
2765     llvm::sort(Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
2766       return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
2767     });
2768 
2769     llvm::Optional<int64_t> OffsetAfterBases =
2770         structSubobjectsHaveUniqueObjectRepresentations(Bases, CurOffsetInBits,
2771                                                         Context, Layout);
2772     if (!OffsetAfterBases)
2773       return llvm::None;
2774     CurOffsetInBits = *OffsetAfterBases;
2775   }
2776 
2777   llvm::Optional<int64_t> OffsetAfterFields =
2778       structSubobjectsHaveUniqueObjectRepresentations(
2779           RD->fields(), CurOffsetInBits, Context, Layout);
2780   if (!OffsetAfterFields)
2781     return llvm::None;
2782   CurOffsetInBits = *OffsetAfterFields;
2783 
2784   return CurOffsetInBits;
2785 }
2786 
2787 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2788   // C++17 [meta.unary.prop]:
2789   //   The predicate condition for a template specialization
2790   //   has_unique_object_representations<T> shall be
2791   //   satisfied if and only if:
2792   //     (9.1) - T is trivially copyable, and
2793   //     (9.2) - any two objects of type T with the same value have the same
2794   //     object representation, where two objects
2795   //   of array or non-union class type are considered to have the same value
2796   //   if their respective sequences of
2797   //   direct subobjects have the same values, and two objects of union type
2798   //   are considered to have the same
2799   //   value if they have the same active member and the corresponding members
2800   //   have the same value.
2801   //   The set of scalar types for which this condition holds is
2802   //   implementation-defined. [ Note: If a type has padding
2803   //   bits, the condition does not hold; otherwise, the condition holds true
2804   //   for unsigned integral types. -- end note ]
2805   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2806 
2807   // Arrays are unique only if their element type is unique.
2808   if (Ty->isArrayType())
2809     return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2810 
2811   // (9.1) - T is trivially copyable...
2812   if (!Ty.isTriviallyCopyableType(*this))
2813     return false;
2814 
2815   // All integrals and enums are unique.
2816   if (Ty->isIntegralOrEnumerationType()) {
2817     // Except _BitInt types that have padding bits.
2818     if (const auto *BIT = dyn_cast<BitIntType>(Ty))
2819       return getTypeSize(BIT) == BIT->getNumBits();
2820 
2821     return true;
2822   }
2823 
2824   // All other pointers are unique.
2825   if (Ty->isPointerType())
2826     return true;
2827 
2828   if (Ty->isMemberPointerType()) {
2829     const auto *MPT = Ty->getAs<MemberPointerType>();
2830     return !ABI->getMemberPointerInfo(MPT).HasPadding;
2831   }
2832 
2833   if (Ty->isRecordType()) {
2834     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2835 
2836     if (Record->isInvalidDecl())
2837       return false;
2838 
2839     if (Record->isUnion())
2840       return unionHasUniqueObjectRepresentations(*this, Record);
2841 
2842     Optional<int64_t> StructSize =
2843         structHasUniqueObjectRepresentations(*this, Record);
2844 
2845     return StructSize && *StructSize == static_cast<int64_t>(getTypeSize(Ty));
2846   }
2847 
2848   // FIXME: More cases to handle here (list by rsmith):
2849   // vectors (careful about, eg, vector of 3 foo)
2850   // _Complex int and friends
2851   // _Atomic T
2852   // Obj-C block pointers
2853   // Obj-C object pointers
2854   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2855   // clk_event_t, queue_t, reserve_id_t)
2856   // There're also Obj-C class types and the Obj-C selector type, but I think it
2857   // makes sense for those to return false here.
2858 
2859   return false;
2860 }
2861 
2862 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2863   unsigned count = 0;
2864   // Count ivars declared in class extension.
2865   for (const auto *Ext : OI->known_extensions())
2866     count += Ext->ivar_size();
2867 
2868   // Count ivar defined in this class's implementation.  This
2869   // includes synthesized ivars.
2870   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2871     count += ImplDecl->ivar_size();
2872 
2873   return count;
2874 }
2875 
2876 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2877   if (!E)
2878     return false;
2879 
2880   // nullptr_t is always treated as null.
2881   if (E->getType()->isNullPtrType()) return true;
2882 
2883   if (E->getType()->isAnyPointerType() &&
2884       E->IgnoreParenCasts()->isNullPointerConstant(*this,
2885                                                 Expr::NPC_ValueDependentIsNull))
2886     return true;
2887 
2888   // Unfortunately, __null has type 'int'.
2889   if (isa<GNUNullExpr>(E)) return true;
2890 
2891   return false;
2892 }
2893 
2894 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2895 /// exists.
2896 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2897   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2898     I = ObjCImpls.find(D);
2899   if (I != ObjCImpls.end())
2900     return cast<ObjCImplementationDecl>(I->second);
2901   return nullptr;
2902 }
2903 
2904 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2905 /// exists.
2906 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2907   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2908     I = ObjCImpls.find(D);
2909   if (I != ObjCImpls.end())
2910     return cast<ObjCCategoryImplDecl>(I->second);
2911   return nullptr;
2912 }
2913 
2914 /// Set the implementation of ObjCInterfaceDecl.
2915 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2916                            ObjCImplementationDecl *ImplD) {
2917   assert(IFaceD && ImplD && "Passed null params");
2918   ObjCImpls[IFaceD] = ImplD;
2919 }
2920 
2921 /// Set the implementation of ObjCCategoryDecl.
2922 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2923                            ObjCCategoryImplDecl *ImplD) {
2924   assert(CatD && ImplD && "Passed null params");
2925   ObjCImpls[CatD] = ImplD;
2926 }
2927 
2928 const ObjCMethodDecl *
2929 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2930   return ObjCMethodRedecls.lookup(MD);
2931 }
2932 
2933 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2934                                             const ObjCMethodDecl *Redecl) {
2935   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2936   ObjCMethodRedecls[MD] = Redecl;
2937 }
2938 
2939 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2940                                               const NamedDecl *ND) const {
2941   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2942     return ID;
2943   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2944     return CD->getClassInterface();
2945   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2946     return IMD->getClassInterface();
2947 
2948   return nullptr;
2949 }
2950 
2951 /// Get the copy initialization expression of VarDecl, or nullptr if
2952 /// none exists.
2953 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2954   assert(VD && "Passed null params");
2955   assert(VD->hasAttr<BlocksAttr>() &&
2956          "getBlockVarCopyInits - not __block var");
2957   auto I = BlockVarCopyInits.find(VD);
2958   if (I != BlockVarCopyInits.end())
2959     return I->second;
2960   return {nullptr, false};
2961 }
2962 
2963 /// Set the copy initialization expression of a block var decl.
2964 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2965                                      bool CanThrow) {
2966   assert(VD && CopyExpr && "Passed null params");
2967   assert(VD->hasAttr<BlocksAttr>() &&
2968          "setBlockVarCopyInits - not __block var");
2969   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2970 }
2971 
2972 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2973                                                  unsigned DataSize) const {
2974   if (!DataSize)
2975     DataSize = TypeLoc::getFullDataSizeForType(T);
2976   else
2977     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2978            "incorrect data size provided to CreateTypeSourceInfo!");
2979 
2980   auto *TInfo =
2981     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2982   new (TInfo) TypeSourceInfo(T);
2983   return TInfo;
2984 }
2985 
2986 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2987                                                      SourceLocation L) const {
2988   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2989   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2990   return DI;
2991 }
2992 
2993 const ASTRecordLayout &
2994 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2995   return getObjCLayout(D, nullptr);
2996 }
2997 
2998 const ASTRecordLayout &
2999 ASTContext::getASTObjCImplementationLayout(
3000                                         const ObjCImplementationDecl *D) const {
3001   return getObjCLayout(D->getClassInterface(), D);
3002 }
3003 
3004 //===----------------------------------------------------------------------===//
3005 //                   Type creation/memoization methods
3006 //===----------------------------------------------------------------------===//
3007 
3008 QualType
3009 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
3010   unsigned fastQuals = quals.getFastQualifiers();
3011   quals.removeFastQualifiers();
3012 
3013   // Check if we've already instantiated this type.
3014   llvm::FoldingSetNodeID ID;
3015   ExtQuals::Profile(ID, baseType, quals);
3016   void *insertPos = nullptr;
3017   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
3018     assert(eq->getQualifiers() == quals);
3019     return QualType(eq, fastQuals);
3020   }
3021 
3022   // If the base type is not canonical, make the appropriate canonical type.
3023   QualType canon;
3024   if (!baseType->isCanonicalUnqualified()) {
3025     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
3026     canonSplit.Quals.addConsistentQualifiers(quals);
3027     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
3028 
3029     // Re-find the insert position.
3030     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
3031   }
3032 
3033   auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
3034   ExtQualNodes.InsertNode(eq, insertPos);
3035   return QualType(eq, fastQuals);
3036 }
3037 
3038 QualType ASTContext::getAddrSpaceQualType(QualType T,
3039                                           LangAS AddressSpace) const {
3040   QualType CanT = getCanonicalType(T);
3041   if (CanT.getAddressSpace() == AddressSpace)
3042     return T;
3043 
3044   // If we are composing extended qualifiers together, merge together
3045   // into one ExtQuals node.
3046   QualifierCollector Quals;
3047   const Type *TypeNode = Quals.strip(T);
3048 
3049   // If this type already has an address space specified, it cannot get
3050   // another one.
3051   assert(!Quals.hasAddressSpace() &&
3052          "Type cannot be in multiple addr spaces!");
3053   Quals.addAddressSpace(AddressSpace);
3054 
3055   return getExtQualType(TypeNode, Quals);
3056 }
3057 
3058 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
3059   // If the type is not qualified with an address space, just return it
3060   // immediately.
3061   if (!T.hasAddressSpace())
3062     return T;
3063 
3064   // If we are composing extended qualifiers together, merge together
3065   // into one ExtQuals node.
3066   QualifierCollector Quals;
3067   const Type *TypeNode;
3068 
3069   while (T.hasAddressSpace()) {
3070     TypeNode = Quals.strip(T);
3071 
3072     // If the type no longer has an address space after stripping qualifiers,
3073     // jump out.
3074     if (!QualType(TypeNode, 0).hasAddressSpace())
3075       break;
3076 
3077     // There might be sugar in the way. Strip it and try again.
3078     T = T.getSingleStepDesugaredType(*this);
3079   }
3080 
3081   Quals.removeAddressSpace();
3082 
3083   // Removal of the address space can mean there are no longer any
3084   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
3085   // or required.
3086   if (Quals.hasNonFastQualifiers())
3087     return getExtQualType(TypeNode, Quals);
3088   else
3089     return QualType(TypeNode, Quals.getFastQualifiers());
3090 }
3091 
3092 QualType ASTContext::getObjCGCQualType(QualType T,
3093                                        Qualifiers::GC GCAttr) const {
3094   QualType CanT = getCanonicalType(T);
3095   if (CanT.getObjCGCAttr() == GCAttr)
3096     return T;
3097 
3098   if (const auto *ptr = T->getAs<PointerType>()) {
3099     QualType Pointee = ptr->getPointeeType();
3100     if (Pointee->isAnyPointerType()) {
3101       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
3102       return getPointerType(ResultType);
3103     }
3104   }
3105 
3106   // If we are composing extended qualifiers together, merge together
3107   // into one ExtQuals node.
3108   QualifierCollector Quals;
3109   const Type *TypeNode = Quals.strip(T);
3110 
3111   // If this type already has an ObjCGC specified, it cannot get
3112   // another one.
3113   assert(!Quals.hasObjCGCAttr() &&
3114          "Type cannot have multiple ObjCGCs!");
3115   Quals.addObjCGCAttr(GCAttr);
3116 
3117   return getExtQualType(TypeNode, Quals);
3118 }
3119 
3120 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
3121   if (const PointerType *Ptr = T->getAs<PointerType>()) {
3122     QualType Pointee = Ptr->getPointeeType();
3123     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
3124       return getPointerType(removeAddrSpaceQualType(Pointee));
3125     }
3126   }
3127   return T;
3128 }
3129 
3130 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
3131                                                    FunctionType::ExtInfo Info) {
3132   if (T->getExtInfo() == Info)
3133     return T;
3134 
3135   QualType Result;
3136   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
3137     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
3138   } else {
3139     const auto *FPT = cast<FunctionProtoType>(T);
3140     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3141     EPI.ExtInfo = Info;
3142     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
3143   }
3144 
3145   return cast<FunctionType>(Result.getTypePtr());
3146 }
3147 
3148 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
3149                                                  QualType ResultType) {
3150   FD = FD->getMostRecentDecl();
3151   while (true) {
3152     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
3153     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3154     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
3155     if (FunctionDecl *Next = FD->getPreviousDecl())
3156       FD = Next;
3157     else
3158       break;
3159   }
3160   if (ASTMutationListener *L = getASTMutationListener())
3161     L->DeducedReturnType(FD, ResultType);
3162 }
3163 
3164 /// Get a function type and produce the equivalent function type with the
3165 /// specified exception specification. Type sugar that can be present on a
3166 /// declaration of a function with an exception specification is permitted
3167 /// and preserved. Other type sugar (for instance, typedefs) is not.
3168 QualType ASTContext::getFunctionTypeWithExceptionSpec(
3169     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const {
3170   // Might have some parens.
3171   if (const auto *PT = dyn_cast<ParenType>(Orig))
3172     return getParenType(
3173         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
3174 
3175   // Might be wrapped in a macro qualified type.
3176   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
3177     return getMacroQualifiedType(
3178         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
3179         MQT->getMacroIdentifier());
3180 
3181   // Might have a calling-convention attribute.
3182   if (const auto *AT = dyn_cast<AttributedType>(Orig))
3183     return getAttributedType(
3184         AT->getAttrKind(),
3185         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
3186         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3187 
3188   // Anything else must be a function type. Rebuild it with the new exception
3189   // specification.
3190   const auto *Proto = Orig->castAs<FunctionProtoType>();
3191   return getFunctionType(
3192       Proto->getReturnType(), Proto->getParamTypes(),
3193       Proto->getExtProtoInfo().withExceptionSpec(ESI));
3194 }
3195 
3196 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3197                                                           QualType U) const {
3198   return hasSameType(T, U) ||
3199          (getLangOpts().CPlusPlus17 &&
3200           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3201                       getFunctionTypeWithExceptionSpec(U, EST_None)));
3202 }
3203 
3204 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3205   if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3206     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3207     SmallVector<QualType, 16> Args(Proto->param_types());
3208     for (unsigned i = 0, n = Args.size(); i != n; ++i)
3209       Args[i] = removePtrSizeAddrSpace(Args[i]);
3210     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3211   }
3212 
3213   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3214     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3215     return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3216   }
3217 
3218   return T;
3219 }
3220 
3221 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3222   return hasSameType(T, U) ||
3223          hasSameType(getFunctionTypeWithoutPtrSizes(T),
3224                      getFunctionTypeWithoutPtrSizes(U));
3225 }
3226 
3227 void ASTContext::adjustExceptionSpec(
3228     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3229     bool AsWritten) {
3230   // Update the type.
3231   QualType Updated =
3232       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3233   FD->setType(Updated);
3234 
3235   if (!AsWritten)
3236     return;
3237 
3238   // Update the type in the type source information too.
3239   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3240     // If the type and the type-as-written differ, we may need to update
3241     // the type-as-written too.
3242     if (TSInfo->getType() != FD->getType())
3243       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3244 
3245     // FIXME: When we get proper type location information for exceptions,
3246     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3247     // up the TypeSourceInfo;
3248     assert(TypeLoc::getFullDataSizeForType(Updated) ==
3249                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3250            "TypeLoc size mismatch from updating exception specification");
3251     TSInfo->overrideType(Updated);
3252   }
3253 }
3254 
3255 /// getComplexType - Return the uniqued reference to the type for a complex
3256 /// number with the specified element type.
3257 QualType ASTContext::getComplexType(QualType T) const {
3258   // Unique pointers, to guarantee there is only one pointer of a particular
3259   // structure.
3260   llvm::FoldingSetNodeID ID;
3261   ComplexType::Profile(ID, T);
3262 
3263   void *InsertPos = nullptr;
3264   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3265     return QualType(CT, 0);
3266 
3267   // If the pointee type isn't canonical, this won't be a canonical type either,
3268   // so fill in the canonical type field.
3269   QualType Canonical;
3270   if (!T.isCanonical()) {
3271     Canonical = getComplexType(getCanonicalType(T));
3272 
3273     // Get the new insert position for the node we care about.
3274     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3275     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3276   }
3277   auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3278   Types.push_back(New);
3279   ComplexTypes.InsertNode(New, InsertPos);
3280   return QualType(New, 0);
3281 }
3282 
3283 /// getPointerType - Return the uniqued reference to the type for a pointer to
3284 /// the specified type.
3285 QualType ASTContext::getPointerType(QualType T) const {
3286   // Unique pointers, to guarantee there is only one pointer of a particular
3287   // structure.
3288   llvm::FoldingSetNodeID ID;
3289   PointerType::Profile(ID, T);
3290 
3291   void *InsertPos = nullptr;
3292   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3293     return QualType(PT, 0);
3294 
3295   // If the pointee type isn't canonical, this won't be a canonical type either,
3296   // so fill in the canonical type field.
3297   QualType Canonical;
3298   if (!T.isCanonical()) {
3299     Canonical = getPointerType(getCanonicalType(T));
3300 
3301     // Get the new insert position for the node we care about.
3302     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3303     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3304   }
3305   auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3306   Types.push_back(New);
3307   PointerTypes.InsertNode(New, InsertPos);
3308   return QualType(New, 0);
3309 }
3310 
3311 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3312   llvm::FoldingSetNodeID ID;
3313   AdjustedType::Profile(ID, Orig, New);
3314   void *InsertPos = nullptr;
3315   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3316   if (AT)
3317     return QualType(AT, 0);
3318 
3319   QualType Canonical = getCanonicalType(New);
3320 
3321   // Get the new insert position for the node we care about.
3322   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3323   assert(!AT && "Shouldn't be in the map!");
3324 
3325   AT = new (*this, TypeAlignment)
3326       AdjustedType(Type::Adjusted, Orig, New, Canonical);
3327   Types.push_back(AT);
3328   AdjustedTypes.InsertNode(AT, InsertPos);
3329   return QualType(AT, 0);
3330 }
3331 
3332 QualType ASTContext::getDecayedType(QualType T) const {
3333   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3334 
3335   QualType Decayed;
3336 
3337   // C99 6.7.5.3p7:
3338   //   A declaration of a parameter as "array of type" shall be
3339   //   adjusted to "qualified pointer to type", where the type
3340   //   qualifiers (if any) are those specified within the [ and ] of
3341   //   the array type derivation.
3342   if (T->isArrayType())
3343     Decayed = getArrayDecayedType(T);
3344 
3345   // C99 6.7.5.3p8:
3346   //   A declaration of a parameter as "function returning type"
3347   //   shall be adjusted to "pointer to function returning type", as
3348   //   in 6.3.2.1.
3349   if (T->isFunctionType())
3350     Decayed = getPointerType(T);
3351 
3352   llvm::FoldingSetNodeID ID;
3353   AdjustedType::Profile(ID, T, Decayed);
3354   void *InsertPos = nullptr;
3355   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3356   if (AT)
3357     return QualType(AT, 0);
3358 
3359   QualType Canonical = getCanonicalType(Decayed);
3360 
3361   // Get the new insert position for the node we care about.
3362   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3363   assert(!AT && "Shouldn't be in the map!");
3364 
3365   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
3366   Types.push_back(AT);
3367   AdjustedTypes.InsertNode(AT, InsertPos);
3368   return QualType(AT, 0);
3369 }
3370 
3371 /// getBlockPointerType - Return the uniqued reference to the type for
3372 /// a pointer to the specified block.
3373 QualType ASTContext::getBlockPointerType(QualType T) const {
3374   assert(T->isFunctionType() && "block of function types only");
3375   // Unique pointers, to guarantee there is only one block of a particular
3376   // structure.
3377   llvm::FoldingSetNodeID ID;
3378   BlockPointerType::Profile(ID, T);
3379 
3380   void *InsertPos = nullptr;
3381   if (BlockPointerType *PT =
3382         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3383     return QualType(PT, 0);
3384 
3385   // If the block pointee type isn't canonical, this won't be a canonical
3386   // type either so fill in the canonical type field.
3387   QualType Canonical;
3388   if (!T.isCanonical()) {
3389     Canonical = getBlockPointerType(getCanonicalType(T));
3390 
3391     // Get the new insert position for the node we care about.
3392     BlockPointerType *NewIP =
3393       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3394     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3395   }
3396   auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3397   Types.push_back(New);
3398   BlockPointerTypes.InsertNode(New, InsertPos);
3399   return QualType(New, 0);
3400 }
3401 
3402 /// getLValueReferenceType - Return the uniqued reference to the type for an
3403 /// lvalue reference to the specified type.
3404 QualType
3405 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3406   assert((!T->isPlaceholderType() ||
3407           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3408          "Unresolved placeholder type");
3409 
3410   // Unique pointers, to guarantee there is only one pointer of a particular
3411   // structure.
3412   llvm::FoldingSetNodeID ID;
3413   ReferenceType::Profile(ID, T, SpelledAsLValue);
3414 
3415   void *InsertPos = nullptr;
3416   if (LValueReferenceType *RT =
3417         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3418     return QualType(RT, 0);
3419 
3420   const auto *InnerRef = T->getAs<ReferenceType>();
3421 
3422   // If the referencee type isn't canonical, this won't be a canonical type
3423   // either, so fill in the canonical type field.
3424   QualType Canonical;
3425   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3426     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3427     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3428 
3429     // Get the new insert position for the node we care about.
3430     LValueReferenceType *NewIP =
3431       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3432     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3433   }
3434 
3435   auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3436                                                              SpelledAsLValue);
3437   Types.push_back(New);
3438   LValueReferenceTypes.InsertNode(New, InsertPos);
3439 
3440   return QualType(New, 0);
3441 }
3442 
3443 /// getRValueReferenceType - Return the uniqued reference to the type for an
3444 /// rvalue reference to the specified type.
3445 QualType ASTContext::getRValueReferenceType(QualType T) const {
3446   assert((!T->isPlaceholderType() ||
3447           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3448          "Unresolved placeholder type");
3449 
3450   // Unique pointers, to guarantee there is only one pointer of a particular
3451   // structure.
3452   llvm::FoldingSetNodeID ID;
3453   ReferenceType::Profile(ID, T, false);
3454 
3455   void *InsertPos = nullptr;
3456   if (RValueReferenceType *RT =
3457         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3458     return QualType(RT, 0);
3459 
3460   const auto *InnerRef = T->getAs<ReferenceType>();
3461 
3462   // If the referencee type isn't canonical, this won't be a canonical type
3463   // either, so fill in the canonical type field.
3464   QualType Canonical;
3465   if (InnerRef || !T.isCanonical()) {
3466     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3467     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3468 
3469     // Get the new insert position for the node we care about.
3470     RValueReferenceType *NewIP =
3471       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3472     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3473   }
3474 
3475   auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3476   Types.push_back(New);
3477   RValueReferenceTypes.InsertNode(New, InsertPos);
3478   return QualType(New, 0);
3479 }
3480 
3481 /// getMemberPointerType - Return the uniqued reference to the type for a
3482 /// member pointer to the specified type, in the specified class.
3483 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3484   // Unique pointers, to guarantee there is only one pointer of a particular
3485   // structure.
3486   llvm::FoldingSetNodeID ID;
3487   MemberPointerType::Profile(ID, T, Cls);
3488 
3489   void *InsertPos = nullptr;
3490   if (MemberPointerType *PT =
3491       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3492     return QualType(PT, 0);
3493 
3494   // If the pointee or class type isn't canonical, this won't be a canonical
3495   // type either, so fill in the canonical type field.
3496   QualType Canonical;
3497   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3498     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3499 
3500     // Get the new insert position for the node we care about.
3501     MemberPointerType *NewIP =
3502       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3503     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3504   }
3505   auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3506   Types.push_back(New);
3507   MemberPointerTypes.InsertNode(New, InsertPos);
3508   return QualType(New, 0);
3509 }
3510 
3511 /// getConstantArrayType - Return the unique reference to the type for an
3512 /// array of the specified element type.
3513 QualType ASTContext::getConstantArrayType(QualType EltTy,
3514                                           const llvm::APInt &ArySizeIn,
3515                                           const Expr *SizeExpr,
3516                                           ArrayType::ArraySizeModifier ASM,
3517                                           unsigned IndexTypeQuals) const {
3518   assert((EltTy->isDependentType() ||
3519           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3520          "Constant array of VLAs is illegal!");
3521 
3522   // We only need the size as part of the type if it's instantiation-dependent.
3523   if (SizeExpr && !SizeExpr->isInstantiationDependent())
3524     SizeExpr = nullptr;
3525 
3526   // Convert the array size into a canonical width matching the pointer size for
3527   // the target.
3528   llvm::APInt ArySize(ArySizeIn);
3529   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3530 
3531   llvm::FoldingSetNodeID ID;
3532   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3533                              IndexTypeQuals);
3534 
3535   void *InsertPos = nullptr;
3536   if (ConstantArrayType *ATP =
3537       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3538     return QualType(ATP, 0);
3539 
3540   // If the element type isn't canonical or has qualifiers, or the array bound
3541   // is instantiation-dependent, this won't be a canonical type either, so fill
3542   // in the canonical type field.
3543   QualType Canon;
3544   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3545     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3546     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3547                                  ASM, IndexTypeQuals);
3548     Canon = getQualifiedType(Canon, canonSplit.Quals);
3549 
3550     // Get the new insert position for the node we care about.
3551     ConstantArrayType *NewIP =
3552       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3553     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3554   }
3555 
3556   void *Mem = Allocate(
3557       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3558       TypeAlignment);
3559   auto *New = new (Mem)
3560     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3561   ConstantArrayTypes.InsertNode(New, InsertPos);
3562   Types.push_back(New);
3563   return QualType(New, 0);
3564 }
3565 
3566 /// getVariableArrayDecayedType - Turns the given type, which may be
3567 /// variably-modified, into the corresponding type with all the known
3568 /// sizes replaced with [*].
3569 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3570   // Vastly most common case.
3571   if (!type->isVariablyModifiedType()) return type;
3572 
3573   QualType result;
3574 
3575   SplitQualType split = type.getSplitDesugaredType();
3576   const Type *ty = split.Ty;
3577   switch (ty->getTypeClass()) {
3578 #define TYPE(Class, Base)
3579 #define ABSTRACT_TYPE(Class, Base)
3580 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3581 #include "clang/AST/TypeNodes.inc"
3582     llvm_unreachable("didn't desugar past all non-canonical types?");
3583 
3584   // These types should never be variably-modified.
3585   case Type::Builtin:
3586   case Type::Complex:
3587   case Type::Vector:
3588   case Type::DependentVector:
3589   case Type::ExtVector:
3590   case Type::DependentSizedExtVector:
3591   case Type::ConstantMatrix:
3592   case Type::DependentSizedMatrix:
3593   case Type::DependentAddressSpace:
3594   case Type::ObjCObject:
3595   case Type::ObjCInterface:
3596   case Type::ObjCObjectPointer:
3597   case Type::Record:
3598   case Type::Enum:
3599   case Type::UnresolvedUsing:
3600   case Type::TypeOfExpr:
3601   case Type::TypeOf:
3602   case Type::Decltype:
3603   case Type::UnaryTransform:
3604   case Type::DependentName:
3605   case Type::InjectedClassName:
3606   case Type::TemplateSpecialization:
3607   case Type::DependentTemplateSpecialization:
3608   case Type::TemplateTypeParm:
3609   case Type::SubstTemplateTypeParmPack:
3610   case Type::Auto:
3611   case Type::DeducedTemplateSpecialization:
3612   case Type::PackExpansion:
3613   case Type::BitInt:
3614   case Type::DependentBitInt:
3615     llvm_unreachable("type should never be variably-modified");
3616 
3617   // These types can be variably-modified but should never need to
3618   // further decay.
3619   case Type::FunctionNoProto:
3620   case Type::FunctionProto:
3621   case Type::BlockPointer:
3622   case Type::MemberPointer:
3623   case Type::Pipe:
3624     return type;
3625 
3626   // These types can be variably-modified.  All these modifications
3627   // preserve structure except as noted by comments.
3628   // TODO: if we ever care about optimizing VLAs, there are no-op
3629   // optimizations available here.
3630   case Type::Pointer:
3631     result = getPointerType(getVariableArrayDecayedType(
3632                               cast<PointerType>(ty)->getPointeeType()));
3633     break;
3634 
3635   case Type::LValueReference: {
3636     const auto *lv = cast<LValueReferenceType>(ty);
3637     result = getLValueReferenceType(
3638                  getVariableArrayDecayedType(lv->getPointeeType()),
3639                                     lv->isSpelledAsLValue());
3640     break;
3641   }
3642 
3643   case Type::RValueReference: {
3644     const auto *lv = cast<RValueReferenceType>(ty);
3645     result = getRValueReferenceType(
3646                  getVariableArrayDecayedType(lv->getPointeeType()));
3647     break;
3648   }
3649 
3650   case Type::Atomic: {
3651     const auto *at = cast<AtomicType>(ty);
3652     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3653     break;
3654   }
3655 
3656   case Type::ConstantArray: {
3657     const auto *cat = cast<ConstantArrayType>(ty);
3658     result = getConstantArrayType(
3659                  getVariableArrayDecayedType(cat->getElementType()),
3660                                   cat->getSize(),
3661                                   cat->getSizeExpr(),
3662                                   cat->getSizeModifier(),
3663                                   cat->getIndexTypeCVRQualifiers());
3664     break;
3665   }
3666 
3667   case Type::DependentSizedArray: {
3668     const auto *dat = cast<DependentSizedArrayType>(ty);
3669     result = getDependentSizedArrayType(
3670                  getVariableArrayDecayedType(dat->getElementType()),
3671                                         dat->getSizeExpr(),
3672                                         dat->getSizeModifier(),
3673                                         dat->getIndexTypeCVRQualifiers(),
3674                                         dat->getBracketsRange());
3675     break;
3676   }
3677 
3678   // Turn incomplete types into [*] types.
3679   case Type::IncompleteArray: {
3680     const auto *iat = cast<IncompleteArrayType>(ty);
3681     result = getVariableArrayType(
3682                  getVariableArrayDecayedType(iat->getElementType()),
3683                                   /*size*/ nullptr,
3684                                   ArrayType::Normal,
3685                                   iat->getIndexTypeCVRQualifiers(),
3686                                   SourceRange());
3687     break;
3688   }
3689 
3690   // Turn VLA types into [*] types.
3691   case Type::VariableArray: {
3692     const auto *vat = cast<VariableArrayType>(ty);
3693     result = getVariableArrayType(
3694                  getVariableArrayDecayedType(vat->getElementType()),
3695                                   /*size*/ nullptr,
3696                                   ArrayType::Star,
3697                                   vat->getIndexTypeCVRQualifiers(),
3698                                   vat->getBracketsRange());
3699     break;
3700   }
3701   }
3702 
3703   // Apply the top-level qualifiers from the original.
3704   return getQualifiedType(result, split.Quals);
3705 }
3706 
3707 /// getVariableArrayType - Returns a non-unique reference to the type for a
3708 /// variable array of the specified element type.
3709 QualType ASTContext::getVariableArrayType(QualType EltTy,
3710                                           Expr *NumElts,
3711                                           ArrayType::ArraySizeModifier ASM,
3712                                           unsigned IndexTypeQuals,
3713                                           SourceRange Brackets) const {
3714   // Since we don't unique expressions, it isn't possible to unique VLA's
3715   // that have an expression provided for their size.
3716   QualType Canon;
3717 
3718   // Be sure to pull qualifiers off the element type.
3719   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3720     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3721     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3722                                  IndexTypeQuals, Brackets);
3723     Canon = getQualifiedType(Canon, canonSplit.Quals);
3724   }
3725 
3726   auto *New = new (*this, TypeAlignment)
3727     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3728 
3729   VariableArrayTypes.push_back(New);
3730   Types.push_back(New);
3731   return QualType(New, 0);
3732 }
3733 
3734 /// getDependentSizedArrayType - Returns a non-unique reference to
3735 /// the type for a dependently-sized array of the specified element
3736 /// type.
3737 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3738                                                 Expr *numElements,
3739                                                 ArrayType::ArraySizeModifier ASM,
3740                                                 unsigned elementTypeQuals,
3741                                                 SourceRange brackets) const {
3742   assert((!numElements || numElements->isTypeDependent() ||
3743           numElements->isValueDependent()) &&
3744          "Size must be type- or value-dependent!");
3745 
3746   // Dependently-sized array types that do not have a specified number
3747   // of elements will have their sizes deduced from a dependent
3748   // initializer.  We do no canonicalization here at all, which is okay
3749   // because they can't be used in most locations.
3750   if (!numElements) {
3751     auto *newType
3752       = new (*this, TypeAlignment)
3753           DependentSizedArrayType(*this, elementType, QualType(),
3754                                   numElements, ASM, elementTypeQuals,
3755                                   brackets);
3756     Types.push_back(newType);
3757     return QualType(newType, 0);
3758   }
3759 
3760   // Otherwise, we actually build a new type every time, but we
3761   // also build a canonical type.
3762 
3763   SplitQualType canonElementType = getCanonicalType(elementType).split();
3764 
3765   void *insertPos = nullptr;
3766   llvm::FoldingSetNodeID ID;
3767   DependentSizedArrayType::Profile(ID, *this,
3768                                    QualType(canonElementType.Ty, 0),
3769                                    ASM, elementTypeQuals, numElements);
3770 
3771   // Look for an existing type with these properties.
3772   DependentSizedArrayType *canonTy =
3773     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3774 
3775   // If we don't have one, build one.
3776   if (!canonTy) {
3777     canonTy = new (*this, TypeAlignment)
3778       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3779                               QualType(), numElements, ASM, elementTypeQuals,
3780                               brackets);
3781     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3782     Types.push_back(canonTy);
3783   }
3784 
3785   // Apply qualifiers from the element type to the array.
3786   QualType canon = getQualifiedType(QualType(canonTy,0),
3787                                     canonElementType.Quals);
3788 
3789   // If we didn't need extra canonicalization for the element type or the size
3790   // expression, then just use that as our result.
3791   if (QualType(canonElementType.Ty, 0) == elementType &&
3792       canonTy->getSizeExpr() == numElements)
3793     return canon;
3794 
3795   // Otherwise, we need to build a type which follows the spelling
3796   // of the element type.
3797   auto *sugaredType
3798     = new (*this, TypeAlignment)
3799         DependentSizedArrayType(*this, elementType, canon, numElements,
3800                                 ASM, elementTypeQuals, brackets);
3801   Types.push_back(sugaredType);
3802   return QualType(sugaredType, 0);
3803 }
3804 
3805 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3806                                             ArrayType::ArraySizeModifier ASM,
3807                                             unsigned elementTypeQuals) const {
3808   llvm::FoldingSetNodeID ID;
3809   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3810 
3811   void *insertPos = nullptr;
3812   if (IncompleteArrayType *iat =
3813        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3814     return QualType(iat, 0);
3815 
3816   // If the element type isn't canonical, this won't be a canonical type
3817   // either, so fill in the canonical type field.  We also have to pull
3818   // qualifiers off the element type.
3819   QualType canon;
3820 
3821   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3822     SplitQualType canonSplit = getCanonicalType(elementType).split();
3823     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3824                                    ASM, elementTypeQuals);
3825     canon = getQualifiedType(canon, canonSplit.Quals);
3826 
3827     // Get the new insert position for the node we care about.
3828     IncompleteArrayType *existing =
3829       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3830     assert(!existing && "Shouldn't be in the map!"); (void) existing;
3831   }
3832 
3833   auto *newType = new (*this, TypeAlignment)
3834     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3835 
3836   IncompleteArrayTypes.InsertNode(newType, insertPos);
3837   Types.push_back(newType);
3838   return QualType(newType, 0);
3839 }
3840 
3841 ASTContext::BuiltinVectorTypeInfo
3842 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3843 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \
3844   {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
3845    NUMVECTORS};
3846 
3847 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \
3848   {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
3849 
3850   switch (Ty->getKind()) {
3851   default:
3852     llvm_unreachable("Unsupported builtin vector type");
3853   case BuiltinType::SveInt8:
3854     return SVE_INT_ELTTY(8, 16, true, 1);
3855   case BuiltinType::SveUint8:
3856     return SVE_INT_ELTTY(8, 16, false, 1);
3857   case BuiltinType::SveInt8x2:
3858     return SVE_INT_ELTTY(8, 16, true, 2);
3859   case BuiltinType::SveUint8x2:
3860     return SVE_INT_ELTTY(8, 16, false, 2);
3861   case BuiltinType::SveInt8x3:
3862     return SVE_INT_ELTTY(8, 16, true, 3);
3863   case BuiltinType::SveUint8x3:
3864     return SVE_INT_ELTTY(8, 16, false, 3);
3865   case BuiltinType::SveInt8x4:
3866     return SVE_INT_ELTTY(8, 16, true, 4);
3867   case BuiltinType::SveUint8x4:
3868     return SVE_INT_ELTTY(8, 16, false, 4);
3869   case BuiltinType::SveInt16:
3870     return SVE_INT_ELTTY(16, 8, true, 1);
3871   case BuiltinType::SveUint16:
3872     return SVE_INT_ELTTY(16, 8, false, 1);
3873   case BuiltinType::SveInt16x2:
3874     return SVE_INT_ELTTY(16, 8, true, 2);
3875   case BuiltinType::SveUint16x2:
3876     return SVE_INT_ELTTY(16, 8, false, 2);
3877   case BuiltinType::SveInt16x3:
3878     return SVE_INT_ELTTY(16, 8, true, 3);
3879   case BuiltinType::SveUint16x3:
3880     return SVE_INT_ELTTY(16, 8, false, 3);
3881   case BuiltinType::SveInt16x4:
3882     return SVE_INT_ELTTY(16, 8, true, 4);
3883   case BuiltinType::SveUint16x4:
3884     return SVE_INT_ELTTY(16, 8, false, 4);
3885   case BuiltinType::SveInt32:
3886     return SVE_INT_ELTTY(32, 4, true, 1);
3887   case BuiltinType::SveUint32:
3888     return SVE_INT_ELTTY(32, 4, false, 1);
3889   case BuiltinType::SveInt32x2:
3890     return SVE_INT_ELTTY(32, 4, true, 2);
3891   case BuiltinType::SveUint32x2:
3892     return SVE_INT_ELTTY(32, 4, false, 2);
3893   case BuiltinType::SveInt32x3:
3894     return SVE_INT_ELTTY(32, 4, true, 3);
3895   case BuiltinType::SveUint32x3:
3896     return SVE_INT_ELTTY(32, 4, false, 3);
3897   case BuiltinType::SveInt32x4:
3898     return SVE_INT_ELTTY(32, 4, true, 4);
3899   case BuiltinType::SveUint32x4:
3900     return SVE_INT_ELTTY(32, 4, false, 4);
3901   case BuiltinType::SveInt64:
3902     return SVE_INT_ELTTY(64, 2, true, 1);
3903   case BuiltinType::SveUint64:
3904     return SVE_INT_ELTTY(64, 2, false, 1);
3905   case BuiltinType::SveInt64x2:
3906     return SVE_INT_ELTTY(64, 2, true, 2);
3907   case BuiltinType::SveUint64x2:
3908     return SVE_INT_ELTTY(64, 2, false, 2);
3909   case BuiltinType::SveInt64x3:
3910     return SVE_INT_ELTTY(64, 2, true, 3);
3911   case BuiltinType::SveUint64x3:
3912     return SVE_INT_ELTTY(64, 2, false, 3);
3913   case BuiltinType::SveInt64x4:
3914     return SVE_INT_ELTTY(64, 2, true, 4);
3915   case BuiltinType::SveUint64x4:
3916     return SVE_INT_ELTTY(64, 2, false, 4);
3917   case BuiltinType::SveBool:
3918     return SVE_ELTTY(BoolTy, 16, 1);
3919   case BuiltinType::SveFloat16:
3920     return SVE_ELTTY(HalfTy, 8, 1);
3921   case BuiltinType::SveFloat16x2:
3922     return SVE_ELTTY(HalfTy, 8, 2);
3923   case BuiltinType::SveFloat16x3:
3924     return SVE_ELTTY(HalfTy, 8, 3);
3925   case BuiltinType::SveFloat16x4:
3926     return SVE_ELTTY(HalfTy, 8, 4);
3927   case BuiltinType::SveFloat32:
3928     return SVE_ELTTY(FloatTy, 4, 1);
3929   case BuiltinType::SveFloat32x2:
3930     return SVE_ELTTY(FloatTy, 4, 2);
3931   case BuiltinType::SveFloat32x3:
3932     return SVE_ELTTY(FloatTy, 4, 3);
3933   case BuiltinType::SveFloat32x4:
3934     return SVE_ELTTY(FloatTy, 4, 4);
3935   case BuiltinType::SveFloat64:
3936     return SVE_ELTTY(DoubleTy, 2, 1);
3937   case BuiltinType::SveFloat64x2:
3938     return SVE_ELTTY(DoubleTy, 2, 2);
3939   case BuiltinType::SveFloat64x3:
3940     return SVE_ELTTY(DoubleTy, 2, 3);
3941   case BuiltinType::SveFloat64x4:
3942     return SVE_ELTTY(DoubleTy, 2, 4);
3943   case BuiltinType::SveBFloat16:
3944     return SVE_ELTTY(BFloat16Ty, 8, 1);
3945   case BuiltinType::SveBFloat16x2:
3946     return SVE_ELTTY(BFloat16Ty, 8, 2);
3947   case BuiltinType::SveBFloat16x3:
3948     return SVE_ELTTY(BFloat16Ty, 8, 3);
3949   case BuiltinType::SveBFloat16x4:
3950     return SVE_ELTTY(BFloat16Ty, 8, 4);
3951 #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF,         \
3952                             IsSigned)                                          \
3953   case BuiltinType::Id:                                                        \
3954     return {getIntTypeForBitwidth(ElBits, IsSigned),                           \
3955             llvm::ElementCount::getScalable(NumEls), NF};
3956 #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)       \
3957   case BuiltinType::Id:                                                        \
3958     return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy),    \
3959             llvm::ElementCount::getScalable(NumEls), NF};
3960 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3961   case BuiltinType::Id:                                                        \
3962     return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1};
3963 #include "clang/Basic/RISCVVTypes.def"
3964   }
3965 }
3966 
3967 /// getScalableVectorType - Return the unique reference to a scalable vector
3968 /// type of the specified element type and size. VectorType must be a built-in
3969 /// type.
3970 QualType ASTContext::getScalableVectorType(QualType EltTy,
3971                                            unsigned NumElts) const {
3972   if (Target->hasAArch64SVETypes()) {
3973     uint64_t EltTySize = getTypeSize(EltTy);
3974 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
3975                         IsSigned, IsFP, IsBF)                                  \
3976   if (!EltTy->isBooleanType() &&                                               \
3977       ((EltTy->hasIntegerRepresentation() &&                                   \
3978         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
3979        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
3980         IsFP && !IsBF) ||                                                      \
3981        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
3982         IsBF && !IsFP)) &&                                                     \
3983       EltTySize == ElBits && NumElts == NumEls) {                              \
3984     return SingletonId;                                                        \
3985   }
3986 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
3987   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
3988     return SingletonId;
3989 #include "clang/Basic/AArch64SVEACLETypes.def"
3990   } else if (Target->hasRISCVVTypes()) {
3991     uint64_t EltTySize = getTypeSize(EltTy);
3992 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \
3993                         IsFP)                                                  \
3994     if (!EltTy->isBooleanType() &&                                             \
3995         ((EltTy->hasIntegerRepresentation() &&                                 \
3996           EltTy->hasSignedIntegerRepresentation() == IsSigned) ||              \
3997          (EltTy->hasFloatingRepresentation() && IsFP)) &&                      \
3998         EltTySize == ElBits && NumElts == NumEls)                              \
3999       return SingletonId;
4000 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
4001     if (EltTy->isBooleanType() && NumElts == NumEls)                           \
4002       return SingletonId;
4003 #include "clang/Basic/RISCVVTypes.def"
4004   }
4005   return QualType();
4006 }
4007 
4008 /// getVectorType - Return the unique reference to a vector type of
4009 /// the specified element type and size. VectorType must be a built-in type.
4010 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
4011                                    VectorType::VectorKind VecKind) const {
4012   assert(vecType->isBuiltinType());
4013 
4014   // Check if we've already instantiated a vector of this type.
4015   llvm::FoldingSetNodeID ID;
4016   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
4017 
4018   void *InsertPos = nullptr;
4019   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4020     return QualType(VTP, 0);
4021 
4022   // If the element type isn't canonical, this won't be a canonical type either,
4023   // so fill in the canonical type field.
4024   QualType Canonical;
4025   if (!vecType.isCanonical()) {
4026     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
4027 
4028     // Get the new insert position for the node we care about.
4029     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4030     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4031   }
4032   auto *New = new (*this, TypeAlignment)
4033     VectorType(vecType, NumElts, Canonical, VecKind);
4034   VectorTypes.InsertNode(New, InsertPos);
4035   Types.push_back(New);
4036   return QualType(New, 0);
4037 }
4038 
4039 QualType
4040 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
4041                                    SourceLocation AttrLoc,
4042                                    VectorType::VectorKind VecKind) const {
4043   llvm::FoldingSetNodeID ID;
4044   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
4045                                VecKind);
4046   void *InsertPos = nullptr;
4047   DependentVectorType *Canon =
4048       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4049   DependentVectorType *New;
4050 
4051   if (Canon) {
4052     New = new (*this, TypeAlignment) DependentVectorType(
4053         *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
4054   } else {
4055     QualType CanonVecTy = getCanonicalType(VecType);
4056     if (CanonVecTy == VecType) {
4057       New = new (*this, TypeAlignment) DependentVectorType(
4058           *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
4059 
4060       DependentVectorType *CanonCheck =
4061           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4062       assert(!CanonCheck &&
4063              "Dependent-sized vector_size canonical type broken");
4064       (void)CanonCheck;
4065       DependentVectorTypes.InsertNode(New, InsertPos);
4066     } else {
4067       QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
4068                                                 SourceLocation(), VecKind);
4069       New = new (*this, TypeAlignment) DependentVectorType(
4070           *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
4071     }
4072   }
4073 
4074   Types.push_back(New);
4075   return QualType(New, 0);
4076 }
4077 
4078 /// getExtVectorType - Return the unique reference to an extended vector type of
4079 /// the specified element type and size. VectorType must be a built-in type.
4080 QualType
4081 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
4082   assert(vecType->isBuiltinType() || vecType->isDependentType());
4083 
4084   // Check if we've already instantiated a vector of this type.
4085   llvm::FoldingSetNodeID ID;
4086   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
4087                       VectorType::GenericVector);
4088   void *InsertPos = nullptr;
4089   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4090     return QualType(VTP, 0);
4091 
4092   // If the element type isn't canonical, this won't be a canonical type either,
4093   // so fill in the canonical type field.
4094   QualType Canonical;
4095   if (!vecType.isCanonical()) {
4096     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
4097 
4098     // Get the new insert position for the node we care about.
4099     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4100     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4101   }
4102   auto *New = new (*this, TypeAlignment)
4103     ExtVectorType(vecType, NumElts, Canonical);
4104   VectorTypes.InsertNode(New, InsertPos);
4105   Types.push_back(New);
4106   return QualType(New, 0);
4107 }
4108 
4109 QualType
4110 ASTContext::getDependentSizedExtVectorType(QualType vecType,
4111                                            Expr *SizeExpr,
4112                                            SourceLocation AttrLoc) const {
4113   llvm::FoldingSetNodeID ID;
4114   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
4115                                        SizeExpr);
4116 
4117   void *InsertPos = nullptr;
4118   DependentSizedExtVectorType *Canon
4119     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4120   DependentSizedExtVectorType *New;
4121   if (Canon) {
4122     // We already have a canonical version of this array type; use it as
4123     // the canonical type for a newly-built type.
4124     New = new (*this, TypeAlignment)
4125       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
4126                                   SizeExpr, AttrLoc);
4127   } else {
4128     QualType CanonVecTy = getCanonicalType(vecType);
4129     if (CanonVecTy == vecType) {
4130       New = new (*this, TypeAlignment)
4131         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
4132                                     AttrLoc);
4133 
4134       DependentSizedExtVectorType *CanonCheck
4135         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4136       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
4137       (void)CanonCheck;
4138       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
4139     } else {
4140       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
4141                                                            SourceLocation());
4142       New = new (*this, TypeAlignment) DependentSizedExtVectorType(
4143           *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
4144     }
4145   }
4146 
4147   Types.push_back(New);
4148   return QualType(New, 0);
4149 }
4150 
4151 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
4152                                            unsigned NumColumns) const {
4153   llvm::FoldingSetNodeID ID;
4154   ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
4155                               Type::ConstantMatrix);
4156 
4157   assert(MatrixType::isValidElementType(ElementTy) &&
4158          "need a valid element type");
4159   assert(ConstantMatrixType::isDimensionValid(NumRows) &&
4160          ConstantMatrixType::isDimensionValid(NumColumns) &&
4161          "need valid matrix dimensions");
4162   void *InsertPos = nullptr;
4163   if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
4164     return QualType(MTP, 0);
4165 
4166   QualType Canonical;
4167   if (!ElementTy.isCanonical()) {
4168     Canonical =
4169         getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
4170 
4171     ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4172     assert(!NewIP && "Matrix type shouldn't already exist in the map");
4173     (void)NewIP;
4174   }
4175 
4176   auto *New = new (*this, TypeAlignment)
4177       ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
4178   MatrixTypes.InsertNode(New, InsertPos);
4179   Types.push_back(New);
4180   return QualType(New, 0);
4181 }
4182 
4183 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
4184                                                  Expr *RowExpr,
4185                                                  Expr *ColumnExpr,
4186                                                  SourceLocation AttrLoc) const {
4187   QualType CanonElementTy = getCanonicalType(ElementTy);
4188   llvm::FoldingSetNodeID ID;
4189   DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
4190                                     ColumnExpr);
4191 
4192   void *InsertPos = nullptr;
4193   DependentSizedMatrixType *Canon =
4194       DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4195 
4196   if (!Canon) {
4197     Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
4198         *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
4199 #ifndef NDEBUG
4200     DependentSizedMatrixType *CanonCheck =
4201         DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4202     assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
4203 #endif
4204     DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
4205     Types.push_back(Canon);
4206   }
4207 
4208   // Already have a canonical version of the matrix type
4209   //
4210   // If it exactly matches the requested type, use it directly.
4211   if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
4212       Canon->getRowExpr() == ColumnExpr)
4213     return QualType(Canon, 0);
4214 
4215   // Use Canon as the canonical type for newly-built type.
4216   DependentSizedMatrixType *New = new (*this, TypeAlignment)
4217       DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
4218                                ColumnExpr, AttrLoc);
4219   Types.push_back(New);
4220   return QualType(New, 0);
4221 }
4222 
4223 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
4224                                                   Expr *AddrSpaceExpr,
4225                                                   SourceLocation AttrLoc) const {
4226   assert(AddrSpaceExpr->isInstantiationDependent());
4227 
4228   QualType canonPointeeType = getCanonicalType(PointeeType);
4229 
4230   void *insertPos = nullptr;
4231   llvm::FoldingSetNodeID ID;
4232   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4233                                      AddrSpaceExpr);
4234 
4235   DependentAddressSpaceType *canonTy =
4236     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4237 
4238   if (!canonTy) {
4239     canonTy = new (*this, TypeAlignment)
4240       DependentAddressSpaceType(*this, canonPointeeType,
4241                                 QualType(), AddrSpaceExpr, AttrLoc);
4242     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4243     Types.push_back(canonTy);
4244   }
4245 
4246   if (canonPointeeType == PointeeType &&
4247       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4248     return QualType(canonTy, 0);
4249 
4250   auto *sugaredType
4251     = new (*this, TypeAlignment)
4252         DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
4253                                   AddrSpaceExpr, AttrLoc);
4254   Types.push_back(sugaredType);
4255   return QualType(sugaredType, 0);
4256 }
4257 
4258 /// Determine whether \p T is canonical as the result type of a function.
4259 static bool isCanonicalResultType(QualType T) {
4260   return T.isCanonical() &&
4261          (T.getObjCLifetime() == Qualifiers::OCL_None ||
4262           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4263 }
4264 
4265 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4266 QualType
4267 ASTContext::getFunctionNoProtoType(QualType ResultTy,
4268                                    const FunctionType::ExtInfo &Info) const {
4269   // FIXME: This assertion cannot be enabled (yet) because the ObjC rewriter
4270   // functionality creates a function without a prototype regardless of
4271   // language mode (so it makes them even in C++). Once the rewriter has been
4272   // fixed, this assertion can be enabled again.
4273   //assert(!LangOpts.requiresStrictPrototypes() &&
4274   //       "strict prototypes are disabled");
4275 
4276   // Unique functions, to guarantee there is only one function of a particular
4277   // structure.
4278   llvm::FoldingSetNodeID ID;
4279   FunctionNoProtoType::Profile(ID, ResultTy, Info);
4280 
4281   void *InsertPos = nullptr;
4282   if (FunctionNoProtoType *FT =
4283         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4284     return QualType(FT, 0);
4285 
4286   QualType Canonical;
4287   if (!isCanonicalResultType(ResultTy)) {
4288     Canonical =
4289       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4290 
4291     // Get the new insert position for the node we care about.
4292     FunctionNoProtoType *NewIP =
4293       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4294     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4295   }
4296 
4297   auto *New = new (*this, TypeAlignment)
4298     FunctionNoProtoType(ResultTy, Canonical, Info);
4299   Types.push_back(New);
4300   FunctionNoProtoTypes.InsertNode(New, InsertPos);
4301   return QualType(New, 0);
4302 }
4303 
4304 CanQualType
4305 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4306   CanQualType CanResultType = getCanonicalType(ResultType);
4307 
4308   // Canonical result types do not have ARC lifetime qualifiers.
4309   if (CanResultType.getQualifiers().hasObjCLifetime()) {
4310     Qualifiers Qs = CanResultType.getQualifiers();
4311     Qs.removeObjCLifetime();
4312     return CanQualType::CreateUnsafe(
4313              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4314   }
4315 
4316   return CanResultType;
4317 }
4318 
4319 static bool isCanonicalExceptionSpecification(
4320     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4321   if (ESI.Type == EST_None)
4322     return true;
4323   if (!NoexceptInType)
4324     return false;
4325 
4326   // C++17 onwards: exception specification is part of the type, as a simple
4327   // boolean "can this function type throw".
4328   if (ESI.Type == EST_BasicNoexcept)
4329     return true;
4330 
4331   // A noexcept(expr) specification is (possibly) canonical if expr is
4332   // value-dependent.
4333   if (ESI.Type == EST_DependentNoexcept)
4334     return true;
4335 
4336   // A dynamic exception specification is canonical if it only contains pack
4337   // expansions (so we can't tell whether it's non-throwing) and all its
4338   // contained types are canonical.
4339   if (ESI.Type == EST_Dynamic) {
4340     bool AnyPackExpansions = false;
4341     for (QualType ET : ESI.Exceptions) {
4342       if (!ET.isCanonical())
4343         return false;
4344       if (ET->getAs<PackExpansionType>())
4345         AnyPackExpansions = true;
4346     }
4347     return AnyPackExpansions;
4348   }
4349 
4350   return false;
4351 }
4352 
4353 QualType ASTContext::getFunctionTypeInternal(
4354     QualType ResultTy, ArrayRef<QualType> ArgArray,
4355     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4356   size_t NumArgs = ArgArray.size();
4357 
4358   // Unique functions, to guarantee there is only one function of a particular
4359   // structure.
4360   llvm::FoldingSetNodeID ID;
4361   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4362                              *this, true);
4363 
4364   QualType Canonical;
4365   bool Unique = false;
4366 
4367   void *InsertPos = nullptr;
4368   if (FunctionProtoType *FPT =
4369         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4370     QualType Existing = QualType(FPT, 0);
4371 
4372     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4373     // it so long as our exception specification doesn't contain a dependent
4374     // noexcept expression, or we're just looking for a canonical type.
4375     // Otherwise, we're going to need to create a type
4376     // sugar node to hold the concrete expression.
4377     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4378         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4379       return Existing;
4380 
4381     // We need a new type sugar node for this one, to hold the new noexcept
4382     // expression. We do no canonicalization here, but that's OK since we don't
4383     // expect to see the same noexcept expression much more than once.
4384     Canonical = getCanonicalType(Existing);
4385     Unique = true;
4386   }
4387 
4388   bool NoexceptInType = getLangOpts().CPlusPlus17;
4389   bool IsCanonicalExceptionSpec =
4390       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4391 
4392   // Determine whether the type being created is already canonical or not.
4393   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4394                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4395   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4396     if (!ArgArray[i].isCanonicalAsParam())
4397       isCanonical = false;
4398 
4399   if (OnlyWantCanonical)
4400     assert(isCanonical &&
4401            "given non-canonical parameters constructing canonical type");
4402 
4403   // If this type isn't canonical, get the canonical version of it if we don't
4404   // already have it. The exception spec is only partially part of the
4405   // canonical type, and only in C++17 onwards.
4406   if (!isCanonical && Canonical.isNull()) {
4407     SmallVector<QualType, 16> CanonicalArgs;
4408     CanonicalArgs.reserve(NumArgs);
4409     for (unsigned i = 0; i != NumArgs; ++i)
4410       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4411 
4412     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4413     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4414     CanonicalEPI.HasTrailingReturn = false;
4415 
4416     if (IsCanonicalExceptionSpec) {
4417       // Exception spec is already OK.
4418     } else if (NoexceptInType) {
4419       switch (EPI.ExceptionSpec.Type) {
4420       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4421         // We don't know yet. It shouldn't matter what we pick here; no-one
4422         // should ever look at this.
4423         LLVM_FALLTHROUGH;
4424       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4425         CanonicalEPI.ExceptionSpec.Type = EST_None;
4426         break;
4427 
4428         // A dynamic exception specification is almost always "not noexcept",
4429         // with the exception that a pack expansion might expand to no types.
4430       case EST_Dynamic: {
4431         bool AnyPacks = false;
4432         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4433           if (ET->getAs<PackExpansionType>())
4434             AnyPacks = true;
4435           ExceptionTypeStorage.push_back(getCanonicalType(ET));
4436         }
4437         if (!AnyPacks)
4438           CanonicalEPI.ExceptionSpec.Type = EST_None;
4439         else {
4440           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4441           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4442         }
4443         break;
4444       }
4445 
4446       case EST_DynamicNone:
4447       case EST_BasicNoexcept:
4448       case EST_NoexceptTrue:
4449       case EST_NoThrow:
4450         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4451         break;
4452 
4453       case EST_DependentNoexcept:
4454         llvm_unreachable("dependent noexcept is already canonical");
4455       }
4456     } else {
4457       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4458     }
4459 
4460     // Adjust the canonical function result type.
4461     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4462     Canonical =
4463         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4464 
4465     // Get the new insert position for the node we care about.
4466     FunctionProtoType *NewIP =
4467       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4468     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4469   }
4470 
4471   // Compute the needed size to hold this FunctionProtoType and the
4472   // various trailing objects.
4473   auto ESH = FunctionProtoType::getExceptionSpecSize(
4474       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4475   size_t Size = FunctionProtoType::totalSizeToAlloc<
4476       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4477       FunctionType::ExceptionType, Expr *, FunctionDecl *,
4478       FunctionProtoType::ExtParameterInfo, Qualifiers>(
4479       NumArgs, EPI.Variadic, EPI.requiresFunctionProtoTypeExtraBitfields(),
4480       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4481       EPI.ExtParameterInfos ? NumArgs : 0,
4482       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4483 
4484   auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4485   FunctionProtoType::ExtProtoInfo newEPI = EPI;
4486   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4487   Types.push_back(FTP);
4488   if (!Unique)
4489     FunctionProtoTypes.InsertNode(FTP, InsertPos);
4490   return QualType(FTP, 0);
4491 }
4492 
4493 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4494   llvm::FoldingSetNodeID ID;
4495   PipeType::Profile(ID, T, ReadOnly);
4496 
4497   void *InsertPos = nullptr;
4498   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4499     return QualType(PT, 0);
4500 
4501   // If the pipe element type isn't canonical, this won't be a canonical type
4502   // either, so fill in the canonical type field.
4503   QualType Canonical;
4504   if (!T.isCanonical()) {
4505     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4506 
4507     // Get the new insert position for the node we care about.
4508     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4509     assert(!NewIP && "Shouldn't be in the map!");
4510     (void)NewIP;
4511   }
4512   auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4513   Types.push_back(New);
4514   PipeTypes.InsertNode(New, InsertPos);
4515   return QualType(New, 0);
4516 }
4517 
4518 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4519   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4520   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4521                          : Ty;
4522 }
4523 
4524 QualType ASTContext::getReadPipeType(QualType T) const {
4525   return getPipeType(T, true);
4526 }
4527 
4528 QualType ASTContext::getWritePipeType(QualType T) const {
4529   return getPipeType(T, false);
4530 }
4531 
4532 QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const {
4533   llvm::FoldingSetNodeID ID;
4534   BitIntType::Profile(ID, IsUnsigned, NumBits);
4535 
4536   void *InsertPos = nullptr;
4537   if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4538     return QualType(EIT, 0);
4539 
4540   auto *New = new (*this, TypeAlignment) BitIntType(IsUnsigned, NumBits);
4541   BitIntTypes.InsertNode(New, InsertPos);
4542   Types.push_back(New);
4543   return QualType(New, 0);
4544 }
4545 
4546 QualType ASTContext::getDependentBitIntType(bool IsUnsigned,
4547                                             Expr *NumBitsExpr) const {
4548   assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
4549   llvm::FoldingSetNodeID ID;
4550   DependentBitIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4551 
4552   void *InsertPos = nullptr;
4553   if (DependentBitIntType *Existing =
4554           DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4555     return QualType(Existing, 0);
4556 
4557   auto *New = new (*this, TypeAlignment)
4558       DependentBitIntType(*this, IsUnsigned, NumBitsExpr);
4559   DependentBitIntTypes.InsertNode(New, InsertPos);
4560 
4561   Types.push_back(New);
4562   return QualType(New, 0);
4563 }
4564 
4565 #ifndef NDEBUG
4566 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4567   if (!isa<CXXRecordDecl>(D)) return false;
4568   const auto *RD = cast<CXXRecordDecl>(D);
4569   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4570     return true;
4571   if (RD->getDescribedClassTemplate() &&
4572       !isa<ClassTemplateSpecializationDecl>(RD))
4573     return true;
4574   return false;
4575 }
4576 #endif
4577 
4578 /// getInjectedClassNameType - Return the unique reference to the
4579 /// injected class name type for the specified templated declaration.
4580 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4581                                               QualType TST) const {
4582   assert(NeedsInjectedClassNameType(Decl));
4583   if (Decl->TypeForDecl) {
4584     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4585   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4586     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4587     Decl->TypeForDecl = PrevDecl->TypeForDecl;
4588     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4589   } else {
4590     Type *newType =
4591       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4592     Decl->TypeForDecl = newType;
4593     Types.push_back(newType);
4594   }
4595   return QualType(Decl->TypeForDecl, 0);
4596 }
4597 
4598 /// getTypeDeclType - Return the unique reference to the type for the
4599 /// specified type declaration.
4600 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4601   assert(Decl && "Passed null for Decl param");
4602   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4603 
4604   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4605     return getTypedefType(Typedef);
4606 
4607   assert(!isa<TemplateTypeParmDecl>(Decl) &&
4608          "Template type parameter types are always available.");
4609 
4610   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4611     assert(Record->isFirstDecl() && "struct/union has previous declaration");
4612     assert(!NeedsInjectedClassNameType(Record));
4613     return getRecordType(Record);
4614   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4615     assert(Enum->isFirstDecl() && "enum has previous declaration");
4616     return getEnumType(Enum);
4617   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4618     return getUnresolvedUsingType(Using);
4619   } else
4620     llvm_unreachable("TypeDecl without a type?");
4621 
4622   return QualType(Decl->TypeForDecl, 0);
4623 }
4624 
4625 /// getTypedefType - Return the unique reference to the type for the
4626 /// specified typedef name decl.
4627 QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4628                                     QualType Underlying) const {
4629   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4630 
4631   if (Underlying.isNull())
4632     Underlying = Decl->getUnderlyingType();
4633   QualType Canonical = getCanonicalType(Underlying);
4634   auto *newType = new (*this, TypeAlignment)
4635       TypedefType(Type::Typedef, Decl, Underlying, Canonical);
4636   Decl->TypeForDecl = newType;
4637   Types.push_back(newType);
4638   return QualType(newType, 0);
4639 }
4640 
4641 QualType ASTContext::getUsingType(const UsingShadowDecl *Found,
4642                                   QualType Underlying) const {
4643   llvm::FoldingSetNodeID ID;
4644   UsingType::Profile(ID, Found);
4645 
4646   void *InsertPos = nullptr;
4647   UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos);
4648   if (T)
4649     return QualType(T, 0);
4650 
4651   assert(!Underlying.hasLocalQualifiers());
4652   assert(Underlying == getTypeDeclType(cast<TypeDecl>(Found->getTargetDecl())));
4653   QualType Canon = Underlying.getCanonicalType();
4654 
4655   UsingType *NewType =
4656       new (*this, TypeAlignment) UsingType(Found, Underlying, Canon);
4657   Types.push_back(NewType);
4658   UsingTypes.InsertNode(NewType, InsertPos);
4659   return QualType(NewType, 0);
4660 }
4661 
4662 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4663   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4664 
4665   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4666     if (PrevDecl->TypeForDecl)
4667       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4668 
4669   auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4670   Decl->TypeForDecl = newType;
4671   Types.push_back(newType);
4672   return QualType(newType, 0);
4673 }
4674 
4675 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4676   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4677 
4678   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4679     if (PrevDecl->TypeForDecl)
4680       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4681 
4682   auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4683   Decl->TypeForDecl = newType;
4684   Types.push_back(newType);
4685   return QualType(newType, 0);
4686 }
4687 
4688 QualType ASTContext::getUnresolvedUsingType(
4689     const UnresolvedUsingTypenameDecl *Decl) const {
4690   if (Decl->TypeForDecl)
4691     return QualType(Decl->TypeForDecl, 0);
4692 
4693   if (const UnresolvedUsingTypenameDecl *CanonicalDecl =
4694           Decl->getCanonicalDecl())
4695     if (CanonicalDecl->TypeForDecl)
4696       return QualType(Decl->TypeForDecl = CanonicalDecl->TypeForDecl, 0);
4697 
4698   Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Decl);
4699   Decl->TypeForDecl = newType;
4700   Types.push_back(newType);
4701   return QualType(newType, 0);
4702 }
4703 
4704 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4705                                        QualType modifiedType,
4706                                        QualType equivalentType) const {
4707   llvm::FoldingSetNodeID id;
4708   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4709 
4710   void *insertPos = nullptr;
4711   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4712   if (type) return QualType(type, 0);
4713 
4714   QualType canon = getCanonicalType(equivalentType);
4715   type = new (*this, TypeAlignment)
4716       AttributedType(canon, attrKind, modifiedType, equivalentType);
4717 
4718   Types.push_back(type);
4719   AttributedTypes.InsertNode(type, insertPos);
4720 
4721   return QualType(type, 0);
4722 }
4723 
4724 QualType ASTContext::getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
4725                                              QualType Wrapped) {
4726   llvm::FoldingSetNodeID ID;
4727   BTFTagAttributedType::Profile(ID, Wrapped, BTFAttr);
4728 
4729   void *InsertPos = nullptr;
4730   BTFTagAttributedType *Ty =
4731       BTFTagAttributedTypes.FindNodeOrInsertPos(ID, InsertPos);
4732   if (Ty)
4733     return QualType(Ty, 0);
4734 
4735   QualType Canon = getCanonicalType(Wrapped);
4736   Ty = new (*this, TypeAlignment) BTFTagAttributedType(Canon, Wrapped, BTFAttr);
4737 
4738   Types.push_back(Ty);
4739   BTFTagAttributedTypes.InsertNode(Ty, InsertPos);
4740 
4741   return QualType(Ty, 0);
4742 }
4743 
4744 /// Retrieve a substitution-result type.
4745 QualType
4746 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
4747                                          QualType Replacement) const {
4748   assert(Replacement.isCanonical()
4749          && "replacement types must always be canonical");
4750 
4751   llvm::FoldingSetNodeID ID;
4752   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
4753   void *InsertPos = nullptr;
4754   SubstTemplateTypeParmType *SubstParm
4755     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4756 
4757   if (!SubstParm) {
4758     SubstParm = new (*this, TypeAlignment)
4759       SubstTemplateTypeParmType(Parm, Replacement);
4760     Types.push_back(SubstParm);
4761     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4762   }
4763 
4764   return QualType(SubstParm, 0);
4765 }
4766 
4767 /// Retrieve a
4768 QualType ASTContext::getSubstTemplateTypeParmPackType(
4769                                           const TemplateTypeParmType *Parm,
4770                                               const TemplateArgument &ArgPack) {
4771 #ifndef NDEBUG
4772   for (const auto &P : ArgPack.pack_elements()) {
4773     assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
4774     assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
4775   }
4776 #endif
4777 
4778   llvm::FoldingSetNodeID ID;
4779   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
4780   void *InsertPos = nullptr;
4781   if (SubstTemplateTypeParmPackType *SubstParm
4782         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4783     return QualType(SubstParm, 0);
4784 
4785   QualType Canon;
4786   if (!Parm->isCanonicalUnqualified()) {
4787     Canon = getCanonicalType(QualType(Parm, 0));
4788     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
4789                                              ArgPack);
4790     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4791   }
4792 
4793   auto *SubstParm
4794     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
4795                                                                ArgPack);
4796   Types.push_back(SubstParm);
4797   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4798   return QualType(SubstParm, 0);
4799 }
4800 
4801 /// Retrieve the template type parameter type for a template
4802 /// parameter or parameter pack with the given depth, index, and (optionally)
4803 /// name.
4804 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4805                                              bool ParameterPack,
4806                                              TemplateTypeParmDecl *TTPDecl) const {
4807   llvm::FoldingSetNodeID ID;
4808   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4809   void *InsertPos = nullptr;
4810   TemplateTypeParmType *TypeParm
4811     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4812 
4813   if (TypeParm)
4814     return QualType(TypeParm, 0);
4815 
4816   if (TTPDecl) {
4817     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4818     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4819 
4820     TemplateTypeParmType *TypeCheck
4821       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4822     assert(!TypeCheck && "Template type parameter canonical type broken");
4823     (void)TypeCheck;
4824   } else
4825     TypeParm = new (*this, TypeAlignment)
4826       TemplateTypeParmType(Depth, Index, ParameterPack);
4827 
4828   Types.push_back(TypeParm);
4829   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4830 
4831   return QualType(TypeParm, 0);
4832 }
4833 
4834 TypeSourceInfo *
4835 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4836                                               SourceLocation NameLoc,
4837                                         const TemplateArgumentListInfo &Args,
4838                                               QualType Underlying) const {
4839   assert(!Name.getAsDependentTemplateName() &&
4840          "No dependent template names here!");
4841   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4842 
4843   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4844   TemplateSpecializationTypeLoc TL =
4845       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4846   TL.setTemplateKeywordLoc(SourceLocation());
4847   TL.setTemplateNameLoc(NameLoc);
4848   TL.setLAngleLoc(Args.getLAngleLoc());
4849   TL.setRAngleLoc(Args.getRAngleLoc());
4850   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4851     TL.setArgLocInfo(i, Args[i].getLocInfo());
4852   return DI;
4853 }
4854 
4855 QualType
4856 ASTContext::getTemplateSpecializationType(TemplateName Template,
4857                                           const TemplateArgumentListInfo &Args,
4858                                           QualType Underlying) const {
4859   assert(!Template.getAsDependentTemplateName() &&
4860          "No dependent template names here!");
4861 
4862   SmallVector<TemplateArgument, 4> ArgVec;
4863   ArgVec.reserve(Args.size());
4864   for (const TemplateArgumentLoc &Arg : Args.arguments())
4865     ArgVec.push_back(Arg.getArgument());
4866 
4867   return getTemplateSpecializationType(Template, ArgVec, Underlying);
4868 }
4869 
4870 #ifndef NDEBUG
4871 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4872   for (const TemplateArgument &Arg : Args)
4873     if (Arg.isPackExpansion())
4874       return true;
4875 
4876   return true;
4877 }
4878 #endif
4879 
4880 QualType
4881 ASTContext::getTemplateSpecializationType(TemplateName Template,
4882                                           ArrayRef<TemplateArgument> Args,
4883                                           QualType Underlying) const {
4884   assert(!Template.getAsDependentTemplateName() &&
4885          "No dependent template names here!");
4886   // Look through qualified template names.
4887   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4888     Template = QTN->getUnderlyingTemplate();
4889 
4890   bool IsTypeAlias =
4891       isa_and_nonnull<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4892   QualType CanonType;
4893   if (!Underlying.isNull())
4894     CanonType = getCanonicalType(Underlying);
4895   else {
4896     // We can get here with an alias template when the specialization contains
4897     // a pack expansion that does not match up with a parameter pack.
4898     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4899            "Caller must compute aliased type");
4900     IsTypeAlias = false;
4901     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4902   }
4903 
4904   // Allocate the (non-canonical) template specialization type, but don't
4905   // try to unique it: these types typically have location information that
4906   // we don't unique and don't want to lose.
4907   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4908                        sizeof(TemplateArgument) * Args.size() +
4909                        (IsTypeAlias? sizeof(QualType) : 0),
4910                        TypeAlignment);
4911   auto *Spec
4912     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4913                                          IsTypeAlias ? Underlying : QualType());
4914 
4915   Types.push_back(Spec);
4916   return QualType(Spec, 0);
4917 }
4918 
4919 static bool
4920 getCanonicalTemplateArguments(const ASTContext &C,
4921                               ArrayRef<TemplateArgument> OrigArgs,
4922                               SmallVectorImpl<TemplateArgument> &CanonArgs) {
4923   bool AnyNonCanonArgs = false;
4924   unsigned NumArgs = OrigArgs.size();
4925   CanonArgs.resize(NumArgs);
4926   for (unsigned I = 0; I != NumArgs; ++I) {
4927     const TemplateArgument &OrigArg = OrigArgs[I];
4928     TemplateArgument &CanonArg = CanonArgs[I];
4929     CanonArg = C.getCanonicalTemplateArgument(OrigArg);
4930     if (!CanonArg.structurallyEquals(OrigArg))
4931       AnyNonCanonArgs = true;
4932   }
4933   return AnyNonCanonArgs;
4934 }
4935 
4936 QualType ASTContext::getCanonicalTemplateSpecializationType(
4937     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4938   assert(!Template.getAsDependentTemplateName() &&
4939          "No dependent template names here!");
4940 
4941   // Look through qualified template names.
4942   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4943     Template = TemplateName(QTN->getUnderlyingTemplate());
4944 
4945   // Build the canonical template specialization type.
4946   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4947   SmallVector<TemplateArgument, 4> CanonArgs;
4948   ::getCanonicalTemplateArguments(*this, Args, CanonArgs);
4949 
4950   // Determine whether this canonical template specialization type already
4951   // exists.
4952   llvm::FoldingSetNodeID ID;
4953   TemplateSpecializationType::Profile(ID, CanonTemplate,
4954                                       CanonArgs, *this);
4955 
4956   void *InsertPos = nullptr;
4957   TemplateSpecializationType *Spec
4958     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4959 
4960   if (!Spec) {
4961     // Allocate a new canonical template specialization type.
4962     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4963                           sizeof(TemplateArgument) * CanonArgs.size()),
4964                          TypeAlignment);
4965     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4966                                                 CanonArgs,
4967                                                 QualType(), QualType());
4968     Types.push_back(Spec);
4969     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4970   }
4971 
4972   assert(Spec->isDependentType() &&
4973          "Non-dependent template-id type must have a canonical type");
4974   return QualType(Spec, 0);
4975 }
4976 
4977 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
4978                                        NestedNameSpecifier *NNS,
4979                                        QualType NamedType,
4980                                        TagDecl *OwnedTagDecl) const {
4981   llvm::FoldingSetNodeID ID;
4982   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4983 
4984   void *InsertPos = nullptr;
4985   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4986   if (T)
4987     return QualType(T, 0);
4988 
4989   QualType Canon = NamedType;
4990   if (!Canon.isCanonical()) {
4991     Canon = getCanonicalType(NamedType);
4992     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4993     assert(!CheckT && "Elaborated canonical type broken");
4994     (void)CheckT;
4995   }
4996 
4997   void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4998                        TypeAlignment);
4999   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
5000 
5001   Types.push_back(T);
5002   ElaboratedTypes.InsertNode(T, InsertPos);
5003   return QualType(T, 0);
5004 }
5005 
5006 QualType
5007 ASTContext::getParenType(QualType InnerType) const {
5008   llvm::FoldingSetNodeID ID;
5009   ParenType::Profile(ID, InnerType);
5010 
5011   void *InsertPos = nullptr;
5012   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5013   if (T)
5014     return QualType(T, 0);
5015 
5016   QualType Canon = InnerType;
5017   if (!Canon.isCanonical()) {
5018     Canon = getCanonicalType(InnerType);
5019     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5020     assert(!CheckT && "Paren canonical type broken");
5021     (void)CheckT;
5022   }
5023 
5024   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
5025   Types.push_back(T);
5026   ParenTypes.InsertNode(T, InsertPos);
5027   return QualType(T, 0);
5028 }
5029 
5030 QualType
5031 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
5032                                   const IdentifierInfo *MacroII) const {
5033   QualType Canon = UnderlyingTy;
5034   if (!Canon.isCanonical())
5035     Canon = getCanonicalType(UnderlyingTy);
5036 
5037   auto *newType = new (*this, TypeAlignment)
5038       MacroQualifiedType(UnderlyingTy, Canon, MacroII);
5039   Types.push_back(newType);
5040   return QualType(newType, 0);
5041 }
5042 
5043 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
5044                                           NestedNameSpecifier *NNS,
5045                                           const IdentifierInfo *Name,
5046                                           QualType Canon) const {
5047   if (Canon.isNull()) {
5048     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5049     if (CanonNNS != NNS)
5050       Canon = getDependentNameType(Keyword, CanonNNS, Name);
5051   }
5052 
5053   llvm::FoldingSetNodeID ID;
5054   DependentNameType::Profile(ID, Keyword, NNS, Name);
5055 
5056   void *InsertPos = nullptr;
5057   DependentNameType *T
5058     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
5059   if (T)
5060     return QualType(T, 0);
5061 
5062   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
5063   Types.push_back(T);
5064   DependentNameTypes.InsertNode(T, InsertPos);
5065   return QualType(T, 0);
5066 }
5067 
5068 QualType
5069 ASTContext::getDependentTemplateSpecializationType(
5070                                  ElaboratedTypeKeyword Keyword,
5071                                  NestedNameSpecifier *NNS,
5072                                  const IdentifierInfo *Name,
5073                                  const TemplateArgumentListInfo &Args) const {
5074   // TODO: avoid this copy
5075   SmallVector<TemplateArgument, 16> ArgCopy;
5076   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5077     ArgCopy.push_back(Args[I].getArgument());
5078   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
5079 }
5080 
5081 QualType
5082 ASTContext::getDependentTemplateSpecializationType(
5083                                  ElaboratedTypeKeyword Keyword,
5084                                  NestedNameSpecifier *NNS,
5085                                  const IdentifierInfo *Name,
5086                                  ArrayRef<TemplateArgument> Args) const {
5087   assert((!NNS || NNS->isDependent()) &&
5088          "nested-name-specifier must be dependent");
5089 
5090   llvm::FoldingSetNodeID ID;
5091   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
5092                                                Name, Args);
5093 
5094   void *InsertPos = nullptr;
5095   DependentTemplateSpecializationType *T
5096     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5097   if (T)
5098     return QualType(T, 0);
5099 
5100   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5101 
5102   ElaboratedTypeKeyword CanonKeyword = Keyword;
5103   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
5104 
5105   SmallVector<TemplateArgument, 16> CanonArgs;
5106   bool AnyNonCanonArgs =
5107       ::getCanonicalTemplateArguments(*this, Args, CanonArgs);
5108 
5109   QualType Canon;
5110   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
5111     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
5112                                                    Name,
5113                                                    CanonArgs);
5114 
5115     // Find the insert position again.
5116     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5117   }
5118 
5119   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
5120                         sizeof(TemplateArgument) * Args.size()),
5121                        TypeAlignment);
5122   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
5123                                                     Name, Args, Canon);
5124   Types.push_back(T);
5125   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
5126   return QualType(T, 0);
5127 }
5128 
5129 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
5130   TemplateArgument Arg;
5131   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5132     QualType ArgType = getTypeDeclType(TTP);
5133     if (TTP->isParameterPack())
5134       ArgType = getPackExpansionType(ArgType, None);
5135 
5136     Arg = TemplateArgument(ArgType);
5137   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5138     QualType T =
5139         NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
5140     // For class NTTPs, ensure we include the 'const' so the type matches that
5141     // of a real template argument.
5142     // FIXME: It would be more faithful to model this as something like an
5143     // lvalue-to-rvalue conversion applied to a const-qualified lvalue.
5144     if (T->isRecordType())
5145       T.addConst();
5146     Expr *E = new (*this) DeclRefExpr(
5147         *this, NTTP, /*enclosing*/ false, T,
5148         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
5149 
5150     if (NTTP->isParameterPack())
5151       E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
5152                                         None);
5153     Arg = TemplateArgument(E);
5154   } else {
5155     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
5156     if (TTP->isParameterPack())
5157       Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
5158     else
5159       Arg = TemplateArgument(TemplateName(TTP));
5160   }
5161 
5162   if (Param->isTemplateParameterPack())
5163     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
5164 
5165   return Arg;
5166 }
5167 
5168 void
5169 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
5170                                     SmallVectorImpl<TemplateArgument> &Args) {
5171   Args.reserve(Args.size() + Params->size());
5172 
5173   for (NamedDecl *Param : *Params)
5174     Args.push_back(getInjectedTemplateArg(Param));
5175 }
5176 
5177 QualType ASTContext::getPackExpansionType(QualType Pattern,
5178                                           Optional<unsigned> NumExpansions,
5179                                           bool ExpectPackInType) {
5180   assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
5181          "Pack expansions must expand one or more parameter packs");
5182 
5183   llvm::FoldingSetNodeID ID;
5184   PackExpansionType::Profile(ID, Pattern, NumExpansions);
5185 
5186   void *InsertPos = nullptr;
5187   PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5188   if (T)
5189     return QualType(T, 0);
5190 
5191   QualType Canon;
5192   if (!Pattern.isCanonical()) {
5193     Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
5194                                  /*ExpectPackInType=*/false);
5195 
5196     // Find the insert position again, in case we inserted an element into
5197     // PackExpansionTypes and invalidated our insert position.
5198     PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5199   }
5200 
5201   T = new (*this, TypeAlignment)
5202       PackExpansionType(Pattern, Canon, NumExpansions);
5203   Types.push_back(T);
5204   PackExpansionTypes.InsertNode(T, InsertPos);
5205   return QualType(T, 0);
5206 }
5207 
5208 /// CmpProtocolNames - Comparison predicate for sorting protocols
5209 /// alphabetically.
5210 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
5211                             ObjCProtocolDecl *const *RHS) {
5212   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
5213 }
5214 
5215 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
5216   if (Protocols.empty()) return true;
5217 
5218   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
5219     return false;
5220 
5221   for (unsigned i = 1; i != Protocols.size(); ++i)
5222     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
5223         Protocols[i]->getCanonicalDecl() != Protocols[i])
5224       return false;
5225   return true;
5226 }
5227 
5228 static void
5229 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
5230   // Sort protocols, keyed by name.
5231   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
5232 
5233   // Canonicalize.
5234   for (ObjCProtocolDecl *&P : Protocols)
5235     P = P->getCanonicalDecl();
5236 
5237   // Remove duplicates.
5238   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
5239   Protocols.erase(ProtocolsEnd, Protocols.end());
5240 }
5241 
5242 QualType ASTContext::getObjCObjectType(QualType BaseType,
5243                                        ObjCProtocolDecl * const *Protocols,
5244                                        unsigned NumProtocols) const {
5245   return getObjCObjectType(BaseType, {},
5246                            llvm::makeArrayRef(Protocols, NumProtocols),
5247                            /*isKindOf=*/false);
5248 }
5249 
5250 QualType ASTContext::getObjCObjectType(
5251            QualType baseType,
5252            ArrayRef<QualType> typeArgs,
5253            ArrayRef<ObjCProtocolDecl *> protocols,
5254            bool isKindOf) const {
5255   // If the base type is an interface and there aren't any protocols or
5256   // type arguments to add, then the interface type will do just fine.
5257   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
5258       isa<ObjCInterfaceType>(baseType))
5259     return baseType;
5260 
5261   // Look in the folding set for an existing type.
5262   llvm::FoldingSetNodeID ID;
5263   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
5264   void *InsertPos = nullptr;
5265   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
5266     return QualType(QT, 0);
5267 
5268   // Determine the type arguments to be used for canonicalization,
5269   // which may be explicitly specified here or written on the base
5270   // type.
5271   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
5272   if (effectiveTypeArgs.empty()) {
5273     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
5274       effectiveTypeArgs = baseObject->getTypeArgs();
5275   }
5276 
5277   // Build the canonical type, which has the canonical base type and a
5278   // sorted-and-uniqued list of protocols and the type arguments
5279   // canonicalized.
5280   QualType canonical;
5281   bool typeArgsAreCanonical = llvm::all_of(
5282       effectiveTypeArgs, [&](QualType type) { return type.isCanonical(); });
5283   bool protocolsSorted = areSortedAndUniqued(protocols);
5284   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
5285     // Determine the canonical type arguments.
5286     ArrayRef<QualType> canonTypeArgs;
5287     SmallVector<QualType, 4> canonTypeArgsVec;
5288     if (!typeArgsAreCanonical) {
5289       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
5290       for (auto typeArg : effectiveTypeArgs)
5291         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
5292       canonTypeArgs = canonTypeArgsVec;
5293     } else {
5294       canonTypeArgs = effectiveTypeArgs;
5295     }
5296 
5297     ArrayRef<ObjCProtocolDecl *> canonProtocols;
5298     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5299     if (!protocolsSorted) {
5300       canonProtocolsVec.append(protocols.begin(), protocols.end());
5301       SortAndUniqueProtocols(canonProtocolsVec);
5302       canonProtocols = canonProtocolsVec;
5303     } else {
5304       canonProtocols = protocols;
5305     }
5306 
5307     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5308                                   canonProtocols, isKindOf);
5309 
5310     // Regenerate InsertPos.
5311     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5312   }
5313 
5314   unsigned size = sizeof(ObjCObjectTypeImpl);
5315   size += typeArgs.size() * sizeof(QualType);
5316   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5317   void *mem = Allocate(size, TypeAlignment);
5318   auto *T =
5319     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5320                                  isKindOf);
5321 
5322   Types.push_back(T);
5323   ObjCObjectTypes.InsertNode(T, InsertPos);
5324   return QualType(T, 0);
5325 }
5326 
5327 /// Apply Objective-C protocol qualifiers to the given type.
5328 /// If this is for the canonical type of a type parameter, we can apply
5329 /// protocol qualifiers on the ObjCObjectPointerType.
5330 QualType
5331 ASTContext::applyObjCProtocolQualifiers(QualType type,
5332                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5333                   bool allowOnPointerType) const {
5334   hasError = false;
5335 
5336   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5337     return getObjCTypeParamType(objT->getDecl(), protocols);
5338   }
5339 
5340   // Apply protocol qualifiers to ObjCObjectPointerType.
5341   if (allowOnPointerType) {
5342     if (const auto *objPtr =
5343             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5344       const ObjCObjectType *objT = objPtr->getObjectType();
5345       // Merge protocol lists and construct ObjCObjectType.
5346       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5347       protocolsVec.append(objT->qual_begin(),
5348                           objT->qual_end());
5349       protocolsVec.append(protocols.begin(), protocols.end());
5350       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5351       type = getObjCObjectType(
5352              objT->getBaseType(),
5353              objT->getTypeArgsAsWritten(),
5354              protocols,
5355              objT->isKindOfTypeAsWritten());
5356       return getObjCObjectPointerType(type);
5357     }
5358   }
5359 
5360   // Apply protocol qualifiers to ObjCObjectType.
5361   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5362     // FIXME: Check for protocols to which the class type is already
5363     // known to conform.
5364 
5365     return getObjCObjectType(objT->getBaseType(),
5366                              objT->getTypeArgsAsWritten(),
5367                              protocols,
5368                              objT->isKindOfTypeAsWritten());
5369   }
5370 
5371   // If the canonical type is ObjCObjectType, ...
5372   if (type->isObjCObjectType()) {
5373     // Silently overwrite any existing protocol qualifiers.
5374     // TODO: determine whether that's the right thing to do.
5375 
5376     // FIXME: Check for protocols to which the class type is already
5377     // known to conform.
5378     return getObjCObjectType(type, {}, protocols, false);
5379   }
5380 
5381   // id<protocol-list>
5382   if (type->isObjCIdType()) {
5383     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5384     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5385                                  objPtr->isKindOfType());
5386     return getObjCObjectPointerType(type);
5387   }
5388 
5389   // Class<protocol-list>
5390   if (type->isObjCClassType()) {
5391     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5392     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5393                                  objPtr->isKindOfType());
5394     return getObjCObjectPointerType(type);
5395   }
5396 
5397   hasError = true;
5398   return type;
5399 }
5400 
5401 QualType
5402 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5403                                  ArrayRef<ObjCProtocolDecl *> protocols) const {
5404   // Look in the folding set for an existing type.
5405   llvm::FoldingSetNodeID ID;
5406   ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5407   void *InsertPos = nullptr;
5408   if (ObjCTypeParamType *TypeParam =
5409       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5410     return QualType(TypeParam, 0);
5411 
5412   // We canonicalize to the underlying type.
5413   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5414   if (!protocols.empty()) {
5415     // Apply the protocol qualifers.
5416     bool hasError;
5417     Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5418         Canonical, protocols, hasError, true /*allowOnPointerType*/));
5419     assert(!hasError && "Error when apply protocol qualifier to bound type");
5420   }
5421 
5422   unsigned size = sizeof(ObjCTypeParamType);
5423   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5424   void *mem = Allocate(size, TypeAlignment);
5425   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5426 
5427   Types.push_back(newType);
5428   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5429   return QualType(newType, 0);
5430 }
5431 
5432 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5433                                               ObjCTypeParamDecl *New) const {
5434   New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5435   // Update TypeForDecl after updating TypeSourceInfo.
5436   auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5437   SmallVector<ObjCProtocolDecl *, 8> protocols;
5438   protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5439   QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5440   New->setTypeForDecl(UpdatedTy.getTypePtr());
5441 }
5442 
5443 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5444 /// protocol list adopt all protocols in QT's qualified-id protocol
5445 /// list.
5446 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5447                                                 ObjCInterfaceDecl *IC) {
5448   if (!QT->isObjCQualifiedIdType())
5449     return false;
5450 
5451   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5452     // If both the right and left sides have qualifiers.
5453     for (auto *Proto : OPT->quals()) {
5454       if (!IC->ClassImplementsProtocol(Proto, false))
5455         return false;
5456     }
5457     return true;
5458   }
5459   return false;
5460 }
5461 
5462 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5463 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
5464 /// of protocols.
5465 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5466                                                 ObjCInterfaceDecl *IDecl) {
5467   if (!QT->isObjCQualifiedIdType())
5468     return false;
5469   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5470   if (!OPT)
5471     return false;
5472   if (!IDecl->hasDefinition())
5473     return false;
5474   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5475   CollectInheritedProtocols(IDecl, InheritedProtocols);
5476   if (InheritedProtocols.empty())
5477     return false;
5478   // Check that if every protocol in list of id<plist> conforms to a protocol
5479   // of IDecl's, then bridge casting is ok.
5480   bool Conforms = false;
5481   for (auto *Proto : OPT->quals()) {
5482     Conforms = false;
5483     for (auto *PI : InheritedProtocols) {
5484       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5485         Conforms = true;
5486         break;
5487       }
5488     }
5489     if (!Conforms)
5490       break;
5491   }
5492   if (Conforms)
5493     return true;
5494 
5495   for (auto *PI : InheritedProtocols) {
5496     // If both the right and left sides have qualifiers.
5497     bool Adopts = false;
5498     for (auto *Proto : OPT->quals()) {
5499       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5500       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5501         break;
5502     }
5503     if (!Adopts)
5504       return false;
5505   }
5506   return true;
5507 }
5508 
5509 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5510 /// the given object type.
5511 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5512   llvm::FoldingSetNodeID ID;
5513   ObjCObjectPointerType::Profile(ID, ObjectT);
5514 
5515   void *InsertPos = nullptr;
5516   if (ObjCObjectPointerType *QT =
5517               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5518     return QualType(QT, 0);
5519 
5520   // Find the canonical object type.
5521   QualType Canonical;
5522   if (!ObjectT.isCanonical()) {
5523     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5524 
5525     // Regenerate InsertPos.
5526     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5527   }
5528 
5529   // No match.
5530   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
5531   auto *QType =
5532     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5533 
5534   Types.push_back(QType);
5535   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5536   return QualType(QType, 0);
5537 }
5538 
5539 /// getObjCInterfaceType - Return the unique reference to the type for the
5540 /// specified ObjC interface decl. The list of protocols is optional.
5541 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5542                                           ObjCInterfaceDecl *PrevDecl) const {
5543   if (Decl->TypeForDecl)
5544     return QualType(Decl->TypeForDecl, 0);
5545 
5546   if (PrevDecl) {
5547     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5548     Decl->TypeForDecl = PrevDecl->TypeForDecl;
5549     return QualType(PrevDecl->TypeForDecl, 0);
5550   }
5551 
5552   // Prefer the definition, if there is one.
5553   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5554     Decl = Def;
5555 
5556   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5557   auto *T = new (Mem) ObjCInterfaceType(Decl);
5558   Decl->TypeForDecl = T;
5559   Types.push_back(T);
5560   return QualType(T, 0);
5561 }
5562 
5563 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5564 /// TypeOfExprType AST's (since expression's are never shared). For example,
5565 /// multiple declarations that refer to "typeof(x)" all contain different
5566 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5567 /// on canonical type's (which are always unique).
5568 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
5569   TypeOfExprType *toe;
5570   if (tofExpr->isTypeDependent()) {
5571     llvm::FoldingSetNodeID ID;
5572     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
5573 
5574     void *InsertPos = nullptr;
5575     DependentTypeOfExprType *Canon
5576       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5577     if (Canon) {
5578       // We already have a "canonical" version of an identical, dependent
5579       // typeof(expr) type. Use that as our canonical type.
5580       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
5581                                           QualType((TypeOfExprType*)Canon, 0));
5582     } else {
5583       // Build a new, canonical typeof(expr) type.
5584       Canon
5585         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
5586       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5587       toe = Canon;
5588     }
5589   } else {
5590     QualType Canonical = getCanonicalType(tofExpr->getType());
5591     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
5592   }
5593   Types.push_back(toe);
5594   return QualType(toe, 0);
5595 }
5596 
5597 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5598 /// TypeOfType nodes. The only motivation to unique these nodes would be
5599 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5600 /// an issue. This doesn't affect the type checker, since it operates
5601 /// on canonical types (which are always unique).
5602 QualType ASTContext::getTypeOfType(QualType tofType) const {
5603   QualType Canonical = getCanonicalType(tofType);
5604   auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
5605   Types.push_back(tot);
5606   return QualType(tot, 0);
5607 }
5608 
5609 /// getReferenceQualifiedType - Given an expr, will return the type for
5610 /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions
5611 /// and class member access into account.
5612 QualType ASTContext::getReferenceQualifiedType(const Expr *E) const {
5613   // C++11 [dcl.type.simple]p4:
5614   //   [...]
5615   QualType T = E->getType();
5616   switch (E->getValueKind()) {
5617   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5618   //       type of e;
5619   case VK_XValue:
5620     return getRValueReferenceType(T);
5621   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5622   //       type of e;
5623   case VK_LValue:
5624     return getLValueReferenceType(T);
5625   //  - otherwise, decltype(e) is the type of e.
5626   case VK_PRValue:
5627     return T;
5628   }
5629   llvm_unreachable("Unknown value kind");
5630 }
5631 
5632 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5633 /// nodes. This would never be helpful, since each such type has its own
5634 /// expression, and would not give a significant memory saving, since there
5635 /// is an Expr tree under each such type.
5636 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5637   DecltypeType *dt;
5638 
5639   // C++11 [temp.type]p2:
5640   //   If an expression e involves a template parameter, decltype(e) denotes a
5641   //   unique dependent type. Two such decltype-specifiers refer to the same
5642   //   type only if their expressions are equivalent (14.5.6.1).
5643   if (e->isInstantiationDependent()) {
5644     llvm::FoldingSetNodeID ID;
5645     DependentDecltypeType::Profile(ID, *this, e);
5646 
5647     void *InsertPos = nullptr;
5648     DependentDecltypeType *Canon
5649       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5650     if (!Canon) {
5651       // Build a new, canonical decltype(expr) type.
5652       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5653       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5654     }
5655     dt = new (*this, TypeAlignment)
5656         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5657   } else {
5658     dt = new (*this, TypeAlignment)
5659         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5660   }
5661   Types.push_back(dt);
5662   return QualType(dt, 0);
5663 }
5664 
5665 /// getUnaryTransformationType - We don't unique these, since the memory
5666 /// savings are minimal and these are rare.
5667 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5668                                            QualType UnderlyingType,
5669                                            UnaryTransformType::UTTKind Kind)
5670     const {
5671   UnaryTransformType *ut = nullptr;
5672 
5673   if (BaseType->isDependentType()) {
5674     // Look in the folding set for an existing type.
5675     llvm::FoldingSetNodeID ID;
5676     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5677 
5678     void *InsertPos = nullptr;
5679     DependentUnaryTransformType *Canon
5680       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5681 
5682     if (!Canon) {
5683       // Build a new, canonical __underlying_type(type) type.
5684       Canon = new (*this, TypeAlignment)
5685              DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5686                                          Kind);
5687       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5688     }
5689     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5690                                                         QualType(), Kind,
5691                                                         QualType(Canon, 0));
5692   } else {
5693     QualType CanonType = getCanonicalType(UnderlyingType);
5694     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5695                                                         UnderlyingType, Kind,
5696                                                         CanonType);
5697   }
5698   Types.push_back(ut);
5699   return QualType(ut, 0);
5700 }
5701 
5702 QualType ASTContext::getAutoTypeInternal(
5703     QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent,
5704     bool IsPack, ConceptDecl *TypeConstraintConcept,
5705     ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const {
5706   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5707       !TypeConstraintConcept && !IsDependent)
5708     return getAutoDeductType();
5709 
5710   if (TypeConstraintConcept)
5711     TypeConstraintConcept = TypeConstraintConcept->getCanonicalDecl();
5712 
5713   // Look in the folding set for an existing type.
5714   void *InsertPos = nullptr;
5715   llvm::FoldingSetNodeID ID;
5716   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5717                     TypeConstraintConcept, TypeConstraintArgs);
5718   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5719     return QualType(AT, 0);
5720 
5721   QualType Canon;
5722   if (!IsCanon) {
5723     if (DeducedType.isNull()) {
5724       SmallVector<TemplateArgument, 4> CanonArgs;
5725       bool AnyNonCanonArgs =
5726           ::getCanonicalTemplateArguments(*this, TypeConstraintArgs, CanonArgs);
5727       if (AnyNonCanonArgs) {
5728         Canon = getAutoTypeInternal(QualType(), Keyword, IsDependent, IsPack,
5729                                     TypeConstraintConcept, CanonArgs, true);
5730         // Find the insert position again.
5731         AutoTypes.FindNodeOrInsertPos(ID, InsertPos);
5732       }
5733     } else {
5734       Canon = DeducedType.getCanonicalType();
5735     }
5736   }
5737 
5738   void *Mem = Allocate(sizeof(AutoType) +
5739                            sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5740                        TypeAlignment);
5741   auto *AT = new (Mem) AutoType(
5742       DeducedType, Keyword,
5743       (IsDependent ? TypeDependence::DependentInstantiation
5744                    : TypeDependence::None) |
5745           (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5746       Canon, TypeConstraintConcept, TypeConstraintArgs);
5747   Types.push_back(AT);
5748   AutoTypes.InsertNode(AT, InsertPos);
5749   return QualType(AT, 0);
5750 }
5751 
5752 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5753 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5754 /// canonical deduced-but-dependent 'auto' type.
5755 QualType
5756 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5757                         bool IsDependent, bool IsPack,
5758                         ConceptDecl *TypeConstraintConcept,
5759                         ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5760   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5761   assert((!IsDependent || DeducedType.isNull()) &&
5762          "A dependent auto should be undeduced");
5763   return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack,
5764                              TypeConstraintConcept, TypeConstraintArgs);
5765 }
5766 
5767 /// Return the uniqued reference to the deduced template specialization type
5768 /// which has been deduced to the given type, or to the canonical undeduced
5769 /// such type, or the canonical deduced-but-dependent such type.
5770 QualType ASTContext::getDeducedTemplateSpecializationType(
5771     TemplateName Template, QualType DeducedType, bool IsDependent) const {
5772   // Look in the folding set for an existing type.
5773   void *InsertPos = nullptr;
5774   llvm::FoldingSetNodeID ID;
5775   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5776                                              IsDependent);
5777   if (DeducedTemplateSpecializationType *DTST =
5778           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5779     return QualType(DTST, 0);
5780 
5781   auto *DTST = new (*this, TypeAlignment)
5782       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5783   llvm::FoldingSetNodeID TempID;
5784   DTST->Profile(TempID);
5785   assert(ID == TempID && "ID does not match");
5786   Types.push_back(DTST);
5787   DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5788   return QualType(DTST, 0);
5789 }
5790 
5791 /// getAtomicType - Return the uniqued reference to the atomic type for
5792 /// the given value type.
5793 QualType ASTContext::getAtomicType(QualType T) const {
5794   // Unique pointers, to guarantee there is only one pointer of a particular
5795   // structure.
5796   llvm::FoldingSetNodeID ID;
5797   AtomicType::Profile(ID, T);
5798 
5799   void *InsertPos = nullptr;
5800   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5801     return QualType(AT, 0);
5802 
5803   // If the atomic value type isn't canonical, this won't be a canonical type
5804   // either, so fill in the canonical type field.
5805   QualType Canonical;
5806   if (!T.isCanonical()) {
5807     Canonical = getAtomicType(getCanonicalType(T));
5808 
5809     // Get the new insert position for the node we care about.
5810     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5811     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5812   }
5813   auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5814   Types.push_back(New);
5815   AtomicTypes.InsertNode(New, InsertPos);
5816   return QualType(New, 0);
5817 }
5818 
5819 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
5820 QualType ASTContext::getAutoDeductType() const {
5821   if (AutoDeductTy.isNull())
5822     AutoDeductTy = QualType(new (*this, TypeAlignment)
5823                                 AutoType(QualType(), AutoTypeKeyword::Auto,
5824                                          TypeDependence::None, QualType(),
5825                                          /*concept*/ nullptr, /*args*/ {}),
5826                             0);
5827   return AutoDeductTy;
5828 }
5829 
5830 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
5831 QualType ASTContext::getAutoRRefDeductType() const {
5832   if (AutoRRefDeductTy.isNull())
5833     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5834   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5835   return AutoRRefDeductTy;
5836 }
5837 
5838 /// getTagDeclType - Return the unique reference to the type for the
5839 /// specified TagDecl (struct/union/class/enum) decl.
5840 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5841   assert(Decl);
5842   // FIXME: What is the design on getTagDeclType when it requires casting
5843   // away const?  mutable?
5844   return getTypeDeclType(const_cast<TagDecl*>(Decl));
5845 }
5846 
5847 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5848 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5849 /// needs to agree with the definition in <stddef.h>.
5850 CanQualType ASTContext::getSizeType() const {
5851   return getFromTargetType(Target->getSizeType());
5852 }
5853 
5854 /// Return the unique signed counterpart of the integer type
5855 /// corresponding to size_t.
5856 CanQualType ASTContext::getSignedSizeType() const {
5857   return getFromTargetType(Target->getSignedSizeType());
5858 }
5859 
5860 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
5861 CanQualType ASTContext::getIntMaxType() const {
5862   return getFromTargetType(Target->getIntMaxType());
5863 }
5864 
5865 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
5866 CanQualType ASTContext::getUIntMaxType() const {
5867   return getFromTargetType(Target->getUIntMaxType());
5868 }
5869 
5870 /// getSignedWCharType - Return the type of "signed wchar_t".
5871 /// Used when in C++, as a GCC extension.
5872 QualType ASTContext::getSignedWCharType() const {
5873   // FIXME: derive from "Target" ?
5874   return WCharTy;
5875 }
5876 
5877 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5878 /// Used when in C++, as a GCC extension.
5879 QualType ASTContext::getUnsignedWCharType() const {
5880   // FIXME: derive from "Target" ?
5881   return UnsignedIntTy;
5882 }
5883 
5884 QualType ASTContext::getIntPtrType() const {
5885   return getFromTargetType(Target->getIntPtrType());
5886 }
5887 
5888 QualType ASTContext::getUIntPtrType() const {
5889   return getCorrespondingUnsignedType(getIntPtrType());
5890 }
5891 
5892 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5893 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
5894 QualType ASTContext::getPointerDiffType() const {
5895   return getFromTargetType(Target->getPtrDiffType(0));
5896 }
5897 
5898 /// Return the unique unsigned counterpart of "ptrdiff_t"
5899 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5900 /// in the definition of %tu format specifier.
5901 QualType ASTContext::getUnsignedPointerDiffType() const {
5902   return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5903 }
5904 
5905 /// Return the unique type for "pid_t" defined in
5906 /// <sys/types.h>. We need this to compute the correct type for vfork().
5907 QualType ASTContext::getProcessIDType() const {
5908   return getFromTargetType(Target->getProcessIDType());
5909 }
5910 
5911 //===----------------------------------------------------------------------===//
5912 //                              Type Operators
5913 //===----------------------------------------------------------------------===//
5914 
5915 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5916   // Push qualifiers into arrays, and then discard any remaining
5917   // qualifiers.
5918   T = getCanonicalType(T);
5919   T = getVariableArrayDecayedType(T);
5920   const Type *Ty = T.getTypePtr();
5921   QualType Result;
5922   if (isa<ArrayType>(Ty)) {
5923     Result = getArrayDecayedType(QualType(Ty,0));
5924   } else if (isa<FunctionType>(Ty)) {
5925     Result = getPointerType(QualType(Ty, 0));
5926   } else {
5927     Result = QualType(Ty, 0);
5928   }
5929 
5930   return CanQualType::CreateUnsafe(Result);
5931 }
5932 
5933 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5934                                              Qualifiers &quals) {
5935   SplitQualType splitType = type.getSplitUnqualifiedType();
5936 
5937   // FIXME: getSplitUnqualifiedType() actually walks all the way to
5938   // the unqualified desugared type and then drops it on the floor.
5939   // We then have to strip that sugar back off with
5940   // getUnqualifiedDesugaredType(), which is silly.
5941   const auto *AT =
5942       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5943 
5944   // If we don't have an array, just use the results in splitType.
5945   if (!AT) {
5946     quals = splitType.Quals;
5947     return QualType(splitType.Ty, 0);
5948   }
5949 
5950   // Otherwise, recurse on the array's element type.
5951   QualType elementType = AT->getElementType();
5952   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5953 
5954   // If that didn't change the element type, AT has no qualifiers, so we
5955   // can just use the results in splitType.
5956   if (elementType == unqualElementType) {
5957     assert(quals.empty()); // from the recursive call
5958     quals = splitType.Quals;
5959     return QualType(splitType.Ty, 0);
5960   }
5961 
5962   // Otherwise, add in the qualifiers from the outermost type, then
5963   // build the type back up.
5964   quals.addConsistentQualifiers(splitType.Quals);
5965 
5966   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5967     return getConstantArrayType(unqualElementType, CAT->getSize(),
5968                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
5969   }
5970 
5971   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5972     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5973   }
5974 
5975   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5976     return getVariableArrayType(unqualElementType,
5977                                 VAT->getSizeExpr(),
5978                                 VAT->getSizeModifier(),
5979                                 VAT->getIndexTypeCVRQualifiers(),
5980                                 VAT->getBracketsRange());
5981   }
5982 
5983   const auto *DSAT = cast<DependentSizedArrayType>(AT);
5984   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5985                                     DSAT->getSizeModifier(), 0,
5986                                     SourceRange());
5987 }
5988 
5989 /// Attempt to unwrap two types that may both be array types with the same bound
5990 /// (or both be array types of unknown bound) for the purpose of comparing the
5991 /// cv-decomposition of two types per C++ [conv.qual].
5992 ///
5993 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
5994 ///        C++20 [conv.qual], if permitted by the current language mode.
5995 void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
5996                                          bool AllowPiMismatch) {
5997   while (true) {
5998     auto *AT1 = getAsArrayType(T1);
5999     if (!AT1)
6000       return;
6001 
6002     auto *AT2 = getAsArrayType(T2);
6003     if (!AT2)
6004       return;
6005 
6006     // If we don't have two array types with the same constant bound nor two
6007     // incomplete array types, we've unwrapped everything we can.
6008     // C++20 also permits one type to be a constant array type and the other
6009     // to be an incomplete array type.
6010     // FIXME: Consider also unwrapping array of unknown bound and VLA.
6011     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
6012       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
6013       if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) ||
6014             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6015              isa<IncompleteArrayType>(AT2))))
6016         return;
6017     } else if (isa<IncompleteArrayType>(AT1)) {
6018       if (!(isa<IncompleteArrayType>(AT2) ||
6019             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6020              isa<ConstantArrayType>(AT2))))
6021         return;
6022     } else {
6023       return;
6024     }
6025 
6026     T1 = AT1->getElementType();
6027     T2 = AT2->getElementType();
6028   }
6029 }
6030 
6031 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
6032 ///
6033 /// If T1 and T2 are both pointer types of the same kind, or both array types
6034 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
6035 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
6036 ///
6037 /// This function will typically be called in a loop that successively
6038 /// "unwraps" pointer and pointer-to-member types to compare them at each
6039 /// level.
6040 ///
6041 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
6042 ///        C++20 [conv.qual], if permitted by the current language mode.
6043 ///
6044 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
6045 /// pair of types that can't be unwrapped further.
6046 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2,
6047                                     bool AllowPiMismatch) {
6048   UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch);
6049 
6050   const auto *T1PtrType = T1->getAs<PointerType>();
6051   const auto *T2PtrType = T2->getAs<PointerType>();
6052   if (T1PtrType && T2PtrType) {
6053     T1 = T1PtrType->getPointeeType();
6054     T2 = T2PtrType->getPointeeType();
6055     return true;
6056   }
6057 
6058   const auto *T1MPType = T1->getAs<MemberPointerType>();
6059   const auto *T2MPType = T2->getAs<MemberPointerType>();
6060   if (T1MPType && T2MPType &&
6061       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
6062                              QualType(T2MPType->getClass(), 0))) {
6063     T1 = T1MPType->getPointeeType();
6064     T2 = T2MPType->getPointeeType();
6065     return true;
6066   }
6067 
6068   if (getLangOpts().ObjC) {
6069     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
6070     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
6071     if (T1OPType && T2OPType) {
6072       T1 = T1OPType->getPointeeType();
6073       T2 = T2OPType->getPointeeType();
6074       return true;
6075     }
6076   }
6077 
6078   // FIXME: Block pointers, too?
6079 
6080   return false;
6081 }
6082 
6083 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
6084   while (true) {
6085     Qualifiers Quals;
6086     T1 = getUnqualifiedArrayType(T1, Quals);
6087     T2 = getUnqualifiedArrayType(T2, Quals);
6088     if (hasSameType(T1, T2))
6089       return true;
6090     if (!UnwrapSimilarTypes(T1, T2))
6091       return false;
6092   }
6093 }
6094 
6095 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
6096   while (true) {
6097     Qualifiers Quals1, Quals2;
6098     T1 = getUnqualifiedArrayType(T1, Quals1);
6099     T2 = getUnqualifiedArrayType(T2, Quals2);
6100 
6101     Quals1.removeCVRQualifiers();
6102     Quals2.removeCVRQualifiers();
6103     if (Quals1 != Quals2)
6104       return false;
6105 
6106     if (hasSameType(T1, T2))
6107       return true;
6108 
6109     if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false))
6110       return false;
6111   }
6112 }
6113 
6114 DeclarationNameInfo
6115 ASTContext::getNameForTemplate(TemplateName Name,
6116                                SourceLocation NameLoc) const {
6117   switch (Name.getKind()) {
6118   case TemplateName::QualifiedTemplate:
6119   case TemplateName::Template:
6120     // DNInfo work in progress: CHECKME: what about DNLoc?
6121     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
6122                                NameLoc);
6123 
6124   case TemplateName::OverloadedTemplate: {
6125     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
6126     // DNInfo work in progress: CHECKME: what about DNLoc?
6127     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
6128   }
6129 
6130   case TemplateName::AssumedTemplate: {
6131     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
6132     return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
6133   }
6134 
6135   case TemplateName::DependentTemplate: {
6136     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6137     DeclarationName DName;
6138     if (DTN->isIdentifier()) {
6139       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
6140       return DeclarationNameInfo(DName, NameLoc);
6141     } else {
6142       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
6143       // DNInfo work in progress: FIXME: source locations?
6144       DeclarationNameLoc DNLoc =
6145           DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange());
6146       return DeclarationNameInfo(DName, NameLoc, DNLoc);
6147     }
6148   }
6149 
6150   case TemplateName::SubstTemplateTemplateParm: {
6151     SubstTemplateTemplateParmStorage *subst
6152       = Name.getAsSubstTemplateTemplateParm();
6153     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
6154                                NameLoc);
6155   }
6156 
6157   case TemplateName::SubstTemplateTemplateParmPack: {
6158     SubstTemplateTemplateParmPackStorage *subst
6159       = Name.getAsSubstTemplateTemplateParmPack();
6160     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
6161                                NameLoc);
6162   }
6163   case TemplateName::UsingTemplate:
6164     return DeclarationNameInfo(Name.getAsUsingShadowDecl()->getDeclName(),
6165                                NameLoc);
6166   }
6167 
6168   llvm_unreachable("bad template name kind!");
6169 }
6170 
6171 TemplateName
6172 ASTContext::getCanonicalTemplateName(const TemplateName &Name) const {
6173   switch (Name.getKind()) {
6174   case TemplateName::UsingTemplate:
6175   case TemplateName::QualifiedTemplate:
6176   case TemplateName::Template: {
6177     TemplateDecl *Template = Name.getAsTemplateDecl();
6178     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
6179       Template = getCanonicalTemplateTemplateParmDecl(TTP);
6180 
6181     // The canonical template name is the canonical template declaration.
6182     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
6183   }
6184 
6185   case TemplateName::OverloadedTemplate:
6186   case TemplateName::AssumedTemplate:
6187     llvm_unreachable("cannot canonicalize unresolved template");
6188 
6189   case TemplateName::DependentTemplate: {
6190     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6191     assert(DTN && "Non-dependent template names must refer to template decls.");
6192     return DTN->CanonicalTemplateName;
6193   }
6194 
6195   case TemplateName::SubstTemplateTemplateParm: {
6196     SubstTemplateTemplateParmStorage *subst
6197       = Name.getAsSubstTemplateTemplateParm();
6198     return getCanonicalTemplateName(subst->getReplacement());
6199   }
6200 
6201   case TemplateName::SubstTemplateTemplateParmPack: {
6202     SubstTemplateTemplateParmPackStorage *subst
6203                                   = Name.getAsSubstTemplateTemplateParmPack();
6204     TemplateTemplateParmDecl *canonParameter
6205       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
6206     TemplateArgument canonArgPack
6207       = getCanonicalTemplateArgument(subst->getArgumentPack());
6208     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
6209   }
6210   }
6211 
6212   llvm_unreachable("bad template name!");
6213 }
6214 
6215 bool ASTContext::hasSameTemplateName(const TemplateName &X,
6216                                      const TemplateName &Y) const {
6217   return getCanonicalTemplateName(X).getAsVoidPointer() ==
6218          getCanonicalTemplateName(Y).getAsVoidPointer();
6219 }
6220 
6221 bool ASTContext::isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const {
6222   if (!XCE != !YCE)
6223     return false;
6224 
6225   if (!XCE)
6226     return true;
6227 
6228   llvm::FoldingSetNodeID XCEID, YCEID;
6229   XCE->Profile(XCEID, *this, /*Canonical=*/true);
6230   YCE->Profile(YCEID, *this, /*Canonical=*/true);
6231   return XCEID == YCEID;
6232 }
6233 
6234 bool ASTContext::isSameTypeConstraint(const TypeConstraint *XTC,
6235                                       const TypeConstraint *YTC) const {
6236   if (!XTC != !YTC)
6237     return false;
6238 
6239   if (!XTC)
6240     return true;
6241 
6242   auto *NCX = XTC->getNamedConcept();
6243   auto *NCY = YTC->getNamedConcept();
6244   if (!NCX || !NCY || !isSameEntity(NCX, NCY))
6245     return false;
6246   if (XTC->hasExplicitTemplateArgs() != YTC->hasExplicitTemplateArgs())
6247     return false;
6248   if (XTC->hasExplicitTemplateArgs())
6249     if (XTC->getTemplateArgsAsWritten()->NumTemplateArgs !=
6250         YTC->getTemplateArgsAsWritten()->NumTemplateArgs)
6251       return false;
6252 
6253   // Compare slowly by profiling.
6254   //
6255   // We couldn't compare the profiling result for the template
6256   // args here. Consider the following example in different modules:
6257   //
6258   // template <__integer_like _Tp, C<_Tp> Sentinel>
6259   // constexpr _Tp operator()(_Tp &&__t, Sentinel &&last) const {
6260   //   return __t;
6261   // }
6262   //
6263   // When we compare the profiling result for `C<_Tp>` in different
6264   // modules, it will compare the type of `_Tp` in different modules.
6265   // However, the type of `_Tp` in different modules refer to different
6266   // types here naturally. So we couldn't compare the profiling result
6267   // for the template args directly.
6268   return isSameConstraintExpr(XTC->getImmediatelyDeclaredConstraint(),
6269                               YTC->getImmediatelyDeclaredConstraint());
6270 }
6271 
6272 bool ASTContext::isSameTemplateParameter(const NamedDecl *X,
6273                                          const NamedDecl *Y) const {
6274   if (X->getKind() != Y->getKind())
6275     return false;
6276 
6277   if (auto *TX = dyn_cast<TemplateTypeParmDecl>(X)) {
6278     auto *TY = cast<TemplateTypeParmDecl>(Y);
6279     if (TX->isParameterPack() != TY->isParameterPack())
6280       return false;
6281     if (TX->hasTypeConstraint() != TY->hasTypeConstraint())
6282       return false;
6283     return isSameTypeConstraint(TX->getTypeConstraint(),
6284                                 TY->getTypeConstraint());
6285   }
6286 
6287   if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6288     auto *TY = cast<NonTypeTemplateParmDecl>(Y);
6289     return TX->isParameterPack() == TY->isParameterPack() &&
6290            TX->getASTContext().hasSameType(TX->getType(), TY->getType());
6291   }
6292 
6293   auto *TX = cast<TemplateTemplateParmDecl>(X);
6294   auto *TY = cast<TemplateTemplateParmDecl>(Y);
6295   return TX->isParameterPack() == TY->isParameterPack() &&
6296          isSameTemplateParameterList(TX->getTemplateParameters(),
6297                                      TY->getTemplateParameters());
6298 }
6299 
6300 bool ASTContext::isSameTemplateParameterList(
6301     const TemplateParameterList *X, const TemplateParameterList *Y) const {
6302   if (X->size() != Y->size())
6303     return false;
6304 
6305   for (unsigned I = 0, N = X->size(); I != N; ++I)
6306     if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I)))
6307       return false;
6308 
6309   return isSameConstraintExpr(X->getRequiresClause(), Y->getRequiresClause());
6310 }
6311 
6312 bool ASTContext::isSameDefaultTemplateArgument(const NamedDecl *X,
6313                                                const NamedDecl *Y) const {
6314   // If the type parameter isn't the same already, we don't need to check the
6315   // default argument further.
6316   if (!isSameTemplateParameter(X, Y))
6317     return false;
6318 
6319   if (auto *TTPX = dyn_cast<TemplateTypeParmDecl>(X)) {
6320     auto *TTPY = cast<TemplateTypeParmDecl>(Y);
6321     if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument())
6322       return false;
6323 
6324     return hasSameType(TTPX->getDefaultArgument(), TTPY->getDefaultArgument());
6325   }
6326 
6327   if (auto *NTTPX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6328     auto *NTTPY = cast<NonTypeTemplateParmDecl>(Y);
6329     if (!NTTPX->hasDefaultArgument() || !NTTPY->hasDefaultArgument())
6330       return false;
6331 
6332     Expr *DefaultArgumentX = NTTPX->getDefaultArgument()->IgnoreImpCasts();
6333     Expr *DefaultArgumentY = NTTPY->getDefaultArgument()->IgnoreImpCasts();
6334     llvm::FoldingSetNodeID XID, YID;
6335     DefaultArgumentX->Profile(XID, *this, /*Canonical=*/true);
6336     DefaultArgumentY->Profile(YID, *this, /*Canonical=*/true);
6337     return XID == YID;
6338   }
6339 
6340   auto *TTPX = cast<TemplateTemplateParmDecl>(X);
6341   auto *TTPY = cast<TemplateTemplateParmDecl>(Y);
6342 
6343   if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument())
6344     return false;
6345 
6346   const TemplateArgument &TAX = TTPX->getDefaultArgument().getArgument();
6347   const TemplateArgument &TAY = TTPY->getDefaultArgument().getArgument();
6348   return hasSameTemplateName(TAX.getAsTemplate(), TAY.getAsTemplate());
6349 }
6350 
6351 static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) {
6352   if (auto *NS = X->getAsNamespace())
6353     return NS;
6354   if (auto *NAS = X->getAsNamespaceAlias())
6355     return NAS->getNamespace();
6356   return nullptr;
6357 }
6358 
6359 static bool isSameQualifier(const NestedNameSpecifier *X,
6360                             const NestedNameSpecifier *Y) {
6361   if (auto *NSX = getNamespace(X)) {
6362     auto *NSY = getNamespace(Y);
6363     if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl())
6364       return false;
6365   } else if (X->getKind() != Y->getKind())
6366     return false;
6367 
6368   // FIXME: For namespaces and types, we're permitted to check that the entity
6369   // is named via the same tokens. We should probably do so.
6370   switch (X->getKind()) {
6371   case NestedNameSpecifier::Identifier:
6372     if (X->getAsIdentifier() != Y->getAsIdentifier())
6373       return false;
6374     break;
6375   case NestedNameSpecifier::Namespace:
6376   case NestedNameSpecifier::NamespaceAlias:
6377     // We've already checked that we named the same namespace.
6378     break;
6379   case NestedNameSpecifier::TypeSpec:
6380   case NestedNameSpecifier::TypeSpecWithTemplate:
6381     if (X->getAsType()->getCanonicalTypeInternal() !=
6382         Y->getAsType()->getCanonicalTypeInternal())
6383       return false;
6384     break;
6385   case NestedNameSpecifier::Global:
6386   case NestedNameSpecifier::Super:
6387     return true;
6388   }
6389 
6390   // Recurse into earlier portion of NNS, if any.
6391   auto *PX = X->getPrefix();
6392   auto *PY = Y->getPrefix();
6393   if (PX && PY)
6394     return isSameQualifier(PX, PY);
6395   return !PX && !PY;
6396 }
6397 
6398 /// Determine whether the attributes we can overload on are identical for A and
6399 /// B. Will ignore any overloadable attrs represented in the type of A and B.
6400 static bool hasSameOverloadableAttrs(const FunctionDecl *A,
6401                                      const FunctionDecl *B) {
6402   // Note that pass_object_size attributes are represented in the function's
6403   // ExtParameterInfo, so we don't need to check them here.
6404 
6405   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
6406   auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>();
6407   auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>();
6408 
6409   for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) {
6410     Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
6411     Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
6412 
6413     // Return false if the number of enable_if attributes is different.
6414     if (!Cand1A || !Cand2A)
6415       return false;
6416 
6417     Cand1ID.clear();
6418     Cand2ID.clear();
6419 
6420     (*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true);
6421     (*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true);
6422 
6423     // Return false if any of the enable_if expressions of A and B are
6424     // different.
6425     if (Cand1ID != Cand2ID)
6426       return false;
6427   }
6428   return true;
6429 }
6430 
6431 bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) const {
6432   if (X == Y)
6433     return true;
6434 
6435   if (X->getDeclName() != Y->getDeclName())
6436     return false;
6437 
6438   // Must be in the same context.
6439   //
6440   // Note that we can't use DeclContext::Equals here, because the DeclContexts
6441   // could be two different declarations of the same function. (We will fix the
6442   // semantic DC to refer to the primary definition after merging.)
6443   if (!declaresSameEntity(cast<Decl>(X->getDeclContext()->getRedeclContext()),
6444                           cast<Decl>(Y->getDeclContext()->getRedeclContext())))
6445     return false;
6446 
6447   // Two typedefs refer to the same entity if they have the same underlying
6448   // type.
6449   if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(X))
6450     if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Y))
6451       return hasSameType(TypedefX->getUnderlyingType(),
6452                          TypedefY->getUnderlyingType());
6453 
6454   // Must have the same kind.
6455   if (X->getKind() != Y->getKind())
6456     return false;
6457 
6458   // Objective-C classes and protocols with the same name always match.
6459   if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X))
6460     return true;
6461 
6462   if (isa<ClassTemplateSpecializationDecl>(X)) {
6463     // No need to handle these here: we merge them when adding them to the
6464     // template.
6465     return false;
6466   }
6467 
6468   // Compatible tags match.
6469   if (const auto *TagX = dyn_cast<TagDecl>(X)) {
6470     const auto *TagY = cast<TagDecl>(Y);
6471     return (TagX->getTagKind() == TagY->getTagKind()) ||
6472            ((TagX->getTagKind() == TTK_Struct ||
6473              TagX->getTagKind() == TTK_Class ||
6474              TagX->getTagKind() == TTK_Interface) &&
6475             (TagY->getTagKind() == TTK_Struct ||
6476              TagY->getTagKind() == TTK_Class ||
6477              TagY->getTagKind() == TTK_Interface));
6478   }
6479 
6480   // Functions with the same type and linkage match.
6481   // FIXME: This needs to cope with merging of prototyped/non-prototyped
6482   // functions, etc.
6483   if (const auto *FuncX = dyn_cast<FunctionDecl>(X)) {
6484     const auto *FuncY = cast<FunctionDecl>(Y);
6485     if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(X)) {
6486       const auto *CtorY = cast<CXXConstructorDecl>(Y);
6487       if (CtorX->getInheritedConstructor() &&
6488           !isSameEntity(CtorX->getInheritedConstructor().getConstructor(),
6489                         CtorY->getInheritedConstructor().getConstructor()))
6490         return false;
6491     }
6492 
6493     if (FuncX->isMultiVersion() != FuncY->isMultiVersion())
6494       return false;
6495 
6496     // Multiversioned functions with different feature strings are represented
6497     // as separate declarations.
6498     if (FuncX->isMultiVersion()) {
6499       const auto *TAX = FuncX->getAttr<TargetAttr>();
6500       const auto *TAY = FuncY->getAttr<TargetAttr>();
6501       assert(TAX && TAY && "Multiversion Function without target attribute");
6502 
6503       if (TAX->getFeaturesStr() != TAY->getFeaturesStr())
6504         return false;
6505     }
6506 
6507     if (!isSameConstraintExpr(FuncX->getTrailingRequiresClause(),
6508                               FuncY->getTrailingRequiresClause()))
6509       return false;
6510 
6511     auto GetTypeAsWritten = [](const FunctionDecl *FD) {
6512       // Map to the first declaration that we've already merged into this one.
6513       // The TSI of redeclarations might not match (due to calling conventions
6514       // being inherited onto the type but not the TSI), but the TSI type of
6515       // the first declaration of the function should match across modules.
6516       FD = FD->getCanonicalDecl();
6517       return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType()
6518                                      : FD->getType();
6519     };
6520     QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY);
6521     if (!hasSameType(XT, YT)) {
6522       // We can get functions with different types on the redecl chain in C++17
6523       // if they have differing exception specifications and at least one of
6524       // the excpetion specs is unresolved.
6525       auto *XFPT = XT->getAs<FunctionProtoType>();
6526       auto *YFPT = YT->getAs<FunctionProtoType>();
6527       if (getLangOpts().CPlusPlus17 && XFPT && YFPT &&
6528           (isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) ||
6529            isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) &&
6530           hasSameFunctionTypeIgnoringExceptionSpec(XT, YT))
6531         return true;
6532       return false;
6533     }
6534 
6535     return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() &&
6536            hasSameOverloadableAttrs(FuncX, FuncY);
6537   }
6538 
6539   // Variables with the same type and linkage match.
6540   if (const auto *VarX = dyn_cast<VarDecl>(X)) {
6541     const auto *VarY = cast<VarDecl>(Y);
6542     if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) {
6543       if (hasSameType(VarX->getType(), VarY->getType()))
6544         return true;
6545 
6546       // We can get decls with different types on the redecl chain. Eg.
6547       // template <typename T> struct S { static T Var[]; }; // #1
6548       // template <typename T> T S<T>::Var[sizeof(T)]; // #2
6549       // Only? happens when completing an incomplete array type. In this case
6550       // when comparing #1 and #2 we should go through their element type.
6551       const ArrayType *VarXTy = getAsArrayType(VarX->getType());
6552       const ArrayType *VarYTy = getAsArrayType(VarY->getType());
6553       if (!VarXTy || !VarYTy)
6554         return false;
6555       if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType())
6556         return hasSameType(VarXTy->getElementType(), VarYTy->getElementType());
6557     }
6558     return false;
6559   }
6560 
6561   // Namespaces with the same name and inlinedness match.
6562   if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(X)) {
6563     const auto *NamespaceY = cast<NamespaceDecl>(Y);
6564     return NamespaceX->isInline() == NamespaceY->isInline();
6565   }
6566 
6567   // Identical template names and kinds match if their template parameter lists
6568   // and patterns match.
6569   if (const auto *TemplateX = dyn_cast<TemplateDecl>(X)) {
6570     const auto *TemplateY = cast<TemplateDecl>(Y);
6571 
6572     // ConceptDecl wouldn't be the same if their constraint expression differs.
6573     if (const auto *ConceptX = dyn_cast<ConceptDecl>(X)) {
6574       const auto *ConceptY = cast<ConceptDecl>(Y);
6575       const Expr *XCE = ConceptX->getConstraintExpr();
6576       const Expr *YCE = ConceptY->getConstraintExpr();
6577       assert(XCE && YCE && "ConceptDecl without constraint expression?");
6578       llvm::FoldingSetNodeID XID, YID;
6579       XCE->Profile(XID, *this, /*Canonical=*/true);
6580       YCE->Profile(YID, *this, /*Canonical=*/true);
6581       if (XID != YID)
6582         return false;
6583     }
6584 
6585     return isSameEntity(TemplateX->getTemplatedDecl(),
6586                         TemplateY->getTemplatedDecl()) &&
6587            isSameTemplateParameterList(TemplateX->getTemplateParameters(),
6588                                        TemplateY->getTemplateParameters());
6589   }
6590 
6591   // Fields with the same name and the same type match.
6592   if (const auto *FDX = dyn_cast<FieldDecl>(X)) {
6593     const auto *FDY = cast<FieldDecl>(Y);
6594     // FIXME: Also check the bitwidth is odr-equivalent, if any.
6595     return hasSameType(FDX->getType(), FDY->getType());
6596   }
6597 
6598   // Indirect fields with the same target field match.
6599   if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(X)) {
6600     const auto *IFDY = cast<IndirectFieldDecl>(Y);
6601     return IFDX->getAnonField()->getCanonicalDecl() ==
6602            IFDY->getAnonField()->getCanonicalDecl();
6603   }
6604 
6605   // Enumerators with the same name match.
6606   if (isa<EnumConstantDecl>(X))
6607     // FIXME: Also check the value is odr-equivalent.
6608     return true;
6609 
6610   // Using shadow declarations with the same target match.
6611   if (const auto *USX = dyn_cast<UsingShadowDecl>(X)) {
6612     const auto *USY = cast<UsingShadowDecl>(Y);
6613     return USX->getTargetDecl() == USY->getTargetDecl();
6614   }
6615 
6616   // Using declarations with the same qualifier match. (We already know that
6617   // the name matches.)
6618   if (const auto *UX = dyn_cast<UsingDecl>(X)) {
6619     const auto *UY = cast<UsingDecl>(Y);
6620     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6621            UX->hasTypename() == UY->hasTypename() &&
6622            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6623   }
6624   if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) {
6625     const auto *UY = cast<UnresolvedUsingValueDecl>(Y);
6626     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6627            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6628   }
6629   if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X)) {
6630     return isSameQualifier(
6631         UX->getQualifier(),
6632         cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier());
6633   }
6634 
6635   // Using-pack declarations are only created by instantiation, and match if
6636   // they're instantiated from matching UnresolvedUsing...Decls.
6637   if (const auto *UX = dyn_cast<UsingPackDecl>(X)) {
6638     return declaresSameEntity(
6639         UX->getInstantiatedFromUsingDecl(),
6640         cast<UsingPackDecl>(Y)->getInstantiatedFromUsingDecl());
6641   }
6642 
6643   // Namespace alias definitions with the same target match.
6644   if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) {
6645     const auto *NAY = cast<NamespaceAliasDecl>(Y);
6646     return NAX->getNamespace()->Equals(NAY->getNamespace());
6647   }
6648 
6649   return false;
6650 }
6651 
6652 TemplateArgument
6653 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
6654   switch (Arg.getKind()) {
6655     case TemplateArgument::Null:
6656       return Arg;
6657 
6658     case TemplateArgument::Expression:
6659       return Arg;
6660 
6661     case TemplateArgument::Declaration: {
6662       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
6663       return TemplateArgument(D, Arg.getParamTypeForDecl());
6664     }
6665 
6666     case TemplateArgument::NullPtr:
6667       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
6668                               /*isNullPtr*/true);
6669 
6670     case TemplateArgument::Template:
6671       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
6672 
6673     case TemplateArgument::TemplateExpansion:
6674       return TemplateArgument(getCanonicalTemplateName(
6675                                          Arg.getAsTemplateOrTemplatePattern()),
6676                               Arg.getNumTemplateExpansions());
6677 
6678     case TemplateArgument::Integral:
6679       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
6680 
6681     case TemplateArgument::Type:
6682       return TemplateArgument(getCanonicalType(Arg.getAsType()));
6683 
6684     case TemplateArgument::Pack: {
6685       if (Arg.pack_size() == 0)
6686         return Arg;
6687 
6688       auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
6689       unsigned Idx = 0;
6690       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
6691                                         AEnd = Arg.pack_end();
6692            A != AEnd; (void)++A, ++Idx)
6693         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
6694 
6695       return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
6696     }
6697   }
6698 
6699   // Silence GCC warning
6700   llvm_unreachable("Unhandled template argument kind");
6701 }
6702 
6703 NestedNameSpecifier *
6704 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
6705   if (!NNS)
6706     return nullptr;
6707 
6708   switch (NNS->getKind()) {
6709   case NestedNameSpecifier::Identifier:
6710     // Canonicalize the prefix but keep the identifier the same.
6711     return NestedNameSpecifier::Create(*this,
6712                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
6713                                        NNS->getAsIdentifier());
6714 
6715   case NestedNameSpecifier::Namespace:
6716     // A namespace is canonical; build a nested-name-specifier with
6717     // this namespace and no prefix.
6718     return NestedNameSpecifier::Create(*this, nullptr,
6719                                  NNS->getAsNamespace()->getOriginalNamespace());
6720 
6721   case NestedNameSpecifier::NamespaceAlias:
6722     // A namespace is canonical; build a nested-name-specifier with
6723     // this namespace and no prefix.
6724     return NestedNameSpecifier::Create(*this, nullptr,
6725                                     NNS->getAsNamespaceAlias()->getNamespace()
6726                                                       ->getOriginalNamespace());
6727 
6728   // The difference between TypeSpec and TypeSpecWithTemplate is that the
6729   // latter will have the 'template' keyword when printed.
6730   case NestedNameSpecifier::TypeSpec:
6731   case NestedNameSpecifier::TypeSpecWithTemplate: {
6732     const Type *T = getCanonicalType(NNS->getAsType());
6733 
6734     // If we have some kind of dependent-named type (e.g., "typename T::type"),
6735     // break it apart into its prefix and identifier, then reconsititute those
6736     // as the canonical nested-name-specifier. This is required to canonicalize
6737     // a dependent nested-name-specifier involving typedefs of dependent-name
6738     // types, e.g.,
6739     //   typedef typename T::type T1;
6740     //   typedef typename T1::type T2;
6741     if (const auto *DNT = T->getAs<DependentNameType>())
6742       return NestedNameSpecifier::Create(
6743           *this, DNT->getQualifier(),
6744           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
6745     if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>())
6746       return NestedNameSpecifier::Create(*this, DTST->getQualifier(), true,
6747                                          const_cast<Type *>(T));
6748 
6749     // TODO: Set 'Template' parameter to true for other template types.
6750     return NestedNameSpecifier::Create(*this, nullptr, false,
6751                                        const_cast<Type *>(T));
6752   }
6753 
6754   case NestedNameSpecifier::Global:
6755   case NestedNameSpecifier::Super:
6756     // The global specifier and __super specifer are canonical and unique.
6757     return NNS;
6758   }
6759 
6760   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6761 }
6762 
6763 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
6764   // Handle the non-qualified case efficiently.
6765   if (!T.hasLocalQualifiers()) {
6766     // Handle the common positive case fast.
6767     if (const auto *AT = dyn_cast<ArrayType>(T))
6768       return AT;
6769   }
6770 
6771   // Handle the common negative case fast.
6772   if (!isa<ArrayType>(T.getCanonicalType()))
6773     return nullptr;
6774 
6775   // Apply any qualifiers from the array type to the element type.  This
6776   // implements C99 6.7.3p8: "If the specification of an array type includes
6777   // any type qualifiers, the element type is so qualified, not the array type."
6778 
6779   // If we get here, we either have type qualifiers on the type, or we have
6780   // sugar such as a typedef in the way.  If we have type qualifiers on the type
6781   // we must propagate them down into the element type.
6782 
6783   SplitQualType split = T.getSplitDesugaredType();
6784   Qualifiers qs = split.Quals;
6785 
6786   // If we have a simple case, just return now.
6787   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
6788   if (!ATy || qs.empty())
6789     return ATy;
6790 
6791   // Otherwise, we have an array and we have qualifiers on it.  Push the
6792   // qualifiers into the array element type and return a new array type.
6793   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
6794 
6795   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
6796     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
6797                                                 CAT->getSizeExpr(),
6798                                                 CAT->getSizeModifier(),
6799                                            CAT->getIndexTypeCVRQualifiers()));
6800   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
6801     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
6802                                                   IAT->getSizeModifier(),
6803                                            IAT->getIndexTypeCVRQualifiers()));
6804 
6805   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6806     return cast<ArrayType>(
6807                      getDependentSizedArrayType(NewEltTy,
6808                                                 DSAT->getSizeExpr(),
6809                                                 DSAT->getSizeModifier(),
6810                                               DSAT->getIndexTypeCVRQualifiers(),
6811                                                 DSAT->getBracketsRange()));
6812 
6813   const auto *VAT = cast<VariableArrayType>(ATy);
6814   return cast<ArrayType>(getVariableArrayType(NewEltTy,
6815                                               VAT->getSizeExpr(),
6816                                               VAT->getSizeModifier(),
6817                                               VAT->getIndexTypeCVRQualifiers(),
6818                                               VAT->getBracketsRange()));
6819 }
6820 
6821 QualType ASTContext::getAdjustedParameterType(QualType T) const {
6822   if (T->isArrayType() || T->isFunctionType())
6823     return getDecayedType(T);
6824   return T;
6825 }
6826 
6827 QualType ASTContext::getSignatureParameterType(QualType T) const {
6828   T = getVariableArrayDecayedType(T);
6829   T = getAdjustedParameterType(T);
6830   return T.getUnqualifiedType();
6831 }
6832 
6833 QualType ASTContext::getExceptionObjectType(QualType T) const {
6834   // C++ [except.throw]p3:
6835   //   A throw-expression initializes a temporary object, called the exception
6836   //   object, the type of which is determined by removing any top-level
6837   //   cv-qualifiers from the static type of the operand of throw and adjusting
6838   //   the type from "array of T" or "function returning T" to "pointer to T"
6839   //   or "pointer to function returning T", [...]
6840   T = getVariableArrayDecayedType(T);
6841   if (T->isArrayType() || T->isFunctionType())
6842     T = getDecayedType(T);
6843   return T.getUnqualifiedType();
6844 }
6845 
6846 /// getArrayDecayedType - Return the properly qualified result of decaying the
6847 /// specified array type to a pointer.  This operation is non-trivial when
6848 /// handling typedefs etc.  The canonical type of "T" must be an array type,
6849 /// this returns a pointer to a properly qualified element of the array.
6850 ///
6851 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
6852 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6853   // Get the element type with 'getAsArrayType' so that we don't lose any
6854   // typedefs in the element type of the array.  This also handles propagation
6855   // of type qualifiers from the array type into the element type if present
6856   // (C99 6.7.3p8).
6857   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
6858   assert(PrettyArrayType && "Not an array type!");
6859 
6860   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
6861 
6862   // int x[restrict 4] ->  int *restrict
6863   QualType Result = getQualifiedType(PtrTy,
6864                                      PrettyArrayType->getIndexTypeQualifiers());
6865 
6866   // int x[_Nullable] -> int * _Nullable
6867   if (auto Nullability = Ty->getNullability(*this)) {
6868     Result = const_cast<ASTContext *>(this)->getAttributedType(
6869         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
6870   }
6871   return Result;
6872 }
6873 
6874 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
6875   return getBaseElementType(array->getElementType());
6876 }
6877 
6878 QualType ASTContext::getBaseElementType(QualType type) const {
6879   Qualifiers qs;
6880   while (true) {
6881     SplitQualType split = type.getSplitDesugaredType();
6882     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
6883     if (!array) break;
6884 
6885     type = array->getElementType();
6886     qs.addConsistentQualifiers(split.Quals);
6887   }
6888 
6889   return getQualifiedType(type, qs);
6890 }
6891 
6892 /// getConstantArrayElementCount - Returns number of constant array elements.
6893 uint64_t
6894 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
6895   uint64_t ElementCount = 1;
6896   do {
6897     ElementCount *= CA->getSize().getZExtValue();
6898     CA = dyn_cast_or_null<ConstantArrayType>(
6899       CA->getElementType()->getAsArrayTypeUnsafe());
6900   } while (CA);
6901   return ElementCount;
6902 }
6903 
6904 /// getFloatingRank - Return a relative rank for floating point types.
6905 /// This routine will assert if passed a built-in type that isn't a float.
6906 static FloatingRank getFloatingRank(QualType T) {
6907   if (const auto *CT = T->getAs<ComplexType>())
6908     return getFloatingRank(CT->getElementType());
6909 
6910   switch (T->castAs<BuiltinType>()->getKind()) {
6911   default: llvm_unreachable("getFloatingRank(): not a floating type");
6912   case BuiltinType::Float16:    return Float16Rank;
6913   case BuiltinType::Half:       return HalfRank;
6914   case BuiltinType::Float:      return FloatRank;
6915   case BuiltinType::Double:     return DoubleRank;
6916   case BuiltinType::LongDouble: return LongDoubleRank;
6917   case BuiltinType::Float128:   return Float128Rank;
6918   case BuiltinType::BFloat16:   return BFloat16Rank;
6919   case BuiltinType::Ibm128:     return Ibm128Rank;
6920   }
6921 }
6922 
6923 /// getFloatingTypeOrder - Compare the rank of the two specified floating
6924 /// point types, ignoring the domain of the type (i.e. 'double' ==
6925 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6926 /// LHS < RHS, return -1.
6927 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
6928   FloatingRank LHSR = getFloatingRank(LHS);
6929   FloatingRank RHSR = getFloatingRank(RHS);
6930 
6931   if (LHSR == RHSR)
6932     return 0;
6933   if (LHSR > RHSR)
6934     return 1;
6935   return -1;
6936 }
6937 
6938 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
6939   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
6940     return 0;
6941   return getFloatingTypeOrder(LHS, RHS);
6942 }
6943 
6944 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
6945 /// routine will assert if passed a built-in type that isn't an integer or enum,
6946 /// or if it is not canonicalized.
6947 unsigned ASTContext::getIntegerRank(const Type *T) const {
6948   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
6949 
6950   // Results in this 'losing' to any type of the same size, but winning if
6951   // larger.
6952   if (const auto *EIT = dyn_cast<BitIntType>(T))
6953     return 0 + (EIT->getNumBits() << 3);
6954 
6955   switch (cast<BuiltinType>(T)->getKind()) {
6956   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
6957   case BuiltinType::Bool:
6958     return 1 + (getIntWidth(BoolTy) << 3);
6959   case BuiltinType::Char_S:
6960   case BuiltinType::Char_U:
6961   case BuiltinType::SChar:
6962   case BuiltinType::UChar:
6963     return 2 + (getIntWidth(CharTy) << 3);
6964   case BuiltinType::Short:
6965   case BuiltinType::UShort:
6966     return 3 + (getIntWidth(ShortTy) << 3);
6967   case BuiltinType::Int:
6968   case BuiltinType::UInt:
6969     return 4 + (getIntWidth(IntTy) << 3);
6970   case BuiltinType::Long:
6971   case BuiltinType::ULong:
6972     return 5 + (getIntWidth(LongTy) << 3);
6973   case BuiltinType::LongLong:
6974   case BuiltinType::ULongLong:
6975     return 6 + (getIntWidth(LongLongTy) << 3);
6976   case BuiltinType::Int128:
6977   case BuiltinType::UInt128:
6978     return 7 + (getIntWidth(Int128Ty) << 3);
6979   }
6980 }
6981 
6982 /// Whether this is a promotable bitfield reference according
6983 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
6984 ///
6985 /// \returns the type this bit-field will promote to, or NULL if no
6986 /// promotion occurs.
6987 QualType ASTContext::isPromotableBitField(Expr *E) const {
6988   if (E->isTypeDependent() || E->isValueDependent())
6989     return {};
6990 
6991   // C++ [conv.prom]p5:
6992   //    If the bit-field has an enumerated type, it is treated as any other
6993   //    value of that type for promotion purposes.
6994   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
6995     return {};
6996 
6997   // FIXME: We should not do this unless E->refersToBitField() is true. This
6998   // matters in C where getSourceBitField() will find bit-fields for various
6999   // cases where the source expression is not a bit-field designator.
7000 
7001   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
7002   if (!Field)
7003     return {};
7004 
7005   QualType FT = Field->getType();
7006 
7007   uint64_t BitWidth = Field->getBitWidthValue(*this);
7008   uint64_t IntSize = getTypeSize(IntTy);
7009   // C++ [conv.prom]p5:
7010   //   A prvalue for an integral bit-field can be converted to a prvalue of type
7011   //   int if int can represent all the values of the bit-field; otherwise, it
7012   //   can be converted to unsigned int if unsigned int can represent all the
7013   //   values of the bit-field. If the bit-field is larger yet, no integral
7014   //   promotion applies to it.
7015   // C11 6.3.1.1/2:
7016   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
7017   //   If an int can represent all values of the original type (as restricted by
7018   //   the width, for a bit-field), the value is converted to an int; otherwise,
7019   //   it is converted to an unsigned int.
7020   //
7021   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
7022   //        We perform that promotion here to match GCC and C++.
7023   // FIXME: C does not permit promotion of an enum bit-field whose rank is
7024   //        greater than that of 'int'. We perform that promotion to match GCC.
7025   if (BitWidth < IntSize)
7026     return IntTy;
7027 
7028   if (BitWidth == IntSize)
7029     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
7030 
7031   // Bit-fields wider than int are not subject to promotions, and therefore act
7032   // like the base type. GCC has some weird bugs in this area that we
7033   // deliberately do not follow (GCC follows a pre-standard resolution to
7034   // C's DR315 which treats bit-width as being part of the type, and this leaks
7035   // into their semantics in some cases).
7036   return {};
7037 }
7038 
7039 /// getPromotedIntegerType - Returns the type that Promotable will
7040 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
7041 /// integer type.
7042 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
7043   assert(!Promotable.isNull());
7044   assert(Promotable->isPromotableIntegerType());
7045   if (const auto *ET = Promotable->getAs<EnumType>())
7046     return ET->getDecl()->getPromotionType();
7047 
7048   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
7049     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
7050     // (3.9.1) can be converted to a prvalue of the first of the following
7051     // types that can represent all the values of its underlying type:
7052     // int, unsigned int, long int, unsigned long int, long long int, or
7053     // unsigned long long int [...]
7054     // FIXME: Is there some better way to compute this?
7055     if (BT->getKind() == BuiltinType::WChar_S ||
7056         BT->getKind() == BuiltinType::WChar_U ||
7057         BT->getKind() == BuiltinType::Char8 ||
7058         BT->getKind() == BuiltinType::Char16 ||
7059         BT->getKind() == BuiltinType::Char32) {
7060       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
7061       uint64_t FromSize = getTypeSize(BT);
7062       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
7063                                   LongLongTy, UnsignedLongLongTy };
7064       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
7065         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
7066         if (FromSize < ToSize ||
7067             (FromSize == ToSize &&
7068              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
7069           return PromoteTypes[Idx];
7070       }
7071       llvm_unreachable("char type should fit into long long");
7072     }
7073   }
7074 
7075   // At this point, we should have a signed or unsigned integer type.
7076   if (Promotable->isSignedIntegerType())
7077     return IntTy;
7078   uint64_t PromotableSize = getIntWidth(Promotable);
7079   uint64_t IntSize = getIntWidth(IntTy);
7080   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
7081   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
7082 }
7083 
7084 /// Recurses in pointer/array types until it finds an objc retainable
7085 /// type and returns its ownership.
7086 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
7087   while (!T.isNull()) {
7088     if (T.getObjCLifetime() != Qualifiers::OCL_None)
7089       return T.getObjCLifetime();
7090     if (T->isArrayType())
7091       T = getBaseElementType(T);
7092     else if (const auto *PT = T->getAs<PointerType>())
7093       T = PT->getPointeeType();
7094     else if (const auto *RT = T->getAs<ReferenceType>())
7095       T = RT->getPointeeType();
7096     else
7097       break;
7098   }
7099 
7100   return Qualifiers::OCL_None;
7101 }
7102 
7103 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
7104   // Incomplete enum types are not treated as integer types.
7105   // FIXME: In C++, enum types are never integer types.
7106   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
7107     return ET->getDecl()->getIntegerType().getTypePtr();
7108   return nullptr;
7109 }
7110 
7111 /// getIntegerTypeOrder - Returns the highest ranked integer type:
7112 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
7113 /// LHS < RHS, return -1.
7114 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
7115   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
7116   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
7117 
7118   // Unwrap enums to their underlying type.
7119   if (const auto *ET = dyn_cast<EnumType>(LHSC))
7120     LHSC = getIntegerTypeForEnum(ET);
7121   if (const auto *ET = dyn_cast<EnumType>(RHSC))
7122     RHSC = getIntegerTypeForEnum(ET);
7123 
7124   if (LHSC == RHSC) return 0;
7125 
7126   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
7127   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
7128 
7129   unsigned LHSRank = getIntegerRank(LHSC);
7130   unsigned RHSRank = getIntegerRank(RHSC);
7131 
7132   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
7133     if (LHSRank == RHSRank) return 0;
7134     return LHSRank > RHSRank ? 1 : -1;
7135   }
7136 
7137   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
7138   if (LHSUnsigned) {
7139     // If the unsigned [LHS] type is larger, return it.
7140     if (LHSRank >= RHSRank)
7141       return 1;
7142 
7143     // If the signed type can represent all values of the unsigned type, it
7144     // wins.  Because we are dealing with 2's complement and types that are
7145     // powers of two larger than each other, this is always safe.
7146     return -1;
7147   }
7148 
7149   // If the unsigned [RHS] type is larger, return it.
7150   if (RHSRank >= LHSRank)
7151     return -1;
7152 
7153   // If the signed type can represent all values of the unsigned type, it
7154   // wins.  Because we are dealing with 2's complement and types that are
7155   // powers of two larger than each other, this is always safe.
7156   return 1;
7157 }
7158 
7159 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
7160   if (CFConstantStringTypeDecl)
7161     return CFConstantStringTypeDecl;
7162 
7163   assert(!CFConstantStringTagDecl &&
7164          "tag and typedef should be initialized together");
7165   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
7166   CFConstantStringTagDecl->startDefinition();
7167 
7168   struct {
7169     QualType Type;
7170     const char *Name;
7171   } Fields[5];
7172   unsigned Count = 0;
7173 
7174   /// Objective-C ABI
7175   ///
7176   ///    typedef struct __NSConstantString_tag {
7177   ///      const int *isa;
7178   ///      int flags;
7179   ///      const char *str;
7180   ///      long length;
7181   ///    } __NSConstantString;
7182   ///
7183   /// Swift ABI (4.1, 4.2)
7184   ///
7185   ///    typedef struct __NSConstantString_tag {
7186   ///      uintptr_t _cfisa;
7187   ///      uintptr_t _swift_rc;
7188   ///      _Atomic(uint64_t) _cfinfoa;
7189   ///      const char *_ptr;
7190   ///      uint32_t _length;
7191   ///    } __NSConstantString;
7192   ///
7193   /// Swift ABI (5.0)
7194   ///
7195   ///    typedef struct __NSConstantString_tag {
7196   ///      uintptr_t _cfisa;
7197   ///      uintptr_t _swift_rc;
7198   ///      _Atomic(uint64_t) _cfinfoa;
7199   ///      const char *_ptr;
7200   ///      uintptr_t _length;
7201   ///    } __NSConstantString;
7202 
7203   const auto CFRuntime = getLangOpts().CFRuntime;
7204   if (static_cast<unsigned>(CFRuntime) <
7205       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
7206     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
7207     Fields[Count++] = { IntTy, "flags" };
7208     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
7209     Fields[Count++] = { LongTy, "length" };
7210   } else {
7211     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
7212     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
7213     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
7214     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
7215     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
7216         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
7217       Fields[Count++] = { IntTy, "_ptr" };
7218     else
7219       Fields[Count++] = { getUIntPtrType(), "_ptr" };
7220   }
7221 
7222   // Create fields
7223   for (unsigned i = 0; i < Count; ++i) {
7224     FieldDecl *Field =
7225         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
7226                           SourceLocation(), &Idents.get(Fields[i].Name),
7227                           Fields[i].Type, /*TInfo=*/nullptr,
7228                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7229     Field->setAccess(AS_public);
7230     CFConstantStringTagDecl->addDecl(Field);
7231   }
7232 
7233   CFConstantStringTagDecl->completeDefinition();
7234   // This type is designed to be compatible with NSConstantString, but cannot
7235   // use the same name, since NSConstantString is an interface.
7236   auto tagType = getTagDeclType(CFConstantStringTagDecl);
7237   CFConstantStringTypeDecl =
7238       buildImplicitTypedef(tagType, "__NSConstantString");
7239 
7240   return CFConstantStringTypeDecl;
7241 }
7242 
7243 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
7244   if (!CFConstantStringTagDecl)
7245     getCFConstantStringDecl(); // Build the tag and the typedef.
7246   return CFConstantStringTagDecl;
7247 }
7248 
7249 // getCFConstantStringType - Return the type used for constant CFStrings.
7250 QualType ASTContext::getCFConstantStringType() const {
7251   return getTypedefType(getCFConstantStringDecl());
7252 }
7253 
7254 QualType ASTContext::getObjCSuperType() const {
7255   if (ObjCSuperType.isNull()) {
7256     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
7257     getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl);
7258     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
7259   }
7260   return ObjCSuperType;
7261 }
7262 
7263 void ASTContext::setCFConstantStringType(QualType T) {
7264   const auto *TD = T->castAs<TypedefType>();
7265   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
7266   const auto *TagType =
7267       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
7268   CFConstantStringTagDecl = TagType->getDecl();
7269 }
7270 
7271 QualType ASTContext::getBlockDescriptorType() const {
7272   if (BlockDescriptorType)
7273     return getTagDeclType(BlockDescriptorType);
7274 
7275   RecordDecl *RD;
7276   // FIXME: Needs the FlagAppleBlock bit.
7277   RD = buildImplicitRecord("__block_descriptor");
7278   RD->startDefinition();
7279 
7280   QualType FieldTypes[] = {
7281     UnsignedLongTy,
7282     UnsignedLongTy,
7283   };
7284 
7285   static const char *const FieldNames[] = {
7286     "reserved",
7287     "Size"
7288   };
7289 
7290   for (size_t i = 0; i < 2; ++i) {
7291     FieldDecl *Field = FieldDecl::Create(
7292         *this, RD, SourceLocation(), SourceLocation(),
7293         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7294         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7295     Field->setAccess(AS_public);
7296     RD->addDecl(Field);
7297   }
7298 
7299   RD->completeDefinition();
7300 
7301   BlockDescriptorType = RD;
7302 
7303   return getTagDeclType(BlockDescriptorType);
7304 }
7305 
7306 QualType ASTContext::getBlockDescriptorExtendedType() const {
7307   if (BlockDescriptorExtendedType)
7308     return getTagDeclType(BlockDescriptorExtendedType);
7309 
7310   RecordDecl *RD;
7311   // FIXME: Needs the FlagAppleBlock bit.
7312   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
7313   RD->startDefinition();
7314 
7315   QualType FieldTypes[] = {
7316     UnsignedLongTy,
7317     UnsignedLongTy,
7318     getPointerType(VoidPtrTy),
7319     getPointerType(VoidPtrTy)
7320   };
7321 
7322   static const char *const FieldNames[] = {
7323     "reserved",
7324     "Size",
7325     "CopyFuncPtr",
7326     "DestroyFuncPtr"
7327   };
7328 
7329   for (size_t i = 0; i < 4; ++i) {
7330     FieldDecl *Field = FieldDecl::Create(
7331         *this, RD, SourceLocation(), SourceLocation(),
7332         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7333         /*BitWidth=*/nullptr,
7334         /*Mutable=*/false, ICIS_NoInit);
7335     Field->setAccess(AS_public);
7336     RD->addDecl(Field);
7337   }
7338 
7339   RD->completeDefinition();
7340 
7341   BlockDescriptorExtendedType = RD;
7342   return getTagDeclType(BlockDescriptorExtendedType);
7343 }
7344 
7345 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
7346   const auto *BT = dyn_cast<BuiltinType>(T);
7347 
7348   if (!BT) {
7349     if (isa<PipeType>(T))
7350       return OCLTK_Pipe;
7351 
7352     return OCLTK_Default;
7353   }
7354 
7355   switch (BT->getKind()) {
7356 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
7357   case BuiltinType::Id:                                                        \
7358     return OCLTK_Image;
7359 #include "clang/Basic/OpenCLImageTypes.def"
7360 
7361   case BuiltinType::OCLClkEvent:
7362     return OCLTK_ClkEvent;
7363 
7364   case BuiltinType::OCLEvent:
7365     return OCLTK_Event;
7366 
7367   case BuiltinType::OCLQueue:
7368     return OCLTK_Queue;
7369 
7370   case BuiltinType::OCLReserveID:
7371     return OCLTK_ReserveID;
7372 
7373   case BuiltinType::OCLSampler:
7374     return OCLTK_Sampler;
7375 
7376   default:
7377     return OCLTK_Default;
7378   }
7379 }
7380 
7381 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
7382   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
7383 }
7384 
7385 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
7386 /// requires copy/dispose. Note that this must match the logic
7387 /// in buildByrefHelpers.
7388 bool ASTContext::BlockRequiresCopying(QualType Ty,
7389                                       const VarDecl *D) {
7390   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
7391     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
7392     if (!copyExpr && record->hasTrivialDestructor()) return false;
7393 
7394     return true;
7395   }
7396 
7397   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
7398   // move or destroy.
7399   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
7400     return true;
7401 
7402   if (!Ty->isObjCRetainableType()) return false;
7403 
7404   Qualifiers qs = Ty.getQualifiers();
7405 
7406   // If we have lifetime, that dominates.
7407   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
7408     switch (lifetime) {
7409       case Qualifiers::OCL_None: llvm_unreachable("impossible");
7410 
7411       // These are just bits as far as the runtime is concerned.
7412       case Qualifiers::OCL_ExplicitNone:
7413       case Qualifiers::OCL_Autoreleasing:
7414         return false;
7415 
7416       // These cases should have been taken care of when checking the type's
7417       // non-triviality.
7418       case Qualifiers::OCL_Weak:
7419       case Qualifiers::OCL_Strong:
7420         llvm_unreachable("impossible");
7421     }
7422     llvm_unreachable("fell out of lifetime switch!");
7423   }
7424   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
7425           Ty->isObjCObjectPointerType());
7426 }
7427 
7428 bool ASTContext::getByrefLifetime(QualType Ty,
7429                               Qualifiers::ObjCLifetime &LifeTime,
7430                               bool &HasByrefExtendedLayout) const {
7431   if (!getLangOpts().ObjC ||
7432       getLangOpts().getGC() != LangOptions::NonGC)
7433     return false;
7434 
7435   HasByrefExtendedLayout = false;
7436   if (Ty->isRecordType()) {
7437     HasByrefExtendedLayout = true;
7438     LifeTime = Qualifiers::OCL_None;
7439   } else if ((LifeTime = Ty.getObjCLifetime())) {
7440     // Honor the ARC qualifiers.
7441   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
7442     // The MRR rule.
7443     LifeTime = Qualifiers::OCL_ExplicitNone;
7444   } else {
7445     LifeTime = Qualifiers::OCL_None;
7446   }
7447   return true;
7448 }
7449 
7450 CanQualType ASTContext::getNSUIntegerType() const {
7451   assert(Target && "Expected target to be initialized");
7452   const llvm::Triple &T = Target->getTriple();
7453   // Windows is LLP64 rather than LP64
7454   if (T.isOSWindows() && T.isArch64Bit())
7455     return UnsignedLongLongTy;
7456   return UnsignedLongTy;
7457 }
7458 
7459 CanQualType ASTContext::getNSIntegerType() const {
7460   assert(Target && "Expected target to be initialized");
7461   const llvm::Triple &T = Target->getTriple();
7462   // Windows is LLP64 rather than LP64
7463   if (T.isOSWindows() && T.isArch64Bit())
7464     return LongLongTy;
7465   return LongTy;
7466 }
7467 
7468 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
7469   if (!ObjCInstanceTypeDecl)
7470     ObjCInstanceTypeDecl =
7471         buildImplicitTypedef(getObjCIdType(), "instancetype");
7472   return ObjCInstanceTypeDecl;
7473 }
7474 
7475 // This returns true if a type has been typedefed to BOOL:
7476 // typedef <type> BOOL;
7477 static bool isTypeTypedefedAsBOOL(QualType T) {
7478   if (const auto *TT = dyn_cast<TypedefType>(T))
7479     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
7480       return II->isStr("BOOL");
7481 
7482   return false;
7483 }
7484 
7485 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
7486 /// purpose.
7487 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
7488   if (!type->isIncompleteArrayType() && type->isIncompleteType())
7489     return CharUnits::Zero();
7490 
7491   CharUnits sz = getTypeSizeInChars(type);
7492 
7493   // Make all integer and enum types at least as large as an int
7494   if (sz.isPositive() && type->isIntegralOrEnumerationType())
7495     sz = std::max(sz, getTypeSizeInChars(IntTy));
7496   // Treat arrays as pointers, since that's how they're passed in.
7497   else if (type->isArrayType())
7498     sz = getTypeSizeInChars(VoidPtrTy);
7499   return sz;
7500 }
7501 
7502 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
7503   return getTargetInfo().getCXXABI().isMicrosoft() &&
7504          VD->isStaticDataMember() &&
7505          VD->getType()->isIntegralOrEnumerationType() &&
7506          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
7507 }
7508 
7509 ASTContext::InlineVariableDefinitionKind
7510 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
7511   if (!VD->isInline())
7512     return InlineVariableDefinitionKind::None;
7513 
7514   // In almost all cases, it's a weak definition.
7515   auto *First = VD->getFirstDecl();
7516   if (First->isInlineSpecified() || !First->isStaticDataMember())
7517     return InlineVariableDefinitionKind::Weak;
7518 
7519   // If there's a file-context declaration in this translation unit, it's a
7520   // non-discardable definition.
7521   for (auto *D : VD->redecls())
7522     if (D->getLexicalDeclContext()->isFileContext() &&
7523         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
7524       return InlineVariableDefinitionKind::Strong;
7525 
7526   // If we've not seen one yet, we don't know.
7527   return InlineVariableDefinitionKind::WeakUnknown;
7528 }
7529 
7530 static std::string charUnitsToString(const CharUnits &CU) {
7531   return llvm::itostr(CU.getQuantity());
7532 }
7533 
7534 /// getObjCEncodingForBlock - Return the encoded type for this block
7535 /// declaration.
7536 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
7537   std::string S;
7538 
7539   const BlockDecl *Decl = Expr->getBlockDecl();
7540   QualType BlockTy =
7541       Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
7542   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
7543   // Encode result type.
7544   if (getLangOpts().EncodeExtendedBlockSig)
7545     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
7546                                       true /*Extended*/);
7547   else
7548     getObjCEncodingForType(BlockReturnTy, S);
7549   // Compute size of all parameters.
7550   // Start with computing size of a pointer in number of bytes.
7551   // FIXME: There might(should) be a better way of doing this computation!
7552   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7553   CharUnits ParmOffset = PtrSize;
7554   for (auto PI : Decl->parameters()) {
7555     QualType PType = PI->getType();
7556     CharUnits sz = getObjCEncodingTypeSize(PType);
7557     if (sz.isZero())
7558       continue;
7559     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
7560     ParmOffset += sz;
7561   }
7562   // Size of the argument frame
7563   S += charUnitsToString(ParmOffset);
7564   // Block pointer and offset.
7565   S += "@?0";
7566 
7567   // Argument types.
7568   ParmOffset = PtrSize;
7569   for (auto PVDecl : Decl->parameters()) {
7570     QualType PType = PVDecl->getOriginalType();
7571     if (const auto *AT =
7572             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7573       // Use array's original type only if it has known number of
7574       // elements.
7575       if (!isa<ConstantArrayType>(AT))
7576         PType = PVDecl->getType();
7577     } else if (PType->isFunctionType())
7578       PType = PVDecl->getType();
7579     if (getLangOpts().EncodeExtendedBlockSig)
7580       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
7581                                       S, true /*Extended*/);
7582     else
7583       getObjCEncodingForType(PType, S);
7584     S += charUnitsToString(ParmOffset);
7585     ParmOffset += getObjCEncodingTypeSize(PType);
7586   }
7587 
7588   return S;
7589 }
7590 
7591 std::string
7592 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
7593   std::string S;
7594   // Encode result type.
7595   getObjCEncodingForType(Decl->getReturnType(), S);
7596   CharUnits ParmOffset;
7597   // Compute size of all parameters.
7598   for (auto PI : Decl->parameters()) {
7599     QualType PType = PI->getType();
7600     CharUnits sz = getObjCEncodingTypeSize(PType);
7601     if (sz.isZero())
7602       continue;
7603 
7604     assert(sz.isPositive() &&
7605            "getObjCEncodingForFunctionDecl - Incomplete param type");
7606     ParmOffset += sz;
7607   }
7608   S += charUnitsToString(ParmOffset);
7609   ParmOffset = CharUnits::Zero();
7610 
7611   // Argument types.
7612   for (auto PVDecl : Decl->parameters()) {
7613     QualType PType = PVDecl->getOriginalType();
7614     if (const auto *AT =
7615             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7616       // Use array's original type only if it has known number of
7617       // elements.
7618       if (!isa<ConstantArrayType>(AT))
7619         PType = PVDecl->getType();
7620     } else if (PType->isFunctionType())
7621       PType = PVDecl->getType();
7622     getObjCEncodingForType(PType, S);
7623     S += charUnitsToString(ParmOffset);
7624     ParmOffset += getObjCEncodingTypeSize(PType);
7625   }
7626 
7627   return S;
7628 }
7629 
7630 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
7631 /// method parameter or return type. If Extended, include class names and
7632 /// block object types.
7633 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
7634                                                    QualType T, std::string& S,
7635                                                    bool Extended) const {
7636   // Encode type qualifier, 'in', 'inout', etc. for the parameter.
7637   getObjCEncodingForTypeQualifier(QT, S);
7638   // Encode parameter type.
7639   ObjCEncOptions Options = ObjCEncOptions()
7640                                .setExpandPointedToStructures()
7641                                .setExpandStructures()
7642                                .setIsOutermostType();
7643   if (Extended)
7644     Options.setEncodeBlockParameters().setEncodeClassNames();
7645   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
7646 }
7647 
7648 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
7649 /// declaration.
7650 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
7651                                                      bool Extended) const {
7652   // FIXME: This is not very efficient.
7653   // Encode return type.
7654   std::string S;
7655   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
7656                                     Decl->getReturnType(), S, Extended);
7657   // Compute size of all parameters.
7658   // Start with computing size of a pointer in number of bytes.
7659   // FIXME: There might(should) be a better way of doing this computation!
7660   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7661   // The first two arguments (self and _cmd) are pointers; account for
7662   // their size.
7663   CharUnits ParmOffset = 2 * PtrSize;
7664   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7665        E = Decl->sel_param_end(); PI != E; ++PI) {
7666     QualType PType = (*PI)->getType();
7667     CharUnits sz = getObjCEncodingTypeSize(PType);
7668     if (sz.isZero())
7669       continue;
7670 
7671     assert(sz.isPositive() &&
7672            "getObjCEncodingForMethodDecl - Incomplete param type");
7673     ParmOffset += sz;
7674   }
7675   S += charUnitsToString(ParmOffset);
7676   S += "@0:";
7677   S += charUnitsToString(PtrSize);
7678 
7679   // Argument types.
7680   ParmOffset = 2 * PtrSize;
7681   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7682        E = Decl->sel_param_end(); PI != E; ++PI) {
7683     const ParmVarDecl *PVDecl = *PI;
7684     QualType PType = PVDecl->getOriginalType();
7685     if (const auto *AT =
7686             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7687       // Use array's original type only if it has known number of
7688       // elements.
7689       if (!isa<ConstantArrayType>(AT))
7690         PType = PVDecl->getType();
7691     } else if (PType->isFunctionType())
7692       PType = PVDecl->getType();
7693     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
7694                                       PType, S, Extended);
7695     S += charUnitsToString(ParmOffset);
7696     ParmOffset += getObjCEncodingTypeSize(PType);
7697   }
7698 
7699   return S;
7700 }
7701 
7702 ObjCPropertyImplDecl *
7703 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
7704                                       const ObjCPropertyDecl *PD,
7705                                       const Decl *Container) const {
7706   if (!Container)
7707     return nullptr;
7708   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
7709     for (auto *PID : CID->property_impls())
7710       if (PID->getPropertyDecl() == PD)
7711         return PID;
7712   } else {
7713     const auto *OID = cast<ObjCImplementationDecl>(Container);
7714     for (auto *PID : OID->property_impls())
7715       if (PID->getPropertyDecl() == PD)
7716         return PID;
7717   }
7718   return nullptr;
7719 }
7720 
7721 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
7722 /// property declaration. If non-NULL, Container must be either an
7723 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
7724 /// NULL when getting encodings for protocol properties.
7725 /// Property attributes are stored as a comma-delimited C string. The simple
7726 /// attributes readonly and bycopy are encoded as single characters. The
7727 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
7728 /// encoded as single characters, followed by an identifier. Property types
7729 /// are also encoded as a parametrized attribute. The characters used to encode
7730 /// these attributes are defined by the following enumeration:
7731 /// @code
7732 /// enum PropertyAttributes {
7733 /// kPropertyReadOnly = 'R',   // property is read-only.
7734 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
7735 /// kPropertyByref = '&',  // property is a reference to the value last assigned
7736 /// kPropertyDynamic = 'D',    // property is dynamic
7737 /// kPropertyGetter = 'G',     // followed by getter selector name
7738 /// kPropertySetter = 'S',     // followed by setter selector name
7739 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
7740 /// kPropertyType = 'T'              // followed by old-style type encoding.
7741 /// kPropertyWeak = 'W'              // 'weak' property
7742 /// kPropertyStrong = 'P'            // property GC'able
7743 /// kPropertyNonAtomic = 'N'         // property non-atomic
7744 /// };
7745 /// @endcode
7746 std::string
7747 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
7748                                            const Decl *Container) const {
7749   // Collect information from the property implementation decl(s).
7750   bool Dynamic = false;
7751   ObjCPropertyImplDecl *SynthesizePID = nullptr;
7752 
7753   if (ObjCPropertyImplDecl *PropertyImpDecl =
7754       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
7755     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
7756       Dynamic = true;
7757     else
7758       SynthesizePID = PropertyImpDecl;
7759   }
7760 
7761   // FIXME: This is not very efficient.
7762   std::string S = "T";
7763 
7764   // Encode result type.
7765   // GCC has some special rules regarding encoding of properties which
7766   // closely resembles encoding of ivars.
7767   getObjCEncodingForPropertyType(PD->getType(), S);
7768 
7769   if (PD->isReadOnly()) {
7770     S += ",R";
7771     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
7772       S += ",C";
7773     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7774       S += ",&";
7775     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7776       S += ",W";
7777   } else {
7778     switch (PD->getSetterKind()) {
7779     case ObjCPropertyDecl::Assign: break;
7780     case ObjCPropertyDecl::Copy:   S += ",C"; break;
7781     case ObjCPropertyDecl::Retain: S += ",&"; break;
7782     case ObjCPropertyDecl::Weak:   S += ",W"; break;
7783     }
7784   }
7785 
7786   // It really isn't clear at all what this means, since properties
7787   // are "dynamic by default".
7788   if (Dynamic)
7789     S += ",D";
7790 
7791   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7792     S += ",N";
7793 
7794   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7795     S += ",G";
7796     S += PD->getGetterName().getAsString();
7797   }
7798 
7799   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7800     S += ",S";
7801     S += PD->getSetterName().getAsString();
7802   }
7803 
7804   if (SynthesizePID) {
7805     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7806     S += ",V";
7807     S += OID->getNameAsString();
7808   }
7809 
7810   // FIXME: OBJCGC: weak & strong
7811   return S;
7812 }
7813 
7814 /// getLegacyIntegralTypeEncoding -
7815 /// Another legacy compatibility encoding: 32-bit longs are encoded as
7816 /// 'l' or 'L' , but not always.  For typedefs, we need to use
7817 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
7818 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7819   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
7820     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7821       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7822         PointeeTy = UnsignedIntTy;
7823       else
7824         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7825           PointeeTy = IntTy;
7826     }
7827   }
7828 }
7829 
7830 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
7831                                         const FieldDecl *Field,
7832                                         QualType *NotEncodedT) const {
7833   // We follow the behavior of gcc, expanding structures which are
7834   // directly pointed to, and expanding embedded structures. Note that
7835   // these rules are sufficient to prevent recursive encoding of the
7836   // same type.
7837   getObjCEncodingForTypeImpl(T, S,
7838                              ObjCEncOptions()
7839                                  .setExpandPointedToStructures()
7840                                  .setExpandStructures()
7841                                  .setIsOutermostType(),
7842                              Field, NotEncodedT);
7843 }
7844 
7845 void ASTContext::getObjCEncodingForPropertyType(QualType T,
7846                                                 std::string& S) const {
7847   // Encode result type.
7848   // GCC has some special rules regarding encoding of properties which
7849   // closely resembles encoding of ivars.
7850   getObjCEncodingForTypeImpl(T, S,
7851                              ObjCEncOptions()
7852                                  .setExpandPointedToStructures()
7853                                  .setExpandStructures()
7854                                  .setIsOutermostType()
7855                                  .setEncodingProperty(),
7856                              /*Field=*/nullptr);
7857 }
7858 
7859 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
7860                                             const BuiltinType *BT) {
7861     BuiltinType::Kind kind = BT->getKind();
7862     switch (kind) {
7863     case BuiltinType::Void:       return 'v';
7864     case BuiltinType::Bool:       return 'B';
7865     case BuiltinType::Char8:
7866     case BuiltinType::Char_U:
7867     case BuiltinType::UChar:      return 'C';
7868     case BuiltinType::Char16:
7869     case BuiltinType::UShort:     return 'S';
7870     case BuiltinType::Char32:
7871     case BuiltinType::UInt:       return 'I';
7872     case BuiltinType::ULong:
7873         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
7874     case BuiltinType::UInt128:    return 'T';
7875     case BuiltinType::ULongLong:  return 'Q';
7876     case BuiltinType::Char_S:
7877     case BuiltinType::SChar:      return 'c';
7878     case BuiltinType::Short:      return 's';
7879     case BuiltinType::WChar_S:
7880     case BuiltinType::WChar_U:
7881     case BuiltinType::Int:        return 'i';
7882     case BuiltinType::Long:
7883       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
7884     case BuiltinType::LongLong:   return 'q';
7885     case BuiltinType::Int128:     return 't';
7886     case BuiltinType::Float:      return 'f';
7887     case BuiltinType::Double:     return 'd';
7888     case BuiltinType::LongDouble: return 'D';
7889     case BuiltinType::NullPtr:    return '*'; // like char*
7890 
7891     case BuiltinType::BFloat16:
7892     case BuiltinType::Float16:
7893     case BuiltinType::Float128:
7894     case BuiltinType::Ibm128:
7895     case BuiltinType::Half:
7896     case BuiltinType::ShortAccum:
7897     case BuiltinType::Accum:
7898     case BuiltinType::LongAccum:
7899     case BuiltinType::UShortAccum:
7900     case BuiltinType::UAccum:
7901     case BuiltinType::ULongAccum:
7902     case BuiltinType::ShortFract:
7903     case BuiltinType::Fract:
7904     case BuiltinType::LongFract:
7905     case BuiltinType::UShortFract:
7906     case BuiltinType::UFract:
7907     case BuiltinType::ULongFract:
7908     case BuiltinType::SatShortAccum:
7909     case BuiltinType::SatAccum:
7910     case BuiltinType::SatLongAccum:
7911     case BuiltinType::SatUShortAccum:
7912     case BuiltinType::SatUAccum:
7913     case BuiltinType::SatULongAccum:
7914     case BuiltinType::SatShortFract:
7915     case BuiltinType::SatFract:
7916     case BuiltinType::SatLongFract:
7917     case BuiltinType::SatUShortFract:
7918     case BuiltinType::SatUFract:
7919     case BuiltinType::SatULongFract:
7920       // FIXME: potentially need @encodes for these!
7921       return ' ';
7922 
7923 #define SVE_TYPE(Name, Id, SingletonId) \
7924     case BuiltinType::Id:
7925 #include "clang/Basic/AArch64SVEACLETypes.def"
7926 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
7927 #include "clang/Basic/RISCVVTypes.def"
7928       {
7929         DiagnosticsEngine &Diags = C->getDiagnostics();
7930         unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
7931                                                 "cannot yet @encode type %0");
7932         Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
7933         return ' ';
7934       }
7935 
7936     case BuiltinType::ObjCId:
7937     case BuiltinType::ObjCClass:
7938     case BuiltinType::ObjCSel:
7939       llvm_unreachable("@encoding ObjC primitive type");
7940 
7941     // OpenCL and placeholder types don't need @encodings.
7942 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7943     case BuiltinType::Id:
7944 #include "clang/Basic/OpenCLImageTypes.def"
7945 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
7946     case BuiltinType::Id:
7947 #include "clang/Basic/OpenCLExtensionTypes.def"
7948     case BuiltinType::OCLEvent:
7949     case BuiltinType::OCLClkEvent:
7950     case BuiltinType::OCLQueue:
7951     case BuiltinType::OCLReserveID:
7952     case BuiltinType::OCLSampler:
7953     case BuiltinType::Dependent:
7954 #define PPC_VECTOR_TYPE(Name, Id, Size) \
7955     case BuiltinType::Id:
7956 #include "clang/Basic/PPCTypes.def"
7957 #define BUILTIN_TYPE(KIND, ID)
7958 #define PLACEHOLDER_TYPE(KIND, ID) \
7959     case BuiltinType::KIND:
7960 #include "clang/AST/BuiltinTypes.def"
7961       llvm_unreachable("invalid builtin type for @encode");
7962     }
7963     llvm_unreachable("invalid BuiltinType::Kind value");
7964 }
7965 
7966 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
7967   EnumDecl *Enum = ET->getDecl();
7968 
7969   // The encoding of an non-fixed enum type is always 'i', regardless of size.
7970   if (!Enum->isFixed())
7971     return 'i';
7972 
7973   // The encoding of a fixed enum type matches its fixed underlying type.
7974   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
7975   return getObjCEncodingForPrimitiveType(C, BT);
7976 }
7977 
7978 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
7979                            QualType T, const FieldDecl *FD) {
7980   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
7981   S += 'b';
7982   // The NeXT runtime encodes bit fields as b followed by the number of bits.
7983   // The GNU runtime requires more information; bitfields are encoded as b,
7984   // then the offset (in bits) of the first element, then the type of the
7985   // bitfield, then the size in bits.  For example, in this structure:
7986   //
7987   // struct
7988   // {
7989   //    int integer;
7990   //    int flags:2;
7991   // };
7992   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
7993   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
7994   // information is not especially sensible, but we're stuck with it for
7995   // compatibility with GCC, although providing it breaks anything that
7996   // actually uses runtime introspection and wants to work on both runtimes...
7997   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
7998     uint64_t Offset;
7999 
8000     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
8001       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
8002                                          IVD);
8003     } else {
8004       const RecordDecl *RD = FD->getParent();
8005       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
8006       Offset = RL.getFieldOffset(FD->getFieldIndex());
8007     }
8008 
8009     S += llvm::utostr(Offset);
8010 
8011     if (const auto *ET = T->getAs<EnumType>())
8012       S += ObjCEncodingForEnumType(Ctx, ET);
8013     else {
8014       const auto *BT = T->castAs<BuiltinType>();
8015       S += getObjCEncodingForPrimitiveType(Ctx, BT);
8016     }
8017   }
8018   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
8019 }
8020 
8021 // Helper function for determining whether the encoded type string would include
8022 // a template specialization type.
8023 static bool hasTemplateSpecializationInEncodedString(const Type *T,
8024                                                      bool VisitBasesAndFields) {
8025   T = T->getBaseElementTypeUnsafe();
8026 
8027   if (auto *PT = T->getAs<PointerType>())
8028     return hasTemplateSpecializationInEncodedString(
8029         PT->getPointeeType().getTypePtr(), false);
8030 
8031   auto *CXXRD = T->getAsCXXRecordDecl();
8032 
8033   if (!CXXRD)
8034     return false;
8035 
8036   if (isa<ClassTemplateSpecializationDecl>(CXXRD))
8037     return true;
8038 
8039   if (!CXXRD->hasDefinition() || !VisitBasesAndFields)
8040     return false;
8041 
8042   for (auto B : CXXRD->bases())
8043     if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(),
8044                                                  true))
8045       return true;
8046 
8047   for (auto *FD : CXXRD->fields())
8048     if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(),
8049                                                  true))
8050       return true;
8051 
8052   return false;
8053 }
8054 
8055 // FIXME: Use SmallString for accumulating string.
8056 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
8057                                             const ObjCEncOptions Options,
8058                                             const FieldDecl *FD,
8059                                             QualType *NotEncodedT) const {
8060   CanQualType CT = getCanonicalType(T);
8061   switch (CT->getTypeClass()) {
8062   case Type::Builtin:
8063   case Type::Enum:
8064     if (FD && FD->isBitField())
8065       return EncodeBitField(this, S, T, FD);
8066     if (const auto *BT = dyn_cast<BuiltinType>(CT))
8067       S += getObjCEncodingForPrimitiveType(this, BT);
8068     else
8069       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
8070     return;
8071 
8072   case Type::Complex:
8073     S += 'j';
8074     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
8075                                ObjCEncOptions(),
8076                                /*Field=*/nullptr);
8077     return;
8078 
8079   case Type::Atomic:
8080     S += 'A';
8081     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
8082                                ObjCEncOptions(),
8083                                /*Field=*/nullptr);
8084     return;
8085 
8086   // encoding for pointer or reference types.
8087   case Type::Pointer:
8088   case Type::LValueReference:
8089   case Type::RValueReference: {
8090     QualType PointeeTy;
8091     if (isa<PointerType>(CT)) {
8092       const auto *PT = T->castAs<PointerType>();
8093       if (PT->isObjCSelType()) {
8094         S += ':';
8095         return;
8096       }
8097       PointeeTy = PT->getPointeeType();
8098     } else {
8099       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
8100     }
8101 
8102     bool isReadOnly = false;
8103     // For historical/compatibility reasons, the read-only qualifier of the
8104     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
8105     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
8106     // Also, do not emit the 'r' for anything but the outermost type!
8107     if (isa<TypedefType>(T.getTypePtr())) {
8108       if (Options.IsOutermostType() && T.isConstQualified()) {
8109         isReadOnly = true;
8110         S += 'r';
8111       }
8112     } else if (Options.IsOutermostType()) {
8113       QualType P = PointeeTy;
8114       while (auto PT = P->getAs<PointerType>())
8115         P = PT->getPointeeType();
8116       if (P.isConstQualified()) {
8117         isReadOnly = true;
8118         S += 'r';
8119       }
8120     }
8121     if (isReadOnly) {
8122       // Another legacy compatibility encoding. Some ObjC qualifier and type
8123       // combinations need to be rearranged.
8124       // Rewrite "in const" from "nr" to "rn"
8125       if (StringRef(S).endswith("nr"))
8126         S.replace(S.end()-2, S.end(), "rn");
8127     }
8128 
8129     if (PointeeTy->isCharType()) {
8130       // char pointer types should be encoded as '*' unless it is a
8131       // type that has been typedef'd to 'BOOL'.
8132       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
8133         S += '*';
8134         return;
8135       }
8136     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
8137       // GCC binary compat: Need to convert "struct objc_class *" to "#".
8138       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
8139         S += '#';
8140         return;
8141       }
8142       // GCC binary compat: Need to convert "struct objc_object *" to "@".
8143       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
8144         S += '@';
8145         return;
8146       }
8147       // If the encoded string for the class includes template names, just emit
8148       // "^v" for pointers to the class.
8149       if (getLangOpts().CPlusPlus &&
8150           (!getLangOpts().EncodeCXXClassTemplateSpec &&
8151            hasTemplateSpecializationInEncodedString(
8152                RTy, Options.ExpandPointedToStructures()))) {
8153         S += "^v";
8154         return;
8155       }
8156       // fall through...
8157     }
8158     S += '^';
8159     getLegacyIntegralTypeEncoding(PointeeTy);
8160 
8161     ObjCEncOptions NewOptions;
8162     if (Options.ExpandPointedToStructures())
8163       NewOptions.setExpandStructures();
8164     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
8165                                /*Field=*/nullptr, NotEncodedT);
8166     return;
8167   }
8168 
8169   case Type::ConstantArray:
8170   case Type::IncompleteArray:
8171   case Type::VariableArray: {
8172     const auto *AT = cast<ArrayType>(CT);
8173 
8174     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
8175       // Incomplete arrays are encoded as a pointer to the array element.
8176       S += '^';
8177 
8178       getObjCEncodingForTypeImpl(
8179           AT->getElementType(), S,
8180           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
8181     } else {
8182       S += '[';
8183 
8184       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
8185         S += llvm::utostr(CAT->getSize().getZExtValue());
8186       else {
8187         //Variable length arrays are encoded as a regular array with 0 elements.
8188         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
8189                "Unknown array type!");
8190         S += '0';
8191       }
8192 
8193       getObjCEncodingForTypeImpl(
8194           AT->getElementType(), S,
8195           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
8196           NotEncodedT);
8197       S += ']';
8198     }
8199     return;
8200   }
8201 
8202   case Type::FunctionNoProto:
8203   case Type::FunctionProto:
8204     S += '?';
8205     return;
8206 
8207   case Type::Record: {
8208     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
8209     S += RDecl->isUnion() ? '(' : '{';
8210     // Anonymous structures print as '?'
8211     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
8212       S += II->getName();
8213       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
8214         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
8215         llvm::raw_string_ostream OS(S);
8216         printTemplateArgumentList(OS, TemplateArgs.asArray(),
8217                                   getPrintingPolicy());
8218       }
8219     } else {
8220       S += '?';
8221     }
8222     if (Options.ExpandStructures()) {
8223       S += '=';
8224       if (!RDecl->isUnion()) {
8225         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
8226       } else {
8227         for (const auto *Field : RDecl->fields()) {
8228           if (FD) {
8229             S += '"';
8230             S += Field->getNameAsString();
8231             S += '"';
8232           }
8233 
8234           // Special case bit-fields.
8235           if (Field->isBitField()) {
8236             getObjCEncodingForTypeImpl(Field->getType(), S,
8237                                        ObjCEncOptions().setExpandStructures(),
8238                                        Field);
8239           } else {
8240             QualType qt = Field->getType();
8241             getLegacyIntegralTypeEncoding(qt);
8242             getObjCEncodingForTypeImpl(
8243                 qt, S,
8244                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
8245                 NotEncodedT);
8246           }
8247         }
8248       }
8249     }
8250     S += RDecl->isUnion() ? ')' : '}';
8251     return;
8252   }
8253 
8254   case Type::BlockPointer: {
8255     const auto *BT = T->castAs<BlockPointerType>();
8256     S += "@?"; // Unlike a pointer-to-function, which is "^?".
8257     if (Options.EncodeBlockParameters()) {
8258       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
8259 
8260       S += '<';
8261       // Block return type
8262       getObjCEncodingForTypeImpl(FT->getReturnType(), S,
8263                                  Options.forComponentType(), FD, NotEncodedT);
8264       // Block self
8265       S += "@?";
8266       // Block parameters
8267       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
8268         for (const auto &I : FPT->param_types())
8269           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
8270                                      NotEncodedT);
8271       }
8272       S += '>';
8273     }
8274     return;
8275   }
8276 
8277   case Type::ObjCObject: {
8278     // hack to match legacy encoding of *id and *Class
8279     QualType Ty = getObjCObjectPointerType(CT);
8280     if (Ty->isObjCIdType()) {
8281       S += "{objc_object=}";
8282       return;
8283     }
8284     else if (Ty->isObjCClassType()) {
8285       S += "{objc_class=}";
8286       return;
8287     }
8288     // TODO: Double check to make sure this intentionally falls through.
8289     LLVM_FALLTHROUGH;
8290   }
8291 
8292   case Type::ObjCInterface: {
8293     // Ignore protocol qualifiers when mangling at this level.
8294     // @encode(class_name)
8295     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
8296     S += '{';
8297     S += OI->getObjCRuntimeNameAsString();
8298     if (Options.ExpandStructures()) {
8299       S += '=';
8300       SmallVector<const ObjCIvarDecl*, 32> Ivars;
8301       DeepCollectObjCIvars(OI, true, Ivars);
8302       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
8303         const FieldDecl *Field = Ivars[i];
8304         if (Field->isBitField())
8305           getObjCEncodingForTypeImpl(Field->getType(), S,
8306                                      ObjCEncOptions().setExpandStructures(),
8307                                      Field);
8308         else
8309           getObjCEncodingForTypeImpl(Field->getType(), S,
8310                                      ObjCEncOptions().setExpandStructures(), FD,
8311                                      NotEncodedT);
8312       }
8313     }
8314     S += '}';
8315     return;
8316   }
8317 
8318   case Type::ObjCObjectPointer: {
8319     const auto *OPT = T->castAs<ObjCObjectPointerType>();
8320     if (OPT->isObjCIdType()) {
8321       S += '@';
8322       return;
8323     }
8324 
8325     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
8326       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
8327       // Since this is a binary compatibility issue, need to consult with
8328       // runtime folks. Fortunately, this is a *very* obscure construct.
8329       S += '#';
8330       return;
8331     }
8332 
8333     if (OPT->isObjCQualifiedIdType()) {
8334       getObjCEncodingForTypeImpl(
8335           getObjCIdType(), S,
8336           Options.keepingOnly(ObjCEncOptions()
8337                                   .setExpandPointedToStructures()
8338                                   .setExpandStructures()),
8339           FD);
8340       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
8341         // Note that we do extended encoding of protocol qualifier list
8342         // Only when doing ivar or property encoding.
8343         S += '"';
8344         for (const auto *I : OPT->quals()) {
8345           S += '<';
8346           S += I->getObjCRuntimeNameAsString();
8347           S += '>';
8348         }
8349         S += '"';
8350       }
8351       return;
8352     }
8353 
8354     S += '@';
8355     if (OPT->getInterfaceDecl() &&
8356         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
8357       S += '"';
8358       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
8359       for (const auto *I : OPT->quals()) {
8360         S += '<';
8361         S += I->getObjCRuntimeNameAsString();
8362         S += '>';
8363       }
8364       S += '"';
8365     }
8366     return;
8367   }
8368 
8369   // gcc just blithely ignores member pointers.
8370   // FIXME: we should do better than that.  'M' is available.
8371   case Type::MemberPointer:
8372   // This matches gcc's encoding, even though technically it is insufficient.
8373   //FIXME. We should do a better job than gcc.
8374   case Type::Vector:
8375   case Type::ExtVector:
8376   // Until we have a coherent encoding of these three types, issue warning.
8377     if (NotEncodedT)
8378       *NotEncodedT = T;
8379     return;
8380 
8381   case Type::ConstantMatrix:
8382     if (NotEncodedT)
8383       *NotEncodedT = T;
8384     return;
8385 
8386   case Type::BitInt:
8387     if (NotEncodedT)
8388       *NotEncodedT = T;
8389     return;
8390 
8391   // We could see an undeduced auto type here during error recovery.
8392   // Just ignore it.
8393   case Type::Auto:
8394   case Type::DeducedTemplateSpecialization:
8395     return;
8396 
8397   case Type::Pipe:
8398 #define ABSTRACT_TYPE(KIND, BASE)
8399 #define TYPE(KIND, BASE)
8400 #define DEPENDENT_TYPE(KIND, BASE) \
8401   case Type::KIND:
8402 #define NON_CANONICAL_TYPE(KIND, BASE) \
8403   case Type::KIND:
8404 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
8405   case Type::KIND:
8406 #include "clang/AST/TypeNodes.inc"
8407     llvm_unreachable("@encode for dependent type!");
8408   }
8409   llvm_unreachable("bad type kind!");
8410 }
8411 
8412 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
8413                                                  std::string &S,
8414                                                  const FieldDecl *FD,
8415                                                  bool includeVBases,
8416                                                  QualType *NotEncodedT) const {
8417   assert(RDecl && "Expected non-null RecordDecl");
8418   assert(!RDecl->isUnion() && "Should not be called for unions");
8419   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
8420     return;
8421 
8422   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
8423   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
8424   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
8425 
8426   if (CXXRec) {
8427     for (const auto &BI : CXXRec->bases()) {
8428       if (!BI.isVirtual()) {
8429         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8430         if (base->isEmpty())
8431           continue;
8432         uint64_t offs = toBits(layout.getBaseClassOffset(base));
8433         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8434                                   std::make_pair(offs, base));
8435       }
8436     }
8437   }
8438 
8439   unsigned i = 0;
8440   for (FieldDecl *Field : RDecl->fields()) {
8441     if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
8442       continue;
8443     uint64_t offs = layout.getFieldOffset(i);
8444     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8445                               std::make_pair(offs, Field));
8446     ++i;
8447   }
8448 
8449   if (CXXRec && includeVBases) {
8450     for (const auto &BI : CXXRec->vbases()) {
8451       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8452       if (base->isEmpty())
8453         continue;
8454       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
8455       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
8456           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
8457         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
8458                                   std::make_pair(offs, base));
8459     }
8460   }
8461 
8462   CharUnits size;
8463   if (CXXRec) {
8464     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
8465   } else {
8466     size = layout.getSize();
8467   }
8468 
8469 #ifndef NDEBUG
8470   uint64_t CurOffs = 0;
8471 #endif
8472   std::multimap<uint64_t, NamedDecl *>::iterator
8473     CurLayObj = FieldOrBaseOffsets.begin();
8474 
8475   if (CXXRec && CXXRec->isDynamicClass() &&
8476       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
8477     if (FD) {
8478       S += "\"_vptr$";
8479       std::string recname = CXXRec->getNameAsString();
8480       if (recname.empty()) recname = "?";
8481       S += recname;
8482       S += '"';
8483     }
8484     S += "^^?";
8485 #ifndef NDEBUG
8486     CurOffs += getTypeSize(VoidPtrTy);
8487 #endif
8488   }
8489 
8490   if (!RDecl->hasFlexibleArrayMember()) {
8491     // Mark the end of the structure.
8492     uint64_t offs = toBits(size);
8493     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8494                               std::make_pair(offs, nullptr));
8495   }
8496 
8497   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
8498 #ifndef NDEBUG
8499     assert(CurOffs <= CurLayObj->first);
8500     if (CurOffs < CurLayObj->first) {
8501       uint64_t padding = CurLayObj->first - CurOffs;
8502       // FIXME: There doesn't seem to be a way to indicate in the encoding that
8503       // packing/alignment of members is different that normal, in which case
8504       // the encoding will be out-of-sync with the real layout.
8505       // If the runtime switches to just consider the size of types without
8506       // taking into account alignment, we could make padding explicit in the
8507       // encoding (e.g. using arrays of chars). The encoding strings would be
8508       // longer then though.
8509       CurOffs += padding;
8510     }
8511 #endif
8512 
8513     NamedDecl *dcl = CurLayObj->second;
8514     if (!dcl)
8515       break; // reached end of structure.
8516 
8517     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
8518       // We expand the bases without their virtual bases since those are going
8519       // in the initial structure. Note that this differs from gcc which
8520       // expands virtual bases each time one is encountered in the hierarchy,
8521       // making the encoding type bigger than it really is.
8522       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
8523                                       NotEncodedT);
8524       assert(!base->isEmpty());
8525 #ifndef NDEBUG
8526       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
8527 #endif
8528     } else {
8529       const auto *field = cast<FieldDecl>(dcl);
8530       if (FD) {
8531         S += '"';
8532         S += field->getNameAsString();
8533         S += '"';
8534       }
8535 
8536       if (field->isBitField()) {
8537         EncodeBitField(this, S, field->getType(), field);
8538 #ifndef NDEBUG
8539         CurOffs += field->getBitWidthValue(*this);
8540 #endif
8541       } else {
8542         QualType qt = field->getType();
8543         getLegacyIntegralTypeEncoding(qt);
8544         getObjCEncodingForTypeImpl(
8545             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
8546             FD, NotEncodedT);
8547 #ifndef NDEBUG
8548         CurOffs += getTypeSize(field->getType());
8549 #endif
8550       }
8551     }
8552   }
8553 }
8554 
8555 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
8556                                                  std::string& S) const {
8557   if (QT & Decl::OBJC_TQ_In)
8558     S += 'n';
8559   if (QT & Decl::OBJC_TQ_Inout)
8560     S += 'N';
8561   if (QT & Decl::OBJC_TQ_Out)
8562     S += 'o';
8563   if (QT & Decl::OBJC_TQ_Bycopy)
8564     S += 'O';
8565   if (QT & Decl::OBJC_TQ_Byref)
8566     S += 'R';
8567   if (QT & Decl::OBJC_TQ_Oneway)
8568     S += 'V';
8569 }
8570 
8571 TypedefDecl *ASTContext::getObjCIdDecl() const {
8572   if (!ObjCIdDecl) {
8573     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
8574     T = getObjCObjectPointerType(T);
8575     ObjCIdDecl = buildImplicitTypedef(T, "id");
8576   }
8577   return ObjCIdDecl;
8578 }
8579 
8580 TypedefDecl *ASTContext::getObjCSelDecl() const {
8581   if (!ObjCSelDecl) {
8582     QualType T = getPointerType(ObjCBuiltinSelTy);
8583     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
8584   }
8585   return ObjCSelDecl;
8586 }
8587 
8588 TypedefDecl *ASTContext::getObjCClassDecl() const {
8589   if (!ObjCClassDecl) {
8590     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
8591     T = getObjCObjectPointerType(T);
8592     ObjCClassDecl = buildImplicitTypedef(T, "Class");
8593   }
8594   return ObjCClassDecl;
8595 }
8596 
8597 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
8598   if (!ObjCProtocolClassDecl) {
8599     ObjCProtocolClassDecl
8600       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
8601                                   SourceLocation(),
8602                                   &Idents.get("Protocol"),
8603                                   /*typeParamList=*/nullptr,
8604                                   /*PrevDecl=*/nullptr,
8605                                   SourceLocation(), true);
8606   }
8607 
8608   return ObjCProtocolClassDecl;
8609 }
8610 
8611 //===----------------------------------------------------------------------===//
8612 // __builtin_va_list Construction Functions
8613 //===----------------------------------------------------------------------===//
8614 
8615 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
8616                                                  StringRef Name) {
8617   // typedef char* __builtin[_ms]_va_list;
8618   QualType T = Context->getPointerType(Context->CharTy);
8619   return Context->buildImplicitTypedef(T, Name);
8620 }
8621 
8622 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
8623   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
8624 }
8625 
8626 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
8627   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
8628 }
8629 
8630 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
8631   // typedef void* __builtin_va_list;
8632   QualType T = Context->getPointerType(Context->VoidTy);
8633   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8634 }
8635 
8636 static TypedefDecl *
8637 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
8638   // struct __va_list
8639   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
8640   if (Context->getLangOpts().CPlusPlus) {
8641     // namespace std { struct __va_list {
8642     auto *NS = NamespaceDecl::Create(
8643         const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(),
8644         /*Inline*/ false, SourceLocation(), SourceLocation(),
8645         &Context->Idents.get("std"),
8646         /*PrevDecl*/ nullptr);
8647     NS->setImplicit();
8648     VaListTagDecl->setDeclContext(NS);
8649   }
8650 
8651   VaListTagDecl->startDefinition();
8652 
8653   const size_t NumFields = 5;
8654   QualType FieldTypes[NumFields];
8655   const char *FieldNames[NumFields];
8656 
8657   // void *__stack;
8658   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8659   FieldNames[0] = "__stack";
8660 
8661   // void *__gr_top;
8662   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8663   FieldNames[1] = "__gr_top";
8664 
8665   // void *__vr_top;
8666   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8667   FieldNames[2] = "__vr_top";
8668 
8669   // int __gr_offs;
8670   FieldTypes[3] = Context->IntTy;
8671   FieldNames[3] = "__gr_offs";
8672 
8673   // int __vr_offs;
8674   FieldTypes[4] = Context->IntTy;
8675   FieldNames[4] = "__vr_offs";
8676 
8677   // Create fields
8678   for (unsigned i = 0; i < NumFields; ++i) {
8679     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8680                                          VaListTagDecl,
8681                                          SourceLocation(),
8682                                          SourceLocation(),
8683                                          &Context->Idents.get(FieldNames[i]),
8684                                          FieldTypes[i], /*TInfo=*/nullptr,
8685                                          /*BitWidth=*/nullptr,
8686                                          /*Mutable=*/false,
8687                                          ICIS_NoInit);
8688     Field->setAccess(AS_public);
8689     VaListTagDecl->addDecl(Field);
8690   }
8691   VaListTagDecl->completeDefinition();
8692   Context->VaListTagDecl = VaListTagDecl;
8693   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8694 
8695   // } __builtin_va_list;
8696   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
8697 }
8698 
8699 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
8700   // typedef struct __va_list_tag {
8701   RecordDecl *VaListTagDecl;
8702 
8703   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8704   VaListTagDecl->startDefinition();
8705 
8706   const size_t NumFields = 5;
8707   QualType FieldTypes[NumFields];
8708   const char *FieldNames[NumFields];
8709 
8710   //   unsigned char gpr;
8711   FieldTypes[0] = Context->UnsignedCharTy;
8712   FieldNames[0] = "gpr";
8713 
8714   //   unsigned char fpr;
8715   FieldTypes[1] = Context->UnsignedCharTy;
8716   FieldNames[1] = "fpr";
8717 
8718   //   unsigned short reserved;
8719   FieldTypes[2] = Context->UnsignedShortTy;
8720   FieldNames[2] = "reserved";
8721 
8722   //   void* overflow_arg_area;
8723   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8724   FieldNames[3] = "overflow_arg_area";
8725 
8726   //   void* reg_save_area;
8727   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
8728   FieldNames[4] = "reg_save_area";
8729 
8730   // Create fields
8731   for (unsigned i = 0; i < NumFields; ++i) {
8732     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
8733                                          SourceLocation(),
8734                                          SourceLocation(),
8735                                          &Context->Idents.get(FieldNames[i]),
8736                                          FieldTypes[i], /*TInfo=*/nullptr,
8737                                          /*BitWidth=*/nullptr,
8738                                          /*Mutable=*/false,
8739                                          ICIS_NoInit);
8740     Field->setAccess(AS_public);
8741     VaListTagDecl->addDecl(Field);
8742   }
8743   VaListTagDecl->completeDefinition();
8744   Context->VaListTagDecl = VaListTagDecl;
8745   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8746 
8747   // } __va_list_tag;
8748   TypedefDecl *VaListTagTypedefDecl =
8749       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8750 
8751   QualType VaListTagTypedefType =
8752     Context->getTypedefType(VaListTagTypedefDecl);
8753 
8754   // typedef __va_list_tag __builtin_va_list[1];
8755   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8756   QualType VaListTagArrayType
8757     = Context->getConstantArrayType(VaListTagTypedefType,
8758                                     Size, nullptr, ArrayType::Normal, 0);
8759   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8760 }
8761 
8762 static TypedefDecl *
8763 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
8764   // struct __va_list_tag {
8765   RecordDecl *VaListTagDecl;
8766   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8767   VaListTagDecl->startDefinition();
8768 
8769   const size_t NumFields = 4;
8770   QualType FieldTypes[NumFields];
8771   const char *FieldNames[NumFields];
8772 
8773   //   unsigned gp_offset;
8774   FieldTypes[0] = Context->UnsignedIntTy;
8775   FieldNames[0] = "gp_offset";
8776 
8777   //   unsigned fp_offset;
8778   FieldTypes[1] = Context->UnsignedIntTy;
8779   FieldNames[1] = "fp_offset";
8780 
8781   //   void* overflow_arg_area;
8782   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8783   FieldNames[2] = "overflow_arg_area";
8784 
8785   //   void* reg_save_area;
8786   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8787   FieldNames[3] = "reg_save_area";
8788 
8789   // Create fields
8790   for (unsigned i = 0; i < NumFields; ++i) {
8791     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8792                                          VaListTagDecl,
8793                                          SourceLocation(),
8794                                          SourceLocation(),
8795                                          &Context->Idents.get(FieldNames[i]),
8796                                          FieldTypes[i], /*TInfo=*/nullptr,
8797                                          /*BitWidth=*/nullptr,
8798                                          /*Mutable=*/false,
8799                                          ICIS_NoInit);
8800     Field->setAccess(AS_public);
8801     VaListTagDecl->addDecl(Field);
8802   }
8803   VaListTagDecl->completeDefinition();
8804   Context->VaListTagDecl = VaListTagDecl;
8805   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8806 
8807   // };
8808 
8809   // typedef struct __va_list_tag __builtin_va_list[1];
8810   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8811   QualType VaListTagArrayType = Context->getConstantArrayType(
8812       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8813   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8814 }
8815 
8816 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
8817   // typedef int __builtin_va_list[4];
8818   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
8819   QualType IntArrayType = Context->getConstantArrayType(
8820       Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
8821   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
8822 }
8823 
8824 static TypedefDecl *
8825 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
8826   // struct __va_list
8827   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
8828   if (Context->getLangOpts().CPlusPlus) {
8829     // namespace std { struct __va_list {
8830     NamespaceDecl *NS;
8831     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8832                                Context->getTranslationUnitDecl(),
8833                                /*Inline*/false, SourceLocation(),
8834                                SourceLocation(), &Context->Idents.get("std"),
8835                                /*PrevDecl*/ nullptr);
8836     NS->setImplicit();
8837     VaListDecl->setDeclContext(NS);
8838   }
8839 
8840   VaListDecl->startDefinition();
8841 
8842   // void * __ap;
8843   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8844                                        VaListDecl,
8845                                        SourceLocation(),
8846                                        SourceLocation(),
8847                                        &Context->Idents.get("__ap"),
8848                                        Context->getPointerType(Context->VoidTy),
8849                                        /*TInfo=*/nullptr,
8850                                        /*BitWidth=*/nullptr,
8851                                        /*Mutable=*/false,
8852                                        ICIS_NoInit);
8853   Field->setAccess(AS_public);
8854   VaListDecl->addDecl(Field);
8855 
8856   // };
8857   VaListDecl->completeDefinition();
8858   Context->VaListTagDecl = VaListDecl;
8859 
8860   // typedef struct __va_list __builtin_va_list;
8861   QualType T = Context->getRecordType(VaListDecl);
8862   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8863 }
8864 
8865 static TypedefDecl *
8866 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
8867   // struct __va_list_tag {
8868   RecordDecl *VaListTagDecl;
8869   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8870   VaListTagDecl->startDefinition();
8871 
8872   const size_t NumFields = 4;
8873   QualType FieldTypes[NumFields];
8874   const char *FieldNames[NumFields];
8875 
8876   //   long __gpr;
8877   FieldTypes[0] = Context->LongTy;
8878   FieldNames[0] = "__gpr";
8879 
8880   //   long __fpr;
8881   FieldTypes[1] = Context->LongTy;
8882   FieldNames[1] = "__fpr";
8883 
8884   //   void *__overflow_arg_area;
8885   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8886   FieldNames[2] = "__overflow_arg_area";
8887 
8888   //   void *__reg_save_area;
8889   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8890   FieldNames[3] = "__reg_save_area";
8891 
8892   // Create fields
8893   for (unsigned i = 0; i < NumFields; ++i) {
8894     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8895                                          VaListTagDecl,
8896                                          SourceLocation(),
8897                                          SourceLocation(),
8898                                          &Context->Idents.get(FieldNames[i]),
8899                                          FieldTypes[i], /*TInfo=*/nullptr,
8900                                          /*BitWidth=*/nullptr,
8901                                          /*Mutable=*/false,
8902                                          ICIS_NoInit);
8903     Field->setAccess(AS_public);
8904     VaListTagDecl->addDecl(Field);
8905   }
8906   VaListTagDecl->completeDefinition();
8907   Context->VaListTagDecl = VaListTagDecl;
8908   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8909 
8910   // };
8911 
8912   // typedef __va_list_tag __builtin_va_list[1];
8913   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8914   QualType VaListTagArrayType = Context->getConstantArrayType(
8915       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8916 
8917   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8918 }
8919 
8920 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
8921   // typedef struct __va_list_tag {
8922   RecordDecl *VaListTagDecl;
8923   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8924   VaListTagDecl->startDefinition();
8925 
8926   const size_t NumFields = 3;
8927   QualType FieldTypes[NumFields];
8928   const char *FieldNames[NumFields];
8929 
8930   //   void *CurrentSavedRegisterArea;
8931   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8932   FieldNames[0] = "__current_saved_reg_area_pointer";
8933 
8934   //   void *SavedRegAreaEnd;
8935   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8936   FieldNames[1] = "__saved_reg_area_end_pointer";
8937 
8938   //   void *OverflowArea;
8939   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8940   FieldNames[2] = "__overflow_area_pointer";
8941 
8942   // Create fields
8943   for (unsigned i = 0; i < NumFields; ++i) {
8944     FieldDecl *Field = FieldDecl::Create(
8945         const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
8946         SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
8947         /*TInfo=*/nullptr,
8948         /*BitWidth=*/nullptr,
8949         /*Mutable=*/false, ICIS_NoInit);
8950     Field->setAccess(AS_public);
8951     VaListTagDecl->addDecl(Field);
8952   }
8953   VaListTagDecl->completeDefinition();
8954   Context->VaListTagDecl = VaListTagDecl;
8955   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8956 
8957   // } __va_list_tag;
8958   TypedefDecl *VaListTagTypedefDecl =
8959       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8960 
8961   QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
8962 
8963   // typedef __va_list_tag __builtin_va_list[1];
8964   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8965   QualType VaListTagArrayType = Context->getConstantArrayType(
8966       VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);
8967 
8968   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8969 }
8970 
8971 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
8972                                      TargetInfo::BuiltinVaListKind Kind) {
8973   switch (Kind) {
8974   case TargetInfo::CharPtrBuiltinVaList:
8975     return CreateCharPtrBuiltinVaListDecl(Context);
8976   case TargetInfo::VoidPtrBuiltinVaList:
8977     return CreateVoidPtrBuiltinVaListDecl(Context);
8978   case TargetInfo::AArch64ABIBuiltinVaList:
8979     return CreateAArch64ABIBuiltinVaListDecl(Context);
8980   case TargetInfo::PowerABIBuiltinVaList:
8981     return CreatePowerABIBuiltinVaListDecl(Context);
8982   case TargetInfo::X86_64ABIBuiltinVaList:
8983     return CreateX86_64ABIBuiltinVaListDecl(Context);
8984   case TargetInfo::PNaClABIBuiltinVaList:
8985     return CreatePNaClABIBuiltinVaListDecl(Context);
8986   case TargetInfo::AAPCSABIBuiltinVaList:
8987     return CreateAAPCSABIBuiltinVaListDecl(Context);
8988   case TargetInfo::SystemZBuiltinVaList:
8989     return CreateSystemZBuiltinVaListDecl(Context);
8990   case TargetInfo::HexagonBuiltinVaList:
8991     return CreateHexagonBuiltinVaListDecl(Context);
8992   }
8993 
8994   llvm_unreachable("Unhandled __builtin_va_list type kind");
8995 }
8996 
8997 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
8998   if (!BuiltinVaListDecl) {
8999     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
9000     assert(BuiltinVaListDecl->isImplicit());
9001   }
9002 
9003   return BuiltinVaListDecl;
9004 }
9005 
9006 Decl *ASTContext::getVaListTagDecl() const {
9007   // Force the creation of VaListTagDecl by building the __builtin_va_list
9008   // declaration.
9009   if (!VaListTagDecl)
9010     (void)getBuiltinVaListDecl();
9011 
9012   return VaListTagDecl;
9013 }
9014 
9015 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
9016   if (!BuiltinMSVaListDecl)
9017     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
9018 
9019   return BuiltinMSVaListDecl;
9020 }
9021 
9022 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
9023   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
9024 }
9025 
9026 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
9027   assert(ObjCConstantStringType.isNull() &&
9028          "'NSConstantString' type already set!");
9029 
9030   ObjCConstantStringType = getObjCInterfaceType(Decl);
9031 }
9032 
9033 /// Retrieve the template name that corresponds to a non-empty
9034 /// lookup.
9035 TemplateName
9036 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
9037                                       UnresolvedSetIterator End) const {
9038   unsigned size = End - Begin;
9039   assert(size > 1 && "set is not overloaded!");
9040 
9041   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
9042                           size * sizeof(FunctionTemplateDecl*));
9043   auto *OT = new (memory) OverloadedTemplateStorage(size);
9044 
9045   NamedDecl **Storage = OT->getStorage();
9046   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
9047     NamedDecl *D = *I;
9048     assert(isa<FunctionTemplateDecl>(D) ||
9049            isa<UnresolvedUsingValueDecl>(D) ||
9050            (isa<UsingShadowDecl>(D) &&
9051             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
9052     *Storage++ = D;
9053   }
9054 
9055   return TemplateName(OT);
9056 }
9057 
9058 /// Retrieve a template name representing an unqualified-id that has been
9059 /// assumed to name a template for ADL purposes.
9060 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
9061   auto *OT = new (*this) AssumedTemplateStorage(Name);
9062   return TemplateName(OT);
9063 }
9064 
9065 /// Retrieve the template name that represents a qualified
9066 /// template name such as \c std::vector.
9067 TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
9068                                                   bool TemplateKeyword,
9069                                                   TemplateName Template) const {
9070   assert(NNS && "Missing nested-name-specifier in qualified template name");
9071 
9072   // FIXME: Canonicalization?
9073   llvm::FoldingSetNodeID ID;
9074   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
9075 
9076   void *InsertPos = nullptr;
9077   QualifiedTemplateName *QTN =
9078     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9079   if (!QTN) {
9080     QTN = new (*this, alignof(QualifiedTemplateName))
9081         QualifiedTemplateName(NNS, TemplateKeyword, Template);
9082     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
9083   }
9084 
9085   return TemplateName(QTN);
9086 }
9087 
9088 /// Retrieve the template name that represents a dependent
9089 /// template name such as \c MetaFun::template apply.
9090 TemplateName
9091 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9092                                      const IdentifierInfo *Name) const {
9093   assert((!NNS || NNS->isDependent()) &&
9094          "Nested name specifier must be dependent");
9095 
9096   llvm::FoldingSetNodeID ID;
9097   DependentTemplateName::Profile(ID, NNS, Name);
9098 
9099   void *InsertPos = nullptr;
9100   DependentTemplateName *QTN =
9101     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9102 
9103   if (QTN)
9104     return TemplateName(QTN);
9105 
9106   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9107   if (CanonNNS == NNS) {
9108     QTN = new (*this, alignof(DependentTemplateName))
9109         DependentTemplateName(NNS, Name);
9110   } else {
9111     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
9112     QTN = new (*this, alignof(DependentTemplateName))
9113         DependentTemplateName(NNS, Name, Canon);
9114     DependentTemplateName *CheckQTN =
9115       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9116     assert(!CheckQTN && "Dependent type name canonicalization broken");
9117     (void)CheckQTN;
9118   }
9119 
9120   DependentTemplateNames.InsertNode(QTN, InsertPos);
9121   return TemplateName(QTN);
9122 }
9123 
9124 /// Retrieve the template name that represents a dependent
9125 /// template name such as \c MetaFun::template operator+.
9126 TemplateName
9127 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9128                                      OverloadedOperatorKind Operator) const {
9129   assert((!NNS || NNS->isDependent()) &&
9130          "Nested name specifier must be dependent");
9131 
9132   llvm::FoldingSetNodeID ID;
9133   DependentTemplateName::Profile(ID, NNS, Operator);
9134 
9135   void *InsertPos = nullptr;
9136   DependentTemplateName *QTN
9137     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9138 
9139   if (QTN)
9140     return TemplateName(QTN);
9141 
9142   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9143   if (CanonNNS == NNS) {
9144     QTN = new (*this, alignof(DependentTemplateName))
9145         DependentTemplateName(NNS, Operator);
9146   } else {
9147     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
9148     QTN = new (*this, alignof(DependentTemplateName))
9149         DependentTemplateName(NNS, Operator, Canon);
9150 
9151     DependentTemplateName *CheckQTN
9152       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9153     assert(!CheckQTN && "Dependent template name canonicalization broken");
9154     (void)CheckQTN;
9155   }
9156 
9157   DependentTemplateNames.InsertNode(QTN, InsertPos);
9158   return TemplateName(QTN);
9159 }
9160 
9161 TemplateName
9162 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
9163                                          TemplateName replacement) const {
9164   llvm::FoldingSetNodeID ID;
9165   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
9166 
9167   void *insertPos = nullptr;
9168   SubstTemplateTemplateParmStorage *subst
9169     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
9170 
9171   if (!subst) {
9172     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
9173     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
9174   }
9175 
9176   return TemplateName(subst);
9177 }
9178 
9179 TemplateName
9180 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
9181                                        const TemplateArgument &ArgPack) const {
9182   auto &Self = const_cast<ASTContext &>(*this);
9183   llvm::FoldingSetNodeID ID;
9184   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
9185 
9186   void *InsertPos = nullptr;
9187   SubstTemplateTemplateParmPackStorage *Subst
9188     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
9189 
9190   if (!Subst) {
9191     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
9192                                                            ArgPack.pack_size(),
9193                                                          ArgPack.pack_begin());
9194     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
9195   }
9196 
9197   return TemplateName(Subst);
9198 }
9199 
9200 /// getFromTargetType - Given one of the integer types provided by
9201 /// TargetInfo, produce the corresponding type. The unsigned @p Type
9202 /// is actually a value of type @c TargetInfo::IntType.
9203 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
9204   switch (Type) {
9205   case TargetInfo::NoInt: return {};
9206   case TargetInfo::SignedChar: return SignedCharTy;
9207   case TargetInfo::UnsignedChar: return UnsignedCharTy;
9208   case TargetInfo::SignedShort: return ShortTy;
9209   case TargetInfo::UnsignedShort: return UnsignedShortTy;
9210   case TargetInfo::SignedInt: return IntTy;
9211   case TargetInfo::UnsignedInt: return UnsignedIntTy;
9212   case TargetInfo::SignedLong: return LongTy;
9213   case TargetInfo::UnsignedLong: return UnsignedLongTy;
9214   case TargetInfo::SignedLongLong: return LongLongTy;
9215   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
9216   }
9217 
9218   llvm_unreachable("Unhandled TargetInfo::IntType value");
9219 }
9220 
9221 //===----------------------------------------------------------------------===//
9222 //                        Type Predicates.
9223 //===----------------------------------------------------------------------===//
9224 
9225 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
9226 /// garbage collection attribute.
9227 ///
9228 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
9229   if (getLangOpts().getGC() == LangOptions::NonGC)
9230     return Qualifiers::GCNone;
9231 
9232   assert(getLangOpts().ObjC);
9233   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
9234 
9235   // Default behaviour under objective-C's gc is for ObjC pointers
9236   // (or pointers to them) be treated as though they were declared
9237   // as __strong.
9238   if (GCAttrs == Qualifiers::GCNone) {
9239     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
9240       return Qualifiers::Strong;
9241     else if (Ty->isPointerType())
9242       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
9243   } else {
9244     // It's not valid to set GC attributes on anything that isn't a
9245     // pointer.
9246 #ifndef NDEBUG
9247     QualType CT = Ty->getCanonicalTypeInternal();
9248     while (const auto *AT = dyn_cast<ArrayType>(CT))
9249       CT = AT->getElementType();
9250     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
9251 #endif
9252   }
9253   return GCAttrs;
9254 }
9255 
9256 //===----------------------------------------------------------------------===//
9257 //                        Type Compatibility Testing
9258 //===----------------------------------------------------------------------===//
9259 
9260 /// areCompatVectorTypes - Return true if the two specified vector types are
9261 /// compatible.
9262 static bool areCompatVectorTypes(const VectorType *LHS,
9263                                  const VectorType *RHS) {
9264   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9265   return LHS->getElementType() == RHS->getElementType() &&
9266          LHS->getNumElements() == RHS->getNumElements();
9267 }
9268 
9269 /// areCompatMatrixTypes - Return true if the two specified matrix types are
9270 /// compatible.
9271 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
9272                                  const ConstantMatrixType *RHS) {
9273   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9274   return LHS->getElementType() == RHS->getElementType() &&
9275          LHS->getNumRows() == RHS->getNumRows() &&
9276          LHS->getNumColumns() == RHS->getNumColumns();
9277 }
9278 
9279 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
9280                                           QualType SecondVec) {
9281   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
9282   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
9283 
9284   if (hasSameUnqualifiedType(FirstVec, SecondVec))
9285     return true;
9286 
9287   // Treat Neon vector types and most AltiVec vector types as if they are the
9288   // equivalent GCC vector types.
9289   const auto *First = FirstVec->castAs<VectorType>();
9290   const auto *Second = SecondVec->castAs<VectorType>();
9291   if (First->getNumElements() == Second->getNumElements() &&
9292       hasSameType(First->getElementType(), Second->getElementType()) &&
9293       First->getVectorKind() != VectorType::AltiVecPixel &&
9294       First->getVectorKind() != VectorType::AltiVecBool &&
9295       Second->getVectorKind() != VectorType::AltiVecPixel &&
9296       Second->getVectorKind() != VectorType::AltiVecBool &&
9297       First->getVectorKind() != VectorType::SveFixedLengthDataVector &&
9298       First->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
9299       Second->getVectorKind() != VectorType::SveFixedLengthDataVector &&
9300       Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector)
9301     return true;
9302 
9303   return false;
9304 }
9305 
9306 /// getSVETypeSize - Return SVE vector or predicate register size.
9307 static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) {
9308   assert(Ty->isVLSTBuiltinType() && "Invalid SVE Type");
9309   return Ty->getKind() == BuiltinType::SveBool
9310              ? (Context.getLangOpts().VScaleMin * 128) / Context.getCharWidth()
9311              : Context.getLangOpts().VScaleMin * 128;
9312 }
9313 
9314 bool ASTContext::areCompatibleSveTypes(QualType FirstType,
9315                                        QualType SecondType) {
9316   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
9317           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
9318          "Expected SVE builtin type and vector type!");
9319 
9320   auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
9321     if (const auto *BT = FirstType->getAs<BuiltinType>()) {
9322       if (const auto *VT = SecondType->getAs<VectorType>()) {
9323         // Predicates have the same representation as uint8 so we also have to
9324         // check the kind to make these types incompatible.
9325         if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
9326           return BT->getKind() == BuiltinType::SveBool;
9327         else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
9328           return VT->getElementType().getCanonicalType() ==
9329                  FirstType->getSveEltType(*this);
9330         else if (VT->getVectorKind() == VectorType::GenericVector)
9331           return getTypeSize(SecondType) == getSVETypeSize(*this, BT) &&
9332                  hasSameType(VT->getElementType(),
9333                              getBuiltinVectorTypeInfo(BT).ElementType);
9334       }
9335     }
9336     return false;
9337   };
9338 
9339   return IsValidCast(FirstType, SecondType) ||
9340          IsValidCast(SecondType, FirstType);
9341 }
9342 
9343 bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
9344                                           QualType SecondType) {
9345   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
9346           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
9347          "Expected SVE builtin type and vector type!");
9348 
9349   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
9350     const auto *BT = FirstType->getAs<BuiltinType>();
9351     if (!BT)
9352       return false;
9353 
9354     const auto *VecTy = SecondType->getAs<VectorType>();
9355     if (VecTy &&
9356         (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector ||
9357          VecTy->getVectorKind() == VectorType::GenericVector)) {
9358       const LangOptions::LaxVectorConversionKind LVCKind =
9359           getLangOpts().getLaxVectorConversions();
9360 
9361       // Can not convert between sve predicates and sve vectors because of
9362       // different size.
9363       if (BT->getKind() == BuiltinType::SveBool &&
9364           VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector)
9365         return false;
9366 
9367       // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
9368       // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
9369       // converts to VLAT and VLAT implicitly converts to GNUT."
9370       // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
9371       // predicates.
9372       if (VecTy->getVectorKind() == VectorType::GenericVector &&
9373           getTypeSize(SecondType) != getSVETypeSize(*this, BT))
9374         return false;
9375 
9376       // If -flax-vector-conversions=all is specified, the types are
9377       // certainly compatible.
9378       if (LVCKind == LangOptions::LaxVectorConversionKind::All)
9379         return true;
9380 
9381       // If -flax-vector-conversions=integer is specified, the types are
9382       // compatible if the elements are integer types.
9383       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
9384         return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
9385                FirstType->getSveEltType(*this)->isIntegerType();
9386     }
9387 
9388     return false;
9389   };
9390 
9391   return IsLaxCompatible(FirstType, SecondType) ||
9392          IsLaxCompatible(SecondType, FirstType);
9393 }
9394 
9395 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
9396   while (true) {
9397     // __strong id
9398     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
9399       if (Attr->getAttrKind() == attr::ObjCOwnership)
9400         return true;
9401 
9402       Ty = Attr->getModifiedType();
9403 
9404     // X *__strong (...)
9405     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
9406       Ty = Paren->getInnerType();
9407 
9408     // We do not want to look through typedefs, typeof(expr),
9409     // typeof(type), or any other way that the type is somehow
9410     // abstracted.
9411     } else {
9412       return false;
9413     }
9414   }
9415 }
9416 
9417 //===----------------------------------------------------------------------===//
9418 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
9419 //===----------------------------------------------------------------------===//
9420 
9421 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
9422 /// inheritance hierarchy of 'rProto'.
9423 bool
9424 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
9425                                            ObjCProtocolDecl *rProto) const {
9426   if (declaresSameEntity(lProto, rProto))
9427     return true;
9428   for (auto *PI : rProto->protocols())
9429     if (ProtocolCompatibleWithProtocol(lProto, PI))
9430       return true;
9431   return false;
9432 }
9433 
9434 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
9435 /// Class<pr1, ...>.
9436 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
9437     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
9438   for (auto *lhsProto : lhs->quals()) {
9439     bool match = false;
9440     for (auto *rhsProto : rhs->quals()) {
9441       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
9442         match = true;
9443         break;
9444       }
9445     }
9446     if (!match)
9447       return false;
9448   }
9449   return true;
9450 }
9451 
9452 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
9453 /// ObjCQualifiedIDType.
9454 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
9455     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
9456     bool compare) {
9457   // Allow id<P..> and an 'id' in all cases.
9458   if (lhs->isObjCIdType() || rhs->isObjCIdType())
9459     return true;
9460 
9461   // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
9462   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
9463       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
9464     return false;
9465 
9466   if (lhs->isObjCQualifiedIdType()) {
9467     if (rhs->qual_empty()) {
9468       // If the RHS is a unqualified interface pointer "NSString*",
9469       // make sure we check the class hierarchy.
9470       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9471         for (auto *I : lhs->quals()) {
9472           // when comparing an id<P> on lhs with a static type on rhs,
9473           // see if static class implements all of id's protocols, directly or
9474           // through its super class and categories.
9475           if (!rhsID->ClassImplementsProtocol(I, true))
9476             return false;
9477         }
9478       }
9479       // If there are no qualifiers and no interface, we have an 'id'.
9480       return true;
9481     }
9482     // Both the right and left sides have qualifiers.
9483     for (auto *lhsProto : lhs->quals()) {
9484       bool match = false;
9485 
9486       // when comparing an id<P> on lhs with a static type on rhs,
9487       // see if static class implements all of id's protocols, directly or
9488       // through its super class and categories.
9489       for (auto *rhsProto : rhs->quals()) {
9490         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9491             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9492           match = true;
9493           break;
9494         }
9495       }
9496       // If the RHS is a qualified interface pointer "NSString<P>*",
9497       // make sure we check the class hierarchy.
9498       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9499         for (auto *I : lhs->quals()) {
9500           // when comparing an id<P> on lhs with a static type on rhs,
9501           // see if static class implements all of id's protocols, directly or
9502           // through its super class and categories.
9503           if (rhsID->ClassImplementsProtocol(I, true)) {
9504             match = true;
9505             break;
9506           }
9507         }
9508       }
9509       if (!match)
9510         return false;
9511     }
9512 
9513     return true;
9514   }
9515 
9516   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
9517 
9518   if (lhs->getInterfaceType()) {
9519     // If both the right and left sides have qualifiers.
9520     for (auto *lhsProto : lhs->quals()) {
9521       bool match = false;
9522 
9523       // when comparing an id<P> on rhs with a static type on lhs,
9524       // see if static class implements all of id's protocols, directly or
9525       // through its super class and categories.
9526       // First, lhs protocols in the qualifier list must be found, direct
9527       // or indirect in rhs's qualifier list or it is a mismatch.
9528       for (auto *rhsProto : rhs->quals()) {
9529         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9530             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9531           match = true;
9532           break;
9533         }
9534       }
9535       if (!match)
9536         return false;
9537     }
9538 
9539     // Static class's protocols, or its super class or category protocols
9540     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
9541     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
9542       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
9543       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
9544       // This is rather dubious but matches gcc's behavior. If lhs has
9545       // no type qualifier and its class has no static protocol(s)
9546       // assume that it is mismatch.
9547       if (LHSInheritedProtocols.empty() && lhs->qual_empty())
9548         return false;
9549       for (auto *lhsProto : LHSInheritedProtocols) {
9550         bool match = false;
9551         for (auto *rhsProto : rhs->quals()) {
9552           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9553               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9554             match = true;
9555             break;
9556           }
9557         }
9558         if (!match)
9559           return false;
9560       }
9561     }
9562     return true;
9563   }
9564   return false;
9565 }
9566 
9567 /// canAssignObjCInterfaces - Return true if the two interface types are
9568 /// compatible for assignment from RHS to LHS.  This handles validation of any
9569 /// protocol qualifiers on the LHS or RHS.
9570 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
9571                                          const ObjCObjectPointerType *RHSOPT) {
9572   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9573   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9574 
9575   // If either type represents the built-in 'id' type, return true.
9576   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
9577     return true;
9578 
9579   // Function object that propagates a successful result or handles
9580   // __kindof types.
9581   auto finish = [&](bool succeeded) -> bool {
9582     if (succeeded)
9583       return true;
9584 
9585     if (!RHS->isKindOfType())
9586       return false;
9587 
9588     // Strip off __kindof and protocol qualifiers, then check whether
9589     // we can assign the other way.
9590     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9591                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
9592   };
9593 
9594   // Casts from or to id<P> are allowed when the other side has compatible
9595   // protocols.
9596   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
9597     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
9598   }
9599 
9600   // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
9601   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
9602     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
9603   }
9604 
9605   // Casts from Class to Class<Foo>, or vice-versa, are allowed.
9606   if (LHS->isObjCClass() && RHS->isObjCClass()) {
9607     return true;
9608   }
9609 
9610   // If we have 2 user-defined types, fall into that path.
9611   if (LHS->getInterface() && RHS->getInterface()) {
9612     return finish(canAssignObjCInterfaces(LHS, RHS));
9613   }
9614 
9615   return false;
9616 }
9617 
9618 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
9619 /// for providing type-safety for objective-c pointers used to pass/return
9620 /// arguments in block literals. When passed as arguments, passing 'A*' where
9621 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
9622 /// not OK. For the return type, the opposite is not OK.
9623 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
9624                                          const ObjCObjectPointerType *LHSOPT,
9625                                          const ObjCObjectPointerType *RHSOPT,
9626                                          bool BlockReturnType) {
9627 
9628   // Function object that propagates a successful result or handles
9629   // __kindof types.
9630   auto finish = [&](bool succeeded) -> bool {
9631     if (succeeded)
9632       return true;
9633 
9634     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
9635     if (!Expected->isKindOfType())
9636       return false;
9637 
9638     // Strip off __kindof and protocol qualifiers, then check whether
9639     // we can assign the other way.
9640     return canAssignObjCInterfacesInBlockPointer(
9641              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9642              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
9643              BlockReturnType);
9644   };
9645 
9646   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
9647     return true;
9648 
9649   if (LHSOPT->isObjCBuiltinType()) {
9650     return finish(RHSOPT->isObjCBuiltinType() ||
9651                   RHSOPT->isObjCQualifiedIdType());
9652   }
9653 
9654   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
9655     if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
9656       // Use for block parameters previous type checking for compatibility.
9657       return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
9658                     // Or corrected type checking as in non-compat mode.
9659                     (!BlockReturnType &&
9660                      ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
9661     else
9662       return finish(ObjCQualifiedIdTypesAreCompatible(
9663           (BlockReturnType ? LHSOPT : RHSOPT),
9664           (BlockReturnType ? RHSOPT : LHSOPT), false));
9665   }
9666 
9667   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
9668   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
9669   if (LHS && RHS)  { // We have 2 user-defined types.
9670     if (LHS != RHS) {
9671       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
9672         return finish(BlockReturnType);
9673       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
9674         return finish(!BlockReturnType);
9675     }
9676     else
9677       return true;
9678   }
9679   return false;
9680 }
9681 
9682 /// Comparison routine for Objective-C protocols to be used with
9683 /// llvm::array_pod_sort.
9684 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
9685                                       ObjCProtocolDecl * const *rhs) {
9686   return (*lhs)->getName().compare((*rhs)->getName());
9687 }
9688 
9689 /// getIntersectionOfProtocols - This routine finds the intersection of set
9690 /// of protocols inherited from two distinct objective-c pointer objects with
9691 /// the given common base.
9692 /// It is used to build composite qualifier list of the composite type of
9693 /// the conditional expression involving two objective-c pointer objects.
9694 static
9695 void getIntersectionOfProtocols(ASTContext &Context,
9696                                 const ObjCInterfaceDecl *CommonBase,
9697                                 const ObjCObjectPointerType *LHSOPT,
9698                                 const ObjCObjectPointerType *RHSOPT,
9699       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
9700 
9701   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9702   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9703   assert(LHS->getInterface() && "LHS must have an interface base");
9704   assert(RHS->getInterface() && "RHS must have an interface base");
9705 
9706   // Add all of the protocols for the LHS.
9707   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
9708 
9709   // Start with the protocol qualifiers.
9710   for (auto proto : LHS->quals()) {
9711     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
9712   }
9713 
9714   // Also add the protocols associated with the LHS interface.
9715   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
9716 
9717   // Add all of the protocols for the RHS.
9718   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
9719 
9720   // Start with the protocol qualifiers.
9721   for (auto proto : RHS->quals()) {
9722     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
9723   }
9724 
9725   // Also add the protocols associated with the RHS interface.
9726   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
9727 
9728   // Compute the intersection of the collected protocol sets.
9729   for (auto proto : LHSProtocolSet) {
9730     if (RHSProtocolSet.count(proto))
9731       IntersectionSet.push_back(proto);
9732   }
9733 
9734   // Compute the set of protocols that is implied by either the common type or
9735   // the protocols within the intersection.
9736   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
9737   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
9738 
9739   // Remove any implied protocols from the list of inherited protocols.
9740   if (!ImpliedProtocols.empty()) {
9741     llvm::erase_if(IntersectionSet, [&](ObjCProtocolDecl *proto) -> bool {
9742       return ImpliedProtocols.contains(proto);
9743     });
9744   }
9745 
9746   // Sort the remaining protocols by name.
9747   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
9748                        compareObjCProtocolsByName);
9749 }
9750 
9751 /// Determine whether the first type is a subtype of the second.
9752 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
9753                                      QualType rhs) {
9754   // Common case: two object pointers.
9755   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
9756   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
9757   if (lhsOPT && rhsOPT)
9758     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
9759 
9760   // Two block pointers.
9761   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
9762   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
9763   if (lhsBlock && rhsBlock)
9764     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
9765 
9766   // If either is an unqualified 'id' and the other is a block, it's
9767   // acceptable.
9768   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
9769       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
9770     return true;
9771 
9772   return false;
9773 }
9774 
9775 // Check that the given Objective-C type argument lists are equivalent.
9776 static bool sameObjCTypeArgs(ASTContext &ctx,
9777                              const ObjCInterfaceDecl *iface,
9778                              ArrayRef<QualType> lhsArgs,
9779                              ArrayRef<QualType> rhsArgs,
9780                              bool stripKindOf) {
9781   if (lhsArgs.size() != rhsArgs.size())
9782     return false;
9783 
9784   ObjCTypeParamList *typeParams = iface->getTypeParamList();
9785   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
9786     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
9787       continue;
9788 
9789     switch (typeParams->begin()[i]->getVariance()) {
9790     case ObjCTypeParamVariance::Invariant:
9791       if (!stripKindOf ||
9792           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
9793                            rhsArgs[i].stripObjCKindOfType(ctx))) {
9794         return false;
9795       }
9796       break;
9797 
9798     case ObjCTypeParamVariance::Covariant:
9799       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
9800         return false;
9801       break;
9802 
9803     case ObjCTypeParamVariance::Contravariant:
9804       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
9805         return false;
9806       break;
9807     }
9808   }
9809 
9810   return true;
9811 }
9812 
9813 QualType ASTContext::areCommonBaseCompatible(
9814            const ObjCObjectPointerType *Lptr,
9815            const ObjCObjectPointerType *Rptr) {
9816   const ObjCObjectType *LHS = Lptr->getObjectType();
9817   const ObjCObjectType *RHS = Rptr->getObjectType();
9818   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
9819   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
9820 
9821   if (!LDecl || !RDecl)
9822     return {};
9823 
9824   // When either LHS or RHS is a kindof type, we should return a kindof type.
9825   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
9826   // kindof(A).
9827   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
9828 
9829   // Follow the left-hand side up the class hierarchy until we either hit a
9830   // root or find the RHS. Record the ancestors in case we don't find it.
9831   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
9832     LHSAncestors;
9833   while (true) {
9834     // Record this ancestor. We'll need this if the common type isn't in the
9835     // path from the LHS to the root.
9836     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
9837 
9838     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
9839       // Get the type arguments.
9840       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
9841       bool anyChanges = false;
9842       if (LHS->isSpecialized() && RHS->isSpecialized()) {
9843         // Both have type arguments, compare them.
9844         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9845                               LHS->getTypeArgs(), RHS->getTypeArgs(),
9846                               /*stripKindOf=*/true))
9847           return {};
9848       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9849         // If only one has type arguments, the result will not have type
9850         // arguments.
9851         LHSTypeArgs = {};
9852         anyChanges = true;
9853       }
9854 
9855       // Compute the intersection of protocols.
9856       SmallVector<ObjCProtocolDecl *, 8> Protocols;
9857       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
9858                                  Protocols);
9859       if (!Protocols.empty())
9860         anyChanges = true;
9861 
9862       // If anything in the LHS will have changed, build a new result type.
9863       // If we need to return a kindof type but LHS is not a kindof type, we
9864       // build a new result type.
9865       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
9866         QualType Result = getObjCInterfaceType(LHS->getInterface());
9867         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
9868                                    anyKindOf || LHS->isKindOfType());
9869         return getObjCObjectPointerType(Result);
9870       }
9871 
9872       return getObjCObjectPointerType(QualType(LHS, 0));
9873     }
9874 
9875     // Find the superclass.
9876     QualType LHSSuperType = LHS->getSuperClassType();
9877     if (LHSSuperType.isNull())
9878       break;
9879 
9880     LHS = LHSSuperType->castAs<ObjCObjectType>();
9881   }
9882 
9883   // We didn't find anything by following the LHS to its root; now check
9884   // the RHS against the cached set of ancestors.
9885   while (true) {
9886     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
9887     if (KnownLHS != LHSAncestors.end()) {
9888       LHS = KnownLHS->second;
9889 
9890       // Get the type arguments.
9891       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
9892       bool anyChanges = false;
9893       if (LHS->isSpecialized() && RHS->isSpecialized()) {
9894         // Both have type arguments, compare them.
9895         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9896                               LHS->getTypeArgs(), RHS->getTypeArgs(),
9897                               /*stripKindOf=*/true))
9898           return {};
9899       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9900         // If only one has type arguments, the result will not have type
9901         // arguments.
9902         RHSTypeArgs = {};
9903         anyChanges = true;
9904       }
9905 
9906       // Compute the intersection of protocols.
9907       SmallVector<ObjCProtocolDecl *, 8> Protocols;
9908       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
9909                                  Protocols);
9910       if (!Protocols.empty())
9911         anyChanges = true;
9912 
9913       // If we need to return a kindof type but RHS is not a kindof type, we
9914       // build a new result type.
9915       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
9916         QualType Result = getObjCInterfaceType(RHS->getInterface());
9917         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
9918                                    anyKindOf || RHS->isKindOfType());
9919         return getObjCObjectPointerType(Result);
9920       }
9921 
9922       return getObjCObjectPointerType(QualType(RHS, 0));
9923     }
9924 
9925     // Find the superclass of the RHS.
9926     QualType RHSSuperType = RHS->getSuperClassType();
9927     if (RHSSuperType.isNull())
9928       break;
9929 
9930     RHS = RHSSuperType->castAs<ObjCObjectType>();
9931   }
9932 
9933   return {};
9934 }
9935 
9936 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
9937                                          const ObjCObjectType *RHS) {
9938   assert(LHS->getInterface() && "LHS is not an interface type");
9939   assert(RHS->getInterface() && "RHS is not an interface type");
9940 
9941   // Verify that the base decls are compatible: the RHS must be a subclass of
9942   // the LHS.
9943   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
9944   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
9945   if (!IsSuperClass)
9946     return false;
9947 
9948   // If the LHS has protocol qualifiers, determine whether all of them are
9949   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
9950   // LHS).
9951   if (LHS->getNumProtocols() > 0) {
9952     // OK if conversion of LHS to SuperClass results in narrowing of types
9953     // ; i.e., SuperClass may implement at least one of the protocols
9954     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
9955     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
9956     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
9957     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
9958     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
9959     // qualifiers.
9960     for (auto *RHSPI : RHS->quals())
9961       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
9962     // If there is no protocols associated with RHS, it is not a match.
9963     if (SuperClassInheritedProtocols.empty())
9964       return false;
9965 
9966     for (const auto *LHSProto : LHS->quals()) {
9967       bool SuperImplementsProtocol = false;
9968       for (auto *SuperClassProto : SuperClassInheritedProtocols)
9969         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
9970           SuperImplementsProtocol = true;
9971           break;
9972         }
9973       if (!SuperImplementsProtocol)
9974         return false;
9975     }
9976   }
9977 
9978   // If the LHS is specialized, we may need to check type arguments.
9979   if (LHS->isSpecialized()) {
9980     // Follow the superclass chain until we've matched the LHS class in the
9981     // hierarchy. This substitutes type arguments through.
9982     const ObjCObjectType *RHSSuper = RHS;
9983     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
9984       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
9985 
9986     // If the RHS is specializd, compare type arguments.
9987     if (RHSSuper->isSpecialized() &&
9988         !sameObjCTypeArgs(*this, LHS->getInterface(),
9989                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
9990                           /*stripKindOf=*/true)) {
9991       return false;
9992     }
9993   }
9994 
9995   return true;
9996 }
9997 
9998 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
9999   // get the "pointed to" types
10000   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
10001   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
10002 
10003   if (!LHSOPT || !RHSOPT)
10004     return false;
10005 
10006   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
10007          canAssignObjCInterfaces(RHSOPT, LHSOPT);
10008 }
10009 
10010 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
10011   return canAssignObjCInterfaces(
10012       getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
10013       getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
10014 }
10015 
10016 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
10017 /// both shall have the identically qualified version of a compatible type.
10018 /// C99 6.2.7p1: Two types have compatible types if their types are the
10019 /// same. See 6.7.[2,3,5] for additional rules.
10020 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
10021                                     bool CompareUnqualified) {
10022   if (getLangOpts().CPlusPlus)
10023     return hasSameType(LHS, RHS);
10024 
10025   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
10026 }
10027 
10028 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
10029   return typesAreCompatible(LHS, RHS);
10030 }
10031 
10032 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
10033   return !mergeTypes(LHS, RHS, true).isNull();
10034 }
10035 
10036 /// mergeTransparentUnionType - if T is a transparent union type and a member
10037 /// of T is compatible with SubType, return the merged type, else return
10038 /// QualType()
10039 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
10040                                                bool OfBlockPointer,
10041                                                bool Unqualified) {
10042   if (const RecordType *UT = T->getAsUnionType()) {
10043     RecordDecl *UD = UT->getDecl();
10044     if (UD->hasAttr<TransparentUnionAttr>()) {
10045       for (const auto *I : UD->fields()) {
10046         QualType ET = I->getType().getUnqualifiedType();
10047         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
10048         if (!MT.isNull())
10049           return MT;
10050       }
10051     }
10052   }
10053 
10054   return {};
10055 }
10056 
10057 /// mergeFunctionParameterTypes - merge two types which appear as function
10058 /// parameter types
10059 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
10060                                                  bool OfBlockPointer,
10061                                                  bool Unqualified) {
10062   // GNU extension: two types are compatible if they appear as a function
10063   // argument, one of the types is a transparent union type and the other
10064   // type is compatible with a union member
10065   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
10066                                               Unqualified);
10067   if (!lmerge.isNull())
10068     return lmerge;
10069 
10070   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
10071                                               Unqualified);
10072   if (!rmerge.isNull())
10073     return rmerge;
10074 
10075   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
10076 }
10077 
10078 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
10079                                         bool OfBlockPointer, bool Unqualified,
10080                                         bool AllowCXX) {
10081   const auto *lbase = lhs->castAs<FunctionType>();
10082   const auto *rbase = rhs->castAs<FunctionType>();
10083   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
10084   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
10085   bool allLTypes = true;
10086   bool allRTypes = true;
10087 
10088   // Check return type
10089   QualType retType;
10090   if (OfBlockPointer) {
10091     QualType RHS = rbase->getReturnType();
10092     QualType LHS = lbase->getReturnType();
10093     bool UnqualifiedResult = Unqualified;
10094     if (!UnqualifiedResult)
10095       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
10096     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
10097   }
10098   else
10099     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
10100                          Unqualified);
10101   if (retType.isNull())
10102     return {};
10103 
10104   if (Unqualified)
10105     retType = retType.getUnqualifiedType();
10106 
10107   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
10108   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
10109   if (Unqualified) {
10110     LRetType = LRetType.getUnqualifiedType();
10111     RRetType = RRetType.getUnqualifiedType();
10112   }
10113 
10114   if (getCanonicalType(retType) != LRetType)
10115     allLTypes = false;
10116   if (getCanonicalType(retType) != RRetType)
10117     allRTypes = false;
10118 
10119   // FIXME: double check this
10120   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
10121   //                           rbase->getRegParmAttr() != 0 &&
10122   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
10123   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
10124   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
10125 
10126   // Compatible functions must have compatible calling conventions
10127   if (lbaseInfo.getCC() != rbaseInfo.getCC())
10128     return {};
10129 
10130   // Regparm is part of the calling convention.
10131   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
10132     return {};
10133   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
10134     return {};
10135 
10136   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
10137     return {};
10138   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
10139     return {};
10140   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
10141     return {};
10142 
10143   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
10144   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
10145 
10146   if (lbaseInfo.getNoReturn() != NoReturn)
10147     allLTypes = false;
10148   if (rbaseInfo.getNoReturn() != NoReturn)
10149     allRTypes = false;
10150 
10151   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
10152 
10153   if (lproto && rproto) { // two C99 style function prototypes
10154     assert((AllowCXX ||
10155             (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
10156            "C++ shouldn't be here");
10157     // Compatible functions must have the same number of parameters
10158     if (lproto->getNumParams() != rproto->getNumParams())
10159       return {};
10160 
10161     // Variadic and non-variadic functions aren't compatible
10162     if (lproto->isVariadic() != rproto->isVariadic())
10163       return {};
10164 
10165     if (lproto->getMethodQuals() != rproto->getMethodQuals())
10166       return {};
10167 
10168     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
10169     bool canUseLeft, canUseRight;
10170     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
10171                                newParamInfos))
10172       return {};
10173 
10174     if (!canUseLeft)
10175       allLTypes = false;
10176     if (!canUseRight)
10177       allRTypes = false;
10178 
10179     // Check parameter type compatibility
10180     SmallVector<QualType, 10> types;
10181     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
10182       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
10183       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
10184       QualType paramType = mergeFunctionParameterTypes(
10185           lParamType, rParamType, OfBlockPointer, Unqualified);
10186       if (paramType.isNull())
10187         return {};
10188 
10189       if (Unqualified)
10190         paramType = paramType.getUnqualifiedType();
10191 
10192       types.push_back(paramType);
10193       if (Unqualified) {
10194         lParamType = lParamType.getUnqualifiedType();
10195         rParamType = rParamType.getUnqualifiedType();
10196       }
10197 
10198       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
10199         allLTypes = false;
10200       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
10201         allRTypes = false;
10202     }
10203 
10204     if (allLTypes) return lhs;
10205     if (allRTypes) return rhs;
10206 
10207     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
10208     EPI.ExtInfo = einfo;
10209     EPI.ExtParameterInfos =
10210         newParamInfos.empty() ? nullptr : newParamInfos.data();
10211     return getFunctionType(retType, types, EPI);
10212   }
10213 
10214   if (lproto) allRTypes = false;
10215   if (rproto) allLTypes = false;
10216 
10217   const FunctionProtoType *proto = lproto ? lproto : rproto;
10218   if (proto) {
10219     assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
10220     if (proto->isVariadic())
10221       return {};
10222     // Check that the types are compatible with the types that
10223     // would result from default argument promotions (C99 6.7.5.3p15).
10224     // The only types actually affected are promotable integer
10225     // types and floats, which would be passed as a different
10226     // type depending on whether the prototype is visible.
10227     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
10228       QualType paramTy = proto->getParamType(i);
10229 
10230       // Look at the converted type of enum types, since that is the type used
10231       // to pass enum values.
10232       if (const auto *Enum = paramTy->getAs<EnumType>()) {
10233         paramTy = Enum->getDecl()->getIntegerType();
10234         if (paramTy.isNull())
10235           return {};
10236       }
10237 
10238       if (paramTy->isPromotableIntegerType() ||
10239           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
10240         return {};
10241     }
10242 
10243     if (allLTypes) return lhs;
10244     if (allRTypes) return rhs;
10245 
10246     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
10247     EPI.ExtInfo = einfo;
10248     return getFunctionType(retType, proto->getParamTypes(), EPI);
10249   }
10250 
10251   if (allLTypes) return lhs;
10252   if (allRTypes) return rhs;
10253   return getFunctionNoProtoType(retType, einfo);
10254 }
10255 
10256 /// Given that we have an enum type and a non-enum type, try to merge them.
10257 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
10258                                      QualType other, bool isBlockReturnType) {
10259   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
10260   // a signed integer type, or an unsigned integer type.
10261   // Compatibility is based on the underlying type, not the promotion
10262   // type.
10263   QualType underlyingType = ET->getDecl()->getIntegerType();
10264   if (underlyingType.isNull())
10265     return {};
10266   if (Context.hasSameType(underlyingType, other))
10267     return other;
10268 
10269   // In block return types, we're more permissive and accept any
10270   // integral type of the same size.
10271   if (isBlockReturnType && other->isIntegerType() &&
10272       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
10273     return other;
10274 
10275   return {};
10276 }
10277 
10278 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
10279                                 bool OfBlockPointer,
10280                                 bool Unqualified, bool BlockReturnType) {
10281   // For C++ we will not reach this code with reference types (see below),
10282   // for OpenMP variant call overloading we might.
10283   //
10284   // C++ [expr]: If an expression initially has the type "reference to T", the
10285   // type is adjusted to "T" prior to any further analysis, the expression
10286   // designates the object or function denoted by the reference, and the
10287   // expression is an lvalue unless the reference is an rvalue reference and
10288   // the expression is a function call (possibly inside parentheses).
10289   auto *LHSRefTy = LHS->getAs<ReferenceType>();
10290   auto *RHSRefTy = RHS->getAs<ReferenceType>();
10291   if (LangOpts.OpenMP && LHSRefTy && RHSRefTy &&
10292       LHS->getTypeClass() == RHS->getTypeClass())
10293     return mergeTypes(LHSRefTy->getPointeeType(), RHSRefTy->getPointeeType(),
10294                       OfBlockPointer, Unqualified, BlockReturnType);
10295   if (LHSRefTy || RHSRefTy)
10296     return {};
10297 
10298   if (Unqualified) {
10299     LHS = LHS.getUnqualifiedType();
10300     RHS = RHS.getUnqualifiedType();
10301   }
10302 
10303   QualType LHSCan = getCanonicalType(LHS),
10304            RHSCan = getCanonicalType(RHS);
10305 
10306   // If two types are identical, they are compatible.
10307   if (LHSCan == RHSCan)
10308     return LHS;
10309 
10310   // If the qualifiers are different, the types aren't compatible... mostly.
10311   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10312   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10313   if (LQuals != RQuals) {
10314     // If any of these qualifiers are different, we have a type
10315     // mismatch.
10316     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10317         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
10318         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
10319         LQuals.hasUnaligned() != RQuals.hasUnaligned())
10320       return {};
10321 
10322     // Exactly one GC qualifier difference is allowed: __strong is
10323     // okay if the other type has no GC qualifier but is an Objective
10324     // C object pointer (i.e. implicitly strong by default).  We fix
10325     // this by pretending that the unqualified type was actually
10326     // qualified __strong.
10327     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10328     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10329     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10330 
10331     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10332       return {};
10333 
10334     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
10335       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
10336     }
10337     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
10338       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
10339     }
10340     return {};
10341   }
10342 
10343   // Okay, qualifiers are equal.
10344 
10345   Type::TypeClass LHSClass = LHSCan->getTypeClass();
10346   Type::TypeClass RHSClass = RHSCan->getTypeClass();
10347 
10348   // We want to consider the two function types to be the same for these
10349   // comparisons, just force one to the other.
10350   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
10351   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
10352 
10353   // Same as above for arrays
10354   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
10355     LHSClass = Type::ConstantArray;
10356   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
10357     RHSClass = Type::ConstantArray;
10358 
10359   // ObjCInterfaces are just specialized ObjCObjects.
10360   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
10361   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
10362 
10363   // Canonicalize ExtVector -> Vector.
10364   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
10365   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
10366 
10367   // If the canonical type classes don't match.
10368   if (LHSClass != RHSClass) {
10369     // Note that we only have special rules for turning block enum
10370     // returns into block int returns, not vice-versa.
10371     if (const auto *ETy = LHS->getAs<EnumType>()) {
10372       return mergeEnumWithInteger(*this, ETy, RHS, false);
10373     }
10374     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
10375       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
10376     }
10377     // allow block pointer type to match an 'id' type.
10378     if (OfBlockPointer && !BlockReturnType) {
10379        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
10380          return LHS;
10381       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
10382         return RHS;
10383     }
10384     // Allow __auto_type to match anything; it merges to the type with more
10385     // information.
10386     if (const auto *AT = LHS->getAs<AutoType>()) {
10387       if (!AT->isDeduced() && AT->isGNUAutoType())
10388         return RHS;
10389     }
10390     if (const auto *AT = RHS->getAs<AutoType>()) {
10391       if (!AT->isDeduced() && AT->isGNUAutoType())
10392         return LHS;
10393     }
10394     return {};
10395   }
10396 
10397   // The canonical type classes match.
10398   switch (LHSClass) {
10399 #define TYPE(Class, Base)
10400 #define ABSTRACT_TYPE(Class, Base)
10401 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
10402 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
10403 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
10404 #include "clang/AST/TypeNodes.inc"
10405     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
10406 
10407   case Type::Auto:
10408   case Type::DeducedTemplateSpecialization:
10409   case Type::LValueReference:
10410   case Type::RValueReference:
10411   case Type::MemberPointer:
10412     llvm_unreachable("C++ should never be in mergeTypes");
10413 
10414   case Type::ObjCInterface:
10415   case Type::IncompleteArray:
10416   case Type::VariableArray:
10417   case Type::FunctionProto:
10418   case Type::ExtVector:
10419     llvm_unreachable("Types are eliminated above");
10420 
10421   case Type::Pointer:
10422   {
10423     // Merge two pointer types, while trying to preserve typedef info
10424     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
10425     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
10426     if (Unqualified) {
10427       LHSPointee = LHSPointee.getUnqualifiedType();
10428       RHSPointee = RHSPointee.getUnqualifiedType();
10429     }
10430     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
10431                                      Unqualified);
10432     if (ResultType.isNull())
10433       return {};
10434     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10435       return LHS;
10436     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10437       return RHS;
10438     return getPointerType(ResultType);
10439   }
10440   case Type::BlockPointer:
10441   {
10442     // Merge two block pointer types, while trying to preserve typedef info
10443     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
10444     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
10445     if (Unqualified) {
10446       LHSPointee = LHSPointee.getUnqualifiedType();
10447       RHSPointee = RHSPointee.getUnqualifiedType();
10448     }
10449     if (getLangOpts().OpenCL) {
10450       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
10451       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
10452       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
10453       // 6.12.5) thus the following check is asymmetric.
10454       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
10455         return {};
10456       LHSPteeQual.removeAddressSpace();
10457       RHSPteeQual.removeAddressSpace();
10458       LHSPointee =
10459           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
10460       RHSPointee =
10461           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
10462     }
10463     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
10464                                      Unqualified);
10465     if (ResultType.isNull())
10466       return {};
10467     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10468       return LHS;
10469     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10470       return RHS;
10471     return getBlockPointerType(ResultType);
10472   }
10473   case Type::Atomic:
10474   {
10475     // Merge two pointer types, while trying to preserve typedef info
10476     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
10477     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
10478     if (Unqualified) {
10479       LHSValue = LHSValue.getUnqualifiedType();
10480       RHSValue = RHSValue.getUnqualifiedType();
10481     }
10482     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
10483                                      Unqualified);
10484     if (ResultType.isNull())
10485       return {};
10486     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
10487       return LHS;
10488     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
10489       return RHS;
10490     return getAtomicType(ResultType);
10491   }
10492   case Type::ConstantArray:
10493   {
10494     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
10495     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
10496     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
10497       return {};
10498 
10499     QualType LHSElem = getAsArrayType(LHS)->getElementType();
10500     QualType RHSElem = getAsArrayType(RHS)->getElementType();
10501     if (Unqualified) {
10502       LHSElem = LHSElem.getUnqualifiedType();
10503       RHSElem = RHSElem.getUnqualifiedType();
10504     }
10505 
10506     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
10507     if (ResultType.isNull())
10508       return {};
10509 
10510     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
10511     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
10512 
10513     // If either side is a variable array, and both are complete, check whether
10514     // the current dimension is definite.
10515     if (LVAT || RVAT) {
10516       auto SizeFetch = [this](const VariableArrayType* VAT,
10517           const ConstantArrayType* CAT)
10518           -> std::pair<bool,llvm::APInt> {
10519         if (VAT) {
10520           Optional<llvm::APSInt> TheInt;
10521           Expr *E = VAT->getSizeExpr();
10522           if (E && (TheInt = E->getIntegerConstantExpr(*this)))
10523             return std::make_pair(true, *TheInt);
10524           return std::make_pair(false, llvm::APSInt());
10525         }
10526         if (CAT)
10527           return std::make_pair(true, CAT->getSize());
10528         return std::make_pair(false, llvm::APInt());
10529       };
10530 
10531       bool HaveLSize, HaveRSize;
10532       llvm::APInt LSize, RSize;
10533       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
10534       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
10535       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
10536         return {}; // Definite, but unequal, array dimension
10537     }
10538 
10539     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10540       return LHS;
10541     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10542       return RHS;
10543     if (LCAT)
10544       return getConstantArrayType(ResultType, LCAT->getSize(),
10545                                   LCAT->getSizeExpr(),
10546                                   ArrayType::ArraySizeModifier(), 0);
10547     if (RCAT)
10548       return getConstantArrayType(ResultType, RCAT->getSize(),
10549                                   RCAT->getSizeExpr(),
10550                                   ArrayType::ArraySizeModifier(), 0);
10551     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10552       return LHS;
10553     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10554       return RHS;
10555     if (LVAT) {
10556       // FIXME: This isn't correct! But tricky to implement because
10557       // the array's size has to be the size of LHS, but the type
10558       // has to be different.
10559       return LHS;
10560     }
10561     if (RVAT) {
10562       // FIXME: This isn't correct! But tricky to implement because
10563       // the array's size has to be the size of RHS, but the type
10564       // has to be different.
10565       return RHS;
10566     }
10567     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
10568     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
10569     return getIncompleteArrayType(ResultType,
10570                                   ArrayType::ArraySizeModifier(), 0);
10571   }
10572   case Type::FunctionNoProto:
10573     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
10574   case Type::Record:
10575   case Type::Enum:
10576     return {};
10577   case Type::Builtin:
10578     // Only exactly equal builtin types are compatible, which is tested above.
10579     return {};
10580   case Type::Complex:
10581     // Distinct complex types are incompatible.
10582     return {};
10583   case Type::Vector:
10584     // FIXME: The merged type should be an ExtVector!
10585     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
10586                              RHSCan->castAs<VectorType>()))
10587       return LHS;
10588     return {};
10589   case Type::ConstantMatrix:
10590     if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
10591                              RHSCan->castAs<ConstantMatrixType>()))
10592       return LHS;
10593     return {};
10594   case Type::ObjCObject: {
10595     // Check if the types are assignment compatible.
10596     // FIXME: This should be type compatibility, e.g. whether
10597     // "LHS x; RHS x;" at global scope is legal.
10598     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
10599                                 RHS->castAs<ObjCObjectType>()))
10600       return LHS;
10601     return {};
10602   }
10603   case Type::ObjCObjectPointer:
10604     if (OfBlockPointer) {
10605       if (canAssignObjCInterfacesInBlockPointer(
10606               LHS->castAs<ObjCObjectPointerType>(),
10607               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
10608         return LHS;
10609       return {};
10610     }
10611     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
10612                                 RHS->castAs<ObjCObjectPointerType>()))
10613       return LHS;
10614     return {};
10615   case Type::Pipe:
10616     assert(LHS != RHS &&
10617            "Equivalent pipe types should have already been handled!");
10618     return {};
10619   case Type::BitInt: {
10620     // Merge two bit-precise int types, while trying to preserve typedef info.
10621     bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned();
10622     bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned();
10623     unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits();
10624     unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits();
10625 
10626     // Like unsigned/int, shouldn't have a type if they don't match.
10627     if (LHSUnsigned != RHSUnsigned)
10628       return {};
10629 
10630     if (LHSBits != RHSBits)
10631       return {};
10632     return LHS;
10633   }
10634   }
10635 
10636   llvm_unreachable("Invalid Type::Class!");
10637 }
10638 
10639 bool ASTContext::mergeExtParameterInfo(
10640     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
10641     bool &CanUseFirst, bool &CanUseSecond,
10642     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
10643   assert(NewParamInfos.empty() && "param info list not empty");
10644   CanUseFirst = CanUseSecond = true;
10645   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
10646   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
10647 
10648   // Fast path: if the first type doesn't have ext parameter infos,
10649   // we match if and only if the second type also doesn't have them.
10650   if (!FirstHasInfo && !SecondHasInfo)
10651     return true;
10652 
10653   bool NeedParamInfo = false;
10654   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
10655                           : SecondFnType->getExtParameterInfos().size();
10656 
10657   for (size_t I = 0; I < E; ++I) {
10658     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
10659     if (FirstHasInfo)
10660       FirstParam = FirstFnType->getExtParameterInfo(I);
10661     if (SecondHasInfo)
10662       SecondParam = SecondFnType->getExtParameterInfo(I);
10663 
10664     // Cannot merge unless everything except the noescape flag matches.
10665     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
10666       return false;
10667 
10668     bool FirstNoEscape = FirstParam.isNoEscape();
10669     bool SecondNoEscape = SecondParam.isNoEscape();
10670     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
10671     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
10672     if (NewParamInfos.back().getOpaqueValue())
10673       NeedParamInfo = true;
10674     if (FirstNoEscape != IsNoEscape)
10675       CanUseFirst = false;
10676     if (SecondNoEscape != IsNoEscape)
10677       CanUseSecond = false;
10678   }
10679 
10680   if (!NeedParamInfo)
10681     NewParamInfos.clear();
10682 
10683   return true;
10684 }
10685 
10686 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
10687   ObjCLayouts[CD] = nullptr;
10688 }
10689 
10690 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
10691 /// 'RHS' attributes and returns the merged version; including for function
10692 /// return types.
10693 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
10694   QualType LHSCan = getCanonicalType(LHS),
10695   RHSCan = getCanonicalType(RHS);
10696   // If two types are identical, they are compatible.
10697   if (LHSCan == RHSCan)
10698     return LHS;
10699   if (RHSCan->isFunctionType()) {
10700     if (!LHSCan->isFunctionType())
10701       return {};
10702     QualType OldReturnType =
10703         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
10704     QualType NewReturnType =
10705         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
10706     QualType ResReturnType =
10707       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
10708     if (ResReturnType.isNull())
10709       return {};
10710     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
10711       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
10712       // In either case, use OldReturnType to build the new function type.
10713       const auto *F = LHS->castAs<FunctionType>();
10714       if (const auto *FPT = cast<FunctionProtoType>(F)) {
10715         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10716         EPI.ExtInfo = getFunctionExtInfo(LHS);
10717         QualType ResultType =
10718             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
10719         return ResultType;
10720       }
10721     }
10722     return {};
10723   }
10724 
10725   // If the qualifiers are different, the types can still be merged.
10726   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10727   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10728   if (LQuals != RQuals) {
10729     // If any of these qualifiers are different, we have a type mismatch.
10730     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10731         LQuals.getAddressSpace() != RQuals.getAddressSpace())
10732       return {};
10733 
10734     // Exactly one GC qualifier difference is allowed: __strong is
10735     // okay if the other type has no GC qualifier but is an Objective
10736     // C object pointer (i.e. implicitly strong by default).  We fix
10737     // this by pretending that the unqualified type was actually
10738     // qualified __strong.
10739     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10740     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10741     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10742 
10743     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10744       return {};
10745 
10746     if (GC_L == Qualifiers::Strong)
10747       return LHS;
10748     if (GC_R == Qualifiers::Strong)
10749       return RHS;
10750     return {};
10751   }
10752 
10753   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
10754     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10755     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10756     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
10757     if (ResQT == LHSBaseQT)
10758       return LHS;
10759     if (ResQT == RHSBaseQT)
10760       return RHS;
10761   }
10762   return {};
10763 }
10764 
10765 //===----------------------------------------------------------------------===//
10766 //                         Integer Predicates
10767 //===----------------------------------------------------------------------===//
10768 
10769 unsigned ASTContext::getIntWidth(QualType T) const {
10770   if (const auto *ET = T->getAs<EnumType>())
10771     T = ET->getDecl()->getIntegerType();
10772   if (T->isBooleanType())
10773     return 1;
10774   if (const auto *EIT = T->getAs<BitIntType>())
10775     return EIT->getNumBits();
10776   // For builtin types, just use the standard type sizing method
10777   return (unsigned)getTypeSize(T);
10778 }
10779 
10780 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
10781   assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
10782          "Unexpected type");
10783 
10784   // Turn <4 x signed int> -> <4 x unsigned int>
10785   if (const auto *VTy = T->getAs<VectorType>())
10786     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
10787                          VTy->getNumElements(), VTy->getVectorKind());
10788 
10789   // For _BitInt, return an unsigned _BitInt with same width.
10790   if (const auto *EITy = T->getAs<BitIntType>())
10791     return getBitIntType(/*Unsigned=*/true, EITy->getNumBits());
10792 
10793   // For enums, get the underlying integer type of the enum, and let the general
10794   // integer type signchanging code handle it.
10795   if (const auto *ETy = T->getAs<EnumType>())
10796     T = ETy->getDecl()->getIntegerType();
10797 
10798   switch (T->castAs<BuiltinType>()->getKind()) {
10799   case BuiltinType::Char_S:
10800   case BuiltinType::SChar:
10801     return UnsignedCharTy;
10802   case BuiltinType::Short:
10803     return UnsignedShortTy;
10804   case BuiltinType::Int:
10805     return UnsignedIntTy;
10806   case BuiltinType::Long:
10807     return UnsignedLongTy;
10808   case BuiltinType::LongLong:
10809     return UnsignedLongLongTy;
10810   case BuiltinType::Int128:
10811     return UnsignedInt128Ty;
10812   // wchar_t is special. It is either signed or not, but when it's signed,
10813   // there's no matching "unsigned wchar_t". Therefore we return the unsigned
10814   // version of it's underlying type instead.
10815   case BuiltinType::WChar_S:
10816     return getUnsignedWCharType();
10817 
10818   case BuiltinType::ShortAccum:
10819     return UnsignedShortAccumTy;
10820   case BuiltinType::Accum:
10821     return UnsignedAccumTy;
10822   case BuiltinType::LongAccum:
10823     return UnsignedLongAccumTy;
10824   case BuiltinType::SatShortAccum:
10825     return SatUnsignedShortAccumTy;
10826   case BuiltinType::SatAccum:
10827     return SatUnsignedAccumTy;
10828   case BuiltinType::SatLongAccum:
10829     return SatUnsignedLongAccumTy;
10830   case BuiltinType::ShortFract:
10831     return UnsignedShortFractTy;
10832   case BuiltinType::Fract:
10833     return UnsignedFractTy;
10834   case BuiltinType::LongFract:
10835     return UnsignedLongFractTy;
10836   case BuiltinType::SatShortFract:
10837     return SatUnsignedShortFractTy;
10838   case BuiltinType::SatFract:
10839     return SatUnsignedFractTy;
10840   case BuiltinType::SatLongFract:
10841     return SatUnsignedLongFractTy;
10842   default:
10843     llvm_unreachable("Unexpected signed integer or fixed point type");
10844   }
10845 }
10846 
10847 QualType ASTContext::getCorrespondingSignedType(QualType T) const {
10848   assert((T->hasUnsignedIntegerRepresentation() ||
10849           T->isUnsignedFixedPointType()) &&
10850          "Unexpected type");
10851 
10852   // Turn <4 x unsigned int> -> <4 x signed int>
10853   if (const auto *VTy = T->getAs<VectorType>())
10854     return getVectorType(getCorrespondingSignedType(VTy->getElementType()),
10855                          VTy->getNumElements(), VTy->getVectorKind());
10856 
10857   // For _BitInt, return a signed _BitInt with same width.
10858   if (const auto *EITy = T->getAs<BitIntType>())
10859     return getBitIntType(/*Unsigned=*/false, EITy->getNumBits());
10860 
10861   // For enums, get the underlying integer type of the enum, and let the general
10862   // integer type signchanging code handle it.
10863   if (const auto *ETy = T->getAs<EnumType>())
10864     T = ETy->getDecl()->getIntegerType();
10865 
10866   switch (T->castAs<BuiltinType>()->getKind()) {
10867   case BuiltinType::Char_U:
10868   case BuiltinType::UChar:
10869     return SignedCharTy;
10870   case BuiltinType::UShort:
10871     return ShortTy;
10872   case BuiltinType::UInt:
10873     return IntTy;
10874   case BuiltinType::ULong:
10875     return LongTy;
10876   case BuiltinType::ULongLong:
10877     return LongLongTy;
10878   case BuiltinType::UInt128:
10879     return Int128Ty;
10880   // wchar_t is special. It is either unsigned or not, but when it's unsigned,
10881   // there's no matching "signed wchar_t". Therefore we return the signed
10882   // version of it's underlying type instead.
10883   case BuiltinType::WChar_U:
10884     return getSignedWCharType();
10885 
10886   case BuiltinType::UShortAccum:
10887     return ShortAccumTy;
10888   case BuiltinType::UAccum:
10889     return AccumTy;
10890   case BuiltinType::ULongAccum:
10891     return LongAccumTy;
10892   case BuiltinType::SatUShortAccum:
10893     return SatShortAccumTy;
10894   case BuiltinType::SatUAccum:
10895     return SatAccumTy;
10896   case BuiltinType::SatULongAccum:
10897     return SatLongAccumTy;
10898   case BuiltinType::UShortFract:
10899     return ShortFractTy;
10900   case BuiltinType::UFract:
10901     return FractTy;
10902   case BuiltinType::ULongFract:
10903     return LongFractTy;
10904   case BuiltinType::SatUShortFract:
10905     return SatShortFractTy;
10906   case BuiltinType::SatUFract:
10907     return SatFractTy;
10908   case BuiltinType::SatULongFract:
10909     return SatLongFractTy;
10910   default:
10911     llvm_unreachable("Unexpected unsigned integer or fixed point type");
10912   }
10913 }
10914 
10915 ASTMutationListener::~ASTMutationListener() = default;
10916 
10917 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
10918                                             QualType ReturnType) {}
10919 
10920 //===----------------------------------------------------------------------===//
10921 //                          Builtin Type Computation
10922 //===----------------------------------------------------------------------===//
10923 
10924 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
10925 /// pointer over the consumed characters.  This returns the resultant type.  If
10926 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
10927 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
10928 /// a vector of "i*".
10929 ///
10930 /// RequiresICE is filled in on return to indicate whether the value is required
10931 /// to be an Integer Constant Expression.
10932 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
10933                                   ASTContext::GetBuiltinTypeError &Error,
10934                                   bool &RequiresICE,
10935                                   bool AllowTypeModifiers) {
10936   // Modifiers.
10937   int HowLong = 0;
10938   bool Signed = false, Unsigned = false;
10939   RequiresICE = false;
10940 
10941   // Read the prefixed modifiers first.
10942   bool Done = false;
10943   #ifndef NDEBUG
10944   bool IsSpecial = false;
10945   #endif
10946   while (!Done) {
10947     switch (*Str++) {
10948     default: Done = true; --Str; break;
10949     case 'I':
10950       RequiresICE = true;
10951       break;
10952     case 'S':
10953       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
10954       assert(!Signed && "Can't use 'S' modifier multiple times!");
10955       Signed = true;
10956       break;
10957     case 'U':
10958       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
10959       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
10960       Unsigned = true;
10961       break;
10962     case 'L':
10963       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
10964       assert(HowLong <= 2 && "Can't have LLLL modifier");
10965       ++HowLong;
10966       break;
10967     case 'N':
10968       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
10969       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10970       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
10971       #ifndef NDEBUG
10972       IsSpecial = true;
10973       #endif
10974       if (Context.getTargetInfo().getLongWidth() == 32)
10975         ++HowLong;
10976       break;
10977     case 'W':
10978       // This modifier represents int64 type.
10979       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10980       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
10981       #ifndef NDEBUG
10982       IsSpecial = true;
10983       #endif
10984       switch (Context.getTargetInfo().getInt64Type()) {
10985       default:
10986         llvm_unreachable("Unexpected integer type");
10987       case TargetInfo::SignedLong:
10988         HowLong = 1;
10989         break;
10990       case TargetInfo::SignedLongLong:
10991         HowLong = 2;
10992         break;
10993       }
10994       break;
10995     case 'Z':
10996       // This modifier represents int32 type.
10997       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10998       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
10999       #ifndef NDEBUG
11000       IsSpecial = true;
11001       #endif
11002       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
11003       default:
11004         llvm_unreachable("Unexpected integer type");
11005       case TargetInfo::SignedInt:
11006         HowLong = 0;
11007         break;
11008       case TargetInfo::SignedLong:
11009         HowLong = 1;
11010         break;
11011       case TargetInfo::SignedLongLong:
11012         HowLong = 2;
11013         break;
11014       }
11015       break;
11016     case 'O':
11017       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
11018       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
11019       #ifndef NDEBUG
11020       IsSpecial = true;
11021       #endif
11022       if (Context.getLangOpts().OpenCL)
11023         HowLong = 1;
11024       else
11025         HowLong = 2;
11026       break;
11027     }
11028   }
11029 
11030   QualType Type;
11031 
11032   // Read the base type.
11033   switch (*Str++) {
11034   default: llvm_unreachable("Unknown builtin type letter!");
11035   case 'x':
11036     assert(HowLong == 0 && !Signed && !Unsigned &&
11037            "Bad modifiers used with 'x'!");
11038     Type = Context.Float16Ty;
11039     break;
11040   case 'y':
11041     assert(HowLong == 0 && !Signed && !Unsigned &&
11042            "Bad modifiers used with 'y'!");
11043     Type = Context.BFloat16Ty;
11044     break;
11045   case 'v':
11046     assert(HowLong == 0 && !Signed && !Unsigned &&
11047            "Bad modifiers used with 'v'!");
11048     Type = Context.VoidTy;
11049     break;
11050   case 'h':
11051     assert(HowLong == 0 && !Signed && !Unsigned &&
11052            "Bad modifiers used with 'h'!");
11053     Type = Context.HalfTy;
11054     break;
11055   case 'f':
11056     assert(HowLong == 0 && !Signed && !Unsigned &&
11057            "Bad modifiers used with 'f'!");
11058     Type = Context.FloatTy;
11059     break;
11060   case 'd':
11061     assert(HowLong < 3 && !Signed && !Unsigned &&
11062            "Bad modifiers used with 'd'!");
11063     if (HowLong == 1)
11064       Type = Context.LongDoubleTy;
11065     else if (HowLong == 2)
11066       Type = Context.Float128Ty;
11067     else
11068       Type = Context.DoubleTy;
11069     break;
11070   case 's':
11071     assert(HowLong == 0 && "Bad modifiers used with 's'!");
11072     if (Unsigned)
11073       Type = Context.UnsignedShortTy;
11074     else
11075       Type = Context.ShortTy;
11076     break;
11077   case 'i':
11078     if (HowLong == 3)
11079       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
11080     else if (HowLong == 2)
11081       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
11082     else if (HowLong == 1)
11083       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
11084     else
11085       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
11086     break;
11087   case 'c':
11088     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
11089     if (Signed)
11090       Type = Context.SignedCharTy;
11091     else if (Unsigned)
11092       Type = Context.UnsignedCharTy;
11093     else
11094       Type = Context.CharTy;
11095     break;
11096   case 'b': // boolean
11097     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
11098     Type = Context.BoolTy;
11099     break;
11100   case 'z':  // size_t.
11101     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
11102     Type = Context.getSizeType();
11103     break;
11104   case 'w':  // wchar_t.
11105     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
11106     Type = Context.getWideCharType();
11107     break;
11108   case 'F':
11109     Type = Context.getCFConstantStringType();
11110     break;
11111   case 'G':
11112     Type = Context.getObjCIdType();
11113     break;
11114   case 'H':
11115     Type = Context.getObjCSelType();
11116     break;
11117   case 'M':
11118     Type = Context.getObjCSuperType();
11119     break;
11120   case 'a':
11121     Type = Context.getBuiltinVaListType();
11122     assert(!Type.isNull() && "builtin va list type not initialized!");
11123     break;
11124   case 'A':
11125     // This is a "reference" to a va_list; however, what exactly
11126     // this means depends on how va_list is defined. There are two
11127     // different kinds of va_list: ones passed by value, and ones
11128     // passed by reference.  An example of a by-value va_list is
11129     // x86, where va_list is a char*. An example of by-ref va_list
11130     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
11131     // we want this argument to be a char*&; for x86-64, we want
11132     // it to be a __va_list_tag*.
11133     Type = Context.getBuiltinVaListType();
11134     assert(!Type.isNull() && "builtin va list type not initialized!");
11135     if (Type->isArrayType())
11136       Type = Context.getArrayDecayedType(Type);
11137     else
11138       Type = Context.getLValueReferenceType(Type);
11139     break;
11140   case 'q': {
11141     char *End;
11142     unsigned NumElements = strtoul(Str, &End, 10);
11143     assert(End != Str && "Missing vector size");
11144     Str = End;
11145 
11146     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11147                                              RequiresICE, false);
11148     assert(!RequiresICE && "Can't require vector ICE");
11149 
11150     Type = Context.getScalableVectorType(ElementType, NumElements);
11151     break;
11152   }
11153   case 'V': {
11154     char *End;
11155     unsigned NumElements = strtoul(Str, &End, 10);
11156     assert(End != Str && "Missing vector size");
11157     Str = End;
11158 
11159     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11160                                              RequiresICE, false);
11161     assert(!RequiresICE && "Can't require vector ICE");
11162 
11163     // TODO: No way to make AltiVec vectors in builtins yet.
11164     Type = Context.getVectorType(ElementType, NumElements,
11165                                  VectorType::GenericVector);
11166     break;
11167   }
11168   case 'E': {
11169     char *End;
11170 
11171     unsigned NumElements = strtoul(Str, &End, 10);
11172     assert(End != Str && "Missing vector size");
11173 
11174     Str = End;
11175 
11176     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11177                                              false);
11178     Type = Context.getExtVectorType(ElementType, NumElements);
11179     break;
11180   }
11181   case 'X': {
11182     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11183                                              false);
11184     assert(!RequiresICE && "Can't require complex ICE");
11185     Type = Context.getComplexType(ElementType);
11186     break;
11187   }
11188   case 'Y':
11189     Type = Context.getPointerDiffType();
11190     break;
11191   case 'P':
11192     Type = Context.getFILEType();
11193     if (Type.isNull()) {
11194       Error = ASTContext::GE_Missing_stdio;
11195       return {};
11196     }
11197     break;
11198   case 'J':
11199     if (Signed)
11200       Type = Context.getsigjmp_bufType();
11201     else
11202       Type = Context.getjmp_bufType();
11203 
11204     if (Type.isNull()) {
11205       Error = ASTContext::GE_Missing_setjmp;
11206       return {};
11207     }
11208     break;
11209   case 'K':
11210     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
11211     Type = Context.getucontext_tType();
11212 
11213     if (Type.isNull()) {
11214       Error = ASTContext::GE_Missing_ucontext;
11215       return {};
11216     }
11217     break;
11218   case 'p':
11219     Type = Context.getProcessIDType();
11220     break;
11221   }
11222 
11223   // If there are modifiers and if we're allowed to parse them, go for it.
11224   Done = !AllowTypeModifiers;
11225   while (!Done) {
11226     switch (char c = *Str++) {
11227     default: Done = true; --Str; break;
11228     case '*':
11229     case '&': {
11230       // Both pointers and references can have their pointee types
11231       // qualified with an address space.
11232       char *End;
11233       unsigned AddrSpace = strtoul(Str, &End, 10);
11234       if (End != Str) {
11235         // Note AddrSpace == 0 is not the same as an unspecified address space.
11236         Type = Context.getAddrSpaceQualType(
11237           Type,
11238           Context.getLangASForBuiltinAddressSpace(AddrSpace));
11239         Str = End;
11240       }
11241       if (c == '*')
11242         Type = Context.getPointerType(Type);
11243       else
11244         Type = Context.getLValueReferenceType(Type);
11245       break;
11246     }
11247     // FIXME: There's no way to have a built-in with an rvalue ref arg.
11248     case 'C':
11249       Type = Type.withConst();
11250       break;
11251     case 'D':
11252       Type = Context.getVolatileType(Type);
11253       break;
11254     case 'R':
11255       Type = Type.withRestrict();
11256       break;
11257     }
11258   }
11259 
11260   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
11261          "Integer constant 'I' type must be an integer");
11262 
11263   return Type;
11264 }
11265 
11266 // On some targets such as PowerPC, some of the builtins are defined with custom
11267 // type descriptors for target-dependent types. These descriptors are decoded in
11268 // other functions, but it may be useful to be able to fall back to default
11269 // descriptor decoding to define builtins mixing target-dependent and target-
11270 // independent types. This function allows decoding one type descriptor with
11271 // default decoding.
11272 QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
11273                                    GetBuiltinTypeError &Error, bool &RequireICE,
11274                                    bool AllowTypeModifiers) const {
11275   return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
11276 }
11277 
11278 /// GetBuiltinType - Return the type for the specified builtin.
11279 QualType ASTContext::GetBuiltinType(unsigned Id,
11280                                     GetBuiltinTypeError &Error,
11281                                     unsigned *IntegerConstantArgs) const {
11282   const char *TypeStr = BuiltinInfo.getTypeString(Id);
11283   if (TypeStr[0] == '\0') {
11284     Error = GE_Missing_type;
11285     return {};
11286   }
11287 
11288   SmallVector<QualType, 8> ArgTypes;
11289 
11290   bool RequiresICE = false;
11291   Error = GE_None;
11292   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
11293                                        RequiresICE, true);
11294   if (Error != GE_None)
11295     return {};
11296 
11297   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
11298 
11299   while (TypeStr[0] && TypeStr[0] != '.') {
11300     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
11301     if (Error != GE_None)
11302       return {};
11303 
11304     // If this argument is required to be an IntegerConstantExpression and the
11305     // caller cares, fill in the bitmask we return.
11306     if (RequiresICE && IntegerConstantArgs)
11307       *IntegerConstantArgs |= 1 << ArgTypes.size();
11308 
11309     // Do array -> pointer decay.  The builtin should use the decayed type.
11310     if (Ty->isArrayType())
11311       Ty = getArrayDecayedType(Ty);
11312 
11313     ArgTypes.push_back(Ty);
11314   }
11315 
11316   if (Id == Builtin::BI__GetExceptionInfo)
11317     return {};
11318 
11319   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
11320          "'.' should only occur at end of builtin type list!");
11321 
11322   bool Variadic = (TypeStr[0] == '.');
11323 
11324   FunctionType::ExtInfo EI(getDefaultCallingConvention(
11325       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
11326   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
11327 
11328 
11329   // We really shouldn't be making a no-proto type here.
11330   if (ArgTypes.empty() && Variadic && !getLangOpts().requiresStrictPrototypes())
11331     return getFunctionNoProtoType(ResType, EI);
11332 
11333   FunctionProtoType::ExtProtoInfo EPI;
11334   EPI.ExtInfo = EI;
11335   EPI.Variadic = Variadic;
11336   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
11337     EPI.ExceptionSpec.Type =
11338         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
11339 
11340   return getFunctionType(ResType, ArgTypes, EPI);
11341 }
11342 
11343 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
11344                                              const FunctionDecl *FD) {
11345   if (!FD->isExternallyVisible())
11346     return GVA_Internal;
11347 
11348   // Non-user-provided functions get emitted as weak definitions with every
11349   // use, no matter whether they've been explicitly instantiated etc.
11350   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
11351     if (!MD->isUserProvided())
11352       return GVA_DiscardableODR;
11353 
11354   GVALinkage External;
11355   switch (FD->getTemplateSpecializationKind()) {
11356   case TSK_Undeclared:
11357   case TSK_ExplicitSpecialization:
11358     External = GVA_StrongExternal;
11359     break;
11360 
11361   case TSK_ExplicitInstantiationDefinition:
11362     return GVA_StrongODR;
11363 
11364   // C++11 [temp.explicit]p10:
11365   //   [ Note: The intent is that an inline function that is the subject of
11366   //   an explicit instantiation declaration will still be implicitly
11367   //   instantiated when used so that the body can be considered for
11368   //   inlining, but that no out-of-line copy of the inline function would be
11369   //   generated in the translation unit. -- end note ]
11370   case TSK_ExplicitInstantiationDeclaration:
11371     return GVA_AvailableExternally;
11372 
11373   case TSK_ImplicitInstantiation:
11374     External = GVA_DiscardableODR;
11375     break;
11376   }
11377 
11378   if (!FD->isInlined())
11379     return External;
11380 
11381   if ((!Context.getLangOpts().CPlusPlus &&
11382        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11383        !FD->hasAttr<DLLExportAttr>()) ||
11384       FD->hasAttr<GNUInlineAttr>()) {
11385     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
11386 
11387     // GNU or C99 inline semantics. Determine whether this symbol should be
11388     // externally visible.
11389     if (FD->isInlineDefinitionExternallyVisible())
11390       return External;
11391 
11392     // C99 inline semantics, where the symbol is not externally visible.
11393     return GVA_AvailableExternally;
11394   }
11395 
11396   // Functions specified with extern and inline in -fms-compatibility mode
11397   // forcibly get emitted.  While the body of the function cannot be later
11398   // replaced, the function definition cannot be discarded.
11399   if (FD->isMSExternInline())
11400     return GVA_StrongODR;
11401 
11402   return GVA_DiscardableODR;
11403 }
11404 
11405 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
11406                                                 const Decl *D, GVALinkage L) {
11407   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
11408   // dllexport/dllimport on inline functions.
11409   if (D->hasAttr<DLLImportAttr>()) {
11410     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
11411       return GVA_AvailableExternally;
11412   } else if (D->hasAttr<DLLExportAttr>()) {
11413     if (L == GVA_DiscardableODR)
11414       return GVA_StrongODR;
11415   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
11416     // Device-side functions with __global__ attribute must always be
11417     // visible externally so they can be launched from host.
11418     if (D->hasAttr<CUDAGlobalAttr>() &&
11419         (L == GVA_DiscardableODR || L == GVA_Internal))
11420       return GVA_StrongODR;
11421     // Single source offloading languages like CUDA/HIP need to be able to
11422     // access static device variables from host code of the same compilation
11423     // unit. This is done by externalizing the static variable with a shared
11424     // name between the host and device compilation which is the same for the
11425     // same compilation unit whereas different among different compilation
11426     // units.
11427     if (Context.shouldExternalize(D))
11428       return GVA_StrongExternal;
11429   }
11430   return L;
11431 }
11432 
11433 /// Adjust the GVALinkage for a declaration based on what an external AST source
11434 /// knows about whether there can be other definitions of this declaration.
11435 static GVALinkage
11436 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
11437                                           GVALinkage L) {
11438   ExternalASTSource *Source = Ctx.getExternalSource();
11439   if (!Source)
11440     return L;
11441 
11442   switch (Source->hasExternalDefinitions(D)) {
11443   case ExternalASTSource::EK_Never:
11444     // Other translation units rely on us to provide the definition.
11445     if (L == GVA_DiscardableODR)
11446       return GVA_StrongODR;
11447     break;
11448 
11449   case ExternalASTSource::EK_Always:
11450     return GVA_AvailableExternally;
11451 
11452   case ExternalASTSource::EK_ReplyHazy:
11453     break;
11454   }
11455   return L;
11456 }
11457 
11458 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
11459   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
11460            adjustGVALinkageForAttributes(*this, FD,
11461              basicGVALinkageForFunction(*this, FD)));
11462 }
11463 
11464 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
11465                                              const VarDecl *VD) {
11466   if (!VD->isExternallyVisible())
11467     return GVA_Internal;
11468 
11469   if (VD->isStaticLocal()) {
11470     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
11471     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
11472       LexicalContext = LexicalContext->getLexicalParent();
11473 
11474     // ObjC Blocks can create local variables that don't have a FunctionDecl
11475     // LexicalContext.
11476     if (!LexicalContext)
11477       return GVA_DiscardableODR;
11478 
11479     // Otherwise, let the static local variable inherit its linkage from the
11480     // nearest enclosing function.
11481     auto StaticLocalLinkage =
11482         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
11483 
11484     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
11485     // be emitted in any object with references to the symbol for the object it
11486     // contains, whether inline or out-of-line."
11487     // Similar behavior is observed with MSVC. An alternative ABI could use
11488     // StrongODR/AvailableExternally to match the function, but none are
11489     // known/supported currently.
11490     if (StaticLocalLinkage == GVA_StrongODR ||
11491         StaticLocalLinkage == GVA_AvailableExternally)
11492       return GVA_DiscardableODR;
11493     return StaticLocalLinkage;
11494   }
11495 
11496   // MSVC treats in-class initialized static data members as definitions.
11497   // By giving them non-strong linkage, out-of-line definitions won't
11498   // cause link errors.
11499   if (Context.isMSStaticDataMemberInlineDefinition(VD))
11500     return GVA_DiscardableODR;
11501 
11502   // Most non-template variables have strong linkage; inline variables are
11503   // linkonce_odr or (occasionally, for compatibility) weak_odr.
11504   GVALinkage StrongLinkage;
11505   switch (Context.getInlineVariableDefinitionKind(VD)) {
11506   case ASTContext::InlineVariableDefinitionKind::None:
11507     StrongLinkage = GVA_StrongExternal;
11508     break;
11509   case ASTContext::InlineVariableDefinitionKind::Weak:
11510   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
11511     StrongLinkage = GVA_DiscardableODR;
11512     break;
11513   case ASTContext::InlineVariableDefinitionKind::Strong:
11514     StrongLinkage = GVA_StrongODR;
11515     break;
11516   }
11517 
11518   switch (VD->getTemplateSpecializationKind()) {
11519   case TSK_Undeclared:
11520     return StrongLinkage;
11521 
11522   case TSK_ExplicitSpecialization:
11523     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11524                    VD->isStaticDataMember()
11525                ? GVA_StrongODR
11526                : StrongLinkage;
11527 
11528   case TSK_ExplicitInstantiationDefinition:
11529     return GVA_StrongODR;
11530 
11531   case TSK_ExplicitInstantiationDeclaration:
11532     return GVA_AvailableExternally;
11533 
11534   case TSK_ImplicitInstantiation:
11535     return GVA_DiscardableODR;
11536   }
11537 
11538   llvm_unreachable("Invalid Linkage!");
11539 }
11540 
11541 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
11542   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
11543            adjustGVALinkageForAttributes(*this, VD,
11544              basicGVALinkageForVariable(*this, VD)));
11545 }
11546 
11547 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
11548   if (const auto *VD = dyn_cast<VarDecl>(D)) {
11549     if (!VD->isFileVarDecl())
11550       return false;
11551     // Global named register variables (GNU extension) are never emitted.
11552     if (VD->getStorageClass() == SC_Register)
11553       return false;
11554     if (VD->getDescribedVarTemplate() ||
11555         isa<VarTemplatePartialSpecializationDecl>(VD))
11556       return false;
11557   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11558     // We never need to emit an uninstantiated function template.
11559     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11560       return false;
11561   } else if (isa<PragmaCommentDecl>(D))
11562     return true;
11563   else if (isa<PragmaDetectMismatchDecl>(D))
11564     return true;
11565   else if (isa<OMPRequiresDecl>(D))
11566     return true;
11567   else if (isa<OMPThreadPrivateDecl>(D))
11568     return !D->getDeclContext()->isDependentContext();
11569   else if (isa<OMPAllocateDecl>(D))
11570     return !D->getDeclContext()->isDependentContext();
11571   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
11572     return !D->getDeclContext()->isDependentContext();
11573   else if (isa<ImportDecl>(D))
11574     return true;
11575   else
11576     return false;
11577 
11578   // If this is a member of a class template, we do not need to emit it.
11579   if (D->getDeclContext()->isDependentContext())
11580     return false;
11581 
11582   // Weak references don't produce any output by themselves.
11583   if (D->hasAttr<WeakRefAttr>())
11584     return false;
11585 
11586   // Aliases and used decls are required.
11587   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
11588     return true;
11589 
11590   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11591     // Forward declarations aren't required.
11592     if (!FD->doesThisDeclarationHaveABody())
11593       return FD->doesDeclarationForceExternallyVisibleDefinition();
11594 
11595     // Constructors and destructors are required.
11596     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
11597       return true;
11598 
11599     // The key function for a class is required.  This rule only comes
11600     // into play when inline functions can be key functions, though.
11601     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
11602       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11603         const CXXRecordDecl *RD = MD->getParent();
11604         if (MD->isOutOfLine() && RD->isDynamicClass()) {
11605           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
11606           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
11607             return true;
11608         }
11609       }
11610     }
11611 
11612     GVALinkage Linkage = GetGVALinkageForFunction(FD);
11613 
11614     // static, static inline, always_inline, and extern inline functions can
11615     // always be deferred.  Normal inline functions can be deferred in C99/C++.
11616     // Implicit template instantiations can also be deferred in C++.
11617     return !isDiscardableGVALinkage(Linkage);
11618   }
11619 
11620   const auto *VD = cast<VarDecl>(D);
11621   assert(VD->isFileVarDecl() && "Expected file scoped var");
11622 
11623   // If the decl is marked as `declare target to`, it should be emitted for the
11624   // host and for the device.
11625   if (LangOpts.OpenMP &&
11626       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
11627     return true;
11628 
11629   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
11630       !isMSStaticDataMemberInlineDefinition(VD))
11631     return false;
11632 
11633   // Variables that can be needed in other TUs are required.
11634   auto Linkage = GetGVALinkageForVariable(VD);
11635   if (!isDiscardableGVALinkage(Linkage))
11636     return true;
11637 
11638   // We never need to emit a variable that is available in another TU.
11639   if (Linkage == GVA_AvailableExternally)
11640     return false;
11641 
11642   // Variables that have destruction with side-effects are required.
11643   if (VD->needsDestruction(*this))
11644     return true;
11645 
11646   // Variables that have initialization with side-effects are required.
11647   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
11648       // We can get a value-dependent initializer during error recovery.
11649       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
11650     return true;
11651 
11652   // Likewise, variables with tuple-like bindings are required if their
11653   // bindings have side-effects.
11654   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
11655     for (const auto *BD : DD->bindings())
11656       if (const auto *BindingVD = BD->getHoldingVar())
11657         if (DeclMustBeEmitted(BindingVD))
11658           return true;
11659 
11660   return false;
11661 }
11662 
11663 void ASTContext::forEachMultiversionedFunctionVersion(
11664     const FunctionDecl *FD,
11665     llvm::function_ref<void(FunctionDecl *)> Pred) const {
11666   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
11667   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
11668   FD = FD->getMostRecentDecl();
11669   // FIXME: The order of traversal here matters and depends on the order of
11670   // lookup results, which happens to be (mostly) oldest-to-newest, but we
11671   // shouldn't rely on that.
11672   for (auto *CurDecl :
11673        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
11674     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
11675     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
11676         std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
11677       SeenDecls.insert(CurFD);
11678       Pred(CurFD);
11679     }
11680   }
11681 }
11682 
11683 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
11684                                                     bool IsCXXMethod,
11685                                                     bool IsBuiltin) const {
11686   // Pass through to the C++ ABI object
11687   if (IsCXXMethod)
11688     return ABI->getDefaultMethodCallConv(IsVariadic);
11689 
11690   // Builtins ignore user-specified default calling convention and remain the
11691   // Target's default calling convention.
11692   if (!IsBuiltin) {
11693     switch (LangOpts.getDefaultCallingConv()) {
11694     case LangOptions::DCC_None:
11695       break;
11696     case LangOptions::DCC_CDecl:
11697       return CC_C;
11698     case LangOptions::DCC_FastCall:
11699       if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
11700         return CC_X86FastCall;
11701       break;
11702     case LangOptions::DCC_StdCall:
11703       if (!IsVariadic)
11704         return CC_X86StdCall;
11705       break;
11706     case LangOptions::DCC_VectorCall:
11707       // __vectorcall cannot be applied to variadic functions.
11708       if (!IsVariadic)
11709         return CC_X86VectorCall;
11710       break;
11711     case LangOptions::DCC_RegCall:
11712       // __regcall cannot be applied to variadic functions.
11713       if (!IsVariadic)
11714         return CC_X86RegCall;
11715       break;
11716     }
11717   }
11718   return Target->getDefaultCallingConv();
11719 }
11720 
11721 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
11722   // Pass through to the C++ ABI object
11723   return ABI->isNearlyEmpty(RD);
11724 }
11725 
11726 VTableContextBase *ASTContext::getVTableContext() {
11727   if (!VTContext.get()) {
11728     auto ABI = Target->getCXXABI();
11729     if (ABI.isMicrosoft())
11730       VTContext.reset(new MicrosoftVTableContext(*this));
11731     else {
11732       auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
11733                                  ? ItaniumVTableContext::Relative
11734                                  : ItaniumVTableContext::Pointer;
11735       VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
11736     }
11737   }
11738   return VTContext.get();
11739 }
11740 
11741 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
11742   if (!T)
11743     T = Target;
11744   switch (T->getCXXABI().getKind()) {
11745   case TargetCXXABI::AppleARM64:
11746   case TargetCXXABI::Fuchsia:
11747   case TargetCXXABI::GenericAArch64:
11748   case TargetCXXABI::GenericItanium:
11749   case TargetCXXABI::GenericARM:
11750   case TargetCXXABI::GenericMIPS:
11751   case TargetCXXABI::iOS:
11752   case TargetCXXABI::WebAssembly:
11753   case TargetCXXABI::WatchOS:
11754   case TargetCXXABI::XL:
11755     return ItaniumMangleContext::create(*this, getDiagnostics());
11756   case TargetCXXABI::Microsoft:
11757     return MicrosoftMangleContext::create(*this, getDiagnostics());
11758   }
11759   llvm_unreachable("Unsupported ABI");
11760 }
11761 
11762 MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) {
11763   assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft &&
11764          "Device mangle context does not support Microsoft mangling.");
11765   switch (T.getCXXABI().getKind()) {
11766   case TargetCXXABI::AppleARM64:
11767   case TargetCXXABI::Fuchsia:
11768   case TargetCXXABI::GenericAArch64:
11769   case TargetCXXABI::GenericItanium:
11770   case TargetCXXABI::GenericARM:
11771   case TargetCXXABI::GenericMIPS:
11772   case TargetCXXABI::iOS:
11773   case TargetCXXABI::WebAssembly:
11774   case TargetCXXABI::WatchOS:
11775   case TargetCXXABI::XL:
11776     return ItaniumMangleContext::create(
11777         *this, getDiagnostics(),
11778         [](ASTContext &, const NamedDecl *ND) -> llvm::Optional<unsigned> {
11779           if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
11780             return RD->getDeviceLambdaManglingNumber();
11781           return llvm::None;
11782         },
11783         /*IsAux=*/true);
11784   case TargetCXXABI::Microsoft:
11785     return MicrosoftMangleContext::create(*this, getDiagnostics(),
11786                                           /*IsAux=*/true);
11787   }
11788   llvm_unreachable("Unsupported ABI");
11789 }
11790 
11791 CXXABI::~CXXABI() = default;
11792 
11793 size_t ASTContext::getSideTableAllocatedMemory() const {
11794   return ASTRecordLayouts.getMemorySize() +
11795          llvm::capacity_in_bytes(ObjCLayouts) +
11796          llvm::capacity_in_bytes(KeyFunctions) +
11797          llvm::capacity_in_bytes(ObjCImpls) +
11798          llvm::capacity_in_bytes(BlockVarCopyInits) +
11799          llvm::capacity_in_bytes(DeclAttrs) +
11800          llvm::capacity_in_bytes(TemplateOrInstantiation) +
11801          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
11802          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
11803          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
11804          llvm::capacity_in_bytes(OverriddenMethods) +
11805          llvm::capacity_in_bytes(Types) +
11806          llvm::capacity_in_bytes(VariableArrayTypes);
11807 }
11808 
11809 /// getIntTypeForBitwidth -
11810 /// sets integer QualTy according to specified details:
11811 /// bitwidth, signed/unsigned.
11812 /// Returns empty type if there is no appropriate target types.
11813 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
11814                                            unsigned Signed) const {
11815   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
11816   CanQualType QualTy = getFromTargetType(Ty);
11817   if (!QualTy && DestWidth == 128)
11818     return Signed ? Int128Ty : UnsignedInt128Ty;
11819   return QualTy;
11820 }
11821 
11822 /// getRealTypeForBitwidth -
11823 /// sets floating point QualTy according to specified bitwidth.
11824 /// Returns empty type if there is no appropriate target types.
11825 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
11826                                             FloatModeKind ExplicitType) const {
11827   FloatModeKind Ty =
11828       getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitType);
11829   switch (Ty) {
11830   case FloatModeKind::Half:
11831     return HalfTy;
11832   case FloatModeKind::Float:
11833     return FloatTy;
11834   case FloatModeKind::Double:
11835     return DoubleTy;
11836   case FloatModeKind::LongDouble:
11837     return LongDoubleTy;
11838   case FloatModeKind::Float128:
11839     return Float128Ty;
11840   case FloatModeKind::Ibm128:
11841     return Ibm128Ty;
11842   case FloatModeKind::NoFloat:
11843     return {};
11844   }
11845 
11846   llvm_unreachable("Unhandled TargetInfo::RealType value");
11847 }
11848 
11849 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
11850   if (Number > 1)
11851     MangleNumbers[ND] = Number;
11852 }
11853 
11854 unsigned ASTContext::getManglingNumber(const NamedDecl *ND,
11855                                        bool ForAuxTarget) const {
11856   auto I = MangleNumbers.find(ND);
11857   unsigned Res = I != MangleNumbers.end() ? I->second : 1;
11858   // CUDA/HIP host compilation encodes host and device mangling numbers
11859   // as lower and upper half of 32 bit integer.
11860   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice) {
11861     Res = ForAuxTarget ? Res >> 16 : Res & 0xFFFF;
11862   } else {
11863     assert(!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling "
11864                             "number for aux target");
11865   }
11866   return Res > 1 ? Res : 1;
11867 }
11868 
11869 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
11870   if (Number > 1)
11871     StaticLocalNumbers[VD] = Number;
11872 }
11873 
11874 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
11875   auto I = StaticLocalNumbers.find(VD);
11876   return I != StaticLocalNumbers.end() ? I->second : 1;
11877 }
11878 
11879 MangleNumberingContext &
11880 ASTContext::getManglingNumberContext(const DeclContext *DC) {
11881   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
11882   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
11883   if (!MCtx)
11884     MCtx = createMangleNumberingContext();
11885   return *MCtx;
11886 }
11887 
11888 MangleNumberingContext &
11889 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
11890   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
11891   std::unique_ptr<MangleNumberingContext> &MCtx =
11892       ExtraMangleNumberingContexts[D];
11893   if (!MCtx)
11894     MCtx = createMangleNumberingContext();
11895   return *MCtx;
11896 }
11897 
11898 std::unique_ptr<MangleNumberingContext>
11899 ASTContext::createMangleNumberingContext() const {
11900   return ABI->createMangleNumberingContext();
11901 }
11902 
11903 const CXXConstructorDecl *
11904 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
11905   return ABI->getCopyConstructorForExceptionObject(
11906       cast<CXXRecordDecl>(RD->getFirstDecl()));
11907 }
11908 
11909 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
11910                                                       CXXConstructorDecl *CD) {
11911   return ABI->addCopyConstructorForExceptionObject(
11912       cast<CXXRecordDecl>(RD->getFirstDecl()),
11913       cast<CXXConstructorDecl>(CD->getFirstDecl()));
11914 }
11915 
11916 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
11917                                                  TypedefNameDecl *DD) {
11918   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
11919 }
11920 
11921 TypedefNameDecl *
11922 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
11923   return ABI->getTypedefNameForUnnamedTagDecl(TD);
11924 }
11925 
11926 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
11927                                                 DeclaratorDecl *DD) {
11928   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
11929 }
11930 
11931 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
11932   return ABI->getDeclaratorForUnnamedTagDecl(TD);
11933 }
11934 
11935 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
11936   ParamIndices[D] = index;
11937 }
11938 
11939 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
11940   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
11941   assert(I != ParamIndices.end() &&
11942          "ParmIndices lacks entry set by ParmVarDecl");
11943   return I->second;
11944 }
11945 
11946 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
11947                                                unsigned Length) const {
11948   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
11949   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
11950     EltTy = EltTy.withConst();
11951 
11952   EltTy = adjustStringLiteralBaseType(EltTy);
11953 
11954   // Get an array type for the string, according to C99 6.4.5. This includes
11955   // the null terminator character.
11956   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
11957                               ArrayType::Normal, /*IndexTypeQuals*/ 0);
11958 }
11959 
11960 StringLiteral *
11961 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
11962   StringLiteral *&Result = StringLiteralCache[Key];
11963   if (!Result)
11964     Result = StringLiteral::Create(
11965         *this, Key, StringLiteral::Ordinary,
11966         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
11967         SourceLocation());
11968   return Result;
11969 }
11970 
11971 MSGuidDecl *
11972 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
11973   assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
11974 
11975   llvm::FoldingSetNodeID ID;
11976   MSGuidDecl::Profile(ID, Parts);
11977 
11978   void *InsertPos;
11979   if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
11980     return Existing;
11981 
11982   QualType GUIDType = getMSGuidType().withConst();
11983   MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
11984   MSGuidDecls.InsertNode(New, InsertPos);
11985   return New;
11986 }
11987 
11988 UnnamedGlobalConstantDecl *
11989 ASTContext::getUnnamedGlobalConstantDecl(QualType Ty,
11990                                          const APValue &APVal) const {
11991   llvm::FoldingSetNodeID ID;
11992   UnnamedGlobalConstantDecl::Profile(ID, Ty, APVal);
11993 
11994   void *InsertPos;
11995   if (UnnamedGlobalConstantDecl *Existing =
11996           UnnamedGlobalConstantDecls.FindNodeOrInsertPos(ID, InsertPos))
11997     return Existing;
11998 
11999   UnnamedGlobalConstantDecl *New =
12000       UnnamedGlobalConstantDecl::Create(*this, Ty, APVal);
12001   UnnamedGlobalConstantDecls.InsertNode(New, InsertPos);
12002   return New;
12003 }
12004 
12005 TemplateParamObjectDecl *
12006 ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
12007   assert(T->isRecordType() && "template param object of unexpected type");
12008 
12009   // C++ [temp.param]p8:
12010   //   [...] a static storage duration object of type 'const T' [...]
12011   T.addConst();
12012 
12013   llvm::FoldingSetNodeID ID;
12014   TemplateParamObjectDecl::Profile(ID, T, V);
12015 
12016   void *InsertPos;
12017   if (TemplateParamObjectDecl *Existing =
12018           TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
12019     return Existing;
12020 
12021   TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
12022   TemplateParamObjectDecls.InsertNode(New, InsertPos);
12023   return New;
12024 }
12025 
12026 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
12027   const llvm::Triple &T = getTargetInfo().getTriple();
12028   if (!T.isOSDarwin())
12029     return false;
12030 
12031   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
12032       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
12033     return false;
12034 
12035   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
12036   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
12037   uint64_t Size = sizeChars.getQuantity();
12038   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
12039   unsigned Align = alignChars.getQuantity();
12040   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
12041   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
12042 }
12043 
12044 bool
12045 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
12046                                 const ObjCMethodDecl *MethodImpl) {
12047   // No point trying to match an unavailable/deprecated mothod.
12048   if (MethodDecl->hasAttr<UnavailableAttr>()
12049       || MethodDecl->hasAttr<DeprecatedAttr>())
12050     return false;
12051   if (MethodDecl->getObjCDeclQualifier() !=
12052       MethodImpl->getObjCDeclQualifier())
12053     return false;
12054   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
12055     return false;
12056 
12057   if (MethodDecl->param_size() != MethodImpl->param_size())
12058     return false;
12059 
12060   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
12061        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
12062        EF = MethodDecl->param_end();
12063        IM != EM && IF != EF; ++IM, ++IF) {
12064     const ParmVarDecl *DeclVar = (*IF);
12065     const ParmVarDecl *ImplVar = (*IM);
12066     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
12067       return false;
12068     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
12069       return false;
12070   }
12071 
12072   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
12073 }
12074 
12075 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
12076   LangAS AS;
12077   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
12078     AS = LangAS::Default;
12079   else
12080     AS = QT->getPointeeType().getAddressSpace();
12081 
12082   return getTargetInfo().getNullPointerValue(AS);
12083 }
12084 
12085 unsigned ASTContext::getTargetAddressSpace(QualType T) const {
12086   // Return the address space for the type. If the type is a
12087   // function type without an address space qualifier, the
12088   // program address space is used. Otherwise, the target picks
12089   // the best address space based on the type information
12090   return T->isFunctionType() && !T.hasAddressSpace()
12091              ? getTargetInfo().getProgramAddressSpace()
12092              : getTargetAddressSpace(T.getQualifiers());
12093 }
12094 
12095 unsigned ASTContext::getTargetAddressSpace(Qualifiers Q) const {
12096   return getTargetAddressSpace(Q.getAddressSpace());
12097 }
12098 
12099 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
12100   if (isTargetAddressSpace(AS))
12101     return toTargetAddressSpace(AS);
12102   else
12103     return (*AddrSpaceMap)[(unsigned)AS];
12104 }
12105 
12106 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
12107   assert(Ty->isFixedPointType());
12108 
12109   if (Ty->isSaturatedFixedPointType()) return Ty;
12110 
12111   switch (Ty->castAs<BuiltinType>()->getKind()) {
12112     default:
12113       llvm_unreachable("Not a fixed point type!");
12114     case BuiltinType::ShortAccum:
12115       return SatShortAccumTy;
12116     case BuiltinType::Accum:
12117       return SatAccumTy;
12118     case BuiltinType::LongAccum:
12119       return SatLongAccumTy;
12120     case BuiltinType::UShortAccum:
12121       return SatUnsignedShortAccumTy;
12122     case BuiltinType::UAccum:
12123       return SatUnsignedAccumTy;
12124     case BuiltinType::ULongAccum:
12125       return SatUnsignedLongAccumTy;
12126     case BuiltinType::ShortFract:
12127       return SatShortFractTy;
12128     case BuiltinType::Fract:
12129       return SatFractTy;
12130     case BuiltinType::LongFract:
12131       return SatLongFractTy;
12132     case BuiltinType::UShortFract:
12133       return SatUnsignedShortFractTy;
12134     case BuiltinType::UFract:
12135       return SatUnsignedFractTy;
12136     case BuiltinType::ULongFract:
12137       return SatUnsignedLongFractTy;
12138   }
12139 }
12140 
12141 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
12142   if (LangOpts.OpenCL)
12143     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
12144 
12145   if (LangOpts.CUDA)
12146     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
12147 
12148   return getLangASFromTargetAS(AS);
12149 }
12150 
12151 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
12152 // doesn't include ASTContext.h
12153 template
12154 clang::LazyGenerationalUpdatePtr<
12155     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
12156 clang::LazyGenerationalUpdatePtr<
12157     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
12158         const clang::ASTContext &Ctx, Decl *Value);
12159 
12160 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
12161   assert(Ty->isFixedPointType());
12162 
12163   const TargetInfo &Target = getTargetInfo();
12164   switch (Ty->castAs<BuiltinType>()->getKind()) {
12165     default:
12166       llvm_unreachable("Not a fixed point type!");
12167     case BuiltinType::ShortAccum:
12168     case BuiltinType::SatShortAccum:
12169       return Target.getShortAccumScale();
12170     case BuiltinType::Accum:
12171     case BuiltinType::SatAccum:
12172       return Target.getAccumScale();
12173     case BuiltinType::LongAccum:
12174     case BuiltinType::SatLongAccum:
12175       return Target.getLongAccumScale();
12176     case BuiltinType::UShortAccum:
12177     case BuiltinType::SatUShortAccum:
12178       return Target.getUnsignedShortAccumScale();
12179     case BuiltinType::UAccum:
12180     case BuiltinType::SatUAccum:
12181       return Target.getUnsignedAccumScale();
12182     case BuiltinType::ULongAccum:
12183     case BuiltinType::SatULongAccum:
12184       return Target.getUnsignedLongAccumScale();
12185     case BuiltinType::ShortFract:
12186     case BuiltinType::SatShortFract:
12187       return Target.getShortFractScale();
12188     case BuiltinType::Fract:
12189     case BuiltinType::SatFract:
12190       return Target.getFractScale();
12191     case BuiltinType::LongFract:
12192     case BuiltinType::SatLongFract:
12193       return Target.getLongFractScale();
12194     case BuiltinType::UShortFract:
12195     case BuiltinType::SatUShortFract:
12196       return Target.getUnsignedShortFractScale();
12197     case BuiltinType::UFract:
12198     case BuiltinType::SatUFract:
12199       return Target.getUnsignedFractScale();
12200     case BuiltinType::ULongFract:
12201     case BuiltinType::SatULongFract:
12202       return Target.getUnsignedLongFractScale();
12203   }
12204 }
12205 
12206 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
12207   assert(Ty->isFixedPointType());
12208 
12209   const TargetInfo &Target = getTargetInfo();
12210   switch (Ty->castAs<BuiltinType>()->getKind()) {
12211     default:
12212       llvm_unreachable("Not a fixed point type!");
12213     case BuiltinType::ShortAccum:
12214     case BuiltinType::SatShortAccum:
12215       return Target.getShortAccumIBits();
12216     case BuiltinType::Accum:
12217     case BuiltinType::SatAccum:
12218       return Target.getAccumIBits();
12219     case BuiltinType::LongAccum:
12220     case BuiltinType::SatLongAccum:
12221       return Target.getLongAccumIBits();
12222     case BuiltinType::UShortAccum:
12223     case BuiltinType::SatUShortAccum:
12224       return Target.getUnsignedShortAccumIBits();
12225     case BuiltinType::UAccum:
12226     case BuiltinType::SatUAccum:
12227       return Target.getUnsignedAccumIBits();
12228     case BuiltinType::ULongAccum:
12229     case BuiltinType::SatULongAccum:
12230       return Target.getUnsignedLongAccumIBits();
12231     case BuiltinType::ShortFract:
12232     case BuiltinType::SatShortFract:
12233     case BuiltinType::Fract:
12234     case BuiltinType::SatFract:
12235     case BuiltinType::LongFract:
12236     case BuiltinType::SatLongFract:
12237     case BuiltinType::UShortFract:
12238     case BuiltinType::SatUShortFract:
12239     case BuiltinType::UFract:
12240     case BuiltinType::SatUFract:
12241     case BuiltinType::ULongFract:
12242     case BuiltinType::SatULongFract:
12243       return 0;
12244   }
12245 }
12246 
12247 llvm::FixedPointSemantics
12248 ASTContext::getFixedPointSemantics(QualType Ty) const {
12249   assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
12250          "Can only get the fixed point semantics for a "
12251          "fixed point or integer type.");
12252   if (Ty->isIntegerType())
12253     return llvm::FixedPointSemantics::GetIntegerSemantics(
12254         getIntWidth(Ty), Ty->isSignedIntegerType());
12255 
12256   bool isSigned = Ty->isSignedFixedPointType();
12257   return llvm::FixedPointSemantics(
12258       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
12259       Ty->isSaturatedFixedPointType(),
12260       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
12261 }
12262 
12263 llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
12264   assert(Ty->isFixedPointType());
12265   return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
12266 }
12267 
12268 llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
12269   assert(Ty->isFixedPointType());
12270   return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
12271 }
12272 
12273 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
12274   assert(Ty->isUnsignedFixedPointType() &&
12275          "Expected unsigned fixed point type");
12276 
12277   switch (Ty->castAs<BuiltinType>()->getKind()) {
12278   case BuiltinType::UShortAccum:
12279     return ShortAccumTy;
12280   case BuiltinType::UAccum:
12281     return AccumTy;
12282   case BuiltinType::ULongAccum:
12283     return LongAccumTy;
12284   case BuiltinType::SatUShortAccum:
12285     return SatShortAccumTy;
12286   case BuiltinType::SatUAccum:
12287     return SatAccumTy;
12288   case BuiltinType::SatULongAccum:
12289     return SatLongAccumTy;
12290   case BuiltinType::UShortFract:
12291     return ShortFractTy;
12292   case BuiltinType::UFract:
12293     return FractTy;
12294   case BuiltinType::ULongFract:
12295     return LongFractTy;
12296   case BuiltinType::SatUShortFract:
12297     return SatShortFractTy;
12298   case BuiltinType::SatUFract:
12299     return SatFractTy;
12300   case BuiltinType::SatULongFract:
12301     return SatLongFractTy;
12302   default:
12303     llvm_unreachable("Unexpected unsigned fixed point type");
12304   }
12305 }
12306 
12307 ParsedTargetAttr
12308 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
12309   assert(TD != nullptr);
12310   ParsedTargetAttr ParsedAttr = TD->parse();
12311 
12312   llvm::erase_if(ParsedAttr.Features, [&](const std::string &Feat) {
12313     return !Target->isValidFeatureName(StringRef{Feat}.substr(1));
12314   });
12315   return ParsedAttr;
12316 }
12317 
12318 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
12319                                        const FunctionDecl *FD) const {
12320   if (FD)
12321     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
12322   else
12323     Target->initFeatureMap(FeatureMap, getDiagnostics(),
12324                            Target->getTargetOpts().CPU,
12325                            Target->getTargetOpts().Features);
12326 }
12327 
12328 // Fills in the supplied string map with the set of target features for the
12329 // passed in function.
12330 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
12331                                        GlobalDecl GD) const {
12332   StringRef TargetCPU = Target->getTargetOpts().CPU;
12333   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
12334   if (const auto *TD = FD->getAttr<TargetAttr>()) {
12335     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
12336 
12337     // Make a copy of the features as passed on the command line into the
12338     // beginning of the additional features from the function to override.
12339     ParsedAttr.Features.insert(
12340         ParsedAttr.Features.begin(),
12341         Target->getTargetOpts().FeaturesAsWritten.begin(),
12342         Target->getTargetOpts().FeaturesAsWritten.end());
12343 
12344     if (ParsedAttr.Architecture != "" &&
12345         Target->isValidCPUName(ParsedAttr.Architecture))
12346       TargetCPU = ParsedAttr.Architecture;
12347 
12348     // Now populate the feature map, first with the TargetCPU which is either
12349     // the default or a new one from the target attribute string. Then we'll use
12350     // the passed in features (FeaturesAsWritten) along with the new ones from
12351     // the attribute.
12352     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
12353                            ParsedAttr.Features);
12354   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
12355     llvm::SmallVector<StringRef, 32> FeaturesTmp;
12356     Target->getCPUSpecificCPUDispatchFeatures(
12357         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
12358     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
12359     Features.insert(Features.begin(),
12360                     Target->getTargetOpts().FeaturesAsWritten.begin(),
12361                     Target->getTargetOpts().FeaturesAsWritten.end());
12362     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
12363   } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) {
12364     std::vector<std::string> Features;
12365     StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex());
12366     if (VersionStr.startswith("arch="))
12367       TargetCPU = VersionStr.drop_front(sizeof("arch=") - 1);
12368     else if (VersionStr != "default")
12369       Features.push_back((StringRef{"+"} + VersionStr).str());
12370 
12371     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
12372   } else {
12373     FeatureMap = Target->getTargetOpts().FeatureMap;
12374   }
12375 }
12376 
12377 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
12378   OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
12379   return *OMPTraitInfoVector.back();
12380 }
12381 
12382 const StreamingDiagnostic &clang::
12383 operator<<(const StreamingDiagnostic &DB,
12384            const ASTContext::SectionInfo &Section) {
12385   if (Section.Decl)
12386     return DB << Section.Decl;
12387   return DB << "a prior #pragma section";
12388 }
12389 
12390 bool ASTContext::mayExternalize(const Decl *D) const {
12391   bool IsStaticVar =
12392       isa<VarDecl>(D) && cast<VarDecl>(D)->getStorageClass() == SC_Static;
12393   bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() &&
12394                               !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
12395                              (D->hasAttr<CUDAConstantAttr>() &&
12396                               !D->getAttr<CUDAConstantAttr>()->isImplicit());
12397   // CUDA/HIP: static managed variables need to be externalized since it is
12398   // a declaration in IR, therefore cannot have internal linkage. Kernels in
12399   // anonymous name space needs to be externalized to avoid duplicate symbols.
12400   return (IsStaticVar &&
12401           (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) ||
12402          (D->hasAttr<CUDAGlobalAttr>() &&
12403           basicGVALinkageForFunction(*this, cast<FunctionDecl>(D)) ==
12404               GVA_Internal);
12405 }
12406 
12407 bool ASTContext::shouldExternalize(const Decl *D) const {
12408   return mayExternalize(D) &&
12409          (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() ||
12410           CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D)));
12411 }
12412 
12413 StringRef ASTContext::getCUIDHash() const {
12414   if (!CUIDHash.empty())
12415     return CUIDHash;
12416   if (LangOpts.CUID.empty())
12417     return StringRef();
12418   CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true);
12419   return CUIDHash;
12420 }
12421