1 //===--- APValue.cpp - Union class for APFloat/APSInt/Complex -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the APValue class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/APValue.h" 14 #include "Linkage.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/CharUnits.h" 17 #include "clang/AST/DeclCXX.h" 18 #include "clang/AST/Expr.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/Type.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/raw_ostream.h" 23 using namespace clang; 24 25 /// The identity of a type_info object depends on the canonical unqualified 26 /// type only. 27 TypeInfoLValue::TypeInfoLValue(const Type *T) 28 : T(T->getCanonicalTypeUnqualified().getTypePtr()) {} 29 30 void TypeInfoLValue::print(llvm::raw_ostream &Out, 31 const PrintingPolicy &Policy) const { 32 Out << "typeid("; 33 QualType(getType(), 0).print(Out, Policy); 34 Out << ")"; 35 } 36 37 static_assert( 38 1 << llvm::PointerLikeTypeTraits<TypeInfoLValue>::NumLowBitsAvailable <= 39 alignof(Type), 40 "Type is insufficiently aligned"); 41 42 APValue::LValueBase::LValueBase(const ValueDecl *P, unsigned I, unsigned V) 43 : Ptr(P ? cast<ValueDecl>(P->getCanonicalDecl()) : nullptr), Local{I, V} {} 44 APValue::LValueBase::LValueBase(const Expr *P, unsigned I, unsigned V) 45 : Ptr(P), Local{I, V} {} 46 47 APValue::LValueBase APValue::LValueBase::getDynamicAlloc(DynamicAllocLValue LV, 48 QualType Type) { 49 LValueBase Base; 50 Base.Ptr = LV; 51 Base.DynamicAllocType = Type.getAsOpaquePtr(); 52 return Base; 53 } 54 55 APValue::LValueBase APValue::LValueBase::getTypeInfo(TypeInfoLValue LV, 56 QualType TypeInfo) { 57 LValueBase Base; 58 Base.Ptr = LV; 59 Base.TypeInfoType = TypeInfo.getAsOpaquePtr(); 60 return Base; 61 } 62 63 QualType APValue::LValueBase::getType() const { 64 if (!*this) return QualType(); 65 if (const ValueDecl *D = dyn_cast<const ValueDecl*>()) { 66 // FIXME: It's unclear where we're supposed to take the type from, and 67 // this actually matters for arrays of unknown bound. Eg: 68 // 69 // extern int arr[]; void f() { extern int arr[3]; }; 70 // constexpr int *p = &arr[1]; // valid? 71 // 72 // For now, we take the most complete type we can find. 73 for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl; 74 Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) { 75 QualType T = Redecl->getType(); 76 if (!T->isIncompleteArrayType()) 77 return T; 78 } 79 return D->getType(); 80 } 81 82 if (is<TypeInfoLValue>()) 83 return getTypeInfoType(); 84 85 if (is<DynamicAllocLValue>()) 86 return getDynamicAllocType(); 87 88 const Expr *Base = get<const Expr*>(); 89 90 // For a materialized temporary, the type of the temporary we materialized 91 // may not be the type of the expression. 92 if (const MaterializeTemporaryExpr *MTE = 93 clang::dyn_cast<MaterializeTemporaryExpr>(Base)) { 94 SmallVector<const Expr *, 2> CommaLHSs; 95 SmallVector<SubobjectAdjustment, 2> Adjustments; 96 const Expr *Temp = MTE->getSubExpr(); 97 const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs, 98 Adjustments); 99 // Keep any cv-qualifiers from the reference if we generated a temporary 100 // for it directly. Otherwise use the type after adjustment. 101 if (!Adjustments.empty()) 102 return Inner->getType(); 103 } 104 105 return Base->getType(); 106 } 107 108 unsigned APValue::LValueBase::getCallIndex() const { 109 return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0 110 : Local.CallIndex; 111 } 112 113 unsigned APValue::LValueBase::getVersion() const { 114 return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0 : Local.Version; 115 } 116 117 QualType APValue::LValueBase::getTypeInfoType() const { 118 assert(is<TypeInfoLValue>() && "not a type_info lvalue"); 119 return QualType::getFromOpaquePtr(TypeInfoType); 120 } 121 122 QualType APValue::LValueBase::getDynamicAllocType() const { 123 assert(is<DynamicAllocLValue>() && "not a dynamic allocation lvalue"); 124 return QualType::getFromOpaquePtr(DynamicAllocType); 125 } 126 127 void APValue::LValueBase::Profile(llvm::FoldingSetNodeID &ID) const { 128 ID.AddPointer(Ptr.getOpaqueValue()); 129 if (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) 130 return; 131 ID.AddInteger(Local.CallIndex); 132 ID.AddInteger(Local.Version); 133 } 134 135 namespace clang { 136 bool operator==(const APValue::LValueBase &LHS, 137 const APValue::LValueBase &RHS) { 138 if (LHS.Ptr != RHS.Ptr) 139 return false; 140 if (LHS.is<TypeInfoLValue>() || LHS.is<DynamicAllocLValue>()) 141 return true; 142 return LHS.Local.CallIndex == RHS.Local.CallIndex && 143 LHS.Local.Version == RHS.Local.Version; 144 } 145 } 146 147 APValue::LValuePathEntry::LValuePathEntry(BaseOrMemberType BaseOrMember) { 148 if (const Decl *D = BaseOrMember.getPointer()) 149 BaseOrMember.setPointer(D->getCanonicalDecl()); 150 Value = reinterpret_cast<uintptr_t>(BaseOrMember.getOpaqueValue()); 151 } 152 153 void APValue::LValuePathEntry::Profile(llvm::FoldingSetNodeID &ID) const { 154 ID.AddInteger(Value); 155 } 156 157 APValue::LValuePathSerializationHelper::LValuePathSerializationHelper( 158 ArrayRef<LValuePathEntry> Path, QualType ElemTy) 159 : ElemTy((const void *)ElemTy.getTypePtrOrNull()), Path(Path) {} 160 161 QualType APValue::LValuePathSerializationHelper::getType() { 162 return QualType::getFromOpaquePtr(ElemTy); 163 } 164 165 namespace { 166 struct LVBase { 167 APValue::LValueBase Base; 168 CharUnits Offset; 169 unsigned PathLength; 170 bool IsNullPtr : 1; 171 bool IsOnePastTheEnd : 1; 172 }; 173 } 174 175 void *APValue::LValueBase::getOpaqueValue() const { 176 return Ptr.getOpaqueValue(); 177 } 178 179 bool APValue::LValueBase::isNull() const { 180 return Ptr.isNull(); 181 } 182 183 APValue::LValueBase::operator bool () const { 184 return static_cast<bool>(Ptr); 185 } 186 187 clang::APValue::LValueBase 188 llvm::DenseMapInfo<clang::APValue::LValueBase>::getEmptyKey() { 189 clang::APValue::LValueBase B; 190 B.Ptr = DenseMapInfo<const ValueDecl*>::getEmptyKey(); 191 return B; 192 } 193 194 clang::APValue::LValueBase 195 llvm::DenseMapInfo<clang::APValue::LValueBase>::getTombstoneKey() { 196 clang::APValue::LValueBase B; 197 B.Ptr = DenseMapInfo<const ValueDecl*>::getTombstoneKey(); 198 return B; 199 } 200 201 namespace clang { 202 llvm::hash_code hash_value(const APValue::LValueBase &Base) { 203 if (Base.is<TypeInfoLValue>() || Base.is<DynamicAllocLValue>()) 204 return llvm::hash_value(Base.getOpaqueValue()); 205 return llvm::hash_combine(Base.getOpaqueValue(), Base.getCallIndex(), 206 Base.getVersion()); 207 } 208 } 209 210 unsigned llvm::DenseMapInfo<clang::APValue::LValueBase>::getHashValue( 211 const clang::APValue::LValueBase &Base) { 212 return hash_value(Base); 213 } 214 215 bool llvm::DenseMapInfo<clang::APValue::LValueBase>::isEqual( 216 const clang::APValue::LValueBase &LHS, 217 const clang::APValue::LValueBase &RHS) { 218 return LHS == RHS; 219 } 220 221 struct APValue::LV : LVBase { 222 static const unsigned InlinePathSpace = 223 (DataSize - sizeof(LVBase)) / sizeof(LValuePathEntry); 224 225 /// Path - The sequence of base classes, fields and array indices to follow to 226 /// walk from Base to the subobject. When performing GCC-style folding, there 227 /// may not be such a path. 228 union { 229 LValuePathEntry Path[InlinePathSpace]; 230 LValuePathEntry *PathPtr; 231 }; 232 233 LV() { PathLength = (unsigned)-1; } 234 ~LV() { resizePath(0); } 235 236 void resizePath(unsigned Length) { 237 if (Length == PathLength) 238 return; 239 if (hasPathPtr()) 240 delete [] PathPtr; 241 PathLength = Length; 242 if (hasPathPtr()) 243 PathPtr = new LValuePathEntry[Length]; 244 } 245 246 bool hasPath() const { return PathLength != (unsigned)-1; } 247 bool hasPathPtr() const { return hasPath() && PathLength > InlinePathSpace; } 248 249 LValuePathEntry *getPath() { return hasPathPtr() ? PathPtr : Path; } 250 const LValuePathEntry *getPath() const { 251 return hasPathPtr() ? PathPtr : Path; 252 } 253 }; 254 255 namespace { 256 struct MemberPointerBase { 257 llvm::PointerIntPair<const ValueDecl*, 1, bool> MemberAndIsDerivedMember; 258 unsigned PathLength; 259 }; 260 } 261 262 struct APValue::MemberPointerData : MemberPointerBase { 263 static const unsigned InlinePathSpace = 264 (DataSize - sizeof(MemberPointerBase)) / sizeof(const CXXRecordDecl*); 265 typedef const CXXRecordDecl *PathElem; 266 union { 267 PathElem Path[InlinePathSpace]; 268 PathElem *PathPtr; 269 }; 270 271 MemberPointerData() { PathLength = 0; } 272 ~MemberPointerData() { resizePath(0); } 273 274 void resizePath(unsigned Length) { 275 if (Length == PathLength) 276 return; 277 if (hasPathPtr()) 278 delete [] PathPtr; 279 PathLength = Length; 280 if (hasPathPtr()) 281 PathPtr = new PathElem[Length]; 282 } 283 284 bool hasPathPtr() const { return PathLength > InlinePathSpace; } 285 286 PathElem *getPath() { return hasPathPtr() ? PathPtr : Path; } 287 const PathElem *getPath() const { 288 return hasPathPtr() ? PathPtr : Path; 289 } 290 }; 291 292 // FIXME: Reduce the malloc traffic here. 293 294 APValue::Arr::Arr(unsigned NumElts, unsigned Size) : 295 Elts(new APValue[NumElts + (NumElts != Size ? 1 : 0)]), 296 NumElts(NumElts), ArrSize(Size) {} 297 APValue::Arr::~Arr() { delete [] Elts; } 298 299 APValue::StructData::StructData(unsigned NumBases, unsigned NumFields) : 300 Elts(new APValue[NumBases+NumFields]), 301 NumBases(NumBases), NumFields(NumFields) {} 302 APValue::StructData::~StructData() { 303 delete [] Elts; 304 } 305 306 APValue::UnionData::UnionData() : Field(nullptr), Value(new APValue) {} 307 APValue::UnionData::~UnionData () { 308 delete Value; 309 } 310 311 APValue::APValue(const APValue &RHS) : Kind(None) { 312 switch (RHS.getKind()) { 313 case None: 314 case Indeterminate: 315 Kind = RHS.getKind(); 316 break; 317 case Int: 318 MakeInt(); 319 setInt(RHS.getInt()); 320 break; 321 case Float: 322 MakeFloat(); 323 setFloat(RHS.getFloat()); 324 break; 325 case FixedPoint: { 326 APFixedPoint FXCopy = RHS.getFixedPoint(); 327 MakeFixedPoint(std::move(FXCopy)); 328 break; 329 } 330 case Vector: 331 MakeVector(); 332 setVector(((const Vec *)(const char *)&RHS.Data)->Elts, 333 RHS.getVectorLength()); 334 break; 335 case ComplexInt: 336 MakeComplexInt(); 337 setComplexInt(RHS.getComplexIntReal(), RHS.getComplexIntImag()); 338 break; 339 case ComplexFloat: 340 MakeComplexFloat(); 341 setComplexFloat(RHS.getComplexFloatReal(), RHS.getComplexFloatImag()); 342 break; 343 case LValue: 344 MakeLValue(); 345 if (RHS.hasLValuePath()) 346 setLValue(RHS.getLValueBase(), RHS.getLValueOffset(), RHS.getLValuePath(), 347 RHS.isLValueOnePastTheEnd(), RHS.isNullPointer()); 348 else 349 setLValue(RHS.getLValueBase(), RHS.getLValueOffset(), NoLValuePath(), 350 RHS.isNullPointer()); 351 break; 352 case Array: 353 MakeArray(RHS.getArrayInitializedElts(), RHS.getArraySize()); 354 for (unsigned I = 0, N = RHS.getArrayInitializedElts(); I != N; ++I) 355 getArrayInitializedElt(I) = RHS.getArrayInitializedElt(I); 356 if (RHS.hasArrayFiller()) 357 getArrayFiller() = RHS.getArrayFiller(); 358 break; 359 case Struct: 360 MakeStruct(RHS.getStructNumBases(), RHS.getStructNumFields()); 361 for (unsigned I = 0, N = RHS.getStructNumBases(); I != N; ++I) 362 getStructBase(I) = RHS.getStructBase(I); 363 for (unsigned I = 0, N = RHS.getStructNumFields(); I != N; ++I) 364 getStructField(I) = RHS.getStructField(I); 365 break; 366 case Union: 367 MakeUnion(); 368 setUnion(RHS.getUnionField(), RHS.getUnionValue()); 369 break; 370 case MemberPointer: 371 MakeMemberPointer(RHS.getMemberPointerDecl(), 372 RHS.isMemberPointerToDerivedMember(), 373 RHS.getMemberPointerPath()); 374 break; 375 case AddrLabelDiff: 376 MakeAddrLabelDiff(); 377 setAddrLabelDiff(RHS.getAddrLabelDiffLHS(), RHS.getAddrLabelDiffRHS()); 378 break; 379 } 380 } 381 382 APValue::APValue(APValue &&RHS) : Kind(RHS.Kind), Data(RHS.Data) { 383 RHS.Kind = None; 384 } 385 386 APValue &APValue::operator=(const APValue &RHS) { 387 if (this != &RHS) 388 *this = APValue(RHS); 389 return *this; 390 } 391 392 APValue &APValue::operator=(APValue &&RHS) { 393 if (Kind != None && Kind != Indeterminate) 394 DestroyDataAndMakeUninit(); 395 Kind = RHS.Kind; 396 Data = RHS.Data; 397 RHS.Kind = None; 398 return *this; 399 } 400 401 void APValue::DestroyDataAndMakeUninit() { 402 if (Kind == Int) 403 ((APSInt *)(char *)&Data)->~APSInt(); 404 else if (Kind == Float) 405 ((APFloat *)(char *)&Data)->~APFloat(); 406 else if (Kind == FixedPoint) 407 ((APFixedPoint *)(char *)&Data)->~APFixedPoint(); 408 else if (Kind == Vector) 409 ((Vec *)(char *)&Data)->~Vec(); 410 else if (Kind == ComplexInt) 411 ((ComplexAPSInt *)(char *)&Data)->~ComplexAPSInt(); 412 else if (Kind == ComplexFloat) 413 ((ComplexAPFloat *)(char *)&Data)->~ComplexAPFloat(); 414 else if (Kind == LValue) 415 ((LV *)(char *)&Data)->~LV(); 416 else if (Kind == Array) 417 ((Arr *)(char *)&Data)->~Arr(); 418 else if (Kind == Struct) 419 ((StructData *)(char *)&Data)->~StructData(); 420 else if (Kind == Union) 421 ((UnionData *)(char *)&Data)->~UnionData(); 422 else if (Kind == MemberPointer) 423 ((MemberPointerData *)(char *)&Data)->~MemberPointerData(); 424 else if (Kind == AddrLabelDiff) 425 ((AddrLabelDiffData *)(char *)&Data)->~AddrLabelDiffData(); 426 Kind = None; 427 } 428 429 bool APValue::needsCleanup() const { 430 switch (getKind()) { 431 case None: 432 case Indeterminate: 433 case AddrLabelDiff: 434 return false; 435 case Struct: 436 case Union: 437 case Array: 438 case Vector: 439 return true; 440 case Int: 441 return getInt().needsCleanup(); 442 case Float: 443 return getFloat().needsCleanup(); 444 case FixedPoint: 445 return getFixedPoint().getValue().needsCleanup(); 446 case ComplexFloat: 447 assert(getComplexFloatImag().needsCleanup() == 448 getComplexFloatReal().needsCleanup() && 449 "In _Complex float types, real and imaginary values always have the " 450 "same size."); 451 return getComplexFloatReal().needsCleanup(); 452 case ComplexInt: 453 assert(getComplexIntImag().needsCleanup() == 454 getComplexIntReal().needsCleanup() && 455 "In _Complex int types, real and imaginary values must have the " 456 "same size."); 457 return getComplexIntReal().needsCleanup(); 458 case LValue: 459 return reinterpret_cast<const LV *>(&Data)->hasPathPtr(); 460 case MemberPointer: 461 return reinterpret_cast<const MemberPointerData *>(&Data)->hasPathPtr(); 462 } 463 llvm_unreachable("Unknown APValue kind!"); 464 } 465 466 void APValue::swap(APValue &RHS) { 467 std::swap(Kind, RHS.Kind); 468 std::swap(Data, RHS.Data); 469 } 470 471 /// Profile the value of an APInt, excluding its bit-width. 472 static void profileIntValue(llvm::FoldingSetNodeID &ID, const llvm::APInt &V) { 473 for (unsigned I = 0, N = V.getBitWidth(); I < N; I += 32) 474 ID.AddInteger((uint32_t)V.extractBitsAsZExtValue(std::min(32u, N - I), I)); 475 } 476 477 void APValue::Profile(llvm::FoldingSetNodeID &ID) const { 478 // Note that our profiling assumes that only APValues of the same type are 479 // ever compared. As a result, we don't consider collisions that could only 480 // happen if the types are different. (For example, structs with different 481 // numbers of members could profile the same.) 482 483 ID.AddInteger(Kind); 484 485 switch (Kind) { 486 case None: 487 case Indeterminate: 488 return; 489 490 case AddrLabelDiff: 491 ID.AddPointer(getAddrLabelDiffLHS()->getLabel()->getCanonicalDecl()); 492 ID.AddPointer(getAddrLabelDiffRHS()->getLabel()->getCanonicalDecl()); 493 return; 494 495 case Struct: 496 for (unsigned I = 0, N = getStructNumBases(); I != N; ++I) 497 getStructBase(I).Profile(ID); 498 for (unsigned I = 0, N = getStructNumFields(); I != N; ++I) 499 getStructField(I).Profile(ID); 500 return; 501 502 case Union: 503 if (!getUnionField()) { 504 ID.AddInteger(0); 505 return; 506 } 507 ID.AddInteger(getUnionField()->getFieldIndex() + 1); 508 getUnionValue().Profile(ID); 509 return; 510 511 case Array: { 512 if (getArraySize() == 0) 513 return; 514 515 // The profile should not depend on whether the array is expanded or 516 // not, but we don't want to profile the array filler many times for 517 // a large array. So treat all equal trailing elements as the filler. 518 // Elements are profiled in reverse order to support this, and the 519 // first profiled element is followed by a count. For example: 520 // 521 // ['a', 'c', 'x', 'x', 'x'] is profiled as 522 // [5, 'x', 3, 'c', 'a'] 523 llvm::FoldingSetNodeID FillerID; 524 (hasArrayFiller() ? getArrayFiller() 525 : getArrayInitializedElt(getArrayInitializedElts() - 1)) 526 .Profile(FillerID); 527 ID.AddNodeID(FillerID); 528 unsigned NumFillers = getArraySize() - getArrayInitializedElts(); 529 unsigned N = getArrayInitializedElts(); 530 531 // Count the number of elements equal to the last one. This loop ends 532 // by adding an integer indicating the number of such elements, with 533 // N set to the number of elements left to profile. 534 while (true) { 535 if (N == 0) { 536 // All elements are fillers. 537 assert(NumFillers == getArraySize()); 538 ID.AddInteger(NumFillers); 539 break; 540 } 541 542 // No need to check if the last element is equal to the last 543 // element. 544 if (N != getArraySize()) { 545 llvm::FoldingSetNodeID ElemID; 546 getArrayInitializedElt(N - 1).Profile(ElemID); 547 if (ElemID != FillerID) { 548 ID.AddInteger(NumFillers); 549 ID.AddNodeID(ElemID); 550 --N; 551 break; 552 } 553 } 554 555 // This is a filler. 556 ++NumFillers; 557 --N; 558 } 559 560 // Emit the remaining elements. 561 for (; N != 0; --N) 562 getArrayInitializedElt(N - 1).Profile(ID); 563 return; 564 } 565 566 case Vector: 567 for (unsigned I = 0, N = getVectorLength(); I != N; ++I) 568 getVectorElt(I).Profile(ID); 569 return; 570 571 case Int: 572 profileIntValue(ID, getInt()); 573 return; 574 575 case Float: 576 profileIntValue(ID, getFloat().bitcastToAPInt()); 577 return; 578 579 case FixedPoint: 580 profileIntValue(ID, getFixedPoint().getValue()); 581 return; 582 583 case ComplexFloat: 584 profileIntValue(ID, getComplexFloatReal().bitcastToAPInt()); 585 profileIntValue(ID, getComplexFloatImag().bitcastToAPInt()); 586 return; 587 588 case ComplexInt: 589 profileIntValue(ID, getComplexIntReal()); 590 profileIntValue(ID, getComplexIntImag()); 591 return; 592 593 case LValue: 594 getLValueBase().Profile(ID); 595 ID.AddInteger(getLValueOffset().getQuantity()); 596 ID.AddInteger((isNullPointer() ? 1 : 0) | 597 (isLValueOnePastTheEnd() ? 2 : 0) | 598 (hasLValuePath() ? 4 : 0)); 599 if (hasLValuePath()) { 600 ID.AddInteger(getLValuePath().size()); 601 // For uniqueness, we only need to profile the entries corresponding 602 // to union members, but we don't have the type here so we don't know 603 // how to interpret the entries. 604 for (LValuePathEntry E : getLValuePath()) 605 E.Profile(ID); 606 } 607 return; 608 609 case MemberPointer: 610 ID.AddPointer(getMemberPointerDecl()); 611 ID.AddInteger(isMemberPointerToDerivedMember()); 612 for (const CXXRecordDecl *D : getMemberPointerPath()) 613 ID.AddPointer(D); 614 return; 615 } 616 617 llvm_unreachable("Unknown APValue kind!"); 618 } 619 620 static double GetApproxValue(const llvm::APFloat &F) { 621 llvm::APFloat V = F; 622 bool ignored; 623 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, 624 &ignored); 625 return V.convertToDouble(); 626 } 627 628 static bool TryPrintAsStringLiteral(raw_ostream &Out, 629 const PrintingPolicy &Policy, 630 const ArrayType *ATy, 631 ArrayRef<APValue> Inits) { 632 if (Inits.empty()) 633 return false; 634 635 QualType Ty = ATy->getElementType(); 636 if (!Ty->isAnyCharacterType()) 637 return false; 638 639 // Nothing we can do about a sequence that is not null-terminated 640 if (!Inits.back().isInt() || !Inits.back().getInt().isZero()) 641 return false; 642 643 Inits = Inits.drop_back(); 644 645 llvm::SmallString<40> Buf; 646 Buf.push_back('"'); 647 648 // Better than printing a two-digit sequence of 10 integers. 649 constexpr size_t MaxN = 36; 650 StringRef Ellipsis; 651 if (Inits.size() > MaxN && !Policy.EntireContentsOfLargeArray) { 652 Ellipsis = "[...]"; 653 Inits = 654 Inits.take_front(std::min(MaxN - Ellipsis.size() / 2, Inits.size())); 655 } 656 657 for (auto &Val : Inits) { 658 if (!Val.isInt()) 659 return false; 660 int64_t Char64 = Val.getInt().getExtValue(); 661 if (!isASCII(Char64)) 662 return false; // Bye bye, see you in integers. 663 auto Ch = static_cast<unsigned char>(Char64); 664 // The diagnostic message is 'quoted' 665 StringRef Escaped = escapeCStyle<EscapeChar::SingleAndDouble>(Ch); 666 if (Escaped.empty()) { 667 if (!isPrintable(Ch)) 668 return false; 669 Buf.emplace_back(Ch); 670 } else { 671 Buf.append(Escaped); 672 } 673 } 674 675 Buf.append(Ellipsis); 676 Buf.push_back('"'); 677 678 if (Ty->isWideCharType()) 679 Out << 'L'; 680 else if (Ty->isChar8Type()) 681 Out << "u8"; 682 else if (Ty->isChar16Type()) 683 Out << 'u'; 684 else if (Ty->isChar32Type()) 685 Out << 'U'; 686 687 Out << Buf; 688 return true; 689 } 690 691 void APValue::printPretty(raw_ostream &Out, const ASTContext &Ctx, 692 QualType Ty) const { 693 printPretty(Out, Ctx.getPrintingPolicy(), Ty, &Ctx); 694 } 695 696 void APValue::printPretty(raw_ostream &Out, const PrintingPolicy &Policy, 697 QualType Ty, const ASTContext *Ctx) const { 698 // There are no objects of type 'void', but values of this type can be 699 // returned from functions. 700 if (Ty->isVoidType()) { 701 Out << "void()"; 702 return; 703 } 704 705 switch (getKind()) { 706 case APValue::None: 707 Out << "<out of lifetime>"; 708 return; 709 case APValue::Indeterminate: 710 Out << "<uninitialized>"; 711 return; 712 case APValue::Int: 713 if (Ty->isBooleanType()) 714 Out << (getInt().getBoolValue() ? "true" : "false"); 715 else 716 Out << getInt(); 717 return; 718 case APValue::Float: 719 Out << GetApproxValue(getFloat()); 720 return; 721 case APValue::FixedPoint: 722 Out << getFixedPoint(); 723 return; 724 case APValue::Vector: { 725 Out << '{'; 726 QualType ElemTy = Ty->castAs<VectorType>()->getElementType(); 727 getVectorElt(0).printPretty(Out, Policy, ElemTy, Ctx); 728 for (unsigned i = 1; i != getVectorLength(); ++i) { 729 Out << ", "; 730 getVectorElt(i).printPretty(Out, Policy, ElemTy, Ctx); 731 } 732 Out << '}'; 733 return; 734 } 735 case APValue::ComplexInt: 736 Out << getComplexIntReal() << "+" << getComplexIntImag() << "i"; 737 return; 738 case APValue::ComplexFloat: 739 Out << GetApproxValue(getComplexFloatReal()) << "+" 740 << GetApproxValue(getComplexFloatImag()) << "i"; 741 return; 742 case APValue::LValue: { 743 bool IsReference = Ty->isReferenceType(); 744 QualType InnerTy 745 = IsReference ? Ty.getNonReferenceType() : Ty->getPointeeType(); 746 if (InnerTy.isNull()) 747 InnerTy = Ty; 748 749 LValueBase Base = getLValueBase(); 750 if (!Base) { 751 if (isNullPointer()) { 752 Out << (Policy.Nullptr ? "nullptr" : "0"); 753 } else if (IsReference) { 754 Out << "*(" << InnerTy.stream(Policy) << "*)" 755 << getLValueOffset().getQuantity(); 756 } else { 757 Out << "(" << Ty.stream(Policy) << ")" 758 << getLValueOffset().getQuantity(); 759 } 760 return; 761 } 762 763 if (!hasLValuePath()) { 764 // No lvalue path: just print the offset. 765 CharUnits O = getLValueOffset(); 766 CharUnits S = Ctx ? Ctx->getTypeSizeInCharsIfKnown(InnerTy).value_or( 767 CharUnits::Zero()) 768 : CharUnits::Zero(); 769 if (!O.isZero()) { 770 if (IsReference) 771 Out << "*("; 772 if (S.isZero() || O % S) { 773 Out << "(char*)"; 774 S = CharUnits::One(); 775 } 776 Out << '&'; 777 } else if (!IsReference) { 778 Out << '&'; 779 } 780 781 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) 782 Out << *VD; 783 else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) { 784 TI.print(Out, Policy); 785 } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { 786 Out << "{*new " 787 << Base.getDynamicAllocType().stream(Policy) << "#" 788 << DA.getIndex() << "}"; 789 } else { 790 assert(Base.get<const Expr *>() != nullptr && 791 "Expecting non-null Expr"); 792 Base.get<const Expr*>()->printPretty(Out, nullptr, Policy); 793 } 794 795 if (!O.isZero()) { 796 Out << " + " << (O / S); 797 if (IsReference) 798 Out << ')'; 799 } 800 return; 801 } 802 803 // We have an lvalue path. Print it out nicely. 804 if (!IsReference) 805 Out << '&'; 806 else if (isLValueOnePastTheEnd()) 807 Out << "*(&"; 808 809 QualType ElemTy = Base.getType(); 810 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) { 811 Out << *VD; 812 } else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) { 813 TI.print(Out, Policy); 814 } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { 815 Out << "{*new " << Base.getDynamicAllocType().stream(Policy) << "#" 816 << DA.getIndex() << "}"; 817 } else { 818 const Expr *E = Base.get<const Expr*>(); 819 assert(E != nullptr && "Expecting non-null Expr"); 820 E->printPretty(Out, nullptr, Policy); 821 } 822 823 ArrayRef<LValuePathEntry> Path = getLValuePath(); 824 const CXXRecordDecl *CastToBase = nullptr; 825 for (unsigned I = 0, N = Path.size(); I != N; ++I) { 826 if (ElemTy->isRecordType()) { 827 // The lvalue refers to a class type, so the next path entry is a base 828 // or member. 829 const Decl *BaseOrMember = Path[I].getAsBaseOrMember().getPointer(); 830 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(BaseOrMember)) { 831 CastToBase = RD; 832 // Leave ElemTy referring to the most-derived class. The actual type 833 // doesn't matter except for array types. 834 } else { 835 const ValueDecl *VD = cast<ValueDecl>(BaseOrMember); 836 Out << "."; 837 if (CastToBase) 838 Out << *CastToBase << "::"; 839 Out << *VD; 840 ElemTy = VD->getType(); 841 } 842 } else { 843 // The lvalue must refer to an array. 844 Out << '[' << Path[I].getAsArrayIndex() << ']'; 845 ElemTy = ElemTy->castAsArrayTypeUnsafe()->getElementType(); 846 } 847 } 848 849 // Handle formatting of one-past-the-end lvalues. 850 if (isLValueOnePastTheEnd()) { 851 // FIXME: If CastToBase is non-0, we should prefix the output with 852 // "(CastToBase*)". 853 Out << " + 1"; 854 if (IsReference) 855 Out << ')'; 856 } 857 return; 858 } 859 case APValue::Array: { 860 const ArrayType *AT = Ty->castAsArrayTypeUnsafe(); 861 unsigned N = getArrayInitializedElts(); 862 if (N != 0 && TryPrintAsStringLiteral(Out, Policy, AT, 863 {&getArrayInitializedElt(0), N})) 864 return; 865 QualType ElemTy = AT->getElementType(); 866 Out << '{'; 867 unsigned I = 0; 868 switch (N) { 869 case 0: 870 for (; I != N; ++I) { 871 Out << ", "; 872 if (I == 10 && !Policy.EntireContentsOfLargeArray) { 873 Out << "...}"; 874 return; 875 } 876 LLVM_FALLTHROUGH; 877 default: 878 getArrayInitializedElt(I).printPretty(Out, Policy, ElemTy, Ctx); 879 } 880 } 881 Out << '}'; 882 return; 883 } 884 case APValue::Struct: { 885 Out << '{'; 886 const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl(); 887 bool First = true; 888 if (unsigned N = getStructNumBases()) { 889 const CXXRecordDecl *CD = cast<CXXRecordDecl>(RD); 890 CXXRecordDecl::base_class_const_iterator BI = CD->bases_begin(); 891 for (unsigned I = 0; I != N; ++I, ++BI) { 892 assert(BI != CD->bases_end()); 893 if (!First) 894 Out << ", "; 895 getStructBase(I).printPretty(Out, Policy, BI->getType(), Ctx); 896 First = false; 897 } 898 } 899 for (const auto *FI : RD->fields()) { 900 if (!First) 901 Out << ", "; 902 if (FI->isUnnamedBitfield()) continue; 903 getStructField(FI->getFieldIndex()). 904 printPretty(Out, Policy, FI->getType(), Ctx); 905 First = false; 906 } 907 Out << '}'; 908 return; 909 } 910 case APValue::Union: 911 Out << '{'; 912 if (const FieldDecl *FD = getUnionField()) { 913 Out << "." << *FD << " = "; 914 getUnionValue().printPretty(Out, Policy, FD->getType(), Ctx); 915 } 916 Out << '}'; 917 return; 918 case APValue::MemberPointer: 919 // FIXME: This is not enough to unambiguously identify the member in a 920 // multiple-inheritance scenario. 921 if (const ValueDecl *VD = getMemberPointerDecl()) { 922 Out << '&' << *cast<CXXRecordDecl>(VD->getDeclContext()) << "::" << *VD; 923 return; 924 } 925 Out << "0"; 926 return; 927 case APValue::AddrLabelDiff: 928 Out << "&&" << getAddrLabelDiffLHS()->getLabel()->getName(); 929 Out << " - "; 930 Out << "&&" << getAddrLabelDiffRHS()->getLabel()->getName(); 931 return; 932 } 933 llvm_unreachable("Unknown APValue kind!"); 934 } 935 936 std::string APValue::getAsString(const ASTContext &Ctx, QualType Ty) const { 937 std::string Result; 938 llvm::raw_string_ostream Out(Result); 939 printPretty(Out, Ctx, Ty); 940 Out.flush(); 941 return Result; 942 } 943 944 bool APValue::toIntegralConstant(APSInt &Result, QualType SrcTy, 945 const ASTContext &Ctx) const { 946 if (isInt()) { 947 Result = getInt(); 948 return true; 949 } 950 951 if (isLValue() && isNullPointer()) { 952 Result = Ctx.MakeIntValue(Ctx.getTargetNullPointerValue(SrcTy), SrcTy); 953 return true; 954 } 955 956 if (isLValue() && !getLValueBase()) { 957 Result = Ctx.MakeIntValue(getLValueOffset().getQuantity(), SrcTy); 958 return true; 959 } 960 961 return false; 962 } 963 964 const APValue::LValueBase APValue::getLValueBase() const { 965 assert(isLValue() && "Invalid accessor"); 966 return ((const LV *)(const void *)&Data)->Base; 967 } 968 969 bool APValue::isLValueOnePastTheEnd() const { 970 assert(isLValue() && "Invalid accessor"); 971 return ((const LV *)(const void *)&Data)->IsOnePastTheEnd; 972 } 973 974 CharUnits &APValue::getLValueOffset() { 975 assert(isLValue() && "Invalid accessor"); 976 return ((LV *)(void *)&Data)->Offset; 977 } 978 979 bool APValue::hasLValuePath() const { 980 assert(isLValue() && "Invalid accessor"); 981 return ((const LV *)(const char *)&Data)->hasPath(); 982 } 983 984 ArrayRef<APValue::LValuePathEntry> APValue::getLValuePath() const { 985 assert(isLValue() && hasLValuePath() && "Invalid accessor"); 986 const LV &LVal = *((const LV *)(const char *)&Data); 987 return llvm::makeArrayRef(LVal.getPath(), LVal.PathLength); 988 } 989 990 unsigned APValue::getLValueCallIndex() const { 991 assert(isLValue() && "Invalid accessor"); 992 return ((const LV *)(const char *)&Data)->Base.getCallIndex(); 993 } 994 995 unsigned APValue::getLValueVersion() const { 996 assert(isLValue() && "Invalid accessor"); 997 return ((const LV *)(const char *)&Data)->Base.getVersion(); 998 } 999 1000 bool APValue::isNullPointer() const { 1001 assert(isLValue() && "Invalid usage"); 1002 return ((const LV *)(const char *)&Data)->IsNullPtr; 1003 } 1004 1005 void APValue::setLValue(LValueBase B, const CharUnits &O, NoLValuePath, 1006 bool IsNullPtr) { 1007 assert(isLValue() && "Invalid accessor"); 1008 LV &LVal = *((LV *)(char *)&Data); 1009 LVal.Base = B; 1010 LVal.IsOnePastTheEnd = false; 1011 LVal.Offset = O; 1012 LVal.resizePath((unsigned)-1); 1013 LVal.IsNullPtr = IsNullPtr; 1014 } 1015 1016 MutableArrayRef<APValue::LValuePathEntry> 1017 APValue::setLValueUninit(LValueBase B, const CharUnits &O, unsigned Size, 1018 bool IsOnePastTheEnd, bool IsNullPtr) { 1019 assert(isLValue() && "Invalid accessor"); 1020 LV &LVal = *((LV *)(char *)&Data); 1021 LVal.Base = B; 1022 LVal.IsOnePastTheEnd = IsOnePastTheEnd; 1023 LVal.Offset = O; 1024 LVal.IsNullPtr = IsNullPtr; 1025 LVal.resizePath(Size); 1026 return {LVal.getPath(), Size}; 1027 } 1028 1029 void APValue::setLValue(LValueBase B, const CharUnits &O, 1030 ArrayRef<LValuePathEntry> Path, bool IsOnePastTheEnd, 1031 bool IsNullPtr) { 1032 MutableArrayRef<APValue::LValuePathEntry> InternalPath = 1033 setLValueUninit(B, O, Path.size(), IsOnePastTheEnd, IsNullPtr); 1034 if (Path.size()) { 1035 memcpy(InternalPath.data(), Path.data(), 1036 Path.size() * sizeof(LValuePathEntry)); 1037 } 1038 } 1039 1040 void APValue::setUnion(const FieldDecl *Field, const APValue &Value) { 1041 assert(isUnion() && "Invalid accessor"); 1042 ((UnionData *)(char *)&Data)->Field = 1043 Field ? Field->getCanonicalDecl() : nullptr; 1044 *((UnionData *)(char *)&Data)->Value = Value; 1045 } 1046 1047 const ValueDecl *APValue::getMemberPointerDecl() const { 1048 assert(isMemberPointer() && "Invalid accessor"); 1049 const MemberPointerData &MPD = 1050 *((const MemberPointerData *)(const char *)&Data); 1051 return MPD.MemberAndIsDerivedMember.getPointer(); 1052 } 1053 1054 bool APValue::isMemberPointerToDerivedMember() const { 1055 assert(isMemberPointer() && "Invalid accessor"); 1056 const MemberPointerData &MPD = 1057 *((const MemberPointerData *)(const char *)&Data); 1058 return MPD.MemberAndIsDerivedMember.getInt(); 1059 } 1060 1061 ArrayRef<const CXXRecordDecl*> APValue::getMemberPointerPath() const { 1062 assert(isMemberPointer() && "Invalid accessor"); 1063 const MemberPointerData &MPD = 1064 *((const MemberPointerData *)(const char *)&Data); 1065 return llvm::makeArrayRef(MPD.getPath(), MPD.PathLength); 1066 } 1067 1068 void APValue::MakeLValue() { 1069 assert(isAbsent() && "Bad state change"); 1070 static_assert(sizeof(LV) <= DataSize, "LV too big"); 1071 new ((void *)(char *)&Data) LV(); 1072 Kind = LValue; 1073 } 1074 1075 void APValue::MakeArray(unsigned InitElts, unsigned Size) { 1076 assert(isAbsent() && "Bad state change"); 1077 new ((void *)(char *)&Data) Arr(InitElts, Size); 1078 Kind = Array; 1079 } 1080 1081 MutableArrayRef<APValue::LValuePathEntry> 1082 setLValueUninit(APValue::LValueBase B, const CharUnits &O, unsigned Size, 1083 bool OnePastTheEnd, bool IsNullPtr); 1084 1085 MutableArrayRef<const CXXRecordDecl *> 1086 APValue::setMemberPointerUninit(const ValueDecl *Member, bool IsDerivedMember, 1087 unsigned Size) { 1088 assert(isAbsent() && "Bad state change"); 1089 MemberPointerData *MPD = new ((void *)(char *)&Data) MemberPointerData; 1090 Kind = MemberPointer; 1091 MPD->MemberAndIsDerivedMember.setPointer( 1092 Member ? cast<ValueDecl>(Member->getCanonicalDecl()) : nullptr); 1093 MPD->MemberAndIsDerivedMember.setInt(IsDerivedMember); 1094 MPD->resizePath(Size); 1095 return {MPD->getPath(), MPD->PathLength}; 1096 } 1097 1098 void APValue::MakeMemberPointer(const ValueDecl *Member, bool IsDerivedMember, 1099 ArrayRef<const CXXRecordDecl *> Path) { 1100 MutableArrayRef<const CXXRecordDecl *> InternalPath = 1101 setMemberPointerUninit(Member, IsDerivedMember, Path.size()); 1102 for (unsigned I = 0; I != Path.size(); ++I) 1103 InternalPath[I] = Path[I]->getCanonicalDecl(); 1104 } 1105 1106 LinkageInfo LinkageComputer::getLVForValue(const APValue &V, 1107 LVComputationKind computation) { 1108 LinkageInfo LV = LinkageInfo::external(); 1109 1110 auto MergeLV = [&](LinkageInfo MergeLV) { 1111 LV.merge(MergeLV); 1112 return LV.getLinkage() == InternalLinkage; 1113 }; 1114 auto Merge = [&](const APValue &V) { 1115 return MergeLV(getLVForValue(V, computation)); 1116 }; 1117 1118 switch (V.getKind()) { 1119 case APValue::None: 1120 case APValue::Indeterminate: 1121 case APValue::Int: 1122 case APValue::Float: 1123 case APValue::FixedPoint: 1124 case APValue::ComplexInt: 1125 case APValue::ComplexFloat: 1126 case APValue::Vector: 1127 break; 1128 1129 case APValue::AddrLabelDiff: 1130 // Even for an inline function, it's not reasonable to treat a difference 1131 // between the addresses of labels as an external value. 1132 return LinkageInfo::internal(); 1133 1134 case APValue::Struct: { 1135 for (unsigned I = 0, N = V.getStructNumBases(); I != N; ++I) 1136 if (Merge(V.getStructBase(I))) 1137 break; 1138 for (unsigned I = 0, N = V.getStructNumFields(); I != N; ++I) 1139 if (Merge(V.getStructField(I))) 1140 break; 1141 break; 1142 } 1143 1144 case APValue::Union: 1145 if (V.getUnionField()) 1146 Merge(V.getUnionValue()); 1147 break; 1148 1149 case APValue::Array: { 1150 for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I) 1151 if (Merge(V.getArrayInitializedElt(I))) 1152 break; 1153 if (V.hasArrayFiller()) 1154 Merge(V.getArrayFiller()); 1155 break; 1156 } 1157 1158 case APValue::LValue: { 1159 if (!V.getLValueBase()) { 1160 // Null or absolute address: this is external. 1161 } else if (const auto *VD = 1162 V.getLValueBase().dyn_cast<const ValueDecl *>()) { 1163 if (VD && MergeLV(getLVForDecl(VD, computation))) 1164 break; 1165 } else if (const auto TI = V.getLValueBase().dyn_cast<TypeInfoLValue>()) { 1166 if (MergeLV(getLVForType(*TI.getType(), computation))) 1167 break; 1168 } else if (const Expr *E = V.getLValueBase().dyn_cast<const Expr *>()) { 1169 // Almost all expression bases are internal. The exception is 1170 // lifetime-extended temporaries. 1171 // FIXME: These should be modeled as having the 1172 // LifetimeExtendedTemporaryDecl itself as the base. 1173 // FIXME: If we permit Objective-C object literals in template arguments, 1174 // they should not imply internal linkage. 1175 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); 1176 if (!MTE || MTE->getStorageDuration() == SD_FullExpression) 1177 return LinkageInfo::internal(); 1178 if (MergeLV(getLVForDecl(MTE->getExtendingDecl(), computation))) 1179 break; 1180 } else { 1181 assert(V.getLValueBase().is<DynamicAllocLValue>() && 1182 "unexpected LValueBase kind"); 1183 return LinkageInfo::internal(); 1184 } 1185 // The lvalue path doesn't matter: pointers to all subobjects always have 1186 // the same visibility as pointers to the complete object. 1187 break; 1188 } 1189 1190 case APValue::MemberPointer: 1191 if (const NamedDecl *D = V.getMemberPointerDecl()) 1192 MergeLV(getLVForDecl(D, computation)); 1193 // Note that we could have a base-to-derived conversion here to a member of 1194 // a derived class with less linkage/visibility. That's covered by the 1195 // linkage and visibility of the value's type. 1196 break; 1197 } 1198 1199 return LV; 1200 } 1201