1 /* 2 * pcap-linux.c: Packet capture interface to the Linux kernel 3 * 4 * Copyright (c) 2000 Torsten Landschoff <torsten@debian.org> 5 * Sebastian Krahmer <krahmer@cs.uni-potsdam.de> 6 * 7 * License: BSD 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. The names of the authors may not be used to endorse or promote 20 * products derived from this software without specific prior 21 * written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 26 * 27 * Modifications: Added PACKET_MMAP support 28 * Paolo Abeni <paolo.abeni@email.it> 29 * Added TPACKET_V3 support 30 * Gabor Tatarka <gabor.tatarka@ericsson.com> 31 * 32 * based on previous works of: 33 * Simon Patarin <patarin@cs.unibo.it> 34 * Phil Wood <cpw@lanl.gov> 35 * 36 * Monitor-mode support for mac80211 includes code taken from the iw 37 * command; the copyright notice for that code is 38 * 39 * Copyright (c) 2007, 2008 Johannes Berg 40 * Copyright (c) 2007 Andy Lutomirski 41 * Copyright (c) 2007 Mike Kershaw 42 * Copyright (c) 2008 Gábor Stefanik 43 * 44 * All rights reserved. 45 * 46 * Redistribution and use in source and binary forms, with or without 47 * modification, are permitted provided that the following conditions 48 * are met: 49 * 1. Redistributions of source code must retain the above copyright 50 * notice, this list of conditions and the following disclaimer. 51 * 2. Redistributions in binary form must reproduce the above copyright 52 * notice, this list of conditions and the following disclaimer in the 53 * documentation and/or other materials provided with the distribution. 54 * 3. The name of the author may not be used to endorse or promote products 55 * derived from this software without specific prior written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 58 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 59 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 60 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 61 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 62 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 63 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 64 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 65 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 67 * SUCH DAMAGE. 68 */ 69 70 /* 71 * Known problems with 2.0[.x] kernels: 72 * 73 * - The loopback device gives every packet twice; on 2.2[.x] kernels, 74 * if we use PF_PACKET, we can filter out the transmitted version 75 * of the packet by using data in the "sockaddr_ll" returned by 76 * "recvfrom()", but, on 2.0[.x] kernels, we have to use 77 * PF_INET/SOCK_PACKET, which means "recvfrom()" supplies a 78 * "sockaddr_pkt" which doesn't give us enough information to let 79 * us do that. 80 * 81 * - We have to set the interface's IFF_PROMISC flag ourselves, if 82 * we're to run in promiscuous mode, which means we have to turn 83 * it off ourselves when we're done; the kernel doesn't keep track 84 * of how many sockets are listening promiscuously, which means 85 * it won't get turned off automatically when no sockets are 86 * listening promiscuously. We catch "pcap_close()" and, for 87 * interfaces we put into promiscuous mode, take them out of 88 * promiscuous mode - which isn't necessarily the right thing to 89 * do, if another socket also requested promiscuous mode between 90 * the time when we opened the socket and the time when we close 91 * the socket. 92 * 93 * - MSG_TRUNC isn't supported, so you can't specify that "recvfrom()" 94 * return the amount of data that you could have read, rather than 95 * the amount that was returned, so we can't just allocate a buffer 96 * whose size is the snapshot length and pass the snapshot length 97 * as the byte count, and also pass MSG_TRUNC, so that the return 98 * value tells us how long the packet was on the wire. 99 * 100 * This means that, if we want to get the actual size of the packet, 101 * so we can return it in the "len" field of the packet header, 102 * we have to read the entire packet, not just the part that fits 103 * within the snapshot length, and thus waste CPU time copying data 104 * from the kernel that our caller won't see. 105 * 106 * We have to get the actual size, and supply it in "len", because 107 * otherwise, the IP dissector in tcpdump, for example, will complain 108 * about "truncated-ip", as the packet will appear to have been 109 * shorter, on the wire, than the IP header said it should have been. 110 */ 111 112 113 #define _GNU_SOURCE 114 115 #ifdef HAVE_CONFIG_H 116 #include <config.h> 117 #endif 118 119 #include <errno.h> 120 #include <stdio.h> 121 #include <stdlib.h> 122 #include <ctype.h> 123 #include <unistd.h> 124 #include <fcntl.h> 125 #include <string.h> 126 #include <limits.h> 127 #include <sys/stat.h> 128 #include <sys/socket.h> 129 #include <sys/ioctl.h> 130 #include <sys/utsname.h> 131 #include <sys/mman.h> 132 #include <linux/if.h> 133 #include <linux/if_packet.h> 134 #include <linux/sockios.h> 135 #include <netinet/in.h> 136 #include <linux/if_ether.h> 137 #include <net/if_arp.h> 138 #include <poll.h> 139 #include <dirent.h> 140 141 #include "pcap-int.h" 142 #include "pcap/sll.h" 143 #include "pcap/vlan.h" 144 145 /* 146 * If PF_PACKET is defined, we can use {SOCK_RAW,SOCK_DGRAM}/PF_PACKET 147 * sockets rather than SOCK_PACKET sockets. 148 * 149 * To use them, we include <linux/if_packet.h> rather than 150 * <netpacket/packet.h>; we do so because 151 * 152 * some Linux distributions (e.g., Slackware 4.0) have 2.2 or 153 * later kernels and libc5, and don't provide a <netpacket/packet.h> 154 * file; 155 * 156 * not all versions of glibc2 have a <netpacket/packet.h> file 157 * that defines stuff needed for some of the 2.4-or-later-kernel 158 * features, so if the system has a 2.4 or later kernel, we 159 * still can't use those features. 160 * 161 * We're already including a number of other <linux/XXX.h> headers, and 162 * this code is Linux-specific (no other OS has PF_PACKET sockets as 163 * a raw packet capture mechanism), so it's not as if you gain any 164 * useful portability by using <netpacket/packet.h> 165 * 166 * XXX - should we just include <linux/if_packet.h> even if PF_PACKET 167 * isn't defined? It only defines one data structure in 2.0.x, so 168 * it shouldn't cause any problems. 169 */ 170 #ifdef PF_PACKET 171 # include <linux/if_packet.h> 172 173 /* 174 * On at least some Linux distributions (for example, Red Hat 5.2), 175 * there's no <netpacket/packet.h> file, but PF_PACKET is defined if 176 * you include <sys/socket.h>, but <linux/if_packet.h> doesn't define 177 * any of the PF_PACKET stuff such as "struct sockaddr_ll" or any of 178 * the PACKET_xxx stuff. 179 * 180 * So we check whether PACKET_HOST is defined, and assume that we have 181 * PF_PACKET sockets only if it is defined. 182 */ 183 # ifdef PACKET_HOST 184 # define HAVE_PF_PACKET_SOCKETS 185 # ifdef PACKET_AUXDATA 186 # define HAVE_PACKET_AUXDATA 187 # endif /* PACKET_AUXDATA */ 188 # endif /* PACKET_HOST */ 189 190 191 /* check for memory mapped access avaibility. We assume every needed 192 * struct is defined if the macro TPACKET_HDRLEN is defined, because it 193 * uses many ring related structs and macros */ 194 # ifdef PCAP_SUPPORT_PACKET_RING 195 # ifdef TPACKET_HDRLEN 196 # define HAVE_PACKET_RING 197 # ifdef TPACKET3_HDRLEN 198 # define HAVE_TPACKET3 199 # endif /* TPACKET3_HDRLEN */ 200 # ifdef TPACKET2_HDRLEN 201 # define HAVE_TPACKET2 202 # else /* TPACKET2_HDRLEN */ 203 # define TPACKET_V1 0 /* Old kernel with only V1, so no TPACKET_Vn defined */ 204 # endif /* TPACKET2_HDRLEN */ 205 # endif /* TPACKET_HDRLEN */ 206 # endif /* PCAP_SUPPORT_PACKET_RING */ 207 #endif /* PF_PACKET */ 208 209 #ifdef SO_ATTACH_FILTER 210 #include <linux/types.h> 211 #include <linux/filter.h> 212 #endif 213 214 #ifdef HAVE_LINUX_NET_TSTAMP_H 215 #include <linux/net_tstamp.h> 216 #endif 217 218 #ifdef HAVE_LINUX_SOCKIOS_H 219 #include <linux/sockios.h> 220 #endif 221 222 #ifdef HAVE_LINUX_IF_BONDING_H 223 #include <linux/if_bonding.h> 224 225 /* 226 * The ioctl code to use to check whether a device is a bonding device. 227 */ 228 #if defined(SIOCBONDINFOQUERY) 229 #define BOND_INFO_QUERY_IOCTL SIOCBONDINFOQUERY 230 #elif defined(BOND_INFO_QUERY_OLD) 231 #define BOND_INFO_QUERY_IOCTL BOND_INFO_QUERY_OLD 232 #endif 233 #endif /* HAVE_LINUX_IF_BONDING_H */ 234 235 /* 236 * Got Wireless Extensions? 237 */ 238 #ifdef HAVE_LINUX_WIRELESS_H 239 #include <linux/wireless.h> 240 #endif /* HAVE_LINUX_WIRELESS_H */ 241 242 /* 243 * Got libnl? 244 */ 245 #ifdef HAVE_LIBNL 246 #include <linux/nl80211.h> 247 248 #include <netlink/genl/genl.h> 249 #include <netlink/genl/family.h> 250 #include <netlink/genl/ctrl.h> 251 #include <netlink/msg.h> 252 #include <netlink/attr.h> 253 #endif /* HAVE_LIBNL */ 254 255 /* 256 * Got ethtool support? 257 */ 258 #ifdef HAVE_LINUX_ETHTOOL_H 259 #include <linux/ethtool.h> 260 #endif 261 262 #ifndef HAVE_SOCKLEN_T 263 typedef int socklen_t; 264 #endif 265 266 #ifndef MSG_TRUNC 267 /* 268 * This is being compiled on a system that lacks MSG_TRUNC; define it 269 * with the value it has in the 2.2 and later kernels, so that, on 270 * those kernels, when we pass it in the flags argument to "recvfrom()" 271 * we're passing the right value and thus get the MSG_TRUNC behavior 272 * we want. (We don't get that behavior on 2.0[.x] kernels, because 273 * they didn't support MSG_TRUNC.) 274 */ 275 #define MSG_TRUNC 0x20 276 #endif 277 278 #ifndef SOL_PACKET 279 /* 280 * This is being compiled on a system that lacks SOL_PACKET; define it 281 * with the value it has in the 2.2 and later kernels, so that we can 282 * set promiscuous mode in the good modern way rather than the old 283 * 2.0-kernel crappy way. 284 */ 285 #define SOL_PACKET 263 286 #endif 287 288 #define MAX_LINKHEADER_SIZE 256 289 290 /* 291 * When capturing on all interfaces we use this as the buffer size. 292 * Should be bigger then all MTUs that occur in real life. 293 * 64kB should be enough for now. 294 */ 295 #define BIGGER_THAN_ALL_MTUS (64*1024) 296 297 /* 298 * Private data for capturing on Linux SOCK_PACKET or PF_PACKET sockets. 299 */ 300 struct pcap_linux { 301 u_int packets_read; /* count of packets read with recvfrom() */ 302 long proc_dropped; /* packets reported dropped by /proc/net/dev */ 303 struct pcap_stat stat; 304 305 char *device; /* device name */ 306 int filter_in_userland; /* must filter in userland */ 307 int blocks_to_filter_in_userland; 308 int must_do_on_close; /* stuff we must do when we close */ 309 int timeout; /* timeout for buffering */ 310 int sock_packet; /* using Linux 2.0 compatible interface */ 311 int cooked; /* using SOCK_DGRAM rather than SOCK_RAW */ 312 int ifindex; /* interface index of device we're bound to */ 313 int lo_ifindex; /* interface index of the loopback device */ 314 bpf_u_int32 oldmode; /* mode to restore when turning monitor mode off */ 315 char *mondevice; /* mac80211 monitor device we created */ 316 u_char *mmapbuf; /* memory-mapped region pointer */ 317 size_t mmapbuflen; /* size of region */ 318 int vlan_offset; /* offset at which to insert vlan tags; if -1, don't insert */ 319 u_int tp_version; /* version of tpacket_hdr for mmaped ring */ 320 u_int tp_hdrlen; /* hdrlen of tpacket_hdr for mmaped ring */ 321 u_char *oneshot_buffer; /* buffer for copy of packet */ 322 int poll_timeout; /* timeout to use in poll() */ 323 #ifdef HAVE_TPACKET3 324 unsigned char *current_packet; /* Current packet within the TPACKET_V3 block. Move to next block if NULL. */ 325 int packets_left; /* Unhandled packets left within the block from previous call to pcap_read_linux_mmap_v3 in case of TPACKET_V3. */ 326 #endif 327 }; 328 329 /* 330 * Stuff to do when we close. 331 */ 332 #define MUST_CLEAR_PROMISC 0x00000001 /* clear promiscuous mode */ 333 #define MUST_CLEAR_RFMON 0x00000002 /* clear rfmon (monitor) mode */ 334 #define MUST_DELETE_MONIF 0x00000004 /* delete monitor-mode interface */ 335 336 /* 337 * Prototypes for internal functions and methods. 338 */ 339 static int get_if_flags(const char *, bpf_u_int32 *, char *); 340 static int is_wifi(int, const char *); 341 static void map_arphrd_to_dlt(pcap_t *, int, int, const char *, int); 342 static int pcap_activate_linux(pcap_t *); 343 static int activate_old(pcap_t *); 344 static int activate_new(pcap_t *); 345 static int activate_mmap(pcap_t *, int *); 346 static int pcap_can_set_rfmon_linux(pcap_t *); 347 static int pcap_read_linux(pcap_t *, int, pcap_handler, u_char *); 348 static int pcap_read_packet(pcap_t *, pcap_handler, u_char *); 349 static int pcap_inject_linux(pcap_t *, const void *, size_t); 350 static int pcap_stats_linux(pcap_t *, struct pcap_stat *); 351 static int pcap_setfilter_linux(pcap_t *, struct bpf_program *); 352 static int pcap_setdirection_linux(pcap_t *, pcap_direction_t); 353 static int pcap_set_datalink_linux(pcap_t *, int); 354 static void pcap_cleanup_linux(pcap_t *); 355 356 /* 357 * This is what the header structure looks like in a 64-bit kernel; 358 * we use this, rather than struct tpacket_hdr, if we're using 359 * TPACKET_V1 in 32-bit code running on a 64-bit kernel. 360 */ 361 struct tpacket_hdr_64 { 362 uint64_t tp_status; 363 unsigned int tp_len; 364 unsigned int tp_snaplen; 365 unsigned short tp_mac; 366 unsigned short tp_net; 367 unsigned int tp_sec; 368 unsigned int tp_usec; 369 }; 370 371 /* 372 * We use this internally as the tpacket version for TPACKET_V1 in 373 * 32-bit code on a 64-bit kernel. 374 */ 375 #define TPACKET_V1_64 99 376 377 union thdr { 378 struct tpacket_hdr *h1; 379 struct tpacket_hdr_64 *h1_64; 380 #ifdef HAVE_TPACKET2 381 struct tpacket2_hdr *h2; 382 #endif 383 #ifdef HAVE_TPACKET3 384 struct tpacket_block_desc *h3; 385 #endif 386 void *raw; 387 }; 388 389 #ifdef HAVE_PACKET_RING 390 #define RING_GET_FRAME_AT(h, offset) (((union thdr **)h->buffer)[(offset)]) 391 #define RING_GET_CURRENT_FRAME(h) RING_GET_FRAME_AT(h, h->offset) 392 393 static void destroy_ring(pcap_t *handle); 394 static int create_ring(pcap_t *handle, int *status); 395 static int prepare_tpacket_socket(pcap_t *handle); 396 static void pcap_cleanup_linux_mmap(pcap_t *); 397 static int pcap_read_linux_mmap_v1(pcap_t *, int, pcap_handler , u_char *); 398 static int pcap_read_linux_mmap_v1_64(pcap_t *, int, pcap_handler , u_char *); 399 #ifdef HAVE_TPACKET2 400 static int pcap_read_linux_mmap_v2(pcap_t *, int, pcap_handler , u_char *); 401 #endif 402 #ifdef HAVE_TPACKET3 403 static int pcap_read_linux_mmap_v3(pcap_t *, int, pcap_handler , u_char *); 404 #endif 405 static int pcap_setfilter_linux_mmap(pcap_t *, struct bpf_program *); 406 static int pcap_setnonblock_mmap(pcap_t *p, int nonblock); 407 static int pcap_getnonblock_mmap(pcap_t *p); 408 static void pcap_oneshot_mmap(u_char *user, const struct pcap_pkthdr *h, 409 const u_char *bytes); 410 #endif 411 412 /* 413 * In pre-3.0 kernels, the tp_vlan_tci field is set to whatever the 414 * vlan_tci field in the skbuff is. 0 can either mean "not on a VLAN" 415 * or "on VLAN 0". There is no flag set in the tp_status field to 416 * distinguish between them. 417 * 418 * In 3.0 and later kernels, if there's a VLAN tag present, the tp_vlan_tci 419 * field is set to the VLAN tag, and the TP_STATUS_VLAN_VALID flag is set 420 * in the tp_status field, otherwise the tp_vlan_tci field is set to 0 and 421 * the TP_STATUS_VLAN_VALID flag isn't set in the tp_status field. 422 * 423 * With a pre-3.0 kernel, we cannot distinguish between packets with no 424 * VLAN tag and packets on VLAN 0, so we will mishandle some packets, and 425 * there's nothing we can do about that. 426 * 427 * So, on those systems, which never set the TP_STATUS_VLAN_VALID flag, we 428 * continue the behavior of earlier libpcaps, wherein we treated packets 429 * with a VLAN tag of 0 as being packets without a VLAN tag rather than packets 430 * on VLAN 0. We do this by treating packets with a tp_vlan_tci of 0 and 431 * with the TP_STATUS_VLAN_VALID flag not set in tp_status as not having 432 * VLAN tags. This does the right thing on 3.0 and later kernels, and 433 * continues the old unfixably-imperfect behavior on pre-3.0 kernels. 434 * 435 * If TP_STATUS_VLAN_VALID isn't defined, we test it as the 0x10 bit; it 436 * has that value in 3.0 and later kernels. 437 */ 438 #ifdef TP_STATUS_VLAN_VALID 439 #define VLAN_VALID(hdr, hv) ((hv)->tp_vlan_tci != 0 || ((hdr)->tp_status & TP_STATUS_VLAN_VALID)) 440 #else 441 /* 442 * This is being compiled on a system that lacks TP_STATUS_VLAN_VALID, 443 * so we testwith the value it has in the 3.0 and later kernels, so 444 * we can test it if we're running on a system that has it. (If we're 445 * running on a system that doesn't have it, it won't be set in the 446 * tp_status field, so the tests of it will always fail; that means 447 * we behave the way we did before we introduced this macro.) 448 */ 449 #define VLAN_VALID(hdr, hv) ((hv)->tp_vlan_tci != 0 || ((hdr)->tp_status & 0x10)) 450 #endif 451 452 #ifdef TP_STATUS_VLAN_TPID_VALID 453 # define VLAN_TPID(hdr, hv) (((hv)->tp_vlan_tpid || ((hdr)->tp_status & TP_STATUS_VLAN_TPID_VALID)) ? (hv)->tp_vlan_tpid : ETH_P_8021Q) 454 #else 455 # define VLAN_TPID(hdr, hv) ETH_P_8021Q 456 #endif 457 458 /* 459 * Wrap some ioctl calls 460 */ 461 #ifdef HAVE_PF_PACKET_SOCKETS 462 static int iface_get_id(int fd, const char *device, char *ebuf); 463 #endif /* HAVE_PF_PACKET_SOCKETS */ 464 static int iface_get_mtu(int fd, const char *device, char *ebuf); 465 static int iface_get_arptype(int fd, const char *device, char *ebuf); 466 #ifdef HAVE_PF_PACKET_SOCKETS 467 static int iface_bind(int fd, int ifindex, char *ebuf, int protocol); 468 #ifdef IW_MODE_MONITOR 469 static int has_wext(int sock_fd, const char *device, char *ebuf); 470 #endif /* IW_MODE_MONITOR */ 471 static int enter_rfmon_mode(pcap_t *handle, int sock_fd, 472 const char *device); 473 #endif /* HAVE_PF_PACKET_SOCKETS */ 474 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) 475 static int iface_ethtool_get_ts_info(const char *device, pcap_t *handle, 476 char *ebuf); 477 #endif 478 #ifdef HAVE_PACKET_RING 479 static int iface_get_offload(pcap_t *handle); 480 #endif 481 static int iface_bind_old(int fd, const char *device, char *ebuf); 482 483 #ifdef SO_ATTACH_FILTER 484 static int fix_program(pcap_t *handle, struct sock_fprog *fcode, 485 int is_mapped); 486 static int fix_offset(pcap_t *handle, struct bpf_insn *p); 487 static int set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode); 488 static int reset_kernel_filter(pcap_t *handle); 489 490 static struct sock_filter total_insn 491 = BPF_STMT(BPF_RET | BPF_K, 0); 492 static struct sock_fprog total_fcode 493 = { 1, &total_insn }; 494 #endif /* SO_ATTACH_FILTER */ 495 496 pcap_t * 497 pcap_create_interface(const char *device, char *ebuf) 498 { 499 pcap_t *handle; 500 501 handle = pcap_create_common(ebuf, sizeof (struct pcap_linux)); 502 if (handle == NULL) 503 return NULL; 504 505 handle->activate_op = pcap_activate_linux; 506 handle->can_set_rfmon_op = pcap_can_set_rfmon_linux; 507 508 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) 509 /* 510 * See what time stamp types we support. 511 */ 512 if (iface_ethtool_get_ts_info(device, handle, ebuf) == -1) { 513 pcap_close(handle); 514 return NULL; 515 } 516 #endif 517 518 #if defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) 519 /* 520 * We claim that we support microsecond and nanosecond time 521 * stamps. 522 * 523 * XXX - with adapter-supplied time stamps, can we choose 524 * microsecond or nanosecond time stamps on arbitrary 525 * adapters? 526 */ 527 handle->tstamp_precision_count = 2; 528 handle->tstamp_precision_list = malloc(2 * sizeof(u_int)); 529 if (handle->tstamp_precision_list == NULL) { 530 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE, 531 errno, "malloc"); 532 pcap_close(handle); 533 return NULL; 534 } 535 handle->tstamp_precision_list[0] = PCAP_TSTAMP_PRECISION_MICRO; 536 handle->tstamp_precision_list[1] = PCAP_TSTAMP_PRECISION_NANO; 537 #endif /* defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) */ 538 539 return handle; 540 } 541 542 #ifdef HAVE_LIBNL 543 /* 544 * If interface {if} is a mac80211 driver, the file 545 * /sys/class/net/{if}/phy80211 is a symlink to 546 * /sys/class/ieee80211/{phydev}, for some {phydev}. 547 * 548 * On Fedora 9, with a 2.6.26.3-29 kernel, my Zydas stick, at 549 * least, has a "wmaster0" device and a "wlan0" device; the 550 * latter is the one with the IP address. Both show up in 551 * "tcpdump -D" output. Capturing on the wmaster0 device 552 * captures with 802.11 headers. 553 * 554 * airmon-ng searches through /sys/class/net for devices named 555 * monN, starting with mon0; as soon as one *doesn't* exist, 556 * it chooses that as the monitor device name. If the "iw" 557 * command exists, it does "iw dev {if} interface add {monif} 558 * type monitor", where {monif} is the monitor device. It 559 * then (sigh) sleeps .1 second, and then configures the 560 * device up. Otherwise, if /sys/class/ieee80211/{phydev}/add_iface 561 * is a file, it writes {mondev}, without a newline, to that file, 562 * and again (sigh) sleeps .1 second, and then iwconfig's that 563 * device into monitor mode and configures it up. Otherwise, 564 * you can't do monitor mode. 565 * 566 * All these devices are "glued" together by having the 567 * /sys/class/net/{device}/phy80211 links pointing to the same 568 * place, so, given a wmaster, wlan, or mon device, you can 569 * find the other devices by looking for devices with 570 * the same phy80211 link. 571 * 572 * To turn monitor mode off, delete the monitor interface, 573 * either with "iw dev {monif} interface del" or by sending 574 * {monif}, with no NL, down /sys/class/ieee80211/{phydev}/remove_iface 575 * 576 * Note: if you try to create a monitor device named "monN", and 577 * there's already a "monN" device, it fails, as least with 578 * the netlink interface (which is what iw uses), with a return 579 * value of -ENFILE. (Return values are negative errnos.) We 580 * could probably use that to find an unused device. 581 * 582 * Yes, you can have multiple monitor devices for a given 583 * physical device. 584 */ 585 586 /* 587 * Is this a mac80211 device? If so, fill in the physical device path and 588 * return 1; if not, return 0. On an error, fill in handle->errbuf and 589 * return PCAP_ERROR. 590 */ 591 static int 592 get_mac80211_phydev(pcap_t *handle, const char *device, char *phydev_path, 593 size_t phydev_max_pathlen) 594 { 595 char *pathstr; 596 ssize_t bytes_read; 597 598 /* 599 * Generate the path string for the symlink to the physical device. 600 */ 601 if (asprintf(&pathstr, "/sys/class/net/%s/phy80211", device) == -1) { 602 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 603 "%s: Can't generate path name string for /sys/class/net device", 604 device); 605 return PCAP_ERROR; 606 } 607 bytes_read = readlink(pathstr, phydev_path, phydev_max_pathlen); 608 if (bytes_read == -1) { 609 if (errno == ENOENT || errno == EINVAL) { 610 /* 611 * Doesn't exist, or not a symlink; assume that 612 * means it's not a mac80211 device. 613 */ 614 free(pathstr); 615 return 0; 616 } 617 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 618 errno, "%s: Can't readlink %s", device, pathstr); 619 free(pathstr); 620 return PCAP_ERROR; 621 } 622 free(pathstr); 623 phydev_path[bytes_read] = '\0'; 624 return 1; 625 } 626 627 #ifdef HAVE_LIBNL_SOCKETS 628 #define get_nl_errmsg nl_geterror 629 #else 630 /* libnl 2.x compatibility code */ 631 632 #define nl_sock nl_handle 633 634 static inline struct nl_handle * 635 nl_socket_alloc(void) 636 { 637 return nl_handle_alloc(); 638 } 639 640 static inline void 641 nl_socket_free(struct nl_handle *h) 642 { 643 nl_handle_destroy(h); 644 } 645 646 #define get_nl_errmsg strerror 647 648 static inline int 649 __genl_ctrl_alloc_cache(struct nl_handle *h, struct nl_cache **cache) 650 { 651 struct nl_cache *tmp = genl_ctrl_alloc_cache(h); 652 if (!tmp) 653 return -ENOMEM; 654 *cache = tmp; 655 return 0; 656 } 657 #define genl_ctrl_alloc_cache __genl_ctrl_alloc_cache 658 #endif /* !HAVE_LIBNL_SOCKETS */ 659 660 struct nl80211_state { 661 struct nl_sock *nl_sock; 662 struct nl_cache *nl_cache; 663 struct genl_family *nl80211; 664 }; 665 666 static int 667 nl80211_init(pcap_t *handle, struct nl80211_state *state, const char *device) 668 { 669 int err; 670 671 state->nl_sock = nl_socket_alloc(); 672 if (!state->nl_sock) { 673 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 674 "%s: failed to allocate netlink handle", device); 675 return PCAP_ERROR; 676 } 677 678 if (genl_connect(state->nl_sock)) { 679 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 680 "%s: failed to connect to generic netlink", device); 681 goto out_handle_destroy; 682 } 683 684 err = genl_ctrl_alloc_cache(state->nl_sock, &state->nl_cache); 685 if (err < 0) { 686 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 687 "%s: failed to allocate generic netlink cache: %s", 688 device, get_nl_errmsg(-err)); 689 goto out_handle_destroy; 690 } 691 692 state->nl80211 = genl_ctrl_search_by_name(state->nl_cache, "nl80211"); 693 if (!state->nl80211) { 694 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 695 "%s: nl80211 not found", device); 696 goto out_cache_free; 697 } 698 699 return 0; 700 701 out_cache_free: 702 nl_cache_free(state->nl_cache); 703 out_handle_destroy: 704 nl_socket_free(state->nl_sock); 705 return PCAP_ERROR; 706 } 707 708 static void 709 nl80211_cleanup(struct nl80211_state *state) 710 { 711 genl_family_put(state->nl80211); 712 nl_cache_free(state->nl_cache); 713 nl_socket_free(state->nl_sock); 714 } 715 716 static int 717 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state, 718 const char *device, const char *mondevice); 719 720 static int 721 add_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state, 722 const char *device, const char *mondevice) 723 { 724 struct pcap_linux *handlep = handle->priv; 725 int ifindex; 726 struct nl_msg *msg; 727 int err; 728 729 ifindex = iface_get_id(sock_fd, device, handle->errbuf); 730 if (ifindex == -1) 731 return PCAP_ERROR; 732 733 msg = nlmsg_alloc(); 734 if (!msg) { 735 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 736 "%s: failed to allocate netlink msg", device); 737 return PCAP_ERROR; 738 } 739 740 genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0, 741 0, NL80211_CMD_NEW_INTERFACE, 0); 742 NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex); 743 NLA_PUT_STRING(msg, NL80211_ATTR_IFNAME, mondevice); 744 NLA_PUT_U32(msg, NL80211_ATTR_IFTYPE, NL80211_IFTYPE_MONITOR); 745 746 err = nl_send_auto_complete(state->nl_sock, msg); 747 if (err < 0) { 748 #if defined HAVE_LIBNL_NLE 749 if (err == -NLE_FAILURE) { 750 #else 751 if (err == -ENFILE) { 752 #endif 753 /* 754 * Device not available; our caller should just 755 * keep trying. (libnl 2.x maps ENFILE to 756 * NLE_FAILURE; it can also map other errors 757 * to that, but there's not much we can do 758 * about that.) 759 */ 760 nlmsg_free(msg); 761 return 0; 762 } else { 763 /* 764 * Real failure, not just "that device is not 765 * available. 766 */ 767 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 768 "%s: nl_send_auto_complete failed adding %s interface: %s", 769 device, mondevice, get_nl_errmsg(-err)); 770 nlmsg_free(msg); 771 return PCAP_ERROR; 772 } 773 } 774 err = nl_wait_for_ack(state->nl_sock); 775 if (err < 0) { 776 #if defined HAVE_LIBNL_NLE 777 if (err == -NLE_FAILURE) { 778 #else 779 if (err == -ENFILE) { 780 #endif 781 /* 782 * Device not available; our caller should just 783 * keep trying. (libnl 2.x maps ENFILE to 784 * NLE_FAILURE; it can also map other errors 785 * to that, but there's not much we can do 786 * about that.) 787 */ 788 nlmsg_free(msg); 789 return 0; 790 } else { 791 /* 792 * Real failure, not just "that device is not 793 * available. 794 */ 795 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 796 "%s: nl_wait_for_ack failed adding %s interface: %s", 797 device, mondevice, get_nl_errmsg(-err)); 798 nlmsg_free(msg); 799 return PCAP_ERROR; 800 } 801 } 802 803 /* 804 * Success. 805 */ 806 nlmsg_free(msg); 807 808 /* 809 * Try to remember the monitor device. 810 */ 811 handlep->mondevice = strdup(mondevice); 812 if (handlep->mondevice == NULL) { 813 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 814 errno, "strdup"); 815 /* 816 * Get rid of the monitor device. 817 */ 818 del_mon_if(handle, sock_fd, state, device, mondevice); 819 return PCAP_ERROR; 820 } 821 return 1; 822 823 nla_put_failure: 824 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 825 "%s: nl_put failed adding %s interface", 826 device, mondevice); 827 nlmsg_free(msg); 828 return PCAP_ERROR; 829 } 830 831 static int 832 del_mon_if(pcap_t *handle, int sock_fd, struct nl80211_state *state, 833 const char *device, const char *mondevice) 834 { 835 int ifindex; 836 struct nl_msg *msg; 837 int err; 838 839 ifindex = iface_get_id(sock_fd, mondevice, handle->errbuf); 840 if (ifindex == -1) 841 return PCAP_ERROR; 842 843 msg = nlmsg_alloc(); 844 if (!msg) { 845 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 846 "%s: failed to allocate netlink msg", device); 847 return PCAP_ERROR; 848 } 849 850 genlmsg_put(msg, 0, 0, genl_family_get_id(state->nl80211), 0, 851 0, NL80211_CMD_DEL_INTERFACE, 0); 852 NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, ifindex); 853 854 err = nl_send_auto_complete(state->nl_sock, msg); 855 if (err < 0) { 856 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 857 "%s: nl_send_auto_complete failed deleting %s interface: %s", 858 device, mondevice, get_nl_errmsg(-err)); 859 nlmsg_free(msg); 860 return PCAP_ERROR; 861 } 862 err = nl_wait_for_ack(state->nl_sock); 863 if (err < 0) { 864 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 865 "%s: nl_wait_for_ack failed adding %s interface: %s", 866 device, mondevice, get_nl_errmsg(-err)); 867 nlmsg_free(msg); 868 return PCAP_ERROR; 869 } 870 871 /* 872 * Success. 873 */ 874 nlmsg_free(msg); 875 return 1; 876 877 nla_put_failure: 878 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 879 "%s: nl_put failed deleting %s interface", 880 device, mondevice); 881 nlmsg_free(msg); 882 return PCAP_ERROR; 883 } 884 885 static int 886 enter_rfmon_mode_mac80211(pcap_t *handle, int sock_fd, const char *device) 887 { 888 struct pcap_linux *handlep = handle->priv; 889 int ret; 890 char phydev_path[PATH_MAX+1]; 891 struct nl80211_state nlstate; 892 struct ifreq ifr; 893 u_int n; 894 895 /* 896 * Is this a mac80211 device? 897 */ 898 ret = get_mac80211_phydev(handle, device, phydev_path, PATH_MAX); 899 if (ret < 0) 900 return ret; /* error */ 901 if (ret == 0) 902 return 0; /* no error, but not mac80211 device */ 903 904 /* 905 * XXX - is this already a monN device? 906 * If so, we're done. 907 * Is that determined by old Wireless Extensions ioctls? 908 */ 909 910 /* 911 * OK, it's apparently a mac80211 device. 912 * Try to find an unused monN device for it. 913 */ 914 ret = nl80211_init(handle, &nlstate, device); 915 if (ret != 0) 916 return ret; 917 for (n = 0; n < UINT_MAX; n++) { 918 /* 919 * Try mon{n}. 920 */ 921 char mondevice[3+10+1]; /* mon{UINT_MAX}\0 */ 922 923 pcap_snprintf(mondevice, sizeof mondevice, "mon%u", n); 924 ret = add_mon_if(handle, sock_fd, &nlstate, device, mondevice); 925 if (ret == 1) { 926 /* 927 * Success. We don't clean up the libnl state 928 * yet, as we'll be using it later. 929 */ 930 goto added; 931 } 932 if (ret < 0) { 933 /* 934 * Hard failure. Just return ret; handle->errbuf 935 * has already been set. 936 */ 937 nl80211_cleanup(&nlstate); 938 return ret; 939 } 940 } 941 942 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 943 "%s: No free monN interfaces", device); 944 nl80211_cleanup(&nlstate); 945 return PCAP_ERROR; 946 947 added: 948 949 #if 0 950 /* 951 * Sleep for .1 seconds. 952 */ 953 delay.tv_sec = 0; 954 delay.tv_nsec = 500000000; 955 nanosleep(&delay, NULL); 956 #endif 957 958 /* 959 * If we haven't already done so, arrange to have 960 * "pcap_close_all()" called when we exit. 961 */ 962 if (!pcap_do_addexit(handle)) { 963 /* 964 * "atexit()" failed; don't put the interface 965 * in rfmon mode, just give up. 966 */ 967 del_mon_if(handle, sock_fd, &nlstate, device, 968 handlep->mondevice); 969 nl80211_cleanup(&nlstate); 970 return PCAP_ERROR; 971 } 972 973 /* 974 * Now configure the monitor interface up. 975 */ 976 memset(&ifr, 0, sizeof(ifr)); 977 pcap_strlcpy(ifr.ifr_name, handlep->mondevice, sizeof(ifr.ifr_name)); 978 if (ioctl(sock_fd, SIOCGIFFLAGS, &ifr) == -1) { 979 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 980 errno, "%s: Can't get flags for %s", device, 981 handlep->mondevice); 982 del_mon_if(handle, sock_fd, &nlstate, device, 983 handlep->mondevice); 984 nl80211_cleanup(&nlstate); 985 return PCAP_ERROR; 986 } 987 ifr.ifr_flags |= IFF_UP|IFF_RUNNING; 988 if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) { 989 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 990 errno, "%s: Can't set flags for %s", device, 991 handlep->mondevice); 992 del_mon_if(handle, sock_fd, &nlstate, device, 993 handlep->mondevice); 994 nl80211_cleanup(&nlstate); 995 return PCAP_ERROR; 996 } 997 998 /* 999 * Success. Clean up the libnl state. 1000 */ 1001 nl80211_cleanup(&nlstate); 1002 1003 /* 1004 * Note that we have to delete the monitor device when we close 1005 * the handle. 1006 */ 1007 handlep->must_do_on_close |= MUST_DELETE_MONIF; 1008 1009 /* 1010 * Add this to the list of pcaps to close when we exit. 1011 */ 1012 pcap_add_to_pcaps_to_close(handle); 1013 1014 return 1; 1015 } 1016 #endif /* HAVE_LIBNL */ 1017 1018 #ifdef IW_MODE_MONITOR 1019 /* 1020 * Bonding devices mishandle unknown ioctls; they fail with ENODEV 1021 * rather than ENOTSUP, EOPNOTSUPP, or ENOTTY, so Wireless Extensions 1022 * will fail with ENODEV if we try to do them on a bonding device, 1023 * making us return a "no such device" indication rather than just 1024 * saying "no Wireless Extensions". 1025 * 1026 * So we check for bonding devices, if we can, before trying those 1027 * ioctls, by trying a bonding device information query ioctl to see 1028 * whether it succeeds. 1029 */ 1030 static int 1031 is_bonding_device(int fd, const char *device) 1032 { 1033 #ifdef BOND_INFO_QUERY_IOCTL 1034 struct ifreq ifr; 1035 ifbond ifb; 1036 1037 memset(&ifr, 0, sizeof ifr); 1038 pcap_strlcpy(ifr.ifr_name, device, sizeof ifr.ifr_name); 1039 memset(&ifb, 0, sizeof ifb); 1040 ifr.ifr_data = (caddr_t)&ifb; 1041 if (ioctl(fd, BOND_INFO_QUERY_IOCTL, &ifr) == 0) 1042 return 1; /* success, so it's a bonding device */ 1043 #endif /* BOND_INFO_QUERY_IOCTL */ 1044 1045 return 0; /* no, it's not a bonding device */ 1046 } 1047 #endif /* IW_MODE_MONITOR */ 1048 1049 static int pcap_protocol(pcap_t *handle) 1050 { 1051 int protocol; 1052 1053 protocol = handle->opt.protocol; 1054 if (protocol == 0) 1055 protocol = ETH_P_ALL; 1056 1057 return htons(protocol); 1058 } 1059 1060 static int 1061 pcap_can_set_rfmon_linux(pcap_t *handle) 1062 { 1063 #ifdef HAVE_LIBNL 1064 char phydev_path[PATH_MAX+1]; 1065 int ret; 1066 #endif 1067 #ifdef IW_MODE_MONITOR 1068 int sock_fd; 1069 struct iwreq ireq; 1070 #endif 1071 1072 if (strcmp(handle->opt.device, "any") == 0) { 1073 /* 1074 * Monitor mode makes no sense on the "any" device. 1075 */ 1076 return 0; 1077 } 1078 1079 #ifdef HAVE_LIBNL 1080 /* 1081 * Bleah. There doesn't seem to be a way to ask a mac80211 1082 * device, through libnl, whether it supports monitor mode; 1083 * we'll just check whether the device appears to be a 1084 * mac80211 device and, if so, assume the device supports 1085 * monitor mode. 1086 * 1087 * wmaster devices don't appear to support the Wireless 1088 * Extensions, but we can create a mon device for a 1089 * wmaster device, so we don't bother checking whether 1090 * a mac80211 device supports the Wireless Extensions. 1091 */ 1092 ret = get_mac80211_phydev(handle, handle->opt.device, phydev_path, 1093 PATH_MAX); 1094 if (ret < 0) 1095 return ret; /* error */ 1096 if (ret == 1) 1097 return 1; /* mac80211 device */ 1098 #endif 1099 1100 #ifdef IW_MODE_MONITOR 1101 /* 1102 * Bleah. There doesn't appear to be an ioctl to use to ask 1103 * whether a device supports monitor mode; we'll just do 1104 * SIOCGIWMODE and, if it succeeds, assume the device supports 1105 * monitor mode. 1106 * 1107 * Open a socket on which to attempt to get the mode. 1108 * (We assume that if we have Wireless Extensions support 1109 * we also have PF_PACKET support.) 1110 */ 1111 sock_fd = socket(PF_PACKET, SOCK_RAW, pcap_protocol(handle)); 1112 if (sock_fd == -1) { 1113 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 1114 errno, "socket"); 1115 return PCAP_ERROR; 1116 } 1117 1118 if (is_bonding_device(sock_fd, handle->opt.device)) { 1119 /* It's a bonding device, so don't even try. */ 1120 close(sock_fd); 1121 return 0; 1122 } 1123 1124 /* 1125 * Attempt to get the current mode. 1126 */ 1127 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, handle->opt.device, 1128 sizeof ireq.ifr_ifrn.ifrn_name); 1129 if (ioctl(sock_fd, SIOCGIWMODE, &ireq) != -1) { 1130 /* 1131 * Well, we got the mode; assume we can set it. 1132 */ 1133 close(sock_fd); 1134 return 1; 1135 } 1136 if (errno == ENODEV) { 1137 /* The device doesn't even exist. */ 1138 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 1139 errno, "SIOCGIWMODE failed"); 1140 close(sock_fd); 1141 return PCAP_ERROR_NO_SUCH_DEVICE; 1142 } 1143 close(sock_fd); 1144 #endif 1145 return 0; 1146 } 1147 1148 /* 1149 * Grabs the number of dropped packets by the interface from /proc/net/dev. 1150 * 1151 * XXX - what about /sys/class/net/{interface name}/rx_*? There are 1152 * individual devices giving, in ASCII, various rx_ and tx_ statistics. 1153 * 1154 * Or can we get them in binary form from netlink? 1155 */ 1156 static long int 1157 linux_if_drops(const char * if_name) 1158 { 1159 char buffer[512]; 1160 FILE *file; 1161 char *bufptr, *nameptr, *colonptr; 1162 int field_to_convert = 3; 1163 long int dropped_pkts = 0; 1164 1165 file = fopen("/proc/net/dev", "r"); 1166 if (!file) 1167 return 0; 1168 1169 while (fgets(buffer, sizeof(buffer), file) != NULL) 1170 { 1171 /* search for 'bytes' -- if its in there, then 1172 that means we need to grab the fourth field. otherwise 1173 grab the third field. */ 1174 if (field_to_convert != 4 && strstr(buffer, "bytes")) 1175 { 1176 field_to_convert = 4; 1177 continue; 1178 } 1179 1180 /* 1181 * See whether this line corresponds to this device. 1182 * The line should have zero or more leading blanks, 1183 * followed by a device name, followed by a colon, 1184 * followed by the statistics. 1185 */ 1186 bufptr = buffer; 1187 /* Skip leading blanks */ 1188 while (*bufptr == ' ') 1189 bufptr++; 1190 nameptr = bufptr; 1191 /* Look for the colon */ 1192 colonptr = strchr(nameptr, ':'); 1193 if (colonptr == NULL) 1194 { 1195 /* 1196 * Not found; this could, for example, be the 1197 * header line. 1198 */ 1199 continue; 1200 } 1201 /* Null-terminate the interface name. */ 1202 *colonptr = '\0'; 1203 if (strcmp(if_name, nameptr) == 0) 1204 { 1205 /* 1206 * OK, this line has the statistics for the interface. 1207 * Skip past the interface name. 1208 */ 1209 bufptr = colonptr + 1; 1210 1211 /* grab the nth field from it */ 1212 while (--field_to_convert && *bufptr != '\0') 1213 { 1214 /* 1215 * This isn't the field we want. 1216 * First, skip any leading blanks before 1217 * the field. 1218 */ 1219 while (*bufptr == ' ') 1220 bufptr++; 1221 1222 /* 1223 * Now skip the non-blank characters of 1224 * the field. 1225 */ 1226 while (*bufptr != '\0' && *bufptr != ' ') 1227 bufptr++; 1228 } 1229 1230 if (field_to_convert == 0) 1231 { 1232 /* 1233 * We've found the field we want. 1234 * Skip any leading blanks before it. 1235 */ 1236 while (*bufptr == ' ') 1237 bufptr++; 1238 1239 /* 1240 * Now extract the value, if we have one. 1241 */ 1242 if (*bufptr != '\0') 1243 dropped_pkts = strtol(bufptr, NULL, 10); 1244 } 1245 break; 1246 } 1247 } 1248 1249 fclose(file); 1250 return dropped_pkts; 1251 } 1252 1253 1254 /* 1255 * With older kernels promiscuous mode is kind of interesting because we 1256 * have to reset the interface before exiting. The problem can't really 1257 * be solved without some daemon taking care of managing usage counts. 1258 * If we put the interface into promiscuous mode, we set a flag indicating 1259 * that we must take it out of that mode when the interface is closed, 1260 * and, when closing the interface, if that flag is set we take it out 1261 * of promiscuous mode. 1262 * 1263 * Even with newer kernels, we have the same issue with rfmon mode. 1264 */ 1265 1266 static void pcap_cleanup_linux( pcap_t *handle ) 1267 { 1268 struct pcap_linux *handlep = handle->priv; 1269 struct ifreq ifr; 1270 #ifdef HAVE_LIBNL 1271 struct nl80211_state nlstate; 1272 int ret; 1273 #endif /* HAVE_LIBNL */ 1274 #ifdef IW_MODE_MONITOR 1275 int oldflags; 1276 struct iwreq ireq; 1277 #endif /* IW_MODE_MONITOR */ 1278 1279 if (handlep->must_do_on_close != 0) { 1280 /* 1281 * There's something we have to do when closing this 1282 * pcap_t. 1283 */ 1284 if (handlep->must_do_on_close & MUST_CLEAR_PROMISC) { 1285 /* 1286 * We put the interface into promiscuous mode; 1287 * take it out of promiscuous mode. 1288 * 1289 * XXX - if somebody else wants it in promiscuous 1290 * mode, this code cannot know that, so it'll take 1291 * it out of promiscuous mode. That's not fixable 1292 * in 2.0[.x] kernels. 1293 */ 1294 memset(&ifr, 0, sizeof(ifr)); 1295 pcap_strlcpy(ifr.ifr_name, handlep->device, 1296 sizeof(ifr.ifr_name)); 1297 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) { 1298 fprintf(stderr, 1299 "Can't restore interface %s flags (SIOCGIFFLAGS failed: %s).\n" 1300 "Please adjust manually.\n" 1301 "Hint: This can't happen with Linux >= 2.2.0.\n", 1302 handlep->device, strerror(errno)); 1303 } else { 1304 if (ifr.ifr_flags & IFF_PROMISC) { 1305 /* 1306 * Promiscuous mode is currently on; 1307 * turn it off. 1308 */ 1309 ifr.ifr_flags &= ~IFF_PROMISC; 1310 if (ioctl(handle->fd, SIOCSIFFLAGS, 1311 &ifr) == -1) { 1312 fprintf(stderr, 1313 "Can't restore interface %s flags (SIOCSIFFLAGS failed: %s).\n" 1314 "Please adjust manually.\n" 1315 "Hint: This can't happen with Linux >= 2.2.0.\n", 1316 handlep->device, 1317 strerror(errno)); 1318 } 1319 } 1320 } 1321 } 1322 1323 #ifdef HAVE_LIBNL 1324 if (handlep->must_do_on_close & MUST_DELETE_MONIF) { 1325 ret = nl80211_init(handle, &nlstate, handlep->device); 1326 if (ret >= 0) { 1327 ret = del_mon_if(handle, handle->fd, &nlstate, 1328 handlep->device, handlep->mondevice); 1329 nl80211_cleanup(&nlstate); 1330 } 1331 if (ret < 0) { 1332 fprintf(stderr, 1333 "Can't delete monitor interface %s (%s).\n" 1334 "Please delete manually.\n", 1335 handlep->mondevice, handle->errbuf); 1336 } 1337 } 1338 #endif /* HAVE_LIBNL */ 1339 1340 #ifdef IW_MODE_MONITOR 1341 if (handlep->must_do_on_close & MUST_CLEAR_RFMON) { 1342 /* 1343 * We put the interface into rfmon mode; 1344 * take it out of rfmon mode. 1345 * 1346 * XXX - if somebody else wants it in rfmon 1347 * mode, this code cannot know that, so it'll take 1348 * it out of rfmon mode. 1349 */ 1350 1351 /* 1352 * First, take the interface down if it's up; 1353 * otherwise, we might get EBUSY. 1354 * If we get errors, just drive on and print 1355 * a warning if we can't restore the mode. 1356 */ 1357 oldflags = 0; 1358 memset(&ifr, 0, sizeof(ifr)); 1359 pcap_strlcpy(ifr.ifr_name, handlep->device, 1360 sizeof(ifr.ifr_name)); 1361 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) != -1) { 1362 if (ifr.ifr_flags & IFF_UP) { 1363 oldflags = ifr.ifr_flags; 1364 ifr.ifr_flags &= ~IFF_UP; 1365 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) 1366 oldflags = 0; /* didn't set, don't restore */ 1367 } 1368 } 1369 1370 /* 1371 * Now restore the mode. 1372 */ 1373 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, handlep->device, 1374 sizeof ireq.ifr_ifrn.ifrn_name); 1375 ireq.u.mode = handlep->oldmode; 1376 if (ioctl(handle->fd, SIOCSIWMODE, &ireq) == -1) { 1377 /* 1378 * Scientist, you've failed. 1379 */ 1380 fprintf(stderr, 1381 "Can't restore interface %s wireless mode (SIOCSIWMODE failed: %s).\n" 1382 "Please adjust manually.\n", 1383 handlep->device, strerror(errno)); 1384 } 1385 1386 /* 1387 * Now bring the interface back up if we brought 1388 * it down. 1389 */ 1390 if (oldflags != 0) { 1391 ifr.ifr_flags = oldflags; 1392 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) { 1393 fprintf(stderr, 1394 "Can't bring interface %s back up (SIOCSIFFLAGS failed: %s).\n" 1395 "Please adjust manually.\n", 1396 handlep->device, strerror(errno)); 1397 } 1398 } 1399 } 1400 #endif /* IW_MODE_MONITOR */ 1401 1402 /* 1403 * Take this pcap out of the list of pcaps for which we 1404 * have to take the interface out of some mode. 1405 */ 1406 pcap_remove_from_pcaps_to_close(handle); 1407 } 1408 1409 if (handlep->mondevice != NULL) { 1410 free(handlep->mondevice); 1411 handlep->mondevice = NULL; 1412 } 1413 if (handlep->device != NULL) { 1414 free(handlep->device); 1415 handlep->device = NULL; 1416 } 1417 pcap_cleanup_live_common(handle); 1418 } 1419 1420 /* 1421 * Set the timeout to be used in poll() with memory-mapped packet capture. 1422 */ 1423 static void 1424 set_poll_timeout(struct pcap_linux *handlep) 1425 { 1426 #ifdef HAVE_TPACKET3 1427 struct utsname utsname; 1428 char *version_component, *endp; 1429 int major, minor; 1430 int broken_tpacket_v3 = 1; 1431 1432 /* 1433 * Some versions of TPACKET_V3 have annoying bugs/misfeatures 1434 * around which we have to work. Determine if we have those 1435 * problems or not. 1436 */ 1437 if (uname(&utsname) == 0) { 1438 /* 1439 * 3.19 is the first release with a fixed version of 1440 * TPACKET_V3. We treat anything before that as 1441 * not haveing a fixed version; that may really mean 1442 * it has *no* version. 1443 */ 1444 version_component = utsname.release; 1445 major = strtol(version_component, &endp, 10); 1446 if (endp != version_component && *endp == '.') { 1447 /* 1448 * OK, that was a valid major version. 1449 * Get the minor version. 1450 */ 1451 version_component = endp + 1; 1452 minor = strtol(version_component, &endp, 10); 1453 if (endp != version_component && 1454 (*endp == '.' || *endp == '\0')) { 1455 /* 1456 * OK, that was a valid minor version. 1457 * Is this 3.19 or newer? 1458 */ 1459 if (major >= 4 || (major == 3 && minor >= 19)) { 1460 /* Yes. TPACKET_V3 works correctly. */ 1461 broken_tpacket_v3 = 0; 1462 } 1463 } 1464 } 1465 } 1466 #endif 1467 if (handlep->timeout == 0) { 1468 #ifdef HAVE_TPACKET3 1469 /* 1470 * XXX - due to a set of (mis)features in the TPACKET_V3 1471 * kernel code prior to the 3.19 kernel, blocking forever 1472 * with a TPACKET_V3 socket can, if few packets are 1473 * arriving and passing the socket filter, cause most 1474 * packets to be dropped. See libpcap issue #335 for the 1475 * full painful story. 1476 * 1477 * The workaround is to have poll() time out very quickly, 1478 * so we grab the frames handed to us, and return them to 1479 * the kernel, ASAP. 1480 */ 1481 if (handlep->tp_version == TPACKET_V3 && broken_tpacket_v3) 1482 handlep->poll_timeout = 1; /* don't block for very long */ 1483 else 1484 #endif 1485 handlep->poll_timeout = -1; /* block forever */ 1486 } else if (handlep->timeout > 0) { 1487 #ifdef HAVE_TPACKET3 1488 /* 1489 * For TPACKET_V3, the timeout is handled by the kernel, 1490 * so block forever; that way, we don't get extra timeouts. 1491 * Don't do that if we have a broken TPACKET_V3, though. 1492 */ 1493 if (handlep->tp_version == TPACKET_V3 && !broken_tpacket_v3) 1494 handlep->poll_timeout = -1; /* block forever, let TPACKET_V3 wake us up */ 1495 else 1496 #endif 1497 handlep->poll_timeout = handlep->timeout; /* block for that amount of time */ 1498 } else { 1499 /* 1500 * Non-blocking mode; we call poll() to pick up error 1501 * indications, but we don't want it to wait for 1502 * anything. 1503 */ 1504 handlep->poll_timeout = 0; 1505 } 1506 } 1507 1508 /* 1509 * Get a handle for a live capture from the given device. You can 1510 * pass NULL as device to get all packages (without link level 1511 * information of course). If you pass 1 as promisc the interface 1512 * will be set to promiscous mode (XXX: I think this usage should 1513 * be deprecated and functions be added to select that later allow 1514 * modification of that values -- Torsten). 1515 */ 1516 static int 1517 pcap_activate_linux(pcap_t *handle) 1518 { 1519 struct pcap_linux *handlep = handle->priv; 1520 const char *device; 1521 struct ifreq ifr; 1522 int status = 0; 1523 int ret; 1524 1525 device = handle->opt.device; 1526 1527 /* 1528 * Make sure the name we were handed will fit into the ioctls we 1529 * might perform on the device; if not, return a "No such device" 1530 * indication, as the Linux kernel shouldn't support creating 1531 * a device whose name won't fit into those ioctls. 1532 * 1533 * "Will fit" means "will fit, complete with a null terminator", 1534 * so if the length, which does *not* include the null terminator, 1535 * is greater than *or equal to* the size of the field into which 1536 * we'll be copying it, that won't fit. 1537 */ 1538 if (strlen(device) >= sizeof(ifr.ifr_name)) { 1539 status = PCAP_ERROR_NO_SUCH_DEVICE; 1540 goto fail; 1541 } 1542 1543 /* 1544 * Turn a negative snapshot value (invalid), a snapshot value of 1545 * 0 (unspecified), or a value bigger than the normal maximum 1546 * value, into the maximum allowed value. 1547 * 1548 * If some application really *needs* a bigger snapshot 1549 * length, we should just increase MAXIMUM_SNAPLEN. 1550 */ 1551 if (handle->snapshot <= 0 || handle->snapshot > MAXIMUM_SNAPLEN) 1552 handle->snapshot = MAXIMUM_SNAPLEN; 1553 1554 handle->inject_op = pcap_inject_linux; 1555 handle->setfilter_op = pcap_setfilter_linux; 1556 handle->setdirection_op = pcap_setdirection_linux; 1557 handle->set_datalink_op = pcap_set_datalink_linux; 1558 handle->getnonblock_op = pcap_getnonblock_fd; 1559 handle->setnonblock_op = pcap_setnonblock_fd; 1560 handle->cleanup_op = pcap_cleanup_linux; 1561 handle->read_op = pcap_read_linux; 1562 handle->stats_op = pcap_stats_linux; 1563 1564 /* 1565 * The "any" device is a special device which causes us not 1566 * to bind to a particular device and thus to look at all 1567 * devices. 1568 */ 1569 if (strcmp(device, "any") == 0) { 1570 if (handle->opt.promisc) { 1571 handle->opt.promisc = 0; 1572 /* Just a warning. */ 1573 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 1574 "Promiscuous mode not supported on the \"any\" device"); 1575 status = PCAP_WARNING_PROMISC_NOTSUP; 1576 } 1577 } 1578 1579 handlep->device = strdup(device); 1580 if (handlep->device == NULL) { 1581 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 1582 errno, "strdup"); 1583 status = PCAP_ERROR; 1584 goto fail; 1585 } 1586 1587 /* copy timeout value */ 1588 handlep->timeout = handle->opt.timeout; 1589 1590 /* 1591 * If we're in promiscuous mode, then we probably want 1592 * to see when the interface drops packets too, so get an 1593 * initial count from /proc/net/dev 1594 */ 1595 if (handle->opt.promisc) 1596 handlep->proc_dropped = linux_if_drops(handlep->device); 1597 1598 /* 1599 * Current Linux kernels use the protocol family PF_PACKET to 1600 * allow direct access to all packets on the network while 1601 * older kernels had a special socket type SOCK_PACKET to 1602 * implement this feature. 1603 * While this old implementation is kind of obsolete we need 1604 * to be compatible with older kernels for a while so we are 1605 * trying both methods with the newer method preferred. 1606 */ 1607 ret = activate_new(handle); 1608 if (ret < 0) { 1609 /* 1610 * Fatal error with the new way; just fail. 1611 * ret has the error return; if it's PCAP_ERROR, 1612 * handle->errbuf has been set appropriately. 1613 */ 1614 status = ret; 1615 goto fail; 1616 } 1617 if (ret == 1) { 1618 /* 1619 * Success. 1620 * Try to use memory-mapped access. 1621 */ 1622 switch (activate_mmap(handle, &status)) { 1623 1624 case 1: 1625 /* 1626 * We succeeded. status has been 1627 * set to the status to return, 1628 * which might be 0, or might be 1629 * a PCAP_WARNING_ value. 1630 * 1631 * Set the timeout to use in poll() before 1632 * returning. 1633 */ 1634 set_poll_timeout(handlep); 1635 return status; 1636 1637 case 0: 1638 /* 1639 * Kernel doesn't support it - just continue 1640 * with non-memory-mapped access. 1641 */ 1642 break; 1643 1644 case -1: 1645 /* 1646 * We failed to set up to use it, or the kernel 1647 * supports it, but we failed to enable it. 1648 * status has been set to the error status to 1649 * return and, if it's PCAP_ERROR, handle->errbuf 1650 * contains the error message. 1651 */ 1652 goto fail; 1653 } 1654 } 1655 else if (ret == 0) { 1656 /* Non-fatal error; try old way */ 1657 if ((ret = activate_old(handle)) != 1) { 1658 /* 1659 * Both methods to open the packet socket failed. 1660 * Tidy up and report our failure (handle->errbuf 1661 * is expected to be set by the functions above). 1662 */ 1663 status = ret; 1664 goto fail; 1665 } 1666 } 1667 1668 /* 1669 * We set up the socket, but not with memory-mapped access. 1670 */ 1671 if (handle->opt.buffer_size != 0) { 1672 /* 1673 * Set the socket buffer size to the specified value. 1674 */ 1675 if (setsockopt(handle->fd, SOL_SOCKET, SO_RCVBUF, 1676 &handle->opt.buffer_size, 1677 sizeof(handle->opt.buffer_size)) == -1) { 1678 pcap_fmt_errmsg_for_errno(handle->errbuf, 1679 PCAP_ERRBUF_SIZE, errno, "SO_RCVBUF"); 1680 status = PCAP_ERROR; 1681 goto fail; 1682 } 1683 } 1684 1685 /* Allocate the buffer */ 1686 1687 handle->buffer = malloc(handle->bufsize + handle->offset); 1688 if (!handle->buffer) { 1689 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 1690 errno, "malloc"); 1691 status = PCAP_ERROR; 1692 goto fail; 1693 } 1694 1695 /* 1696 * "handle->fd" is a socket, so "select()" and "poll()" 1697 * should work on it. 1698 */ 1699 handle->selectable_fd = handle->fd; 1700 1701 return status; 1702 1703 fail: 1704 pcap_cleanup_linux(handle); 1705 return status; 1706 } 1707 1708 /* 1709 * Read at most max_packets from the capture stream and call the callback 1710 * for each of them. Returns the number of packets handled or -1 if an 1711 * error occured. 1712 */ 1713 static int 1714 pcap_read_linux(pcap_t *handle, int max_packets _U_, pcap_handler callback, u_char *user) 1715 { 1716 /* 1717 * Currently, on Linux only one packet is delivered per read, 1718 * so we don't loop. 1719 */ 1720 return pcap_read_packet(handle, callback, user); 1721 } 1722 1723 static int 1724 pcap_set_datalink_linux(pcap_t *handle, int dlt) 1725 { 1726 handle->linktype = dlt; 1727 return 0; 1728 } 1729 1730 /* 1731 * linux_check_direction() 1732 * 1733 * Do checks based on packet direction. 1734 */ 1735 static inline int 1736 linux_check_direction(const pcap_t *handle, const struct sockaddr_ll *sll) 1737 { 1738 struct pcap_linux *handlep = handle->priv; 1739 1740 if (sll->sll_pkttype == PACKET_OUTGOING) { 1741 /* 1742 * Outgoing packet. 1743 * If this is from the loopback device, reject it; 1744 * we'll see the packet as an incoming packet as well, 1745 * and we don't want to see it twice. 1746 */ 1747 if (sll->sll_ifindex == handlep->lo_ifindex) 1748 return 0; 1749 1750 /* 1751 * If this is an outgoing CAN or CAN FD frame, and 1752 * the user doesn't only want outgoing packets, 1753 * reject it; CAN devices and drivers, and the CAN 1754 * stack, always arrange to loop back transmitted 1755 * packets, so they also appear as incoming packets. 1756 * We don't want duplicate packets, and we can't 1757 * easily distinguish packets looped back by the CAN 1758 * layer than those received by the CAN layer, so we 1759 * eliminate this packet instead. 1760 */ 1761 if ((sll->sll_protocol == LINUX_SLL_P_CAN || 1762 sll->sll_protocol == LINUX_SLL_P_CANFD) && 1763 handle->direction != PCAP_D_OUT) 1764 return 0; 1765 1766 /* 1767 * If the user only wants incoming packets, reject it. 1768 */ 1769 if (handle->direction == PCAP_D_IN) 1770 return 0; 1771 } else { 1772 /* 1773 * Incoming packet. 1774 * If the user only wants outgoing packets, reject it. 1775 */ 1776 if (handle->direction == PCAP_D_OUT) 1777 return 0; 1778 } 1779 return 1; 1780 } 1781 1782 /* 1783 * Read a packet from the socket calling the handler provided by 1784 * the user. Returns the number of packets received or -1 if an 1785 * error occured. 1786 */ 1787 static int 1788 pcap_read_packet(pcap_t *handle, pcap_handler callback, u_char *userdata) 1789 { 1790 struct pcap_linux *handlep = handle->priv; 1791 u_char *bp; 1792 int offset; 1793 #ifdef HAVE_PF_PACKET_SOCKETS 1794 struct sockaddr_ll from; 1795 #else 1796 struct sockaddr from; 1797 #endif 1798 #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_STRUCT_TPACKET_AUXDATA_TP_VLAN_TCI) 1799 struct iovec iov; 1800 struct msghdr msg; 1801 struct cmsghdr *cmsg; 1802 union { 1803 struct cmsghdr cmsg; 1804 char buf[CMSG_SPACE(sizeof(struct tpacket_auxdata))]; 1805 } cmsg_buf; 1806 #else /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_STRUCT_TPACKET_AUXDATA_TP_VLAN_TCI) */ 1807 socklen_t fromlen; 1808 #endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_STRUCT_TPACKET_AUXDATA_TP_VLAN_TCI) */ 1809 int packet_len, caplen; 1810 struct pcap_pkthdr pcap_header; 1811 1812 struct bpf_aux_data aux_data; 1813 #ifdef HAVE_PF_PACKET_SOCKETS 1814 /* 1815 * If this is a cooked device, leave extra room for a 1816 * fake packet header. 1817 */ 1818 if (handlep->cooked) { 1819 if (handle->linktype == DLT_LINUX_SLL2) 1820 offset = SLL2_HDR_LEN; 1821 else 1822 offset = SLL_HDR_LEN; 1823 } else 1824 offset = 0; 1825 #else 1826 /* 1827 * This system doesn't have PF_PACKET sockets, so it doesn't 1828 * support cooked devices. 1829 */ 1830 offset = 0; 1831 #endif 1832 1833 /* 1834 * Receive a single packet from the kernel. 1835 * We ignore EINTR, as that might just be due to a signal 1836 * being delivered - if the signal should interrupt the 1837 * loop, the signal handler should call pcap_breakloop() 1838 * to set handle->break_loop (we ignore it on other 1839 * platforms as well). 1840 * We also ignore ENETDOWN, so that we can continue to 1841 * capture traffic if the interface goes down and comes 1842 * back up again; comments in the kernel indicate that 1843 * we'll just block waiting for packets if we try to 1844 * receive from a socket that delivered ENETDOWN, and, 1845 * if we're using a memory-mapped buffer, we won't even 1846 * get notified of "network down" events. 1847 */ 1848 bp = (u_char *)handle->buffer + handle->offset; 1849 1850 #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_STRUCT_TPACKET_AUXDATA_TP_VLAN_TCI) 1851 msg.msg_name = &from; 1852 msg.msg_namelen = sizeof(from); 1853 msg.msg_iov = &iov; 1854 msg.msg_iovlen = 1; 1855 msg.msg_control = &cmsg_buf; 1856 msg.msg_controllen = sizeof(cmsg_buf); 1857 msg.msg_flags = 0; 1858 1859 iov.iov_len = handle->bufsize - offset; 1860 iov.iov_base = bp + offset; 1861 #endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_STRUCT_TPACKET_AUXDATA_TP_VLAN_TCI) */ 1862 1863 do { 1864 /* 1865 * Has "pcap_breakloop()" been called? 1866 */ 1867 if (handle->break_loop) { 1868 /* 1869 * Yes - clear the flag that indicates that it has, 1870 * and return PCAP_ERROR_BREAK as an indication that 1871 * we were told to break out of the loop. 1872 */ 1873 handle->break_loop = 0; 1874 return PCAP_ERROR_BREAK; 1875 } 1876 1877 #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_STRUCT_TPACKET_AUXDATA_TP_VLAN_TCI) 1878 packet_len = recvmsg(handle->fd, &msg, MSG_TRUNC); 1879 #else /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_STRUCT_TPACKET_AUXDATA_TP_VLAN_TCI) */ 1880 fromlen = sizeof(from); 1881 packet_len = recvfrom( 1882 handle->fd, bp + offset, 1883 handle->bufsize - offset, MSG_TRUNC, 1884 (struct sockaddr *) &from, &fromlen); 1885 #endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_STRUCT_TPACKET_AUXDATA_TP_VLAN_TCI) */ 1886 } while (packet_len == -1 && errno == EINTR); 1887 1888 /* Check if an error occured */ 1889 1890 if (packet_len == -1) { 1891 switch (errno) { 1892 1893 case EAGAIN: 1894 return 0; /* no packet there */ 1895 1896 case ENETDOWN: 1897 /* 1898 * The device on which we're capturing went away. 1899 * 1900 * XXX - we should really return 1901 * PCAP_ERROR_IFACE_NOT_UP, but pcap_dispatch() 1902 * etc. aren't defined to return that. 1903 */ 1904 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 1905 "The interface went down"); 1906 return PCAP_ERROR; 1907 1908 default: 1909 pcap_fmt_errmsg_for_errno(handle->errbuf, 1910 PCAP_ERRBUF_SIZE, errno, "recvfrom"); 1911 return PCAP_ERROR; 1912 } 1913 } 1914 1915 #ifdef HAVE_PF_PACKET_SOCKETS 1916 if (!handlep->sock_packet) { 1917 /* 1918 * Unfortunately, there is a window between socket() and 1919 * bind() where the kernel may queue packets from any 1920 * interface. If we're bound to a particular interface, 1921 * discard packets not from that interface. 1922 * 1923 * (If socket filters are supported, we could do the 1924 * same thing we do when changing the filter; however, 1925 * that won't handle packet sockets without socket 1926 * filter support, and it's a bit more complicated. 1927 * It would save some instructions per packet, however.) 1928 */ 1929 if (handlep->ifindex != -1 && 1930 from.sll_ifindex != handlep->ifindex) 1931 return 0; 1932 1933 /* 1934 * Do checks based on packet direction. 1935 * We can only do this if we're using PF_PACKET; the 1936 * address returned for SOCK_PACKET is a "sockaddr_pkt" 1937 * which lacks the relevant packet type information. 1938 */ 1939 if (!linux_check_direction(handle, &from)) 1940 return 0; 1941 } 1942 #endif 1943 1944 #ifdef HAVE_PF_PACKET_SOCKETS 1945 /* 1946 * If this is a cooked device, fill in the fake packet header. 1947 */ 1948 if (handlep->cooked) { 1949 /* 1950 * Add the length of the fake header to the length 1951 * of packet data we read. 1952 */ 1953 if (handle->linktype == DLT_LINUX_SLL2) { 1954 struct sll2_header *hdrp; 1955 1956 packet_len += SLL2_HDR_LEN; 1957 1958 hdrp = (struct sll2_header *)bp; 1959 hdrp->sll2_protocol = from.sll_protocol; 1960 hdrp->sll2_reserved_mbz = 0; 1961 hdrp->sll2_if_index = htonl(from.sll_ifindex); 1962 hdrp->sll2_hatype = htons(from.sll_hatype); 1963 hdrp->sll2_pkttype = from.sll_pkttype; 1964 hdrp->sll2_halen = from.sll_halen; 1965 memcpy(hdrp->sll2_addr, from.sll_addr, 1966 (from.sll_halen > SLL_ADDRLEN) ? 1967 SLL_ADDRLEN : 1968 from.sll_halen); 1969 } else { 1970 struct sll_header *hdrp; 1971 1972 packet_len += SLL_HDR_LEN; 1973 1974 hdrp = (struct sll_header *)bp; 1975 hdrp->sll_pkttype = htons(from.sll_pkttype); 1976 hdrp->sll_hatype = htons(from.sll_hatype); 1977 hdrp->sll_halen = htons(from.sll_halen); 1978 memcpy(hdrp->sll_addr, from.sll_addr, 1979 (from.sll_halen > SLL_ADDRLEN) ? 1980 SLL_ADDRLEN : 1981 from.sll_halen); 1982 hdrp->sll_protocol = from.sll_protocol; 1983 } 1984 } 1985 1986 /* 1987 * Start out with no VLAN information. 1988 */ 1989 aux_data.vlan_tag_present = 0; 1990 aux_data.vlan_tag = 0; 1991 #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_STRUCT_TPACKET_AUXDATA_TP_VLAN_TCI) 1992 if (handlep->vlan_offset != -1) { 1993 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) { 1994 struct tpacket_auxdata *aux; 1995 unsigned int len; 1996 struct vlan_tag *tag; 1997 1998 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct tpacket_auxdata)) || 1999 cmsg->cmsg_level != SOL_PACKET || 2000 cmsg->cmsg_type != PACKET_AUXDATA) { 2001 /* 2002 * This isn't a PACKET_AUXDATA auxiliary 2003 * data item. 2004 */ 2005 continue; 2006 } 2007 2008 aux = (struct tpacket_auxdata *)CMSG_DATA(cmsg); 2009 if (!VLAN_VALID(aux, aux)) { 2010 /* 2011 * There is no VLAN information in the 2012 * auxiliary data. 2013 */ 2014 continue; 2015 } 2016 2017 len = (u_int)packet_len > iov.iov_len ? iov.iov_len : (u_int)packet_len; 2018 if (len < (u_int)handlep->vlan_offset) 2019 break; 2020 2021 /* 2022 * Move everything in the header, except the 2023 * type field, down VLAN_TAG_LEN bytes, to 2024 * allow us to insert the VLAN tag between 2025 * that stuff and the type field. 2026 */ 2027 bp -= VLAN_TAG_LEN; 2028 memmove(bp, bp + VLAN_TAG_LEN, handlep->vlan_offset); 2029 2030 /* 2031 * Now insert the tag. 2032 */ 2033 tag = (struct vlan_tag *)(bp + handlep->vlan_offset); 2034 tag->vlan_tpid = htons(VLAN_TPID(aux, aux)); 2035 tag->vlan_tci = htons(aux->tp_vlan_tci); 2036 2037 /* 2038 * Save a flag indicating that we have a VLAN tag, 2039 * and the VLAN TCI, to bpf_aux_data struct for 2040 * use by the BPF filter if we're doing the 2041 * filtering in userland. 2042 */ 2043 aux_data.vlan_tag_present = 1; 2044 aux_data.vlan_tag = htons(aux->tp_vlan_tci) & 0x0fff; 2045 2046 /* 2047 * Add the tag to the packet lengths. 2048 */ 2049 packet_len += VLAN_TAG_LEN; 2050 } 2051 } 2052 #endif /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_STRUCT_TPACKET_AUXDATA_TP_VLAN_TCI) */ 2053 #endif /* HAVE_PF_PACKET_SOCKETS */ 2054 2055 /* 2056 * XXX: According to the kernel source we should get the real 2057 * packet len if calling recvfrom with MSG_TRUNC set. It does 2058 * not seem to work here :(, but it is supported by this code 2059 * anyway. 2060 * To be honest the code RELIES on that feature so this is really 2061 * broken with 2.2.x kernels. 2062 * I spend a day to figure out what's going on and I found out 2063 * that the following is happening: 2064 * 2065 * The packet comes from a random interface and the packet_rcv 2066 * hook is called with a clone of the packet. That code inserts 2067 * the packet into the receive queue of the packet socket. 2068 * If a filter is attached to that socket that filter is run 2069 * first - and there lies the problem. The default filter always 2070 * cuts the packet at the snaplen: 2071 * 2072 * # tcpdump -d 2073 * (000) ret #68 2074 * 2075 * So the packet filter cuts down the packet. The recvfrom call 2076 * says "hey, it's only 68 bytes, it fits into the buffer" with 2077 * the result that we don't get the real packet length. This 2078 * is valid at least until kernel 2.2.17pre6. 2079 * 2080 * We currently handle this by making a copy of the filter 2081 * program, fixing all "ret" instructions with non-zero 2082 * operands to have an operand of MAXIMUM_SNAPLEN so that the 2083 * filter doesn't truncate the packet, and supplying that modified 2084 * filter to the kernel. 2085 */ 2086 2087 caplen = packet_len; 2088 if (caplen > handle->snapshot) 2089 caplen = handle->snapshot; 2090 2091 /* Run the packet filter if not using kernel filter */ 2092 if (handlep->filter_in_userland && handle->fcode.bf_insns) { 2093 if (bpf_filter_with_aux_data(handle->fcode.bf_insns, bp, 2094 packet_len, caplen, &aux_data) == 0) { 2095 /* rejected by filter */ 2096 return 0; 2097 } 2098 } 2099 2100 /* Fill in our own header data */ 2101 2102 /* get timestamp for this packet */ 2103 #if defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) 2104 if (handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO) { 2105 if (ioctl(handle->fd, SIOCGSTAMPNS, &pcap_header.ts) == -1) { 2106 pcap_fmt_errmsg_for_errno(handle->errbuf, 2107 PCAP_ERRBUF_SIZE, errno, "SIOCGSTAMPNS"); 2108 return PCAP_ERROR; 2109 } 2110 } else 2111 #endif 2112 { 2113 if (ioctl(handle->fd, SIOCGSTAMP, &pcap_header.ts) == -1) { 2114 pcap_fmt_errmsg_for_errno(handle->errbuf, 2115 PCAP_ERRBUF_SIZE, errno, "SIOCGSTAMP"); 2116 return PCAP_ERROR; 2117 } 2118 } 2119 2120 pcap_header.caplen = caplen; 2121 pcap_header.len = packet_len; 2122 2123 /* 2124 * Count the packet. 2125 * 2126 * Arguably, we should count them before we check the filter, 2127 * as on many other platforms "ps_recv" counts packets 2128 * handed to the filter rather than packets that passed 2129 * the filter, but if filtering is done in the kernel, we 2130 * can't get a count of packets that passed the filter, 2131 * and that would mean the meaning of "ps_recv" wouldn't 2132 * be the same on all Linux systems. 2133 * 2134 * XXX - it's not the same on all systems in any case; 2135 * ideally, we should have a "get the statistics" call 2136 * that supplies more counts and indicates which of them 2137 * it supplies, so that we supply a count of packets 2138 * handed to the filter only on platforms where that 2139 * information is available. 2140 * 2141 * We count them here even if we can get the packet count 2142 * from the kernel, as we can only determine at run time 2143 * whether we'll be able to get it from the kernel (if 2144 * HAVE_STRUCT_TPACKET_STATS isn't defined, we can't get it from 2145 * the kernel, but if it is defined, the library might 2146 * have been built with a 2.4 or later kernel, but we 2147 * might be running on a 2.2[.x] kernel without Alexey 2148 * Kuznetzov's turbopacket patches, and thus the kernel 2149 * might not be able to supply those statistics). We 2150 * could, I guess, try, when opening the socket, to get 2151 * the statistics, and if we can not increment the count 2152 * here, but it's not clear that always incrementing 2153 * the count is more expensive than always testing a flag 2154 * in memory. 2155 * 2156 * We keep the count in "handlep->packets_read", and use that 2157 * for "ps_recv" if we can't get the statistics from the kernel. 2158 * We do that because, if we *can* get the statistics from 2159 * the kernel, we use "handlep->stat.ps_recv" and 2160 * "handlep->stat.ps_drop" as running counts, as reading the 2161 * statistics from the kernel resets the kernel statistics, 2162 * and if we directly increment "handlep->stat.ps_recv" here, 2163 * that means it will count packets *twice* on systems where 2164 * we can get kernel statistics - once here, and once in 2165 * pcap_stats_linux(). 2166 */ 2167 handlep->packets_read++; 2168 2169 /* Call the user supplied callback function */ 2170 callback(userdata, &pcap_header, bp); 2171 2172 return 1; 2173 } 2174 2175 static int 2176 pcap_inject_linux(pcap_t *handle, const void *buf, size_t size) 2177 { 2178 struct pcap_linux *handlep = handle->priv; 2179 int ret; 2180 2181 #ifdef HAVE_PF_PACKET_SOCKETS 2182 if (!handlep->sock_packet) { 2183 /* PF_PACKET socket */ 2184 if (handlep->ifindex == -1) { 2185 /* 2186 * We don't support sending on the "any" device. 2187 */ 2188 pcap_strlcpy(handle->errbuf, 2189 "Sending packets isn't supported on the \"any\" device", 2190 PCAP_ERRBUF_SIZE); 2191 return (-1); 2192 } 2193 2194 if (handlep->cooked) { 2195 /* 2196 * We don't support sending on cooked-mode sockets. 2197 * 2198 * XXX - how do you send on a bound cooked-mode 2199 * socket? 2200 * Is a "sendto()" required there? 2201 */ 2202 pcap_strlcpy(handle->errbuf, 2203 "Sending packets isn't supported in cooked mode", 2204 PCAP_ERRBUF_SIZE); 2205 return (-1); 2206 } 2207 } 2208 #endif 2209 2210 ret = send(handle->fd, buf, size, 0); 2211 if (ret == -1) { 2212 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 2213 errno, "send"); 2214 return (-1); 2215 } 2216 return (ret); 2217 } 2218 2219 /* 2220 * Get the statistics for the given packet capture handle. 2221 * Reports the number of dropped packets iff the kernel supports 2222 * the PACKET_STATISTICS "getsockopt()" argument (2.4 and later 2223 * kernels, and 2.2[.x] kernels with Alexey Kuznetzov's turbopacket 2224 * patches); otherwise, that information isn't available, and we lie 2225 * and report 0 as the count of dropped packets. 2226 */ 2227 static int 2228 pcap_stats_linux(pcap_t *handle, struct pcap_stat *stats) 2229 { 2230 struct pcap_linux *handlep = handle->priv; 2231 #ifdef HAVE_STRUCT_TPACKET_STATS 2232 #ifdef HAVE_TPACKET3 2233 /* 2234 * For sockets using TPACKET_V1 or TPACKET_V2, the extra 2235 * stuff at the end of a struct tpacket_stats_v3 will not 2236 * be filled in, and we don't look at it so this is OK even 2237 * for those sockets. In addition, the PF_PACKET socket 2238 * code in the kernel only uses the length parameter to 2239 * compute how much data to copy out and to indicate how 2240 * much data was copied out, so it's OK to base it on the 2241 * size of a struct tpacket_stats. 2242 * 2243 * XXX - it's probably OK, in fact, to just use a 2244 * struct tpacket_stats for V3 sockets, as we don't 2245 * care about the tp_freeze_q_cnt stat. 2246 */ 2247 struct tpacket_stats_v3 kstats; 2248 #else /* HAVE_TPACKET3 */ 2249 struct tpacket_stats kstats; 2250 #endif /* HAVE_TPACKET3 */ 2251 socklen_t len = sizeof (struct tpacket_stats); 2252 #endif /* HAVE_STRUCT_TPACKET_STATS */ 2253 2254 long if_dropped = 0; 2255 2256 /* 2257 * To fill in ps_ifdrop, we parse /proc/net/dev for the number 2258 */ 2259 if (handle->opt.promisc) 2260 { 2261 if_dropped = handlep->proc_dropped; 2262 handlep->proc_dropped = linux_if_drops(handlep->device); 2263 handlep->stat.ps_ifdrop += (handlep->proc_dropped - if_dropped); 2264 } 2265 2266 #ifdef HAVE_STRUCT_TPACKET_STATS 2267 /* 2268 * Try to get the packet counts from the kernel. 2269 */ 2270 if (getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, 2271 &kstats, &len) > -1) { 2272 /* 2273 * On systems where the PACKET_STATISTICS "getsockopt()" 2274 * argument is supported on PF_PACKET sockets: 2275 * 2276 * "ps_recv" counts only packets that *passed* the 2277 * filter, not packets that didn't pass the filter. 2278 * This includes packets later dropped because we 2279 * ran out of buffer space. 2280 * 2281 * "ps_drop" counts packets dropped because we ran 2282 * out of buffer space. It doesn't count packets 2283 * dropped by the interface driver. It counts only 2284 * packets that passed the filter. 2285 * 2286 * See above for ps_ifdrop. 2287 * 2288 * Both statistics include packets not yet read from 2289 * the kernel by libpcap, and thus not yet seen by 2290 * the application. 2291 * 2292 * In "linux/net/packet/af_packet.c", at least in the 2293 * 2.4.9 kernel, "tp_packets" is incremented for every 2294 * packet that passes the packet filter *and* is 2295 * successfully queued on the socket; "tp_drops" is 2296 * incremented for every packet dropped because there's 2297 * not enough free space in the socket buffer. 2298 * 2299 * When the statistics are returned for a PACKET_STATISTICS 2300 * "getsockopt()" call, "tp_drops" is added to "tp_packets", 2301 * so that "tp_packets" counts all packets handed to 2302 * the PF_PACKET socket, including packets dropped because 2303 * there wasn't room on the socket buffer - but not 2304 * including packets that didn't pass the filter. 2305 * 2306 * In the BSD BPF, the count of received packets is 2307 * incremented for every packet handed to BPF, regardless 2308 * of whether it passed the filter. 2309 * 2310 * We can't make "pcap_stats()" work the same on both 2311 * platforms, but the best approximation is to return 2312 * "tp_packets" as the count of packets and "tp_drops" 2313 * as the count of drops. 2314 * 2315 * Keep a running total because each call to 2316 * getsockopt(handle->fd, SOL_PACKET, PACKET_STATISTICS, .... 2317 * resets the counters to zero. 2318 */ 2319 handlep->stat.ps_recv += kstats.tp_packets; 2320 handlep->stat.ps_drop += kstats.tp_drops; 2321 *stats = handlep->stat; 2322 return 0; 2323 } 2324 else 2325 { 2326 /* 2327 * If the error was EOPNOTSUPP, fall through, so that 2328 * if you build the library on a system with 2329 * "struct tpacket_stats" and run it on a system 2330 * that doesn't, it works as it does if the library 2331 * is built on a system without "struct tpacket_stats". 2332 */ 2333 if (errno != EOPNOTSUPP) { 2334 pcap_fmt_errmsg_for_errno(handle->errbuf, 2335 PCAP_ERRBUF_SIZE, errno, "pcap_stats"); 2336 return -1; 2337 } 2338 } 2339 #endif 2340 /* 2341 * On systems where the PACKET_STATISTICS "getsockopt()" argument 2342 * is not supported on PF_PACKET sockets: 2343 * 2344 * "ps_recv" counts only packets that *passed* the filter, 2345 * not packets that didn't pass the filter. It does not 2346 * count packets dropped because we ran out of buffer 2347 * space. 2348 * 2349 * "ps_drop" is not supported. 2350 * 2351 * "ps_ifdrop" is supported. It will return the number 2352 * of drops the interface reports in /proc/net/dev, 2353 * if that is available. 2354 * 2355 * "ps_recv" doesn't include packets not yet read from 2356 * the kernel by libpcap. 2357 * 2358 * We maintain the count of packets processed by libpcap in 2359 * "handlep->packets_read", for reasons described in the comment 2360 * at the end of pcap_read_packet(). We have no idea how many 2361 * packets were dropped by the kernel buffers -- but we know 2362 * how many the interface dropped, so we can return that. 2363 */ 2364 2365 stats->ps_recv = handlep->packets_read; 2366 stats->ps_drop = 0; 2367 stats->ps_ifdrop = handlep->stat.ps_ifdrop; 2368 return 0; 2369 } 2370 2371 static int 2372 add_linux_if(pcap_if_list_t *devlistp, const char *ifname, int fd, char *errbuf) 2373 { 2374 const char *p; 2375 char name[512]; /* XXX - pick a size */ 2376 char *q, *saveq; 2377 struct ifreq ifrflags; 2378 2379 /* 2380 * Get the interface name. 2381 */ 2382 p = ifname; 2383 q = &name[0]; 2384 while (*p != '\0' && isascii(*p) && !isspace(*p)) { 2385 if (*p == ':') { 2386 /* 2387 * This could be the separator between a 2388 * name and an alias number, or it could be 2389 * the separator between a name with no 2390 * alias number and the next field. 2391 * 2392 * If there's a colon after digits, it 2393 * separates the name and the alias number, 2394 * otherwise it separates the name and the 2395 * next field. 2396 */ 2397 saveq = q; 2398 while (isascii(*p) && isdigit(*p)) 2399 *q++ = *p++; 2400 if (*p != ':') { 2401 /* 2402 * That was the next field, 2403 * not the alias number. 2404 */ 2405 q = saveq; 2406 } 2407 break; 2408 } else 2409 *q++ = *p++; 2410 } 2411 *q = '\0'; 2412 2413 /* 2414 * Get the flags for this interface. 2415 */ 2416 pcap_strlcpy(ifrflags.ifr_name, name, sizeof(ifrflags.ifr_name)); 2417 if (ioctl(fd, SIOCGIFFLAGS, (char *)&ifrflags) < 0) { 2418 if (errno == ENXIO || errno == ENODEV) 2419 return (0); /* device doesn't actually exist - ignore it */ 2420 pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, 2421 errno, "SIOCGIFFLAGS: %.*s", 2422 (int)sizeof(ifrflags.ifr_name), 2423 ifrflags.ifr_name); 2424 return (-1); 2425 } 2426 2427 /* 2428 * Add an entry for this interface, with no addresses, if it's 2429 * not already in the list. 2430 */ 2431 if (find_or_add_if(devlistp, name, ifrflags.ifr_flags, 2432 get_if_flags, errbuf) == NULL) { 2433 /* 2434 * Failure. 2435 */ 2436 return (-1); 2437 } 2438 2439 return (0); 2440 } 2441 2442 /* 2443 * Get from "/sys/class/net" all interfaces listed there; if they're 2444 * already in the list of interfaces we have, that won't add another 2445 * instance, but if they're not, that'll add them. 2446 * 2447 * We don't bother getting any addresses for them; it appears you can't 2448 * use SIOCGIFADDR on Linux to get IPv6 addresses for interfaces, and, 2449 * although some other types of addresses can be fetched with SIOCGIFADDR, 2450 * we don't bother with them for now. 2451 * 2452 * We also don't fail if we couldn't open "/sys/class/net"; we just leave 2453 * the list of interfaces as is, and return 0, so that we can try 2454 * scanning /proc/net/dev. 2455 * 2456 * Otherwise, we return 1 if we don't get an error and -1 if we do. 2457 */ 2458 static int 2459 scan_sys_class_net(pcap_if_list_t *devlistp, char *errbuf) 2460 { 2461 DIR *sys_class_net_d; 2462 int fd; 2463 struct dirent *ent; 2464 char subsystem_path[PATH_MAX+1]; 2465 struct stat statb; 2466 int ret = 1; 2467 2468 sys_class_net_d = opendir("/sys/class/net"); 2469 if (sys_class_net_d == NULL) { 2470 /* 2471 * Don't fail if it doesn't exist at all. 2472 */ 2473 if (errno == ENOENT) 2474 return (0); 2475 2476 /* 2477 * Fail if we got some other error. 2478 */ 2479 pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, 2480 errno, "Can't open /sys/class/net"); 2481 return (-1); 2482 } 2483 2484 /* 2485 * Create a socket from which to fetch interface information. 2486 */ 2487 fd = socket(PF_UNIX, SOCK_RAW, 0); 2488 if (fd < 0) { 2489 pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, 2490 errno, "socket"); 2491 (void)closedir(sys_class_net_d); 2492 return (-1); 2493 } 2494 2495 for (;;) { 2496 errno = 0; 2497 ent = readdir(sys_class_net_d); 2498 if (ent == NULL) { 2499 /* 2500 * Error or EOF; if errno != 0, it's an error. 2501 */ 2502 break; 2503 } 2504 2505 /* 2506 * Ignore "." and "..". 2507 */ 2508 if (strcmp(ent->d_name, ".") == 0 || 2509 strcmp(ent->d_name, "..") == 0) 2510 continue; 2511 2512 /* 2513 * Ignore plain files; they do not have subdirectories 2514 * and thus have no attributes. 2515 */ 2516 if (ent->d_type == DT_REG) 2517 continue; 2518 2519 /* 2520 * Is there an "ifindex" file under that name? 2521 * (We don't care whether it's a directory or 2522 * a symlink; older kernels have directories 2523 * for devices, newer kernels have symlinks to 2524 * directories.) 2525 */ 2526 pcap_snprintf(subsystem_path, sizeof subsystem_path, 2527 "/sys/class/net/%s/ifindex", ent->d_name); 2528 if (lstat(subsystem_path, &statb) != 0) { 2529 /* 2530 * Stat failed. Either there was an error 2531 * other than ENOENT, and we don't know if 2532 * this is an interface, or it's ENOENT, 2533 * and either some part of "/sys/class/net/{if}" 2534 * disappeared, in which case it probably means 2535 * the interface disappeared, or there's no 2536 * "ifindex" file, which means it's not a 2537 * network interface. 2538 */ 2539 continue; 2540 } 2541 2542 /* 2543 * Attempt to add the interface. 2544 */ 2545 if (add_linux_if(devlistp, &ent->d_name[0], fd, errbuf) == -1) { 2546 /* Fail. */ 2547 ret = -1; 2548 break; 2549 } 2550 } 2551 if (ret != -1) { 2552 /* 2553 * Well, we didn't fail for any other reason; did we 2554 * fail due to an error reading the directory? 2555 */ 2556 if (errno != 0) { 2557 pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, 2558 errno, "Error reading /sys/class/net"); 2559 ret = -1; 2560 } 2561 } 2562 2563 (void)close(fd); 2564 (void)closedir(sys_class_net_d); 2565 return (ret); 2566 } 2567 2568 /* 2569 * Get from "/proc/net/dev" all interfaces listed there; if they're 2570 * already in the list of interfaces we have, that won't add another 2571 * instance, but if they're not, that'll add them. 2572 * 2573 * See comments from scan_sys_class_net(). 2574 */ 2575 static int 2576 scan_proc_net_dev(pcap_if_list_t *devlistp, char *errbuf) 2577 { 2578 FILE *proc_net_f; 2579 int fd; 2580 char linebuf[512]; 2581 int linenum; 2582 char *p; 2583 int ret = 0; 2584 2585 proc_net_f = fopen("/proc/net/dev", "r"); 2586 if (proc_net_f == NULL) { 2587 /* 2588 * Don't fail if it doesn't exist at all. 2589 */ 2590 if (errno == ENOENT) 2591 return (0); 2592 2593 /* 2594 * Fail if we got some other error. 2595 */ 2596 pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, 2597 errno, "Can't open /proc/net/dev"); 2598 return (-1); 2599 } 2600 2601 /* 2602 * Create a socket from which to fetch interface information. 2603 */ 2604 fd = socket(PF_UNIX, SOCK_RAW, 0); 2605 if (fd < 0) { 2606 pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, 2607 errno, "socket"); 2608 (void)fclose(proc_net_f); 2609 return (-1); 2610 } 2611 2612 for (linenum = 1; 2613 fgets(linebuf, sizeof linebuf, proc_net_f) != NULL; linenum++) { 2614 /* 2615 * Skip the first two lines - they're headers. 2616 */ 2617 if (linenum <= 2) 2618 continue; 2619 2620 p = &linebuf[0]; 2621 2622 /* 2623 * Skip leading white space. 2624 */ 2625 while (*p != '\0' && isascii(*p) && isspace(*p)) 2626 p++; 2627 if (*p == '\0' || *p == '\n') 2628 continue; /* blank line */ 2629 2630 /* 2631 * Attempt to add the interface. 2632 */ 2633 if (add_linux_if(devlistp, p, fd, errbuf) == -1) { 2634 /* Fail. */ 2635 ret = -1; 2636 break; 2637 } 2638 } 2639 if (ret != -1) { 2640 /* 2641 * Well, we didn't fail for any other reason; did we 2642 * fail due to an error reading the file? 2643 */ 2644 if (ferror(proc_net_f)) { 2645 pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, 2646 errno, "Error reading /proc/net/dev"); 2647 ret = -1; 2648 } 2649 } 2650 2651 (void)close(fd); 2652 (void)fclose(proc_net_f); 2653 return (ret); 2654 } 2655 2656 /* 2657 * Description string for the "any" device. 2658 */ 2659 static const char any_descr[] = "Pseudo-device that captures on all interfaces"; 2660 2661 /* 2662 * A SOCK_PACKET or PF_PACKET socket can be bound to any network interface. 2663 */ 2664 static int 2665 can_be_bound(const char *name _U_) 2666 { 2667 return (1); 2668 } 2669 2670 /* 2671 * Get additional flags for a device, using SIOCGIFMEDIA. 2672 */ 2673 static int 2674 get_if_flags(const char *name, bpf_u_int32 *flags, char *errbuf) 2675 { 2676 int sock; 2677 FILE *fh; 2678 unsigned int arptype; 2679 struct ifreq ifr; 2680 struct ethtool_value info; 2681 2682 if (*flags & PCAP_IF_LOOPBACK) { 2683 /* 2684 * Loopback devices aren't wireless, and "connected"/ 2685 * "disconnected" doesn't apply to them. 2686 */ 2687 *flags |= PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE; 2688 return 0; 2689 } 2690 2691 sock = socket(AF_INET, SOCK_DGRAM, 0); 2692 if (sock == -1) { 2693 pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, errno, 2694 "Can't create socket to get ethtool information for %s", 2695 name); 2696 return -1; 2697 } 2698 2699 /* 2700 * OK, what type of network is this? 2701 * In particular, is it wired or wireless? 2702 */ 2703 if (is_wifi(sock, name)) { 2704 /* 2705 * Wi-Fi, hence wireless. 2706 */ 2707 *flags |= PCAP_IF_WIRELESS; 2708 } else { 2709 /* 2710 * OK, what does /sys/class/net/{if}/type contain? 2711 * (We don't use that for Wi-Fi, as it'll report 2712 * "Ethernet", i.e. ARPHRD_ETHER, for non-monitor- 2713 * mode devices.) 2714 */ 2715 char *pathstr; 2716 2717 if (asprintf(&pathstr, "/sys/class/net/%s/type", name) == -1) { 2718 pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, 2719 "%s: Can't generate path name string for /sys/class/net device", 2720 name); 2721 close(sock); 2722 return -1; 2723 } 2724 fh = fopen(pathstr, "r"); 2725 if (fh != NULL) { 2726 if (fscanf(fh, "%u", &arptype) == 1) { 2727 /* 2728 * OK, we got an ARPHRD_ type; what is it? 2729 */ 2730 switch (arptype) { 2731 2732 #ifdef ARPHRD_LOOPBACK 2733 case ARPHRD_LOOPBACK: 2734 /* 2735 * These are types to which 2736 * "connected" and "disconnected" 2737 * don't apply, so don't bother 2738 * asking about it. 2739 * 2740 * XXX - add other types? 2741 */ 2742 close(sock); 2743 fclose(fh); 2744 free(pathstr); 2745 return 0; 2746 #endif 2747 2748 case ARPHRD_IRDA: 2749 case ARPHRD_IEEE80211: 2750 case ARPHRD_IEEE80211_PRISM: 2751 case ARPHRD_IEEE80211_RADIOTAP: 2752 #ifdef ARPHRD_IEEE802154 2753 case ARPHRD_IEEE802154: 2754 #endif 2755 #ifdef ARPHRD_IEEE802154_MONITOR 2756 case ARPHRD_IEEE802154_MONITOR: 2757 #endif 2758 #ifdef ARPHRD_6LOWPAN 2759 case ARPHRD_6LOWPAN: 2760 #endif 2761 /* 2762 * Various wireless types. 2763 */ 2764 *flags |= PCAP_IF_WIRELESS; 2765 break; 2766 } 2767 } 2768 fclose(fh); 2769 free(pathstr); 2770 } 2771 } 2772 2773 #ifdef ETHTOOL_GLINK 2774 memset(&ifr, 0, sizeof(ifr)); 2775 pcap_strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name)); 2776 info.cmd = ETHTOOL_GLINK; 2777 ifr.ifr_data = (caddr_t)&info; 2778 if (ioctl(sock, SIOCETHTOOL, &ifr) == -1) { 2779 int save_errno = errno; 2780 2781 switch (save_errno) { 2782 2783 case EOPNOTSUPP: 2784 case EINVAL: 2785 /* 2786 * OK, this OS version or driver doesn't support 2787 * asking for this information. 2788 * XXX - distinguish between "this doesn't 2789 * support ethtool at all because it's not 2790 * that type of device" vs. "this doesn't 2791 * support ethtool even though it's that 2792 * type of device", and return "unknown". 2793 */ 2794 *flags |= PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE; 2795 close(sock); 2796 return 0; 2797 2798 case ENODEV: 2799 /* 2800 * OK, no such device. 2801 * The user will find that out when they try to 2802 * activate the device; just say "OK" and 2803 * don't set anything. 2804 */ 2805 close(sock); 2806 return 0; 2807 2808 default: 2809 /* 2810 * Other error. 2811 */ 2812 pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, 2813 save_errno, 2814 "%s: SIOCETHTOOL(ETHTOOL_GLINK) ioctl failed", 2815 name); 2816 close(sock); 2817 return -1; 2818 } 2819 } 2820 2821 /* 2822 * Is it connected? 2823 */ 2824 if (info.data) { 2825 /* 2826 * It's connected. 2827 */ 2828 *flags |= PCAP_IF_CONNECTION_STATUS_CONNECTED; 2829 } else { 2830 /* 2831 * It's disconnected. 2832 */ 2833 *flags |= PCAP_IF_CONNECTION_STATUS_DISCONNECTED; 2834 } 2835 #endif 2836 2837 close(sock); 2838 return 0; 2839 } 2840 2841 int 2842 pcap_platform_finddevs(pcap_if_list_t *devlistp, char *errbuf) 2843 { 2844 int ret; 2845 2846 /* 2847 * Get the list of regular interfaces first. 2848 */ 2849 if (pcap_findalldevs_interfaces(devlistp, errbuf, can_be_bound, 2850 get_if_flags) == -1) 2851 return (-1); /* failure */ 2852 2853 /* 2854 * Read "/sys/class/net", and add to the list of interfaces all 2855 * interfaces listed there that we don't already have, because, 2856 * on Linux, SIOCGIFCONF reports only interfaces with IPv4 addresses, 2857 * and even getifaddrs() won't return information about 2858 * interfaces with no addresses, so you need to read "/sys/class/net" 2859 * to get the names of the rest of the interfaces. 2860 */ 2861 ret = scan_sys_class_net(devlistp, errbuf); 2862 if (ret == -1) 2863 return (-1); /* failed */ 2864 if (ret == 0) { 2865 /* 2866 * No /sys/class/net; try reading /proc/net/dev instead. 2867 */ 2868 if (scan_proc_net_dev(devlistp, errbuf) == -1) 2869 return (-1); 2870 } 2871 2872 /* 2873 * Add the "any" device. 2874 * As it refers to all network devices, not to any particular 2875 * network device, the notion of "connected" vs. "disconnected" 2876 * doesn't apply. 2877 */ 2878 if (add_dev(devlistp, "any", 2879 PCAP_IF_UP|PCAP_IF_RUNNING|PCAP_IF_CONNECTION_STATUS_NOT_APPLICABLE, 2880 any_descr, errbuf) == NULL) 2881 return (-1); 2882 2883 return (0); 2884 } 2885 2886 /* 2887 * Attach the given BPF code to the packet capture device. 2888 */ 2889 static int 2890 pcap_setfilter_linux_common(pcap_t *handle, struct bpf_program *filter, 2891 int is_mmapped) 2892 { 2893 struct pcap_linux *handlep; 2894 #ifdef SO_ATTACH_FILTER 2895 struct sock_fprog fcode; 2896 int can_filter_in_kernel; 2897 int err = 0; 2898 #endif 2899 2900 if (!handle) 2901 return -1; 2902 if (!filter) { 2903 pcap_strlcpy(handle->errbuf, "setfilter: No filter specified", 2904 PCAP_ERRBUF_SIZE); 2905 return -1; 2906 } 2907 2908 handlep = handle->priv; 2909 2910 /* Make our private copy of the filter */ 2911 2912 if (install_bpf_program(handle, filter) < 0) 2913 /* install_bpf_program() filled in errbuf */ 2914 return -1; 2915 2916 /* 2917 * Run user level packet filter by default. Will be overriden if 2918 * installing a kernel filter succeeds. 2919 */ 2920 handlep->filter_in_userland = 1; 2921 2922 /* Install kernel level filter if possible */ 2923 2924 #ifdef SO_ATTACH_FILTER 2925 #ifdef USHRT_MAX 2926 if (handle->fcode.bf_len > USHRT_MAX) { 2927 /* 2928 * fcode.len is an unsigned short for current kernel. 2929 * I have yet to see BPF-Code with that much 2930 * instructions but still it is possible. So for the 2931 * sake of correctness I added this check. 2932 */ 2933 fprintf(stderr, "Warning: Filter too complex for kernel\n"); 2934 fcode.len = 0; 2935 fcode.filter = NULL; 2936 can_filter_in_kernel = 0; 2937 } else 2938 #endif /* USHRT_MAX */ 2939 { 2940 /* 2941 * Oh joy, the Linux kernel uses struct sock_fprog instead 2942 * of struct bpf_program and of course the length field is 2943 * of different size. Pointed out by Sebastian 2944 * 2945 * Oh, and we also need to fix it up so that all "ret" 2946 * instructions with non-zero operands have MAXIMUM_SNAPLEN 2947 * as the operand if we're not capturing in memory-mapped 2948 * mode, and so that, if we're in cooked mode, all memory- 2949 * reference instructions use special magic offsets in 2950 * references to the link-layer header and assume that the 2951 * link-layer payload begins at 0; "fix_program()" will do 2952 * that. 2953 */ 2954 switch (fix_program(handle, &fcode, is_mmapped)) { 2955 2956 case -1: 2957 default: 2958 /* 2959 * Fatal error; just quit. 2960 * (The "default" case shouldn't happen; we 2961 * return -1 for that reason.) 2962 */ 2963 return -1; 2964 2965 case 0: 2966 /* 2967 * The program performed checks that we can't make 2968 * work in the kernel. 2969 */ 2970 can_filter_in_kernel = 0; 2971 break; 2972 2973 case 1: 2974 /* 2975 * We have a filter that'll work in the kernel. 2976 */ 2977 can_filter_in_kernel = 1; 2978 break; 2979 } 2980 } 2981 2982 /* 2983 * NOTE: at this point, we've set both the "len" and "filter" 2984 * fields of "fcode". As of the 2.6.32.4 kernel, at least, 2985 * those are the only members of the "sock_fprog" structure, 2986 * so we initialize every member of that structure. 2987 * 2988 * If there is anything in "fcode" that is not initialized, 2989 * it is either a field added in a later kernel, or it's 2990 * padding. 2991 * 2992 * If a new field is added, this code needs to be updated 2993 * to set it correctly. 2994 * 2995 * If there are no other fields, then: 2996 * 2997 * if the Linux kernel looks at the padding, it's 2998 * buggy; 2999 * 3000 * if the Linux kernel doesn't look at the padding, 3001 * then if some tool complains that we're passing 3002 * uninitialized data to the kernel, then the tool 3003 * is buggy and needs to understand that it's just 3004 * padding. 3005 */ 3006 if (can_filter_in_kernel) { 3007 if ((err = set_kernel_filter(handle, &fcode)) == 0) 3008 { 3009 /* 3010 * Installation succeded - using kernel filter, 3011 * so userland filtering not needed. 3012 */ 3013 handlep->filter_in_userland = 0; 3014 } 3015 else if (err == -1) /* Non-fatal error */ 3016 { 3017 /* 3018 * Print a warning if we weren't able to install 3019 * the filter for a reason other than "this kernel 3020 * isn't configured to support socket filters. 3021 */ 3022 if (errno != ENOPROTOOPT && errno != EOPNOTSUPP) { 3023 fprintf(stderr, 3024 "Warning: Kernel filter failed: %s\n", 3025 pcap_strerror(errno)); 3026 } 3027 } 3028 } 3029 3030 /* 3031 * If we're not using the kernel filter, get rid of any kernel 3032 * filter that might've been there before, e.g. because the 3033 * previous filter could work in the kernel, or because some other 3034 * code attached a filter to the socket by some means other than 3035 * calling "pcap_setfilter()". Otherwise, the kernel filter may 3036 * filter out packets that would pass the new userland filter. 3037 */ 3038 if (handlep->filter_in_userland) { 3039 if (reset_kernel_filter(handle) == -1) { 3040 pcap_fmt_errmsg_for_errno(handle->errbuf, 3041 PCAP_ERRBUF_SIZE, errno, 3042 "can't remove kernel filter"); 3043 err = -2; /* fatal error */ 3044 } 3045 } 3046 3047 /* 3048 * Free up the copy of the filter that was made by "fix_program()". 3049 */ 3050 if (fcode.filter != NULL) 3051 free(fcode.filter); 3052 3053 if (err == -2) 3054 /* Fatal error */ 3055 return -1; 3056 #endif /* SO_ATTACH_FILTER */ 3057 3058 return 0; 3059 } 3060 3061 static int 3062 pcap_setfilter_linux(pcap_t *handle, struct bpf_program *filter) 3063 { 3064 return pcap_setfilter_linux_common(handle, filter, 0); 3065 } 3066 3067 3068 /* 3069 * Set direction flag: Which packets do we accept on a forwarding 3070 * single device? IN, OUT or both? 3071 */ 3072 static int 3073 pcap_setdirection_linux(pcap_t *handle, pcap_direction_t d) 3074 { 3075 #ifdef HAVE_PF_PACKET_SOCKETS 3076 struct pcap_linux *handlep = handle->priv; 3077 3078 if (!handlep->sock_packet) { 3079 handle->direction = d; 3080 return 0; 3081 } 3082 #endif 3083 /* 3084 * We're not using PF_PACKET sockets, so we can't determine 3085 * the direction of the packet. 3086 */ 3087 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 3088 "Setting direction is not supported on SOCK_PACKET sockets"); 3089 return -1; 3090 } 3091 3092 static int 3093 is_wifi(int sock_fd 3094 #ifndef IW_MODE_MONITOR 3095 _U_ 3096 #endif 3097 , const char *device) 3098 { 3099 char *pathstr; 3100 struct stat statb; 3101 #ifdef IW_MODE_MONITOR 3102 char errbuf[PCAP_ERRBUF_SIZE]; 3103 #endif 3104 3105 /* 3106 * See if there's a sysfs wireless directory for it. 3107 * If so, it's a wireless interface. 3108 */ 3109 if (asprintf(&pathstr, "/sys/class/net/%s/wireless", device) == -1) { 3110 /* 3111 * Just give up here. 3112 */ 3113 return 0; 3114 } 3115 if (stat(pathstr, &statb) == 0) { 3116 free(pathstr); 3117 return 1; 3118 } 3119 free(pathstr); 3120 3121 #ifdef IW_MODE_MONITOR 3122 /* 3123 * OK, maybe it's not wireless, or maybe this kernel doesn't 3124 * support sysfs. Try the wireless extensions. 3125 */ 3126 if (has_wext(sock_fd, device, errbuf) == 1) { 3127 /* 3128 * It supports the wireless extensions, so it's a Wi-Fi 3129 * device. 3130 */ 3131 return 1; 3132 } 3133 #endif 3134 return 0; 3135 } 3136 3137 /* 3138 * Linux uses the ARP hardware type to identify the type of an 3139 * interface. pcap uses the DLT_xxx constants for this. This 3140 * function takes a pointer to a "pcap_t", and an ARPHRD_xxx 3141 * constant, as arguments, and sets "handle->linktype" to the 3142 * appropriate DLT_XXX constant and sets "handle->offset" to 3143 * the appropriate value (to make "handle->offset" plus link-layer 3144 * header length be a multiple of 4, so that the link-layer payload 3145 * will be aligned on a 4-byte boundary when capturing packets). 3146 * (If the offset isn't set here, it'll be 0; add code as appropriate 3147 * for cases where it shouldn't be 0.) 3148 * 3149 * If "cooked_ok" is non-zero, we can use DLT_LINUX_SLL and capture 3150 * in cooked mode; otherwise, we can't use cooked mode, so we have 3151 * to pick some type that works in raw mode, or fail. 3152 * 3153 * Sets the link type to -1 if unable to map the type. 3154 */ 3155 static void map_arphrd_to_dlt(pcap_t *handle, int sock_fd, int arptype, 3156 const char *device, int cooked_ok) 3157 { 3158 static const char cdma_rmnet[] = "cdma_rmnet"; 3159 3160 switch (arptype) { 3161 3162 case ARPHRD_ETHER: 3163 /* 3164 * For various annoying reasons having to do with DHCP 3165 * software, some versions of Android give the mobile- 3166 * phone-network interface an ARPHRD_ value of 3167 * ARPHRD_ETHER, even though the packets supplied by 3168 * that interface have no link-layer header, and begin 3169 * with an IP header, so that the ARPHRD_ value should 3170 * be ARPHRD_NONE. 3171 * 3172 * Detect those devices by checking the device name, and 3173 * use DLT_RAW for them. 3174 */ 3175 if (strncmp(device, cdma_rmnet, sizeof cdma_rmnet - 1) == 0) { 3176 handle->linktype = DLT_RAW; 3177 return; 3178 } 3179 3180 /* 3181 * Is this a real Ethernet device? If so, give it a 3182 * link-layer-type list with DLT_EN10MB and DLT_DOCSIS, so 3183 * that an application can let you choose it, in case you're 3184 * capturing DOCSIS traffic that a Cisco Cable Modem 3185 * Termination System is putting out onto an Ethernet (it 3186 * doesn't put an Ethernet header onto the wire, it puts raw 3187 * DOCSIS frames out on the wire inside the low-level 3188 * Ethernet framing). 3189 * 3190 * XXX - are there any other sorts of "fake Ethernet" that 3191 * have ARPHRD_ETHER but that shouldn't offer DLT_DOCSIS as 3192 * a Cisco CMTS won't put traffic onto it or get traffic 3193 * bridged onto it? ISDN is handled in "activate_new()", 3194 * as we fall back on cooked mode there, and we use 3195 * is_wifi() to check for 802.11 devices; are there any 3196 * others? 3197 */ 3198 if (!is_wifi(sock_fd, device)) { 3199 /* 3200 * It's not a Wi-Fi device; offer DOCSIS. 3201 */ 3202 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2); 3203 /* 3204 * If that fails, just leave the list empty. 3205 */ 3206 if (handle->dlt_list != NULL) { 3207 handle->dlt_list[0] = DLT_EN10MB; 3208 handle->dlt_list[1] = DLT_DOCSIS; 3209 handle->dlt_count = 2; 3210 } 3211 } 3212 /* FALLTHROUGH */ 3213 3214 case ARPHRD_METRICOM: 3215 case ARPHRD_LOOPBACK: 3216 handle->linktype = DLT_EN10MB; 3217 handle->offset = 2; 3218 break; 3219 3220 case ARPHRD_EETHER: 3221 handle->linktype = DLT_EN3MB; 3222 break; 3223 3224 case ARPHRD_AX25: 3225 handle->linktype = DLT_AX25_KISS; 3226 break; 3227 3228 case ARPHRD_PRONET: 3229 handle->linktype = DLT_PRONET; 3230 break; 3231 3232 case ARPHRD_CHAOS: 3233 handle->linktype = DLT_CHAOS; 3234 break; 3235 #ifndef ARPHRD_CAN 3236 #define ARPHRD_CAN 280 3237 #endif 3238 case ARPHRD_CAN: 3239 /* 3240 * Map this to DLT_LINUX_SLL; that way, CAN frames will 3241 * have ETH_P_CAN/LINUX_SLL_P_CAN as the protocol and 3242 * CAN FD frames will have ETH_P_CANFD/LINUX_SLL_P_CANFD 3243 * as the protocol, so they can be distinguished by the 3244 * protocol in the SLL header. 3245 */ 3246 handle->linktype = DLT_LINUX_SLL; 3247 break; 3248 3249 #ifndef ARPHRD_IEEE802_TR 3250 #define ARPHRD_IEEE802_TR 800 /* From Linux 2.4 */ 3251 #endif 3252 case ARPHRD_IEEE802_TR: 3253 case ARPHRD_IEEE802: 3254 handle->linktype = DLT_IEEE802; 3255 handle->offset = 2; 3256 break; 3257 3258 case ARPHRD_ARCNET: 3259 handle->linktype = DLT_ARCNET_LINUX; 3260 break; 3261 3262 #ifndef ARPHRD_FDDI /* From Linux 2.2.13 */ 3263 #define ARPHRD_FDDI 774 3264 #endif 3265 case ARPHRD_FDDI: 3266 handle->linktype = DLT_FDDI; 3267 handle->offset = 3; 3268 break; 3269 3270 #ifndef ARPHRD_ATM /* FIXME: How to #include this? */ 3271 #define ARPHRD_ATM 19 3272 #endif 3273 case ARPHRD_ATM: 3274 /* 3275 * The Classical IP implementation in ATM for Linux 3276 * supports both what RFC 1483 calls "LLC Encapsulation", 3277 * in which each packet has an LLC header, possibly 3278 * with a SNAP header as well, prepended to it, and 3279 * what RFC 1483 calls "VC Based Multiplexing", in which 3280 * different virtual circuits carry different network 3281 * layer protocols, and no header is prepended to packets. 3282 * 3283 * They both have an ARPHRD_ type of ARPHRD_ATM, so 3284 * you can't use the ARPHRD_ type to find out whether 3285 * captured packets will have an LLC header, and, 3286 * while there's a socket ioctl to *set* the encapsulation 3287 * type, there's no ioctl to *get* the encapsulation type. 3288 * 3289 * This means that 3290 * 3291 * programs that dissect Linux Classical IP frames 3292 * would have to check for an LLC header and, 3293 * depending on whether they see one or not, dissect 3294 * the frame as LLC-encapsulated or as raw IP (I 3295 * don't know whether there's any traffic other than 3296 * IP that would show up on the socket, or whether 3297 * there's any support for IPv6 in the Linux 3298 * Classical IP code); 3299 * 3300 * filter expressions would have to compile into 3301 * code that checks for an LLC header and does 3302 * the right thing. 3303 * 3304 * Both of those are a nuisance - and, at least on systems 3305 * that support PF_PACKET sockets, we don't have to put 3306 * up with those nuisances; instead, we can just capture 3307 * in cooked mode. That's what we'll do, if we can. 3308 * Otherwise, we'll just fail. 3309 */ 3310 if (cooked_ok) 3311 handle->linktype = DLT_LINUX_SLL; 3312 else 3313 handle->linktype = -1; 3314 break; 3315 3316 #ifndef ARPHRD_IEEE80211 /* From Linux 2.4.6 */ 3317 #define ARPHRD_IEEE80211 801 3318 #endif 3319 case ARPHRD_IEEE80211: 3320 handle->linktype = DLT_IEEE802_11; 3321 break; 3322 3323 #ifndef ARPHRD_IEEE80211_PRISM /* From Linux 2.4.18 */ 3324 #define ARPHRD_IEEE80211_PRISM 802 3325 #endif 3326 case ARPHRD_IEEE80211_PRISM: 3327 handle->linktype = DLT_PRISM_HEADER; 3328 break; 3329 3330 #ifndef ARPHRD_IEEE80211_RADIOTAP /* new */ 3331 #define ARPHRD_IEEE80211_RADIOTAP 803 3332 #endif 3333 case ARPHRD_IEEE80211_RADIOTAP: 3334 handle->linktype = DLT_IEEE802_11_RADIO; 3335 break; 3336 3337 case ARPHRD_PPP: 3338 /* 3339 * Some PPP code in the kernel supplies no link-layer 3340 * header whatsoever to PF_PACKET sockets; other PPP 3341 * code supplies PPP link-layer headers ("syncppp.c"); 3342 * some PPP code might supply random link-layer 3343 * headers (PPP over ISDN - there's code in Ethereal, 3344 * for example, to cope with PPP-over-ISDN captures 3345 * with which the Ethereal developers have had to cope, 3346 * heuristically trying to determine which of the 3347 * oddball link-layer headers particular packets have). 3348 * 3349 * As such, we just punt, and run all PPP interfaces 3350 * in cooked mode, if we can; otherwise, we just treat 3351 * it as DLT_RAW, for now - if somebody needs to capture, 3352 * on a 2.0[.x] kernel, on PPP devices that supply a 3353 * link-layer header, they'll have to add code here to 3354 * map to the appropriate DLT_ type (possibly adding a 3355 * new DLT_ type, if necessary). 3356 */ 3357 if (cooked_ok) 3358 handle->linktype = DLT_LINUX_SLL; 3359 else { 3360 /* 3361 * XXX - handle ISDN types here? We can't fall 3362 * back on cooked sockets, so we'd have to 3363 * figure out from the device name what type of 3364 * link-layer encapsulation it's using, and map 3365 * that to an appropriate DLT_ value, meaning 3366 * we'd map "isdnN" devices to DLT_RAW (they 3367 * supply raw IP packets with no link-layer 3368 * header) and "isdY" devices to a new DLT_I4L_IP 3369 * type that has only an Ethernet packet type as 3370 * a link-layer header. 3371 * 3372 * But sometimes we seem to get random crap 3373 * in the link-layer header when capturing on 3374 * ISDN devices.... 3375 */ 3376 handle->linktype = DLT_RAW; 3377 } 3378 break; 3379 3380 #ifndef ARPHRD_CISCO 3381 #define ARPHRD_CISCO 513 /* previously ARPHRD_HDLC */ 3382 #endif 3383 case ARPHRD_CISCO: 3384 handle->linktype = DLT_C_HDLC; 3385 break; 3386 3387 /* Not sure if this is correct for all tunnels, but it 3388 * works for CIPE */ 3389 case ARPHRD_TUNNEL: 3390 #ifndef ARPHRD_SIT 3391 #define ARPHRD_SIT 776 /* From Linux 2.2.13 */ 3392 #endif 3393 case ARPHRD_SIT: 3394 case ARPHRD_CSLIP: 3395 case ARPHRD_SLIP6: 3396 case ARPHRD_CSLIP6: 3397 case ARPHRD_ADAPT: 3398 case ARPHRD_SLIP: 3399 #ifndef ARPHRD_RAWHDLC 3400 #define ARPHRD_RAWHDLC 518 3401 #endif 3402 case ARPHRD_RAWHDLC: 3403 #ifndef ARPHRD_DLCI 3404 #define ARPHRD_DLCI 15 3405 #endif 3406 case ARPHRD_DLCI: 3407 /* 3408 * XXX - should some of those be mapped to DLT_LINUX_SLL 3409 * instead? Should we just map all of them to DLT_LINUX_SLL? 3410 */ 3411 handle->linktype = DLT_RAW; 3412 break; 3413 3414 #ifndef ARPHRD_FRAD 3415 #define ARPHRD_FRAD 770 3416 #endif 3417 case ARPHRD_FRAD: 3418 handle->linktype = DLT_FRELAY; 3419 break; 3420 3421 case ARPHRD_LOCALTLK: 3422 handle->linktype = DLT_LTALK; 3423 break; 3424 3425 case 18: 3426 /* 3427 * RFC 4338 defines an encapsulation for IP and ARP 3428 * packets that's compatible with the RFC 2625 3429 * encapsulation, but that uses a different ARP 3430 * hardware type and hardware addresses. That 3431 * ARP hardware type is 18; Linux doesn't define 3432 * any ARPHRD_ value as 18, but if it ever officially 3433 * supports RFC 4338-style IP-over-FC, it should define 3434 * one. 3435 * 3436 * For now, we map it to DLT_IP_OVER_FC, in the hopes 3437 * that this will encourage its use in the future, 3438 * should Linux ever officially support RFC 4338-style 3439 * IP-over-FC. 3440 */ 3441 handle->linktype = DLT_IP_OVER_FC; 3442 break; 3443 3444 #ifndef ARPHRD_FCPP 3445 #define ARPHRD_FCPP 784 3446 #endif 3447 case ARPHRD_FCPP: 3448 #ifndef ARPHRD_FCAL 3449 #define ARPHRD_FCAL 785 3450 #endif 3451 case ARPHRD_FCAL: 3452 #ifndef ARPHRD_FCPL 3453 #define ARPHRD_FCPL 786 3454 #endif 3455 case ARPHRD_FCPL: 3456 #ifndef ARPHRD_FCFABRIC 3457 #define ARPHRD_FCFABRIC 787 3458 #endif 3459 case ARPHRD_FCFABRIC: 3460 /* 3461 * Back in 2002, Donald Lee at Cray wanted a DLT_ for 3462 * IP-over-FC: 3463 * 3464 * http://www.mail-archive.com/tcpdump-workers@sandelman.ottawa.on.ca/msg01043.html 3465 * 3466 * and one was assigned. 3467 * 3468 * In a later private discussion (spun off from a message 3469 * on the ethereal-users list) on how to get that DLT_ 3470 * value in libpcap on Linux, I ended up deciding that 3471 * the best thing to do would be to have him tweak the 3472 * driver to set the ARPHRD_ value to some ARPHRD_FCxx 3473 * type, and map all those types to DLT_IP_OVER_FC: 3474 * 3475 * I've checked into the libpcap and tcpdump CVS tree 3476 * support for DLT_IP_OVER_FC. In order to use that, 3477 * you'd have to modify your modified driver to return 3478 * one of the ARPHRD_FCxxx types, in "fcLINUXfcp.c" - 3479 * change it to set "dev->type" to ARPHRD_FCFABRIC, for 3480 * example (the exact value doesn't matter, it can be 3481 * any of ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, or 3482 * ARPHRD_FCFABRIC). 3483 * 3484 * 11 years later, Christian Svensson wanted to map 3485 * various ARPHRD_ values to DLT_FC_2 and 3486 * DLT_FC_2_WITH_FRAME_DELIMS for raw Fibre Channel 3487 * frames: 3488 * 3489 * https://github.com/mcr/libpcap/pull/29 3490 * 3491 * There doesn't seem to be any network drivers that uses 3492 * any of the ARPHRD_FC* values for IP-over-FC, and 3493 * it's not exactly clear what the "Dummy types for non 3494 * ARP hardware" are supposed to mean (link-layer 3495 * header type? Physical network type?), so it's 3496 * not exactly clear why the ARPHRD_FC* types exist 3497 * in the first place. 3498 * 3499 * For now, we map them to DLT_FC_2, and provide an 3500 * option of DLT_FC_2_WITH_FRAME_DELIMS, as well as 3501 * DLT_IP_OVER_FC just in case there's some old 3502 * driver out there that uses one of those types for 3503 * IP-over-FC on which somebody wants to capture 3504 * packets. 3505 */ 3506 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 3); 3507 /* 3508 * If that fails, just leave the list empty. 3509 */ 3510 if (handle->dlt_list != NULL) { 3511 handle->dlt_list[0] = DLT_FC_2; 3512 handle->dlt_list[1] = DLT_FC_2_WITH_FRAME_DELIMS; 3513 handle->dlt_list[2] = DLT_IP_OVER_FC; 3514 handle->dlt_count = 3; 3515 } 3516 handle->linktype = DLT_FC_2; 3517 break; 3518 3519 #ifndef ARPHRD_IRDA 3520 #define ARPHRD_IRDA 783 3521 #endif 3522 case ARPHRD_IRDA: 3523 /* Don't expect IP packet out of this interfaces... */ 3524 handle->linktype = DLT_LINUX_IRDA; 3525 /* We need to save packet direction for IrDA decoding, 3526 * so let's use "Linux-cooked" mode. Jean II 3527 * 3528 * XXX - this is handled in activate_new(). */ 3529 /* handlep->cooked = 1; */ 3530 break; 3531 3532 /* ARPHRD_LAPD is unofficial and randomly allocated, if reallocation 3533 * is needed, please report it to <daniele@orlandi.com> */ 3534 #ifndef ARPHRD_LAPD 3535 #define ARPHRD_LAPD 8445 3536 #endif 3537 case ARPHRD_LAPD: 3538 /* Don't expect IP packet out of this interfaces... */ 3539 handle->linktype = DLT_LINUX_LAPD; 3540 break; 3541 3542 #ifndef ARPHRD_NONE 3543 #define ARPHRD_NONE 0xFFFE 3544 #endif 3545 case ARPHRD_NONE: 3546 /* 3547 * No link-layer header; packets are just IP 3548 * packets, so use DLT_RAW. 3549 */ 3550 handle->linktype = DLT_RAW; 3551 break; 3552 3553 #ifndef ARPHRD_IEEE802154 3554 #define ARPHRD_IEEE802154 804 3555 #endif 3556 case ARPHRD_IEEE802154: 3557 handle->linktype = DLT_IEEE802_15_4_NOFCS; 3558 break; 3559 3560 #ifndef ARPHRD_NETLINK 3561 #define ARPHRD_NETLINK 824 3562 #endif 3563 case ARPHRD_NETLINK: 3564 handle->linktype = DLT_NETLINK; 3565 /* 3566 * We need to use cooked mode, so that in sll_protocol we 3567 * pick up the netlink protocol type such as NETLINK_ROUTE, 3568 * NETLINK_GENERIC, NETLINK_FIB_LOOKUP, etc. 3569 * 3570 * XXX - this is handled in activate_new(). 3571 */ 3572 /* handlep->cooked = 1; */ 3573 break; 3574 3575 #ifndef ARPHRD_VSOCKMON 3576 #define ARPHRD_VSOCKMON 826 3577 #endif 3578 case ARPHRD_VSOCKMON: 3579 handle->linktype = DLT_VSOCK; 3580 break; 3581 3582 default: 3583 handle->linktype = -1; 3584 break; 3585 } 3586 } 3587 3588 /* ===== Functions to interface to the newer kernels ================== */ 3589 3590 #ifdef PACKET_RESERVE 3591 static void 3592 set_dlt_list_cooked(pcap_t *handle, int sock_fd) 3593 { 3594 socklen_t len; 3595 unsigned int tp_reserve; 3596 3597 /* 3598 * If we can't do PACKET_RESERVE, we can't reserve extra space 3599 * for a DLL_LINUX_SLL2 header, so we can't support DLT_LINUX_SLL2. 3600 */ 3601 len = sizeof(tp_reserve); 3602 if (getsockopt(sock_fd, SOL_PACKET, PACKET_RESERVE, &tp_reserve, 3603 &len) == 0) { 3604 /* 3605 * Yes, we can do DLL_LINUX_SLL2. 3606 */ 3607 handle->dlt_list = (u_int *) malloc(sizeof(u_int) * 2); 3608 /* 3609 * If that fails, just leave the list empty. 3610 */ 3611 if (handle->dlt_list != NULL) { 3612 handle->dlt_list[0] = DLT_LINUX_SLL; 3613 handle->dlt_list[1] = DLT_LINUX_SLL2; 3614 handle->dlt_count = 2; 3615 } 3616 } 3617 } 3618 #else 3619 /* 3620 * The build environment doesn't define PACKET_RESERVE, so we can't reserve 3621 * extra space for a DLL_LINUX_SLL2 header, so we can't support DLT_LINUX_SLL2. 3622 */ 3623 static void 3624 set_dlt_list_cooked(pcap_t *handle _U_, int sock_fd _U_) 3625 { 3626 } 3627 #endif 3628 3629 /* 3630 * Try to open a packet socket using the new kernel PF_PACKET interface. 3631 * Returns 1 on success, 0 on an error that means the new interface isn't 3632 * present (so the old SOCK_PACKET interface should be tried), and a 3633 * PCAP_ERROR_ value on an error that means that the old mechanism won't 3634 * work either (so it shouldn't be tried). 3635 */ 3636 static int 3637 activate_new(pcap_t *handle) 3638 { 3639 #ifdef HAVE_PF_PACKET_SOCKETS 3640 struct pcap_linux *handlep = handle->priv; 3641 const char *device = handle->opt.device; 3642 int is_any_device = (strcmp(device, "any") == 0); 3643 int protocol = pcap_protocol(handle); 3644 int sock_fd = -1, arptype, ret; 3645 #ifdef HAVE_PACKET_AUXDATA 3646 int val; 3647 #endif 3648 int err = 0; 3649 struct packet_mreq mr; 3650 #if defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT) 3651 int bpf_extensions; 3652 socklen_t len = sizeof(bpf_extensions); 3653 #endif 3654 3655 /* 3656 * Open a socket with protocol family packet. If the 3657 * "any" device was specified, we open a SOCK_DGRAM 3658 * socket for the cooked interface, otherwise we first 3659 * try a SOCK_RAW socket for the raw interface. 3660 */ 3661 sock_fd = is_any_device ? 3662 socket(PF_PACKET, SOCK_DGRAM, protocol) : 3663 socket(PF_PACKET, SOCK_RAW, protocol); 3664 3665 if (sock_fd == -1) { 3666 if (errno == EINVAL || errno == EAFNOSUPPORT) { 3667 /* 3668 * We don't support PF_PACKET/SOCK_whatever 3669 * sockets; try the old mechanism. 3670 */ 3671 return 0; 3672 } 3673 if (errno == EPERM || errno == EACCES) { 3674 /* 3675 * You don't have permission to open the 3676 * socket. 3677 */ 3678 ret = PCAP_ERROR_PERM_DENIED; 3679 } else { 3680 /* 3681 * Other error. 3682 */ 3683 ret = PCAP_ERROR; 3684 } 3685 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 3686 errno, "socket"); 3687 return ret; 3688 } 3689 3690 /* It seems the kernel supports the new interface. */ 3691 handlep->sock_packet = 0; 3692 3693 /* 3694 * Get the interface index of the loopback device. 3695 * If the attempt fails, don't fail, just set the 3696 * "handlep->lo_ifindex" to -1. 3697 * 3698 * XXX - can there be more than one device that loops 3699 * packets back, i.e. devices other than "lo"? If so, 3700 * we'd need to find them all, and have an array of 3701 * indices for them, and check all of them in 3702 * "pcap_read_packet()". 3703 */ 3704 handlep->lo_ifindex = iface_get_id(sock_fd, "lo", handle->errbuf); 3705 3706 /* 3707 * Default value for offset to align link-layer payload 3708 * on a 4-byte boundary. 3709 */ 3710 handle->offset = 0; 3711 3712 /* 3713 * What kind of frames do we have to deal with? Fall back 3714 * to cooked mode if we have an unknown interface type 3715 * or a type we know doesn't work well in raw mode. 3716 */ 3717 if (!is_any_device) { 3718 /* Assume for now we don't need cooked mode. */ 3719 handlep->cooked = 0; 3720 3721 if (handle->opt.rfmon) { 3722 /* 3723 * We were asked to turn on monitor mode. 3724 * Do so before we get the link-layer type, 3725 * because entering monitor mode could change 3726 * the link-layer type. 3727 */ 3728 err = enter_rfmon_mode(handle, sock_fd, device); 3729 if (err < 0) { 3730 /* Hard failure */ 3731 close(sock_fd); 3732 return err; 3733 } 3734 if (err == 0) { 3735 /* 3736 * Nothing worked for turning monitor mode 3737 * on. 3738 */ 3739 close(sock_fd); 3740 return PCAP_ERROR_RFMON_NOTSUP; 3741 } 3742 3743 /* 3744 * Either monitor mode has been turned on for 3745 * the device, or we've been given a different 3746 * device to open for monitor mode. If we've 3747 * been given a different device, use it. 3748 */ 3749 if (handlep->mondevice != NULL) 3750 device = handlep->mondevice; 3751 } 3752 arptype = iface_get_arptype(sock_fd, device, handle->errbuf); 3753 if (arptype < 0) { 3754 close(sock_fd); 3755 return arptype; 3756 } 3757 map_arphrd_to_dlt(handle, sock_fd, arptype, device, 1); 3758 if (handle->linktype == -1 || 3759 handle->linktype == DLT_LINUX_SLL || 3760 handle->linktype == DLT_LINUX_IRDA || 3761 handle->linktype == DLT_LINUX_LAPD || 3762 handle->linktype == DLT_NETLINK || 3763 (handle->linktype == DLT_EN10MB && 3764 (strncmp("isdn", device, 4) == 0 || 3765 strncmp("isdY", device, 4) == 0))) { 3766 /* 3767 * Unknown interface type (-1), or a 3768 * device we explicitly chose to run 3769 * in cooked mode (e.g., PPP devices), 3770 * or an ISDN device (whose link-layer 3771 * type we can only determine by using 3772 * APIs that may be different on different 3773 * kernels) - reopen in cooked mode. 3774 */ 3775 if (close(sock_fd) == -1) { 3776 pcap_fmt_errmsg_for_errno(handle->errbuf, 3777 PCAP_ERRBUF_SIZE, errno, "close"); 3778 return PCAP_ERROR; 3779 } 3780 sock_fd = socket(PF_PACKET, SOCK_DGRAM, protocol); 3781 if (sock_fd == -1) { 3782 if (errno == EPERM || errno == EACCES) { 3783 /* 3784 * You don't have permission to 3785 * open the socket. 3786 */ 3787 ret = PCAP_ERROR_PERM_DENIED; 3788 } else { 3789 /* 3790 * Other error. 3791 */ 3792 ret = PCAP_ERROR; 3793 } 3794 pcap_fmt_errmsg_for_errno(handle->errbuf, 3795 PCAP_ERRBUF_SIZE, errno, "socket"); 3796 return ret; 3797 } 3798 handlep->cooked = 1; 3799 3800 /* 3801 * Get rid of any link-layer type list 3802 * we allocated - this only supports cooked 3803 * capture. 3804 */ 3805 if (handle->dlt_list != NULL) { 3806 free(handle->dlt_list); 3807 handle->dlt_list = NULL; 3808 handle->dlt_count = 0; 3809 set_dlt_list_cooked(handle, sock_fd); 3810 } 3811 3812 if (handle->linktype == -1) { 3813 /* 3814 * Warn that we're falling back on 3815 * cooked mode; we may want to 3816 * update "map_arphrd_to_dlt()" 3817 * to handle the new type. 3818 */ 3819 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 3820 "arptype %d not " 3821 "supported by libpcap - " 3822 "falling back to cooked " 3823 "socket", 3824 arptype); 3825 } 3826 3827 /* 3828 * IrDA capture is not a real "cooked" capture, 3829 * it's IrLAP frames, not IP packets. The 3830 * same applies to LAPD capture. 3831 */ 3832 if (handle->linktype != DLT_LINUX_IRDA && 3833 handle->linktype != DLT_LINUX_LAPD && 3834 handle->linktype != DLT_NETLINK) 3835 handle->linktype = DLT_LINUX_SLL; 3836 } 3837 3838 handlep->ifindex = iface_get_id(sock_fd, device, 3839 handle->errbuf); 3840 if (handlep->ifindex == -1) { 3841 close(sock_fd); 3842 return PCAP_ERROR; 3843 } 3844 3845 if ((err = iface_bind(sock_fd, handlep->ifindex, 3846 handle->errbuf, protocol)) != 1) { 3847 close(sock_fd); 3848 if (err < 0) 3849 return err; 3850 else 3851 return 0; /* try old mechanism */ 3852 } 3853 } else { 3854 /* 3855 * The "any" device. 3856 */ 3857 if (handle->opt.rfmon) { 3858 /* 3859 * It doesn't support monitor mode. 3860 */ 3861 close(sock_fd); 3862 return PCAP_ERROR_RFMON_NOTSUP; 3863 } 3864 3865 /* 3866 * It uses cooked mode. 3867 */ 3868 handlep->cooked = 1; 3869 handle->linktype = DLT_LINUX_SLL; 3870 handle->dlt_list = NULL; 3871 handle->dlt_count = 0; 3872 set_dlt_list_cooked(handle, sock_fd); 3873 3874 /* 3875 * We're not bound to a device. 3876 * For now, we're using this as an indication 3877 * that we can't transmit; stop doing that only 3878 * if we figure out how to transmit in cooked 3879 * mode. 3880 */ 3881 handlep->ifindex = -1; 3882 } 3883 3884 /* 3885 * Select promiscuous mode on if "promisc" is set. 3886 * 3887 * Do not turn allmulti mode on if we don't select 3888 * promiscuous mode - on some devices (e.g., Orinoco 3889 * wireless interfaces), allmulti mode isn't supported 3890 * and the driver implements it by turning promiscuous 3891 * mode on, and that screws up the operation of the 3892 * card as a normal networking interface, and on no 3893 * other platform I know of does starting a non- 3894 * promiscuous capture affect which multicast packets 3895 * are received by the interface. 3896 */ 3897 3898 /* 3899 * Hmm, how can we set promiscuous mode on all interfaces? 3900 * I am not sure if that is possible at all. For now, we 3901 * silently ignore attempts to turn promiscuous mode on 3902 * for the "any" device (so you don't have to explicitly 3903 * disable it in programs such as tcpdump). 3904 */ 3905 3906 if (!is_any_device && handle->opt.promisc) { 3907 memset(&mr, 0, sizeof(mr)); 3908 mr.mr_ifindex = handlep->ifindex; 3909 mr.mr_type = PACKET_MR_PROMISC; 3910 if (setsockopt(sock_fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP, 3911 &mr, sizeof(mr)) == -1) { 3912 pcap_fmt_errmsg_for_errno(handle->errbuf, 3913 PCAP_ERRBUF_SIZE, errno, "setsockopt (PACKET_ADD_MEMBERSHIP)"); 3914 close(sock_fd); 3915 return PCAP_ERROR; 3916 } 3917 } 3918 3919 /* Enable auxillary data if supported and reserve room for 3920 * reconstructing VLAN headers. */ 3921 #ifdef HAVE_PACKET_AUXDATA 3922 val = 1; 3923 if (setsockopt(sock_fd, SOL_PACKET, PACKET_AUXDATA, &val, 3924 sizeof(val)) == -1 && errno != ENOPROTOOPT) { 3925 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 3926 errno, "setsockopt (PACKET_AUXDATA)"); 3927 close(sock_fd); 3928 return PCAP_ERROR; 3929 } 3930 handle->offset += VLAN_TAG_LEN; 3931 #endif /* HAVE_PACKET_AUXDATA */ 3932 3933 /* 3934 * This is a 2.2[.x] or later kernel (we know that 3935 * because we're not using a SOCK_PACKET socket - 3936 * PF_PACKET is supported only in 2.2 and later 3937 * kernels). 3938 * 3939 * We can safely pass "recvfrom()" a byte count 3940 * based on the snapshot length. 3941 * 3942 * If we're in cooked mode, make the snapshot length 3943 * large enough to hold a "cooked mode" header plus 3944 * 1 byte of packet data (so we don't pass a byte 3945 * count of 0 to "recvfrom()"). 3946 * XXX - we don't know whether this will be DLT_LINUX_SLL 3947 * or DLT_LINUX_SLL2, so make sure it's big enough for 3948 * a DLT_LINUX_SLL2 "cooked mode" header; a snapshot length 3949 * that small is silly anyway. 3950 */ 3951 if (handlep->cooked) { 3952 if (handle->snapshot < SLL2_HDR_LEN + 1) 3953 handle->snapshot = SLL2_HDR_LEN + 1; 3954 } 3955 handle->bufsize = handle->snapshot; 3956 3957 /* 3958 * Set the offset at which to insert VLAN tags. 3959 * That should be the offset of the type field. 3960 */ 3961 switch (handle->linktype) { 3962 3963 case DLT_EN10MB: 3964 /* 3965 * The type field is after the destination and source 3966 * MAC address. 3967 */ 3968 handlep->vlan_offset = 2 * ETH_ALEN; 3969 break; 3970 3971 case DLT_LINUX_SLL: 3972 /* 3973 * The type field is in the last 2 bytes of the 3974 * DLT_LINUX_SLL header. 3975 */ 3976 handlep->vlan_offset = SLL_HDR_LEN - 2; 3977 break; 3978 3979 default: 3980 handlep->vlan_offset = -1; /* unknown */ 3981 break; 3982 } 3983 3984 #if defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) 3985 if (handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO) { 3986 int nsec_tstamps = 1; 3987 3988 if (setsockopt(sock_fd, SOL_SOCKET, SO_TIMESTAMPNS, &nsec_tstamps, sizeof(nsec_tstamps)) < 0) { 3989 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, "setsockopt: unable to set SO_TIMESTAMPNS"); 3990 close(sock_fd); 3991 return PCAP_ERROR; 3992 } 3993 } 3994 #endif /* defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) */ 3995 3996 /* 3997 * We've succeeded. Save the socket FD in the pcap structure. 3998 */ 3999 handle->fd = sock_fd; 4000 4001 #if defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT) 4002 /* 4003 * Can we generate special code for VLAN checks? 4004 * (XXX - what if we need the special code but it's not supported 4005 * by the OS? Is that possible?) 4006 */ 4007 if (getsockopt(sock_fd, SOL_SOCKET, SO_BPF_EXTENSIONS, 4008 &bpf_extensions, &len) == 0) { 4009 if (bpf_extensions >= SKF_AD_VLAN_TAG_PRESENT) { 4010 /* 4011 * Yes, we can. Request that we do so. 4012 */ 4013 handle->bpf_codegen_flags |= BPF_SPECIAL_VLAN_HANDLING; 4014 } 4015 } 4016 #endif /* defined(SO_BPF_EXTENSIONS) && defined(SKF_AD_VLAN_TAG_PRESENT) */ 4017 4018 return 1; 4019 #else /* HAVE_PF_PACKET_SOCKETS */ 4020 pcap_strlcpy(ebuf, 4021 "New packet capturing interface not supported by build " 4022 "environment", PCAP_ERRBUF_SIZE); 4023 return 0; 4024 #endif /* HAVE_PF_PACKET_SOCKETS */ 4025 } 4026 4027 #ifdef HAVE_PACKET_RING 4028 /* 4029 * Attempt to activate with memory-mapped access. 4030 * 4031 * On success, returns 1, and sets *status to 0 if there are no warnings 4032 * or to a PCAP_WARNING_ code if there is a warning. 4033 * 4034 * On failure due to lack of support for memory-mapped capture, returns 4035 * 0. 4036 * 4037 * On error, returns -1, and sets *status to the appropriate error code; 4038 * if that is PCAP_ERROR, sets handle->errbuf to the appropriate message. 4039 */ 4040 static int 4041 activate_mmap(pcap_t *handle, int *status) 4042 { 4043 struct pcap_linux *handlep = handle->priv; 4044 int ret; 4045 4046 /* 4047 * Attempt to allocate a buffer to hold the contents of one 4048 * packet, for use by the oneshot callback. 4049 */ 4050 handlep->oneshot_buffer = malloc(handle->snapshot); 4051 if (handlep->oneshot_buffer == NULL) { 4052 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 4053 errno, "can't allocate oneshot buffer"); 4054 *status = PCAP_ERROR; 4055 return -1; 4056 } 4057 4058 if (handle->opt.buffer_size == 0) { 4059 /* by default request 2M for the ring buffer */ 4060 handle->opt.buffer_size = 2*1024*1024; 4061 } 4062 ret = prepare_tpacket_socket(handle); 4063 if (ret == -1) { 4064 free(handlep->oneshot_buffer); 4065 *status = PCAP_ERROR; 4066 return ret; 4067 } 4068 ret = create_ring(handle, status); 4069 if (ret == 0) { 4070 /* 4071 * We don't support memory-mapped capture; our caller 4072 * will fall back on reading from the socket. 4073 */ 4074 free(handlep->oneshot_buffer); 4075 return 0; 4076 } 4077 if (ret == -1) { 4078 /* 4079 * Error attempting to enable memory-mapped capture; 4080 * fail. create_ring() has set *status. 4081 */ 4082 free(handlep->oneshot_buffer); 4083 return -1; 4084 } 4085 4086 /* 4087 * Success. *status has been set either to 0 if there are no 4088 * warnings or to a PCAP_WARNING_ value if there is a warning. 4089 * 4090 * Override some defaults and inherit the other fields from 4091 * activate_new. 4092 * handle->offset is used to get the current position into the rx ring. 4093 * handle->cc is used to store the ring size. 4094 */ 4095 4096 switch (handlep->tp_version) { 4097 case TPACKET_V1: 4098 handle->read_op = pcap_read_linux_mmap_v1; 4099 break; 4100 case TPACKET_V1_64: 4101 handle->read_op = pcap_read_linux_mmap_v1_64; 4102 break; 4103 #ifdef HAVE_TPACKET2 4104 case TPACKET_V2: 4105 handle->read_op = pcap_read_linux_mmap_v2; 4106 break; 4107 #endif 4108 #ifdef HAVE_TPACKET3 4109 case TPACKET_V3: 4110 handle->read_op = pcap_read_linux_mmap_v3; 4111 break; 4112 #endif 4113 } 4114 handle->cleanup_op = pcap_cleanup_linux_mmap; 4115 handle->setfilter_op = pcap_setfilter_linux_mmap; 4116 handle->setnonblock_op = pcap_setnonblock_mmap; 4117 handle->getnonblock_op = pcap_getnonblock_mmap; 4118 handle->oneshot_callback = pcap_oneshot_mmap; 4119 handle->selectable_fd = handle->fd; 4120 return 1; 4121 } 4122 #else /* HAVE_PACKET_RING */ 4123 static int 4124 activate_mmap(pcap_t *handle _U_, int *status _U_) 4125 { 4126 return 0; 4127 } 4128 #endif /* HAVE_PACKET_RING */ 4129 4130 #ifdef HAVE_PACKET_RING 4131 4132 #if defined(HAVE_TPACKET2) || defined(HAVE_TPACKET3) 4133 /* 4134 * Attempt to set the socket to the specified version of the memory-mapped 4135 * header. 4136 * 4137 * Return 0 if we succeed; return 1 if we fail because that version isn't 4138 * supported; return -1 on any other error, and set handle->errbuf. 4139 */ 4140 static int 4141 init_tpacket(pcap_t *handle, int version, const char *version_str) 4142 { 4143 struct pcap_linux *handlep = handle->priv; 4144 int val = version; 4145 socklen_t len = sizeof(val); 4146 4147 /* 4148 * Probe whether kernel supports the specified TPACKET version; 4149 * this also gets the length of the header for that version. 4150 * 4151 * This socket option was introduced in 2.6.27, which was 4152 * also the first release with TPACKET_V2 support. 4153 */ 4154 if (getsockopt(handle->fd, SOL_PACKET, PACKET_HDRLEN, &val, &len) < 0) { 4155 if (errno == ENOPROTOOPT || errno == EINVAL) { 4156 /* 4157 * ENOPROTOOPT means the kernel is too old to 4158 * support PACKET_HDRLEN at all, which means 4159 * it either doesn't support TPACKET at all 4160 * or supports only TPACKET_V1. 4161 */ 4162 return 1; /* no */ 4163 } 4164 4165 /* Failed to even find out; this is a fatal error. */ 4166 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 4167 errno, "can't get %s header len on packet socket", 4168 version_str); 4169 return -1; 4170 } 4171 handlep->tp_hdrlen = val; 4172 4173 val = version; 4174 if (setsockopt(handle->fd, SOL_PACKET, PACKET_VERSION, &val, 4175 sizeof(val)) < 0) { 4176 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 4177 errno, "can't activate %s on packet socket", version_str); 4178 return -1; 4179 } 4180 handlep->tp_version = version; 4181 4182 /* 4183 * Reserve space for VLAN tag reconstruction. 4184 * This option was also introduced in 2.6.27. 4185 */ 4186 val = VLAN_TAG_LEN; 4187 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE, &val, 4188 sizeof(val)) < 0) { 4189 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 4190 errno, "can't set up reserve on packet socket"); 4191 return -1; 4192 } 4193 4194 return 0; 4195 } 4196 #endif /* defined HAVE_TPACKET2 || defined HAVE_TPACKET3 */ 4197 4198 /* 4199 * If the instruction set for which we're compiling has both 32-bit 4200 * and 64-bit versions, and Linux support for the 64-bit version 4201 * predates TPACKET_V2, define ISA_64_BIT as the .machine value 4202 * you get from uname() for the 64-bit version. Otherwise, leave 4203 * it undefined. (This includes ARM, which has a 64-bit version, 4204 * but Linux support for it appeared well after TPACKET_V2 support 4205 * did, so there should never be a case where 32-bit ARM code is 4206 * running o a 64-bit kernel that only supports TPACKET_V1.) 4207 * 4208 * If we've omitted your favorite such architecture, please contribute 4209 * a patch. (No patch is needed for architectures that are 32-bit-only 4210 * or for which Linux has no support for 32-bit userland - or for which, 4211 * as noted, 64-bit support appeared in Linux after TPACKET_V2 support 4212 * did.) 4213 */ 4214 #if defined(__i386__) 4215 #define ISA_64_BIT "x86_64" 4216 #elif defined(__ppc__) 4217 #define ISA_64_BIT "ppc64" 4218 #elif defined(__sparc__) 4219 #define ISA_64_BIT "sparc64" 4220 #elif defined(__s390__) 4221 #define ISA_64_BIT "s390x" 4222 #elif defined(__mips__) 4223 #define ISA_64_BIT "mips64" 4224 #elif defined(__hppa__) 4225 #define ISA_64_BIT "parisc64" 4226 #endif 4227 4228 /* 4229 * Attempt to set the socket to version 3 of the memory-mapped header and, 4230 * if that fails because version 3 isn't supported, attempt to fall 4231 * back to version 2. If version 2 isn't supported, just leave it at 4232 * version 1. 4233 * 4234 * Return 1 if we succeed or if we fail because neither version 2 nor 3 is 4235 * supported; return -1 on any other error, and set handle->errbuf. 4236 */ 4237 static int 4238 prepare_tpacket_socket(pcap_t *handle) 4239 { 4240 struct pcap_linux *handlep = handle->priv; 4241 #if defined(HAVE_TPACKET2) || defined(HAVE_TPACKET3) 4242 int ret; 4243 #endif 4244 4245 #ifdef HAVE_TPACKET3 4246 /* 4247 * Try setting the version to TPACKET_V3. 4248 * 4249 * The only mode in which buffering is done on PF_PACKET 4250 * sockets, so that packets might not be delivered 4251 * immediately, is TPACKET_V3 mode. 4252 * 4253 * The buffering cannot be disabled in that mode, so 4254 * if the user has requested immediate mode, we don't 4255 * use TPACKET_V3. 4256 */ 4257 if (!handle->opt.immediate) { 4258 ret = init_tpacket(handle, TPACKET_V3, "TPACKET_V3"); 4259 if (ret == 0) { 4260 /* 4261 * Success. 4262 */ 4263 return 1; 4264 } 4265 if (ret == -1) { 4266 /* 4267 * We failed for some reason other than "the 4268 * kernel doesn't support TPACKET_V3". 4269 */ 4270 return -1; 4271 } 4272 } 4273 #endif /* HAVE_TPACKET3 */ 4274 4275 #ifdef HAVE_TPACKET2 4276 /* 4277 * Try setting the version to TPACKET_V2. 4278 */ 4279 ret = init_tpacket(handle, TPACKET_V2, "TPACKET_V2"); 4280 if (ret == 0) { 4281 /* 4282 * Success. 4283 */ 4284 return 1; 4285 } 4286 if (ret == -1) { 4287 /* 4288 * We failed for some reason other than "the 4289 * kernel doesn't support TPACKET_V2". 4290 */ 4291 return -1; 4292 } 4293 #endif /* HAVE_TPACKET2 */ 4294 4295 /* 4296 * OK, we're using TPACKET_V1, as either that's all the kernel 4297 * supports or it doesn't support TPACKET at all. In the latter 4298 * case, create_ring() will fail, and we'll fall back on non- 4299 * memory-mapped capture. 4300 */ 4301 handlep->tp_version = TPACKET_V1; 4302 handlep->tp_hdrlen = sizeof(struct tpacket_hdr); 4303 4304 #ifdef ISA_64_BIT 4305 /* 4306 * 32-bit userspace + 64-bit kernel + TPACKET_V1 are not compatible with 4307 * each other due to platform-dependent data type size differences. 4308 * 4309 * If we have a 32-bit userland and a 64-bit kernel, use an 4310 * internally-defined TPACKET_V1_64, with which we use a 64-bit 4311 * version of the data structures. 4312 */ 4313 if (sizeof(long) == 4) { 4314 /* 4315 * This is 32-bit code. 4316 */ 4317 struct utsname utsname; 4318 4319 if (uname(&utsname) == -1) { 4320 /* 4321 * Failed. 4322 */ 4323 pcap_fmt_errmsg_for_errno(handle->errbuf, 4324 PCAP_ERRBUF_SIZE, errno, "uname failed"); 4325 return -1; 4326 } 4327 if (strcmp(utsname.machine, ISA_64_BIT) == 0) { 4328 /* 4329 * uname() tells us the machine is 64-bit, 4330 * so we presumably have a 64-bit kernel. 4331 * 4332 * XXX - this presumes that uname() won't lie 4333 * in 32-bit code and claim that the machine 4334 * has the 32-bit version of the ISA. 4335 */ 4336 handlep->tp_version = TPACKET_V1_64; 4337 handlep->tp_hdrlen = sizeof(struct tpacket_hdr_64); 4338 } 4339 } 4340 #endif 4341 4342 return 1; 4343 } 4344 4345 #define MAX(a,b) ((a)>(b)?(a):(b)) 4346 4347 /* 4348 * Attempt to set up memory-mapped access. 4349 * 4350 * On success, returns 1, and sets *status to 0 if there are no warnings 4351 * or to a PCAP_WARNING_ code if there is a warning. 4352 * 4353 * On failure due to lack of support for memory-mapped capture, returns 4354 * 0. 4355 * 4356 * On error, returns -1, and sets *status to the appropriate error code; 4357 * if that is PCAP_ERROR, sets handle->errbuf to the appropriate message. 4358 */ 4359 static int 4360 create_ring(pcap_t *handle, int *status) 4361 { 4362 struct pcap_linux *handlep = handle->priv; 4363 unsigned i, j, frames_per_block; 4364 #ifdef HAVE_TPACKET3 4365 /* 4366 * For sockets using TPACKET_V1 or TPACKET_V2, the extra 4367 * stuff at the end of a struct tpacket_req3 will be 4368 * ignored, so this is OK even for those sockets. 4369 */ 4370 struct tpacket_req3 req; 4371 #else 4372 struct tpacket_req req; 4373 #endif 4374 socklen_t len; 4375 unsigned int sk_type, tp_reserve, maclen, tp_hdrlen, netoff, macoff; 4376 unsigned int frame_size; 4377 4378 /* 4379 * Start out assuming no warnings or errors. 4380 */ 4381 *status = 0; 4382 4383 switch (handlep->tp_version) { 4384 4385 case TPACKET_V1: 4386 case TPACKET_V1_64: 4387 #ifdef HAVE_TPACKET2 4388 case TPACKET_V2: 4389 #endif 4390 /* Note that with large snapshot length (say 256K, which is 4391 * the default for recent versions of tcpdump, Wireshark, 4392 * TShark, dumpcap or 64K, the value that "-s 0" has given for 4393 * a long time with tcpdump), if we use the snapshot 4394 * length to calculate the frame length, only a few frames 4395 * will be available in the ring even with pretty 4396 * large ring size (and a lot of memory will be unused). 4397 * 4398 * Ideally, we should choose a frame length based on the 4399 * minimum of the specified snapshot length and the maximum 4400 * packet size. That's not as easy as it sounds; consider, 4401 * for example, an 802.11 interface in monitor mode, where 4402 * the frame would include a radiotap header, where the 4403 * maximum radiotap header length is device-dependent. 4404 * 4405 * So, for now, we just do this for Ethernet devices, where 4406 * there's no metadata header, and the link-layer header is 4407 * fixed length. We can get the maximum packet size by 4408 * adding 18, the Ethernet header length plus the CRC length 4409 * (just in case we happen to get the CRC in the packet), to 4410 * the MTU of the interface; we fetch the MTU in the hopes 4411 * that it reflects support for jumbo frames. (Even if the 4412 * interface is just being used for passive snooping, the 4413 * driver might set the size of buffers in the receive ring 4414 * based on the MTU, so that the MTU limits the maximum size 4415 * of packets that we can receive.) 4416 * 4417 * If segmentation/fragmentation or receive offload are 4418 * enabled, we can get reassembled/aggregated packets larger 4419 * than MTU, but bounded to 65535 plus the Ethernet overhead, 4420 * due to kernel and protocol constraints */ 4421 frame_size = handle->snapshot; 4422 if (handle->linktype == DLT_EN10MB) { 4423 unsigned int max_frame_len; 4424 int mtu; 4425 int offload; 4426 4427 mtu = iface_get_mtu(handle->fd, handle->opt.device, 4428 handle->errbuf); 4429 if (mtu == -1) { 4430 *status = PCAP_ERROR; 4431 return -1; 4432 } 4433 offload = iface_get_offload(handle); 4434 if (offload == -1) { 4435 *status = PCAP_ERROR; 4436 return -1; 4437 } 4438 if (offload) 4439 max_frame_len = MAX(mtu, 65535); 4440 else 4441 max_frame_len = mtu; 4442 max_frame_len += 18; 4443 4444 if (frame_size > max_frame_len) 4445 frame_size = max_frame_len; 4446 } 4447 4448 /* NOTE: calculus matching those in tpacket_rcv() 4449 * in linux-2.6/net/packet/af_packet.c 4450 */ 4451 len = sizeof(sk_type); 4452 if (getsockopt(handle->fd, SOL_SOCKET, SO_TYPE, &sk_type, 4453 &len) < 0) { 4454 pcap_fmt_errmsg_for_errno(handle->errbuf, 4455 PCAP_ERRBUF_SIZE, errno, "getsockopt (SO_TYPE)"); 4456 *status = PCAP_ERROR; 4457 return -1; 4458 } 4459 #ifdef PACKET_RESERVE 4460 len = sizeof(tp_reserve); 4461 if (getsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE, 4462 &tp_reserve, &len) < 0) { 4463 if (errno != ENOPROTOOPT) { 4464 /* 4465 * ENOPROTOOPT means "kernel doesn't support 4466 * PACKET_RESERVE", in which case we fall back 4467 * as best we can. 4468 */ 4469 pcap_fmt_errmsg_for_errno(handle->errbuf, 4470 PCAP_ERRBUF_SIZE, errno, 4471 "getsockopt (PACKET_RESERVE)"); 4472 *status = PCAP_ERROR; 4473 return -1; 4474 } 4475 /* 4476 * Older kernel, so we can't use PACKET_RESERVE; 4477 * this means we can't reserver extra space 4478 * for a DLT_LINUX_SLL2 header. 4479 */ 4480 tp_reserve = 0; 4481 } else { 4482 /* 4483 * We can reserve extra space for a DLT_LINUX_SLL2 4484 * header. Do so. 4485 * 4486 * XXX - we assume that the kernel is still adding 4487 * 16 bytes of extra space; that happens to 4488 * correspond to SLL_HDR_LEN (whether intentionally 4489 * or not - the kernel code has a raw "16" in 4490 * the expression), so we subtract SLL_HDR_LEN 4491 * from SLL2_HDR_LEN to get the additional space 4492 * needed. 4493 * 4494 * XXX - should we use TPACKET_ALIGN(SLL2_HDR_LEN - SLL_HDR_LEN)? 4495 */ 4496 tp_reserve += SLL2_HDR_LEN - SLL_HDR_LEN; 4497 len = sizeof(tp_reserve); 4498 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE, 4499 &tp_reserve, len) < 0) { 4500 pcap_fmt_errmsg_for_errno(handle->errbuf, 4501 PCAP_ERRBUF_SIZE, errno, 4502 "setsockopt (PACKET_RESERVE)"); 4503 *status = PCAP_ERROR; 4504 return -1; 4505 } 4506 } 4507 #else 4508 /* 4509 * Build environment for an older kernel, so we can't 4510 * use PACKET_RESERVE; this means we can't reserve 4511 * extra space for a DLT_LINUX_SLL2 header. 4512 */ 4513 tp_reserve = 0; 4514 #endif 4515 maclen = (sk_type == SOCK_DGRAM) ? 0 : MAX_LINKHEADER_SIZE; 4516 /* XXX: in the kernel maclen is calculated from 4517 * LL_ALLOCATED_SPACE(dev) and vnet_hdr.hdr_len 4518 * in: packet_snd() in linux-2.6/net/packet/af_packet.c 4519 * then packet_alloc_skb() in linux-2.6/net/packet/af_packet.c 4520 * then sock_alloc_send_pskb() in linux-2.6/net/core/sock.c 4521 * but I see no way to get those sizes in userspace, 4522 * like for instance with an ifreq ioctl(); 4523 * the best thing I've found so far is MAX_HEADER in 4524 * the kernel part of linux-2.6/include/linux/netdevice.h 4525 * which goes up to 128+48=176; since pcap-linux.c 4526 * defines a MAX_LINKHEADER_SIZE of 256 which is 4527 * greater than that, let's use it.. maybe is it even 4528 * large enough to directly replace macoff.. 4529 */ 4530 tp_hdrlen = TPACKET_ALIGN(handlep->tp_hdrlen) + sizeof(struct sockaddr_ll) ; 4531 netoff = TPACKET_ALIGN(tp_hdrlen + (maclen < 16 ? 16 : maclen)) + tp_reserve; 4532 /* NOTE: AFAICS tp_reserve may break the TPACKET_ALIGN 4533 * of netoff, which contradicts 4534 * linux-2.6/Documentation/networking/packet_mmap.txt 4535 * documenting that: 4536 * "- Gap, chosen so that packet data (Start+tp_net) 4537 * aligns to TPACKET_ALIGNMENT=16" 4538 */ 4539 /* NOTE: in linux-2.6/include/linux/skbuff.h: 4540 * "CPUs often take a performance hit 4541 * when accessing unaligned memory locations" 4542 */ 4543 macoff = netoff - maclen; 4544 req.tp_frame_size = TPACKET_ALIGN(macoff + frame_size); 4545 /* 4546 * Round the buffer size up to a multiple of the 4547 * frame size (rather than rounding down, which 4548 * would give a buffer smaller than our caller asked 4549 * for, and possibly give zero frames if the requested 4550 * buffer size is too small for one frame). 4551 */ 4552 req.tp_frame_nr = (handle->opt.buffer_size + req.tp_frame_size - 1)/req.tp_frame_size; 4553 break; 4554 4555 #ifdef HAVE_TPACKET3 4556 case TPACKET_V3: 4557 /* 4558 * If we have TPACKET_V3, we have PACKET_RESERVE. 4559 */ 4560 len = sizeof(tp_reserve); 4561 if (getsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE, 4562 &tp_reserve, &len) < 0) { 4563 /* 4564 * Even ENOPROTOOPT is an error - we wouldn't 4565 * be here if the kernel didn't support 4566 * TPACKET_V3, which means it supports 4567 * PACKET_RESERVE. 4568 */ 4569 pcap_fmt_errmsg_for_errno(handle->errbuf, 4570 PCAP_ERRBUF_SIZE, errno, 4571 "getsockopt (PACKET_RESERVE)"); 4572 *status = PCAP_ERROR; 4573 return -1; 4574 } 4575 /* 4576 * We can reserve extra space for a DLT_LINUX_SLL2 4577 * header. Do so. 4578 * 4579 * XXX - we assume that the kernel is still adding 4580 * 16 bytes of extra space; that happens to 4581 * correspond to SLL_HDR_LEN (whether intentionally 4582 * or not - the kernel code has a raw "16" in 4583 * the expression), so we subtract SLL_HDR_LEN 4584 * from SLL2_HDR_LEN to get the additional space 4585 * needed. 4586 * 4587 * XXX - should we use TPACKET_ALIGN(SLL2_HDR_LEN - SLL_HDR_LEN)? 4588 */ 4589 tp_reserve += SLL2_HDR_LEN - SLL_HDR_LEN; 4590 len = sizeof(tp_reserve); 4591 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RESERVE, 4592 &tp_reserve, len) < 0) { 4593 pcap_fmt_errmsg_for_errno(handle->errbuf, 4594 PCAP_ERRBUF_SIZE, errno, 4595 "setsockopt (PACKET_RESERVE)"); 4596 *status = PCAP_ERROR; 4597 return -1; 4598 } 4599 4600 /* The "frames" for this are actually buffers that 4601 * contain multiple variable-sized frames. 4602 * 4603 * We pick a "frame" size of MAXIMUM_SNAPLEN to leave 4604 * enough room for at least one reasonably-sized packet 4605 * in the "frame". */ 4606 req.tp_frame_size = MAXIMUM_SNAPLEN; 4607 /* 4608 * Round the buffer size up to a multiple of the 4609 * "frame" size (rather than rounding down, which 4610 * would give a buffer smaller than our caller asked 4611 * for, and possibly give zero "frames" if the requested 4612 * buffer size is too small for one "frame"). 4613 */ 4614 req.tp_frame_nr = (handle->opt.buffer_size + req.tp_frame_size - 1)/req.tp_frame_size; 4615 break; 4616 #endif 4617 default: 4618 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 4619 "Internal error: unknown TPACKET_ value %u", 4620 handlep->tp_version); 4621 *status = PCAP_ERROR; 4622 return -1; 4623 } 4624 4625 /* compute the minumum block size that will handle this frame. 4626 * The block has to be page size aligned. 4627 * The max block size allowed by the kernel is arch-dependent and 4628 * it's not explicitly checked here. */ 4629 req.tp_block_size = getpagesize(); 4630 while (req.tp_block_size < req.tp_frame_size) 4631 req.tp_block_size <<= 1; 4632 4633 frames_per_block = req.tp_block_size/req.tp_frame_size; 4634 4635 /* 4636 * PACKET_TIMESTAMP was added after linux/net_tstamp.h was, 4637 * so we check for PACKET_TIMESTAMP. We check for 4638 * linux/net_tstamp.h just in case a system somehow has 4639 * PACKET_TIMESTAMP but not linux/net_tstamp.h; that might 4640 * be unnecessary. 4641 * 4642 * SIOCSHWTSTAMP was introduced in the patch that introduced 4643 * linux/net_tstamp.h, so we don't bother checking whether 4644 * SIOCSHWTSTAMP is defined (if your Linux system has 4645 * linux/net_tstamp.h but doesn't define SIOCSHWTSTAMP, your 4646 * Linux system is badly broken). 4647 */ 4648 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) 4649 /* 4650 * If we were told to do so, ask the kernel and the driver 4651 * to use hardware timestamps. 4652 * 4653 * Hardware timestamps are only supported with mmapped 4654 * captures. 4655 */ 4656 if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER || 4657 handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER_UNSYNCED) { 4658 struct hwtstamp_config hwconfig; 4659 struct ifreq ifr; 4660 int timesource; 4661 4662 /* 4663 * Ask for hardware time stamps on all packets, 4664 * including transmitted packets. 4665 */ 4666 memset(&hwconfig, 0, sizeof(hwconfig)); 4667 hwconfig.tx_type = HWTSTAMP_TX_ON; 4668 hwconfig.rx_filter = HWTSTAMP_FILTER_ALL; 4669 4670 memset(&ifr, 0, sizeof(ifr)); 4671 pcap_strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name)); 4672 ifr.ifr_data = (void *)&hwconfig; 4673 4674 if (ioctl(handle->fd, SIOCSHWTSTAMP, &ifr) < 0) { 4675 switch (errno) { 4676 4677 case EPERM: 4678 /* 4679 * Treat this as an error, as the 4680 * user should try to run this 4681 * with the appropriate privileges - 4682 * and, if they can't, shouldn't 4683 * try requesting hardware time stamps. 4684 */ 4685 *status = PCAP_ERROR_PERM_DENIED; 4686 return -1; 4687 4688 case EOPNOTSUPP: 4689 case ERANGE: 4690 /* 4691 * Treat this as a warning, as the 4692 * only way to fix the warning is to 4693 * get an adapter that supports hardware 4694 * time stamps for *all* packets. 4695 * (ERANGE means "we support hardware 4696 * time stamps, but for packets matching 4697 * that particular filter", so it means 4698 * "we don't support hardware time stamps 4699 * for all incoming packets" here.) 4700 * 4701 * We'll just fall back on the standard 4702 * host time stamps. 4703 */ 4704 *status = PCAP_WARNING_TSTAMP_TYPE_NOTSUP; 4705 break; 4706 4707 default: 4708 pcap_fmt_errmsg_for_errno(handle->errbuf, 4709 PCAP_ERRBUF_SIZE, errno, 4710 "SIOCSHWTSTAMP failed"); 4711 *status = PCAP_ERROR; 4712 return -1; 4713 } 4714 } else { 4715 /* 4716 * Well, that worked. Now specify the type of 4717 * hardware time stamp we want for this 4718 * socket. 4719 */ 4720 if (handle->opt.tstamp_type == PCAP_TSTAMP_ADAPTER) { 4721 /* 4722 * Hardware timestamp, synchronized 4723 * with the system clock. 4724 */ 4725 timesource = SOF_TIMESTAMPING_SYS_HARDWARE; 4726 } else { 4727 /* 4728 * PCAP_TSTAMP_ADAPTER_UNSYNCED - hardware 4729 * timestamp, not synchronized with the 4730 * system clock. 4731 */ 4732 timesource = SOF_TIMESTAMPING_RAW_HARDWARE; 4733 } 4734 if (setsockopt(handle->fd, SOL_PACKET, PACKET_TIMESTAMP, 4735 (void *)×ource, sizeof(timesource))) { 4736 pcap_fmt_errmsg_for_errno(handle->errbuf, 4737 PCAP_ERRBUF_SIZE, errno, 4738 "can't set PACKET_TIMESTAMP"); 4739 *status = PCAP_ERROR; 4740 return -1; 4741 } 4742 } 4743 } 4744 #endif /* HAVE_LINUX_NET_TSTAMP_H && PACKET_TIMESTAMP */ 4745 4746 /* ask the kernel to create the ring */ 4747 retry: 4748 req.tp_block_nr = req.tp_frame_nr / frames_per_block; 4749 4750 /* req.tp_frame_nr is requested to match frames_per_block*req.tp_block_nr */ 4751 req.tp_frame_nr = req.tp_block_nr * frames_per_block; 4752 4753 #ifdef HAVE_TPACKET3 4754 /* timeout value to retire block - use the configured buffering timeout, or default if <0. */ 4755 if (handlep->timeout > 0) { 4756 /* Use the user specified timeout as the block timeout */ 4757 req.tp_retire_blk_tov = handlep->timeout; 4758 } else if (handlep->timeout == 0) { 4759 /* 4760 * In pcap, this means "infinite timeout"; TPACKET_V3 4761 * doesn't support that, so just set it to UINT_MAX 4762 * milliseconds. In the TPACKET_V3 loop, if the 4763 * timeout is 0, and we haven't yet seen any packets, 4764 * and we block and still don't have any packets, we 4765 * keep blocking until we do. 4766 */ 4767 req.tp_retire_blk_tov = UINT_MAX; 4768 } else { 4769 /* 4770 * XXX - this is not valid; use 0, meaning "have the 4771 * kernel pick a default", for now. 4772 */ 4773 req.tp_retire_blk_tov = 0; 4774 } 4775 /* private data not used */ 4776 req.tp_sizeof_priv = 0; 4777 /* Rx ring - feature request bits - none (rxhash will not be filled) */ 4778 req.tp_feature_req_word = 0; 4779 #endif 4780 4781 if (setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING, 4782 (void *) &req, sizeof(req))) { 4783 if ((errno == ENOMEM) && (req.tp_block_nr > 1)) { 4784 /* 4785 * Memory failure; try to reduce the requested ring 4786 * size. 4787 * 4788 * We used to reduce this by half -- do 5% instead. 4789 * That may result in more iterations and a longer 4790 * startup, but the user will be much happier with 4791 * the resulting buffer size. 4792 */ 4793 if (req.tp_frame_nr < 20) 4794 req.tp_frame_nr -= 1; 4795 else 4796 req.tp_frame_nr -= req.tp_frame_nr/20; 4797 goto retry; 4798 } 4799 if (errno == ENOPROTOOPT) { 4800 /* 4801 * We don't have ring buffer support in this kernel. 4802 */ 4803 return 0; 4804 } 4805 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 4806 errno, "can't create rx ring on packet socket"); 4807 *status = PCAP_ERROR; 4808 return -1; 4809 } 4810 4811 /* memory map the rx ring */ 4812 handlep->mmapbuflen = req.tp_block_nr * req.tp_block_size; 4813 handlep->mmapbuf = mmap(0, handlep->mmapbuflen, 4814 PROT_READ|PROT_WRITE, MAP_SHARED, handle->fd, 0); 4815 if (handlep->mmapbuf == MAP_FAILED) { 4816 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 4817 errno, "can't mmap rx ring"); 4818 4819 /* clear the allocated ring on error*/ 4820 destroy_ring(handle); 4821 *status = PCAP_ERROR; 4822 return -1; 4823 } 4824 4825 /* allocate a ring for each frame header pointer*/ 4826 handle->cc = req.tp_frame_nr; 4827 handle->buffer = malloc(handle->cc * sizeof(union thdr *)); 4828 if (!handle->buffer) { 4829 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 4830 errno, "can't allocate ring of frame headers"); 4831 4832 destroy_ring(handle); 4833 *status = PCAP_ERROR; 4834 return -1; 4835 } 4836 4837 /* fill the header ring with proper frame ptr*/ 4838 handle->offset = 0; 4839 for (i=0; i<req.tp_block_nr; ++i) { 4840 void *base = &handlep->mmapbuf[i*req.tp_block_size]; 4841 for (j=0; j<frames_per_block; ++j, ++handle->offset) { 4842 RING_GET_CURRENT_FRAME(handle) = base; 4843 base += req.tp_frame_size; 4844 } 4845 } 4846 4847 handle->bufsize = req.tp_frame_size; 4848 handle->offset = 0; 4849 return 1; 4850 } 4851 4852 /* free all ring related resources*/ 4853 static void 4854 destroy_ring(pcap_t *handle) 4855 { 4856 struct pcap_linux *handlep = handle->priv; 4857 4858 /* tell the kernel to destroy the ring*/ 4859 struct tpacket_req req; 4860 memset(&req, 0, sizeof(req)); 4861 /* do not test for setsockopt failure, as we can't recover from any error */ 4862 (void)setsockopt(handle->fd, SOL_PACKET, PACKET_RX_RING, 4863 (void *) &req, sizeof(req)); 4864 4865 /* if ring is mapped, unmap it*/ 4866 if (handlep->mmapbuf) { 4867 /* do not test for mmap failure, as we can't recover from any error */ 4868 (void)munmap(handlep->mmapbuf, handlep->mmapbuflen); 4869 handlep->mmapbuf = NULL; 4870 } 4871 } 4872 4873 /* 4874 * Special one-shot callback, used for pcap_next() and pcap_next_ex(), 4875 * for Linux mmapped capture. 4876 * 4877 * The problem is that pcap_next() and pcap_next_ex() expect the packet 4878 * data handed to the callback to be valid after the callback returns, 4879 * but pcap_read_linux_mmap() has to release that packet as soon as 4880 * the callback returns (otherwise, the kernel thinks there's still 4881 * at least one unprocessed packet available in the ring, so a select() 4882 * will immediately return indicating that there's data to process), so, 4883 * in the callback, we have to make a copy of the packet. 4884 * 4885 * Yes, this means that, if the capture is using the ring buffer, using 4886 * pcap_next() or pcap_next_ex() requires more copies than using 4887 * pcap_loop() or pcap_dispatch(). If that bothers you, don't use 4888 * pcap_next() or pcap_next_ex(). 4889 */ 4890 static void 4891 pcap_oneshot_mmap(u_char *user, const struct pcap_pkthdr *h, 4892 const u_char *bytes) 4893 { 4894 struct oneshot_userdata *sp = (struct oneshot_userdata *)user; 4895 pcap_t *handle = sp->pd; 4896 struct pcap_linux *handlep = handle->priv; 4897 4898 *sp->hdr = *h; 4899 memcpy(handlep->oneshot_buffer, bytes, h->caplen); 4900 *sp->pkt = handlep->oneshot_buffer; 4901 } 4902 4903 static void 4904 pcap_cleanup_linux_mmap( pcap_t *handle ) 4905 { 4906 struct pcap_linux *handlep = handle->priv; 4907 4908 destroy_ring(handle); 4909 if (handlep->oneshot_buffer != NULL) { 4910 free(handlep->oneshot_buffer); 4911 handlep->oneshot_buffer = NULL; 4912 } 4913 pcap_cleanup_linux(handle); 4914 } 4915 4916 4917 static int 4918 pcap_getnonblock_mmap(pcap_t *handle) 4919 { 4920 struct pcap_linux *handlep = handle->priv; 4921 4922 /* use negative value of timeout to indicate non blocking ops */ 4923 return (handlep->timeout<0); 4924 } 4925 4926 static int 4927 pcap_setnonblock_mmap(pcap_t *handle, int nonblock) 4928 { 4929 struct pcap_linux *handlep = handle->priv; 4930 4931 /* 4932 * Set the file descriptor to non-blocking mode, as we use 4933 * it for sending packets. 4934 */ 4935 if (pcap_setnonblock_fd(handle, nonblock) == -1) 4936 return -1; 4937 4938 /* 4939 * Map each value to their corresponding negation to 4940 * preserve the timeout value provided with pcap_set_timeout. 4941 */ 4942 if (nonblock) { 4943 if (handlep->timeout >= 0) { 4944 /* 4945 * Indicate that we're switching to 4946 * non-blocking mode. 4947 */ 4948 handlep->timeout = ~handlep->timeout; 4949 } 4950 } else { 4951 if (handlep->timeout < 0) { 4952 handlep->timeout = ~handlep->timeout; 4953 } 4954 } 4955 /* Update the timeout to use in poll(). */ 4956 set_poll_timeout(handlep); 4957 return 0; 4958 } 4959 4960 /* 4961 * Get the status field of the ring buffer frame at a specified offset. 4962 */ 4963 static inline int 4964 pcap_get_ring_frame_status(pcap_t *handle, int offset) 4965 { 4966 struct pcap_linux *handlep = handle->priv; 4967 union thdr h; 4968 4969 h.raw = RING_GET_FRAME_AT(handle, offset); 4970 switch (handlep->tp_version) { 4971 case TPACKET_V1: 4972 return (h.h1->tp_status); 4973 break; 4974 case TPACKET_V1_64: 4975 return (h.h1_64->tp_status); 4976 break; 4977 #ifdef HAVE_TPACKET2 4978 case TPACKET_V2: 4979 return (h.h2->tp_status); 4980 break; 4981 #endif 4982 #ifdef HAVE_TPACKET3 4983 case TPACKET_V3: 4984 return (h.h3->hdr.bh1.block_status); 4985 break; 4986 #endif 4987 } 4988 /* This should not happen. */ 4989 return 0; 4990 } 4991 4992 #ifndef POLLRDHUP 4993 #define POLLRDHUP 0 4994 #endif 4995 4996 /* 4997 * Block waiting for frames to be available. 4998 */ 4999 static int pcap_wait_for_frames_mmap(pcap_t *handle) 5000 { 5001 struct pcap_linux *handlep = handle->priv; 5002 char c; 5003 struct pollfd pollinfo; 5004 int ret; 5005 5006 pollinfo.fd = handle->fd; 5007 pollinfo.events = POLLIN; 5008 5009 do { 5010 /* 5011 * Yes, we do this even in non-blocking mode, as it's 5012 * the only way to get error indications from a 5013 * tpacket socket. 5014 * 5015 * The timeout is 0 in non-blocking mode, so poll() 5016 * returns immediately. 5017 */ 5018 ret = poll(&pollinfo, 1, handlep->poll_timeout); 5019 if (ret < 0 && errno != EINTR) { 5020 pcap_fmt_errmsg_for_errno(handle->errbuf, 5021 PCAP_ERRBUF_SIZE, errno, 5022 "can't poll on packet socket"); 5023 return PCAP_ERROR; 5024 } else if (ret > 0 && 5025 (pollinfo.revents & (POLLHUP|POLLRDHUP|POLLERR|POLLNVAL))) { 5026 /* 5027 * There's some indication other than 5028 * "you can read on this descriptor" on 5029 * the descriptor. 5030 */ 5031 if (pollinfo.revents & (POLLHUP | POLLRDHUP)) { 5032 pcap_snprintf(handle->errbuf, 5033 PCAP_ERRBUF_SIZE, 5034 "Hangup on packet socket"); 5035 return PCAP_ERROR; 5036 } 5037 if (pollinfo.revents & POLLERR) { 5038 /* 5039 * A recv() will give us the actual error code. 5040 * 5041 * XXX - make the socket non-blocking? 5042 */ 5043 if (recv(handle->fd, &c, sizeof c, 5044 MSG_PEEK) != -1) 5045 continue; /* what, no error? */ 5046 if (errno == ENETDOWN) { 5047 /* 5048 * The device on which we're 5049 * capturing went away. 5050 * 5051 * XXX - we should really return 5052 * PCAP_ERROR_IFACE_NOT_UP, but 5053 * pcap_dispatch() etc. aren't 5054 * defined to return that. 5055 */ 5056 pcap_snprintf(handle->errbuf, 5057 PCAP_ERRBUF_SIZE, 5058 "The interface went down"); 5059 } else { 5060 pcap_fmt_errmsg_for_errno(handle->errbuf, 5061 PCAP_ERRBUF_SIZE, errno, 5062 "Error condition on packet socket"); 5063 } 5064 return PCAP_ERROR; 5065 } 5066 if (pollinfo.revents & POLLNVAL) { 5067 pcap_snprintf(handle->errbuf, 5068 PCAP_ERRBUF_SIZE, 5069 "Invalid polling request on packet socket"); 5070 return PCAP_ERROR; 5071 } 5072 } 5073 /* check for break loop condition on interrupted syscall*/ 5074 if (handle->break_loop) { 5075 handle->break_loop = 0; 5076 return PCAP_ERROR_BREAK; 5077 } 5078 } while (ret < 0); 5079 return 0; 5080 } 5081 5082 /* handle a single memory mapped packet */ 5083 static int pcap_handle_packet_mmap( 5084 pcap_t *handle, 5085 pcap_handler callback, 5086 u_char *user, 5087 unsigned char *frame, 5088 unsigned int tp_len, 5089 unsigned int tp_mac, 5090 unsigned int tp_snaplen, 5091 unsigned int tp_sec, 5092 unsigned int tp_usec, 5093 int tp_vlan_tci_valid, 5094 __u16 tp_vlan_tci, 5095 __u16 tp_vlan_tpid) 5096 { 5097 struct pcap_linux *handlep = handle->priv; 5098 unsigned char *bp; 5099 struct sockaddr_ll *sll; 5100 struct pcap_pkthdr pcaphdr; 5101 unsigned int snaplen = tp_snaplen; 5102 struct utsname utsname; 5103 5104 /* perform sanity check on internal offset. */ 5105 if (tp_mac + tp_snaplen > handle->bufsize) { 5106 /* 5107 * Report some system information as a debugging aid. 5108 */ 5109 if (uname(&utsname) != -1) { 5110 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 5111 "corrupted frame on kernel ring mac " 5112 "offset %u + caplen %u > frame len %d " 5113 "(kernel %.32s version %s, machine %.16s)", 5114 tp_mac, tp_snaplen, handle->bufsize, 5115 utsname.release, utsname.version, 5116 utsname.machine); 5117 } else { 5118 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 5119 "corrupted frame on kernel ring mac " 5120 "offset %u + caplen %u > frame len %d", 5121 tp_mac, tp_snaplen, handle->bufsize); 5122 } 5123 return -1; 5124 } 5125 5126 /* run filter on received packet 5127 * If the kernel filtering is enabled we need to run the 5128 * filter until all the frames present into the ring 5129 * at filter creation time are processed. 5130 * In this case, blocks_to_filter_in_userland is used 5131 * as a counter for the packet we need to filter. 5132 * Note: alternatively it could be possible to stop applying 5133 * the filter when the ring became empty, but it can possibly 5134 * happen a lot later... */ 5135 bp = frame + tp_mac; 5136 5137 /* if required build in place the sll header*/ 5138 sll = (void *)frame + TPACKET_ALIGN(handlep->tp_hdrlen); 5139 if (handlep->cooked) { 5140 if (handle->linktype == DLT_LINUX_SLL2) { 5141 struct sll2_header *hdrp; 5142 5143 /* 5144 * The kernel should have left us with enough 5145 * space for an sll header; back up the packet 5146 * data pointer into that space, as that'll be 5147 * the beginning of the packet we pass to the 5148 * callback. 5149 */ 5150 bp -= SLL2_HDR_LEN; 5151 5152 /* 5153 * Let's make sure that's past the end of 5154 * the tpacket header, i.e. >= 5155 * ((u_char *)thdr + TPACKET_HDRLEN), so we 5156 * don't step on the header when we construct 5157 * the sll header. 5158 */ 5159 if (bp < (u_char *)frame + 5160 TPACKET_ALIGN(handlep->tp_hdrlen) + 5161 sizeof(struct sockaddr_ll)) { 5162 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 5163 "cooked-mode frame doesn't have room for sll header"); 5164 return -1; 5165 } 5166 5167 /* 5168 * OK, that worked; construct the sll header. 5169 */ 5170 hdrp = (struct sll2_header *)bp; 5171 hdrp->sll2_protocol = sll->sll_protocol; 5172 hdrp->sll2_reserved_mbz = 0; 5173 hdrp->sll2_if_index = htonl(sll->sll_ifindex); 5174 hdrp->sll2_hatype = htons(sll->sll_hatype); 5175 hdrp->sll2_pkttype = sll->sll_pkttype; 5176 hdrp->sll2_halen = sll->sll_halen; 5177 memcpy(hdrp->sll2_addr, sll->sll_addr, SLL_ADDRLEN); 5178 5179 snaplen += sizeof(struct sll2_header); 5180 } else { 5181 struct sll_header *hdrp; 5182 5183 /* 5184 * The kernel should have left us with enough 5185 * space for an sll header; back up the packet 5186 * data pointer into that space, as that'll be 5187 * the beginning of the packet we pass to the 5188 * callback. 5189 */ 5190 bp -= SLL_HDR_LEN; 5191 5192 /* 5193 * Let's make sure that's past the end of 5194 * the tpacket header, i.e. >= 5195 * ((u_char *)thdr + TPACKET_HDRLEN), so we 5196 * don't step on the header when we construct 5197 * the sll header. 5198 */ 5199 if (bp < (u_char *)frame + 5200 TPACKET_ALIGN(handlep->tp_hdrlen) + 5201 sizeof(struct sockaddr_ll)) { 5202 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 5203 "cooked-mode frame doesn't have room for sll header"); 5204 return -1; 5205 } 5206 5207 /* 5208 * OK, that worked; construct the sll header. 5209 */ 5210 hdrp = (struct sll_header *)bp; 5211 hdrp->sll_pkttype = htons(sll->sll_pkttype); 5212 hdrp->sll_hatype = htons(sll->sll_hatype); 5213 hdrp->sll_halen = htons(sll->sll_halen); 5214 memcpy(hdrp->sll_addr, sll->sll_addr, SLL_ADDRLEN); 5215 hdrp->sll_protocol = sll->sll_protocol; 5216 5217 snaplen += sizeof(struct sll_header); 5218 } 5219 } 5220 5221 if (handlep->filter_in_userland && handle->fcode.bf_insns) { 5222 struct bpf_aux_data aux_data; 5223 5224 aux_data.vlan_tag_present = tp_vlan_tci_valid; 5225 aux_data.vlan_tag = tp_vlan_tci & 0x0fff; 5226 5227 if (bpf_filter_with_aux_data(handle->fcode.bf_insns, 5228 bp, 5229 tp_len, 5230 snaplen, 5231 &aux_data) == 0) 5232 return 0; 5233 } 5234 5235 if (!linux_check_direction(handle, sll)) 5236 return 0; 5237 5238 /* get required packet info from ring header */ 5239 pcaphdr.ts.tv_sec = tp_sec; 5240 pcaphdr.ts.tv_usec = tp_usec; 5241 pcaphdr.caplen = tp_snaplen; 5242 pcaphdr.len = tp_len; 5243 5244 /* if required build in place the sll header*/ 5245 if (handlep->cooked) { 5246 /* update packet len */ 5247 if (handle->linktype == DLT_LINUX_SLL2) { 5248 pcaphdr.caplen += SLL2_HDR_LEN; 5249 pcaphdr.len += SLL2_HDR_LEN; 5250 } else { 5251 pcaphdr.caplen += SLL_HDR_LEN; 5252 pcaphdr.len += SLL_HDR_LEN; 5253 } 5254 } 5255 5256 #if defined(HAVE_TPACKET2) || defined(HAVE_TPACKET3) 5257 if (tp_vlan_tci_valid && 5258 handlep->vlan_offset != -1 && 5259 tp_snaplen >= (unsigned int) handlep->vlan_offset) 5260 { 5261 struct vlan_tag *tag; 5262 5263 /* 5264 * Move everything in the header, except the type field, 5265 * down VLAN_TAG_LEN bytes, to allow us to insert the 5266 * VLAN tag between that stuff and the type field. 5267 */ 5268 bp -= VLAN_TAG_LEN; 5269 memmove(bp, bp + VLAN_TAG_LEN, handlep->vlan_offset); 5270 5271 /* 5272 * Now insert the tag. 5273 */ 5274 tag = (struct vlan_tag *)(bp + handlep->vlan_offset); 5275 tag->vlan_tpid = htons(tp_vlan_tpid); 5276 tag->vlan_tci = htons(tp_vlan_tci); 5277 5278 /* 5279 * Add the tag to the packet lengths. 5280 */ 5281 pcaphdr.caplen += VLAN_TAG_LEN; 5282 pcaphdr.len += VLAN_TAG_LEN; 5283 } 5284 #endif 5285 5286 /* 5287 * The only way to tell the kernel to cut off the 5288 * packet at a snapshot length is with a filter program; 5289 * if there's no filter program, the kernel won't cut 5290 * the packet off. 5291 * 5292 * Trim the snapshot length to be no longer than the 5293 * specified snapshot length. 5294 */ 5295 if (pcaphdr.caplen > (bpf_u_int32)handle->snapshot) 5296 pcaphdr.caplen = handle->snapshot; 5297 5298 /* pass the packet to the user */ 5299 callback(user, &pcaphdr, bp); 5300 5301 return 1; 5302 } 5303 5304 static int 5305 pcap_read_linux_mmap_v1(pcap_t *handle, int max_packets, pcap_handler callback, 5306 u_char *user) 5307 { 5308 struct pcap_linux *handlep = handle->priv; 5309 union thdr h; 5310 int pkts = 0; 5311 int ret; 5312 5313 /* wait for frames availability.*/ 5314 h.raw = RING_GET_CURRENT_FRAME(handle); 5315 if (h.h1->tp_status == TP_STATUS_KERNEL) { 5316 /* 5317 * The current frame is owned by the kernel; wait for 5318 * a frame to be handed to us. 5319 */ 5320 ret = pcap_wait_for_frames_mmap(handle); 5321 if (ret) { 5322 return ret; 5323 } 5324 } 5325 5326 /* non-positive values of max_packets are used to require all 5327 * packets currently available in the ring */ 5328 while ((pkts < max_packets) || PACKET_COUNT_IS_UNLIMITED(max_packets)) { 5329 /* 5330 * Get the current ring buffer frame, and break if 5331 * it's still owned by the kernel. 5332 */ 5333 h.raw = RING_GET_CURRENT_FRAME(handle); 5334 if (h.h1->tp_status == TP_STATUS_KERNEL) 5335 break; 5336 5337 ret = pcap_handle_packet_mmap( 5338 handle, 5339 callback, 5340 user, 5341 h.raw, 5342 h.h1->tp_len, 5343 h.h1->tp_mac, 5344 h.h1->tp_snaplen, 5345 h.h1->tp_sec, 5346 h.h1->tp_usec, 5347 0, 5348 0, 5349 0); 5350 if (ret == 1) { 5351 pkts++; 5352 handlep->packets_read++; 5353 } else if (ret < 0) { 5354 return ret; 5355 } 5356 5357 /* 5358 * Hand this block back to the kernel, and, if we're 5359 * counting blocks that need to be filtered in userland 5360 * after having been filtered by the kernel, count 5361 * the one we've just processed. 5362 */ 5363 h.h1->tp_status = TP_STATUS_KERNEL; 5364 if (handlep->blocks_to_filter_in_userland > 0) { 5365 handlep->blocks_to_filter_in_userland--; 5366 if (handlep->blocks_to_filter_in_userland == 0) { 5367 /* 5368 * No more blocks need to be filtered 5369 * in userland. 5370 */ 5371 handlep->filter_in_userland = 0; 5372 } 5373 } 5374 5375 /* next block */ 5376 if (++handle->offset >= handle->cc) 5377 handle->offset = 0; 5378 5379 /* check for break loop condition*/ 5380 if (handle->break_loop) { 5381 handle->break_loop = 0; 5382 return PCAP_ERROR_BREAK; 5383 } 5384 } 5385 return pkts; 5386 } 5387 5388 static int 5389 pcap_read_linux_mmap_v1_64(pcap_t *handle, int max_packets, pcap_handler callback, 5390 u_char *user) 5391 { 5392 struct pcap_linux *handlep = handle->priv; 5393 union thdr h; 5394 int pkts = 0; 5395 int ret; 5396 5397 /* wait for frames availability.*/ 5398 h.raw = RING_GET_CURRENT_FRAME(handle); 5399 if (h.h1_64->tp_status == TP_STATUS_KERNEL) { 5400 /* 5401 * The current frame is owned by the kernel; wait for 5402 * a frame to be handed to us. 5403 */ 5404 ret = pcap_wait_for_frames_mmap(handle); 5405 if (ret) { 5406 return ret; 5407 } 5408 } 5409 5410 /* non-positive values of max_packets are used to require all 5411 * packets currently available in the ring */ 5412 while ((pkts < max_packets) || PACKET_COUNT_IS_UNLIMITED(max_packets)) { 5413 /* 5414 * Get the current ring buffer frame, and break if 5415 * it's still owned by the kernel. 5416 */ 5417 h.raw = RING_GET_CURRENT_FRAME(handle); 5418 if (h.h1_64->tp_status == TP_STATUS_KERNEL) 5419 break; 5420 5421 ret = pcap_handle_packet_mmap( 5422 handle, 5423 callback, 5424 user, 5425 h.raw, 5426 h.h1_64->tp_len, 5427 h.h1_64->tp_mac, 5428 h.h1_64->tp_snaplen, 5429 h.h1_64->tp_sec, 5430 h.h1_64->tp_usec, 5431 0, 5432 0, 5433 0); 5434 if (ret == 1) { 5435 pkts++; 5436 handlep->packets_read++; 5437 } else if (ret < 0) { 5438 return ret; 5439 } 5440 5441 /* 5442 * Hand this block back to the kernel, and, if we're 5443 * counting blocks that need to be filtered in userland 5444 * after having been filtered by the kernel, count 5445 * the one we've just processed. 5446 */ 5447 h.h1_64->tp_status = TP_STATUS_KERNEL; 5448 if (handlep->blocks_to_filter_in_userland > 0) { 5449 handlep->blocks_to_filter_in_userland--; 5450 if (handlep->blocks_to_filter_in_userland == 0) { 5451 /* 5452 * No more blocks need to be filtered 5453 * in userland. 5454 */ 5455 handlep->filter_in_userland = 0; 5456 } 5457 } 5458 5459 /* next block */ 5460 if (++handle->offset >= handle->cc) 5461 handle->offset = 0; 5462 5463 /* check for break loop condition*/ 5464 if (handle->break_loop) { 5465 handle->break_loop = 0; 5466 return PCAP_ERROR_BREAK; 5467 } 5468 } 5469 return pkts; 5470 } 5471 5472 #ifdef HAVE_TPACKET2 5473 static int 5474 pcap_read_linux_mmap_v2(pcap_t *handle, int max_packets, pcap_handler callback, 5475 u_char *user) 5476 { 5477 struct pcap_linux *handlep = handle->priv; 5478 union thdr h; 5479 int pkts = 0; 5480 int ret; 5481 5482 /* wait for frames availability.*/ 5483 h.raw = RING_GET_CURRENT_FRAME(handle); 5484 if (h.h2->tp_status == TP_STATUS_KERNEL) { 5485 /* 5486 * The current frame is owned by the kernel; wait for 5487 * a frame to be handed to us. 5488 */ 5489 ret = pcap_wait_for_frames_mmap(handle); 5490 if (ret) { 5491 return ret; 5492 } 5493 } 5494 5495 /* non-positive values of max_packets are used to require all 5496 * packets currently available in the ring */ 5497 while ((pkts < max_packets) || PACKET_COUNT_IS_UNLIMITED(max_packets)) { 5498 /* 5499 * Get the current ring buffer frame, and break if 5500 * it's still owned by the kernel. 5501 */ 5502 h.raw = RING_GET_CURRENT_FRAME(handle); 5503 if (h.h2->tp_status == TP_STATUS_KERNEL) 5504 break; 5505 5506 ret = pcap_handle_packet_mmap( 5507 handle, 5508 callback, 5509 user, 5510 h.raw, 5511 h.h2->tp_len, 5512 h.h2->tp_mac, 5513 h.h2->tp_snaplen, 5514 h.h2->tp_sec, 5515 handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? h.h2->tp_nsec : h.h2->tp_nsec / 1000, 5516 VLAN_VALID(h.h2, h.h2), 5517 h.h2->tp_vlan_tci, 5518 VLAN_TPID(h.h2, h.h2)); 5519 if (ret == 1) { 5520 pkts++; 5521 handlep->packets_read++; 5522 } else if (ret < 0) { 5523 return ret; 5524 } 5525 5526 /* 5527 * Hand this block back to the kernel, and, if we're 5528 * counting blocks that need to be filtered in userland 5529 * after having been filtered by the kernel, count 5530 * the one we've just processed. 5531 */ 5532 h.h2->tp_status = TP_STATUS_KERNEL; 5533 if (handlep->blocks_to_filter_in_userland > 0) { 5534 handlep->blocks_to_filter_in_userland--; 5535 if (handlep->blocks_to_filter_in_userland == 0) { 5536 /* 5537 * No more blocks need to be filtered 5538 * in userland. 5539 */ 5540 handlep->filter_in_userland = 0; 5541 } 5542 } 5543 5544 /* next block */ 5545 if (++handle->offset >= handle->cc) 5546 handle->offset = 0; 5547 5548 /* check for break loop condition*/ 5549 if (handle->break_loop) { 5550 handle->break_loop = 0; 5551 return PCAP_ERROR_BREAK; 5552 } 5553 } 5554 return pkts; 5555 } 5556 #endif /* HAVE_TPACKET2 */ 5557 5558 #ifdef HAVE_TPACKET3 5559 static int 5560 pcap_read_linux_mmap_v3(pcap_t *handle, int max_packets, pcap_handler callback, 5561 u_char *user) 5562 { 5563 struct pcap_linux *handlep = handle->priv; 5564 union thdr h; 5565 int pkts = 0; 5566 int ret; 5567 5568 again: 5569 if (handlep->current_packet == NULL) { 5570 /* wait for frames availability.*/ 5571 h.raw = RING_GET_CURRENT_FRAME(handle); 5572 if (h.h3->hdr.bh1.block_status == TP_STATUS_KERNEL) { 5573 /* 5574 * The current frame is owned by the kernel; wait 5575 * for a frame to be handed to us. 5576 */ 5577 ret = pcap_wait_for_frames_mmap(handle); 5578 if (ret) { 5579 return ret; 5580 } 5581 } 5582 } 5583 h.raw = RING_GET_CURRENT_FRAME(handle); 5584 if (h.h3->hdr.bh1.block_status == TP_STATUS_KERNEL) { 5585 if (pkts == 0 && handlep->timeout == 0) { 5586 /* Block until we see a packet. */ 5587 goto again; 5588 } 5589 return pkts; 5590 } 5591 5592 /* non-positive values of max_packets are used to require all 5593 * packets currently available in the ring */ 5594 while ((pkts < max_packets) || PACKET_COUNT_IS_UNLIMITED(max_packets)) { 5595 int packets_to_read; 5596 5597 if (handlep->current_packet == NULL) { 5598 h.raw = RING_GET_CURRENT_FRAME(handle); 5599 if (h.h3->hdr.bh1.block_status == TP_STATUS_KERNEL) 5600 break; 5601 5602 handlep->current_packet = h.raw + h.h3->hdr.bh1.offset_to_first_pkt; 5603 handlep->packets_left = h.h3->hdr.bh1.num_pkts; 5604 } 5605 packets_to_read = handlep->packets_left; 5606 5607 if (!PACKET_COUNT_IS_UNLIMITED(max_packets) && 5608 packets_to_read > (max_packets - pkts)) { 5609 /* 5610 * We've been given a maximum number of packets 5611 * to process, and there are more packets in 5612 * this buffer than that. Only process enough 5613 * of them to get us up to that maximum. 5614 */ 5615 packets_to_read = max_packets - pkts; 5616 } 5617 5618 while (packets_to_read-- && !handle->break_loop) { 5619 struct tpacket3_hdr* tp3_hdr = (struct tpacket3_hdr*) handlep->current_packet; 5620 ret = pcap_handle_packet_mmap( 5621 handle, 5622 callback, 5623 user, 5624 handlep->current_packet, 5625 tp3_hdr->tp_len, 5626 tp3_hdr->tp_mac, 5627 tp3_hdr->tp_snaplen, 5628 tp3_hdr->tp_sec, 5629 handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO ? tp3_hdr->tp_nsec : tp3_hdr->tp_nsec / 1000, 5630 VLAN_VALID(tp3_hdr, &tp3_hdr->hv1), 5631 tp3_hdr->hv1.tp_vlan_tci, 5632 VLAN_TPID(tp3_hdr, &tp3_hdr->hv1)); 5633 if (ret == 1) { 5634 pkts++; 5635 handlep->packets_read++; 5636 } else if (ret < 0) { 5637 handlep->current_packet = NULL; 5638 return ret; 5639 } 5640 handlep->current_packet += tp3_hdr->tp_next_offset; 5641 handlep->packets_left--; 5642 } 5643 5644 if (handlep->packets_left <= 0) { 5645 /* 5646 * Hand this block back to the kernel, and, if 5647 * we're counting blocks that need to be 5648 * filtered in userland after having been 5649 * filtered by the kernel, count the one we've 5650 * just processed. 5651 */ 5652 h.h3->hdr.bh1.block_status = TP_STATUS_KERNEL; 5653 if (handlep->blocks_to_filter_in_userland > 0) { 5654 handlep->blocks_to_filter_in_userland--; 5655 if (handlep->blocks_to_filter_in_userland == 0) { 5656 /* 5657 * No more blocks need to be filtered 5658 * in userland. 5659 */ 5660 handlep->filter_in_userland = 0; 5661 } 5662 } 5663 5664 /* next block */ 5665 if (++handle->offset >= handle->cc) 5666 handle->offset = 0; 5667 5668 handlep->current_packet = NULL; 5669 } 5670 5671 /* check for break loop condition*/ 5672 if (handle->break_loop) { 5673 handle->break_loop = 0; 5674 return PCAP_ERROR_BREAK; 5675 } 5676 } 5677 if (pkts == 0 && handlep->timeout == 0) { 5678 /* Block until we see a packet. */ 5679 goto again; 5680 } 5681 return pkts; 5682 } 5683 #endif /* HAVE_TPACKET3 */ 5684 5685 static int 5686 pcap_setfilter_linux_mmap(pcap_t *handle, struct bpf_program *filter) 5687 { 5688 struct pcap_linux *handlep = handle->priv; 5689 int n, offset; 5690 int ret; 5691 5692 /* 5693 * Don't rewrite "ret" instructions; we don't need to, as 5694 * we're not reading packets with recvmsg(), and we don't 5695 * want to, as, by not rewriting them, the kernel can avoid 5696 * copying extra data. 5697 */ 5698 ret = pcap_setfilter_linux_common(handle, filter, 1); 5699 if (ret < 0) 5700 return ret; 5701 5702 /* 5703 * If we're filtering in userland, there's nothing to do; 5704 * the new filter will be used for the next packet. 5705 */ 5706 if (handlep->filter_in_userland) 5707 return ret; 5708 5709 /* 5710 * We're filtering in the kernel; the packets present in 5711 * all blocks currently in the ring were already filtered 5712 * by the old filter, and so will need to be filtered in 5713 * userland by the new filter. 5714 * 5715 * Get an upper bound for the number of such blocks; first, 5716 * walk the ring backward and count the free blocks. 5717 */ 5718 offset = handle->offset; 5719 if (--offset < 0) 5720 offset = handle->cc - 1; 5721 for (n=0; n < handle->cc; ++n) { 5722 if (--offset < 0) 5723 offset = handle->cc - 1; 5724 if (pcap_get_ring_frame_status(handle, offset) != TP_STATUS_KERNEL) 5725 break; 5726 } 5727 5728 /* 5729 * If we found free blocks, decrement the count of free 5730 * blocks by 1, just in case we lost a race with another 5731 * thread of control that was adding a packet while 5732 * we were counting and that had run the filter before 5733 * we changed it. 5734 * 5735 * XXX - could there be more than one block added in 5736 * this fashion? 5737 * 5738 * XXX - is there a way to avoid that race, e.g. somehow 5739 * wait for all packets that passed the old filter to 5740 * be added to the ring? 5741 */ 5742 if (n != 0) 5743 n--; 5744 5745 /* 5746 * Set the count of blocks worth of packets to filter 5747 * in userland to the total number of blocks in the 5748 * ring minus the number of free blocks we found, and 5749 * turn on userland filtering. (The count of blocks 5750 * worth of packets to filter in userland is guaranteed 5751 * not to be zero - n, above, couldn't be set to a 5752 * value > handle->cc, and if it were equal to 5753 * handle->cc, it wouldn't be zero, and thus would 5754 * be decremented to handle->cc - 1.) 5755 */ 5756 handlep->blocks_to_filter_in_userland = handle->cc - n; 5757 handlep->filter_in_userland = 1; 5758 return ret; 5759 } 5760 5761 #endif /* HAVE_PACKET_RING */ 5762 5763 5764 #ifdef HAVE_PF_PACKET_SOCKETS 5765 /* 5766 * Return the index of the given device name. Fill ebuf and return 5767 * -1 on failure. 5768 */ 5769 static int 5770 iface_get_id(int fd, const char *device, char *ebuf) 5771 { 5772 struct ifreq ifr; 5773 5774 memset(&ifr, 0, sizeof(ifr)); 5775 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 5776 5777 if (ioctl(fd, SIOCGIFINDEX, &ifr) == -1) { 5778 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE, 5779 errno, "SIOCGIFINDEX"); 5780 return -1; 5781 } 5782 5783 return ifr.ifr_ifindex; 5784 } 5785 5786 /* 5787 * Bind the socket associated with FD to the given device. 5788 * Return 1 on success, 0 if we should try a SOCK_PACKET socket, 5789 * or a PCAP_ERROR_ value on a hard error. 5790 */ 5791 static int 5792 iface_bind(int fd, int ifindex, char *ebuf, int protocol) 5793 { 5794 struct sockaddr_ll sll; 5795 int err; 5796 socklen_t errlen = sizeof(err); 5797 5798 memset(&sll, 0, sizeof(sll)); 5799 sll.sll_family = AF_PACKET; 5800 sll.sll_ifindex = ifindex; 5801 sll.sll_protocol = protocol; 5802 5803 if (bind(fd, (struct sockaddr *) &sll, sizeof(sll)) == -1) { 5804 if (errno == ENETDOWN) { 5805 /* 5806 * Return a "network down" indication, so that 5807 * the application can report that rather than 5808 * saying we had a mysterious failure and 5809 * suggest that they report a problem to the 5810 * libpcap developers. 5811 */ 5812 return PCAP_ERROR_IFACE_NOT_UP; 5813 } else { 5814 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE, 5815 errno, "bind"); 5816 return PCAP_ERROR; 5817 } 5818 } 5819 5820 /* Any pending errors, e.g., network is down? */ 5821 5822 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) { 5823 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE, 5824 errno, "getsockopt (SO_ERROR)"); 5825 return 0; 5826 } 5827 5828 if (err == ENETDOWN) { 5829 /* 5830 * Return a "network down" indication, so that 5831 * the application can report that rather than 5832 * saying we had a mysterious failure and 5833 * suggest that they report a problem to the 5834 * libpcap developers. 5835 */ 5836 return PCAP_ERROR_IFACE_NOT_UP; 5837 } else if (err > 0) { 5838 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE, 5839 err, "bind"); 5840 return 0; 5841 } 5842 5843 return 1; 5844 } 5845 5846 #ifdef IW_MODE_MONITOR 5847 /* 5848 * Check whether the device supports the Wireless Extensions. 5849 * Returns 1 if it does, 0 if it doesn't, PCAP_ERROR_NO_SUCH_DEVICE 5850 * if the device doesn't even exist. 5851 */ 5852 static int 5853 has_wext(int sock_fd, const char *device, char *ebuf) 5854 { 5855 struct iwreq ireq; 5856 int ret; 5857 5858 if (is_bonding_device(sock_fd, device)) 5859 return 0; /* bonding device, so don't even try */ 5860 5861 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 5862 sizeof ireq.ifr_ifrn.ifrn_name); 5863 if (ioctl(sock_fd, SIOCGIWNAME, &ireq) >= 0) 5864 return 1; /* yes */ 5865 if (errno == ENODEV) 5866 ret = PCAP_ERROR_NO_SUCH_DEVICE; 5867 else 5868 ret = 0; 5869 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE, errno, 5870 "%s: SIOCGIWNAME", device); 5871 return ret; 5872 } 5873 5874 /* 5875 * Per me si va ne la citta dolente, 5876 * Per me si va ne l'etterno dolore, 5877 * ... 5878 * Lasciate ogne speranza, voi ch'intrate. 5879 * 5880 * XXX - airmon-ng does special stuff with the Orinoco driver and the 5881 * wlan-ng driver. 5882 */ 5883 typedef enum { 5884 MONITOR_WEXT, 5885 MONITOR_HOSTAP, 5886 MONITOR_PRISM, 5887 MONITOR_PRISM54, 5888 MONITOR_ACX100, 5889 MONITOR_RT2500, 5890 MONITOR_RT2570, 5891 MONITOR_RT73, 5892 MONITOR_RTL8XXX 5893 } monitor_type; 5894 5895 /* 5896 * Use the Wireless Extensions, if we have them, to try to turn monitor mode 5897 * on if it's not already on. 5898 * 5899 * Returns 1 on success, 0 if we don't support the Wireless Extensions 5900 * on this device, or a PCAP_ERROR_ value if we do support them but 5901 * we weren't able to turn monitor mode on. 5902 */ 5903 static int 5904 enter_rfmon_mode_wext(pcap_t *handle, int sock_fd, const char *device) 5905 { 5906 /* 5907 * XXX - at least some adapters require non-Wireless Extensions 5908 * mechanisms to turn monitor mode on. 5909 * 5910 * Atheros cards might require that a separate "monitor virtual access 5911 * point" be created, with later versions of the madwifi driver. 5912 * airmon-ng does "wlanconfig ath create wlandev {if} wlanmode 5913 * monitor -bssid", which apparently spits out a line "athN" 5914 * where "athN" is the monitor mode device. To leave monitor 5915 * mode, it destroys the monitor mode device. 5916 * 5917 * Some Intel Centrino adapters might require private ioctls to get 5918 * radio headers; the ipw2200 and ipw3945 drivers allow you to 5919 * configure a separate "rtapN" interface to capture in monitor 5920 * mode without preventing the adapter from operating normally. 5921 * (airmon-ng doesn't appear to use that, though.) 5922 * 5923 * It would be Truly Wonderful if mac80211 and nl80211 cleaned this 5924 * up, and if all drivers were converted to mac80211 drivers. 5925 * 5926 * If interface {if} is a mac80211 driver, the file 5927 * /sys/class/net/{if}/phy80211 is a symlink to 5928 * /sys/class/ieee80211/{phydev}, for some {phydev}. 5929 * 5930 * On Fedora 9, with a 2.6.26.3-29 kernel, my Zydas stick, at 5931 * least, has a "wmaster0" device and a "wlan0" device; the 5932 * latter is the one with the IP address. Both show up in 5933 * "tcpdump -D" output. Capturing on the wmaster0 device 5934 * captures with 802.11 headers. 5935 * 5936 * airmon-ng searches through /sys/class/net for devices named 5937 * monN, starting with mon0; as soon as one *doesn't* exist, 5938 * it chooses that as the monitor device name. If the "iw" 5939 * command exists, it does "iw dev {if} interface add {monif} 5940 * type monitor", where {monif} is the monitor device. It 5941 * then (sigh) sleeps .1 second, and then configures the 5942 * device up. Otherwise, if /sys/class/ieee80211/{phydev}/add_iface 5943 * is a file, it writes {mondev}, without a newline, to that file, 5944 * and again (sigh) sleeps .1 second, and then iwconfig's that 5945 * device into monitor mode and configures it up. Otherwise, 5946 * you can't do monitor mode. 5947 * 5948 * All these devices are "glued" together by having the 5949 * /sys/class/net/{device}/phy80211 links pointing to the same 5950 * place, so, given a wmaster, wlan, or mon device, you can 5951 * find the other devices by looking for devices with 5952 * the same phy80211 link. 5953 * 5954 * To turn monitor mode off, delete the monitor interface, 5955 * either with "iw dev {monif} interface del" or by sending 5956 * {monif}, with no NL, down /sys/class/ieee80211/{phydev}/remove_iface 5957 * 5958 * Note: if you try to create a monitor device named "monN", and 5959 * there's already a "monN" device, it fails, as least with 5960 * the netlink interface (which is what iw uses), with a return 5961 * value of -ENFILE. (Return values are negative errnos.) We 5962 * could probably use that to find an unused device. 5963 */ 5964 struct pcap_linux *handlep = handle->priv; 5965 int err; 5966 struct iwreq ireq; 5967 struct iw_priv_args *priv; 5968 monitor_type montype; 5969 int i; 5970 __u32 cmd; 5971 struct ifreq ifr; 5972 int oldflags; 5973 int args[2]; 5974 int channel; 5975 5976 /* 5977 * Does this device *support* the Wireless Extensions? 5978 */ 5979 err = has_wext(sock_fd, device, handle->errbuf); 5980 if (err <= 0) 5981 return err; /* either it doesn't or the device doesn't even exist */ 5982 /* 5983 * Start out assuming we have no private extensions to control 5984 * radio metadata. 5985 */ 5986 montype = MONITOR_WEXT; 5987 cmd = 0; 5988 5989 /* 5990 * Try to get all the Wireless Extensions private ioctls 5991 * supported by this device. 5992 * 5993 * First, get the size of the buffer we need, by supplying no 5994 * buffer and a length of 0. If the device supports private 5995 * ioctls, it should return E2BIG, with ireq.u.data.length set 5996 * to the length we need. If it doesn't support them, it should 5997 * return EOPNOTSUPP. 5998 */ 5999 memset(&ireq, 0, sizeof ireq); 6000 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6001 sizeof ireq.ifr_ifrn.ifrn_name); 6002 ireq.u.data.pointer = (void *)args; 6003 ireq.u.data.length = 0; 6004 ireq.u.data.flags = 0; 6005 if (ioctl(sock_fd, SIOCGIWPRIV, &ireq) != -1) { 6006 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 6007 "%s: SIOCGIWPRIV with a zero-length buffer didn't fail!", 6008 device); 6009 return PCAP_ERROR; 6010 } 6011 if (errno != EOPNOTSUPP) { 6012 /* 6013 * OK, it's not as if there are no private ioctls. 6014 */ 6015 if (errno != E2BIG) { 6016 /* 6017 * Failed. 6018 */ 6019 pcap_fmt_errmsg_for_errno(handle->errbuf, 6020 PCAP_ERRBUF_SIZE, errno, "%s: SIOCGIWPRIV", device); 6021 return PCAP_ERROR; 6022 } 6023 6024 /* 6025 * OK, try to get the list of private ioctls. 6026 */ 6027 priv = malloc(ireq.u.data.length * sizeof (struct iw_priv_args)); 6028 if (priv == NULL) { 6029 pcap_fmt_errmsg_for_errno(handle->errbuf, 6030 PCAP_ERRBUF_SIZE, errno, "malloc"); 6031 return PCAP_ERROR; 6032 } 6033 ireq.u.data.pointer = (void *)priv; 6034 if (ioctl(sock_fd, SIOCGIWPRIV, &ireq) == -1) { 6035 pcap_fmt_errmsg_for_errno(handle->errbuf, 6036 PCAP_ERRBUF_SIZE, errno, "%s: SIOCGIWPRIV", device); 6037 free(priv); 6038 return PCAP_ERROR; 6039 } 6040 6041 /* 6042 * Look for private ioctls to turn monitor mode on or, if 6043 * monitor mode is on, to set the header type. 6044 */ 6045 for (i = 0; i < ireq.u.data.length; i++) { 6046 if (strcmp(priv[i].name, "monitor_type") == 0) { 6047 /* 6048 * Hostap driver, use this one. 6049 * Set monitor mode first. 6050 * You can set it to 0 to get DLT_IEEE80211, 6051 * 1 to get DLT_PRISM, 2 to get 6052 * DLT_IEEE80211_RADIO_AVS, and, with more 6053 * recent versions of the driver, 3 to get 6054 * DLT_IEEE80211_RADIO. 6055 */ 6056 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT) 6057 break; 6058 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED)) 6059 break; 6060 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1) 6061 break; 6062 montype = MONITOR_HOSTAP; 6063 cmd = priv[i].cmd; 6064 break; 6065 } 6066 if (strcmp(priv[i].name, "set_prismhdr") == 0) { 6067 /* 6068 * Prism54 driver, use this one. 6069 * Set monitor mode first. 6070 * You can set it to 2 to get DLT_IEEE80211 6071 * or 3 or get DLT_PRISM. 6072 */ 6073 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT) 6074 break; 6075 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED)) 6076 break; 6077 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1) 6078 break; 6079 montype = MONITOR_PRISM54; 6080 cmd = priv[i].cmd; 6081 break; 6082 } 6083 if (strcmp(priv[i].name, "forceprismheader") == 0) { 6084 /* 6085 * RT2570 driver, use this one. 6086 * Do this after turning monitor mode on. 6087 * You can set it to 1 to get DLT_PRISM or 2 6088 * to get DLT_IEEE80211. 6089 */ 6090 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT) 6091 break; 6092 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED)) 6093 break; 6094 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1) 6095 break; 6096 montype = MONITOR_RT2570; 6097 cmd = priv[i].cmd; 6098 break; 6099 } 6100 if (strcmp(priv[i].name, "forceprism") == 0) { 6101 /* 6102 * RT73 driver, use this one. 6103 * Do this after turning monitor mode on. 6104 * Its argument is a *string*; you can 6105 * set it to "1" to get DLT_PRISM or "2" 6106 * to get DLT_IEEE80211. 6107 */ 6108 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_CHAR) 6109 break; 6110 if (priv[i].set_args & IW_PRIV_SIZE_FIXED) 6111 break; 6112 montype = MONITOR_RT73; 6113 cmd = priv[i].cmd; 6114 break; 6115 } 6116 if (strcmp(priv[i].name, "prismhdr") == 0) { 6117 /* 6118 * One of the RTL8xxx drivers, use this one. 6119 * It can only be done after monitor mode 6120 * has been turned on. You can set it to 1 6121 * to get DLT_PRISM or 0 to get DLT_IEEE80211. 6122 */ 6123 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT) 6124 break; 6125 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED)) 6126 break; 6127 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 1) 6128 break; 6129 montype = MONITOR_RTL8XXX; 6130 cmd = priv[i].cmd; 6131 break; 6132 } 6133 if (strcmp(priv[i].name, "rfmontx") == 0) { 6134 /* 6135 * RT2500 or RT61 driver, use this one. 6136 * It has one one-byte parameter; set 6137 * u.data.length to 1 and u.data.pointer to 6138 * point to the parameter. 6139 * It doesn't itself turn monitor mode on. 6140 * You can set it to 1 to allow transmitting 6141 * in monitor mode(?) and get DLT_IEEE80211, 6142 * or set it to 0 to disallow transmitting in 6143 * monitor mode(?) and get DLT_PRISM. 6144 */ 6145 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT) 6146 break; 6147 if ((priv[i].set_args & IW_PRIV_SIZE_MASK) != 2) 6148 break; 6149 montype = MONITOR_RT2500; 6150 cmd = priv[i].cmd; 6151 break; 6152 } 6153 if (strcmp(priv[i].name, "monitor") == 0) { 6154 /* 6155 * Either ACX100 or hostap, use this one. 6156 * It turns monitor mode on. 6157 * If it takes two arguments, it's ACX100; 6158 * the first argument is 1 for DLT_PRISM 6159 * or 2 for DLT_IEEE80211, and the second 6160 * argument is the channel on which to 6161 * run. If it takes one argument, it's 6162 * HostAP, and the argument is 2 for 6163 * DLT_IEEE80211 and 3 for DLT_PRISM. 6164 * 6165 * If we see this, we don't quit, as this 6166 * might be a version of the hostap driver 6167 * that also supports "monitor_type". 6168 */ 6169 if ((priv[i].set_args & IW_PRIV_TYPE_MASK) != IW_PRIV_TYPE_INT) 6170 break; 6171 if (!(priv[i].set_args & IW_PRIV_SIZE_FIXED)) 6172 break; 6173 switch (priv[i].set_args & IW_PRIV_SIZE_MASK) { 6174 6175 case 1: 6176 montype = MONITOR_PRISM; 6177 cmd = priv[i].cmd; 6178 break; 6179 6180 case 2: 6181 montype = MONITOR_ACX100; 6182 cmd = priv[i].cmd; 6183 break; 6184 6185 default: 6186 break; 6187 } 6188 } 6189 } 6190 free(priv); 6191 } 6192 6193 /* 6194 * XXX - ipw3945? islism? 6195 */ 6196 6197 /* 6198 * Get the old mode. 6199 */ 6200 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6201 sizeof ireq.ifr_ifrn.ifrn_name); 6202 if (ioctl(sock_fd, SIOCGIWMODE, &ireq) == -1) { 6203 /* 6204 * We probably won't be able to set the mode, either. 6205 */ 6206 return PCAP_ERROR_RFMON_NOTSUP; 6207 } 6208 6209 /* 6210 * Is it currently in monitor mode? 6211 */ 6212 if (ireq.u.mode == IW_MODE_MONITOR) { 6213 /* 6214 * Yes. Just leave things as they are. 6215 * We don't offer multiple link-layer types, as 6216 * changing the link-layer type out from under 6217 * somebody else capturing in monitor mode would 6218 * be considered rude. 6219 */ 6220 return 1; 6221 } 6222 /* 6223 * No. We have to put the adapter into rfmon mode. 6224 */ 6225 6226 /* 6227 * If we haven't already done so, arrange to have 6228 * "pcap_close_all()" called when we exit. 6229 */ 6230 if (!pcap_do_addexit(handle)) { 6231 /* 6232 * "atexit()" failed; don't put the interface 6233 * in rfmon mode, just give up. 6234 */ 6235 return PCAP_ERROR_RFMON_NOTSUP; 6236 } 6237 6238 /* 6239 * Save the old mode. 6240 */ 6241 handlep->oldmode = ireq.u.mode; 6242 6243 /* 6244 * Put the adapter in rfmon mode. How we do this depends 6245 * on whether we have a special private ioctl or not. 6246 */ 6247 if (montype == MONITOR_PRISM) { 6248 /* 6249 * We have the "monitor" private ioctl, but none of 6250 * the other private ioctls. Use this, and select 6251 * the Prism header. 6252 * 6253 * If it fails, just fall back on SIOCSIWMODE. 6254 */ 6255 memset(&ireq, 0, sizeof ireq); 6256 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6257 sizeof ireq.ifr_ifrn.ifrn_name); 6258 ireq.u.data.length = 1; /* 1 argument */ 6259 args[0] = 3; /* request Prism header */ 6260 memcpy(ireq.u.name, args, sizeof (int)); 6261 if (ioctl(sock_fd, cmd, &ireq) != -1) { 6262 /* 6263 * Success. 6264 * Note that we have to put the old mode back 6265 * when we close the device. 6266 */ 6267 handlep->must_do_on_close |= MUST_CLEAR_RFMON; 6268 6269 /* 6270 * Add this to the list of pcaps to close 6271 * when we exit. 6272 */ 6273 pcap_add_to_pcaps_to_close(handle); 6274 6275 return 1; 6276 } 6277 6278 /* 6279 * Failure. Fall back on SIOCSIWMODE. 6280 */ 6281 } 6282 6283 /* 6284 * First, take the interface down if it's up; otherwise, we 6285 * might get EBUSY. 6286 */ 6287 memset(&ifr, 0, sizeof(ifr)); 6288 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 6289 if (ioctl(sock_fd, SIOCGIFFLAGS, &ifr) == -1) { 6290 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 6291 errno, "%s: Can't get flags", device); 6292 return PCAP_ERROR; 6293 } 6294 oldflags = 0; 6295 if (ifr.ifr_flags & IFF_UP) { 6296 oldflags = ifr.ifr_flags; 6297 ifr.ifr_flags &= ~IFF_UP; 6298 if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) { 6299 pcap_fmt_errmsg_for_errno(handle->errbuf, 6300 PCAP_ERRBUF_SIZE, errno, "%s: Can't set flags", 6301 device); 6302 return PCAP_ERROR; 6303 } 6304 } 6305 6306 /* 6307 * Then turn monitor mode on. 6308 */ 6309 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6310 sizeof ireq.ifr_ifrn.ifrn_name); 6311 ireq.u.mode = IW_MODE_MONITOR; 6312 if (ioctl(sock_fd, SIOCSIWMODE, &ireq) == -1) { 6313 /* 6314 * Scientist, you've failed. 6315 * Bring the interface back up if we shut it down. 6316 */ 6317 ifr.ifr_flags = oldflags; 6318 if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) { 6319 pcap_fmt_errmsg_for_errno(handle->errbuf, 6320 PCAP_ERRBUF_SIZE, errno, "%s: Can't set flags", 6321 device); 6322 return PCAP_ERROR; 6323 } 6324 return PCAP_ERROR_RFMON_NOTSUP; 6325 } 6326 6327 /* 6328 * XXX - airmon-ng does "iwconfig {if} key off" after setting 6329 * monitor mode and setting the channel, and then does 6330 * "iwconfig up". 6331 */ 6332 6333 /* 6334 * Now select the appropriate radio header. 6335 */ 6336 switch (montype) { 6337 6338 case MONITOR_WEXT: 6339 /* 6340 * We don't have any private ioctl to set the header. 6341 */ 6342 break; 6343 6344 case MONITOR_HOSTAP: 6345 /* 6346 * Try to select the radiotap header. 6347 */ 6348 memset(&ireq, 0, sizeof ireq); 6349 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6350 sizeof ireq.ifr_ifrn.ifrn_name); 6351 args[0] = 3; /* request radiotap header */ 6352 memcpy(ireq.u.name, args, sizeof (int)); 6353 if (ioctl(sock_fd, cmd, &ireq) != -1) 6354 break; /* success */ 6355 6356 /* 6357 * That failed. Try to select the AVS header. 6358 */ 6359 memset(&ireq, 0, sizeof ireq); 6360 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6361 sizeof ireq.ifr_ifrn.ifrn_name); 6362 args[0] = 2; /* request AVS header */ 6363 memcpy(ireq.u.name, args, sizeof (int)); 6364 if (ioctl(sock_fd, cmd, &ireq) != -1) 6365 break; /* success */ 6366 6367 /* 6368 * That failed. Try to select the Prism header. 6369 */ 6370 memset(&ireq, 0, sizeof ireq); 6371 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6372 sizeof ireq.ifr_ifrn.ifrn_name); 6373 args[0] = 1; /* request Prism header */ 6374 memcpy(ireq.u.name, args, sizeof (int)); 6375 ioctl(sock_fd, cmd, &ireq); 6376 break; 6377 6378 case MONITOR_PRISM: 6379 /* 6380 * The private ioctl failed. 6381 */ 6382 break; 6383 6384 case MONITOR_PRISM54: 6385 /* 6386 * Select the Prism header. 6387 */ 6388 memset(&ireq, 0, sizeof ireq); 6389 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6390 sizeof ireq.ifr_ifrn.ifrn_name); 6391 args[0] = 3; /* request Prism header */ 6392 memcpy(ireq.u.name, args, sizeof (int)); 6393 ioctl(sock_fd, cmd, &ireq); 6394 break; 6395 6396 case MONITOR_ACX100: 6397 /* 6398 * Get the current channel. 6399 */ 6400 memset(&ireq, 0, sizeof ireq); 6401 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6402 sizeof ireq.ifr_ifrn.ifrn_name); 6403 if (ioctl(sock_fd, SIOCGIWFREQ, &ireq) == -1) { 6404 pcap_fmt_errmsg_for_errno(handle->errbuf, 6405 PCAP_ERRBUF_SIZE, errno, "%s: SIOCGIWFREQ", device); 6406 return PCAP_ERROR; 6407 } 6408 channel = ireq.u.freq.m; 6409 6410 /* 6411 * Select the Prism header, and set the channel to the 6412 * current value. 6413 */ 6414 memset(&ireq, 0, sizeof ireq); 6415 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6416 sizeof ireq.ifr_ifrn.ifrn_name); 6417 args[0] = 1; /* request Prism header */ 6418 args[1] = channel; /* set channel */ 6419 memcpy(ireq.u.name, args, 2*sizeof (int)); 6420 ioctl(sock_fd, cmd, &ireq); 6421 break; 6422 6423 case MONITOR_RT2500: 6424 /* 6425 * Disallow transmission - that turns on the 6426 * Prism header. 6427 */ 6428 memset(&ireq, 0, sizeof ireq); 6429 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6430 sizeof ireq.ifr_ifrn.ifrn_name); 6431 args[0] = 0; /* disallow transmitting */ 6432 memcpy(ireq.u.name, args, sizeof (int)); 6433 ioctl(sock_fd, cmd, &ireq); 6434 break; 6435 6436 case MONITOR_RT2570: 6437 /* 6438 * Force the Prism header. 6439 */ 6440 memset(&ireq, 0, sizeof ireq); 6441 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6442 sizeof ireq.ifr_ifrn.ifrn_name); 6443 args[0] = 1; /* request Prism header */ 6444 memcpy(ireq.u.name, args, sizeof (int)); 6445 ioctl(sock_fd, cmd, &ireq); 6446 break; 6447 6448 case MONITOR_RT73: 6449 /* 6450 * Force the Prism header. 6451 */ 6452 memset(&ireq, 0, sizeof ireq); 6453 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6454 sizeof ireq.ifr_ifrn.ifrn_name); 6455 ireq.u.data.length = 1; /* 1 argument */ 6456 ireq.u.data.pointer = "1"; 6457 ireq.u.data.flags = 0; 6458 ioctl(sock_fd, cmd, &ireq); 6459 break; 6460 6461 case MONITOR_RTL8XXX: 6462 /* 6463 * Force the Prism header. 6464 */ 6465 memset(&ireq, 0, sizeof ireq); 6466 pcap_strlcpy(ireq.ifr_ifrn.ifrn_name, device, 6467 sizeof ireq.ifr_ifrn.ifrn_name); 6468 args[0] = 1; /* request Prism header */ 6469 memcpy(ireq.u.name, args, sizeof (int)); 6470 ioctl(sock_fd, cmd, &ireq); 6471 break; 6472 } 6473 6474 /* 6475 * Now bring the interface back up if we brought it down. 6476 */ 6477 if (oldflags != 0) { 6478 ifr.ifr_flags = oldflags; 6479 if (ioctl(sock_fd, SIOCSIFFLAGS, &ifr) == -1) { 6480 pcap_fmt_errmsg_for_errno(handle->errbuf, 6481 PCAP_ERRBUF_SIZE, errno, "%s: Can't set flags", 6482 device); 6483 6484 /* 6485 * At least try to restore the old mode on the 6486 * interface. 6487 */ 6488 if (ioctl(handle->fd, SIOCSIWMODE, &ireq) == -1) { 6489 /* 6490 * Scientist, you've failed. 6491 */ 6492 fprintf(stderr, 6493 "Can't restore interface wireless mode (SIOCSIWMODE failed: %s).\n" 6494 "Please adjust manually.\n", 6495 strerror(errno)); 6496 } 6497 return PCAP_ERROR; 6498 } 6499 } 6500 6501 /* 6502 * Note that we have to put the old mode back when we 6503 * close the device. 6504 */ 6505 handlep->must_do_on_close |= MUST_CLEAR_RFMON; 6506 6507 /* 6508 * Add this to the list of pcaps to close when we exit. 6509 */ 6510 pcap_add_to_pcaps_to_close(handle); 6511 6512 return 1; 6513 } 6514 #endif /* IW_MODE_MONITOR */ 6515 6516 /* 6517 * Try various mechanisms to enter monitor mode. 6518 */ 6519 static int 6520 enter_rfmon_mode(pcap_t *handle, int sock_fd, const char *device) 6521 { 6522 #if defined(HAVE_LIBNL) || defined(IW_MODE_MONITOR) 6523 int ret; 6524 #endif 6525 6526 #ifdef HAVE_LIBNL 6527 ret = enter_rfmon_mode_mac80211(handle, sock_fd, device); 6528 if (ret < 0) 6529 return ret; /* error attempting to do so */ 6530 if (ret == 1) 6531 return 1; /* success */ 6532 #endif /* HAVE_LIBNL */ 6533 6534 #ifdef IW_MODE_MONITOR 6535 ret = enter_rfmon_mode_wext(handle, sock_fd, device); 6536 if (ret < 0) 6537 return ret; /* error attempting to do so */ 6538 if (ret == 1) 6539 return 1; /* success */ 6540 #endif /* IW_MODE_MONITOR */ 6541 6542 /* 6543 * Either none of the mechanisms we know about work or none 6544 * of those mechanisms are available, so we can't do monitor 6545 * mode. 6546 */ 6547 return 0; 6548 } 6549 6550 #if defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) 6551 /* 6552 * Map SOF_TIMESTAMPING_ values to PCAP_TSTAMP_ values. 6553 */ 6554 static const struct { 6555 int soft_timestamping_val; 6556 int pcap_tstamp_val; 6557 } sof_ts_type_map[3] = { 6558 { SOF_TIMESTAMPING_SOFTWARE, PCAP_TSTAMP_HOST }, 6559 { SOF_TIMESTAMPING_SYS_HARDWARE, PCAP_TSTAMP_ADAPTER }, 6560 { SOF_TIMESTAMPING_RAW_HARDWARE, PCAP_TSTAMP_ADAPTER_UNSYNCED } 6561 }; 6562 #define NUM_SOF_TIMESTAMPING_TYPES (sizeof sof_ts_type_map / sizeof sof_ts_type_map[0]) 6563 6564 /* 6565 * Set the list of time stamping types to include all types. 6566 */ 6567 static void 6568 iface_set_all_ts_types(pcap_t *handle) 6569 { 6570 u_int i; 6571 6572 handle->tstamp_type_count = NUM_SOF_TIMESTAMPING_TYPES; 6573 handle->tstamp_type_list = malloc(NUM_SOF_TIMESTAMPING_TYPES * sizeof(u_int)); 6574 for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) 6575 handle->tstamp_type_list[i] = sof_ts_type_map[i].pcap_tstamp_val; 6576 } 6577 6578 #ifdef ETHTOOL_GET_TS_INFO 6579 /* 6580 * Get a list of time stamping capabilities. 6581 */ 6582 static int 6583 iface_ethtool_get_ts_info(const char *device, pcap_t *handle, char *ebuf) 6584 { 6585 int fd; 6586 struct ifreq ifr; 6587 struct ethtool_ts_info info; 6588 int num_ts_types; 6589 u_int i, j; 6590 6591 /* 6592 * This doesn't apply to the "any" device; you can't say "turn on 6593 * hardware time stamping for all devices that exist now and arrange 6594 * that it be turned on for any device that appears in the future", 6595 * and not all devices even necessarily *support* hardware time 6596 * stamping, so don't report any time stamp types. 6597 */ 6598 if (strcmp(device, "any") == 0) { 6599 handle->tstamp_type_list = NULL; 6600 return 0; 6601 } 6602 6603 /* 6604 * Create a socket from which to fetch time stamping capabilities. 6605 */ 6606 fd = socket(PF_UNIX, SOCK_RAW, 0); 6607 if (fd < 0) { 6608 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE, 6609 errno, "socket for SIOCETHTOOL(ETHTOOL_GET_TS_INFO)"); 6610 return -1; 6611 } 6612 6613 memset(&ifr, 0, sizeof(ifr)); 6614 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 6615 memset(&info, 0, sizeof(info)); 6616 info.cmd = ETHTOOL_GET_TS_INFO; 6617 ifr.ifr_data = (caddr_t)&info; 6618 if (ioctl(fd, SIOCETHTOOL, &ifr) == -1) { 6619 int save_errno = errno; 6620 6621 close(fd); 6622 switch (save_errno) { 6623 6624 case EOPNOTSUPP: 6625 case EINVAL: 6626 /* 6627 * OK, this OS version or driver doesn't support 6628 * asking for the time stamping types, so let's 6629 * just return all the possible types. 6630 */ 6631 iface_set_all_ts_types(handle); 6632 return 0; 6633 6634 case ENODEV: 6635 /* 6636 * OK, no such device. 6637 * The user will find that out when they try to 6638 * activate the device; just return an empty 6639 * list of time stamp types. 6640 */ 6641 handle->tstamp_type_list = NULL; 6642 return 0; 6643 6644 default: 6645 /* 6646 * Other error. 6647 */ 6648 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE, 6649 save_errno, 6650 "%s: SIOCETHTOOL(ETHTOOL_GET_TS_INFO) ioctl failed", 6651 device); 6652 return -1; 6653 } 6654 } 6655 close(fd); 6656 6657 /* 6658 * Do we support hardware time stamping of *all* packets? 6659 */ 6660 if (!(info.rx_filters & (1 << HWTSTAMP_FILTER_ALL))) { 6661 /* 6662 * No, so don't report any time stamp types. 6663 * 6664 * XXX - some devices either don't report 6665 * HWTSTAMP_FILTER_ALL when they do support it, or 6666 * report HWTSTAMP_FILTER_ALL but map it to only 6667 * time stamping a few PTP packets. See 6668 * http://marc.info/?l=linux-netdev&m=146318183529571&w=2 6669 */ 6670 handle->tstamp_type_list = NULL; 6671 return 0; 6672 } 6673 6674 num_ts_types = 0; 6675 for (i = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) { 6676 if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val) 6677 num_ts_types++; 6678 } 6679 handle->tstamp_type_count = num_ts_types; 6680 if (num_ts_types != 0) { 6681 handle->tstamp_type_list = malloc(num_ts_types * sizeof(u_int)); 6682 for (i = 0, j = 0; i < NUM_SOF_TIMESTAMPING_TYPES; i++) { 6683 if (info.so_timestamping & sof_ts_type_map[i].soft_timestamping_val) { 6684 handle->tstamp_type_list[j] = sof_ts_type_map[i].pcap_tstamp_val; 6685 j++; 6686 } 6687 } 6688 } else 6689 handle->tstamp_type_list = NULL; 6690 6691 return 0; 6692 } 6693 #else /* ETHTOOL_GET_TS_INFO */ 6694 static int 6695 iface_ethtool_get_ts_info(const char *device, pcap_t *handle, char *ebuf _U_) 6696 { 6697 /* 6698 * This doesn't apply to the "any" device; you can't say "turn on 6699 * hardware time stamping for all devices that exist now and arrange 6700 * that it be turned on for any device that appears in the future", 6701 * and not all devices even necessarily *support* hardware time 6702 * stamping, so don't report any time stamp types. 6703 */ 6704 if (strcmp(device, "any") == 0) { 6705 handle->tstamp_type_list = NULL; 6706 return 0; 6707 } 6708 6709 /* 6710 * We don't have an ioctl to use to ask what's supported, 6711 * so say we support everything. 6712 */ 6713 iface_set_all_ts_types(handle); 6714 return 0; 6715 } 6716 #endif /* ETHTOOL_GET_TS_INFO */ 6717 6718 #endif /* defined(HAVE_LINUX_NET_TSTAMP_H) && defined(PACKET_TIMESTAMP) */ 6719 6720 #ifdef HAVE_PACKET_RING 6721 /* 6722 * Find out if we have any form of fragmentation/reassembly offloading. 6723 * 6724 * We do so using SIOCETHTOOL checking for various types of offloading; 6725 * if SIOCETHTOOL isn't defined, or we don't have any #defines for any 6726 * of the types of offloading, there's nothing we can do to check, so 6727 * we just say "no, we don't". 6728 * 6729 * We treat EOPNOTSUPP, EINVAL and, if eperm_ok is true, EPERM as 6730 * indications that the operation isn't supported. We do EPERM 6731 * weirdly because the SIOCETHTOOL code in later kernels 1) doesn't 6732 * support ETHTOOL_GUFO, 2) also doesn't include it in the list 6733 * of ethtool operations that don't require CAP_NET_ADMIN privileges, 6734 * and 3) does the "is this permitted" check before doing the "is 6735 * this even supported" check, so it fails with "this is not permitted" 6736 * rather than "this is not even supported". To work around this 6737 * annoyance, we only treat EPERM as an error for the first feature, 6738 * and assume that they all do the same permission checks, so if the 6739 * first one is allowed all the others are allowed if supported. 6740 */ 6741 #if defined(SIOCETHTOOL) && (defined(ETHTOOL_GTSO) || defined(ETHTOOL_GUFO) || defined(ETHTOOL_GGSO) || defined(ETHTOOL_GFLAGS) || defined(ETHTOOL_GGRO)) 6742 static int 6743 iface_ethtool_flag_ioctl(pcap_t *handle, int cmd, const char *cmdname, 6744 int eperm_ok) 6745 { 6746 struct ifreq ifr; 6747 struct ethtool_value eval; 6748 6749 memset(&ifr, 0, sizeof(ifr)); 6750 pcap_strlcpy(ifr.ifr_name, handle->opt.device, sizeof(ifr.ifr_name)); 6751 eval.cmd = cmd; 6752 eval.data = 0; 6753 ifr.ifr_data = (caddr_t)&eval; 6754 if (ioctl(handle->fd, SIOCETHTOOL, &ifr) == -1) { 6755 if (errno == EOPNOTSUPP || errno == EINVAL || 6756 (errno == EPERM && eperm_ok)) { 6757 /* 6758 * OK, let's just return 0, which, in our 6759 * case, either means "no, what we're asking 6760 * about is not enabled" or "all the flags 6761 * are clear (i.e., nothing is enabled)". 6762 */ 6763 return 0; 6764 } 6765 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 6766 errno, "%s: SIOCETHTOOL(%s) ioctl failed", 6767 handle->opt.device, cmdname); 6768 return -1; 6769 } 6770 return eval.data; 6771 } 6772 6773 /* 6774 * XXX - it's annoying that we have to check for offloading at all, but, 6775 * given that we have to, it's still annoying that we have to check for 6776 * particular types of offloading, especially that shiny new types of 6777 * offloading may be added - and, worse, may not be checkable with 6778 * a particular ETHTOOL_ operation; ETHTOOL_GFEATURES would, in 6779 * theory, give those to you, but the actual flags being used are 6780 * opaque (defined in a non-uapi header), and there doesn't seem to 6781 * be any obvious way to ask the kernel what all the offloading flags 6782 * are - at best, you can ask for a set of strings(!) to get *names* 6783 * for various flags. (That whole mechanism appears to have been 6784 * designed for the sole purpose of letting ethtool report flags 6785 * by name and set flags by name, with the names having no semantics 6786 * ethtool understands.) 6787 */ 6788 static int 6789 iface_get_offload(pcap_t *handle) 6790 { 6791 int ret; 6792 6793 #ifdef ETHTOOL_GTSO 6794 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GTSO, "ETHTOOL_GTSO", 0); 6795 if (ret == -1) 6796 return -1; 6797 if (ret) 6798 return 1; /* TCP segmentation offloading on */ 6799 #endif 6800 6801 #ifdef ETHTOOL_GGSO 6802 /* 6803 * XXX - will this cause large unsegmented packets to be 6804 * handed to PF_PACKET sockets on transmission? If not, 6805 * this need not be checked. 6806 */ 6807 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGSO, "ETHTOOL_GGSO", 0); 6808 if (ret == -1) 6809 return -1; 6810 if (ret) 6811 return 1; /* generic segmentation offloading on */ 6812 #endif 6813 6814 #ifdef ETHTOOL_GFLAGS 6815 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GFLAGS, "ETHTOOL_GFLAGS", 0); 6816 if (ret == -1) 6817 return -1; 6818 if (ret & ETH_FLAG_LRO) 6819 return 1; /* large receive offloading on */ 6820 #endif 6821 6822 #ifdef ETHTOOL_GGRO 6823 /* 6824 * XXX - will this cause large reassembled packets to be 6825 * handed to PF_PACKET sockets on receipt? If not, 6826 * this need not be checked. 6827 */ 6828 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GGRO, "ETHTOOL_GGRO", 0); 6829 if (ret == -1) 6830 return -1; 6831 if (ret) 6832 return 1; /* generic (large) receive offloading on */ 6833 #endif 6834 6835 #ifdef ETHTOOL_GUFO 6836 /* 6837 * Do this one last, as support for it was removed in later 6838 * kernels, and it fails with EPERM on those kernels rather 6839 * than with EOPNOTSUPP (see explanation in comment for 6840 * iface_ethtool_flag_ioctl()). 6841 */ 6842 ret = iface_ethtool_flag_ioctl(handle, ETHTOOL_GUFO, "ETHTOOL_GUFO", 1); 6843 if (ret == -1) 6844 return -1; 6845 if (ret) 6846 return 1; /* UDP fragmentation offloading on */ 6847 #endif 6848 6849 return 0; 6850 } 6851 #else /* SIOCETHTOOL */ 6852 static int 6853 iface_get_offload(pcap_t *handle _U_) 6854 { 6855 /* 6856 * XXX - do we need to get this information if we don't 6857 * have the ethtool ioctls? If so, how do we do that? 6858 */ 6859 return 0; 6860 } 6861 #endif /* SIOCETHTOOL */ 6862 6863 #endif /* HAVE_PACKET_RING */ 6864 6865 #endif /* HAVE_PF_PACKET_SOCKETS */ 6866 6867 /* ===== Functions to interface to the older kernels ================== */ 6868 6869 /* 6870 * Try to open a packet socket using the old kernel interface. 6871 * Returns 1 on success and a PCAP_ERROR_ value on an error. 6872 */ 6873 static int 6874 activate_old(pcap_t *handle) 6875 { 6876 struct pcap_linux *handlep = handle->priv; 6877 int err; 6878 int arptype; 6879 struct ifreq ifr; 6880 const char *device = handle->opt.device; 6881 struct utsname utsname; 6882 int mtu; 6883 6884 /* 6885 * PF_INET/SOCK_PACKET sockets must be bound to a device, so we 6886 * can't support the "any" device. 6887 */ 6888 if (strcmp(device, "any") == 0) { 6889 pcap_strlcpy(handle->errbuf, "pcap_activate: The \"any\" device isn't supported on 2.0[.x]-kernel systems", 6890 PCAP_ERRBUF_SIZE); 6891 return PCAP_ERROR; 6892 } 6893 6894 /* Open the socket */ 6895 handle->fd = socket(PF_INET, SOCK_PACKET, htons(ETH_P_ALL)); 6896 if (handle->fd == -1) { 6897 err = errno; 6898 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 6899 err, "socket"); 6900 if (err == EPERM || err == EACCES) { 6901 /* 6902 * You don't have permission to open the 6903 * socket. 6904 */ 6905 return PCAP_ERROR_PERM_DENIED; 6906 } else { 6907 /* 6908 * Other error. 6909 */ 6910 return PCAP_ERROR; 6911 } 6912 } 6913 6914 /* It worked - we are using the old interface */ 6915 handlep->sock_packet = 1; 6916 6917 /* ...which means we get the link-layer header. */ 6918 handlep->cooked = 0; 6919 6920 /* Bind to the given device */ 6921 if (iface_bind_old(handle->fd, device, handle->errbuf) == -1) 6922 return PCAP_ERROR; 6923 6924 /* 6925 * Try to get the link-layer type. 6926 */ 6927 arptype = iface_get_arptype(handle->fd, device, handle->errbuf); 6928 if (arptype < 0) 6929 return PCAP_ERROR; 6930 6931 /* 6932 * Try to find the DLT_ type corresponding to that 6933 * link-layer type. 6934 */ 6935 map_arphrd_to_dlt(handle, handle->fd, arptype, device, 0); 6936 if (handle->linktype == -1) { 6937 pcap_snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 6938 "unknown arptype %d", arptype); 6939 return PCAP_ERROR; 6940 } 6941 6942 /* Go to promisc mode if requested */ 6943 6944 if (handle->opt.promisc) { 6945 memset(&ifr, 0, sizeof(ifr)); 6946 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 6947 if (ioctl(handle->fd, SIOCGIFFLAGS, &ifr) == -1) { 6948 pcap_fmt_errmsg_for_errno(handle->errbuf, 6949 PCAP_ERRBUF_SIZE, errno, "SIOCGIFFLAGS"); 6950 return PCAP_ERROR; 6951 } 6952 if ((ifr.ifr_flags & IFF_PROMISC) == 0) { 6953 /* 6954 * Promiscuous mode isn't currently on, 6955 * so turn it on, and remember that 6956 * we should turn it off when the 6957 * pcap_t is closed. 6958 */ 6959 6960 /* 6961 * If we haven't already done so, arrange 6962 * to have "pcap_close_all()" called when 6963 * we exit. 6964 */ 6965 if (!pcap_do_addexit(handle)) { 6966 /* 6967 * "atexit()" failed; don't put 6968 * the interface in promiscuous 6969 * mode, just give up. 6970 */ 6971 return PCAP_ERROR; 6972 } 6973 6974 ifr.ifr_flags |= IFF_PROMISC; 6975 if (ioctl(handle->fd, SIOCSIFFLAGS, &ifr) == -1) { 6976 pcap_fmt_errmsg_for_errno(handle->errbuf, 6977 PCAP_ERRBUF_SIZE, errno, "SIOCSIFFLAGS"); 6978 return PCAP_ERROR; 6979 } 6980 handlep->must_do_on_close |= MUST_CLEAR_PROMISC; 6981 6982 /* 6983 * Add this to the list of pcaps 6984 * to close when we exit. 6985 */ 6986 pcap_add_to_pcaps_to_close(handle); 6987 } 6988 } 6989 6990 /* 6991 * Compute the buffer size. 6992 * 6993 * We're using SOCK_PACKET, so this might be a 2.0[.x] 6994 * kernel, and might require special handling - check. 6995 */ 6996 if (uname(&utsname) < 0 || 6997 strncmp(utsname.release, "2.0", 3) == 0) { 6998 /* 6999 * Either we couldn't find out what kernel release 7000 * this is, or it's a 2.0[.x] kernel. 7001 * 7002 * In the 2.0[.x] kernel, a "recvfrom()" on 7003 * a SOCK_PACKET socket, with MSG_TRUNC set, will 7004 * return the number of bytes read, so if we pass 7005 * a length based on the snapshot length, it'll 7006 * return the number of bytes from the packet 7007 * copied to userland, not the actual length 7008 * of the packet. 7009 * 7010 * This means that, for example, the IP dissector 7011 * in tcpdump will get handed a packet length less 7012 * than the length in the IP header, and will 7013 * complain about "truncated-ip". 7014 * 7015 * So we don't bother trying to copy from the 7016 * kernel only the bytes in which we're interested, 7017 * but instead copy them all, just as the older 7018 * versions of libpcap for Linux did. 7019 * 7020 * The buffer therefore needs to be big enough to 7021 * hold the largest packet we can get from this 7022 * device. Unfortunately, we can't get the MRU 7023 * of the network; we can only get the MTU. The 7024 * MTU may be too small, in which case a packet larger 7025 * than the buffer size will be truncated *and* we 7026 * won't get the actual packet size. 7027 * 7028 * However, if the snapshot length is larger than 7029 * the buffer size based on the MTU, we use the 7030 * snapshot length as the buffer size, instead; 7031 * this means that with a sufficiently large snapshot 7032 * length we won't artificially truncate packets 7033 * to the MTU-based size. 7034 * 7035 * This mess just one of many problems with packet 7036 * capture on 2.0[.x] kernels; you really want a 7037 * 2.2[.x] or later kernel if you want packet capture 7038 * to work well. 7039 */ 7040 mtu = iface_get_mtu(handle->fd, device, handle->errbuf); 7041 if (mtu == -1) 7042 return PCAP_ERROR; 7043 handle->bufsize = MAX_LINKHEADER_SIZE + mtu; 7044 if (handle->bufsize < (u_int)handle->snapshot) 7045 handle->bufsize = (u_int)handle->snapshot; 7046 } else { 7047 /* 7048 * This is a 2.2[.x] or later kernel. 7049 * 7050 * We can safely pass "recvfrom()" a byte count 7051 * based on the snapshot length. 7052 * 7053 * XXX - this "should not happen", as 2.2[.x] 7054 * kernels all have PF_PACKET sockets, and there's 7055 * no configuration option to disable them without 7056 * disabling SOCK_PACKET sockets, because 7057 * SOCK_PACKET sockets are implemented in the same 7058 * source file, net/packet/af_packet.c. There *is* 7059 * an option to disable SOCK_PACKET sockets so that 7060 * you only have PF_PACKET sockets, and the kernel 7061 * will log warning messages for code that uses 7062 * "obsolete (PF_INET,SOCK_PACKET)". 7063 */ 7064 handle->bufsize = (u_int)handle->snapshot; 7065 } 7066 7067 /* 7068 * Default value for offset to align link-layer payload 7069 * on a 4-byte boundary. 7070 */ 7071 handle->offset = 0; 7072 7073 /* 7074 * SOCK_PACKET sockets don't supply information from 7075 * stripped VLAN tags. 7076 */ 7077 handlep->vlan_offset = -1; /* unknown */ 7078 7079 return 1; 7080 } 7081 7082 /* 7083 * Bind the socket associated with FD to the given device using the 7084 * interface of the old kernels. 7085 */ 7086 static int 7087 iface_bind_old(int fd, const char *device, char *ebuf) 7088 { 7089 struct sockaddr saddr; 7090 int err; 7091 socklen_t errlen = sizeof(err); 7092 7093 memset(&saddr, 0, sizeof(saddr)); 7094 pcap_strlcpy(saddr.sa_data, device, sizeof(saddr.sa_data)); 7095 if (bind(fd, &saddr, sizeof(saddr)) == -1) { 7096 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE, 7097 errno, "bind"); 7098 return -1; 7099 } 7100 7101 /* Any pending errors, e.g., network is down? */ 7102 7103 if (getsockopt(fd, SOL_SOCKET, SO_ERROR, &err, &errlen) == -1) { 7104 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE, 7105 errno, "getsockopt (SO_ERROR)"); 7106 return -1; 7107 } 7108 7109 if (err > 0) { 7110 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE, 7111 err, "bind"); 7112 return -1; 7113 } 7114 7115 return 0; 7116 } 7117 7118 7119 /* ===== System calls available on all supported kernels ============== */ 7120 7121 /* 7122 * Query the kernel for the MTU of the given interface. 7123 */ 7124 static int 7125 iface_get_mtu(int fd, const char *device, char *ebuf) 7126 { 7127 struct ifreq ifr; 7128 7129 if (!device) 7130 return BIGGER_THAN_ALL_MTUS; 7131 7132 memset(&ifr, 0, sizeof(ifr)); 7133 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 7134 7135 if (ioctl(fd, SIOCGIFMTU, &ifr) == -1) { 7136 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE, 7137 errno, "SIOCGIFMTU"); 7138 return -1; 7139 } 7140 7141 return ifr.ifr_mtu; 7142 } 7143 7144 /* 7145 * Get the hardware type of the given interface as ARPHRD_xxx constant. 7146 */ 7147 static int 7148 iface_get_arptype(int fd, const char *device, char *ebuf) 7149 { 7150 struct ifreq ifr; 7151 int ret; 7152 7153 memset(&ifr, 0, sizeof(ifr)); 7154 pcap_strlcpy(ifr.ifr_name, device, sizeof(ifr.ifr_name)); 7155 7156 if (ioctl(fd, SIOCGIFHWADDR, &ifr) == -1) { 7157 if (errno == ENODEV) { 7158 /* 7159 * No such device. 7160 */ 7161 ret = PCAP_ERROR_NO_SUCH_DEVICE; 7162 } else 7163 ret = PCAP_ERROR; 7164 pcap_fmt_errmsg_for_errno(ebuf, PCAP_ERRBUF_SIZE, 7165 errno, "SIOCGIFHWADDR"); 7166 return ret; 7167 } 7168 7169 return ifr.ifr_hwaddr.sa_family; 7170 } 7171 7172 #ifdef SO_ATTACH_FILTER 7173 static int 7174 fix_program(pcap_t *handle, struct sock_fprog *fcode, int is_mmapped) 7175 { 7176 struct pcap_linux *handlep = handle->priv; 7177 size_t prog_size; 7178 register int i; 7179 register struct bpf_insn *p; 7180 struct bpf_insn *f; 7181 int len; 7182 7183 /* 7184 * Make a copy of the filter, and modify that copy if 7185 * necessary. 7186 */ 7187 prog_size = sizeof(*handle->fcode.bf_insns) * handle->fcode.bf_len; 7188 len = handle->fcode.bf_len; 7189 f = (struct bpf_insn *)malloc(prog_size); 7190 if (f == NULL) { 7191 pcap_fmt_errmsg_for_errno(handle->errbuf, PCAP_ERRBUF_SIZE, 7192 errno, "malloc"); 7193 return -1; 7194 } 7195 memcpy(f, handle->fcode.bf_insns, prog_size); 7196 fcode->len = len; 7197 fcode->filter = (struct sock_filter *) f; 7198 7199 for (i = 0; i < len; ++i) { 7200 p = &f[i]; 7201 /* 7202 * What type of instruction is this? 7203 */ 7204 switch (BPF_CLASS(p->code)) { 7205 7206 case BPF_RET: 7207 /* 7208 * It's a return instruction; are we capturing 7209 * in memory-mapped mode? 7210 */ 7211 if (!is_mmapped) { 7212 /* 7213 * No; is the snapshot length a constant, 7214 * rather than the contents of the 7215 * accumulator? 7216 */ 7217 if (BPF_MODE(p->code) == BPF_K) { 7218 /* 7219 * Yes - if the value to be returned, 7220 * i.e. the snapshot length, is 7221 * anything other than 0, make it 7222 * MAXIMUM_SNAPLEN, so that the packet 7223 * is truncated by "recvfrom()", 7224 * not by the filter. 7225 * 7226 * XXX - there's nothing we can 7227 * easily do if it's getting the 7228 * value from the accumulator; we'd 7229 * have to insert code to force 7230 * non-zero values to be 7231 * MAXIMUM_SNAPLEN. 7232 */ 7233 if (p->k != 0) 7234 p->k = MAXIMUM_SNAPLEN; 7235 } 7236 } 7237 break; 7238 7239 case BPF_LD: 7240 case BPF_LDX: 7241 /* 7242 * It's a load instruction; is it loading 7243 * from the packet? 7244 */ 7245 switch (BPF_MODE(p->code)) { 7246 7247 case BPF_ABS: 7248 case BPF_IND: 7249 case BPF_MSH: 7250 /* 7251 * Yes; are we in cooked mode? 7252 */ 7253 if (handlep->cooked) { 7254 /* 7255 * Yes, so we need to fix this 7256 * instruction. 7257 */ 7258 if (fix_offset(handle, p) < 0) { 7259 /* 7260 * We failed to do so. 7261 * Return 0, so our caller 7262 * knows to punt to userland. 7263 */ 7264 return 0; 7265 } 7266 } 7267 break; 7268 } 7269 break; 7270 } 7271 } 7272 return 1; /* we succeeded */ 7273 } 7274 7275 static int 7276 fix_offset(pcap_t *handle, struct bpf_insn *p) 7277 { 7278 /* 7279 * Existing references to auxiliary data shouldn't be adjusted. 7280 * 7281 * Note that SKF_AD_OFF is negative, but p->k is unsigned, so 7282 * we use >= and cast SKF_AD_OFF to unsigned. 7283 */ 7284 if (p->k >= (bpf_u_int32)SKF_AD_OFF) 7285 return 0; 7286 if (handle->linktype == DLT_LINUX_SLL2) { 7287 /* 7288 * What's the offset? 7289 */ 7290 if (p->k >= SLL2_HDR_LEN) { 7291 /* 7292 * It's within the link-layer payload; that starts 7293 * at an offset of 0, as far as the kernel packet 7294 * filter is concerned, so subtract the length of 7295 * the link-layer header. 7296 */ 7297 p->k -= SLL2_HDR_LEN; 7298 } else if (p->k == 0) { 7299 /* 7300 * It's the protocol field; map it to the 7301 * special magic kernel offset for that field. 7302 */ 7303 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL; 7304 } else if (p->k == 10) { 7305 /* 7306 * It's the packet type field; map it to the 7307 * special magic kernel offset for that field. 7308 */ 7309 p->k = SKF_AD_OFF + SKF_AD_PKTTYPE; 7310 } else if ((bpf_int32)(p->k) > 0) { 7311 /* 7312 * It's within the header, but it's not one of 7313 * those fields; we can't do that in the kernel, 7314 * so punt to userland. 7315 */ 7316 return -1; 7317 } 7318 } else { 7319 /* 7320 * What's the offset? 7321 */ 7322 if (p->k >= SLL_HDR_LEN) { 7323 /* 7324 * It's within the link-layer payload; that starts 7325 * at an offset of 0, as far as the kernel packet 7326 * filter is concerned, so subtract the length of 7327 * the link-layer header. 7328 */ 7329 p->k -= SLL_HDR_LEN; 7330 } else if (p->k == 0) { 7331 /* 7332 * It's the packet type field; map it to the 7333 * special magic kernel offset for that field. 7334 */ 7335 p->k = SKF_AD_OFF + SKF_AD_PKTTYPE; 7336 } else if (p->k == 14) { 7337 /* 7338 * It's the protocol field; map it to the 7339 * special magic kernel offset for that field. 7340 */ 7341 p->k = SKF_AD_OFF + SKF_AD_PROTOCOL; 7342 } else if ((bpf_int32)(p->k) > 0) { 7343 /* 7344 * It's within the header, but it's not one of 7345 * those fields; we can't do that in the kernel, 7346 * so punt to userland. 7347 */ 7348 return -1; 7349 } 7350 } 7351 return 0; 7352 } 7353 7354 static int 7355 set_kernel_filter(pcap_t *handle, struct sock_fprog *fcode) 7356 { 7357 int total_filter_on = 0; 7358 int save_mode; 7359 int ret; 7360 int save_errno; 7361 7362 /* 7363 * The socket filter code doesn't discard all packets queued 7364 * up on the socket when the filter is changed; this means 7365 * that packets that don't match the new filter may show up 7366 * after the new filter is put onto the socket, if those 7367 * packets haven't yet been read. 7368 * 7369 * This means, for example, that if you do a tcpdump capture 7370 * with a filter, the first few packets in the capture might 7371 * be packets that wouldn't have passed the filter. 7372 * 7373 * We therefore discard all packets queued up on the socket 7374 * when setting a kernel filter. (This isn't an issue for 7375 * userland filters, as the userland filtering is done after 7376 * packets are queued up.) 7377 * 7378 * To flush those packets, we put the socket in read-only mode, 7379 * and read packets from the socket until there are no more to 7380 * read. 7381 * 7382 * In order to keep that from being an infinite loop - i.e., 7383 * to keep more packets from arriving while we're draining 7384 * the queue - we put the "total filter", which is a filter 7385 * that rejects all packets, onto the socket before draining 7386 * the queue. 7387 * 7388 * This code deliberately ignores any errors, so that you may 7389 * get bogus packets if an error occurs, rather than having 7390 * the filtering done in userland even if it could have been 7391 * done in the kernel. 7392 */ 7393 if (setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER, 7394 &total_fcode, sizeof(total_fcode)) == 0) { 7395 char drain[1]; 7396 7397 /* 7398 * Note that we've put the total filter onto the socket. 7399 */ 7400 total_filter_on = 1; 7401 7402 /* 7403 * Save the socket's current mode, and put it in 7404 * non-blocking mode; we drain it by reading packets 7405 * until we get an error (which is normally a 7406 * "nothing more to be read" error). 7407 */ 7408 save_mode = fcntl(handle->fd, F_GETFL, 0); 7409 if (save_mode == -1) { 7410 pcap_fmt_errmsg_for_errno(handle->errbuf, 7411 PCAP_ERRBUF_SIZE, errno, 7412 "can't get FD flags when changing filter"); 7413 return -2; 7414 } 7415 if (fcntl(handle->fd, F_SETFL, save_mode | O_NONBLOCK) < 0) { 7416 pcap_fmt_errmsg_for_errno(handle->errbuf, 7417 PCAP_ERRBUF_SIZE, errno, 7418 "can't set nonblocking mode when changing filter"); 7419 return -2; 7420 } 7421 while (recv(handle->fd, &drain, sizeof drain, MSG_TRUNC) >= 0) 7422 ; 7423 save_errno = errno; 7424 if (save_errno != EAGAIN) { 7425 /* 7426 * Fatal error. 7427 * 7428 * If we can't restore the mode or reset the 7429 * kernel filter, there's nothing we can do. 7430 */ 7431 (void)fcntl(handle->fd, F_SETFL, save_mode); 7432 (void)reset_kernel_filter(handle); 7433 pcap_fmt_errmsg_for_errno(handle->errbuf, 7434 PCAP_ERRBUF_SIZE, save_errno, 7435 "recv failed when changing filter"); 7436 return -2; 7437 } 7438 if (fcntl(handle->fd, F_SETFL, save_mode) == -1) { 7439 pcap_fmt_errmsg_for_errno(handle->errbuf, 7440 PCAP_ERRBUF_SIZE, errno, 7441 "can't restore FD flags when changing filter"); 7442 return -2; 7443 } 7444 } 7445 7446 /* 7447 * Now attach the new filter. 7448 */ 7449 ret = setsockopt(handle->fd, SOL_SOCKET, SO_ATTACH_FILTER, 7450 fcode, sizeof(*fcode)); 7451 if (ret == -1 && total_filter_on) { 7452 /* 7453 * Well, we couldn't set that filter on the socket, 7454 * but we could set the total filter on the socket. 7455 * 7456 * This could, for example, mean that the filter was 7457 * too big to put into the kernel, so we'll have to 7458 * filter in userland; in any case, we'll be doing 7459 * filtering in userland, so we need to remove the 7460 * total filter so we see packets. 7461 */ 7462 save_errno = errno; 7463 7464 /* 7465 * If this fails, we're really screwed; we have the 7466 * total filter on the socket, and it won't come off. 7467 * Report it as a fatal error. 7468 */ 7469 if (reset_kernel_filter(handle) == -1) { 7470 pcap_fmt_errmsg_for_errno(handle->errbuf, 7471 PCAP_ERRBUF_SIZE, errno, 7472 "can't remove kernel total filter"); 7473 return -2; /* fatal error */ 7474 } 7475 7476 errno = save_errno; 7477 } 7478 return ret; 7479 } 7480 7481 static int 7482 reset_kernel_filter(pcap_t *handle) 7483 { 7484 int ret; 7485 /* 7486 * setsockopt() barfs unless it get a dummy parameter. 7487 * valgrind whines unless the value is initialized, 7488 * as it has no idea that setsockopt() ignores its 7489 * parameter. 7490 */ 7491 int dummy = 0; 7492 7493 ret = setsockopt(handle->fd, SOL_SOCKET, SO_DETACH_FILTER, 7494 &dummy, sizeof(dummy)); 7495 /* 7496 * Ignore ENOENT - it means "we don't have a filter", so there 7497 * was no filter to remove, and there's still no filter. 7498 * 7499 * Also ignore ENONET, as a lot of kernel versions had a 7500 * typo where ENONET, rather than ENOENT, was returned. 7501 */ 7502 if (ret == -1 && errno != ENOENT && errno != ENONET) 7503 return -1; 7504 return 0; 7505 } 7506 #endif 7507 7508 int 7509 pcap_set_protocol_linux(pcap_t *p, int protocol) 7510 { 7511 if (pcap_check_activated(p)) 7512 return (PCAP_ERROR_ACTIVATED); 7513 p->opt.protocol = protocol; 7514 return (0); 7515 } 7516 7517 /* 7518 * Libpcap version string. 7519 */ 7520 const char * 7521 pcap_lib_version(void) 7522 { 7523 #ifdef HAVE_PACKET_RING 7524 #if defined(HAVE_TPACKET3) 7525 return (PCAP_VERSION_STRING " (with TPACKET_V3)"); 7526 #elif defined(HAVE_TPACKET2) 7527 return (PCAP_VERSION_STRING " (with TPACKET_V2)"); 7528 #else 7529 return (PCAP_VERSION_STRING " (with TPACKET_V1)"); 7530 #endif 7531 #else 7532 return (PCAP_VERSION_STRING " (without TPACKET)"); 7533 #endif 7534 } 7535