xref: /freebsd/contrib/libpcap/gencode.c (revision f39bffc62c1395bde25d152c7f68fdf7cbaab414)
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  */
22 
23 #ifdef HAVE_CONFIG_H
24 #include <config.h>
25 #endif
26 
27 #include <pcap-types.h>
28 #ifdef _WIN32
29   #include <ws2tcpip.h>
30 #else
31   #include <sys/socket.h>
32 
33   #ifdef __NetBSD__
34     #include <sys/param.h>
35   #endif
36 
37   #include <netinet/in.h>
38   #include <arpa/inet.h>
39 #endif /* _WIN32 */
40 
41 #include <stdlib.h>
42 #include <string.h>
43 #include <memory.h>
44 #include <setjmp.h>
45 #include <stdarg.h>
46 
47 #ifdef MSDOS
48 #include "pcap-dos.h"
49 #endif
50 
51 #include "pcap-int.h"
52 
53 #include "ethertype.h"
54 #include "nlpid.h"
55 #include "llc.h"
56 #include "gencode.h"
57 #include "ieee80211.h"
58 #include "atmuni31.h"
59 #include "sunatmpos.h"
60 #include "ppp.h"
61 #include "pcap/sll.h"
62 #include "pcap/ipnet.h"
63 #include "arcnet.h"
64 
65 #include "grammar.h"
66 #include "scanner.h"
67 
68 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
69 #include <linux/types.h>
70 #include <linux/if_packet.h>
71 #include <linux/filter.h>
72 #endif
73 
74 #ifdef HAVE_NET_PFVAR_H
75 #include <sys/socket.h>
76 #include <net/if.h>
77 #include <net/pfvar.h>
78 #include <net/if_pflog.h>
79 #endif
80 
81 #ifndef offsetof
82 #define offsetof(s, e) ((size_t)&((s *)0)->e)
83 #endif
84 
85 #ifdef _WIN32
86   #ifdef INET6
87     #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
88 /* IPv6 address */
89 struct in6_addr
90   {
91     union
92       {
93 	uint8_t		u6_addr8[16];
94 	uint16_t	u6_addr16[8];
95 	uint32_t	u6_addr32[4];
96       } in6_u;
97 #define s6_addr			in6_u.u6_addr8
98 #define s6_addr16		in6_u.u6_addr16
99 #define s6_addr32		in6_u.u6_addr32
100 #define s6_addr64		in6_u.u6_addr64
101   };
102 
103 typedef unsigned short	sa_family_t;
104 
105 #define	__SOCKADDR_COMMON(sa_prefix) \
106   sa_family_t sa_prefix##family
107 
108 /* Ditto, for IPv6.  */
109 struct sockaddr_in6
110   {
111     __SOCKADDR_COMMON (sin6_);
112     uint16_t sin6_port;		/* Transport layer port # */
113     uint32_t sin6_flowinfo;	/* IPv6 flow information */
114     struct in6_addr sin6_addr;	/* IPv6 address */
115   };
116 
117       #ifndef EAI_ADDRFAMILY
118 struct addrinfo {
119 	int	ai_flags;	/* AI_PASSIVE, AI_CANONNAME */
120 	int	ai_family;	/* PF_xxx */
121 	int	ai_socktype;	/* SOCK_xxx */
122 	int	ai_protocol;	/* 0 or IPPROTO_xxx for IPv4 and IPv6 */
123 	size_t	ai_addrlen;	/* length of ai_addr */
124 	char	*ai_canonname;	/* canonical name for hostname */
125 	struct sockaddr *ai_addr;	/* binary address */
126 	struct addrinfo *ai_next;	/* next structure in linked list */
127 };
128       #endif /* EAI_ADDRFAMILY */
129     #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
130   #endif /* INET6 */
131 #else /* _WIN32 */
132   #include <netdb.h>	/* for "struct addrinfo" */
133 #endif /* _WIN32 */
134 #include <pcap/namedb.h>
135 
136 #include "nametoaddr.h"
137 
138 #define ETHERMTU	1500
139 
140 #ifndef ETHERTYPE_TEB
141 #define ETHERTYPE_TEB 0x6558
142 #endif
143 
144 #ifndef IPPROTO_HOPOPTS
145 #define IPPROTO_HOPOPTS 0
146 #endif
147 #ifndef IPPROTO_ROUTING
148 #define IPPROTO_ROUTING 43
149 #endif
150 #ifndef IPPROTO_FRAGMENT
151 #define IPPROTO_FRAGMENT 44
152 #endif
153 #ifndef IPPROTO_DSTOPTS
154 #define IPPROTO_DSTOPTS 60
155 #endif
156 #ifndef IPPROTO_SCTP
157 #define IPPROTO_SCTP 132
158 #endif
159 
160 #define GENEVE_PORT 6081
161 
162 #ifdef HAVE_OS_PROTO_H
163 #include "os-proto.h"
164 #endif
165 
166 #define JMP(c) ((c)|BPF_JMP|BPF_K)
167 
168 /*
169  * "Push" the current value of the link-layer header type and link-layer
170  * header offset onto a "stack", and set a new value.  (It's not a
171  * full-blown stack; we keep only the top two items.)
172  */
173 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
174 { \
175 	(cs)->prevlinktype = (cs)->linktype; \
176 	(cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
177 	(cs)->linktype = (new_linktype); \
178 	(cs)->off_linkhdr.is_variable = (new_is_variable); \
179 	(cs)->off_linkhdr.constant_part = (new_constant_part); \
180 	(cs)->off_linkhdr.reg = (new_reg); \
181 	(cs)->is_geneve = 0; \
182 }
183 
184 /*
185  * Offset "not set" value.
186  */
187 #define OFFSET_NOT_SET	0xffffffffU
188 
189 /*
190  * Absolute offsets, which are offsets from the beginning of the raw
191  * packet data, are, in the general case, the sum of a variable value
192  * and a constant value; the variable value may be absent, in which
193  * case the offset is only the constant value, and the constant value
194  * may be zero, in which case the offset is only the variable value.
195  *
196  * bpf_abs_offset is a structure containing all that information:
197  *
198  *   is_variable is 1 if there's a variable part.
199  *
200  *   constant_part is the constant part of the value, possibly zero;
201  *
202  *   if is_variable is 1, reg is the register number for a register
203  *   containing the variable value if the register has been assigned,
204  *   and -1 otherwise.
205  */
206 typedef struct {
207 	int	is_variable;
208 	u_int	constant_part;
209 	int	reg;
210 } bpf_abs_offset;
211 
212 /*
213  * Value passed to gen_load_a() to indicate what the offset argument
214  * is relative to the beginning of.
215  */
216 enum e_offrel {
217 	OR_PACKET,		/* full packet data */
218 	OR_LINKHDR,		/* link-layer header */
219 	OR_PREVLINKHDR,		/* previous link-layer header */
220 	OR_LLC,			/* 802.2 LLC header */
221 	OR_PREVMPLSHDR,		/* previous MPLS header */
222 	OR_LINKTYPE,		/* link-layer type */
223 	OR_LINKPL,		/* link-layer payload */
224 	OR_LINKPL_NOSNAP,	/* link-layer payload, with no SNAP header at the link layer */
225 	OR_TRAN_IPV4,		/* transport-layer header, with IPv4 network layer */
226 	OR_TRAN_IPV6		/* transport-layer header, with IPv6 network layer */
227 };
228 
229 /*
230  * We divy out chunks of memory rather than call malloc each time so
231  * we don't have to worry about leaking memory.  It's probably
232  * not a big deal if all this memory was wasted but if this ever
233  * goes into a library that would probably not be a good idea.
234  *
235  * XXX - this *is* in a library....
236  */
237 #define NCHUNKS 16
238 #define CHUNK0SIZE 1024
239 struct chunk {
240 	size_t n_left;
241 	void *m;
242 };
243 
244 /* Code generator state */
245 
246 struct _compiler_state {
247 	jmp_buf top_ctx;
248 	pcap_t *bpf_pcap;
249 
250 	struct icode ic;
251 
252 	int snaplen;
253 
254 	int linktype;
255 	int prevlinktype;
256 	int outermostlinktype;
257 
258 	bpf_u_int32 netmask;
259 	int no_optimize;
260 
261 	/* Hack for handling VLAN and MPLS stacks. */
262 	u_int label_stack_depth;
263 	u_int vlan_stack_depth;
264 
265 	/* XXX */
266 	u_int pcap_fddipad;
267 
268 	/*
269 	 * As errors are handled by a longjmp, anything allocated must
270 	 * be freed in the longjmp handler, so it must be reachable
271 	 * from that handler.
272 	 *
273 	 * One thing that's allocated is the result of pcap_nametoaddrinfo();
274 	 * it must be freed with freeaddrinfo().  This variable points to
275 	 * any addrinfo structure that would need to be freed.
276 	 */
277 	struct addrinfo *ai;
278 
279 	/*
280 	 * Various code constructs need to know the layout of the packet.
281 	 * These values give the necessary offsets from the beginning
282 	 * of the packet data.
283 	 */
284 
285 	/*
286 	 * Absolute offset of the beginning of the link-layer header.
287 	 */
288 	bpf_abs_offset off_linkhdr;
289 
290 	/*
291 	 * If we're checking a link-layer header for a packet encapsulated
292 	 * in another protocol layer, this is the equivalent information
293 	 * for the previous layers' link-layer header from the beginning
294 	 * of the raw packet data.
295 	 */
296 	bpf_abs_offset off_prevlinkhdr;
297 
298 	/*
299 	 * This is the equivalent information for the outermost layers'
300 	 * link-layer header.
301 	 */
302 	bpf_abs_offset off_outermostlinkhdr;
303 
304 	/*
305 	 * Absolute offset of the beginning of the link-layer payload.
306 	 */
307 	bpf_abs_offset off_linkpl;
308 
309 	/*
310 	 * "off_linktype" is the offset to information in the link-layer
311 	 * header giving the packet type. This is an absolute offset
312 	 * from the beginning of the packet.
313 	 *
314 	 * For Ethernet, it's the offset of the Ethernet type field; this
315 	 * means that it must have a value that skips VLAN tags.
316 	 *
317 	 * For link-layer types that always use 802.2 headers, it's the
318 	 * offset of the LLC header; this means that it must have a value
319 	 * that skips VLAN tags.
320 	 *
321 	 * For PPP, it's the offset of the PPP type field.
322 	 *
323 	 * For Cisco HDLC, it's the offset of the CHDLC type field.
324 	 *
325 	 * For BSD loopback, it's the offset of the AF_ value.
326 	 *
327 	 * For Linux cooked sockets, it's the offset of the type field.
328 	 *
329 	 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
330 	 * encapsulation, in which case, IP is assumed.
331 	 */
332 	bpf_abs_offset off_linktype;
333 
334 	/*
335 	 * TRUE if the link layer includes an ATM pseudo-header.
336 	 */
337 	int is_atm;
338 
339 	/*
340 	 * TRUE if "geneve" appeared in the filter; it causes us to
341 	 * generate code that checks for a Geneve header and assume
342 	 * that later filters apply to the encapsulated payload.
343 	 */
344 	int is_geneve;
345 
346 	/*
347 	 * TRUE if we need variable length part of VLAN offset
348 	 */
349 	int is_vlan_vloffset;
350 
351 	/*
352 	 * These are offsets for the ATM pseudo-header.
353 	 */
354 	u_int off_vpi;
355 	u_int off_vci;
356 	u_int off_proto;
357 
358 	/*
359 	 * These are offsets for the MTP2 fields.
360 	 */
361 	u_int off_li;
362 	u_int off_li_hsl;
363 
364 	/*
365 	 * These are offsets for the MTP3 fields.
366 	 */
367 	u_int off_sio;
368 	u_int off_opc;
369 	u_int off_dpc;
370 	u_int off_sls;
371 
372 	/*
373 	 * This is the offset of the first byte after the ATM pseudo_header,
374 	 * or -1 if there is no ATM pseudo-header.
375 	 */
376 	u_int off_payload;
377 
378 	/*
379 	 * These are offsets to the beginning of the network-layer header.
380 	 * They are relative to the beginning of the link-layer payload
381 	 * (i.e., they don't include off_linkhdr.constant_part or
382 	 * off_linkpl.constant_part).
383 	 *
384 	 * If the link layer never uses 802.2 LLC:
385 	 *
386 	 *	"off_nl" and "off_nl_nosnap" are the same.
387 	 *
388 	 * If the link layer always uses 802.2 LLC:
389 	 *
390 	 *	"off_nl" is the offset if there's a SNAP header following
391 	 *	the 802.2 header;
392 	 *
393 	 *	"off_nl_nosnap" is the offset if there's no SNAP header.
394 	 *
395 	 * If the link layer is Ethernet:
396 	 *
397 	 *	"off_nl" is the offset if the packet is an Ethernet II packet
398 	 *	(we assume no 802.3+802.2+SNAP);
399 	 *
400 	 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
401 	 *	with an 802.2 header following it.
402 	 */
403 	u_int off_nl;
404 	u_int off_nl_nosnap;
405 
406 	/*
407 	 * Here we handle simple allocation of the scratch registers.
408 	 * If too many registers are alloc'd, the allocator punts.
409 	 */
410 	int regused[BPF_MEMWORDS];
411 	int curreg;
412 
413 	/*
414 	 * Memory chunks.
415 	 */
416 	struct chunk chunks[NCHUNKS];
417 	int cur_chunk;
418 };
419 
420 void PCAP_NORETURN
421 bpf_syntax_error(compiler_state_t *cstate, const char *msg)
422 {
423 	bpf_error(cstate, "syntax error in filter expression: %s", msg);
424 	/* NOTREACHED */
425 }
426 
427 /* VARARGS */
428 void PCAP_NORETURN
429 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
430 {
431 	va_list ap;
432 
433 	va_start(ap, fmt);
434 	if (cstate->bpf_pcap != NULL)
435 		(void)pcap_vsnprintf(pcap_geterr(cstate->bpf_pcap),
436 		    PCAP_ERRBUF_SIZE, fmt, ap);
437 	va_end(ap);
438 	longjmp(cstate->top_ctx, 1);
439 	/* NOTREACHED */
440 }
441 
442 static void init_linktype(compiler_state_t *, pcap_t *);
443 
444 static void init_regs(compiler_state_t *);
445 static int alloc_reg(compiler_state_t *);
446 static void free_reg(compiler_state_t *, int);
447 
448 static void initchunks(compiler_state_t *cstate);
449 static void *newchunk(compiler_state_t *cstate, size_t);
450 static void freechunks(compiler_state_t *cstate);
451 static inline struct block *new_block(compiler_state_t *cstate, int);
452 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
453 static struct block *gen_retblk(compiler_state_t *cstate, int);
454 static inline void syntax(compiler_state_t *cstate);
455 
456 static void backpatch(struct block *, struct block *);
457 static void merge(struct block *, struct block *);
458 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
459     u_int, bpf_int32);
460 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
461     u_int, bpf_int32);
462 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
463     u_int, bpf_int32);
464 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
465     u_int, bpf_int32);
466 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
467     u_int, bpf_int32);
468 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
469     u_int, bpf_int32, bpf_u_int32);
470 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
471     u_int, const u_char *);
472 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, bpf_u_int32,
473     bpf_u_int32, bpf_u_int32, bpf_u_int32, int, bpf_int32);
474 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
475     u_int, u_int);
476 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
477     u_int);
478 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
479 static struct block *gen_uncond(compiler_state_t *, int);
480 static inline struct block *gen_true(compiler_state_t *);
481 static inline struct block *gen_false(compiler_state_t *);
482 static struct block *gen_ether_linktype(compiler_state_t *, int);
483 static struct block *gen_ipnet_linktype(compiler_state_t *, int);
484 static struct block *gen_linux_sll_linktype(compiler_state_t *, int);
485 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
486 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
487 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
488 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
489 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
490 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
491     bpf_abs_offset *);
492 static int ethertype_to_ppptype(int);
493 static struct block *gen_linktype(compiler_state_t *, int);
494 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
495 static struct block *gen_llc_linktype(compiler_state_t *, int);
496 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
497     int, int, u_int, u_int);
498 #ifdef INET6
499 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
500     struct in6_addr *, int, int, u_int, u_int);
501 #endif
502 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
503 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
504 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
505 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
506 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
507 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
508 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
509 static struct block *gen_mpls_linktype(compiler_state_t *, int);
510 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
511     int, int, int);
512 #ifdef INET6
513 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
514     struct in6_addr *, int, int, int);
515 #endif
516 #ifndef INET6
517 static struct block *gen_gateway(compiler_state_t *, const u_char *,
518     struct addrinfo *, int, int);
519 #endif
520 static struct block *gen_ipfrag(compiler_state_t *);
521 static struct block *gen_portatom(compiler_state_t *, int, bpf_int32);
522 static struct block *gen_portrangeatom(compiler_state_t *, int, bpf_int32,
523     bpf_int32);
524 static struct block *gen_portatom6(compiler_state_t *, int, bpf_int32);
525 static struct block *gen_portrangeatom6(compiler_state_t *, int, bpf_int32,
526     bpf_int32);
527 struct block *gen_portop(compiler_state_t *, int, int, int);
528 static struct block *gen_port(compiler_state_t *, int, int, int);
529 struct block *gen_portrangeop(compiler_state_t *, int, int, int, int);
530 static struct block *gen_portrange(compiler_state_t *, int, int, int, int);
531 struct block *gen_portop6(compiler_state_t *, int, int, int);
532 static struct block *gen_port6(compiler_state_t *, int, int, int);
533 struct block *gen_portrangeop6(compiler_state_t *, int, int, int, int);
534 static struct block *gen_portrange6(compiler_state_t *, int, int, int, int);
535 static int lookup_proto(compiler_state_t *, const char *, int);
536 static struct block *gen_protochain(compiler_state_t *, int, int, int);
537 static struct block *gen_proto(compiler_state_t *, int, int, int);
538 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
539 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
540 static struct block *gen_mac_multicast(compiler_state_t *, int);
541 static struct block *gen_len(compiler_state_t *, int, int);
542 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
543 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
544 
545 static struct block *gen_ppi_dlt_check(compiler_state_t *);
546 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
547 
548 static void
549 initchunks(compiler_state_t *cstate)
550 {
551 	int i;
552 
553 	for (i = 0; i < NCHUNKS; i++) {
554 		cstate->chunks[i].n_left = 0;
555 		cstate->chunks[i].m = NULL;
556 	}
557 	cstate->cur_chunk = 0;
558 }
559 
560 static void *
561 newchunk(compiler_state_t *cstate, size_t n)
562 {
563 	struct chunk *cp;
564 	int k;
565 	size_t size;
566 
567 #ifndef __NetBSD__
568 	/* XXX Round up to nearest long. */
569 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
570 #else
571 	/* XXX Round up to structure boundary. */
572 	n = ALIGN(n);
573 #endif
574 
575 	cp = &cstate->chunks[cstate->cur_chunk];
576 	if (n > cp->n_left) {
577 		++cp;
578 		k = ++cstate->cur_chunk;
579 		if (k >= NCHUNKS)
580 			bpf_error(cstate, "out of memory");
581 		size = CHUNK0SIZE << k;
582 		cp->m = (void *)malloc(size);
583 		if (cp->m == NULL)
584 			bpf_error(cstate, "out of memory");
585 		memset((char *)cp->m, 0, size);
586 		cp->n_left = size;
587 		if (n > size)
588 			bpf_error(cstate, "out of memory");
589 	}
590 	cp->n_left -= n;
591 	return (void *)((char *)cp->m + cp->n_left);
592 }
593 
594 static void
595 freechunks(compiler_state_t *cstate)
596 {
597 	int i;
598 
599 	for (i = 0; i < NCHUNKS; ++i)
600 		if (cstate->chunks[i].m != NULL)
601 			free(cstate->chunks[i].m);
602 }
603 
604 /*
605  * A strdup whose allocations are freed after code generation is over.
606  */
607 char *
608 sdup(compiler_state_t *cstate, const char *s)
609 {
610 	size_t n = strlen(s) + 1;
611 	char *cp = newchunk(cstate, n);
612 
613 	strlcpy(cp, s, n);
614 	return (cp);
615 }
616 
617 static inline struct block *
618 new_block(compiler_state_t *cstate, int code)
619 {
620 	struct block *p;
621 
622 	p = (struct block *)newchunk(cstate, sizeof(*p));
623 	p->s.code = code;
624 	p->head = p;
625 
626 	return p;
627 }
628 
629 static inline struct slist *
630 new_stmt(compiler_state_t *cstate, int code)
631 {
632 	struct slist *p;
633 
634 	p = (struct slist *)newchunk(cstate, sizeof(*p));
635 	p->s.code = code;
636 
637 	return p;
638 }
639 
640 static struct block *
641 gen_retblk(compiler_state_t *cstate, int v)
642 {
643 	struct block *b = new_block(cstate, BPF_RET|BPF_K);
644 
645 	b->s.k = v;
646 	return b;
647 }
648 
649 static inline PCAP_NORETURN_DEF void
650 syntax(compiler_state_t *cstate)
651 {
652 	bpf_error(cstate, "syntax error in filter expression");
653 }
654 
655 int
656 pcap_compile(pcap_t *p, struct bpf_program *program,
657 	     const char *buf, int optimize, bpf_u_int32 mask)
658 {
659 #ifdef _WIN32
660 	static int done = 0;
661 #endif
662 	compiler_state_t cstate;
663 	const char * volatile xbuf = buf;
664 	yyscan_t scanner = NULL;
665 	YY_BUFFER_STATE in_buffer = NULL;
666 	u_int len;
667 	int  rc;
668 
669 	/*
670 	 * If this pcap_t hasn't been activated, it doesn't have a
671 	 * link-layer type, so we can't use it.
672 	 */
673 	if (!p->activated) {
674 		pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
675 		    "not-yet-activated pcap_t passed to pcap_compile");
676 		return (-1);
677 	}
678 
679 #ifdef _WIN32
680 	if (!done)
681 		pcap_wsockinit();
682 	done = 1;
683 #endif
684 
685 #ifdef ENABLE_REMOTE
686 	/*
687 	 * If the device on which we're capturing need to be notified
688 	 * that a new filter is being compiled, do so.
689 	 *
690 	 * This allows them to save a copy of it, in case, for example,
691 	 * they're implementing a form of remote packet capture, and
692 	 * want the remote machine to filter out the packets in which
693 	 * it's sending the packets it's captured.
694 	 *
695 	 * XXX - the fact that we happen to be compiling a filter
696 	 * doesn't necessarily mean we'll be installing it as the
697 	 * filter for this pcap_t; we might be running it from userland
698 	 * on captured packets to do packet classification.  We really
699 	 * need a better way of handling this, but this is all that
700 	 * the WinPcap code did.
701 	 */
702 	if (p->save_current_filter_op != NULL)
703 		(p->save_current_filter_op)(p, buf);
704 #endif
705 
706 	initchunks(&cstate);
707 	cstate.no_optimize = 0;
708 #ifdef INET6
709 	cstate.ai = NULL;
710 #endif
711 	cstate.ic.root = NULL;
712 	cstate.ic.cur_mark = 0;
713 	cstate.bpf_pcap = p;
714 	init_regs(&cstate);
715 
716 	if (setjmp(cstate.top_ctx)) {
717 #ifdef INET6
718 		if (cstate.ai != NULL)
719 			freeaddrinfo(cstate.ai);
720 #endif
721 		rc = -1;
722 		goto quit;
723 	}
724 
725 	cstate.netmask = mask;
726 
727 	cstate.snaplen = pcap_snapshot(p);
728 	if (cstate.snaplen == 0) {
729 		pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
730 			 "snaplen of 0 rejects all packets");
731 		rc = -1;
732 		goto quit;
733 	}
734 
735 	if (pcap_lex_init(&scanner) != 0)
736 		pcap_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
737 		    errno, "can't initialize scanner");
738 	in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
739 
740 	/*
741 	 * Associate the compiler state with the lexical analyzer
742 	 * state.
743 	 */
744 	pcap_set_extra(&cstate, scanner);
745 
746 	init_linktype(&cstate, p);
747 	(void)pcap_parse(scanner, &cstate);
748 
749 	if (cstate.ic.root == NULL)
750 		cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
751 
752 	if (optimize && !cstate.no_optimize) {
753 		bpf_optimize(&cstate, &cstate.ic);
754 		if (cstate.ic.root == NULL ||
755 		    (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0))
756 			bpf_error(&cstate, "expression rejects all packets");
757 	}
758 	program->bf_insns = icode_to_fcode(&cstate, &cstate.ic, cstate.ic.root, &len);
759 	program->bf_len = len;
760 
761 	rc = 0;  /* We're all okay */
762 
763 quit:
764 	/*
765 	 * Clean up everything for the lexical analyzer.
766 	 */
767 	if (in_buffer != NULL)
768 		pcap__delete_buffer(in_buffer, scanner);
769 	if (scanner != NULL)
770 		pcap_lex_destroy(scanner);
771 
772 	/*
773 	 * Clean up our own allocated memory.
774 	 */
775 	freechunks(&cstate);
776 
777 	return (rc);
778 }
779 
780 /*
781  * entry point for using the compiler with no pcap open
782  * pass in all the stuff that is needed explicitly instead.
783  */
784 int
785 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
786 		    struct bpf_program *program,
787 	     const char *buf, int optimize, bpf_u_int32 mask)
788 {
789 	pcap_t *p;
790 	int ret;
791 
792 	p = pcap_open_dead(linktype_arg, snaplen_arg);
793 	if (p == NULL)
794 		return (-1);
795 	ret = pcap_compile(p, program, buf, optimize, mask);
796 	pcap_close(p);
797 	return (ret);
798 }
799 
800 /*
801  * Clean up a "struct bpf_program" by freeing all the memory allocated
802  * in it.
803  */
804 void
805 pcap_freecode(struct bpf_program *program)
806 {
807 	program->bf_len = 0;
808 	if (program->bf_insns != NULL) {
809 		free((char *)program->bf_insns);
810 		program->bf_insns = NULL;
811 	}
812 }
813 
814 /*
815  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
816  * which of the jt and jf fields has been resolved and which is a pointer
817  * back to another unresolved block (or nil).  At least one of the fields
818  * in each block is already resolved.
819  */
820 static void
821 backpatch(struct block *list, struct block *target)
822 {
823 	struct block *next;
824 
825 	while (list) {
826 		if (!list->sense) {
827 			next = JT(list);
828 			JT(list) = target;
829 		} else {
830 			next = JF(list);
831 			JF(list) = target;
832 		}
833 		list = next;
834 	}
835 }
836 
837 /*
838  * Merge the lists in b0 and b1, using the 'sense' field to indicate
839  * which of jt and jf is the link.
840  */
841 static void
842 merge(struct block *b0, struct block *b1)
843 {
844 	register struct block **p = &b0;
845 
846 	/* Find end of list. */
847 	while (*p)
848 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
849 
850 	/* Concatenate the lists. */
851 	*p = b1;
852 }
853 
854 void
855 finish_parse(compiler_state_t *cstate, struct block *p)
856 {
857 	struct block *ppi_dlt_check;
858 
859 	/*
860 	 * Insert before the statements of the first (root) block any
861 	 * statements needed to load the lengths of any variable-length
862 	 * headers into registers.
863 	 *
864 	 * XXX - a fancier strategy would be to insert those before the
865 	 * statements of all blocks that use those lengths and that
866 	 * have no predecessors that use them, so that we only compute
867 	 * the lengths if we need them.  There might be even better
868 	 * approaches than that.
869 	 *
870 	 * However, those strategies would be more complicated, and
871 	 * as we don't generate code to compute a length if the
872 	 * program has no tests that use the length, and as most
873 	 * tests will probably use those lengths, we would just
874 	 * postpone computing the lengths so that it's not done
875 	 * for tests that fail early, and it's not clear that's
876 	 * worth the effort.
877 	 */
878 	insert_compute_vloffsets(cstate, p->head);
879 
880 	/*
881 	 * For DLT_PPI captures, generate a check of the per-packet
882 	 * DLT value to make sure it's DLT_IEEE802_11.
883 	 *
884 	 * XXX - TurboCap cards use DLT_PPI for Ethernet.
885 	 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
886 	 * with appropriate Ethernet information and use that rather
887 	 * than using something such as DLT_PPI where you don't know
888 	 * the link-layer header type until runtime, which, in the
889 	 * general case, would force us to generate both Ethernet *and*
890 	 * 802.11 code (*and* anything else for which PPI is used)
891 	 * and choose between them early in the BPF program?
892 	 */
893 	ppi_dlt_check = gen_ppi_dlt_check(cstate);
894 	if (ppi_dlt_check != NULL)
895 		gen_and(ppi_dlt_check, p);
896 
897 	backpatch(p, gen_retblk(cstate, cstate->snaplen));
898 	p->sense = !p->sense;
899 	backpatch(p, gen_retblk(cstate, 0));
900 	cstate->ic.root = p->head;
901 }
902 
903 void
904 gen_and(struct block *b0, struct block *b1)
905 {
906 	backpatch(b0, b1->head);
907 	b0->sense = !b0->sense;
908 	b1->sense = !b1->sense;
909 	merge(b1, b0);
910 	b1->sense = !b1->sense;
911 	b1->head = b0->head;
912 }
913 
914 void
915 gen_or(struct block *b0, struct block *b1)
916 {
917 	b0->sense = !b0->sense;
918 	backpatch(b0, b1->head);
919 	b0->sense = !b0->sense;
920 	merge(b1, b0);
921 	b1->head = b0->head;
922 }
923 
924 void
925 gen_not(struct block *b)
926 {
927 	b->sense = !b->sense;
928 }
929 
930 static struct block *
931 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
932     u_int size, bpf_int32 v)
933 {
934 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
935 }
936 
937 static struct block *
938 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
939     u_int size, bpf_int32 v)
940 {
941 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
942 }
943 
944 static struct block *
945 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
946     u_int size, bpf_int32 v)
947 {
948 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
949 }
950 
951 static struct block *
952 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
953     u_int size, bpf_int32 v)
954 {
955 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
956 }
957 
958 static struct block *
959 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
960     u_int size, bpf_int32 v)
961 {
962 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
963 }
964 
965 static struct block *
966 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
967     u_int size, bpf_int32 v, bpf_u_int32 mask)
968 {
969 	return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
970 }
971 
972 static struct block *
973 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
974     u_int size, const u_char *v)
975 {
976 	register struct block *b, *tmp;
977 
978 	b = NULL;
979 	while (size >= 4) {
980 		register const u_char *p = &v[size - 4];
981 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
982 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
983 
984 		tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W, w);
985 		if (b != NULL)
986 			gen_and(b, tmp);
987 		b = tmp;
988 		size -= 4;
989 	}
990 	while (size >= 2) {
991 		register const u_char *p = &v[size - 2];
992 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
993 
994 		tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H, w);
995 		if (b != NULL)
996 			gen_and(b, tmp);
997 		b = tmp;
998 		size -= 2;
999 	}
1000 	if (size > 0) {
1001 		tmp = gen_cmp(cstate, offrel, offset, BPF_B, (bpf_int32)v[0]);
1002 		if (b != NULL)
1003 			gen_and(b, tmp);
1004 		b = tmp;
1005 	}
1006 	return b;
1007 }
1008 
1009 /*
1010  * AND the field of size "size" at offset "offset" relative to the header
1011  * specified by "offrel" with "mask", and compare it with the value "v"
1012  * with the test specified by "jtype"; if "reverse" is true, the test
1013  * should test the opposite of "jtype".
1014  */
1015 static struct block *
1016 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, bpf_u_int32 offset,
1017     bpf_u_int32 size, bpf_u_int32 mask, bpf_u_int32 jtype, int reverse,
1018     bpf_int32 v)
1019 {
1020 	struct slist *s, *s2;
1021 	struct block *b;
1022 
1023 	s = gen_load_a(cstate, offrel, offset, size);
1024 
1025 	if (mask != 0xffffffff) {
1026 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1027 		s2->s.k = mask;
1028 		sappend(s, s2);
1029 	}
1030 
1031 	b = new_block(cstate, JMP(jtype));
1032 	b->stmts = s;
1033 	b->s.k = v;
1034 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1035 		gen_not(b);
1036 	return b;
1037 }
1038 
1039 static void
1040 init_linktype(compiler_state_t *cstate, pcap_t *p)
1041 {
1042 	cstate->pcap_fddipad = p->fddipad;
1043 
1044 	/*
1045 	 * We start out with only one link-layer header.
1046 	 */
1047 	cstate->outermostlinktype = pcap_datalink(p);
1048 	cstate->off_outermostlinkhdr.constant_part = 0;
1049 	cstate->off_outermostlinkhdr.is_variable = 0;
1050 	cstate->off_outermostlinkhdr.reg = -1;
1051 
1052 	cstate->prevlinktype = cstate->outermostlinktype;
1053 	cstate->off_prevlinkhdr.constant_part = 0;
1054 	cstate->off_prevlinkhdr.is_variable = 0;
1055 	cstate->off_prevlinkhdr.reg = -1;
1056 
1057 	cstate->linktype = cstate->outermostlinktype;
1058 	cstate->off_linkhdr.constant_part = 0;
1059 	cstate->off_linkhdr.is_variable = 0;
1060 	cstate->off_linkhdr.reg = -1;
1061 
1062 	/*
1063 	 * XXX
1064 	 */
1065 	cstate->off_linkpl.constant_part = 0;
1066 	cstate->off_linkpl.is_variable = 0;
1067 	cstate->off_linkpl.reg = -1;
1068 
1069 	cstate->off_linktype.constant_part = 0;
1070 	cstate->off_linktype.is_variable = 0;
1071 	cstate->off_linktype.reg = -1;
1072 
1073 	/*
1074 	 * Assume it's not raw ATM with a pseudo-header, for now.
1075 	 */
1076 	cstate->is_atm = 0;
1077 	cstate->off_vpi = OFFSET_NOT_SET;
1078 	cstate->off_vci = OFFSET_NOT_SET;
1079 	cstate->off_proto = OFFSET_NOT_SET;
1080 	cstate->off_payload = OFFSET_NOT_SET;
1081 
1082 	/*
1083 	 * And not Geneve.
1084 	 */
1085 	cstate->is_geneve = 0;
1086 
1087 	/*
1088 	 * No variable length VLAN offset by default
1089 	 */
1090 	cstate->is_vlan_vloffset = 0;
1091 
1092 	/*
1093 	 * And assume we're not doing SS7.
1094 	 */
1095 	cstate->off_li = OFFSET_NOT_SET;
1096 	cstate->off_li_hsl = OFFSET_NOT_SET;
1097 	cstate->off_sio = OFFSET_NOT_SET;
1098 	cstate->off_opc = OFFSET_NOT_SET;
1099 	cstate->off_dpc = OFFSET_NOT_SET;
1100 	cstate->off_sls = OFFSET_NOT_SET;
1101 
1102 	cstate->label_stack_depth = 0;
1103 	cstate->vlan_stack_depth = 0;
1104 
1105 	switch (cstate->linktype) {
1106 
1107 	case DLT_ARCNET:
1108 		cstate->off_linktype.constant_part = 2;
1109 		cstate->off_linkpl.constant_part = 6;
1110 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1111 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1112 		break;
1113 
1114 	case DLT_ARCNET_LINUX:
1115 		cstate->off_linktype.constant_part = 4;
1116 		cstate->off_linkpl.constant_part = 8;
1117 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1118 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1119 		break;
1120 
1121 	case DLT_EN10MB:
1122 		cstate->off_linktype.constant_part = 12;
1123 		cstate->off_linkpl.constant_part = 14;	/* Ethernet header length */
1124 		cstate->off_nl = 0;		/* Ethernet II */
1125 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1126 		break;
1127 
1128 	case DLT_SLIP:
1129 		/*
1130 		 * SLIP doesn't have a link level type.  The 16 byte
1131 		 * header is hacked into our SLIP driver.
1132 		 */
1133 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1134 		cstate->off_linkpl.constant_part = 16;
1135 		cstate->off_nl = 0;
1136 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1137 		break;
1138 
1139 	case DLT_SLIP_BSDOS:
1140 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1141 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1142 		/* XXX end */
1143 		cstate->off_linkpl.constant_part = 24;
1144 		cstate->off_nl = 0;
1145 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1146 		break;
1147 
1148 	case DLT_NULL:
1149 	case DLT_LOOP:
1150 		cstate->off_linktype.constant_part = 0;
1151 		cstate->off_linkpl.constant_part = 4;
1152 		cstate->off_nl = 0;
1153 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1154 		break;
1155 
1156 	case DLT_ENC:
1157 		cstate->off_linktype.constant_part = 0;
1158 		cstate->off_linkpl.constant_part = 12;
1159 		cstate->off_nl = 0;
1160 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1161 		break;
1162 
1163 	case DLT_PPP:
1164 	case DLT_PPP_PPPD:
1165 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1166 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1167 		cstate->off_linktype.constant_part = 2;	/* skip HDLC-like framing */
1168 		cstate->off_linkpl.constant_part = 4;	/* skip HDLC-like framing and protocol field */
1169 		cstate->off_nl = 0;
1170 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1171 		break;
1172 
1173 	case DLT_PPP_ETHER:
1174 		/*
1175 		 * This does no include the Ethernet header, and
1176 		 * only covers session state.
1177 		 */
1178 		cstate->off_linktype.constant_part = 6;
1179 		cstate->off_linkpl.constant_part = 8;
1180 		cstate->off_nl = 0;
1181 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1182 		break;
1183 
1184 	case DLT_PPP_BSDOS:
1185 		cstate->off_linktype.constant_part = 5;
1186 		cstate->off_linkpl.constant_part = 24;
1187 		cstate->off_nl = 0;
1188 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1189 		break;
1190 
1191 	case DLT_FDDI:
1192 		/*
1193 		 * FDDI doesn't really have a link-level type field.
1194 		 * We set "off_linktype" to the offset of the LLC header.
1195 		 *
1196 		 * To check for Ethernet types, we assume that SSAP = SNAP
1197 		 * is being used and pick out the encapsulated Ethernet type.
1198 		 * XXX - should we generate code to check for SNAP?
1199 		 */
1200 		cstate->off_linktype.constant_part = 13;
1201 		cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1202 		cstate->off_linkpl.constant_part = 13;	/* FDDI MAC header length */
1203 		cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1204 		cstate->off_nl = 8;		/* 802.2+SNAP */
1205 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1206 		break;
1207 
1208 	case DLT_IEEE802:
1209 		/*
1210 		 * Token Ring doesn't really have a link-level type field.
1211 		 * We set "off_linktype" to the offset of the LLC header.
1212 		 *
1213 		 * To check for Ethernet types, we assume that SSAP = SNAP
1214 		 * is being used and pick out the encapsulated Ethernet type.
1215 		 * XXX - should we generate code to check for SNAP?
1216 		 *
1217 		 * XXX - the header is actually variable-length.
1218 		 * Some various Linux patched versions gave 38
1219 		 * as "off_linktype" and 40 as "off_nl"; however,
1220 		 * if a token ring packet has *no* routing
1221 		 * information, i.e. is not source-routed, the correct
1222 		 * values are 20 and 22, as they are in the vanilla code.
1223 		 *
1224 		 * A packet is source-routed iff the uppermost bit
1225 		 * of the first byte of the source address, at an
1226 		 * offset of 8, has the uppermost bit set.  If the
1227 		 * packet is source-routed, the total number of bytes
1228 		 * of routing information is 2 plus bits 0x1F00 of
1229 		 * the 16-bit value at an offset of 14 (shifted right
1230 		 * 8 - figure out which byte that is).
1231 		 */
1232 		cstate->off_linktype.constant_part = 14;
1233 		cstate->off_linkpl.constant_part = 14;	/* Token Ring MAC header length */
1234 		cstate->off_nl = 8;		/* 802.2+SNAP */
1235 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1236 		break;
1237 
1238 	case DLT_PRISM_HEADER:
1239 	case DLT_IEEE802_11_RADIO_AVS:
1240 	case DLT_IEEE802_11_RADIO:
1241 		cstate->off_linkhdr.is_variable = 1;
1242 		/* Fall through, 802.11 doesn't have a variable link
1243 		 * prefix but is otherwise the same. */
1244 
1245 	case DLT_IEEE802_11:
1246 		/*
1247 		 * 802.11 doesn't really have a link-level type field.
1248 		 * We set "off_linktype.constant_part" to the offset of
1249 		 * the LLC header.
1250 		 *
1251 		 * To check for Ethernet types, we assume that SSAP = SNAP
1252 		 * is being used and pick out the encapsulated Ethernet type.
1253 		 * XXX - should we generate code to check for SNAP?
1254 		 *
1255 		 * We also handle variable-length radio headers here.
1256 		 * The Prism header is in theory variable-length, but in
1257 		 * practice it's always 144 bytes long.  However, some
1258 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1259 		 * sometimes or always supply an AVS header, so we
1260 		 * have to check whether the radio header is a Prism
1261 		 * header or an AVS header, so, in practice, it's
1262 		 * variable-length.
1263 		 */
1264 		cstate->off_linktype.constant_part = 24;
1265 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1266 		cstate->off_linkpl.is_variable = 1;
1267 		cstate->off_nl = 8;		/* 802.2+SNAP */
1268 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1269 		break;
1270 
1271 	case DLT_PPI:
1272 		/*
1273 		 * At the moment we treat PPI the same way that we treat
1274 		 * normal Radiotap encoded packets. The difference is in
1275 		 * the function that generates the code at the beginning
1276 		 * to compute the header length.  Since this code generator
1277 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1278 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1279 		 * generate code to check for this too.
1280 		 */
1281 		cstate->off_linktype.constant_part = 24;
1282 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1283 		cstate->off_linkpl.is_variable = 1;
1284 		cstate->off_linkhdr.is_variable = 1;
1285 		cstate->off_nl = 8;		/* 802.2+SNAP */
1286 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1287 		break;
1288 
1289 	case DLT_ATM_RFC1483:
1290 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1291 		/*
1292 		 * assume routed, non-ISO PDUs
1293 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1294 		 *
1295 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1296 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1297 		 * latter would presumably be treated the way PPPoE
1298 		 * should be, so you can do "pppoe and udp port 2049"
1299 		 * or "pppoa and tcp port 80" and have it check for
1300 		 * PPPo{A,E} and a PPP protocol of IP and....
1301 		 */
1302 		cstate->off_linktype.constant_part = 0;
1303 		cstate->off_linkpl.constant_part = 0;	/* packet begins with LLC header */
1304 		cstate->off_nl = 8;		/* 802.2+SNAP */
1305 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1306 		break;
1307 
1308 	case DLT_SUNATM:
1309 		/*
1310 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1311 		 * pseudo-header.
1312 		 */
1313 		cstate->is_atm = 1;
1314 		cstate->off_vpi = SUNATM_VPI_POS;
1315 		cstate->off_vci = SUNATM_VCI_POS;
1316 		cstate->off_proto = PROTO_POS;
1317 		cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1318 		cstate->off_linktype.constant_part = cstate->off_payload;
1319 		cstate->off_linkpl.constant_part = cstate->off_payload;	/* if LLC-encapsulated */
1320 		cstate->off_nl = 8;		/* 802.2+SNAP */
1321 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1322 		break;
1323 
1324 	case DLT_RAW:
1325 	case DLT_IPV4:
1326 	case DLT_IPV6:
1327 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1328 		cstate->off_linkpl.constant_part = 0;
1329 		cstate->off_nl = 0;
1330 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1331 		break;
1332 
1333 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1334 		cstate->off_linktype.constant_part = 14;
1335 		cstate->off_linkpl.constant_part = 16;
1336 		cstate->off_nl = 0;
1337 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1338 		break;
1339 
1340 	case DLT_LTALK:
1341 		/*
1342 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1343 		 * but really it just indicates whether there is a "short" or
1344 		 * "long" DDP packet following.
1345 		 */
1346 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1347 		cstate->off_linkpl.constant_part = 0;
1348 		cstate->off_nl = 0;
1349 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1350 		break;
1351 
1352 	case DLT_IP_OVER_FC:
1353 		/*
1354 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1355 		 * link-level type field.  We set "off_linktype" to the
1356 		 * offset of the LLC header.
1357 		 *
1358 		 * To check for Ethernet types, we assume that SSAP = SNAP
1359 		 * is being used and pick out the encapsulated Ethernet type.
1360 		 * XXX - should we generate code to check for SNAP? RFC
1361 		 * 2625 says SNAP should be used.
1362 		 */
1363 		cstate->off_linktype.constant_part = 16;
1364 		cstate->off_linkpl.constant_part = 16;
1365 		cstate->off_nl = 8;		/* 802.2+SNAP */
1366 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1367 		break;
1368 
1369 	case DLT_FRELAY:
1370 		/*
1371 		 * XXX - we should set this to handle SNAP-encapsulated
1372 		 * frames (NLPID of 0x80).
1373 		 */
1374 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1375 		cstate->off_linkpl.constant_part = 0;
1376 		cstate->off_nl = 0;
1377 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1378 		break;
1379 
1380                 /*
1381                  * the only BPF-interesting FRF.16 frames are non-control frames;
1382                  * Frame Relay has a variable length link-layer
1383                  * so lets start with offset 4 for now and increments later on (FIXME);
1384                  */
1385 	case DLT_MFR:
1386 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1387 		cstate->off_linkpl.constant_part = 0;
1388 		cstate->off_nl = 4;
1389 		cstate->off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1390 		break;
1391 
1392 	case DLT_APPLE_IP_OVER_IEEE1394:
1393 		cstate->off_linktype.constant_part = 16;
1394 		cstate->off_linkpl.constant_part = 18;
1395 		cstate->off_nl = 0;
1396 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1397 		break;
1398 
1399 	case DLT_SYMANTEC_FIREWALL:
1400 		cstate->off_linktype.constant_part = 6;
1401 		cstate->off_linkpl.constant_part = 44;
1402 		cstate->off_nl = 0;		/* Ethernet II */
1403 		cstate->off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1404 		break;
1405 
1406 #ifdef HAVE_NET_PFVAR_H
1407 	case DLT_PFLOG:
1408 		cstate->off_linktype.constant_part = 0;
1409 		cstate->off_linkpl.constant_part = PFLOG_HDRLEN;
1410 		cstate->off_nl = 0;
1411 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1412 		break;
1413 #endif
1414 
1415         case DLT_JUNIPER_MFR:
1416         case DLT_JUNIPER_MLFR:
1417         case DLT_JUNIPER_MLPPP:
1418         case DLT_JUNIPER_PPP:
1419         case DLT_JUNIPER_CHDLC:
1420         case DLT_JUNIPER_FRELAY:
1421 		cstate->off_linktype.constant_part = 4;
1422 		cstate->off_linkpl.constant_part = 4;
1423 		cstate->off_nl = 0;
1424 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1425                 break;
1426 
1427 	case DLT_JUNIPER_ATM1:
1428 		cstate->off_linktype.constant_part = 4;		/* in reality variable between 4-8 */
1429 		cstate->off_linkpl.constant_part = 4;	/* in reality variable between 4-8 */
1430 		cstate->off_nl = 0;
1431 		cstate->off_nl_nosnap = 10;
1432 		break;
1433 
1434 	case DLT_JUNIPER_ATM2:
1435 		cstate->off_linktype.constant_part = 8;		/* in reality variable between 8-12 */
1436 		cstate->off_linkpl.constant_part = 8;	/* in reality variable between 8-12 */
1437 		cstate->off_nl = 0;
1438 		cstate->off_nl_nosnap = 10;
1439 		break;
1440 
1441 		/* frames captured on a Juniper PPPoE service PIC
1442 		 * contain raw ethernet frames */
1443 	case DLT_JUNIPER_PPPOE:
1444         case DLT_JUNIPER_ETHER:
1445 		cstate->off_linkpl.constant_part = 14;
1446 		cstate->off_linktype.constant_part = 16;
1447 		cstate->off_nl = 18;		/* Ethernet II */
1448 		cstate->off_nl_nosnap = 21;	/* 802.3+802.2 */
1449 		break;
1450 
1451 	case DLT_JUNIPER_PPPOE_ATM:
1452 		cstate->off_linktype.constant_part = 4;
1453 		cstate->off_linkpl.constant_part = 6;
1454 		cstate->off_nl = 0;
1455 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1456 		break;
1457 
1458 	case DLT_JUNIPER_GGSN:
1459 		cstate->off_linktype.constant_part = 6;
1460 		cstate->off_linkpl.constant_part = 12;
1461 		cstate->off_nl = 0;
1462 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1463 		break;
1464 
1465 	case DLT_JUNIPER_ES:
1466 		cstate->off_linktype.constant_part = 6;
1467 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1468 		cstate->off_nl = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1469 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1470 		break;
1471 
1472 	case DLT_JUNIPER_MONITOR:
1473 		cstate->off_linktype.constant_part = 12;
1474 		cstate->off_linkpl.constant_part = 12;
1475 		cstate->off_nl = 0;			/* raw IP/IP6 header */
1476 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1477 		break;
1478 
1479 	case DLT_BACNET_MS_TP:
1480 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1481 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1482 		cstate->off_nl = OFFSET_NOT_SET;
1483 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1484 		break;
1485 
1486 	case DLT_JUNIPER_SERVICES:
1487 		cstate->off_linktype.constant_part = 12;
1488 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1489 		cstate->off_nl = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1490 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1491 		break;
1492 
1493 	case DLT_JUNIPER_VP:
1494 		cstate->off_linktype.constant_part = 18;
1495 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1496 		cstate->off_nl = OFFSET_NOT_SET;
1497 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1498 		break;
1499 
1500 	case DLT_JUNIPER_ST:
1501 		cstate->off_linktype.constant_part = 18;
1502 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1503 		cstate->off_nl = OFFSET_NOT_SET;
1504 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1505 		break;
1506 
1507 	case DLT_JUNIPER_ISM:
1508 		cstate->off_linktype.constant_part = 8;
1509 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1510 		cstate->off_nl = OFFSET_NOT_SET;
1511 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1512 		break;
1513 
1514 	case DLT_JUNIPER_VS:
1515 	case DLT_JUNIPER_SRX_E2E:
1516 	case DLT_JUNIPER_FIBRECHANNEL:
1517 	case DLT_JUNIPER_ATM_CEMIC:
1518 		cstate->off_linktype.constant_part = 8;
1519 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1520 		cstate->off_nl = OFFSET_NOT_SET;
1521 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1522 		break;
1523 
1524 	case DLT_MTP2:
1525 		cstate->off_li = 2;
1526 		cstate->off_li_hsl = 4;
1527 		cstate->off_sio = 3;
1528 		cstate->off_opc = 4;
1529 		cstate->off_dpc = 4;
1530 		cstate->off_sls = 7;
1531 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1532 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1533 		cstate->off_nl = OFFSET_NOT_SET;
1534 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1535 		break;
1536 
1537 	case DLT_MTP2_WITH_PHDR:
1538 		cstate->off_li = 6;
1539 		cstate->off_li_hsl = 8;
1540 		cstate->off_sio = 7;
1541 		cstate->off_opc = 8;
1542 		cstate->off_dpc = 8;
1543 		cstate->off_sls = 11;
1544 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1545 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1546 		cstate->off_nl = OFFSET_NOT_SET;
1547 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1548 		break;
1549 
1550 	case DLT_ERF:
1551 		cstate->off_li = 22;
1552 		cstate->off_li_hsl = 24;
1553 		cstate->off_sio = 23;
1554 		cstate->off_opc = 24;
1555 		cstate->off_dpc = 24;
1556 		cstate->off_sls = 27;
1557 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1558 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1559 		cstate->off_nl = OFFSET_NOT_SET;
1560 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1561 		break;
1562 
1563 	case DLT_PFSYNC:
1564 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1565 		cstate->off_linkpl.constant_part = 4;
1566 		cstate->off_nl = 0;
1567 		cstate->off_nl_nosnap = 0;
1568 		break;
1569 
1570 	case DLT_AX25_KISS:
1571 		/*
1572 		 * Currently, only raw "link[N:M]" filtering is supported.
1573 		 */
1574 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;	/* variable, min 15, max 71 steps of 7 */
1575 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1576 		cstate->off_nl = OFFSET_NOT_SET;	/* variable, min 16, max 71 steps of 7 */
1577 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1578 		break;
1579 
1580 	case DLT_IPNET:
1581 		cstate->off_linktype.constant_part = 1;
1582 		cstate->off_linkpl.constant_part = 24;	/* ipnet header length */
1583 		cstate->off_nl = 0;
1584 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1585 		break;
1586 
1587 	case DLT_NETANALYZER:
1588 		cstate->off_linkhdr.constant_part = 4;	/* Ethernet header is past 4-byte pseudo-header */
1589 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1590 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+Ethernet header length */
1591 		cstate->off_nl = 0;		/* Ethernet II */
1592 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1593 		break;
1594 
1595 	case DLT_NETANALYZER_TRANSPARENT:
1596 		cstate->off_linkhdr.constant_part = 12;	/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1597 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1598 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+preamble+SFD+Ethernet header length */
1599 		cstate->off_nl = 0;		/* Ethernet II */
1600 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1601 		break;
1602 
1603 	default:
1604 		/*
1605 		 * For values in the range in which we've assigned new
1606 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1607 		 */
1608 		if (cstate->linktype >= DLT_MATCHING_MIN &&
1609 		    cstate->linktype <= DLT_MATCHING_MAX) {
1610 			cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1611 			cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1612 			cstate->off_nl = OFFSET_NOT_SET;
1613 			cstate->off_nl_nosnap = OFFSET_NOT_SET;
1614 		} else {
1615 			bpf_error(cstate, "unknown data link type %d", cstate->linktype);
1616 		}
1617 		break;
1618 	}
1619 
1620 	cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1621 }
1622 
1623 /*
1624  * Load a value relative to the specified absolute offset.
1625  */
1626 static struct slist *
1627 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1628     u_int offset, u_int size)
1629 {
1630 	struct slist *s, *s2;
1631 
1632 	s = gen_abs_offset_varpart(cstate, abs_offset);
1633 
1634 	/*
1635 	 * If "s" is non-null, it has code to arrange that the X register
1636 	 * contains the variable part of the absolute offset, so we
1637 	 * generate a load relative to that, with an offset of
1638 	 * abs_offset->constant_part + offset.
1639 	 *
1640 	 * Otherwise, we can do an absolute load with an offset of
1641 	 * abs_offset->constant_part + offset.
1642 	 */
1643 	if (s != NULL) {
1644 		/*
1645 		 * "s" points to a list of statements that puts the
1646 		 * variable part of the absolute offset into the X register.
1647 		 * Do an indirect load, to use the X register as an offset.
1648 		 */
1649 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1650 		s2->s.k = abs_offset->constant_part + offset;
1651 		sappend(s, s2);
1652 	} else {
1653 		/*
1654 		 * There is no variable part of the absolute offset, so
1655 		 * just do an absolute load.
1656 		 */
1657 		s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1658 		s->s.k = abs_offset->constant_part + offset;
1659 	}
1660 	return s;
1661 }
1662 
1663 /*
1664  * Load a value relative to the beginning of the specified header.
1665  */
1666 static struct slist *
1667 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1668     u_int size)
1669 {
1670 	struct slist *s, *s2;
1671 
1672 	switch (offrel) {
1673 
1674 	case OR_PACKET:
1675                 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1676                 s->s.k = offset;
1677 		break;
1678 
1679 	case OR_LINKHDR:
1680 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1681 		break;
1682 
1683 	case OR_PREVLINKHDR:
1684 		s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1685 		break;
1686 
1687 	case OR_LLC:
1688 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1689 		break;
1690 
1691 	case OR_PREVMPLSHDR:
1692 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1693 		break;
1694 
1695 	case OR_LINKPL:
1696 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1697 		break;
1698 
1699 	case OR_LINKPL_NOSNAP:
1700 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1701 		break;
1702 
1703 	case OR_LINKTYPE:
1704 		s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1705 		break;
1706 
1707 	case OR_TRAN_IPV4:
1708 		/*
1709 		 * Load the X register with the length of the IPv4 header
1710 		 * (plus the offset of the link-layer header, if it's
1711 		 * preceded by a variable-length header such as a radio
1712 		 * header), in bytes.
1713 		 */
1714 		s = gen_loadx_iphdrlen(cstate);
1715 
1716 		/*
1717 		 * Load the item at {offset of the link-layer payload} +
1718 		 * {offset, relative to the start of the link-layer
1719 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1720 		 * {specified offset}.
1721 		 *
1722 		 * If the offset of the link-layer payload is variable,
1723 		 * the variable part of that offset is included in the
1724 		 * value in the X register, and we include the constant
1725 		 * part in the offset of the load.
1726 		 */
1727 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1728 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1729 		sappend(s, s2);
1730 		break;
1731 
1732 	case OR_TRAN_IPV6:
1733 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1734 		break;
1735 
1736 	default:
1737 		abort();
1738 		/* NOTREACHED */
1739 	}
1740 	return s;
1741 }
1742 
1743 /*
1744  * Generate code to load into the X register the sum of the length of
1745  * the IPv4 header and the variable part of the offset of the link-layer
1746  * payload.
1747  */
1748 static struct slist *
1749 gen_loadx_iphdrlen(compiler_state_t *cstate)
1750 {
1751 	struct slist *s, *s2;
1752 
1753 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1754 	if (s != NULL) {
1755 		/*
1756 		 * The offset of the link-layer payload has a variable
1757 		 * part.  "s" points to a list of statements that put
1758 		 * the variable part of that offset into the X register.
1759 		 *
1760 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1761 		 * don't have a constant offset, so we have to load the
1762 		 * value in question into the A register and add to it
1763 		 * the value from the X register.
1764 		 */
1765 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1766 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1767 		sappend(s, s2);
1768 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1769 		s2->s.k = 0xf;
1770 		sappend(s, s2);
1771 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1772 		s2->s.k = 2;
1773 		sappend(s, s2);
1774 
1775 		/*
1776 		 * The A register now contains the length of the IP header.
1777 		 * We need to add to it the variable part of the offset of
1778 		 * the link-layer payload, which is still in the X
1779 		 * register, and move the result into the X register.
1780 		 */
1781 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1782 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1783 	} else {
1784 		/*
1785 		 * The offset of the link-layer payload is a constant,
1786 		 * so no code was generated to load the (non-existent)
1787 		 * variable part of that offset.
1788 		 *
1789 		 * This means we can use the 4*([k]&0xf) addressing
1790 		 * mode.  Load the length of the IPv4 header, which
1791 		 * is at an offset of cstate->off_nl from the beginning of
1792 		 * the link-layer payload, and thus at an offset of
1793 		 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1794 		 * of the raw packet data, using that addressing mode.
1795 		 */
1796 		s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1797 		s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1798 	}
1799 	return s;
1800 }
1801 
1802 
1803 static struct block *
1804 gen_uncond(compiler_state_t *cstate, int rsense)
1805 {
1806 	struct block *b;
1807 	struct slist *s;
1808 
1809 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
1810 	s->s.k = !rsense;
1811 	b = new_block(cstate, JMP(BPF_JEQ));
1812 	b->stmts = s;
1813 
1814 	return b;
1815 }
1816 
1817 static inline struct block *
1818 gen_true(compiler_state_t *cstate)
1819 {
1820 	return gen_uncond(cstate, 1);
1821 }
1822 
1823 static inline struct block *
1824 gen_false(compiler_state_t *cstate)
1825 {
1826 	return gen_uncond(cstate, 0);
1827 }
1828 
1829 /*
1830  * Byte-swap a 32-bit number.
1831  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1832  * big-endian platforms.)
1833  */
1834 #define	SWAPLONG(y) \
1835 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1836 
1837 /*
1838  * Generate code to match a particular packet type.
1839  *
1840  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1841  * value, if <= ETHERMTU.  We use that to determine whether to
1842  * match the type/length field or to check the type/length field for
1843  * a value <= ETHERMTU to see whether it's a type field and then do
1844  * the appropriate test.
1845  */
1846 static struct block *
1847 gen_ether_linktype(compiler_state_t *cstate, int proto)
1848 {
1849 	struct block *b0, *b1;
1850 
1851 	switch (proto) {
1852 
1853 	case LLCSAP_ISONS:
1854 	case LLCSAP_IP:
1855 	case LLCSAP_NETBEUI:
1856 		/*
1857 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1858 		 * so we check the DSAP and SSAP.
1859 		 *
1860 		 * LLCSAP_IP checks for IP-over-802.2, rather
1861 		 * than IP-over-Ethernet or IP-over-SNAP.
1862 		 *
1863 		 * XXX - should we check both the DSAP and the
1864 		 * SSAP, like this, or should we check just the
1865 		 * DSAP, as we do for other types <= ETHERMTU
1866 		 * (i.e., other SAP values)?
1867 		 */
1868 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1869 		gen_not(b0);
1870 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
1871 			     ((proto << 8) | proto));
1872 		gen_and(b0, b1);
1873 		return b1;
1874 
1875 	case LLCSAP_IPX:
1876 		/*
1877 		 * Check for;
1878 		 *
1879 		 *	Ethernet_II frames, which are Ethernet
1880 		 *	frames with a frame type of ETHERTYPE_IPX;
1881 		 *
1882 		 *	Ethernet_802.3 frames, which are 802.3
1883 		 *	frames (i.e., the type/length field is
1884 		 *	a length field, <= ETHERMTU, rather than
1885 		 *	a type field) with the first two bytes
1886 		 *	after the Ethernet/802.3 header being
1887 		 *	0xFFFF;
1888 		 *
1889 		 *	Ethernet_802.2 frames, which are 802.3
1890 		 *	frames with an 802.2 LLC header and
1891 		 *	with the IPX LSAP as the DSAP in the LLC
1892 		 *	header;
1893 		 *
1894 		 *	Ethernet_SNAP frames, which are 802.3
1895 		 *	frames with an LLC header and a SNAP
1896 		 *	header and with an OUI of 0x000000
1897 		 *	(encapsulated Ethernet) and a protocol
1898 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1899 		 *
1900 		 * XXX - should we generate the same code both
1901 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1902 		 */
1903 
1904 		/*
1905 		 * This generates code to check both for the
1906 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1907 		 */
1908 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1909 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
1910 		gen_or(b0, b1);
1911 
1912 		/*
1913 		 * Now we add code to check for SNAP frames with
1914 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1915 		 */
1916 		b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
1917 		gen_or(b0, b1);
1918 
1919 		/*
1920 		 * Now we generate code to check for 802.3
1921 		 * frames in general.
1922 		 */
1923 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1924 		gen_not(b0);
1925 
1926 		/*
1927 		 * Now add the check for 802.3 frames before the
1928 		 * check for Ethernet_802.2 and Ethernet_802.3,
1929 		 * as those checks should only be done on 802.3
1930 		 * frames, not on Ethernet frames.
1931 		 */
1932 		gen_and(b0, b1);
1933 
1934 		/*
1935 		 * Now add the check for Ethernet_II frames, and
1936 		 * do that before checking for the other frame
1937 		 * types.
1938 		 */
1939 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
1940 		gen_or(b0, b1);
1941 		return b1;
1942 
1943 	case ETHERTYPE_ATALK:
1944 	case ETHERTYPE_AARP:
1945 		/*
1946 		 * EtherTalk (AppleTalk protocols on Ethernet link
1947 		 * layer) may use 802.2 encapsulation.
1948 		 */
1949 
1950 		/*
1951 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1952 		 * we check for an Ethernet type field less than
1953 		 * 1500, which means it's an 802.3 length field.
1954 		 */
1955 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1956 		gen_not(b0);
1957 
1958 		/*
1959 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1960 		 * SNAP packets with an organization code of
1961 		 * 0x080007 (Apple, for Appletalk) and a protocol
1962 		 * type of ETHERTYPE_ATALK (Appletalk).
1963 		 *
1964 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1965 		 * SNAP packets with an organization code of
1966 		 * 0x000000 (encapsulated Ethernet) and a protocol
1967 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1968 		 */
1969 		if (proto == ETHERTYPE_ATALK)
1970 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
1971 		else	/* proto == ETHERTYPE_AARP */
1972 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
1973 		gen_and(b0, b1);
1974 
1975 		/*
1976 		 * Check for Ethernet encapsulation (Ethertalk
1977 		 * phase 1?); we just check for the Ethernet
1978 		 * protocol type.
1979 		 */
1980 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
1981 
1982 		gen_or(b0, b1);
1983 		return b1;
1984 
1985 	default:
1986 		if (proto <= ETHERMTU) {
1987 			/*
1988 			 * This is an LLC SAP value, so the frames
1989 			 * that match would be 802.2 frames.
1990 			 * Check that the frame is an 802.2 frame
1991 			 * (i.e., that the length/type field is
1992 			 * a length field, <= ETHERMTU) and
1993 			 * then check the DSAP.
1994 			 */
1995 			b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1996 			gen_not(b0);
1997 			b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, (bpf_int32)proto);
1998 			gen_and(b0, b1);
1999 			return b1;
2000 		} else {
2001 			/*
2002 			 * This is an Ethernet type, so compare
2003 			 * the length/type field with it (if
2004 			 * the frame is an 802.2 frame, the length
2005 			 * field will be <= ETHERMTU, and, as
2006 			 * "proto" is > ETHERMTU, this test
2007 			 * will fail and the frame won't match,
2008 			 * which is what we want).
2009 			 */
2010 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
2011 			    (bpf_int32)proto);
2012 		}
2013 	}
2014 }
2015 
2016 static struct block *
2017 gen_loopback_linktype(compiler_state_t *cstate, int proto)
2018 {
2019 	/*
2020 	 * For DLT_NULL, the link-layer header is a 32-bit word
2021 	 * containing an AF_ value in *host* byte order, and for
2022 	 * DLT_ENC, the link-layer header begins with a 32-bit
2023 	 * word containing an AF_ value in host byte order.
2024 	 *
2025 	 * In addition, if we're reading a saved capture file,
2026 	 * the host byte order in the capture may not be the
2027 	 * same as the host byte order on this machine.
2028 	 *
2029 	 * For DLT_LOOP, the link-layer header is a 32-bit
2030 	 * word containing an AF_ value in *network* byte order.
2031 	 */
2032 	if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2033 		/*
2034 		 * The AF_ value is in host byte order, but the BPF
2035 		 * interpreter will convert it to network byte order.
2036 		 *
2037 		 * If this is a save file, and it's from a machine
2038 		 * with the opposite byte order to ours, we byte-swap
2039 		 * the AF_ value.
2040 		 *
2041 		 * Then we run it through "htonl()", and generate
2042 		 * code to compare against the result.
2043 		 */
2044 		if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2045 			proto = SWAPLONG(proto);
2046 		proto = htonl(proto);
2047 	}
2048 	return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, (bpf_int32)proto));
2049 }
2050 
2051 /*
2052  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2053  * or IPv6 then we have an error.
2054  */
2055 static struct block *
2056 gen_ipnet_linktype(compiler_state_t *cstate, int proto)
2057 {
2058 	switch (proto) {
2059 
2060 	case ETHERTYPE_IP:
2061 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, (bpf_int32)IPH_AF_INET);
2062 		/* NOTREACHED */
2063 
2064 	case ETHERTYPE_IPV6:
2065 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
2066 		    (bpf_int32)IPH_AF_INET6);
2067 		/* NOTREACHED */
2068 
2069 	default:
2070 		break;
2071 	}
2072 
2073 	return gen_false(cstate);
2074 }
2075 
2076 /*
2077  * Generate code to match a particular packet type.
2078  *
2079  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2080  * value, if <= ETHERMTU.  We use that to determine whether to
2081  * match the type field or to check the type field for the special
2082  * LINUX_SLL_P_802_2 value and then do the appropriate test.
2083  */
2084 static struct block *
2085 gen_linux_sll_linktype(compiler_state_t *cstate, int proto)
2086 {
2087 	struct block *b0, *b1;
2088 
2089 	switch (proto) {
2090 
2091 	case LLCSAP_ISONS:
2092 	case LLCSAP_IP:
2093 	case LLCSAP_NETBEUI:
2094 		/*
2095 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2096 		 * so we check the DSAP and SSAP.
2097 		 *
2098 		 * LLCSAP_IP checks for IP-over-802.2, rather
2099 		 * than IP-over-Ethernet or IP-over-SNAP.
2100 		 *
2101 		 * XXX - should we check both the DSAP and the
2102 		 * SSAP, like this, or should we check just the
2103 		 * DSAP, as we do for other types <= ETHERMTU
2104 		 * (i.e., other SAP values)?
2105 		 */
2106 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2107 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
2108 			     ((proto << 8) | proto));
2109 		gen_and(b0, b1);
2110 		return b1;
2111 
2112 	case LLCSAP_IPX:
2113 		/*
2114 		 *	Ethernet_II frames, which are Ethernet
2115 		 *	frames with a frame type of ETHERTYPE_IPX;
2116 		 *
2117 		 *	Ethernet_802.3 frames, which have a frame
2118 		 *	type of LINUX_SLL_P_802_3;
2119 		 *
2120 		 *	Ethernet_802.2 frames, which are 802.3
2121 		 *	frames with an 802.2 LLC header (i.e, have
2122 		 *	a frame type of LINUX_SLL_P_802_2) and
2123 		 *	with the IPX LSAP as the DSAP in the LLC
2124 		 *	header;
2125 		 *
2126 		 *	Ethernet_SNAP frames, which are 802.3
2127 		 *	frames with an LLC header and a SNAP
2128 		 *	header and with an OUI of 0x000000
2129 		 *	(encapsulated Ethernet) and a protocol
2130 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2131 		 *
2132 		 * First, do the checks on LINUX_SLL_P_802_2
2133 		 * frames; generate the check for either
2134 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
2135 		 * then put a check for LINUX_SLL_P_802_2 frames
2136 		 * before it.
2137 		 */
2138 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
2139 		b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2140 		gen_or(b0, b1);
2141 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2142 		gen_and(b0, b1);
2143 
2144 		/*
2145 		 * Now check for 802.3 frames and OR that with
2146 		 * the previous test.
2147 		 */
2148 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2149 		gen_or(b0, b1);
2150 
2151 		/*
2152 		 * Now add the check for Ethernet_II frames, and
2153 		 * do that before checking for the other frame
2154 		 * types.
2155 		 */
2156 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
2157 		gen_or(b0, b1);
2158 		return b1;
2159 
2160 	case ETHERTYPE_ATALK:
2161 	case ETHERTYPE_AARP:
2162 		/*
2163 		 * EtherTalk (AppleTalk protocols on Ethernet link
2164 		 * layer) may use 802.2 encapsulation.
2165 		 */
2166 
2167 		/*
2168 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2169 		 * we check for the 802.2 protocol type in the
2170 		 * "Ethernet type" field.
2171 		 */
2172 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2173 
2174 		/*
2175 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2176 		 * SNAP packets with an organization code of
2177 		 * 0x080007 (Apple, for Appletalk) and a protocol
2178 		 * type of ETHERTYPE_ATALK (Appletalk).
2179 		 *
2180 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2181 		 * SNAP packets with an organization code of
2182 		 * 0x000000 (encapsulated Ethernet) and a protocol
2183 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2184 		 */
2185 		if (proto == ETHERTYPE_ATALK)
2186 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2187 		else	/* proto == ETHERTYPE_AARP */
2188 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2189 		gen_and(b0, b1);
2190 
2191 		/*
2192 		 * Check for Ethernet encapsulation (Ethertalk
2193 		 * phase 1?); we just check for the Ethernet
2194 		 * protocol type.
2195 		 */
2196 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2197 
2198 		gen_or(b0, b1);
2199 		return b1;
2200 
2201 	default:
2202 		if (proto <= ETHERMTU) {
2203 			/*
2204 			 * This is an LLC SAP value, so the frames
2205 			 * that match would be 802.2 frames.
2206 			 * Check for the 802.2 protocol type
2207 			 * in the "Ethernet type" field, and
2208 			 * then check the DSAP.
2209 			 */
2210 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2211 			b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2212 			     (bpf_int32)proto);
2213 			gen_and(b0, b1);
2214 			return b1;
2215 		} else {
2216 			/*
2217 			 * This is an Ethernet type, so compare
2218 			 * the length/type field with it (if
2219 			 * the frame is an 802.2 frame, the length
2220 			 * field will be <= ETHERMTU, and, as
2221 			 * "proto" is > ETHERMTU, this test
2222 			 * will fail and the frame won't match,
2223 			 * which is what we want).
2224 			 */
2225 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2226 		}
2227 	}
2228 }
2229 
2230 static struct slist *
2231 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2232 {
2233 	struct slist *s1, *s2;
2234 	struct slist *sjeq_avs_cookie;
2235 	struct slist *sjcommon;
2236 
2237 	/*
2238 	 * This code is not compatible with the optimizer, as
2239 	 * we are generating jmp instructions within a normal
2240 	 * slist of instructions
2241 	 */
2242 	cstate->no_optimize = 1;
2243 
2244 	/*
2245 	 * Generate code to load the length of the radio header into
2246 	 * the register assigned to hold that length, if one has been
2247 	 * assigned.  (If one hasn't been assigned, no code we've
2248 	 * generated uses that prefix, so we don't need to generate any
2249 	 * code to load it.)
2250 	 *
2251 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2252 	 * or always use the AVS header rather than the Prism header.
2253 	 * We load a 4-byte big-endian value at the beginning of the
2254 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2255 	 * it's equal to 0x80211000.  If so, that indicates that it's
2256 	 * an AVS header (the masked-out bits are the version number).
2257 	 * Otherwise, it's a Prism header.
2258 	 *
2259 	 * XXX - the Prism header is also, in theory, variable-length,
2260 	 * but no known software generates headers that aren't 144
2261 	 * bytes long.
2262 	 */
2263 	if (cstate->off_linkhdr.reg != -1) {
2264 		/*
2265 		 * Load the cookie.
2266 		 */
2267 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2268 		s1->s.k = 0;
2269 
2270 		/*
2271 		 * AND it with 0xFFFFF000.
2272 		 */
2273 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2274 		s2->s.k = 0xFFFFF000;
2275 		sappend(s1, s2);
2276 
2277 		/*
2278 		 * Compare with 0x80211000.
2279 		 */
2280 		sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2281 		sjeq_avs_cookie->s.k = 0x80211000;
2282 		sappend(s1, sjeq_avs_cookie);
2283 
2284 		/*
2285 		 * If it's AVS:
2286 		 *
2287 		 * The 4 bytes at an offset of 4 from the beginning of
2288 		 * the AVS header are the length of the AVS header.
2289 		 * That field is big-endian.
2290 		 */
2291 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2292 		s2->s.k = 4;
2293 		sappend(s1, s2);
2294 		sjeq_avs_cookie->s.jt = s2;
2295 
2296 		/*
2297 		 * Now jump to the code to allocate a register
2298 		 * into which to save the header length and
2299 		 * store the length there.  (The "jump always"
2300 		 * instruction needs to have the k field set;
2301 		 * it's added to the PC, so, as we're jumping
2302 		 * over a single instruction, it should be 1.)
2303 		 */
2304 		sjcommon = new_stmt(cstate, JMP(BPF_JA));
2305 		sjcommon->s.k = 1;
2306 		sappend(s1, sjcommon);
2307 
2308 		/*
2309 		 * Now for the code that handles the Prism header.
2310 		 * Just load the length of the Prism header (144)
2311 		 * into the A register.  Have the test for an AVS
2312 		 * header branch here if we don't have an AVS header.
2313 		 */
2314 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2315 		s2->s.k = 144;
2316 		sappend(s1, s2);
2317 		sjeq_avs_cookie->s.jf = s2;
2318 
2319 		/*
2320 		 * Now allocate a register to hold that value and store
2321 		 * it.  The code for the AVS header will jump here after
2322 		 * loading the length of the AVS header.
2323 		 */
2324 		s2 = new_stmt(cstate, BPF_ST);
2325 		s2->s.k = cstate->off_linkhdr.reg;
2326 		sappend(s1, s2);
2327 		sjcommon->s.jf = s2;
2328 
2329 		/*
2330 		 * Now move it into the X register.
2331 		 */
2332 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2333 		sappend(s1, s2);
2334 
2335 		return (s1);
2336 	} else
2337 		return (NULL);
2338 }
2339 
2340 static struct slist *
2341 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2342 {
2343 	struct slist *s1, *s2;
2344 
2345 	/*
2346 	 * Generate code to load the length of the AVS header into
2347 	 * the register assigned to hold that length, if one has been
2348 	 * assigned.  (If one hasn't been assigned, no code we've
2349 	 * generated uses that prefix, so we don't need to generate any
2350 	 * code to load it.)
2351 	 */
2352 	if (cstate->off_linkhdr.reg != -1) {
2353 		/*
2354 		 * The 4 bytes at an offset of 4 from the beginning of
2355 		 * the AVS header are the length of the AVS header.
2356 		 * That field is big-endian.
2357 		 */
2358 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2359 		s1->s.k = 4;
2360 
2361 		/*
2362 		 * Now allocate a register to hold that value and store
2363 		 * it.
2364 		 */
2365 		s2 = new_stmt(cstate, BPF_ST);
2366 		s2->s.k = cstate->off_linkhdr.reg;
2367 		sappend(s1, s2);
2368 
2369 		/*
2370 		 * Now move it into the X register.
2371 		 */
2372 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2373 		sappend(s1, s2);
2374 
2375 		return (s1);
2376 	} else
2377 		return (NULL);
2378 }
2379 
2380 static struct slist *
2381 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2382 {
2383 	struct slist *s1, *s2;
2384 
2385 	/*
2386 	 * Generate code to load the length of the radiotap header into
2387 	 * the register assigned to hold that length, if one has been
2388 	 * assigned.  (If one hasn't been assigned, no code we've
2389 	 * generated uses that prefix, so we don't need to generate any
2390 	 * code to load it.)
2391 	 */
2392 	if (cstate->off_linkhdr.reg != -1) {
2393 		/*
2394 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2395 		 * of the radiotap header are the length of the radiotap
2396 		 * header; unfortunately, it's little-endian, so we have
2397 		 * to load it a byte at a time and construct the value.
2398 		 */
2399 
2400 		/*
2401 		 * Load the high-order byte, at an offset of 3, shift it
2402 		 * left a byte, and put the result in the X register.
2403 		 */
2404 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2405 		s1->s.k = 3;
2406 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2407 		sappend(s1, s2);
2408 		s2->s.k = 8;
2409 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2410 		sappend(s1, s2);
2411 
2412 		/*
2413 		 * Load the next byte, at an offset of 2, and OR the
2414 		 * value from the X register into it.
2415 		 */
2416 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2417 		sappend(s1, s2);
2418 		s2->s.k = 2;
2419 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2420 		sappend(s1, s2);
2421 
2422 		/*
2423 		 * Now allocate a register to hold that value and store
2424 		 * it.
2425 		 */
2426 		s2 = new_stmt(cstate, BPF_ST);
2427 		s2->s.k = cstate->off_linkhdr.reg;
2428 		sappend(s1, s2);
2429 
2430 		/*
2431 		 * Now move it into the X register.
2432 		 */
2433 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2434 		sappend(s1, s2);
2435 
2436 		return (s1);
2437 	} else
2438 		return (NULL);
2439 }
2440 
2441 /*
2442  * At the moment we treat PPI as normal Radiotap encoded
2443  * packets. The difference is in the function that generates
2444  * the code at the beginning to compute the header length.
2445  * Since this code generator of PPI supports bare 802.11
2446  * encapsulation only (i.e. the encapsulated DLT should be
2447  * DLT_IEEE802_11) we generate code to check for this too;
2448  * that's done in finish_parse().
2449  */
2450 static struct slist *
2451 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2452 {
2453 	struct slist *s1, *s2;
2454 
2455 	/*
2456 	 * Generate code to load the length of the radiotap header
2457 	 * into the register assigned to hold that length, if one has
2458 	 * been assigned.
2459 	 */
2460 	if (cstate->off_linkhdr.reg != -1) {
2461 		/*
2462 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2463 		 * of the radiotap header are the length of the radiotap
2464 		 * header; unfortunately, it's little-endian, so we have
2465 		 * to load it a byte at a time and construct the value.
2466 		 */
2467 
2468 		/*
2469 		 * Load the high-order byte, at an offset of 3, shift it
2470 		 * left a byte, and put the result in the X register.
2471 		 */
2472 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2473 		s1->s.k = 3;
2474 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2475 		sappend(s1, s2);
2476 		s2->s.k = 8;
2477 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2478 		sappend(s1, s2);
2479 
2480 		/*
2481 		 * Load the next byte, at an offset of 2, and OR the
2482 		 * value from the X register into it.
2483 		 */
2484 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2485 		sappend(s1, s2);
2486 		s2->s.k = 2;
2487 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2488 		sappend(s1, s2);
2489 
2490 		/*
2491 		 * Now allocate a register to hold that value and store
2492 		 * it.
2493 		 */
2494 		s2 = new_stmt(cstate, BPF_ST);
2495 		s2->s.k = cstate->off_linkhdr.reg;
2496 		sappend(s1, s2);
2497 
2498 		/*
2499 		 * Now move it into the X register.
2500 		 */
2501 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2502 		sappend(s1, s2);
2503 
2504 		return (s1);
2505 	} else
2506 		return (NULL);
2507 }
2508 
2509 /*
2510  * Load a value relative to the beginning of the link-layer header after the 802.11
2511  * header, i.e. LLC_SNAP.
2512  * The link-layer header doesn't necessarily begin at the beginning
2513  * of the packet data; there might be a variable-length prefix containing
2514  * radio information.
2515  */
2516 static struct slist *
2517 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2518 {
2519 	struct slist *s2;
2520 	struct slist *sjset_data_frame_1;
2521 	struct slist *sjset_data_frame_2;
2522 	struct slist *sjset_qos;
2523 	struct slist *sjset_radiotap_flags_present;
2524 	struct slist *sjset_radiotap_ext_present;
2525 	struct slist *sjset_radiotap_tsft_present;
2526 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2527 	struct slist *s_roundup;
2528 
2529 	if (cstate->off_linkpl.reg == -1) {
2530 		/*
2531 		 * No register has been assigned to the offset of
2532 		 * the link-layer payload, which means nobody needs
2533 		 * it; don't bother computing it - just return
2534 		 * what we already have.
2535 		 */
2536 		return (s);
2537 	}
2538 
2539 	/*
2540 	 * This code is not compatible with the optimizer, as
2541 	 * we are generating jmp instructions within a normal
2542 	 * slist of instructions
2543 	 */
2544 	cstate->no_optimize = 1;
2545 
2546 	/*
2547 	 * If "s" is non-null, it has code to arrange that the X register
2548 	 * contains the length of the prefix preceding the link-layer
2549 	 * header.
2550 	 *
2551 	 * Otherwise, the length of the prefix preceding the link-layer
2552 	 * header is "off_outermostlinkhdr.constant_part".
2553 	 */
2554 	if (s == NULL) {
2555 		/*
2556 		 * There is no variable-length header preceding the
2557 		 * link-layer header.
2558 		 *
2559 		 * Load the length of the fixed-length prefix preceding
2560 		 * the link-layer header (if any) into the X register,
2561 		 * and store it in the cstate->off_linkpl.reg register.
2562 		 * That length is off_outermostlinkhdr.constant_part.
2563 		 */
2564 		s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2565 		s->s.k = cstate->off_outermostlinkhdr.constant_part;
2566 	}
2567 
2568 	/*
2569 	 * The X register contains the offset of the beginning of the
2570 	 * link-layer header; add 24, which is the minimum length
2571 	 * of the MAC header for a data frame, to that, and store it
2572 	 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2573 	 * which is at the offset in the X register, with an indexed load.
2574 	 */
2575 	s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2576 	sappend(s, s2);
2577 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2578 	s2->s.k = 24;
2579 	sappend(s, s2);
2580 	s2 = new_stmt(cstate, BPF_ST);
2581 	s2->s.k = cstate->off_linkpl.reg;
2582 	sappend(s, s2);
2583 
2584 	s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2585 	s2->s.k = 0;
2586 	sappend(s, s2);
2587 
2588 	/*
2589 	 * Check the Frame Control field to see if this is a data frame;
2590 	 * a data frame has the 0x08 bit (b3) in that field set and the
2591 	 * 0x04 bit (b2) clear.
2592 	 */
2593 	sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2594 	sjset_data_frame_1->s.k = 0x08;
2595 	sappend(s, sjset_data_frame_1);
2596 
2597 	/*
2598 	 * If b3 is set, test b2, otherwise go to the first statement of
2599 	 * the rest of the program.
2600 	 */
2601 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2602 	sjset_data_frame_2->s.k = 0x04;
2603 	sappend(s, sjset_data_frame_2);
2604 	sjset_data_frame_1->s.jf = snext;
2605 
2606 	/*
2607 	 * If b2 is not set, this is a data frame; test the QoS bit.
2608 	 * Otherwise, go to the first statement of the rest of the
2609 	 * program.
2610 	 */
2611 	sjset_data_frame_2->s.jt = snext;
2612 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2613 	sjset_qos->s.k = 0x80;	/* QoS bit */
2614 	sappend(s, sjset_qos);
2615 
2616 	/*
2617 	 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2618 	 * field.
2619 	 * Otherwise, go to the first statement of the rest of the
2620 	 * program.
2621 	 */
2622 	sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2623 	s2->s.k = cstate->off_linkpl.reg;
2624 	sappend(s, s2);
2625 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2626 	s2->s.k = 2;
2627 	sappend(s, s2);
2628 	s2 = new_stmt(cstate, BPF_ST);
2629 	s2->s.k = cstate->off_linkpl.reg;
2630 	sappend(s, s2);
2631 
2632 	/*
2633 	 * If we have a radiotap header, look at it to see whether
2634 	 * there's Atheros padding between the MAC-layer header
2635 	 * and the payload.
2636 	 *
2637 	 * Note: all of the fields in the radiotap header are
2638 	 * little-endian, so we byte-swap all of the values
2639 	 * we test against, as they will be loaded as big-endian
2640 	 * values.
2641 	 *
2642 	 * XXX - in the general case, we would have to scan through
2643 	 * *all* the presence bits, if there's more than one word of
2644 	 * presence bits.  That would require a loop, meaning that
2645 	 * we wouldn't be able to run the filter in the kernel.
2646 	 *
2647 	 * We assume here that the Atheros adapters that insert the
2648 	 * annoying padding don't have multiple antennae and therefore
2649 	 * do not generate radiotap headers with multiple presence words.
2650 	 */
2651 	if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2652 		/*
2653 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2654 		 * in the first presence flag word?
2655 		 */
2656 		sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2657 		s2->s.k = 4;
2658 		sappend(s, s2);
2659 
2660 		sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2661 		sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2662 		sappend(s, sjset_radiotap_flags_present);
2663 
2664 		/*
2665 		 * If not, skip all of this.
2666 		 */
2667 		sjset_radiotap_flags_present->s.jf = snext;
2668 
2669 		/*
2670 		 * Otherwise, is the "extension" bit set in that word?
2671 		 */
2672 		sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2673 		sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2674 		sappend(s, sjset_radiotap_ext_present);
2675 		sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2676 
2677 		/*
2678 		 * If so, skip all of this.
2679 		 */
2680 		sjset_radiotap_ext_present->s.jt = snext;
2681 
2682 		/*
2683 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2684 		 */
2685 		sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2686 		sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2687 		sappend(s, sjset_radiotap_tsft_present);
2688 		sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2689 
2690 		/*
2691 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2692 		 * at an offset of 16 from the beginning of the raw packet
2693 		 * data (8 bytes for the radiotap header and 8 bytes for
2694 		 * the TSFT field).
2695 		 *
2696 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2697 		 * is set.
2698 		 */
2699 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2700 		s2->s.k = 16;
2701 		sappend(s, s2);
2702 		sjset_radiotap_tsft_present->s.jt = s2;
2703 
2704 		sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2705 		sjset_tsft_datapad->s.k = 0x20;
2706 		sappend(s, sjset_tsft_datapad);
2707 
2708 		/*
2709 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2710 		 * at an offset of 8 from the beginning of the raw packet
2711 		 * data (8 bytes for the radiotap header).
2712 		 *
2713 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2714 		 * is set.
2715 		 */
2716 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2717 		s2->s.k = 8;
2718 		sappend(s, s2);
2719 		sjset_radiotap_tsft_present->s.jf = s2;
2720 
2721 		sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2722 		sjset_notsft_datapad->s.k = 0x20;
2723 		sappend(s, sjset_notsft_datapad);
2724 
2725 		/*
2726 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2727 		 * set, round the length of the 802.11 header to
2728 		 * a multiple of 4.  Do that by adding 3 and then
2729 		 * dividing by and multiplying by 4, which we do by
2730 		 * ANDing with ~3.
2731 		 */
2732 		s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2733 		s_roundup->s.k = cstate->off_linkpl.reg;
2734 		sappend(s, s_roundup);
2735 		s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2736 		s2->s.k = 3;
2737 		sappend(s, s2);
2738 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2739 		s2->s.k = ~3;
2740 		sappend(s, s2);
2741 		s2 = new_stmt(cstate, BPF_ST);
2742 		s2->s.k = cstate->off_linkpl.reg;
2743 		sappend(s, s2);
2744 
2745 		sjset_tsft_datapad->s.jt = s_roundup;
2746 		sjset_tsft_datapad->s.jf = snext;
2747 		sjset_notsft_datapad->s.jt = s_roundup;
2748 		sjset_notsft_datapad->s.jf = snext;
2749 	} else
2750 		sjset_qos->s.jf = snext;
2751 
2752 	return s;
2753 }
2754 
2755 static void
2756 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2757 {
2758 	struct slist *s;
2759 
2760 	/* There is an implicit dependency between the link
2761 	 * payload and link header since the payload computation
2762 	 * includes the variable part of the header. Therefore,
2763 	 * if nobody else has allocated a register for the link
2764 	 * header and we need it, do it now. */
2765 	if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2766 	    cstate->off_linkhdr.reg == -1)
2767 		cstate->off_linkhdr.reg = alloc_reg(cstate);
2768 
2769 	/*
2770 	 * For link-layer types that have a variable-length header
2771 	 * preceding the link-layer header, generate code to load
2772 	 * the offset of the link-layer header into the register
2773 	 * assigned to that offset, if any.
2774 	 *
2775 	 * XXX - this, and the next switch statement, won't handle
2776 	 * encapsulation of 802.11 or 802.11+radio information in
2777 	 * some other protocol stack.  That's significantly more
2778 	 * complicated.
2779 	 */
2780 	switch (cstate->outermostlinktype) {
2781 
2782 	case DLT_PRISM_HEADER:
2783 		s = gen_load_prism_llprefixlen(cstate);
2784 		break;
2785 
2786 	case DLT_IEEE802_11_RADIO_AVS:
2787 		s = gen_load_avs_llprefixlen(cstate);
2788 		break;
2789 
2790 	case DLT_IEEE802_11_RADIO:
2791 		s = gen_load_radiotap_llprefixlen(cstate);
2792 		break;
2793 
2794 	case DLT_PPI:
2795 		s = gen_load_ppi_llprefixlen(cstate);
2796 		break;
2797 
2798 	default:
2799 		s = NULL;
2800 		break;
2801 	}
2802 
2803 	/*
2804 	 * For link-layer types that have a variable-length link-layer
2805 	 * header, generate code to load the offset of the link-layer
2806 	 * payload into the register assigned to that offset, if any.
2807 	 */
2808 	switch (cstate->outermostlinktype) {
2809 
2810 	case DLT_IEEE802_11:
2811 	case DLT_PRISM_HEADER:
2812 	case DLT_IEEE802_11_RADIO_AVS:
2813 	case DLT_IEEE802_11_RADIO:
2814 	case DLT_PPI:
2815 		s = gen_load_802_11_header_len(cstate, s, b->stmts);
2816 		break;
2817 	}
2818 
2819 	/*
2820 	 * If there there is no initialization yet and we need variable
2821 	 * length offsets for VLAN, initialize them to zero
2822 	 */
2823 	if (s == NULL && cstate->is_vlan_vloffset) {
2824 		struct slist *s2;
2825 
2826 		if (cstate->off_linkpl.reg == -1)
2827 			cstate->off_linkpl.reg = alloc_reg(cstate);
2828 		if (cstate->off_linktype.reg == -1)
2829 			cstate->off_linktype.reg = alloc_reg(cstate);
2830 
2831 		s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2832 		s->s.k = 0;
2833 		s2 = new_stmt(cstate, BPF_ST);
2834 		s2->s.k = cstate->off_linkpl.reg;
2835 		sappend(s, s2);
2836 		s2 = new_stmt(cstate, BPF_ST);
2837 		s2->s.k = cstate->off_linktype.reg;
2838 		sappend(s, s2);
2839 	}
2840 
2841 	/*
2842 	 * If we have any offset-loading code, append all the
2843 	 * existing statements in the block to those statements,
2844 	 * and make the resulting list the list of statements
2845 	 * for the block.
2846 	 */
2847 	if (s != NULL) {
2848 		sappend(s, b->stmts);
2849 		b->stmts = s;
2850 	}
2851 }
2852 
2853 static struct block *
2854 gen_ppi_dlt_check(compiler_state_t *cstate)
2855 {
2856 	struct slist *s_load_dlt;
2857 	struct block *b;
2858 
2859 	if (cstate->linktype == DLT_PPI)
2860 	{
2861 		/* Create the statements that check for the DLT
2862 		 */
2863 		s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2864 		s_load_dlt->s.k = 4;
2865 
2866 		b = new_block(cstate, JMP(BPF_JEQ));
2867 
2868 		b->stmts = s_load_dlt;
2869 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2870 	}
2871 	else
2872 	{
2873 		b = NULL;
2874 	}
2875 
2876 	return b;
2877 }
2878 
2879 /*
2880  * Take an absolute offset, and:
2881  *
2882  *    if it has no variable part, return NULL;
2883  *
2884  *    if it has a variable part, generate code to load the register
2885  *    containing that variable part into the X register, returning
2886  *    a pointer to that code - if no register for that offset has
2887  *    been allocated, allocate it first.
2888  *
2889  * (The code to set that register will be generated later, but will
2890  * be placed earlier in the code sequence.)
2891  */
2892 static struct slist *
2893 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
2894 {
2895 	struct slist *s;
2896 
2897 	if (off->is_variable) {
2898 		if (off->reg == -1) {
2899 			/*
2900 			 * We haven't yet assigned a register for the
2901 			 * variable part of the offset of the link-layer
2902 			 * header; allocate one.
2903 			 */
2904 			off->reg = alloc_reg(cstate);
2905 		}
2906 
2907 		/*
2908 		 * Load the register containing the variable part of the
2909 		 * offset of the link-layer header into the X register.
2910 		 */
2911 		s = new_stmt(cstate, BPF_LDX|BPF_MEM);
2912 		s->s.k = off->reg;
2913 		return s;
2914 	} else {
2915 		/*
2916 		 * That offset isn't variable, there's no variable part,
2917 		 * so we don't need to generate any code.
2918 		 */
2919 		return NULL;
2920 	}
2921 }
2922 
2923 /*
2924  * Map an Ethernet type to the equivalent PPP type.
2925  */
2926 static int
2927 ethertype_to_ppptype(int proto)
2928 {
2929 	switch (proto) {
2930 
2931 	case ETHERTYPE_IP:
2932 		proto = PPP_IP;
2933 		break;
2934 
2935 	case ETHERTYPE_IPV6:
2936 		proto = PPP_IPV6;
2937 		break;
2938 
2939 	case ETHERTYPE_DN:
2940 		proto = PPP_DECNET;
2941 		break;
2942 
2943 	case ETHERTYPE_ATALK:
2944 		proto = PPP_APPLE;
2945 		break;
2946 
2947 	case ETHERTYPE_NS:
2948 		proto = PPP_NS;
2949 		break;
2950 
2951 	case LLCSAP_ISONS:
2952 		proto = PPP_OSI;
2953 		break;
2954 
2955 	case LLCSAP_8021D:
2956 		/*
2957 		 * I'm assuming the "Bridging PDU"s that go
2958 		 * over PPP are Spanning Tree Protocol
2959 		 * Bridging PDUs.
2960 		 */
2961 		proto = PPP_BRPDU;
2962 		break;
2963 
2964 	case LLCSAP_IPX:
2965 		proto = PPP_IPX;
2966 		break;
2967 	}
2968 	return (proto);
2969 }
2970 
2971 /*
2972  * Generate any tests that, for encapsulation of a link-layer packet
2973  * inside another protocol stack, need to be done to check for those
2974  * link-layer packets (and that haven't already been done by a check
2975  * for that encapsulation).
2976  */
2977 static struct block *
2978 gen_prevlinkhdr_check(compiler_state_t *cstate)
2979 {
2980 	struct block *b0;
2981 
2982 	if (cstate->is_geneve)
2983 		return gen_geneve_ll_check(cstate);
2984 
2985 	switch (cstate->prevlinktype) {
2986 
2987 	case DLT_SUNATM:
2988 		/*
2989 		 * This is LANE-encapsulated Ethernet; check that the LANE
2990 		 * packet doesn't begin with an LE Control marker, i.e.
2991 		 * that it's data, not a control message.
2992 		 *
2993 		 * (We've already generated a test for LANE.)
2994 		 */
2995 		b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
2996 		gen_not(b0);
2997 		return b0;
2998 
2999 	default:
3000 		/*
3001 		 * No such tests are necessary.
3002 		 */
3003 		return NULL;
3004 	}
3005 	/*NOTREACHED*/
3006 }
3007 
3008 /*
3009  * The three different values we should check for when checking for an
3010  * IPv6 packet with DLT_NULL.
3011  */
3012 #define BSD_AFNUM_INET6_BSD	24	/* NetBSD, OpenBSD, BSD/OS, Npcap */
3013 #define BSD_AFNUM_INET6_FREEBSD	28	/* FreeBSD */
3014 #define BSD_AFNUM_INET6_DARWIN	30	/* macOS, iOS, other Darwin-based OSes */
3015 
3016 /*
3017  * Generate code to match a particular packet type by matching the
3018  * link-layer type field or fields in the 802.2 LLC header.
3019  *
3020  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3021  * value, if <= ETHERMTU.
3022  */
3023 static struct block *
3024 gen_linktype(compiler_state_t *cstate, int proto)
3025 {
3026 	struct block *b0, *b1, *b2;
3027 	const char *description;
3028 
3029 	/* are we checking MPLS-encapsulated packets? */
3030 	if (cstate->label_stack_depth > 0) {
3031 		switch (proto) {
3032 		case ETHERTYPE_IP:
3033 		case PPP_IP:
3034 			/* FIXME add other L3 proto IDs */
3035 			return gen_mpls_linktype(cstate, Q_IP);
3036 
3037 		case ETHERTYPE_IPV6:
3038 		case PPP_IPV6:
3039 			/* FIXME add other L3 proto IDs */
3040 			return gen_mpls_linktype(cstate, Q_IPV6);
3041 
3042 		default:
3043 			bpf_error(cstate, "unsupported protocol over mpls");
3044 			/* NOTREACHED */
3045 		}
3046 	}
3047 
3048 	switch (cstate->linktype) {
3049 
3050 	case DLT_EN10MB:
3051 	case DLT_NETANALYZER:
3052 	case DLT_NETANALYZER_TRANSPARENT:
3053 		/* Geneve has an EtherType regardless of whether there is an
3054 		 * L2 header. */
3055 		if (!cstate->is_geneve)
3056 			b0 = gen_prevlinkhdr_check(cstate);
3057 		else
3058 			b0 = NULL;
3059 
3060 		b1 = gen_ether_linktype(cstate, proto);
3061 		if (b0 != NULL)
3062 			gen_and(b0, b1);
3063 		return b1;
3064 		/*NOTREACHED*/
3065 		break;
3066 
3067 	case DLT_C_HDLC:
3068 		switch (proto) {
3069 
3070 		case LLCSAP_ISONS:
3071 			proto = (proto << 8 | LLCSAP_ISONS);
3072 			/* fall through */
3073 
3074 		default:
3075 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3076 			/*NOTREACHED*/
3077 			break;
3078 		}
3079 		break;
3080 
3081 	case DLT_IEEE802_11:
3082 	case DLT_PRISM_HEADER:
3083 	case DLT_IEEE802_11_RADIO_AVS:
3084 	case DLT_IEEE802_11_RADIO:
3085 	case DLT_PPI:
3086 		/*
3087 		 * Check that we have a data frame.
3088 		 */
3089 		b0 = gen_check_802_11_data_frame(cstate);
3090 
3091 		/*
3092 		 * Now check for the specified link-layer type.
3093 		 */
3094 		b1 = gen_llc_linktype(cstate, proto);
3095 		gen_and(b0, b1);
3096 		return b1;
3097 		/*NOTREACHED*/
3098 		break;
3099 
3100 	case DLT_FDDI:
3101 		/*
3102 		 * XXX - check for LLC frames.
3103 		 */
3104 		return gen_llc_linktype(cstate, proto);
3105 		/*NOTREACHED*/
3106 		break;
3107 
3108 	case DLT_IEEE802:
3109 		/*
3110 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
3111 		 */
3112 		return gen_llc_linktype(cstate, proto);
3113 		/*NOTREACHED*/
3114 		break;
3115 
3116 	case DLT_ATM_RFC1483:
3117 	case DLT_ATM_CLIP:
3118 	case DLT_IP_OVER_FC:
3119 		return gen_llc_linktype(cstate, proto);
3120 		/*NOTREACHED*/
3121 		break;
3122 
3123 	case DLT_SUNATM:
3124 		/*
3125 		 * Check for an LLC-encapsulated version of this protocol;
3126 		 * if we were checking for LANE, linktype would no longer
3127 		 * be DLT_SUNATM.
3128 		 *
3129 		 * Check for LLC encapsulation and then check the protocol.
3130 		 */
3131 		b0 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3132 		b1 = gen_llc_linktype(cstate, proto);
3133 		gen_and(b0, b1);
3134 		return b1;
3135 		/*NOTREACHED*/
3136 		break;
3137 
3138 	case DLT_LINUX_SLL:
3139 		return gen_linux_sll_linktype(cstate, proto);
3140 		/*NOTREACHED*/
3141 		break;
3142 
3143 	case DLT_SLIP:
3144 	case DLT_SLIP_BSDOS:
3145 	case DLT_RAW:
3146 		/*
3147 		 * These types don't provide any type field; packets
3148 		 * are always IPv4 or IPv6.
3149 		 *
3150 		 * XXX - for IPv4, check for a version number of 4, and,
3151 		 * for IPv6, check for a version number of 6?
3152 		 */
3153 		switch (proto) {
3154 
3155 		case ETHERTYPE_IP:
3156 			/* Check for a version number of 4. */
3157 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3158 
3159 		case ETHERTYPE_IPV6:
3160 			/* Check for a version number of 6. */
3161 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3162 
3163 		default:
3164 			return gen_false(cstate);	/* always false */
3165 		}
3166 		/*NOTREACHED*/
3167 		break;
3168 
3169 	case DLT_IPV4:
3170 		/*
3171 		 * Raw IPv4, so no type field.
3172 		 */
3173 		if (proto == ETHERTYPE_IP)
3174 			return gen_true(cstate);	/* always true */
3175 
3176 		/* Checking for something other than IPv4; always false */
3177 		return gen_false(cstate);
3178 		/*NOTREACHED*/
3179 		break;
3180 
3181 	case DLT_IPV6:
3182 		/*
3183 		 * Raw IPv6, so no type field.
3184 		 */
3185 		if (proto == ETHERTYPE_IPV6)
3186 			return gen_true(cstate);	/* always true */
3187 
3188 		/* Checking for something other than IPv6; always false */
3189 		return gen_false(cstate);
3190 		/*NOTREACHED*/
3191 		break;
3192 
3193 	case DLT_PPP:
3194 	case DLT_PPP_PPPD:
3195 	case DLT_PPP_SERIAL:
3196 	case DLT_PPP_ETHER:
3197 		/*
3198 		 * We use Ethernet protocol types inside libpcap;
3199 		 * map them to the corresponding PPP protocol types.
3200 		 */
3201 		proto = ethertype_to_ppptype(proto);
3202 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3203 		/*NOTREACHED*/
3204 		break;
3205 
3206 	case DLT_PPP_BSDOS:
3207 		/*
3208 		 * We use Ethernet protocol types inside libpcap;
3209 		 * map them to the corresponding PPP protocol types.
3210 		 */
3211 		switch (proto) {
3212 
3213 		case ETHERTYPE_IP:
3214 			/*
3215 			 * Also check for Van Jacobson-compressed IP.
3216 			 * XXX - do this for other forms of PPP?
3217 			 */
3218 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3219 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3220 			gen_or(b0, b1);
3221 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3222 			gen_or(b1, b0);
3223 			return b0;
3224 
3225 		default:
3226 			proto = ethertype_to_ppptype(proto);
3227 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3228 				(bpf_int32)proto);
3229 		}
3230 		/*NOTREACHED*/
3231 		break;
3232 
3233 	case DLT_NULL:
3234 	case DLT_LOOP:
3235 	case DLT_ENC:
3236 		switch (proto) {
3237 
3238 		case ETHERTYPE_IP:
3239 			return (gen_loopback_linktype(cstate, AF_INET));
3240 
3241 		case ETHERTYPE_IPV6:
3242 			/*
3243 			 * AF_ values may, unfortunately, be platform-
3244 			 * dependent; AF_INET isn't, because everybody
3245 			 * used 4.2BSD's value, but AF_INET6 is, because
3246 			 * 4.2BSD didn't have a value for it (given that
3247 			 * IPv6 didn't exist back in the early 1980's),
3248 			 * and they all picked their own values.
3249 			 *
3250 			 * This means that, if we're reading from a
3251 			 * savefile, we need to check for all the
3252 			 * possible values.
3253 			 *
3254 			 * If we're doing a live capture, we only need
3255 			 * to check for this platform's value; however,
3256 			 * Npcap uses 24, which isn't Windows's AF_INET6
3257 			 * value.  (Given the multiple different values,
3258 			 * programs that read pcap files shouldn't be
3259 			 * checking for their platform's AF_INET6 value
3260 			 * anyway, they should check for all of the
3261 			 * possible values. and they might as well do
3262 			 * that even for live captures.)
3263 			 */
3264 			if (cstate->bpf_pcap->rfile != NULL) {
3265 				/*
3266 				 * Savefile - check for all three
3267 				 * possible IPv6 values.
3268 				 */
3269 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3270 				b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3271 				gen_or(b0, b1);
3272 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3273 				gen_or(b0, b1);
3274 				return (b1);
3275 			} else {
3276 				/*
3277 				 * Live capture, so we only need to
3278 				 * check for the value used on this
3279 				 * platform.
3280 				 */
3281 #ifdef _WIN32
3282 				/*
3283 				 * Npcap doesn't use Windows's AF_INET6,
3284 				 * as that collides with AF_IPX on
3285 				 * some BSDs (both have the value 23).
3286 				 * Instead, it uses 24.
3287 				 */
3288 				return (gen_loopback_linktype(cstate, 24));
3289 #else /* _WIN32 */
3290 #ifdef AF_INET6
3291 				return (gen_loopback_linktype(cstate, AF_INET6));
3292 #else /* AF_INET6 */
3293 				/*
3294 				 * I guess this platform doesn't support
3295 				 * IPv6, so we just reject all packets.
3296 				 */
3297 				return gen_false(cstate);
3298 #endif /* AF_INET6 */
3299 #endif /* _WIN32 */
3300 			}
3301 
3302 		default:
3303 			/*
3304 			 * Not a type on which we support filtering.
3305 			 * XXX - support those that have AF_ values
3306 			 * #defined on this platform, at least?
3307 			 */
3308 			return gen_false(cstate);
3309 		}
3310 
3311 #ifdef HAVE_NET_PFVAR_H
3312 	case DLT_PFLOG:
3313 		/*
3314 		 * af field is host byte order in contrast to the rest of
3315 		 * the packet.
3316 		 */
3317 		if (proto == ETHERTYPE_IP)
3318 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3319 			    BPF_B, (bpf_int32)AF_INET));
3320 		else if (proto == ETHERTYPE_IPV6)
3321 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3322 			    BPF_B, (bpf_int32)AF_INET6));
3323 		else
3324 			return gen_false(cstate);
3325 		/*NOTREACHED*/
3326 		break;
3327 #endif /* HAVE_NET_PFVAR_H */
3328 
3329 	case DLT_ARCNET:
3330 	case DLT_ARCNET_LINUX:
3331 		/*
3332 		 * XXX should we check for first fragment if the protocol
3333 		 * uses PHDS?
3334 		 */
3335 		switch (proto) {
3336 
3337 		default:
3338 			return gen_false(cstate);
3339 
3340 		case ETHERTYPE_IPV6:
3341 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3342 				(bpf_int32)ARCTYPE_INET6));
3343 
3344 		case ETHERTYPE_IP:
3345 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3346 				     (bpf_int32)ARCTYPE_IP);
3347 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3348 				     (bpf_int32)ARCTYPE_IP_OLD);
3349 			gen_or(b0, b1);
3350 			return (b1);
3351 
3352 		case ETHERTYPE_ARP:
3353 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3354 				     (bpf_int32)ARCTYPE_ARP);
3355 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3356 				     (bpf_int32)ARCTYPE_ARP_OLD);
3357 			gen_or(b0, b1);
3358 			return (b1);
3359 
3360 		case ETHERTYPE_REVARP:
3361 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3362 					(bpf_int32)ARCTYPE_REVARP));
3363 
3364 		case ETHERTYPE_ATALK:
3365 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3366 					(bpf_int32)ARCTYPE_ATALK));
3367 		}
3368 		/*NOTREACHED*/
3369 		break;
3370 
3371 	case DLT_LTALK:
3372 		switch (proto) {
3373 		case ETHERTYPE_ATALK:
3374 			return gen_true(cstate);
3375 		default:
3376 			return gen_false(cstate);
3377 		}
3378 		/*NOTREACHED*/
3379 		break;
3380 
3381 	case DLT_FRELAY:
3382 		/*
3383 		 * XXX - assumes a 2-byte Frame Relay header with
3384 		 * DLCI and flags.  What if the address is longer?
3385 		 */
3386 		switch (proto) {
3387 
3388 		case ETHERTYPE_IP:
3389 			/*
3390 			 * Check for the special NLPID for IP.
3391 			 */
3392 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3393 
3394 		case ETHERTYPE_IPV6:
3395 			/*
3396 			 * Check for the special NLPID for IPv6.
3397 			 */
3398 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3399 
3400 		case LLCSAP_ISONS:
3401 			/*
3402 			 * Check for several OSI protocols.
3403 			 *
3404 			 * Frame Relay packets typically have an OSI
3405 			 * NLPID at the beginning; we check for each
3406 			 * of them.
3407 			 *
3408 			 * What we check for is the NLPID and a frame
3409 			 * control field of UI, i.e. 0x03 followed
3410 			 * by the NLPID.
3411 			 */
3412 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3413 			b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3414 			b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3415 			gen_or(b1, b2);
3416 			gen_or(b0, b2);
3417 			return b2;
3418 
3419 		default:
3420 			return gen_false(cstate);
3421 		}
3422 		/*NOTREACHED*/
3423 		break;
3424 
3425 	case DLT_MFR:
3426 		bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3427 
3428         case DLT_JUNIPER_MFR:
3429         case DLT_JUNIPER_MLFR:
3430         case DLT_JUNIPER_MLPPP:
3431 	case DLT_JUNIPER_ATM1:
3432 	case DLT_JUNIPER_ATM2:
3433 	case DLT_JUNIPER_PPPOE:
3434 	case DLT_JUNIPER_PPPOE_ATM:
3435         case DLT_JUNIPER_GGSN:
3436         case DLT_JUNIPER_ES:
3437         case DLT_JUNIPER_MONITOR:
3438         case DLT_JUNIPER_SERVICES:
3439         case DLT_JUNIPER_ETHER:
3440         case DLT_JUNIPER_PPP:
3441         case DLT_JUNIPER_FRELAY:
3442         case DLT_JUNIPER_CHDLC:
3443         case DLT_JUNIPER_VP:
3444         case DLT_JUNIPER_ST:
3445         case DLT_JUNIPER_ISM:
3446         case DLT_JUNIPER_VS:
3447         case DLT_JUNIPER_SRX_E2E:
3448         case DLT_JUNIPER_FIBRECHANNEL:
3449 	case DLT_JUNIPER_ATM_CEMIC:
3450 
3451 		/* just lets verify the magic number for now -
3452 		 * on ATM we may have up to 6 different encapsulations on the wire
3453 		 * and need a lot of heuristics to figure out that the payload
3454 		 * might be;
3455 		 *
3456 		 * FIXME encapsulation specific BPF_ filters
3457 		 */
3458 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3459 
3460 	case DLT_BACNET_MS_TP:
3461 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3462 
3463 	case DLT_IPNET:
3464 		return gen_ipnet_linktype(cstate, proto);
3465 
3466 	case DLT_LINUX_IRDA:
3467 		bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3468 
3469 	case DLT_DOCSIS:
3470 		bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3471 
3472 	case DLT_MTP2:
3473 	case DLT_MTP2_WITH_PHDR:
3474 		bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3475 
3476 	case DLT_ERF:
3477 		bpf_error(cstate, "ERF link-layer type filtering not implemented");
3478 
3479 	case DLT_PFSYNC:
3480 		bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3481 
3482 	case DLT_LINUX_LAPD:
3483 		bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3484 
3485 	case DLT_USB_FREEBSD:
3486 	case DLT_USB_LINUX:
3487 	case DLT_USB_LINUX_MMAPPED:
3488 	case DLT_USBPCAP:
3489 		bpf_error(cstate, "USB link-layer type filtering not implemented");
3490 
3491 	case DLT_BLUETOOTH_HCI_H4:
3492 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3493 		bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3494 
3495 	case DLT_CAN20B:
3496 	case DLT_CAN_SOCKETCAN:
3497 		bpf_error(cstate, "CAN link-layer type filtering not implemented");
3498 
3499 	case DLT_IEEE802_15_4:
3500 	case DLT_IEEE802_15_4_LINUX:
3501 	case DLT_IEEE802_15_4_NONASK_PHY:
3502 	case DLT_IEEE802_15_4_NOFCS:
3503 		bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3504 
3505 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3506 		bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3507 
3508 	case DLT_SITA:
3509 		bpf_error(cstate, "SITA link-layer type filtering not implemented");
3510 
3511 	case DLT_RAIF1:
3512 		bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3513 
3514 	case DLT_IPMB:
3515 		bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3516 
3517 	case DLT_AX25_KISS:
3518 		bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3519 
3520 	case DLT_NFLOG:
3521 		/* Using the fixed-size NFLOG header it is possible to tell only
3522 		 * the address family of the packet, other meaningful data is
3523 		 * either missing or behind TLVs.
3524 		 */
3525 		bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3526 
3527 	default:
3528 		/*
3529 		 * Does this link-layer header type have a field
3530 		 * indicating the type of the next protocol?  If
3531 		 * so, off_linktype.constant_part will be the offset of that
3532 		 * field in the packet; if not, it will be OFFSET_NOT_SET.
3533 		 */
3534 		if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3535 			/*
3536 			 * Yes; assume it's an Ethernet type.  (If
3537 			 * it's not, it needs to be handled specially
3538 			 * above.)
3539 			 */
3540 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3541 		} else {
3542 			/*
3543 			 * No; report an error.
3544 			 */
3545 			description = pcap_datalink_val_to_description(cstate->linktype);
3546 			if (description != NULL) {
3547 				bpf_error(cstate, "%s link-layer type filtering not implemented",
3548 				    description);
3549 			} else {
3550 				bpf_error(cstate, "DLT %u link-layer type filtering not implemented",
3551 				    cstate->linktype);
3552 			}
3553 		}
3554 		break;
3555 	}
3556 }
3557 
3558 /*
3559  * Check for an LLC SNAP packet with a given organization code and
3560  * protocol type; we check the entire contents of the 802.2 LLC and
3561  * snap headers, checking for DSAP and SSAP of SNAP and a control
3562  * field of 0x03 in the LLC header, and for the specified organization
3563  * code and protocol type in the SNAP header.
3564  */
3565 static struct block *
3566 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3567 {
3568 	u_char snapblock[8];
3569 
3570 	snapblock[0] = LLCSAP_SNAP;		/* DSAP = SNAP */
3571 	snapblock[1] = LLCSAP_SNAP;		/* SSAP = SNAP */
3572 	snapblock[2] = 0x03;			/* control = UI */
3573 	snapblock[3] = (u_char)(orgcode >> 16);	/* upper 8 bits of organization code */
3574 	snapblock[4] = (u_char)(orgcode >> 8);	/* middle 8 bits of organization code */
3575 	snapblock[5] = (u_char)(orgcode >> 0);	/* lower 8 bits of organization code */
3576 	snapblock[6] = (u_char)(ptype >> 8);	/* upper 8 bits of protocol type */
3577 	snapblock[7] = (u_char)(ptype >> 0);	/* lower 8 bits of protocol type */
3578 	return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3579 }
3580 
3581 /*
3582  * Generate code to match frames with an LLC header.
3583  */
3584 struct block *
3585 gen_llc(compiler_state_t *cstate)
3586 {
3587 	struct block *b0, *b1;
3588 
3589 	switch (cstate->linktype) {
3590 
3591 	case DLT_EN10MB:
3592 		/*
3593 		 * We check for an Ethernet type field less than
3594 		 * 1500, which means it's an 802.3 length field.
3595 		 */
3596 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3597 		gen_not(b0);
3598 
3599 		/*
3600 		 * Now check for the purported DSAP and SSAP not being
3601 		 * 0xFF, to rule out NetWare-over-802.3.
3602 		 */
3603 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
3604 		gen_not(b1);
3605 		gen_and(b0, b1);
3606 		return b1;
3607 
3608 	case DLT_SUNATM:
3609 		/*
3610 		 * We check for LLC traffic.
3611 		 */
3612 		b0 = gen_atmtype_abbrev(cstate, A_LLC);
3613 		return b0;
3614 
3615 	case DLT_IEEE802:	/* Token Ring */
3616 		/*
3617 		 * XXX - check for LLC frames.
3618 		 */
3619 		return gen_true(cstate);
3620 
3621 	case DLT_FDDI:
3622 		/*
3623 		 * XXX - check for LLC frames.
3624 		 */
3625 		return gen_true(cstate);
3626 
3627 	case DLT_ATM_RFC1483:
3628 		/*
3629 		 * For LLC encapsulation, these are defined to have an
3630 		 * 802.2 LLC header.
3631 		 *
3632 		 * For VC encapsulation, they don't, but there's no
3633 		 * way to check for that; the protocol used on the VC
3634 		 * is negotiated out of band.
3635 		 */
3636 		return gen_true(cstate);
3637 
3638 	case DLT_IEEE802_11:
3639 	case DLT_PRISM_HEADER:
3640 	case DLT_IEEE802_11_RADIO:
3641 	case DLT_IEEE802_11_RADIO_AVS:
3642 	case DLT_PPI:
3643 		/*
3644 		 * Check that we have a data frame.
3645 		 */
3646 		b0 = gen_check_802_11_data_frame(cstate);
3647 		return b0;
3648 
3649 	default:
3650 		bpf_error(cstate, "'llc' not supported for linktype %d", cstate->linktype);
3651 		/* NOTREACHED */
3652 	}
3653 }
3654 
3655 struct block *
3656 gen_llc_i(compiler_state_t *cstate)
3657 {
3658 	struct block *b0, *b1;
3659 	struct slist *s;
3660 
3661 	/*
3662 	 * Check whether this is an LLC frame.
3663 	 */
3664 	b0 = gen_llc(cstate);
3665 
3666 	/*
3667 	 * Load the control byte and test the low-order bit; it must
3668 	 * be clear for I frames.
3669 	 */
3670 	s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3671 	b1 = new_block(cstate, JMP(BPF_JSET));
3672 	b1->s.k = 0x01;
3673 	b1->stmts = s;
3674 	gen_not(b1);
3675 	gen_and(b0, b1);
3676 	return b1;
3677 }
3678 
3679 struct block *
3680 gen_llc_s(compiler_state_t *cstate)
3681 {
3682 	struct block *b0, *b1;
3683 
3684 	/*
3685 	 * Check whether this is an LLC frame.
3686 	 */
3687 	b0 = gen_llc(cstate);
3688 
3689 	/*
3690 	 * Now compare the low-order 2 bit of the control byte against
3691 	 * the appropriate value for S frames.
3692 	 */
3693 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3694 	gen_and(b0, b1);
3695 	return b1;
3696 }
3697 
3698 struct block *
3699 gen_llc_u(compiler_state_t *cstate)
3700 {
3701 	struct block *b0, *b1;
3702 
3703 	/*
3704 	 * Check whether this is an LLC frame.
3705 	 */
3706 	b0 = gen_llc(cstate);
3707 
3708 	/*
3709 	 * Now compare the low-order 2 bit of the control byte against
3710 	 * the appropriate value for U frames.
3711 	 */
3712 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3713 	gen_and(b0, b1);
3714 	return b1;
3715 }
3716 
3717 struct block *
3718 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3719 {
3720 	struct block *b0, *b1;
3721 
3722 	/*
3723 	 * Check whether this is an LLC frame.
3724 	 */
3725 	b0 = gen_llc(cstate);
3726 
3727 	/*
3728 	 * Now check for an S frame with the appropriate type.
3729 	 */
3730 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3731 	gen_and(b0, b1);
3732 	return b1;
3733 }
3734 
3735 struct block *
3736 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3737 {
3738 	struct block *b0, *b1;
3739 
3740 	/*
3741 	 * Check whether this is an LLC frame.
3742 	 */
3743 	b0 = gen_llc(cstate);
3744 
3745 	/*
3746 	 * Now check for a U frame with the appropriate type.
3747 	 */
3748 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3749 	gen_and(b0, b1);
3750 	return b1;
3751 }
3752 
3753 /*
3754  * Generate code to match a particular packet type, for link-layer types
3755  * using 802.2 LLC headers.
3756  *
3757  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3758  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3759  *
3760  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3761  * value, if <= ETHERMTU.  We use that to determine whether to
3762  * match the DSAP or both DSAP and LSAP or to check the OUI and
3763  * protocol ID in a SNAP header.
3764  */
3765 static struct block *
3766 gen_llc_linktype(compiler_state_t *cstate, int proto)
3767 {
3768 	/*
3769 	 * XXX - handle token-ring variable-length header.
3770 	 */
3771 	switch (proto) {
3772 
3773 	case LLCSAP_IP:
3774 	case LLCSAP_ISONS:
3775 	case LLCSAP_NETBEUI:
3776 		/*
3777 		 * XXX - should we check both the DSAP and the
3778 		 * SSAP, like this, or should we check just the
3779 		 * DSAP, as we do for other SAP values?
3780 		 */
3781 		return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3782 			     ((proto << 8) | proto));
3783 
3784 	case LLCSAP_IPX:
3785 		/*
3786 		 * XXX - are there ever SNAP frames for IPX on
3787 		 * non-Ethernet 802.x networks?
3788 		 */
3789 		return gen_cmp(cstate, OR_LLC, 0, BPF_B,
3790 		    (bpf_int32)LLCSAP_IPX);
3791 
3792 	case ETHERTYPE_ATALK:
3793 		/*
3794 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3795 		 * SNAP packets with an organization code of
3796 		 * 0x080007 (Apple, for Appletalk) and a protocol
3797 		 * type of ETHERTYPE_ATALK (Appletalk).
3798 		 *
3799 		 * XXX - check for an organization code of
3800 		 * encapsulated Ethernet as well?
3801 		 */
3802 		return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3803 
3804 	default:
3805 		/*
3806 		 * XXX - we don't have to check for IPX 802.3
3807 		 * here, but should we check for the IPX Ethertype?
3808 		 */
3809 		if (proto <= ETHERMTU) {
3810 			/*
3811 			 * This is an LLC SAP value, so check
3812 			 * the DSAP.
3813 			 */
3814 			return gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)proto);
3815 		} else {
3816 			/*
3817 			 * This is an Ethernet type; we assume that it's
3818 			 * unlikely that it'll appear in the right place
3819 			 * at random, and therefore check only the
3820 			 * location that would hold the Ethernet type
3821 			 * in a SNAP frame with an organization code of
3822 			 * 0x000000 (encapsulated Ethernet).
3823 			 *
3824 			 * XXX - if we were to check for the SNAP DSAP and
3825 			 * LSAP, as per XXX, and were also to check for an
3826 			 * organization code of 0x000000 (encapsulated
3827 			 * Ethernet), we'd do
3828 			 *
3829 			 *	return gen_snap(cstate, 0x000000, proto);
3830 			 *
3831 			 * here; for now, we don't, as per the above.
3832 			 * I don't know whether it's worth the extra CPU
3833 			 * time to do the right check or not.
3834 			 */
3835 			return gen_cmp(cstate, OR_LLC, 6, BPF_H, (bpf_int32)proto);
3836 		}
3837 	}
3838 }
3839 
3840 static struct block *
3841 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
3842     int dir, int proto, u_int src_off, u_int dst_off)
3843 {
3844 	struct block *b0, *b1;
3845 	u_int offset;
3846 
3847 	switch (dir) {
3848 
3849 	case Q_SRC:
3850 		offset = src_off;
3851 		break;
3852 
3853 	case Q_DST:
3854 		offset = dst_off;
3855 		break;
3856 
3857 	case Q_AND:
3858 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3859 		b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3860 		gen_and(b0, b1);
3861 		return b1;
3862 
3863 	case Q_OR:
3864 	case Q_DEFAULT:
3865 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3866 		b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3867 		gen_or(b0, b1);
3868 		return b1;
3869 
3870 	case Q_ADDR1:
3871 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
3872 		break;
3873 
3874 	case Q_ADDR2:
3875 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
3876 		break;
3877 
3878 	case Q_ADDR3:
3879 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
3880 		break;
3881 
3882 	case Q_ADDR4:
3883 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
3884 		break;
3885 
3886 	case Q_RA:
3887 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
3888 		break;
3889 
3890 	case Q_TA:
3891 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
3892 		break;
3893 
3894 	default:
3895 		abort();
3896 	}
3897 	b0 = gen_linktype(cstate, proto);
3898 	b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, (bpf_int32)addr, mask);
3899 	gen_and(b0, b1);
3900 	return b1;
3901 }
3902 
3903 #ifdef INET6
3904 static struct block *
3905 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
3906     struct in6_addr *mask, int dir, int proto, u_int src_off, u_int dst_off)
3907 {
3908 	struct block *b0, *b1;
3909 	u_int offset;
3910 	uint32_t *a, *m;
3911 
3912 	switch (dir) {
3913 
3914 	case Q_SRC:
3915 		offset = src_off;
3916 		break;
3917 
3918 	case Q_DST:
3919 		offset = dst_off;
3920 		break;
3921 
3922 	case Q_AND:
3923 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3924 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3925 		gen_and(b0, b1);
3926 		return b1;
3927 
3928 	case Q_OR:
3929 	case Q_DEFAULT:
3930 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3931 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
3932 		gen_or(b0, b1);
3933 		return b1;
3934 
3935 	case Q_ADDR1:
3936 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
3937 		break;
3938 
3939 	case Q_ADDR2:
3940 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
3941 		break;
3942 
3943 	case Q_ADDR3:
3944 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
3945 		break;
3946 
3947 	case Q_ADDR4:
3948 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
3949 		break;
3950 
3951 	case Q_RA:
3952 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
3953 		break;
3954 
3955 	case Q_TA:
3956 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
3957 		break;
3958 
3959 	default:
3960 		abort();
3961 	}
3962 	/* this order is important */
3963 	a = (uint32_t *)addr;
3964 	m = (uint32_t *)mask;
3965 	b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3966 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3967 	gen_and(b0, b1);
3968 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3969 	gen_and(b0, b1);
3970 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3971 	gen_and(b0, b1);
3972 	b0 = gen_linktype(cstate, proto);
3973 	gen_and(b0, b1);
3974 	return b1;
3975 }
3976 #endif
3977 
3978 static struct block *
3979 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
3980 {
3981 	register struct block *b0, *b1;
3982 
3983 	switch (dir) {
3984 	case Q_SRC:
3985 		return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
3986 
3987 	case Q_DST:
3988 		return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
3989 
3990 	case Q_AND:
3991 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
3992 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
3993 		gen_and(b0, b1);
3994 		return b1;
3995 
3996 	case Q_DEFAULT:
3997 	case Q_OR:
3998 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
3999 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
4000 		gen_or(b0, b1);
4001 		return b1;
4002 
4003 	case Q_ADDR1:
4004 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4005 		break;
4006 
4007 	case Q_ADDR2:
4008 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4009 		break;
4010 
4011 	case Q_ADDR3:
4012 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4013 		break;
4014 
4015 	case Q_ADDR4:
4016 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4017 		break;
4018 
4019 	case Q_RA:
4020 		bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
4021 		break;
4022 
4023 	case Q_TA:
4024 		bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
4025 		break;
4026 	}
4027 	abort();
4028 	/* NOTREACHED */
4029 }
4030 
4031 /*
4032  * Like gen_ehostop, but for DLT_FDDI
4033  */
4034 static struct block *
4035 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4036 {
4037 	struct block *b0, *b1;
4038 
4039 	switch (dir) {
4040 	case Q_SRC:
4041 		return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4042 
4043 	case Q_DST:
4044 		return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4045 
4046 	case Q_AND:
4047 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4048 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4049 		gen_and(b0, b1);
4050 		return b1;
4051 
4052 	case Q_DEFAULT:
4053 	case Q_OR:
4054 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4055 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4056 		gen_or(b0, b1);
4057 		return b1;
4058 
4059 	case Q_ADDR1:
4060 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4061 		break;
4062 
4063 	case Q_ADDR2:
4064 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4065 		break;
4066 
4067 	case Q_ADDR3:
4068 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4069 		break;
4070 
4071 	case Q_ADDR4:
4072 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4073 		break;
4074 
4075 	case Q_RA:
4076 		bpf_error(cstate, "'ra' is only supported on 802.11");
4077 		break;
4078 
4079 	case Q_TA:
4080 		bpf_error(cstate, "'ta' is only supported on 802.11");
4081 		break;
4082 	}
4083 	abort();
4084 	/* NOTREACHED */
4085 }
4086 
4087 /*
4088  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4089  */
4090 static struct block *
4091 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4092 {
4093 	register struct block *b0, *b1;
4094 
4095 	switch (dir) {
4096 	case Q_SRC:
4097 		return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4098 
4099 	case Q_DST:
4100 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4101 
4102 	case Q_AND:
4103 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4104 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4105 		gen_and(b0, b1);
4106 		return b1;
4107 
4108 	case Q_DEFAULT:
4109 	case Q_OR:
4110 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4111 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4112 		gen_or(b0, b1);
4113 		return b1;
4114 
4115 	case Q_ADDR1:
4116 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4117 		break;
4118 
4119 	case Q_ADDR2:
4120 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4121 		break;
4122 
4123 	case Q_ADDR3:
4124 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4125 		break;
4126 
4127 	case Q_ADDR4:
4128 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4129 		break;
4130 
4131 	case Q_RA:
4132 		bpf_error(cstate, "'ra' is only supported on 802.11");
4133 		break;
4134 
4135 	case Q_TA:
4136 		bpf_error(cstate, "'ta' is only supported on 802.11");
4137 		break;
4138 	}
4139 	abort();
4140 	/* NOTREACHED */
4141 }
4142 
4143 /*
4144  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4145  * various 802.11 + radio headers.
4146  */
4147 static struct block *
4148 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4149 {
4150 	register struct block *b0, *b1, *b2;
4151 	register struct slist *s;
4152 
4153 #ifdef ENABLE_WLAN_FILTERING_PATCH
4154 	/*
4155 	 * TODO GV 20070613
4156 	 * We need to disable the optimizer because the optimizer is buggy
4157 	 * and wipes out some LD instructions generated by the below
4158 	 * code to validate the Frame Control bits
4159 	 */
4160 	cstate->no_optimize = 1;
4161 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4162 
4163 	switch (dir) {
4164 	case Q_SRC:
4165 		/*
4166 		 * Oh, yuk.
4167 		 *
4168 		 *	For control frames, there is no SA.
4169 		 *
4170 		 *	For management frames, SA is at an
4171 		 *	offset of 10 from the beginning of
4172 		 *	the packet.
4173 		 *
4174 		 *	For data frames, SA is at an offset
4175 		 *	of 10 from the beginning of the packet
4176 		 *	if From DS is clear, at an offset of
4177 		 *	16 from the beginning of the packet
4178 		 *	if From DS is set and To DS is clear,
4179 		 *	and an offset of 24 from the beginning
4180 		 *	of the packet if From DS is set and To DS
4181 		 *	is set.
4182 		 */
4183 
4184 		/*
4185 		 * Generate the tests to be done for data frames
4186 		 * with From DS set.
4187 		 *
4188 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
4189 		 */
4190 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4191 		b1 = new_block(cstate, JMP(BPF_JSET));
4192 		b1->s.k = 0x01;	/* To DS */
4193 		b1->stmts = s;
4194 
4195 		/*
4196 		 * If To DS is set, the SA is at 24.
4197 		 */
4198 		b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4199 		gen_and(b1, b0);
4200 
4201 		/*
4202 		 * Now, check for To DS not set, i.e. check
4203 		 * "!(link[1] & 0x01)".
4204 		 */
4205 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4206 		b2 = new_block(cstate, JMP(BPF_JSET));
4207 		b2->s.k = 0x01;	/* To DS */
4208 		b2->stmts = s;
4209 		gen_not(b2);
4210 
4211 		/*
4212 		 * If To DS is not set, the SA is at 16.
4213 		 */
4214 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4215 		gen_and(b2, b1);
4216 
4217 		/*
4218 		 * Now OR together the last two checks.  That gives
4219 		 * the complete set of checks for data frames with
4220 		 * From DS set.
4221 		 */
4222 		gen_or(b1, b0);
4223 
4224 		/*
4225 		 * Now check for From DS being set, and AND that with
4226 		 * the ORed-together checks.
4227 		 */
4228 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4229 		b1 = new_block(cstate, JMP(BPF_JSET));
4230 		b1->s.k = 0x02;	/* From DS */
4231 		b1->stmts = s;
4232 		gen_and(b1, b0);
4233 
4234 		/*
4235 		 * Now check for data frames with From DS not set.
4236 		 */
4237 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4238 		b2 = new_block(cstate, JMP(BPF_JSET));
4239 		b2->s.k = 0x02;	/* From DS */
4240 		b2->stmts = s;
4241 		gen_not(b2);
4242 
4243 		/*
4244 		 * If From DS isn't set, the SA is at 10.
4245 		 */
4246 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4247 		gen_and(b2, b1);
4248 
4249 		/*
4250 		 * Now OR together the checks for data frames with
4251 		 * From DS not set and for data frames with From DS
4252 		 * set; that gives the checks done for data frames.
4253 		 */
4254 		gen_or(b1, b0);
4255 
4256 		/*
4257 		 * Now check for a data frame.
4258 		 * I.e, check "link[0] & 0x08".
4259 		 */
4260 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4261 		b1 = new_block(cstate, JMP(BPF_JSET));
4262 		b1->s.k = 0x08;
4263 		b1->stmts = s;
4264 
4265 		/*
4266 		 * AND that with the checks done for data frames.
4267 		 */
4268 		gen_and(b1, b0);
4269 
4270 		/*
4271 		 * If the high-order bit of the type value is 0, this
4272 		 * is a management frame.
4273 		 * I.e, check "!(link[0] & 0x08)".
4274 		 */
4275 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4276 		b2 = new_block(cstate, JMP(BPF_JSET));
4277 		b2->s.k = 0x08;
4278 		b2->stmts = s;
4279 		gen_not(b2);
4280 
4281 		/*
4282 		 * For management frames, the SA is at 10.
4283 		 */
4284 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4285 		gen_and(b2, b1);
4286 
4287 		/*
4288 		 * OR that with the checks done for data frames.
4289 		 * That gives the checks done for management and
4290 		 * data frames.
4291 		 */
4292 		gen_or(b1, b0);
4293 
4294 		/*
4295 		 * If the low-order bit of the type value is 1,
4296 		 * this is either a control frame or a frame
4297 		 * with a reserved type, and thus not a
4298 		 * frame with an SA.
4299 		 *
4300 		 * I.e., check "!(link[0] & 0x04)".
4301 		 */
4302 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4303 		b1 = new_block(cstate, JMP(BPF_JSET));
4304 		b1->s.k = 0x04;
4305 		b1->stmts = s;
4306 		gen_not(b1);
4307 
4308 		/*
4309 		 * AND that with the checks for data and management
4310 		 * frames.
4311 		 */
4312 		gen_and(b1, b0);
4313 		return b0;
4314 
4315 	case Q_DST:
4316 		/*
4317 		 * Oh, yuk.
4318 		 *
4319 		 *	For control frames, there is no DA.
4320 		 *
4321 		 *	For management frames, DA is at an
4322 		 *	offset of 4 from the beginning of
4323 		 *	the packet.
4324 		 *
4325 		 *	For data frames, DA is at an offset
4326 		 *	of 4 from the beginning of the packet
4327 		 *	if To DS is clear and at an offset of
4328 		 *	16 from the beginning of the packet
4329 		 *	if To DS is set.
4330 		 */
4331 
4332 		/*
4333 		 * Generate the tests to be done for data frames.
4334 		 *
4335 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4336 		 */
4337 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4338 		b1 = new_block(cstate, JMP(BPF_JSET));
4339 		b1->s.k = 0x01;	/* To DS */
4340 		b1->stmts = s;
4341 
4342 		/*
4343 		 * If To DS is set, the DA is at 16.
4344 		 */
4345 		b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4346 		gen_and(b1, b0);
4347 
4348 		/*
4349 		 * Now, check for To DS not set, i.e. check
4350 		 * "!(link[1] & 0x01)".
4351 		 */
4352 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4353 		b2 = new_block(cstate, JMP(BPF_JSET));
4354 		b2->s.k = 0x01;	/* To DS */
4355 		b2->stmts = s;
4356 		gen_not(b2);
4357 
4358 		/*
4359 		 * If To DS is not set, the DA is at 4.
4360 		 */
4361 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4362 		gen_and(b2, b1);
4363 
4364 		/*
4365 		 * Now OR together the last two checks.  That gives
4366 		 * the complete set of checks for data frames.
4367 		 */
4368 		gen_or(b1, b0);
4369 
4370 		/*
4371 		 * Now check for a data frame.
4372 		 * I.e, check "link[0] & 0x08".
4373 		 */
4374 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4375 		b1 = new_block(cstate, JMP(BPF_JSET));
4376 		b1->s.k = 0x08;
4377 		b1->stmts = s;
4378 
4379 		/*
4380 		 * AND that with the checks done for data frames.
4381 		 */
4382 		gen_and(b1, b0);
4383 
4384 		/*
4385 		 * If the high-order bit of the type value is 0, this
4386 		 * is a management frame.
4387 		 * I.e, check "!(link[0] & 0x08)".
4388 		 */
4389 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4390 		b2 = new_block(cstate, JMP(BPF_JSET));
4391 		b2->s.k = 0x08;
4392 		b2->stmts = s;
4393 		gen_not(b2);
4394 
4395 		/*
4396 		 * For management frames, the DA is at 4.
4397 		 */
4398 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4399 		gen_and(b2, b1);
4400 
4401 		/*
4402 		 * OR that with the checks done for data frames.
4403 		 * That gives the checks done for management and
4404 		 * data frames.
4405 		 */
4406 		gen_or(b1, b0);
4407 
4408 		/*
4409 		 * If the low-order bit of the type value is 1,
4410 		 * this is either a control frame or a frame
4411 		 * with a reserved type, and thus not a
4412 		 * frame with an SA.
4413 		 *
4414 		 * I.e., check "!(link[0] & 0x04)".
4415 		 */
4416 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4417 		b1 = new_block(cstate, JMP(BPF_JSET));
4418 		b1->s.k = 0x04;
4419 		b1->stmts = s;
4420 		gen_not(b1);
4421 
4422 		/*
4423 		 * AND that with the checks for data and management
4424 		 * frames.
4425 		 */
4426 		gen_and(b1, b0);
4427 		return b0;
4428 
4429 	case Q_RA:
4430 		/*
4431 		 * Not present in management frames; addr1 in other
4432 		 * frames.
4433 		 */
4434 
4435 		/*
4436 		 * If the high-order bit of the type value is 0, this
4437 		 * is a management frame.
4438 		 * I.e, check "(link[0] & 0x08)".
4439 		 */
4440 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4441 		b1 = new_block(cstate, JMP(BPF_JSET));
4442 		b1->s.k = 0x08;
4443 		b1->stmts = s;
4444 
4445 		/*
4446 		 * Check addr1.
4447 		 */
4448 		b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4449 
4450 		/*
4451 		 * AND that with the check of addr1.
4452 		 */
4453 		gen_and(b1, b0);
4454 		return (b0);
4455 
4456 	case Q_TA:
4457 		/*
4458 		 * Not present in management frames; addr2, if present,
4459 		 * in other frames.
4460 		 */
4461 
4462 		/*
4463 		 * Not present in CTS or ACK control frames.
4464 		 */
4465 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4466 			IEEE80211_FC0_TYPE_MASK);
4467 		gen_not(b0);
4468 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4469 			IEEE80211_FC0_SUBTYPE_MASK);
4470 		gen_not(b1);
4471 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4472 			IEEE80211_FC0_SUBTYPE_MASK);
4473 		gen_not(b2);
4474 		gen_and(b1, b2);
4475 		gen_or(b0, b2);
4476 
4477 		/*
4478 		 * If the high-order bit of the type value is 0, this
4479 		 * is a management frame.
4480 		 * I.e, check "(link[0] & 0x08)".
4481 		 */
4482 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4483 		b1 = new_block(cstate, JMP(BPF_JSET));
4484 		b1->s.k = 0x08;
4485 		b1->stmts = s;
4486 
4487 		/*
4488 		 * AND that with the check for frames other than
4489 		 * CTS and ACK frames.
4490 		 */
4491 		gen_and(b1, b2);
4492 
4493 		/*
4494 		 * Check addr2.
4495 		 */
4496 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4497 		gen_and(b2, b1);
4498 		return b1;
4499 
4500 	/*
4501 	 * XXX - add BSSID keyword?
4502 	 */
4503 	case Q_ADDR1:
4504 		return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4505 
4506 	case Q_ADDR2:
4507 		/*
4508 		 * Not present in CTS or ACK control frames.
4509 		 */
4510 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4511 			IEEE80211_FC0_TYPE_MASK);
4512 		gen_not(b0);
4513 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4514 			IEEE80211_FC0_SUBTYPE_MASK);
4515 		gen_not(b1);
4516 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4517 			IEEE80211_FC0_SUBTYPE_MASK);
4518 		gen_not(b2);
4519 		gen_and(b1, b2);
4520 		gen_or(b0, b2);
4521 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4522 		gen_and(b2, b1);
4523 		return b1;
4524 
4525 	case Q_ADDR3:
4526 		/*
4527 		 * Not present in control frames.
4528 		 */
4529 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4530 			IEEE80211_FC0_TYPE_MASK);
4531 		gen_not(b0);
4532 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4533 		gen_and(b0, b1);
4534 		return b1;
4535 
4536 	case Q_ADDR4:
4537 		/*
4538 		 * Present only if the direction mask has both "From DS"
4539 		 * and "To DS" set.  Neither control frames nor management
4540 		 * frames should have both of those set, so we don't
4541 		 * check the frame type.
4542 		 */
4543 		b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4544 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4545 		b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4546 		gen_and(b0, b1);
4547 		return b1;
4548 
4549 	case Q_AND:
4550 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4551 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4552 		gen_and(b0, b1);
4553 		return b1;
4554 
4555 	case Q_DEFAULT:
4556 	case Q_OR:
4557 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4558 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4559 		gen_or(b0, b1);
4560 		return b1;
4561 	}
4562 	abort();
4563 	/* NOTREACHED */
4564 }
4565 
4566 /*
4567  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4568  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4569  * as the RFC states.)
4570  */
4571 static struct block *
4572 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4573 {
4574 	register struct block *b0, *b1;
4575 
4576 	switch (dir) {
4577 	case Q_SRC:
4578 		return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4579 
4580 	case Q_DST:
4581 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4582 
4583 	case Q_AND:
4584 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4585 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4586 		gen_and(b0, b1);
4587 		return b1;
4588 
4589 	case Q_DEFAULT:
4590 	case Q_OR:
4591 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4592 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4593 		gen_or(b0, b1);
4594 		return b1;
4595 
4596 	case Q_ADDR1:
4597 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4598 		break;
4599 
4600 	case Q_ADDR2:
4601 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4602 		break;
4603 
4604 	case Q_ADDR3:
4605 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4606 		break;
4607 
4608 	case Q_ADDR4:
4609 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4610 		break;
4611 
4612 	case Q_RA:
4613 		bpf_error(cstate, "'ra' is only supported on 802.11");
4614 		break;
4615 
4616 	case Q_TA:
4617 		bpf_error(cstate, "'ta' is only supported on 802.11");
4618 		break;
4619 	}
4620 	abort();
4621 	/* NOTREACHED */
4622 }
4623 
4624 /*
4625  * This is quite tricky because there may be pad bytes in front of the
4626  * DECNET header, and then there are two possible data packet formats that
4627  * carry both src and dst addresses, plus 5 packet types in a format that
4628  * carries only the src node, plus 2 types that use a different format and
4629  * also carry just the src node.
4630  *
4631  * Yuck.
4632  *
4633  * Instead of doing those all right, we just look for data packets with
4634  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4635  * will require a lot more hacking.
4636  *
4637  * To add support for filtering on DECNET "areas" (network numbers)
4638  * one would want to add a "mask" argument to this routine.  That would
4639  * make the filter even more inefficient, although one could be clever
4640  * and not generate masking instructions if the mask is 0xFFFF.
4641  */
4642 static struct block *
4643 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4644 {
4645 	struct block *b0, *b1, *b2, *tmp;
4646 	u_int offset_lh;	/* offset if long header is received */
4647 	u_int offset_sh;	/* offset if short header is received */
4648 
4649 	switch (dir) {
4650 
4651 	case Q_DST:
4652 		offset_sh = 1;	/* follows flags */
4653 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4654 		break;
4655 
4656 	case Q_SRC:
4657 		offset_sh = 3;	/* follows flags, dstnode */
4658 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4659 		break;
4660 
4661 	case Q_AND:
4662 		/* Inefficient because we do our Calvinball dance twice */
4663 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4664 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4665 		gen_and(b0, b1);
4666 		return b1;
4667 
4668 	case Q_OR:
4669 	case Q_DEFAULT:
4670 		/* Inefficient because we do our Calvinball dance twice */
4671 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4672 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4673 		gen_or(b0, b1);
4674 		return b1;
4675 
4676 	case Q_ISO:
4677 		bpf_error(cstate, "ISO host filtering not implemented");
4678 
4679 	default:
4680 		abort();
4681 	}
4682 	b0 = gen_linktype(cstate, ETHERTYPE_DN);
4683 	/* Check for pad = 1, long header case */
4684 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4685 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4686 	b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4687 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4688 	gen_and(tmp, b1);
4689 	/* Check for pad = 0, long header case */
4690 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4691 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4692 	gen_and(tmp, b2);
4693 	gen_or(b2, b1);
4694 	/* Check for pad = 1, short header case */
4695 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4696 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4697 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4698 	gen_and(tmp, b2);
4699 	gen_or(b2, b1);
4700 	/* Check for pad = 0, short header case */
4701 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4702 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4703 	gen_and(tmp, b2);
4704 	gen_or(b2, b1);
4705 
4706 	/* Combine with test for cstate->linktype */
4707 	gen_and(b0, b1);
4708 	return b1;
4709 }
4710 
4711 /*
4712  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4713  * test the bottom-of-stack bit, and then check the version number
4714  * field in the IP header.
4715  */
4716 static struct block *
4717 gen_mpls_linktype(compiler_state_t *cstate, int proto)
4718 {
4719 	struct block *b0, *b1;
4720 
4721         switch (proto) {
4722 
4723         case Q_IP:
4724                 /* match the bottom-of-stack bit */
4725                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4726                 /* match the IPv4 version number */
4727                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4728                 gen_and(b0, b1);
4729                 return b1;
4730 
4731        case Q_IPV6:
4732                 /* match the bottom-of-stack bit */
4733                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4734                 /* match the IPv4 version number */
4735                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4736                 gen_and(b0, b1);
4737                 return b1;
4738 
4739        default:
4740                 abort();
4741         }
4742 }
4743 
4744 static struct block *
4745 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4746     int proto, int dir, int type)
4747 {
4748 	struct block *b0, *b1;
4749 	const char *typestr;
4750 
4751 	if (type == Q_NET)
4752 		typestr = "net";
4753 	else
4754 		typestr = "host";
4755 
4756 	switch (proto) {
4757 
4758 	case Q_DEFAULT:
4759 		b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4760 		/*
4761 		 * Only check for non-IPv4 addresses if we're not
4762 		 * checking MPLS-encapsulated packets.
4763 		 */
4764 		if (cstate->label_stack_depth == 0) {
4765 			b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4766 			gen_or(b0, b1);
4767 			b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4768 			gen_or(b1, b0);
4769 		}
4770 		return b0;
4771 
4772 	case Q_IP:
4773 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
4774 
4775 	case Q_RARP:
4776 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4777 
4778 	case Q_ARP:
4779 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4780 
4781 	case Q_TCP:
4782 		bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
4783 
4784 	case Q_SCTP:
4785 		bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
4786 
4787 	case Q_UDP:
4788 		bpf_error(cstate, "'udp' modifier applied to %s", typestr);
4789 
4790 	case Q_ICMP:
4791 		bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
4792 
4793 	case Q_IGMP:
4794 		bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
4795 
4796 	case Q_IGRP:
4797 		bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
4798 
4799 	case Q_PIM:
4800 		bpf_error(cstate, "'pim' modifier applied to %s", typestr);
4801 
4802 	case Q_VRRP:
4803 		bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
4804 
4805 	case Q_CARP:
4806 		bpf_error(cstate, "'carp' modifier applied to %s", typestr);
4807 
4808 	case Q_ATALK:
4809 		bpf_error(cstate, "ATALK host filtering not implemented");
4810 
4811 	case Q_AARP:
4812 		bpf_error(cstate, "AARP host filtering not implemented");
4813 
4814 	case Q_DECNET:
4815 		return gen_dnhostop(cstate, addr, dir);
4816 
4817 	case Q_SCA:
4818 		bpf_error(cstate, "SCA host filtering not implemented");
4819 
4820 	case Q_LAT:
4821 		bpf_error(cstate, "LAT host filtering not implemented");
4822 
4823 	case Q_MOPDL:
4824 		bpf_error(cstate, "MOPDL host filtering not implemented");
4825 
4826 	case Q_MOPRC:
4827 		bpf_error(cstate, "MOPRC host filtering not implemented");
4828 
4829 	case Q_IPV6:
4830 		bpf_error(cstate, "'ip6' modifier applied to ip host");
4831 
4832 	case Q_ICMPV6:
4833 		bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
4834 
4835 	case Q_AH:
4836 		bpf_error(cstate, "'ah' modifier applied to %s", typestr);
4837 
4838 	case Q_ESP:
4839 		bpf_error(cstate, "'esp' modifier applied to %s", typestr);
4840 
4841 	case Q_ISO:
4842 		bpf_error(cstate, "ISO host filtering not implemented");
4843 
4844 	case Q_ESIS:
4845 		bpf_error(cstate, "'esis' modifier applied to %s", typestr);
4846 
4847 	case Q_ISIS:
4848 		bpf_error(cstate, "'isis' modifier applied to %s", typestr);
4849 
4850 	case Q_CLNP:
4851 		bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
4852 
4853 	case Q_STP:
4854 		bpf_error(cstate, "'stp' modifier applied to %s", typestr);
4855 
4856 	case Q_IPX:
4857 		bpf_error(cstate, "IPX host filtering not implemented");
4858 
4859 	case Q_NETBEUI:
4860 		bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
4861 
4862 	case Q_RADIO:
4863 		bpf_error(cstate, "'radio' modifier applied to %s", typestr);
4864 
4865 	default:
4866 		abort();
4867 	}
4868 	/* NOTREACHED */
4869 }
4870 
4871 #ifdef INET6
4872 static struct block *
4873 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
4874     struct in6_addr *mask, int proto, int dir, int type)
4875 {
4876 	const char *typestr;
4877 
4878 	if (type == Q_NET)
4879 		typestr = "net";
4880 	else
4881 		typestr = "host";
4882 
4883 	switch (proto) {
4884 
4885 	case Q_DEFAULT:
4886 		return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
4887 
4888 	case Q_LINK:
4889 		bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
4890 
4891 	case Q_IP:
4892 		bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
4893 
4894 	case Q_RARP:
4895 		bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
4896 
4897 	case Q_ARP:
4898 		bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
4899 
4900 	case Q_SCTP:
4901 		bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
4902 
4903 	case Q_TCP:
4904 		bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
4905 
4906 	case Q_UDP:
4907 		bpf_error(cstate, "'udp' modifier applied to %s", typestr);
4908 
4909 	case Q_ICMP:
4910 		bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
4911 
4912 	case Q_IGMP:
4913 		bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
4914 
4915 	case Q_IGRP:
4916 		bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
4917 
4918 	case Q_PIM:
4919 		bpf_error(cstate, "'pim' modifier applied to %s", typestr);
4920 
4921 	case Q_VRRP:
4922 		bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
4923 
4924 	case Q_CARP:
4925 		bpf_error(cstate, "'carp' modifier applied to %s", typestr);
4926 
4927 	case Q_ATALK:
4928 		bpf_error(cstate, "ATALK host filtering not implemented");
4929 
4930 	case Q_AARP:
4931 		bpf_error(cstate, "AARP host filtering not implemented");
4932 
4933 	case Q_DECNET:
4934 		bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
4935 
4936 	case Q_SCA:
4937 		bpf_error(cstate, "SCA host filtering not implemented");
4938 
4939 	case Q_LAT:
4940 		bpf_error(cstate, "LAT host filtering not implemented");
4941 
4942 	case Q_MOPDL:
4943 		bpf_error(cstate, "MOPDL host filtering not implemented");
4944 
4945 	case Q_MOPRC:
4946 		bpf_error(cstate, "MOPRC host filtering not implemented");
4947 
4948 	case Q_IPV6:
4949 		return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4950 
4951 	case Q_ICMPV6:
4952 		bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
4953 
4954 	case Q_AH:
4955 		bpf_error(cstate, "'ah' modifier applied to %s", typestr);
4956 
4957 	case Q_ESP:
4958 		bpf_error(cstate, "'esp' modifier applied to %s", typestr);
4959 
4960 	case Q_ISO:
4961 		bpf_error(cstate, "ISO host filtering not implemented");
4962 
4963 	case Q_ESIS:
4964 		bpf_error(cstate, "'esis' modifier applied to %s", typestr);
4965 
4966 	case Q_ISIS:
4967 		bpf_error(cstate, "'isis' modifier applied to %s", typestr);
4968 
4969 	case Q_CLNP:
4970 		bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
4971 
4972 	case Q_STP:
4973 		bpf_error(cstate, "'stp' modifier applied to %s", typestr);
4974 
4975 	case Q_IPX:
4976 		bpf_error(cstate, "IPX host filtering not implemented");
4977 
4978 	case Q_NETBEUI:
4979 		bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
4980 
4981 	case Q_RADIO:
4982 		bpf_error(cstate, "'radio' modifier applied to %s", typestr);
4983 
4984 	default:
4985 		abort();
4986 	}
4987 	/* NOTREACHED */
4988 }
4989 #endif
4990 
4991 #ifndef INET6
4992 static struct block *
4993 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
4994     struct addrinfo *alist, int proto, int dir)
4995 {
4996 	struct block *b0, *b1, *tmp;
4997 	struct addrinfo *ai;
4998 	struct sockaddr_in *sin;
4999 
5000 	if (dir != 0)
5001 		bpf_error(cstate, "direction applied to 'gateway'");
5002 
5003 	switch (proto) {
5004 	case Q_DEFAULT:
5005 	case Q_IP:
5006 	case Q_ARP:
5007 	case Q_RARP:
5008 		switch (cstate->linktype) {
5009 		case DLT_EN10MB:
5010 		case DLT_NETANALYZER:
5011 		case DLT_NETANALYZER_TRANSPARENT:
5012 			b1 = gen_prevlinkhdr_check(cstate);
5013 			b0 = gen_ehostop(cstate, eaddr, Q_OR);
5014 			if (b1 != NULL)
5015 				gen_and(b1, b0);
5016 			break;
5017 		case DLT_FDDI:
5018 			b0 = gen_fhostop(cstate, eaddr, Q_OR);
5019 			break;
5020 		case DLT_IEEE802:
5021 			b0 = gen_thostop(cstate, eaddr, Q_OR);
5022 			break;
5023 		case DLT_IEEE802_11:
5024 		case DLT_PRISM_HEADER:
5025 		case DLT_IEEE802_11_RADIO_AVS:
5026 		case DLT_IEEE802_11_RADIO:
5027 		case DLT_PPI:
5028 			b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5029 			break;
5030 		case DLT_SUNATM:
5031 			/*
5032 			 * This is LLC-multiplexed traffic; if it were
5033 			 * LANE, cstate->linktype would have been set to
5034 			 * DLT_EN10MB.
5035 			 */
5036 			bpf_error(cstate,
5037 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5038 			break;
5039 		case DLT_IP_OVER_FC:
5040 			b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5041 			break;
5042 		default:
5043 			bpf_error(cstate,
5044 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5045 		}
5046 		b1 = NULL;
5047 		for (ai = alist; ai != NULL; ai = ai->ai_next) {
5048 			/*
5049 			 * Does it have an address?
5050 			 */
5051 			if (ai->ai_addr != NULL) {
5052 				/*
5053 				 * Yes.  Is it an IPv4 address?
5054 				 */
5055 				if (ai->ai_addr->sa_family == AF_INET) {
5056 					/*
5057 					 * Generate an entry for it.
5058 					 */
5059 					sin = (struct sockaddr_in *)ai->ai_addr;
5060 					tmp = gen_host(cstate,
5061 					    ntohl(sin->sin_addr.s_addr),
5062 					    0xffffffff, proto, Q_OR, Q_HOST);
5063 					/*
5064 					 * Is it the *first* IPv4 address?
5065 					 */
5066 					if (b1 == NULL) {
5067 						/*
5068 						 * Yes, so start with it.
5069 						 */
5070 						b1 = tmp;
5071 					} else {
5072 						/*
5073 						 * No, so OR it into the
5074 						 * existing set of
5075 						 * addresses.
5076 						 */
5077 						gen_or(b1, tmp);
5078 						b1 = tmp;
5079 					}
5080 				}
5081 			}
5082 		}
5083 		if (b1 == NULL) {
5084 			/*
5085 			 * No IPv4 addresses found.
5086 			 */
5087 			return (NULL);
5088 		}
5089 		gen_not(b1);
5090 		gen_and(b0, b1);
5091 		return b1;
5092 	}
5093 	bpf_error(cstate, "illegal modifier of 'gateway'");
5094 	/* NOTREACHED */
5095 }
5096 #endif
5097 
5098 struct block *
5099 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5100 {
5101 	struct block *b0;
5102 	struct block *b1;
5103 
5104 	switch (proto) {
5105 
5106 	case Q_SCTP:
5107 		b1 = gen_proto(cstate, IPPROTO_SCTP, Q_IP, Q_DEFAULT);
5108 		b0 = gen_proto(cstate, IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
5109 		gen_or(b0, b1);
5110 		break;
5111 
5112 	case Q_TCP:
5113 		b1 = gen_proto(cstate, IPPROTO_TCP, Q_IP, Q_DEFAULT);
5114 		b0 = gen_proto(cstate, IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
5115 		gen_or(b0, b1);
5116 		break;
5117 
5118 	case Q_UDP:
5119 		b1 = gen_proto(cstate, IPPROTO_UDP, Q_IP, Q_DEFAULT);
5120 		b0 = gen_proto(cstate, IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
5121 		gen_or(b0, b1);
5122 		break;
5123 
5124 	case Q_ICMP:
5125 		b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5126 		break;
5127 
5128 #ifndef	IPPROTO_IGMP
5129 #define	IPPROTO_IGMP	2
5130 #endif
5131 
5132 	case Q_IGMP:
5133 		b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5134 		break;
5135 
5136 #ifndef	IPPROTO_IGRP
5137 #define	IPPROTO_IGRP	9
5138 #endif
5139 	case Q_IGRP:
5140 		b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5141 		break;
5142 
5143 #ifndef IPPROTO_PIM
5144 #define IPPROTO_PIM	103
5145 #endif
5146 
5147 	case Q_PIM:
5148 		b1 = gen_proto(cstate, IPPROTO_PIM, Q_IP, Q_DEFAULT);
5149 		b0 = gen_proto(cstate, IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
5150 		gen_or(b0, b1);
5151 		break;
5152 
5153 #ifndef IPPROTO_VRRP
5154 #define IPPROTO_VRRP	112
5155 #endif
5156 
5157 	case Q_VRRP:
5158 		b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5159 		break;
5160 
5161 #ifndef IPPROTO_CARP
5162 #define IPPROTO_CARP	112
5163 #endif
5164 
5165 	case Q_CARP:
5166 		b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5167 		break;
5168 
5169 	case Q_IP:
5170 		b1 = gen_linktype(cstate, ETHERTYPE_IP);
5171 		break;
5172 
5173 	case Q_ARP:
5174 		b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5175 		break;
5176 
5177 	case Q_RARP:
5178 		b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5179 		break;
5180 
5181 	case Q_LINK:
5182 		bpf_error(cstate, "link layer applied in wrong context");
5183 
5184 	case Q_ATALK:
5185 		b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5186 		break;
5187 
5188 	case Q_AARP:
5189 		b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5190 		break;
5191 
5192 	case Q_DECNET:
5193 		b1 = gen_linktype(cstate, ETHERTYPE_DN);
5194 		break;
5195 
5196 	case Q_SCA:
5197 		b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5198 		break;
5199 
5200 	case Q_LAT:
5201 		b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5202 		break;
5203 
5204 	case Q_MOPDL:
5205 		b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5206 		break;
5207 
5208 	case Q_MOPRC:
5209 		b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5210 		break;
5211 
5212 	case Q_IPV6:
5213 		b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5214 		break;
5215 
5216 #ifndef IPPROTO_ICMPV6
5217 #define IPPROTO_ICMPV6	58
5218 #endif
5219 	case Q_ICMPV6:
5220 		b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5221 		break;
5222 
5223 #ifndef IPPROTO_AH
5224 #define IPPROTO_AH	51
5225 #endif
5226 	case Q_AH:
5227 		b1 = gen_proto(cstate, IPPROTO_AH, Q_IP, Q_DEFAULT);
5228 		b0 = gen_proto(cstate, IPPROTO_AH, Q_IPV6, Q_DEFAULT);
5229 		gen_or(b0, b1);
5230 		break;
5231 
5232 #ifndef IPPROTO_ESP
5233 #define IPPROTO_ESP	50
5234 #endif
5235 	case Q_ESP:
5236 		b1 = gen_proto(cstate, IPPROTO_ESP, Q_IP, Q_DEFAULT);
5237 		b0 = gen_proto(cstate, IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
5238 		gen_or(b0, b1);
5239 		break;
5240 
5241 	case Q_ISO:
5242 		b1 = gen_linktype(cstate, LLCSAP_ISONS);
5243 		break;
5244 
5245 	case Q_ESIS:
5246 		b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5247 		break;
5248 
5249 	case Q_ISIS:
5250 		b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5251 		break;
5252 
5253 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5254 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5255 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5256 		gen_or(b0, b1);
5257 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5258 		gen_or(b0, b1);
5259 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5260 		gen_or(b0, b1);
5261 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5262 		gen_or(b0, b1);
5263 		break;
5264 
5265 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5266 		b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5267 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5268 		gen_or(b0, b1);
5269 		b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5270 		gen_or(b0, b1);
5271 		b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5272 		gen_or(b0, b1);
5273 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5274 		gen_or(b0, b1);
5275 		break;
5276 
5277 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5278 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5279 		b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5280 		gen_or(b0, b1);
5281 		b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5282 		gen_or(b0, b1);
5283 		break;
5284 
5285 	case Q_ISIS_LSP:
5286 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5287 		b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5288 		gen_or(b0, b1);
5289 		break;
5290 
5291 	case Q_ISIS_SNP:
5292 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5293 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5294 		gen_or(b0, b1);
5295 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5296 		gen_or(b0, b1);
5297 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5298 		gen_or(b0, b1);
5299 		break;
5300 
5301 	case Q_ISIS_CSNP:
5302 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5303 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5304 		gen_or(b0, b1);
5305 		break;
5306 
5307 	case Q_ISIS_PSNP:
5308 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5309 		b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5310 		gen_or(b0, b1);
5311 		break;
5312 
5313 	case Q_CLNP:
5314 		b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5315 		break;
5316 
5317 	case Q_STP:
5318 		b1 = gen_linktype(cstate, LLCSAP_8021D);
5319 		break;
5320 
5321 	case Q_IPX:
5322 		b1 = gen_linktype(cstate, LLCSAP_IPX);
5323 		break;
5324 
5325 	case Q_NETBEUI:
5326 		b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5327 		break;
5328 
5329 	case Q_RADIO:
5330 		bpf_error(cstate, "'radio' is not a valid protocol type");
5331 
5332 	default:
5333 		abort();
5334 	}
5335 	return b1;
5336 }
5337 
5338 static struct block *
5339 gen_ipfrag(compiler_state_t *cstate)
5340 {
5341 	struct slist *s;
5342 	struct block *b;
5343 
5344 	/* not IPv4 frag other than the first frag */
5345 	s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5346 	b = new_block(cstate, JMP(BPF_JSET));
5347 	b->s.k = 0x1fff;
5348 	b->stmts = s;
5349 	gen_not(b);
5350 
5351 	return b;
5352 }
5353 
5354 /*
5355  * Generate a comparison to a port value in the transport-layer header
5356  * at the specified offset from the beginning of that header.
5357  *
5358  * XXX - this handles a variable-length prefix preceding the link-layer
5359  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5360  * variable-length link-layer headers (such as Token Ring or 802.11
5361  * headers).
5362  */
5363 static struct block *
5364 gen_portatom(compiler_state_t *cstate, int off, bpf_int32 v)
5365 {
5366 	return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5367 }
5368 
5369 static struct block *
5370 gen_portatom6(compiler_state_t *cstate, int off, bpf_int32 v)
5371 {
5372 	return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5373 }
5374 
5375 struct block *
5376 gen_portop(compiler_state_t *cstate, int port, int proto, int dir)
5377 {
5378 	struct block *b0, *b1, *tmp;
5379 
5380 	/* ip proto 'proto' and not a fragment other than the first fragment */
5381 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5382 	b0 = gen_ipfrag(cstate);
5383 	gen_and(tmp, b0);
5384 
5385 	switch (dir) {
5386 	case Q_SRC:
5387 		b1 = gen_portatom(cstate, 0, (bpf_int32)port);
5388 		break;
5389 
5390 	case Q_DST:
5391 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5392 		break;
5393 
5394 	case Q_OR:
5395 	case Q_DEFAULT:
5396 		tmp = gen_portatom(cstate, 0, (bpf_int32)port);
5397 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5398 		gen_or(tmp, b1);
5399 		break;
5400 
5401 	case Q_AND:
5402 		tmp = gen_portatom(cstate, 0, (bpf_int32)port);
5403 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5404 		gen_and(tmp, b1);
5405 		break;
5406 
5407 	default:
5408 		abort();
5409 	}
5410 	gen_and(b0, b1);
5411 
5412 	return b1;
5413 }
5414 
5415 static struct block *
5416 gen_port(compiler_state_t *cstate, int port, int ip_proto, int dir)
5417 {
5418 	struct block *b0, *b1, *tmp;
5419 
5420 	/*
5421 	 * ether proto ip
5422 	 *
5423 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5424 	 * not LLC encapsulation with LLCSAP_IP.
5425 	 *
5426 	 * For IEEE 802 networks - which includes 802.5 token ring
5427 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5428 	 * says that SNAP encapsulation is used, not LLC encapsulation
5429 	 * with LLCSAP_IP.
5430 	 *
5431 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5432 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5433 	 * encapsulation with LLCSAP_IP.
5434 	 *
5435 	 * So we always check for ETHERTYPE_IP.
5436 	 */
5437 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5438 
5439 	switch (ip_proto) {
5440 	case IPPROTO_UDP:
5441 	case IPPROTO_TCP:
5442 	case IPPROTO_SCTP:
5443 		b1 = gen_portop(cstate, port, ip_proto, dir);
5444 		break;
5445 
5446 	case PROTO_UNDEF:
5447 		tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5448 		b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5449 		gen_or(tmp, b1);
5450 		tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5451 		gen_or(tmp, b1);
5452 		break;
5453 
5454 	default:
5455 		abort();
5456 	}
5457 	gen_and(b0, b1);
5458 	return b1;
5459 }
5460 
5461 struct block *
5462 gen_portop6(compiler_state_t *cstate, int port, int proto, int dir)
5463 {
5464 	struct block *b0, *b1, *tmp;
5465 
5466 	/* ip6 proto 'proto' */
5467 	/* XXX - catch the first fragment of a fragmented packet? */
5468 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5469 
5470 	switch (dir) {
5471 	case Q_SRC:
5472 		b1 = gen_portatom6(cstate, 0, (bpf_int32)port);
5473 		break;
5474 
5475 	case Q_DST:
5476 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5477 		break;
5478 
5479 	case Q_OR:
5480 	case Q_DEFAULT:
5481 		tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
5482 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5483 		gen_or(tmp, b1);
5484 		break;
5485 
5486 	case Q_AND:
5487 		tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
5488 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5489 		gen_and(tmp, b1);
5490 		break;
5491 
5492 	default:
5493 		abort();
5494 	}
5495 	gen_and(b0, b1);
5496 
5497 	return b1;
5498 }
5499 
5500 static struct block *
5501 gen_port6(compiler_state_t *cstate, int port, int ip_proto, int dir)
5502 {
5503 	struct block *b0, *b1, *tmp;
5504 
5505 	/* link proto ip6 */
5506 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5507 
5508 	switch (ip_proto) {
5509 	case IPPROTO_UDP:
5510 	case IPPROTO_TCP:
5511 	case IPPROTO_SCTP:
5512 		b1 = gen_portop6(cstate, port, ip_proto, dir);
5513 		break;
5514 
5515 	case PROTO_UNDEF:
5516 		tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5517 		b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5518 		gen_or(tmp, b1);
5519 		tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5520 		gen_or(tmp, b1);
5521 		break;
5522 
5523 	default:
5524 		abort();
5525 	}
5526 	gen_and(b0, b1);
5527 	return b1;
5528 }
5529 
5530 /* gen_portrange code */
5531 static struct block *
5532 gen_portrangeatom(compiler_state_t *cstate, int off, bpf_int32 v1,
5533     bpf_int32 v2)
5534 {
5535 	struct block *b1, *b2;
5536 
5537 	if (v1 > v2) {
5538 		/*
5539 		 * Reverse the order of the ports, so v1 is the lower one.
5540 		 */
5541 		bpf_int32 vtemp;
5542 
5543 		vtemp = v1;
5544 		v1 = v2;
5545 		v2 = vtemp;
5546 	}
5547 
5548 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5549 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5550 
5551 	gen_and(b1, b2);
5552 
5553 	return b2;
5554 }
5555 
5556 struct block *
5557 gen_portrangeop(compiler_state_t *cstate, int port1, int port2, int proto,
5558     int dir)
5559 {
5560 	struct block *b0, *b1, *tmp;
5561 
5562 	/* ip proto 'proto' and not a fragment other than the first fragment */
5563 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5564 	b0 = gen_ipfrag(cstate);
5565 	gen_and(tmp, b0);
5566 
5567 	switch (dir) {
5568 	case Q_SRC:
5569 		b1 = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5570 		break;
5571 
5572 	case Q_DST:
5573 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5574 		break;
5575 
5576 	case Q_OR:
5577 	case Q_DEFAULT:
5578 		tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5579 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5580 		gen_or(tmp, b1);
5581 		break;
5582 
5583 	case Q_AND:
5584 		tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5585 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5586 		gen_and(tmp, b1);
5587 		break;
5588 
5589 	default:
5590 		abort();
5591 	}
5592 	gen_and(b0, b1);
5593 
5594 	return b1;
5595 }
5596 
5597 static struct block *
5598 gen_portrange(compiler_state_t *cstate, int port1, int port2, int ip_proto,
5599     int dir)
5600 {
5601 	struct block *b0, *b1, *tmp;
5602 
5603 	/* link proto ip */
5604 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5605 
5606 	switch (ip_proto) {
5607 	case IPPROTO_UDP:
5608 	case IPPROTO_TCP:
5609 	case IPPROTO_SCTP:
5610 		b1 = gen_portrangeop(cstate, port1, port2, ip_proto, dir);
5611 		break;
5612 
5613 	case PROTO_UNDEF:
5614 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5615 		b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5616 		gen_or(tmp, b1);
5617 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5618 		gen_or(tmp, b1);
5619 		break;
5620 
5621 	default:
5622 		abort();
5623 	}
5624 	gen_and(b0, b1);
5625 	return b1;
5626 }
5627 
5628 static struct block *
5629 gen_portrangeatom6(compiler_state_t *cstate, int off, bpf_int32 v1,
5630     bpf_int32 v2)
5631 {
5632 	struct block *b1, *b2;
5633 
5634 	if (v1 > v2) {
5635 		/*
5636 		 * Reverse the order of the ports, so v1 is the lower one.
5637 		 */
5638 		bpf_int32 vtemp;
5639 
5640 		vtemp = v1;
5641 		v1 = v2;
5642 		v2 = vtemp;
5643 	}
5644 
5645 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5646 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5647 
5648 	gen_and(b1, b2);
5649 
5650 	return b2;
5651 }
5652 
5653 struct block *
5654 gen_portrangeop6(compiler_state_t *cstate, int port1, int port2, int proto,
5655     int dir)
5656 {
5657 	struct block *b0, *b1, *tmp;
5658 
5659 	/* ip6 proto 'proto' */
5660 	/* XXX - catch the first fragment of a fragmented packet? */
5661 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5662 
5663 	switch (dir) {
5664 	case Q_SRC:
5665 		b1 = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5666 		break;
5667 
5668 	case Q_DST:
5669 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5670 		break;
5671 
5672 	case Q_OR:
5673 	case Q_DEFAULT:
5674 		tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5675 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5676 		gen_or(tmp, b1);
5677 		break;
5678 
5679 	case Q_AND:
5680 		tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5681 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5682 		gen_and(tmp, b1);
5683 		break;
5684 
5685 	default:
5686 		abort();
5687 	}
5688 	gen_and(b0, b1);
5689 
5690 	return b1;
5691 }
5692 
5693 static struct block *
5694 gen_portrange6(compiler_state_t *cstate, int port1, int port2, int ip_proto,
5695     int dir)
5696 {
5697 	struct block *b0, *b1, *tmp;
5698 
5699 	/* link proto ip6 */
5700 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5701 
5702 	switch (ip_proto) {
5703 	case IPPROTO_UDP:
5704 	case IPPROTO_TCP:
5705 	case IPPROTO_SCTP:
5706 		b1 = gen_portrangeop6(cstate, port1, port2, ip_proto, dir);
5707 		break;
5708 
5709 	case PROTO_UNDEF:
5710 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
5711 		b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
5712 		gen_or(tmp, b1);
5713 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
5714 		gen_or(tmp, b1);
5715 		break;
5716 
5717 	default:
5718 		abort();
5719 	}
5720 	gen_and(b0, b1);
5721 	return b1;
5722 }
5723 
5724 static int
5725 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
5726 {
5727 	register int v;
5728 
5729 	switch (proto) {
5730 
5731 	case Q_DEFAULT:
5732 	case Q_IP:
5733 	case Q_IPV6:
5734 		v = pcap_nametoproto(name);
5735 		if (v == PROTO_UNDEF)
5736 			bpf_error(cstate, "unknown ip proto '%s'", name);
5737 		break;
5738 
5739 	case Q_LINK:
5740 		/* XXX should look up h/w protocol type based on cstate->linktype */
5741 		v = pcap_nametoeproto(name);
5742 		if (v == PROTO_UNDEF) {
5743 			v = pcap_nametollc(name);
5744 			if (v == PROTO_UNDEF)
5745 				bpf_error(cstate, "unknown ether proto '%s'", name);
5746 		}
5747 		break;
5748 
5749 	case Q_ISO:
5750 		if (strcmp(name, "esis") == 0)
5751 			v = ISO9542_ESIS;
5752 		else if (strcmp(name, "isis") == 0)
5753 			v = ISO10589_ISIS;
5754 		else if (strcmp(name, "clnp") == 0)
5755 			v = ISO8473_CLNP;
5756 		else
5757 			bpf_error(cstate, "unknown osi proto '%s'", name);
5758 		break;
5759 
5760 	default:
5761 		v = PROTO_UNDEF;
5762 		break;
5763 	}
5764 	return v;
5765 }
5766 
5767 #if 0
5768 struct stmt *
5769 gen_joinsp(struct stmt **s, int n)
5770 {
5771 	return NULL;
5772 }
5773 #endif
5774 
5775 static struct block *
5776 gen_protochain(compiler_state_t *cstate, int v, int proto, int dir)
5777 {
5778 #ifdef NO_PROTOCHAIN
5779 	return gen_proto(cstate, v, proto, dir);
5780 #else
5781 	struct block *b0, *b;
5782 	struct slist *s[100];
5783 	int fix2, fix3, fix4, fix5;
5784 	int ahcheck, again, end;
5785 	int i, max;
5786 	int reg2 = alloc_reg(cstate);
5787 
5788 	memset(s, 0, sizeof(s));
5789 	fix3 = fix4 = fix5 = 0;
5790 
5791 	switch (proto) {
5792 	case Q_IP:
5793 	case Q_IPV6:
5794 		break;
5795 	case Q_DEFAULT:
5796 		b0 = gen_protochain(cstate, v, Q_IP, dir);
5797 		b = gen_protochain(cstate, v, Q_IPV6, dir);
5798 		gen_or(b0, b);
5799 		return b;
5800 	default:
5801 		bpf_error(cstate, "bad protocol applied for 'protochain'");
5802 		/*NOTREACHED*/
5803 	}
5804 
5805 	/*
5806 	 * We don't handle variable-length prefixes before the link-layer
5807 	 * header, or variable-length link-layer headers, here yet.
5808 	 * We might want to add BPF instructions to do the protochain
5809 	 * work, to simplify that and, on platforms that have a BPF
5810 	 * interpreter with the new instructions, let the filtering
5811 	 * be done in the kernel.  (We already require a modified BPF
5812 	 * engine to do the protochain stuff, to support backward
5813 	 * branches, and backward branch support is unlikely to appear
5814 	 * in kernel BPF engines.)
5815 	 */
5816 	if (cstate->off_linkpl.is_variable)
5817 		bpf_error(cstate, "'protochain' not supported with variable length headers");
5818 
5819 	cstate->no_optimize = 1; /* this code is not compatible with optimizer yet */
5820 
5821 	/*
5822 	 * s[0] is a dummy entry to protect other BPF insn from damage
5823 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5824 	 * hard to find interdependency made by jump table fixup.
5825 	 */
5826 	i = 0;
5827 	s[i] = new_stmt(cstate, 0);	/*dummy*/
5828 	i++;
5829 
5830 	switch (proto) {
5831 	case Q_IP:
5832 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
5833 
5834 		/* A = ip->ip_p */
5835 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
5836 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
5837 		i++;
5838 		/* X = ip->ip_hl << 2 */
5839 		s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
5840 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5841 		i++;
5842 		break;
5843 
5844 	case Q_IPV6:
5845 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5846 
5847 		/* A = ip6->ip_nxt */
5848 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
5849 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
5850 		i++;
5851 		/* X = sizeof(struct ip6_hdr) */
5852 		s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
5853 		s[i]->s.k = 40;
5854 		i++;
5855 		break;
5856 
5857 	default:
5858 		bpf_error(cstate, "unsupported proto to gen_protochain");
5859 		/*NOTREACHED*/
5860 	}
5861 
5862 	/* again: if (A == v) goto end; else fall through; */
5863 	again = i;
5864 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5865 	s[i]->s.k = v;
5866 	s[i]->s.jt = NULL;		/*later*/
5867 	s[i]->s.jf = NULL;		/*update in next stmt*/
5868 	fix5 = i;
5869 	i++;
5870 
5871 #ifndef IPPROTO_NONE
5872 #define IPPROTO_NONE	59
5873 #endif
5874 	/* if (A == IPPROTO_NONE) goto end */
5875 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5876 	s[i]->s.jt = NULL;	/*later*/
5877 	s[i]->s.jf = NULL;	/*update in next stmt*/
5878 	s[i]->s.k = IPPROTO_NONE;
5879 	s[fix5]->s.jf = s[i];
5880 	fix2 = i;
5881 	i++;
5882 
5883 	if (proto == Q_IPV6) {
5884 		int v6start, v6end, v6advance, j;
5885 
5886 		v6start = i;
5887 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5888 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5889 		s[i]->s.jt = NULL;	/*later*/
5890 		s[i]->s.jf = NULL;	/*update in next stmt*/
5891 		s[i]->s.k = IPPROTO_HOPOPTS;
5892 		s[fix2]->s.jf = s[i];
5893 		i++;
5894 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5895 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5896 		s[i]->s.jt = NULL;	/*later*/
5897 		s[i]->s.jf = NULL;	/*update in next stmt*/
5898 		s[i]->s.k = IPPROTO_DSTOPTS;
5899 		i++;
5900 		/* if (A == IPPROTO_ROUTING) goto v6advance */
5901 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5902 		s[i]->s.jt = NULL;	/*later*/
5903 		s[i]->s.jf = NULL;	/*update in next stmt*/
5904 		s[i]->s.k = IPPROTO_ROUTING;
5905 		i++;
5906 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5907 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5908 		s[i]->s.jt = NULL;	/*later*/
5909 		s[i]->s.jf = NULL;	/*later*/
5910 		s[i]->s.k = IPPROTO_FRAGMENT;
5911 		fix3 = i;
5912 		v6end = i;
5913 		i++;
5914 
5915 		/* v6advance: */
5916 		v6advance = i;
5917 
5918 		/*
5919 		 * in short,
5920 		 * A = P[X + packet head];
5921 		 * X = X + (P[X + packet head + 1] + 1) * 8;
5922 		 */
5923 		/* A = P[X + packet head] */
5924 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5925 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5926 		i++;
5927 		/* MEM[reg2] = A */
5928 		s[i] = new_stmt(cstate, BPF_ST);
5929 		s[i]->s.k = reg2;
5930 		i++;
5931 		/* A = P[X + packet head + 1]; */
5932 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5933 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
5934 		i++;
5935 		/* A += 1 */
5936 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5937 		s[i]->s.k = 1;
5938 		i++;
5939 		/* A *= 8 */
5940 		s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
5941 		s[i]->s.k = 8;
5942 		i++;
5943 		/* A += X */
5944 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
5945 		s[i]->s.k = 0;
5946 		i++;
5947 		/* X = A; */
5948 		s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
5949 		i++;
5950 		/* A = MEM[reg2] */
5951 		s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
5952 		s[i]->s.k = reg2;
5953 		i++;
5954 
5955 		/* goto again; (must use BPF_JA for backward jump) */
5956 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
5957 		s[i]->s.k = again - i - 1;
5958 		s[i - 1]->s.jf = s[i];
5959 		i++;
5960 
5961 		/* fixup */
5962 		for (j = v6start; j <= v6end; j++)
5963 			s[j]->s.jt = s[v6advance];
5964 	} else {
5965 		/* nop */
5966 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
5967 		s[i]->s.k = 0;
5968 		s[fix2]->s.jf = s[i];
5969 		i++;
5970 	}
5971 
5972 	/* ahcheck: */
5973 	ahcheck = i;
5974 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5975 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
5976 	s[i]->s.jt = NULL;	/*later*/
5977 	s[i]->s.jf = NULL;	/*later*/
5978 	s[i]->s.k = IPPROTO_AH;
5979 	if (fix3)
5980 		s[fix3]->s.jf = s[ahcheck];
5981 	fix4 = i;
5982 	i++;
5983 
5984 	/*
5985 	 * in short,
5986 	 * A = P[X];
5987 	 * X = X + (P[X + 1] + 2) * 4;
5988 	 */
5989 	/* A = X */
5990 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
5991 	i++;
5992 	/* A = P[X + packet head]; */
5993 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
5994 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
5995 	i++;
5996 	/* MEM[reg2] = A */
5997 	s[i] = new_stmt(cstate, BPF_ST);
5998 	s[i]->s.k = reg2;
5999 	i++;
6000 	/* A = X */
6001 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6002 	i++;
6003 	/* A += 1 */
6004 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6005 	s[i]->s.k = 1;
6006 	i++;
6007 	/* X = A */
6008 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6009 	i++;
6010 	/* A = P[X + packet head] */
6011 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6012 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6013 	i++;
6014 	/* A += 2 */
6015 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6016 	s[i]->s.k = 2;
6017 	i++;
6018 	/* A *= 4 */
6019 	s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6020 	s[i]->s.k = 4;
6021 	i++;
6022 	/* X = A; */
6023 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6024 	i++;
6025 	/* A = MEM[reg2] */
6026 	s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6027 	s[i]->s.k = reg2;
6028 	i++;
6029 
6030 	/* goto again; (must use BPF_JA for backward jump) */
6031 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6032 	s[i]->s.k = again - i - 1;
6033 	i++;
6034 
6035 	/* end: nop */
6036 	end = i;
6037 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6038 	s[i]->s.k = 0;
6039 	s[fix2]->s.jt = s[end];
6040 	s[fix4]->s.jf = s[end];
6041 	s[fix5]->s.jt = s[end];
6042 	i++;
6043 
6044 	/*
6045 	 * make slist chain
6046 	 */
6047 	max = i;
6048 	for (i = 0; i < max - 1; i++)
6049 		s[i]->next = s[i + 1];
6050 	s[max - 1]->next = NULL;
6051 
6052 	/*
6053 	 * emit final check
6054 	 */
6055 	b = new_block(cstate, JMP(BPF_JEQ));
6056 	b->stmts = s[1];	/*remember, s[0] is dummy*/
6057 	b->s.k = v;
6058 
6059 	free_reg(cstate, reg2);
6060 
6061 	gen_and(b0, b);
6062 	return b;
6063 #endif
6064 }
6065 
6066 static struct block *
6067 gen_check_802_11_data_frame(compiler_state_t *cstate)
6068 {
6069 	struct slist *s;
6070 	struct block *b0, *b1;
6071 
6072 	/*
6073 	 * A data frame has the 0x08 bit (b3) in the frame control field set
6074 	 * and the 0x04 bit (b2) clear.
6075 	 */
6076 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6077 	b0 = new_block(cstate, JMP(BPF_JSET));
6078 	b0->s.k = 0x08;
6079 	b0->stmts = s;
6080 
6081 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6082 	b1 = new_block(cstate, JMP(BPF_JSET));
6083 	b1->s.k = 0x04;
6084 	b1->stmts = s;
6085 	gen_not(b1);
6086 
6087 	gen_and(b1, b0);
6088 
6089 	return b0;
6090 }
6091 
6092 /*
6093  * Generate code that checks whether the packet is a packet for protocol
6094  * <proto> and whether the type field in that protocol's header has
6095  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6096  * IP packet and checks the protocol number in the IP header against <v>.
6097  *
6098  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6099  * against Q_IP and Q_IPV6.
6100  */
6101 static struct block *
6102 gen_proto(compiler_state_t *cstate, int v, int proto, int dir)
6103 {
6104 	struct block *b0, *b1;
6105 #ifndef CHASE_CHAIN
6106 	struct block *b2;
6107 #endif
6108 
6109 	if (dir != Q_DEFAULT)
6110 		bpf_error(cstate, "direction applied to 'proto'");
6111 
6112 	switch (proto) {
6113 	case Q_DEFAULT:
6114 		b0 = gen_proto(cstate, v, Q_IP, dir);
6115 		b1 = gen_proto(cstate, v, Q_IPV6, dir);
6116 		gen_or(b0, b1);
6117 		return b1;
6118 
6119 	case Q_IP:
6120 		/*
6121 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6122 		 * not LLC encapsulation with LLCSAP_IP.
6123 		 *
6124 		 * For IEEE 802 networks - which includes 802.5 token ring
6125 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6126 		 * says that SNAP encapsulation is used, not LLC encapsulation
6127 		 * with LLCSAP_IP.
6128 		 *
6129 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6130 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
6131 		 * encapsulation with LLCSAP_IP.
6132 		 *
6133 		 * So we always check for ETHERTYPE_IP.
6134 		 */
6135 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6136 #ifndef CHASE_CHAIN
6137 		b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)v);
6138 #else
6139 		b1 = gen_protochain(cstate, v, Q_IP);
6140 #endif
6141 		gen_and(b0, b1);
6142 		return b1;
6143 
6144 	case Q_ISO:
6145 		switch (cstate->linktype) {
6146 
6147 		case DLT_FRELAY:
6148 			/*
6149 			 * Frame Relay packets typically have an OSI
6150 			 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6151 			 * generates code to check for all the OSI
6152 			 * NLPIDs, so calling it and then adding a check
6153 			 * for the particular NLPID for which we're
6154 			 * looking is bogus, as we can just check for
6155 			 * the NLPID.
6156 			 *
6157 			 * What we check for is the NLPID and a frame
6158 			 * control field value of UI, i.e. 0x03 followed
6159 			 * by the NLPID.
6160 			 *
6161 			 * XXX - assumes a 2-byte Frame Relay header with
6162 			 * DLCI and flags.  What if the address is longer?
6163 			 *
6164 			 * XXX - what about SNAP-encapsulated frames?
6165 			 */
6166 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6167 			/*NOTREACHED*/
6168 			break;
6169 
6170 		case DLT_C_HDLC:
6171 			/*
6172 			 * Cisco uses an Ethertype lookalike - for OSI,
6173 			 * it's 0xfefe.
6174 			 */
6175 			b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6176 			/* OSI in C-HDLC is stuffed with a fudge byte */
6177 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, (long)v);
6178 			gen_and(b0, b1);
6179 			return b1;
6180 
6181 		default:
6182 			b0 = gen_linktype(cstate, LLCSAP_ISONS);
6183 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, (long)v);
6184 			gen_and(b0, b1);
6185 			return b1;
6186 		}
6187 
6188 	case Q_ISIS:
6189 		b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6190 		/*
6191 		 * 4 is the offset of the PDU type relative to the IS-IS
6192 		 * header.
6193 		 */
6194 		b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, (long)v);
6195 		gen_and(b0, b1);
6196 		return b1;
6197 
6198 	case Q_ARP:
6199 		bpf_error(cstate, "arp does not encapsulate another protocol");
6200 		/* NOTREACHED */
6201 
6202 	case Q_RARP:
6203 		bpf_error(cstate, "rarp does not encapsulate another protocol");
6204 		/* NOTREACHED */
6205 
6206 	case Q_ATALK:
6207 		bpf_error(cstate, "atalk encapsulation is not specifiable");
6208 		/* NOTREACHED */
6209 
6210 	case Q_DECNET:
6211 		bpf_error(cstate, "decnet encapsulation is not specifiable");
6212 		/* NOTREACHED */
6213 
6214 	case Q_SCA:
6215 		bpf_error(cstate, "sca does not encapsulate another protocol");
6216 		/* NOTREACHED */
6217 
6218 	case Q_LAT:
6219 		bpf_error(cstate, "lat does not encapsulate another protocol");
6220 		/* NOTREACHED */
6221 
6222 	case Q_MOPRC:
6223 		bpf_error(cstate, "moprc does not encapsulate another protocol");
6224 		/* NOTREACHED */
6225 
6226 	case Q_MOPDL:
6227 		bpf_error(cstate, "mopdl does not encapsulate another protocol");
6228 		/* NOTREACHED */
6229 
6230 	case Q_LINK:
6231 		return gen_linktype(cstate, v);
6232 
6233 	case Q_UDP:
6234 		bpf_error(cstate, "'udp proto' is bogus");
6235 		/* NOTREACHED */
6236 
6237 	case Q_TCP:
6238 		bpf_error(cstate, "'tcp proto' is bogus");
6239 		/* NOTREACHED */
6240 
6241 	case Q_SCTP:
6242 		bpf_error(cstate, "'sctp proto' is bogus");
6243 		/* NOTREACHED */
6244 
6245 	case Q_ICMP:
6246 		bpf_error(cstate, "'icmp proto' is bogus");
6247 		/* NOTREACHED */
6248 
6249 	case Q_IGMP:
6250 		bpf_error(cstate, "'igmp proto' is bogus");
6251 		/* NOTREACHED */
6252 
6253 	case Q_IGRP:
6254 		bpf_error(cstate, "'igrp proto' is bogus");
6255 		/* NOTREACHED */
6256 
6257 	case Q_PIM:
6258 		bpf_error(cstate, "'pim proto' is bogus");
6259 		/* NOTREACHED */
6260 
6261 	case Q_VRRP:
6262 		bpf_error(cstate, "'vrrp proto' is bogus");
6263 		/* NOTREACHED */
6264 
6265 	case Q_CARP:
6266 		bpf_error(cstate, "'carp proto' is bogus");
6267 		/* NOTREACHED */
6268 
6269 	case Q_IPV6:
6270 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6271 #ifndef CHASE_CHAIN
6272 		/*
6273 		 * Also check for a fragment header before the final
6274 		 * header.
6275 		 */
6276 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6277 		b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, (bpf_int32)v);
6278 		gen_and(b2, b1);
6279 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)v);
6280 		gen_or(b2, b1);
6281 #else
6282 		b1 = gen_protochain(cstate, v, Q_IPV6);
6283 #endif
6284 		gen_and(b0, b1);
6285 		return b1;
6286 
6287 	case Q_ICMPV6:
6288 		bpf_error(cstate, "'icmp6 proto' is bogus");
6289 
6290 	case Q_AH:
6291 		bpf_error(cstate, "'ah proto' is bogus");
6292 
6293 	case Q_ESP:
6294 		bpf_error(cstate, "'ah proto' is bogus");
6295 
6296 	case Q_STP:
6297 		bpf_error(cstate, "'stp proto' is bogus");
6298 
6299 	case Q_IPX:
6300 		bpf_error(cstate, "'ipx proto' is bogus");
6301 
6302 	case Q_NETBEUI:
6303 		bpf_error(cstate, "'netbeui proto' is bogus");
6304 
6305 	case Q_RADIO:
6306 		bpf_error(cstate, "'radio proto' is bogus");
6307 
6308 	default:
6309 		abort();
6310 		/* NOTREACHED */
6311 	}
6312 	/* NOTREACHED */
6313 }
6314 
6315 struct block *
6316 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6317 {
6318 	int proto = q.proto;
6319 	int dir = q.dir;
6320 	int tproto;
6321 	u_char *eaddr;
6322 	bpf_u_int32 mask, addr;
6323 	struct addrinfo *res, *res0;
6324 	struct sockaddr_in *sin4;
6325 #ifdef INET6
6326 	int tproto6;
6327 	struct sockaddr_in6 *sin6;
6328 	struct in6_addr mask128;
6329 #endif /*INET6*/
6330 	struct block *b, *tmp;
6331 	int port, real_proto;
6332 	int port1, port2;
6333 
6334 	switch (q.addr) {
6335 
6336 	case Q_NET:
6337 		addr = pcap_nametonetaddr(name);
6338 		if (addr == 0)
6339 			bpf_error(cstate, "unknown network '%s'", name);
6340 		/* Left justify network addr and calculate its network mask */
6341 		mask = 0xffffffff;
6342 		while (addr && (addr & 0xff000000) == 0) {
6343 			addr <<= 8;
6344 			mask <<= 8;
6345 		}
6346 		return gen_host(cstate, addr, mask, proto, dir, q.addr);
6347 
6348 	case Q_DEFAULT:
6349 	case Q_HOST:
6350 		if (proto == Q_LINK) {
6351 			switch (cstate->linktype) {
6352 
6353 			case DLT_EN10MB:
6354 			case DLT_NETANALYZER:
6355 			case DLT_NETANALYZER_TRANSPARENT:
6356 				eaddr = pcap_ether_hostton(name);
6357 				if (eaddr == NULL)
6358 					bpf_error(cstate,
6359 					    "unknown ether host '%s'", name);
6360 				tmp = gen_prevlinkhdr_check(cstate);
6361 				b = gen_ehostop(cstate, eaddr, dir);
6362 				if (tmp != NULL)
6363 					gen_and(tmp, b);
6364 				free(eaddr);
6365 				return b;
6366 
6367 			case DLT_FDDI:
6368 				eaddr = pcap_ether_hostton(name);
6369 				if (eaddr == NULL)
6370 					bpf_error(cstate,
6371 					    "unknown FDDI host '%s'", name);
6372 				b = gen_fhostop(cstate, eaddr, dir);
6373 				free(eaddr);
6374 				return b;
6375 
6376 			case DLT_IEEE802:
6377 				eaddr = pcap_ether_hostton(name);
6378 				if (eaddr == NULL)
6379 					bpf_error(cstate,
6380 					    "unknown token ring host '%s'", name);
6381 				b = gen_thostop(cstate, eaddr, dir);
6382 				free(eaddr);
6383 				return b;
6384 
6385 			case DLT_IEEE802_11:
6386 			case DLT_PRISM_HEADER:
6387 			case DLT_IEEE802_11_RADIO_AVS:
6388 			case DLT_IEEE802_11_RADIO:
6389 			case DLT_PPI:
6390 				eaddr = pcap_ether_hostton(name);
6391 				if (eaddr == NULL)
6392 					bpf_error(cstate,
6393 					    "unknown 802.11 host '%s'", name);
6394 				b = gen_wlanhostop(cstate, eaddr, dir);
6395 				free(eaddr);
6396 				return b;
6397 
6398 			case DLT_IP_OVER_FC:
6399 				eaddr = pcap_ether_hostton(name);
6400 				if (eaddr == NULL)
6401 					bpf_error(cstate,
6402 					    "unknown Fibre Channel host '%s'", name);
6403 				b = gen_ipfchostop(cstate, eaddr, dir);
6404 				free(eaddr);
6405 				return b;
6406 			}
6407 
6408 			bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6409 		} else if (proto == Q_DECNET) {
6410 			unsigned short dn_addr;
6411 
6412 			if (!__pcap_nametodnaddr(name, &dn_addr)) {
6413 #ifdef	DECNETLIB
6414 				bpf_error(cstate, "unknown decnet host name '%s'\n", name);
6415 #else
6416 				bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
6417 					name);
6418 #endif
6419 			}
6420 			/*
6421 			 * I don't think DECNET hosts can be multihomed, so
6422 			 * there is no need to build up a list of addresses
6423 			 */
6424 			return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
6425 		} else {
6426 #ifdef INET6
6427 			memset(&mask128, 0xff, sizeof(mask128));
6428 #endif
6429 			res0 = res = pcap_nametoaddrinfo(name);
6430 			if (res == NULL)
6431 				bpf_error(cstate, "unknown host '%s'", name);
6432 			cstate->ai = res;
6433 			b = tmp = NULL;
6434 			tproto = proto;
6435 #ifdef INET6
6436 			tproto6 = proto;
6437 #endif
6438 			if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6439 			    tproto == Q_DEFAULT) {
6440 				tproto = Q_IP;
6441 #ifdef INET6
6442 				tproto6 = Q_IPV6;
6443 #endif
6444 			}
6445 			for (res = res0; res; res = res->ai_next) {
6446 				switch (res->ai_family) {
6447 				case AF_INET:
6448 #ifdef INET6
6449 					if (tproto == Q_IPV6)
6450 						continue;
6451 #endif
6452 
6453 					sin4 = (struct sockaddr_in *)
6454 						res->ai_addr;
6455 					tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
6456 						0xffffffff, tproto, dir, q.addr);
6457 					break;
6458 #ifdef INET6
6459 				case AF_INET6:
6460 					if (tproto6 == Q_IP)
6461 						continue;
6462 
6463 					sin6 = (struct sockaddr_in6 *)
6464 						res->ai_addr;
6465 					tmp = gen_host6(cstate, &sin6->sin6_addr,
6466 						&mask128, tproto6, dir, q.addr);
6467 					break;
6468 #endif
6469 				default:
6470 					continue;
6471 				}
6472 				if (b)
6473 					gen_or(b, tmp);
6474 				b = tmp;
6475 			}
6476 			cstate->ai = NULL;
6477 			freeaddrinfo(res0);
6478 			if (b == NULL) {
6479 				bpf_error(cstate, "unknown host '%s'%s", name,
6480 				    (proto == Q_DEFAULT)
6481 					? ""
6482 					: " for specified address family");
6483 			}
6484 			return b;
6485 		}
6486 
6487 	case Q_PORT:
6488 		if (proto != Q_DEFAULT &&
6489 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6490 			bpf_error(cstate, "illegal qualifier of 'port'");
6491 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6492 			bpf_error(cstate, "unknown port '%s'", name);
6493 		if (proto == Q_UDP) {
6494 			if (real_proto == IPPROTO_TCP)
6495 				bpf_error(cstate, "port '%s' is tcp", name);
6496 			else if (real_proto == IPPROTO_SCTP)
6497 				bpf_error(cstate, "port '%s' is sctp", name);
6498 			else
6499 				/* override PROTO_UNDEF */
6500 				real_proto = IPPROTO_UDP;
6501 		}
6502 		if (proto == Q_TCP) {
6503 			if (real_proto == IPPROTO_UDP)
6504 				bpf_error(cstate, "port '%s' is udp", name);
6505 
6506 			else if (real_proto == IPPROTO_SCTP)
6507 				bpf_error(cstate, "port '%s' is sctp", name);
6508 			else
6509 				/* override PROTO_UNDEF */
6510 				real_proto = IPPROTO_TCP;
6511 		}
6512 		if (proto == Q_SCTP) {
6513 			if (real_proto == IPPROTO_UDP)
6514 				bpf_error(cstate, "port '%s' is udp", name);
6515 
6516 			else if (real_proto == IPPROTO_TCP)
6517 				bpf_error(cstate, "port '%s' is tcp", name);
6518 			else
6519 				/* override PROTO_UNDEF */
6520 				real_proto = IPPROTO_SCTP;
6521 		}
6522 		if (port < 0)
6523 			bpf_error(cstate, "illegal port number %d < 0", port);
6524 		if (port > 65535)
6525 			bpf_error(cstate, "illegal port number %d > 65535", port);
6526 		b = gen_port(cstate, port, real_proto, dir);
6527 		gen_or(gen_port6(cstate, port, real_proto, dir), b);
6528 		return b;
6529 
6530 	case Q_PORTRANGE:
6531 		if (proto != Q_DEFAULT &&
6532 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6533 			bpf_error(cstate, "illegal qualifier of 'portrange'");
6534 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6535 			bpf_error(cstate, "unknown port in range '%s'", name);
6536 		if (proto == Q_UDP) {
6537 			if (real_proto == IPPROTO_TCP)
6538 				bpf_error(cstate, "port in range '%s' is tcp", name);
6539 			else if (real_proto == IPPROTO_SCTP)
6540 				bpf_error(cstate, "port in range '%s' is sctp", name);
6541 			else
6542 				/* override PROTO_UNDEF */
6543 				real_proto = IPPROTO_UDP;
6544 		}
6545 		if (proto == Q_TCP) {
6546 			if (real_proto == IPPROTO_UDP)
6547 				bpf_error(cstate, "port in range '%s' is udp", name);
6548 			else if (real_proto == IPPROTO_SCTP)
6549 				bpf_error(cstate, "port in range '%s' is sctp", name);
6550 			else
6551 				/* override PROTO_UNDEF */
6552 				real_proto = IPPROTO_TCP;
6553 		}
6554 		if (proto == Q_SCTP) {
6555 			if (real_proto == IPPROTO_UDP)
6556 				bpf_error(cstate, "port in range '%s' is udp", name);
6557 			else if (real_proto == IPPROTO_TCP)
6558 				bpf_error(cstate, "port in range '%s' is tcp", name);
6559 			else
6560 				/* override PROTO_UNDEF */
6561 				real_proto = IPPROTO_SCTP;
6562 		}
6563 		if (port1 < 0)
6564 			bpf_error(cstate, "illegal port number %d < 0", port1);
6565 		if (port1 > 65535)
6566 			bpf_error(cstate, "illegal port number %d > 65535", port1);
6567 		if (port2 < 0)
6568 			bpf_error(cstate, "illegal port number %d < 0", port2);
6569 		if (port2 > 65535)
6570 			bpf_error(cstate, "illegal port number %d > 65535", port2);
6571 
6572 		b = gen_portrange(cstate, port1, port2, real_proto, dir);
6573 		gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
6574 		return b;
6575 
6576 	case Q_GATEWAY:
6577 #ifndef INET6
6578 		eaddr = pcap_ether_hostton(name);
6579 		if (eaddr == NULL)
6580 			bpf_error(cstate, "unknown ether host: %s", name);
6581 
6582 		res = pcap_nametoaddrinfo(name);
6583 		cstate->ai = res;
6584 		if (res == NULL)
6585 			bpf_error(cstate, "unknown host '%s'", name);
6586 		b = gen_gateway(cstate, eaddr, res, proto, dir);
6587 		cstate->ai = NULL;
6588 		freeaddrinfo(res);
6589 		if (b == NULL)
6590 			bpf_error(cstate, "unknown host '%s'", name);
6591 		return b;
6592 #else
6593 		bpf_error(cstate, "'gateway' not supported in this configuration");
6594 #endif /*INET6*/
6595 
6596 	case Q_PROTO:
6597 		real_proto = lookup_proto(cstate, name, proto);
6598 		if (real_proto >= 0)
6599 			return gen_proto(cstate, real_proto, proto, dir);
6600 		else
6601 			bpf_error(cstate, "unknown protocol: %s", name);
6602 
6603 	case Q_PROTOCHAIN:
6604 		real_proto = lookup_proto(cstate, name, proto);
6605 		if (real_proto >= 0)
6606 			return gen_protochain(cstate, real_proto, proto, dir);
6607 		else
6608 			bpf_error(cstate, "unknown protocol: %s", name);
6609 
6610 	case Q_UNDEF:
6611 		syntax(cstate);
6612 		/* NOTREACHED */
6613 	}
6614 	abort();
6615 	/* NOTREACHED */
6616 }
6617 
6618 struct block *
6619 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
6620     unsigned int masklen, struct qual q)
6621 {
6622 	register int nlen, mlen;
6623 	bpf_u_int32 n, m;
6624 
6625 	nlen = __pcap_atoin(s1, &n);
6626 	/* Promote short ipaddr */
6627 	n <<= 32 - nlen;
6628 
6629 	if (s2 != NULL) {
6630 		mlen = __pcap_atoin(s2, &m);
6631 		/* Promote short ipaddr */
6632 		m <<= 32 - mlen;
6633 		if ((n & ~m) != 0)
6634 			bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
6635 			    s1, s2);
6636 	} else {
6637 		/* Convert mask len to mask */
6638 		if (masklen > 32)
6639 			bpf_error(cstate, "mask length must be <= 32");
6640 		if (masklen == 0) {
6641 			/*
6642 			 * X << 32 is not guaranteed by C to be 0; it's
6643 			 * undefined.
6644 			 */
6645 			m = 0;
6646 		} else
6647 			m = 0xffffffff << (32 - masklen);
6648 		if ((n & ~m) != 0)
6649 			bpf_error(cstate, "non-network bits set in \"%s/%d\"",
6650 			    s1, masklen);
6651 	}
6652 
6653 	switch (q.addr) {
6654 
6655 	case Q_NET:
6656 		return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
6657 
6658 	default:
6659 		bpf_error(cstate, "Mask syntax for networks only");
6660 		/* NOTREACHED */
6661 	}
6662 	/* NOTREACHED */
6663 }
6664 
6665 struct block *
6666 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
6667 {
6668 	bpf_u_int32 mask;
6669 	int proto = q.proto;
6670 	int dir = q.dir;
6671 	register int vlen;
6672 
6673 	if (s == NULL)
6674 		vlen = 32;
6675 	else if (q.proto == Q_DECNET) {
6676 		vlen = __pcap_atodn(s, &v);
6677 		if (vlen == 0)
6678 			bpf_error(cstate, "malformed decnet address '%s'", s);
6679 	} else
6680 		vlen = __pcap_atoin(s, &v);
6681 
6682 	switch (q.addr) {
6683 
6684 	case Q_DEFAULT:
6685 	case Q_HOST:
6686 	case Q_NET:
6687 		if (proto == Q_DECNET)
6688 			return gen_host(cstate, v, 0, proto, dir, q.addr);
6689 		else if (proto == Q_LINK) {
6690 			bpf_error(cstate, "illegal link layer address");
6691 		} else {
6692 			mask = 0xffffffff;
6693 			if (s == NULL && q.addr == Q_NET) {
6694 				/* Promote short net number */
6695 				while (v && (v & 0xff000000) == 0) {
6696 					v <<= 8;
6697 					mask <<= 8;
6698 				}
6699 			} else {
6700 				/* Promote short ipaddr */
6701 				v <<= 32 - vlen;
6702 				mask <<= 32 - vlen ;
6703 			}
6704 			return gen_host(cstate, v, mask, proto, dir, q.addr);
6705 		}
6706 
6707 	case Q_PORT:
6708 		if (proto == Q_UDP)
6709 			proto = IPPROTO_UDP;
6710 		else if (proto == Q_TCP)
6711 			proto = IPPROTO_TCP;
6712 		else if (proto == Q_SCTP)
6713 			proto = IPPROTO_SCTP;
6714 		else if (proto == Q_DEFAULT)
6715 			proto = PROTO_UNDEF;
6716 		else
6717 			bpf_error(cstate, "illegal qualifier of 'port'");
6718 
6719 		if (v > 65535)
6720 			bpf_error(cstate, "illegal port number %u > 65535", v);
6721 
6722 	    {
6723 		struct block *b;
6724 		b = gen_port(cstate, (int)v, proto, dir);
6725 		gen_or(gen_port6(cstate, (int)v, proto, dir), b);
6726 		return b;
6727 	    }
6728 
6729 	case Q_PORTRANGE:
6730 		if (proto == Q_UDP)
6731 			proto = IPPROTO_UDP;
6732 		else if (proto == Q_TCP)
6733 			proto = IPPROTO_TCP;
6734 		else if (proto == Q_SCTP)
6735 			proto = IPPROTO_SCTP;
6736 		else if (proto == Q_DEFAULT)
6737 			proto = PROTO_UNDEF;
6738 		else
6739 			bpf_error(cstate, "illegal qualifier of 'portrange'");
6740 
6741 		if (v > 65535)
6742 			bpf_error(cstate, "illegal port number %u > 65535", v);
6743 
6744 	    {
6745 		struct block *b;
6746 		b = gen_portrange(cstate, (int)v, (int)v, proto, dir);
6747 		gen_or(gen_portrange6(cstate, (int)v, (int)v, proto, dir), b);
6748 		return b;
6749 	    }
6750 
6751 	case Q_GATEWAY:
6752 		bpf_error(cstate, "'gateway' requires a name");
6753 		/* NOTREACHED */
6754 
6755 	case Q_PROTO:
6756 		return gen_proto(cstate, (int)v, proto, dir);
6757 
6758 	case Q_PROTOCHAIN:
6759 		return gen_protochain(cstate, (int)v, proto, dir);
6760 
6761 	case Q_UNDEF:
6762 		syntax(cstate);
6763 		/* NOTREACHED */
6764 
6765 	default:
6766 		abort();
6767 		/* NOTREACHED */
6768 	}
6769 	/* NOTREACHED */
6770 }
6771 
6772 #ifdef INET6
6773 struct block *
6774 gen_mcode6(compiler_state_t *cstate, const char *s1, const char *s2,
6775     unsigned int masklen, struct qual q)
6776 {
6777 	struct addrinfo *res;
6778 	struct in6_addr *addr;
6779 	struct in6_addr mask;
6780 	struct block *b;
6781 	uint32_t *a, *m;
6782 
6783 	if (s2)
6784 		bpf_error(cstate, "no mask %s supported", s2);
6785 
6786 	res = pcap_nametoaddrinfo(s1);
6787 	if (!res)
6788 		bpf_error(cstate, "invalid ip6 address %s", s1);
6789 	cstate->ai = res;
6790 	if (res->ai_next)
6791 		bpf_error(cstate, "%s resolved to multiple address", s1);
6792 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6793 
6794 	if (sizeof(mask) * 8 < masklen)
6795 		bpf_error(cstate, "mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6796 	memset(&mask, 0, sizeof(mask));
6797 	memset(&mask, 0xff, masklen / 8);
6798 	if (masklen % 8) {
6799 		mask.s6_addr[masklen / 8] =
6800 			(0xff << (8 - masklen % 8)) & 0xff;
6801 	}
6802 
6803 	a = (uint32_t *)addr;
6804 	m = (uint32_t *)&mask;
6805 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6806 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6807 		bpf_error(cstate, "non-network bits set in \"%s/%d\"", s1, masklen);
6808 	}
6809 
6810 	switch (q.addr) {
6811 
6812 	case Q_DEFAULT:
6813 	case Q_HOST:
6814 		if (masklen != 128)
6815 			bpf_error(cstate, "Mask syntax for networks only");
6816 		/* FALLTHROUGH */
6817 
6818 	case Q_NET:
6819 		b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
6820 		cstate->ai = NULL;
6821 		freeaddrinfo(res);
6822 		return b;
6823 
6824 	default:
6825 		bpf_error(cstate, "invalid qualifier against IPv6 address");
6826 		/* NOTREACHED */
6827 	}
6828 }
6829 #endif /*INET6*/
6830 
6831 struct block *
6832 gen_ecode(compiler_state_t *cstate, const u_char *eaddr, struct qual q)
6833 {
6834 	struct block *b, *tmp;
6835 
6836 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6837 		switch (cstate->linktype) {
6838 		case DLT_EN10MB:
6839 		case DLT_NETANALYZER:
6840 		case DLT_NETANALYZER_TRANSPARENT:
6841 			tmp = gen_prevlinkhdr_check(cstate);
6842 			b = gen_ehostop(cstate, eaddr, (int)q.dir);
6843 			if (tmp != NULL)
6844 				gen_and(tmp, b);
6845 			return b;
6846 		case DLT_FDDI:
6847 			return gen_fhostop(cstate, eaddr, (int)q.dir);
6848 		case DLT_IEEE802:
6849 			return gen_thostop(cstate, eaddr, (int)q.dir);
6850 		case DLT_IEEE802_11:
6851 		case DLT_PRISM_HEADER:
6852 		case DLT_IEEE802_11_RADIO_AVS:
6853 		case DLT_IEEE802_11_RADIO:
6854 		case DLT_PPI:
6855 			return gen_wlanhostop(cstate, eaddr, (int)q.dir);
6856 		case DLT_IP_OVER_FC:
6857 			return gen_ipfchostop(cstate, eaddr, (int)q.dir);
6858 		default:
6859 			bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6860 			break;
6861 		}
6862 	}
6863 	bpf_error(cstate, "ethernet address used in non-ether expression");
6864 	/* NOTREACHED */
6865 }
6866 
6867 void
6868 sappend(struct slist *s0, struct slist *s1)
6869 {
6870 	/*
6871 	 * This is definitely not the best way to do this, but the
6872 	 * lists will rarely get long.
6873 	 */
6874 	while (s0->next)
6875 		s0 = s0->next;
6876 	s0->next = s1;
6877 }
6878 
6879 static struct slist *
6880 xfer_to_x(compiler_state_t *cstate, struct arth *a)
6881 {
6882 	struct slist *s;
6883 
6884 	s = new_stmt(cstate, BPF_LDX|BPF_MEM);
6885 	s->s.k = a->regno;
6886 	return s;
6887 }
6888 
6889 static struct slist *
6890 xfer_to_a(compiler_state_t *cstate, struct arth *a)
6891 {
6892 	struct slist *s;
6893 
6894 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
6895 	s->s.k = a->regno;
6896 	return s;
6897 }
6898 
6899 /*
6900  * Modify "index" to use the value stored into its register as an
6901  * offset relative to the beginning of the header for the protocol
6902  * "proto", and allocate a register and put an item "size" bytes long
6903  * (1, 2, or 4) at that offset into that register, making it the register
6904  * for "index".
6905  */
6906 struct arth *
6907 gen_load(compiler_state_t *cstate, int proto, struct arth *inst, int size)
6908 {
6909 	struct slist *s, *tmp;
6910 	struct block *b;
6911 	int regno = alloc_reg(cstate);
6912 
6913 	free_reg(cstate, inst->regno);
6914 	switch (size) {
6915 
6916 	default:
6917 		bpf_error(cstate, "data size must be 1, 2, or 4");
6918 
6919 	case 1:
6920 		size = BPF_B;
6921 		break;
6922 
6923 	case 2:
6924 		size = BPF_H;
6925 		break;
6926 
6927 	case 4:
6928 		size = BPF_W;
6929 		break;
6930 	}
6931 	switch (proto) {
6932 	default:
6933 		bpf_error(cstate, "unsupported index operation");
6934 
6935 	case Q_RADIO:
6936 		/*
6937 		 * The offset is relative to the beginning of the packet
6938 		 * data, if we have a radio header.  (If we don't, this
6939 		 * is an error.)
6940 		 */
6941 		if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
6942 		    cstate->linktype != DLT_IEEE802_11_RADIO &&
6943 		    cstate->linktype != DLT_PRISM_HEADER)
6944 			bpf_error(cstate, "radio information not present in capture");
6945 
6946 		/*
6947 		 * Load into the X register the offset computed into the
6948 		 * register specified by "index".
6949 		 */
6950 		s = xfer_to_x(cstate, inst);
6951 
6952 		/*
6953 		 * Load the item at that offset.
6954 		 */
6955 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
6956 		sappend(s, tmp);
6957 		sappend(inst->s, s);
6958 		break;
6959 
6960 	case Q_LINK:
6961 		/*
6962 		 * The offset is relative to the beginning of
6963 		 * the link-layer header.
6964 		 *
6965 		 * XXX - what about ATM LANE?  Should the index be
6966 		 * relative to the beginning of the AAL5 frame, so
6967 		 * that 0 refers to the beginning of the LE Control
6968 		 * field, or relative to the beginning of the LAN
6969 		 * frame, so that 0 refers, for Ethernet LANE, to
6970 		 * the beginning of the destination address?
6971 		 */
6972 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
6973 
6974 		/*
6975 		 * If "s" is non-null, it has code to arrange that the
6976 		 * X register contains the length of the prefix preceding
6977 		 * the link-layer header.  Add to it the offset computed
6978 		 * into the register specified by "index", and move that
6979 		 * into the X register.  Otherwise, just load into the X
6980 		 * register the offset computed into the register specified
6981 		 * by "index".
6982 		 */
6983 		if (s != NULL) {
6984 			sappend(s, xfer_to_a(cstate, inst));
6985 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
6986 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
6987 		} else
6988 			s = xfer_to_x(cstate, inst);
6989 
6990 		/*
6991 		 * Load the item at the sum of the offset we've put in the
6992 		 * X register and the offset of the start of the link
6993 		 * layer header (which is 0 if the radio header is
6994 		 * variable-length; that header length is what we put
6995 		 * into the X register and then added to the index).
6996 		 */
6997 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
6998 		tmp->s.k = cstate->off_linkhdr.constant_part;
6999 		sappend(s, tmp);
7000 		sappend(inst->s, s);
7001 		break;
7002 
7003 	case Q_IP:
7004 	case Q_ARP:
7005 	case Q_RARP:
7006 	case Q_ATALK:
7007 	case Q_DECNET:
7008 	case Q_SCA:
7009 	case Q_LAT:
7010 	case Q_MOPRC:
7011 	case Q_MOPDL:
7012 	case Q_IPV6:
7013 		/*
7014 		 * The offset is relative to the beginning of
7015 		 * the network-layer header.
7016 		 * XXX - are there any cases where we want
7017 		 * cstate->off_nl_nosnap?
7018 		 */
7019 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7020 
7021 		/*
7022 		 * If "s" is non-null, it has code to arrange that the
7023 		 * X register contains the variable part of the offset
7024 		 * of the link-layer payload.  Add to it the offset
7025 		 * computed into the register specified by "index",
7026 		 * and move that into the X register.  Otherwise, just
7027 		 * load into the X register the offset computed into
7028 		 * the register specified by "index".
7029 		 */
7030 		if (s != NULL) {
7031 			sappend(s, xfer_to_a(cstate, inst));
7032 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7033 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7034 		} else
7035 			s = xfer_to_x(cstate, inst);
7036 
7037 		/*
7038 		 * Load the item at the sum of the offset we've put in the
7039 		 * X register, the offset of the start of the network
7040 		 * layer header from the beginning of the link-layer
7041 		 * payload, and the constant part of the offset of the
7042 		 * start of the link-layer payload.
7043 		 */
7044 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
7045 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7046 		sappend(s, tmp);
7047 		sappend(inst->s, s);
7048 
7049 		/*
7050 		 * Do the computation only if the packet contains
7051 		 * the protocol in question.
7052 		 */
7053 		b = gen_proto_abbrev(cstate, proto);
7054 		if (inst->b)
7055 			gen_and(inst->b, b);
7056 		inst->b = b;
7057 		break;
7058 
7059 	case Q_SCTP:
7060 	case Q_TCP:
7061 	case Q_UDP:
7062 	case Q_ICMP:
7063 	case Q_IGMP:
7064 	case Q_IGRP:
7065 	case Q_PIM:
7066 	case Q_VRRP:
7067 	case Q_CARP:
7068 		/*
7069 		 * The offset is relative to the beginning of
7070 		 * the transport-layer header.
7071 		 *
7072 		 * Load the X register with the length of the IPv4 header
7073 		 * (plus the offset of the link-layer header, if it's
7074 		 * a variable-length header), in bytes.
7075 		 *
7076 		 * XXX - are there any cases where we want
7077 		 * cstate->off_nl_nosnap?
7078 		 * XXX - we should, if we're built with
7079 		 * IPv6 support, generate code to load either
7080 		 * IPv4, IPv6, or both, as appropriate.
7081 		 */
7082 		s = gen_loadx_iphdrlen(cstate);
7083 
7084 		/*
7085 		 * The X register now contains the sum of the variable
7086 		 * part of the offset of the link-layer payload and the
7087 		 * length of the network-layer header.
7088 		 *
7089 		 * Load into the A register the offset relative to
7090 		 * the beginning of the transport layer header,
7091 		 * add the X register to that, move that to the
7092 		 * X register, and load with an offset from the
7093 		 * X register equal to the sum of the constant part of
7094 		 * the offset of the link-layer payload and the offset,
7095 		 * relative to the beginning of the link-layer payload,
7096 		 * of the network-layer header.
7097 		 */
7098 		sappend(s, xfer_to_a(cstate, inst));
7099 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7100 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7101 		sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size));
7102 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7103 		sappend(inst->s, s);
7104 
7105 		/*
7106 		 * Do the computation only if the packet contains
7107 		 * the protocol in question - which is true only
7108 		 * if this is an IP datagram and is the first or
7109 		 * only fragment of that datagram.
7110 		 */
7111 		gen_and(gen_proto_abbrev(cstate, proto), b = gen_ipfrag(cstate));
7112 		if (inst->b)
7113 			gen_and(inst->b, b);
7114 		gen_and(gen_proto_abbrev(cstate, Q_IP), b);
7115 		inst->b = b;
7116 		break;
7117 	case Q_ICMPV6:
7118         /*
7119         * Do the computation only if the packet contains
7120         * the protocol in question.
7121         */
7122         b = gen_proto_abbrev(cstate, Q_IPV6);
7123         if (inst->b) {
7124             gen_and(inst->b, b);
7125         }
7126         inst->b = b;
7127 
7128         /*
7129         * Check if we have an icmp6 next header
7130         */
7131         b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7132         if (inst->b) {
7133             gen_and(inst->b, b);
7134         }
7135         inst->b = b;
7136 
7137 
7138         s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7139         /*
7140         * If "s" is non-null, it has code to arrange that the
7141         * X register contains the variable part of the offset
7142         * of the link-layer payload.  Add to it the offset
7143         * computed into the register specified by "index",
7144         * and move that into the X register.  Otherwise, just
7145         * load into the X register the offset computed into
7146         * the register specified by "index".
7147         */
7148         if (s != NULL) {
7149             sappend(s, xfer_to_a(cstate, inst));
7150             sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7151             sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7152         } else {
7153             s = xfer_to_x(cstate, inst);
7154         }
7155 
7156         /*
7157         * Load the item at the sum of the offset we've put in the
7158         * X register, the offset of the start of the network
7159         * layer header from the beginning of the link-layer
7160         * payload, and the constant part of the offset of the
7161         * start of the link-layer payload.
7162         */
7163         tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
7164         tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7165 
7166         sappend(s, tmp);
7167         sappend(inst->s, s);
7168 
7169         break;
7170 	}
7171 	inst->regno = regno;
7172 	s = new_stmt(cstate, BPF_ST);
7173 	s->s.k = regno;
7174 	sappend(inst->s, s);
7175 
7176 	return inst;
7177 }
7178 
7179 struct block *
7180 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7181     struct arth *a1, int reversed)
7182 {
7183 	struct slist *s0, *s1, *s2;
7184 	struct block *b, *tmp;
7185 
7186 	s0 = xfer_to_x(cstate, a1);
7187 	s1 = xfer_to_a(cstate, a0);
7188 	if (code == BPF_JEQ) {
7189 		s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7190 		b = new_block(cstate, JMP(code));
7191 		sappend(s1, s2);
7192 	}
7193 	else
7194 		b = new_block(cstate, BPF_JMP|code|BPF_X);
7195 	if (reversed)
7196 		gen_not(b);
7197 
7198 	sappend(s0, s1);
7199 	sappend(a1->s, s0);
7200 	sappend(a0->s, a1->s);
7201 
7202 	b->stmts = a0->s;
7203 
7204 	free_reg(cstate, a0->regno);
7205 	free_reg(cstate, a1->regno);
7206 
7207 	/* 'and' together protocol checks */
7208 	if (a0->b) {
7209 		if (a1->b) {
7210 			gen_and(a0->b, tmp = a1->b);
7211 		}
7212 		else
7213 			tmp = a0->b;
7214 	} else
7215 		tmp = a1->b;
7216 
7217 	if (tmp)
7218 		gen_and(tmp, b);
7219 
7220 	return b;
7221 }
7222 
7223 struct arth *
7224 gen_loadlen(compiler_state_t *cstate)
7225 {
7226 	int regno = alloc_reg(cstate);
7227 	struct arth *a = (struct arth *)newchunk(cstate, sizeof(*a));
7228 	struct slist *s;
7229 
7230 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7231 	s->next = new_stmt(cstate, BPF_ST);
7232 	s->next->s.k = regno;
7233 	a->s = s;
7234 	a->regno = regno;
7235 
7236 	return a;
7237 }
7238 
7239 struct arth *
7240 gen_loadi(compiler_state_t *cstate, int val)
7241 {
7242 	struct arth *a;
7243 	struct slist *s;
7244 	int reg;
7245 
7246 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7247 
7248 	reg = alloc_reg(cstate);
7249 
7250 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
7251 	s->s.k = val;
7252 	s->next = new_stmt(cstate, BPF_ST);
7253 	s->next->s.k = reg;
7254 	a->s = s;
7255 	a->regno = reg;
7256 
7257 	return a;
7258 }
7259 
7260 struct arth *
7261 gen_neg(compiler_state_t *cstate, struct arth *a)
7262 {
7263 	struct slist *s;
7264 
7265 	s = xfer_to_a(cstate, a);
7266 	sappend(a->s, s);
7267 	s = new_stmt(cstate, BPF_ALU|BPF_NEG);
7268 	s->s.k = 0;
7269 	sappend(a->s, s);
7270 	s = new_stmt(cstate, BPF_ST);
7271 	s->s.k = a->regno;
7272 	sappend(a->s, s);
7273 
7274 	return a;
7275 }
7276 
7277 struct arth *
7278 gen_arth(compiler_state_t *cstate, int code, struct arth *a0,
7279     struct arth *a1)
7280 {
7281 	struct slist *s0, *s1, *s2;
7282 
7283 	/*
7284 	 * Disallow division by, or modulus by, zero; we do this here
7285 	 * so that it gets done even if the optimizer is disabled.
7286 	 */
7287 	if (code == BPF_DIV) {
7288 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7289 			bpf_error(cstate, "division by zero");
7290 	} else if (code == BPF_MOD) {
7291 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7292 			bpf_error(cstate, "modulus by zero");
7293 	}
7294 	s0 = xfer_to_x(cstate, a1);
7295 	s1 = xfer_to_a(cstate, a0);
7296 	s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
7297 
7298 	sappend(s1, s2);
7299 	sappend(s0, s1);
7300 	sappend(a1->s, s0);
7301 	sappend(a0->s, a1->s);
7302 
7303 	free_reg(cstate, a0->regno);
7304 	free_reg(cstate, a1->regno);
7305 
7306 	s0 = new_stmt(cstate, BPF_ST);
7307 	a0->regno = s0->s.k = alloc_reg(cstate);
7308 	sappend(a0->s, s0);
7309 
7310 	return a0;
7311 }
7312 
7313 /*
7314  * Initialize the table of used registers and the current register.
7315  */
7316 static void
7317 init_regs(compiler_state_t *cstate)
7318 {
7319 	cstate->curreg = 0;
7320 	memset(cstate->regused, 0, sizeof cstate->regused);
7321 }
7322 
7323 /*
7324  * Return the next free register.
7325  */
7326 static int
7327 alloc_reg(compiler_state_t *cstate)
7328 {
7329 	int n = BPF_MEMWORDS;
7330 
7331 	while (--n >= 0) {
7332 		if (cstate->regused[cstate->curreg])
7333 			cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
7334 		else {
7335 			cstate->regused[cstate->curreg] = 1;
7336 			return cstate->curreg;
7337 		}
7338 	}
7339 	bpf_error(cstate, "too many registers needed to evaluate expression");
7340 	/* NOTREACHED */
7341 }
7342 
7343 /*
7344  * Return a register to the table so it can
7345  * be used later.
7346  */
7347 static void
7348 free_reg(compiler_state_t *cstate, int n)
7349 {
7350 	cstate->regused[n] = 0;
7351 }
7352 
7353 static struct block *
7354 gen_len(compiler_state_t *cstate, int jmp, int n)
7355 {
7356 	struct slist *s;
7357 	struct block *b;
7358 
7359 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7360 	b = new_block(cstate, JMP(jmp));
7361 	b->stmts = s;
7362 	b->s.k = n;
7363 
7364 	return b;
7365 }
7366 
7367 struct block *
7368 gen_greater(compiler_state_t *cstate, int n)
7369 {
7370 	return gen_len(cstate, BPF_JGE, n);
7371 }
7372 
7373 /*
7374  * Actually, this is less than or equal.
7375  */
7376 struct block *
7377 gen_less(compiler_state_t *cstate, int n)
7378 {
7379 	struct block *b;
7380 
7381 	b = gen_len(cstate, BPF_JGT, n);
7382 	gen_not(b);
7383 
7384 	return b;
7385 }
7386 
7387 /*
7388  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7389  * the beginning of the link-layer header.
7390  * XXX - that means you can't test values in the radiotap header, but
7391  * as that header is difficult if not impossible to parse generally
7392  * without a loop, that might not be a severe problem.  A new keyword
7393  * "radio" could be added for that, although what you'd really want
7394  * would be a way of testing particular radio header values, which
7395  * would generate code appropriate to the radio header in question.
7396  */
7397 struct block *
7398 gen_byteop(compiler_state_t *cstate, int op, int idx, int val)
7399 {
7400 	struct block *b;
7401 	struct slist *s;
7402 
7403 	switch (op) {
7404 	default:
7405 		abort();
7406 
7407 	case '=':
7408 		return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7409 
7410 	case '<':
7411 		b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7412 		return b;
7413 
7414 	case '>':
7415 		b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7416 		return b;
7417 
7418 	case '|':
7419 		s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
7420 		break;
7421 
7422 	case '&':
7423 		s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
7424 		break;
7425 	}
7426 	s->s.k = val;
7427 	b = new_block(cstate, JMP(BPF_JEQ));
7428 	b->stmts = s;
7429 	gen_not(b);
7430 
7431 	return b;
7432 }
7433 
7434 static const u_char abroadcast[] = { 0x0 };
7435 
7436 struct block *
7437 gen_broadcast(compiler_state_t *cstate, int proto)
7438 {
7439 	bpf_u_int32 hostmask;
7440 	struct block *b0, *b1, *b2;
7441 	static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7442 
7443 	switch (proto) {
7444 
7445 	case Q_DEFAULT:
7446 	case Q_LINK:
7447 		switch (cstate->linktype) {
7448 		case DLT_ARCNET:
7449 		case DLT_ARCNET_LINUX:
7450 			return gen_ahostop(cstate, abroadcast, Q_DST);
7451 		case DLT_EN10MB:
7452 		case DLT_NETANALYZER:
7453 		case DLT_NETANALYZER_TRANSPARENT:
7454 			b1 = gen_prevlinkhdr_check(cstate);
7455 			b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
7456 			if (b1 != NULL)
7457 				gen_and(b1, b0);
7458 			return b0;
7459 		case DLT_FDDI:
7460 			return gen_fhostop(cstate, ebroadcast, Q_DST);
7461 		case DLT_IEEE802:
7462 			return gen_thostop(cstate, ebroadcast, Q_DST);
7463 		case DLT_IEEE802_11:
7464 		case DLT_PRISM_HEADER:
7465 		case DLT_IEEE802_11_RADIO_AVS:
7466 		case DLT_IEEE802_11_RADIO:
7467 		case DLT_PPI:
7468 			return gen_wlanhostop(cstate, ebroadcast, Q_DST);
7469 		case DLT_IP_OVER_FC:
7470 			return gen_ipfchostop(cstate, ebroadcast, Q_DST);
7471 		default:
7472 			bpf_error(cstate, "not a broadcast link");
7473 		}
7474 		break;
7475 
7476 	case Q_IP:
7477 		/*
7478 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7479 		 * as an indication that we don't know the netmask, and fail
7480 		 * in that case.
7481 		 */
7482 		if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
7483 			bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
7484 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
7485 		hostmask = ~cstate->netmask;
7486 		b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, (bpf_int32)0, hostmask);
7487 		b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
7488 			      (bpf_int32)(~0 & hostmask), hostmask);
7489 		gen_or(b1, b2);
7490 		gen_and(b0, b2);
7491 		return b2;
7492 	}
7493 	bpf_error(cstate, "only link-layer/IP broadcast filters supported");
7494 	/* NOTREACHED */
7495 }
7496 
7497 /*
7498  * Generate code to test the low-order bit of a MAC address (that's
7499  * the bottom bit of the *first* byte).
7500  */
7501 static struct block *
7502 gen_mac_multicast(compiler_state_t *cstate, int offset)
7503 {
7504 	register struct block *b0;
7505 	register struct slist *s;
7506 
7507 	/* link[offset] & 1 != 0 */
7508 	s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
7509 	b0 = new_block(cstate, JMP(BPF_JSET));
7510 	b0->s.k = 1;
7511 	b0->stmts = s;
7512 	return b0;
7513 }
7514 
7515 struct block *
7516 gen_multicast(compiler_state_t *cstate, int proto)
7517 {
7518 	register struct block *b0, *b1, *b2;
7519 	register struct slist *s;
7520 
7521 	switch (proto) {
7522 
7523 	case Q_DEFAULT:
7524 	case Q_LINK:
7525 		switch (cstate->linktype) {
7526 		case DLT_ARCNET:
7527 		case DLT_ARCNET_LINUX:
7528 			/* all ARCnet multicasts use the same address */
7529 			return gen_ahostop(cstate, abroadcast, Q_DST);
7530 		case DLT_EN10MB:
7531 		case DLT_NETANALYZER:
7532 		case DLT_NETANALYZER_TRANSPARENT:
7533 			b1 = gen_prevlinkhdr_check(cstate);
7534 			/* ether[0] & 1 != 0 */
7535 			b0 = gen_mac_multicast(cstate, 0);
7536 			if (b1 != NULL)
7537 				gen_and(b1, b0);
7538 			return b0;
7539 		case DLT_FDDI:
7540 			/*
7541 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7542 			 *
7543 			 * XXX - was that referring to bit-order issues?
7544 			 */
7545 			/* fddi[1] & 1 != 0 */
7546 			return gen_mac_multicast(cstate, 1);
7547 		case DLT_IEEE802:
7548 			/* tr[2] & 1 != 0 */
7549 			return gen_mac_multicast(cstate, 2);
7550 		case DLT_IEEE802_11:
7551 		case DLT_PRISM_HEADER:
7552 		case DLT_IEEE802_11_RADIO_AVS:
7553 		case DLT_IEEE802_11_RADIO:
7554 		case DLT_PPI:
7555 			/*
7556 			 * Oh, yuk.
7557 			 *
7558 			 *	For control frames, there is no DA.
7559 			 *
7560 			 *	For management frames, DA is at an
7561 			 *	offset of 4 from the beginning of
7562 			 *	the packet.
7563 			 *
7564 			 *	For data frames, DA is at an offset
7565 			 *	of 4 from the beginning of the packet
7566 			 *	if To DS is clear and at an offset of
7567 			 *	16 from the beginning of the packet
7568 			 *	if To DS is set.
7569 			 */
7570 
7571 			/*
7572 			 * Generate the tests to be done for data frames.
7573 			 *
7574 			 * First, check for To DS set, i.e. "link[1] & 0x01".
7575 			 */
7576 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
7577 			b1 = new_block(cstate, JMP(BPF_JSET));
7578 			b1->s.k = 0x01;	/* To DS */
7579 			b1->stmts = s;
7580 
7581 			/*
7582 			 * If To DS is set, the DA is at 16.
7583 			 */
7584 			b0 = gen_mac_multicast(cstate, 16);
7585 			gen_and(b1, b0);
7586 
7587 			/*
7588 			 * Now, check for To DS not set, i.e. check
7589 			 * "!(link[1] & 0x01)".
7590 			 */
7591 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
7592 			b2 = new_block(cstate, JMP(BPF_JSET));
7593 			b2->s.k = 0x01;	/* To DS */
7594 			b2->stmts = s;
7595 			gen_not(b2);
7596 
7597 			/*
7598 			 * If To DS is not set, the DA is at 4.
7599 			 */
7600 			b1 = gen_mac_multicast(cstate, 4);
7601 			gen_and(b2, b1);
7602 
7603 			/*
7604 			 * Now OR together the last two checks.  That gives
7605 			 * the complete set of checks for data frames.
7606 			 */
7607 			gen_or(b1, b0);
7608 
7609 			/*
7610 			 * Now check for a data frame.
7611 			 * I.e, check "link[0] & 0x08".
7612 			 */
7613 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
7614 			b1 = new_block(cstate, JMP(BPF_JSET));
7615 			b1->s.k = 0x08;
7616 			b1->stmts = s;
7617 
7618 			/*
7619 			 * AND that with the checks done for data frames.
7620 			 */
7621 			gen_and(b1, b0);
7622 
7623 			/*
7624 			 * If the high-order bit of the type value is 0, this
7625 			 * is a management frame.
7626 			 * I.e, check "!(link[0] & 0x08)".
7627 			 */
7628 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
7629 			b2 = new_block(cstate, JMP(BPF_JSET));
7630 			b2->s.k = 0x08;
7631 			b2->stmts = s;
7632 			gen_not(b2);
7633 
7634 			/*
7635 			 * For management frames, the DA is at 4.
7636 			 */
7637 			b1 = gen_mac_multicast(cstate, 4);
7638 			gen_and(b2, b1);
7639 
7640 			/*
7641 			 * OR that with the checks done for data frames.
7642 			 * That gives the checks done for management and
7643 			 * data frames.
7644 			 */
7645 			gen_or(b1, b0);
7646 
7647 			/*
7648 			 * If the low-order bit of the type value is 1,
7649 			 * this is either a control frame or a frame
7650 			 * with a reserved type, and thus not a
7651 			 * frame with an SA.
7652 			 *
7653 			 * I.e., check "!(link[0] & 0x04)".
7654 			 */
7655 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
7656 			b1 = new_block(cstate, JMP(BPF_JSET));
7657 			b1->s.k = 0x04;
7658 			b1->stmts = s;
7659 			gen_not(b1);
7660 
7661 			/*
7662 			 * AND that with the checks for data and management
7663 			 * frames.
7664 			 */
7665 			gen_and(b1, b0);
7666 			return b0;
7667 		case DLT_IP_OVER_FC:
7668 			b0 = gen_mac_multicast(cstate, 2);
7669 			return b0;
7670 		default:
7671 			break;
7672 		}
7673 		/* Link not known to support multicasts */
7674 		break;
7675 
7676 	case Q_IP:
7677 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
7678 		b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, (bpf_int32)224);
7679 		gen_and(b0, b1);
7680 		return b1;
7681 
7682 	case Q_IPV6:
7683 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
7684 		b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, (bpf_int32)255);
7685 		gen_and(b0, b1);
7686 		return b1;
7687 	}
7688 	bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7689 	/* NOTREACHED */
7690 }
7691 
7692 /*
7693  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7694  * Outbound traffic is sent by this machine, while inbound traffic is
7695  * sent by a remote machine (and may include packets destined for a
7696  * unicast or multicast link-layer address we are not subscribing to).
7697  * These are the same definitions implemented by pcap_setdirection().
7698  * Capturing only unicast traffic destined for this host is probably
7699  * better accomplished using a higher-layer filter.
7700  */
7701 struct block *
7702 gen_inbound(compiler_state_t *cstate, int dir)
7703 {
7704 	register struct block *b0;
7705 
7706 	/*
7707 	 * Only some data link types support inbound/outbound qualifiers.
7708 	 */
7709 	switch (cstate->linktype) {
7710 	case DLT_SLIP:
7711 		b0 = gen_relation(cstate, BPF_JEQ,
7712 			  gen_load(cstate, Q_LINK, gen_loadi(cstate, 0), 1),
7713 			  gen_loadi(cstate, 0),
7714 			  dir);
7715 		break;
7716 
7717 	case DLT_IPNET:
7718 		if (dir) {
7719 			/* match outgoing packets */
7720 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
7721 		} else {
7722 			/* match incoming packets */
7723 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
7724 		}
7725 		break;
7726 
7727 	case DLT_LINUX_SLL:
7728 		/* match outgoing packets */
7729 		b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
7730 		if (!dir) {
7731 			/* to filter on inbound traffic, invert the match */
7732 			gen_not(b0);
7733 		}
7734 		break;
7735 
7736 #ifdef HAVE_NET_PFVAR_H
7737 	case DLT_PFLOG:
7738 		b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
7739 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7740 		break;
7741 #endif
7742 
7743 	case DLT_PPP_PPPD:
7744 		if (dir) {
7745 			/* match outgoing packets */
7746 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
7747 		} else {
7748 			/* match incoming packets */
7749 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
7750 		}
7751 		break;
7752 
7753         case DLT_JUNIPER_MFR:
7754         case DLT_JUNIPER_MLFR:
7755         case DLT_JUNIPER_MLPPP:
7756 	case DLT_JUNIPER_ATM1:
7757 	case DLT_JUNIPER_ATM2:
7758 	case DLT_JUNIPER_PPPOE:
7759 	case DLT_JUNIPER_PPPOE_ATM:
7760         case DLT_JUNIPER_GGSN:
7761         case DLT_JUNIPER_ES:
7762         case DLT_JUNIPER_MONITOR:
7763         case DLT_JUNIPER_SERVICES:
7764         case DLT_JUNIPER_ETHER:
7765         case DLT_JUNIPER_PPP:
7766         case DLT_JUNIPER_FRELAY:
7767         case DLT_JUNIPER_CHDLC:
7768         case DLT_JUNIPER_VP:
7769         case DLT_JUNIPER_ST:
7770         case DLT_JUNIPER_ISM:
7771         case DLT_JUNIPER_VS:
7772         case DLT_JUNIPER_SRX_E2E:
7773         case DLT_JUNIPER_FIBRECHANNEL:
7774 	case DLT_JUNIPER_ATM_CEMIC:
7775 
7776 		/* juniper flags (including direction) are stored
7777 		 * the byte after the 3-byte magic number */
7778 		if (dir) {
7779 			/* match outgoing packets */
7780 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
7781 		} else {
7782 			/* match incoming packets */
7783 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
7784 		}
7785 		break;
7786 
7787 	default:
7788 		/*
7789 		 * If we have packet meta-data indicating a direction,
7790 		 * and that metadata can be checked by BPF code, check
7791 		 * it.  Otherwise, give up, as this link-layer type has
7792 		 * nothing in the packet data.
7793 		 *
7794 		 * Currently, the only platform where a BPF filter can
7795 		 * check that metadata is Linux with the in-kernel
7796 		 * BPF interpreter.  If other packet capture mechanisms
7797 		 * and BPF filters also supported this, it would be
7798 		 * nice.  It would be even better if they made that
7799 		 * metadata available so that we could provide it
7800 		 * with newer capture APIs, allowing it to be saved
7801 		 * in pcapng files.
7802 		 */
7803 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7804 		/*
7805 		 * This is Linux with PF_PACKET support.
7806 		 * If this is a *live* capture, we can look at
7807 		 * special meta-data in the filter expression;
7808 		 * if it's a savefile, we can't.
7809 		 */
7810 		if (cstate->bpf_pcap->rfile != NULL) {
7811 			/* We have a FILE *, so this is a savefile */
7812 			bpf_error(cstate, "inbound/outbound not supported on linktype %d when reading savefiles",
7813 			    cstate->linktype);
7814 			b0 = NULL;
7815 			/* NOTREACHED */
7816 		}
7817 		/* match outgoing packets */
7818 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7819 		             PACKET_OUTGOING);
7820 		if (!dir) {
7821 			/* to filter on inbound traffic, invert the match */
7822 			gen_not(b0);
7823 		}
7824 #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7825 		bpf_error(cstate, "inbound/outbound not supported on linktype %d",
7826 		    cstate->linktype);
7827 		/* NOTREACHED */
7828 #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7829 	}
7830 	return (b0);
7831 }
7832 
7833 #ifdef HAVE_NET_PFVAR_H
7834 /* PF firewall log matched interface */
7835 struct block *
7836 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
7837 {
7838 	struct block *b0;
7839 	u_int len, off;
7840 
7841 	if (cstate->linktype != DLT_PFLOG) {
7842 		bpf_error(cstate, "ifname supported only on PF linktype");
7843 		/* NOTREACHED */
7844 	}
7845 	len = sizeof(((struct pfloghdr *)0)->ifname);
7846 	off = offsetof(struct pfloghdr, ifname);
7847 	if (strlen(ifname) >= len) {
7848 		bpf_error(cstate, "ifname interface names can only be %d characters",
7849 		    len-1);
7850 		/* NOTREACHED */
7851 	}
7852 	b0 = gen_bcmp(cstate, OR_LINKHDR, off, strlen(ifname), (const u_char *)ifname);
7853 	return (b0);
7854 }
7855 
7856 /* PF firewall log ruleset name */
7857 struct block *
7858 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
7859 {
7860 	struct block *b0;
7861 
7862 	if (cstate->linktype != DLT_PFLOG) {
7863 		bpf_error(cstate, "ruleset supported only on PF linktype");
7864 		/* NOTREACHED */
7865 	}
7866 
7867 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7868 		bpf_error(cstate, "ruleset names can only be %ld characters",
7869 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7870 		/* NOTREACHED */
7871 	}
7872 
7873 	b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
7874 	    strlen(ruleset), (const u_char *)ruleset);
7875 	return (b0);
7876 }
7877 
7878 /* PF firewall log rule number */
7879 struct block *
7880 gen_pf_rnr(compiler_state_t *cstate, int rnr)
7881 {
7882 	struct block *b0;
7883 
7884 	if (cstate->linktype != DLT_PFLOG) {
7885 		bpf_error(cstate, "rnr supported only on PF linktype");
7886 		/* NOTREACHED */
7887 	}
7888 
7889 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
7890 		 (bpf_int32)rnr);
7891 	return (b0);
7892 }
7893 
7894 /* PF firewall log sub-rule number */
7895 struct block *
7896 gen_pf_srnr(compiler_state_t *cstate, int srnr)
7897 {
7898 	struct block *b0;
7899 
7900 	if (cstate->linktype != DLT_PFLOG) {
7901 		bpf_error(cstate, "srnr supported only on PF linktype");
7902 		/* NOTREACHED */
7903 	}
7904 
7905 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
7906 	    (bpf_int32)srnr);
7907 	return (b0);
7908 }
7909 
7910 /* PF firewall log reason code */
7911 struct block *
7912 gen_pf_reason(compiler_state_t *cstate, int reason)
7913 {
7914 	struct block *b0;
7915 
7916 	if (cstate->linktype != DLT_PFLOG) {
7917 		bpf_error(cstate, "reason supported only on PF linktype");
7918 		/* NOTREACHED */
7919 	}
7920 
7921 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
7922 	    (bpf_int32)reason);
7923 	return (b0);
7924 }
7925 
7926 /* PF firewall log action */
7927 struct block *
7928 gen_pf_action(compiler_state_t *cstate, int action)
7929 {
7930 	struct block *b0;
7931 
7932 	if (cstate->linktype != DLT_PFLOG) {
7933 		bpf_error(cstate, "action supported only on PF linktype");
7934 		/* NOTREACHED */
7935 	}
7936 
7937 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
7938 	    (bpf_int32)action);
7939 	return (b0);
7940 }
7941 #else /* !HAVE_NET_PFVAR_H */
7942 struct block *
7943 gen_pf_ifname(compiler_state_t *cstate, const char *ifname _U_)
7944 {
7945 	bpf_error(cstate, "libpcap was compiled without pf support");
7946 	/* NOTREACHED */
7947 }
7948 
7949 struct block *
7950 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset _U_)
7951 {
7952 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7953 	/* NOTREACHED */
7954 }
7955 
7956 struct block *
7957 gen_pf_rnr(compiler_state_t *cstate, int rnr _U_)
7958 {
7959 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7960 	/* NOTREACHED */
7961 }
7962 
7963 struct block *
7964 gen_pf_srnr(compiler_state_t *cstate, int srnr _U_)
7965 {
7966 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7967 	/* NOTREACHED */
7968 }
7969 
7970 struct block *
7971 gen_pf_reason(compiler_state_t *cstate, int reason _U_)
7972 {
7973 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7974 	/* NOTREACHED */
7975 }
7976 
7977 struct block *
7978 gen_pf_action(compiler_state_t *cstate, int action _U_)
7979 {
7980 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
7981 	/* NOTREACHED */
7982 }
7983 #endif /* HAVE_NET_PFVAR_H */
7984 
7985 /* IEEE 802.11 wireless header */
7986 struct block *
7987 gen_p80211_type(compiler_state_t *cstate, int type, int mask)
7988 {
7989 	struct block *b0;
7990 
7991 	switch (cstate->linktype) {
7992 
7993 	case DLT_IEEE802_11:
7994 	case DLT_PRISM_HEADER:
7995 	case DLT_IEEE802_11_RADIO_AVS:
7996 	case DLT_IEEE802_11_RADIO:
7997 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, (bpf_int32)type,
7998 		    (bpf_int32)mask);
7999 		break;
8000 
8001 	default:
8002 		bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
8003 		/* NOTREACHED */
8004 	}
8005 
8006 	return (b0);
8007 }
8008 
8009 struct block *
8010 gen_p80211_fcdir(compiler_state_t *cstate, int fcdir)
8011 {
8012 	struct block *b0;
8013 
8014 	switch (cstate->linktype) {
8015 
8016 	case DLT_IEEE802_11:
8017 	case DLT_PRISM_HEADER:
8018 	case DLT_IEEE802_11_RADIO_AVS:
8019 	case DLT_IEEE802_11_RADIO:
8020 		break;
8021 
8022 	default:
8023 		bpf_error(cstate, "frame direction supported only with 802.11 headers");
8024 		/* NOTREACHED */
8025 	}
8026 
8027 	b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, (bpf_int32)fcdir,
8028 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
8029 
8030 	return (b0);
8031 }
8032 
8033 struct block *
8034 gen_acode(compiler_state_t *cstate, const u_char *eaddr, struct qual q)
8035 {
8036 	switch (cstate->linktype) {
8037 
8038 	case DLT_ARCNET:
8039 	case DLT_ARCNET_LINUX:
8040 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8041 		    q.proto == Q_LINK)
8042 			return (gen_ahostop(cstate, eaddr, (int)q.dir));
8043 		else {
8044 			bpf_error(cstate, "ARCnet address used in non-arc expression");
8045 			/* NOTREACHED */
8046 		}
8047 		break;
8048 
8049 	default:
8050 		bpf_error(cstate, "aid supported only on ARCnet");
8051 		/* NOTREACHED */
8052 	}
8053 }
8054 
8055 static struct block *
8056 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
8057 {
8058 	register struct block *b0, *b1;
8059 
8060 	switch (dir) {
8061 	/* src comes first, different from Ethernet */
8062 	case Q_SRC:
8063 		return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
8064 
8065 	case Q_DST:
8066 		return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8067 
8068 	case Q_AND:
8069 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8070 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8071 		gen_and(b0, b1);
8072 		return b1;
8073 
8074 	case Q_DEFAULT:
8075 	case Q_OR:
8076 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8077 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8078 		gen_or(b0, b1);
8079 		return b1;
8080 
8081 	case Q_ADDR1:
8082 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
8083 		break;
8084 
8085 	case Q_ADDR2:
8086 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
8087 		break;
8088 
8089 	case Q_ADDR3:
8090 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
8091 		break;
8092 
8093 	case Q_ADDR4:
8094 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
8095 		break;
8096 
8097 	case Q_RA:
8098 		bpf_error(cstate, "'ra' is only supported on 802.11");
8099 		break;
8100 
8101 	case Q_TA:
8102 		bpf_error(cstate, "'ta' is only supported on 802.11");
8103 		break;
8104 	}
8105 	abort();
8106 	/* NOTREACHED */
8107 }
8108 
8109 static struct block *
8110 gen_vlan_tpid_test(compiler_state_t *cstate)
8111 {
8112 	struct block *b0, *b1;
8113 
8114 	/* check for VLAN, including QinQ */
8115 	b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8116 	b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8117 	gen_or(b0,b1);
8118 	b0 = b1;
8119 	b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8120 	gen_or(b0,b1);
8121 
8122 	return b1;
8123 }
8124 
8125 static struct block *
8126 gen_vlan_vid_test(compiler_state_t *cstate, int vlan_num)
8127 {
8128 	return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, (bpf_int32)vlan_num, 0x0fff);
8129 }
8130 
8131 static struct block *
8132 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, int vlan_num)
8133 {
8134 	struct block *b0, *b1;
8135 
8136 	b0 = gen_vlan_tpid_test(cstate);
8137 
8138 	if (vlan_num >= 0) {
8139 		b1 = gen_vlan_vid_test(cstate, vlan_num);
8140 		gen_and(b0, b1);
8141 		b0 = b1;
8142 	}
8143 
8144 	/*
8145 	 * Both payload and link header type follow the VLAN tags so that
8146 	 * both need to be updated.
8147 	 */
8148 	cstate->off_linkpl.constant_part += 4;
8149 	cstate->off_linktype.constant_part += 4;
8150 
8151 	return b0;
8152 }
8153 
8154 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8155 /* add v to variable part of off */
8156 static void
8157 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off, int v, struct slist *s)
8158 {
8159 	struct slist *s2;
8160 
8161 	if (!off->is_variable)
8162 		off->is_variable = 1;
8163 	if (off->reg == -1)
8164 		off->reg = alloc_reg(cstate);
8165 
8166 	s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
8167 	s2->s.k = off->reg;
8168 	sappend(s, s2);
8169 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
8170 	s2->s.k = v;
8171 	sappend(s, s2);
8172 	s2 = new_stmt(cstate, BPF_ST);
8173 	s2->s.k = off->reg;
8174 	sappend(s, s2);
8175 }
8176 
8177 /*
8178  * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8179  * and link type offsets first
8180  */
8181 static void
8182 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
8183 {
8184 	struct slist s;
8185 
8186 	/* offset determined at run time, shift variable part */
8187 	s.next = NULL;
8188 	cstate->is_vlan_vloffset = 1;
8189 	gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
8190 	gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
8191 
8192 	/* we get a pointer to a chain of or-ed blocks, patch first of them */
8193 	sappend(s.next, b_tpid->head->stmts);
8194 	b_tpid->head->stmts = s.next;
8195 }
8196 
8197 /*
8198  * patch block b_vid (VLAN id test) to load VID value either from packet
8199  * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8200  */
8201 static void
8202 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
8203 {
8204 	struct slist *s, *s2, *sjeq;
8205 	unsigned cnt;
8206 
8207 	s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8208 	s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8209 
8210 	/* true -> next instructions, false -> beginning of b_vid */
8211 	sjeq = new_stmt(cstate, JMP(BPF_JEQ));
8212 	sjeq->s.k = 1;
8213 	sjeq->s.jf = b_vid->stmts;
8214 	sappend(s, sjeq);
8215 
8216 	s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8217 	s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
8218 	sappend(s, s2);
8219 	sjeq->s.jt = s2;
8220 
8221 	/* jump to the test in b_vid (bypass loading VID from packet data) */
8222 	cnt = 0;
8223 	for (s2 = b_vid->stmts; s2; s2 = s2->next)
8224 		cnt++;
8225 	s2 = new_stmt(cstate, JMP(BPF_JA));
8226 	s2->s.k = cnt;
8227 	sappend(s, s2);
8228 
8229 	/* insert our statements at the beginning of b_vid */
8230 	sappend(s, b_vid->stmts);
8231 	b_vid->stmts = s;
8232 }
8233 
8234 /*
8235  * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8236  * extensions.  Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8237  * tag can be either in metadata or in packet data; therefore if the
8238  * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8239  * header for VLAN tag. As the decision is done at run time, we need
8240  * update variable part of the offsets
8241  */
8242 static struct block *
8243 gen_vlan_bpf_extensions(compiler_state_t *cstate, int vlan_num)
8244 {
8245         struct block *b0, *b_tpid, *b_vid = NULL;
8246         struct slist *s;
8247 
8248         /* generate new filter code based on extracting packet
8249          * metadata */
8250         s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8251         s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8252 
8253         b0 = new_block(cstate, JMP(BPF_JEQ));
8254         b0->stmts = s;
8255         b0->s.k = 1;
8256 
8257 	/*
8258 	 * This is tricky. We need to insert the statements updating variable
8259 	 * parts of offsets before the the traditional TPID and VID tests so
8260 	 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8261 	 * we do not want this update to affect those checks. That's why we
8262 	 * generate both test blocks first and insert the statements updating
8263 	 * variable parts of both offsets after that. This wouldn't work if
8264 	 * there already were variable length link header when entering this
8265 	 * function but gen_vlan_bpf_extensions() isn't called in that case.
8266 	 */
8267 	b_tpid = gen_vlan_tpid_test(cstate);
8268 	if (vlan_num >= 0)
8269 		b_vid = gen_vlan_vid_test(cstate, vlan_num);
8270 
8271 	gen_vlan_patch_tpid_test(cstate, b_tpid);
8272 	gen_or(b0, b_tpid);
8273 	b0 = b_tpid;
8274 
8275 	if (vlan_num >= 0) {
8276 		gen_vlan_patch_vid_test(cstate, b_vid);
8277 		gen_and(b0, b_vid);
8278 		b0 = b_vid;
8279 	}
8280 
8281         return b0;
8282 }
8283 #endif
8284 
8285 /*
8286  * support IEEE 802.1Q VLAN trunk over ethernet
8287  */
8288 struct block *
8289 gen_vlan(compiler_state_t *cstate, int vlan_num)
8290 {
8291 	struct	block	*b0;
8292 
8293 	/* can't check for VLAN-encapsulated packets inside MPLS */
8294 	if (cstate->label_stack_depth > 0)
8295 		bpf_error(cstate, "no VLAN match after MPLS");
8296 
8297 	/*
8298 	 * Check for a VLAN packet, and then change the offsets to point
8299 	 * to the type and data fields within the VLAN packet.  Just
8300 	 * increment the offsets, so that we can support a hierarchy, e.g.
8301 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
8302 	 * VLAN 100.
8303 	 *
8304 	 * XXX - this is a bit of a kludge.  If we were to split the
8305 	 * compiler into a parser that parses an expression and
8306 	 * generates an expression tree, and a code generator that
8307 	 * takes an expression tree (which could come from our
8308 	 * parser or from some other parser) and generates BPF code,
8309 	 * we could perhaps make the offsets parameters of routines
8310 	 * and, in the handler for an "AND" node, pass to subnodes
8311 	 * other than the VLAN node the adjusted offsets.
8312 	 *
8313 	 * This would mean that "vlan" would, instead of changing the
8314 	 * behavior of *all* tests after it, change only the behavior
8315 	 * of tests ANDed with it.  That would change the documented
8316 	 * semantics of "vlan", which might break some expressions.
8317 	 * However, it would mean that "(vlan and ip) or ip" would check
8318 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8319 	 * checking only for VLAN-encapsulated IP, so that could still
8320 	 * be considered worth doing; it wouldn't break expressions
8321 	 * that are of the form "vlan and ..." or "vlan N and ...",
8322 	 * which I suspect are the most common expressions involving
8323 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
8324 	 * would really want, now, as all the "or ..." tests would
8325 	 * be done assuming a VLAN, even though the "or" could be viewed
8326 	 * as meaning "or, if this isn't a VLAN packet...".
8327 	 */
8328 	switch (cstate->linktype) {
8329 
8330 	case DLT_EN10MB:
8331 	case DLT_NETANALYZER:
8332 	case DLT_NETANALYZER_TRANSPARENT:
8333 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8334 		/* Verify that this is the outer part of the packet and
8335 		 * not encapsulated somehow. */
8336 		if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
8337 		    cstate->off_linkhdr.constant_part ==
8338 		    cstate->off_outermostlinkhdr.constant_part) {
8339 			/*
8340 			 * Do we need special VLAN handling?
8341 			 */
8342 			if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
8343 				b0 = gen_vlan_bpf_extensions(cstate, vlan_num);
8344 			else
8345 				b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
8346 		} else
8347 #endif
8348 			b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
8349                 break;
8350 
8351 	case DLT_IEEE802_11:
8352 	case DLT_PRISM_HEADER:
8353 	case DLT_IEEE802_11_RADIO_AVS:
8354 	case DLT_IEEE802_11_RADIO:
8355 		b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num);
8356 		break;
8357 
8358 	default:
8359 		bpf_error(cstate, "no VLAN support for data link type %d",
8360 		      cstate->linktype);
8361 		/*NOTREACHED*/
8362 	}
8363 
8364         cstate->vlan_stack_depth++;
8365 
8366 	return (b0);
8367 }
8368 
8369 /*
8370  * support for MPLS
8371  */
8372 struct block *
8373 gen_mpls(compiler_state_t *cstate, int label_num)
8374 {
8375 	struct	block	*b0, *b1;
8376 
8377         if (cstate->label_stack_depth > 0) {
8378             /* just match the bottom-of-stack bit clear */
8379             b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
8380         } else {
8381             /*
8382              * We're not in an MPLS stack yet, so check the link-layer
8383              * type against MPLS.
8384              */
8385             switch (cstate->linktype) {
8386 
8387             case DLT_C_HDLC: /* fall through */
8388             case DLT_EN10MB:
8389             case DLT_NETANALYZER:
8390             case DLT_NETANALYZER_TRANSPARENT:
8391                     b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
8392                     break;
8393 
8394             case DLT_PPP:
8395                     b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
8396                     break;
8397 
8398                     /* FIXME add other DLT_s ...
8399                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
8400                      * leave it for now */
8401 
8402             default:
8403                     bpf_error(cstate, "no MPLS support for data link type %d",
8404                           cstate->linktype);
8405                     /*NOTREACHED*/
8406                     break;
8407             }
8408         }
8409 
8410 	/* If a specific MPLS label is requested, check it */
8411 	if (label_num >= 0) {
8412 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8413 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, (bpf_int32)label_num,
8414 		    0xfffff000); /* only compare the first 20 bits */
8415 		gen_and(b0, b1);
8416 		b0 = b1;
8417 	}
8418 
8419         /*
8420          * Change the offsets to point to the type and data fields within
8421          * the MPLS packet.  Just increment the offsets, so that we
8422          * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8423          * capture packets with an outer label of 100000 and an inner
8424          * label of 1024.
8425          *
8426          * Increment the MPLS stack depth as well; this indicates that
8427          * we're checking MPLS-encapsulated headers, to make sure higher
8428          * level code generators don't try to match against IP-related
8429          * protocols such as Q_ARP, Q_RARP etc.
8430          *
8431          * XXX - this is a bit of a kludge.  See comments in gen_vlan().
8432          */
8433         cstate->off_nl_nosnap += 4;
8434         cstate->off_nl += 4;
8435         cstate->label_stack_depth++;
8436 	return (b0);
8437 }
8438 
8439 /*
8440  * Support PPPOE discovery and session.
8441  */
8442 struct block *
8443 gen_pppoed(compiler_state_t *cstate)
8444 {
8445 	/* check for PPPoE discovery */
8446 	return gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOED);
8447 }
8448 
8449 struct block *
8450 gen_pppoes(compiler_state_t *cstate, int sess_num)
8451 {
8452 	struct block *b0, *b1;
8453 
8454 	/*
8455 	 * Test against the PPPoE session link-layer type.
8456 	 */
8457 	b0 = gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOES);
8458 
8459 	/* If a specific session is requested, check PPPoE session id */
8460 	if (sess_num >= 0) {
8461 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W,
8462 		    (bpf_int32)sess_num, 0x0000ffff);
8463 		gen_and(b0, b1);
8464 		b0 = b1;
8465 	}
8466 
8467 	/*
8468 	 * Change the offsets to point to the type and data fields within
8469 	 * the PPP packet, and note that this is PPPoE rather than
8470 	 * raw PPP.
8471 	 *
8472 	 * XXX - this is a bit of a kludge.  If we were to split the
8473 	 * compiler into a parser that parses an expression and
8474 	 * generates an expression tree, and a code generator that
8475 	 * takes an expression tree (which could come from our
8476 	 * parser or from some other parser) and generates BPF code,
8477 	 * we could perhaps make the offsets parameters of routines
8478 	 * and, in the handler for an "AND" node, pass to subnodes
8479 	 * other than the PPPoE node the adjusted offsets.
8480 	 *
8481 	 * This would mean that "pppoes" would, instead of changing the
8482 	 * behavior of *all* tests after it, change only the behavior
8483 	 * of tests ANDed with it.  That would change the documented
8484 	 * semantics of "pppoes", which might break some expressions.
8485 	 * However, it would mean that "(pppoes and ip) or ip" would check
8486 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8487 	 * checking only for VLAN-encapsulated IP, so that could still
8488 	 * be considered worth doing; it wouldn't break expressions
8489 	 * that are of the form "pppoes and ..." which I suspect are the
8490 	 * most common expressions involving "pppoes".  "pppoes or ..."
8491 	 * doesn't necessarily do what the user would really want, now,
8492 	 * as all the "or ..." tests would be done assuming PPPoE, even
8493 	 * though the "or" could be viewed as meaning "or, if this isn't
8494 	 * a PPPoE packet...".
8495 	 *
8496 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8497 	 * PPPoE header, followed by a PPP packet.
8498 	 *
8499 	 * There is no HDLC encapsulation for the PPP packet (it's
8500 	 * encapsulated in PPPoES instead), so the link-layer type
8501 	 * starts at the first byte of the PPP packet.  For PPPoE,
8502 	 * that offset is relative to the beginning of the total
8503 	 * link-layer payload, including any 802.2 LLC header, so
8504 	 * it's 6 bytes past cstate->off_nl.
8505 	 */
8506 	PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
8507 	    cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
8508 	    cstate->off_linkpl.reg);
8509 
8510 	cstate->off_linktype = cstate->off_linkhdr;
8511 	cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
8512 
8513 	cstate->off_nl = 0;
8514 	cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
8515 
8516 	return b0;
8517 }
8518 
8519 /* Check that this is Geneve and the VNI is correct if
8520  * specified. Parameterized to handle both IPv4 and IPv6. */
8521 static struct block *
8522 gen_geneve_check(compiler_state_t *cstate,
8523     struct block *(*gen_portfn)(compiler_state_t *, int, int, int),
8524     enum e_offrel offrel, int vni)
8525 {
8526 	struct block *b0, *b1;
8527 
8528 	b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
8529 
8530 	/* Check that we are operating on version 0. Otherwise, we
8531 	 * can't decode the rest of the fields. The version is 2 bits
8532 	 * in the first byte of the Geneve header. */
8533 	b1 = gen_mcmp(cstate, offrel, 8, BPF_B, (bpf_int32)0, 0xc0);
8534 	gen_and(b0, b1);
8535 	b0 = b1;
8536 
8537 	if (vni >= 0) {
8538 		vni <<= 8; /* VNI is in the upper 3 bytes */
8539 		b1 = gen_mcmp(cstate, offrel, 12, BPF_W, (bpf_int32)vni,
8540 			      0xffffff00);
8541 		gen_and(b0, b1);
8542 		b0 = b1;
8543 	}
8544 
8545 	return b0;
8546 }
8547 
8548 /* The IPv4 and IPv6 Geneve checks need to do two things:
8549  * - Verify that this actually is Geneve with the right VNI.
8550  * - Place the IP header length (plus variable link prefix if
8551  *   needed) into register A to be used later to compute
8552  *   the inner packet offsets. */
8553 static struct block *
8554 gen_geneve4(compiler_state_t *cstate, int vni)
8555 {
8556 	struct block *b0, *b1;
8557 	struct slist *s, *s1;
8558 
8559 	b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni);
8560 
8561 	/* Load the IP header length into A. */
8562 	s = gen_loadx_iphdrlen(cstate);
8563 
8564 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
8565 	sappend(s, s1);
8566 
8567 	/* Forcibly append these statements to the true condition
8568 	 * of the protocol check by creating a new block that is
8569 	 * always true and ANDing them. */
8570 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
8571 	b1->stmts = s;
8572 	b1->s.k = 0;
8573 
8574 	gen_and(b0, b1);
8575 
8576 	return b1;
8577 }
8578 
8579 static struct block *
8580 gen_geneve6(compiler_state_t *cstate, int vni)
8581 {
8582 	struct block *b0, *b1;
8583 	struct slist *s, *s1;
8584 
8585 	b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni);
8586 
8587 	/* Load the IP header length. We need to account for a
8588 	 * variable length link prefix if there is one. */
8589 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
8590 	if (s) {
8591 		s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
8592 		s1->s.k = 40;
8593 		sappend(s, s1);
8594 
8595 		s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
8596 		s1->s.k = 0;
8597 		sappend(s, s1);
8598 	} else {
8599 		s = new_stmt(cstate, BPF_LD|BPF_IMM);
8600 		s->s.k = 40;
8601 	}
8602 
8603 	/* Forcibly append these statements to the true condition
8604 	 * of the protocol check by creating a new block that is
8605 	 * always true and ANDing them. */
8606 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
8607 	sappend(s, s1);
8608 
8609 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
8610 	b1->stmts = s;
8611 	b1->s.k = 0;
8612 
8613 	gen_and(b0, b1);
8614 
8615 	return b1;
8616 }
8617 
8618 /* We need to store three values based on the Geneve header::
8619  * - The offset of the linktype.
8620  * - The offset of the end of the Geneve header.
8621  * - The offset of the end of the encapsulated MAC header. */
8622 static struct slist *
8623 gen_geneve_offsets(compiler_state_t *cstate)
8624 {
8625 	struct slist *s, *s1, *s_proto;
8626 
8627 	/* First we need to calculate the offset of the Geneve header
8628 	 * itself. This is composed of the IP header previously calculated
8629 	 * (include any variable link prefix) and stored in A plus the
8630 	 * fixed sized headers (fixed link prefix, MAC length, and UDP
8631 	 * header). */
8632 	s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8633 	s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
8634 
8635 	/* Stash this in X since we'll need it later. */
8636 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
8637 	sappend(s, s1);
8638 
8639 	/* The EtherType in Geneve is 2 bytes in. Calculate this and
8640 	 * store it. */
8641 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8642 	s1->s.k = 2;
8643 	sappend(s, s1);
8644 
8645 	cstate->off_linktype.reg = alloc_reg(cstate);
8646 	cstate->off_linktype.is_variable = 1;
8647 	cstate->off_linktype.constant_part = 0;
8648 
8649 	s1 = new_stmt(cstate, BPF_ST);
8650 	s1->s.k = cstate->off_linktype.reg;
8651 	sappend(s, s1);
8652 
8653 	/* Load the Geneve option length and mask and shift to get the
8654 	 * number of bytes. It is stored in the first byte of the Geneve
8655 	 * header. */
8656 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
8657 	s1->s.k = 0;
8658 	sappend(s, s1);
8659 
8660 	s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
8661 	s1->s.k = 0x3f;
8662 	sappend(s, s1);
8663 
8664 	s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
8665 	s1->s.k = 4;
8666 	sappend(s, s1);
8667 
8668 	/* Add in the rest of the Geneve base header. */
8669 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8670 	s1->s.k = 8;
8671 	sappend(s, s1);
8672 
8673 	/* Add the Geneve header length to its offset and store. */
8674 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
8675 	s1->s.k = 0;
8676 	sappend(s, s1);
8677 
8678 	/* Set the encapsulated type as Ethernet. Even though we may
8679 	 * not actually have Ethernet inside there are two reasons this
8680 	 * is useful:
8681 	 * - The linktype field is always in EtherType format regardless
8682 	 *   of whether it is in Geneve or an inner Ethernet frame.
8683 	 * - The only link layer that we have specific support for is
8684 	 *   Ethernet. We will confirm that the packet actually is
8685 	 *   Ethernet at runtime before executing these checks. */
8686 	PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
8687 
8688 	s1 = new_stmt(cstate, BPF_ST);
8689 	s1->s.k = cstate->off_linkhdr.reg;
8690 	sappend(s, s1);
8691 
8692 	/* Calculate whether we have an Ethernet header or just raw IP/
8693 	 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
8694 	 * and linktype by 14 bytes so that the network header can be found
8695 	 * seamlessly. Otherwise, keep what we've calculated already. */
8696 
8697 	/* We have a bare jmp so we can't use the optimizer. */
8698 	cstate->no_optimize = 1;
8699 
8700 	/* Load the EtherType in the Geneve header, 2 bytes in. */
8701 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
8702 	s1->s.k = 2;
8703 	sappend(s, s1);
8704 
8705 	/* Load X with the end of the Geneve header. */
8706 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
8707 	s1->s.k = cstate->off_linkhdr.reg;
8708 	sappend(s, s1);
8709 
8710 	/* Check if the EtherType is Transparent Ethernet Bridging. At the
8711 	 * end of this check, we should have the total length in X. In
8712 	 * the non-Ethernet case, it's already there. */
8713 	s_proto = new_stmt(cstate, JMP(BPF_JEQ));
8714 	s_proto->s.k = ETHERTYPE_TEB;
8715 	sappend(s, s_proto);
8716 
8717 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
8718 	sappend(s, s1);
8719 	s_proto->s.jt = s1;
8720 
8721 	/* Since this is Ethernet, use the EtherType of the payload
8722 	 * directly as the linktype. Overwrite what we already have. */
8723 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8724 	s1->s.k = 12;
8725 	sappend(s, s1);
8726 
8727 	s1 = new_stmt(cstate, BPF_ST);
8728 	s1->s.k = cstate->off_linktype.reg;
8729 	sappend(s, s1);
8730 
8731 	/* Advance two bytes further to get the end of the Ethernet
8732 	 * header. */
8733 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
8734 	s1->s.k = 2;
8735 	sappend(s, s1);
8736 
8737 	/* Move the result to X. */
8738 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
8739 	sappend(s, s1);
8740 
8741 	/* Store the final result of our linkpl calculation. */
8742 	cstate->off_linkpl.reg = alloc_reg(cstate);
8743 	cstate->off_linkpl.is_variable = 1;
8744 	cstate->off_linkpl.constant_part = 0;
8745 
8746 	s1 = new_stmt(cstate, BPF_STX);
8747 	s1->s.k = cstate->off_linkpl.reg;
8748 	sappend(s, s1);
8749 	s_proto->s.jf = s1;
8750 
8751 	cstate->off_nl = 0;
8752 
8753 	return s;
8754 }
8755 
8756 /* Check to see if this is a Geneve packet. */
8757 struct block *
8758 gen_geneve(compiler_state_t *cstate, int vni)
8759 {
8760 	struct block *b0, *b1;
8761 	struct slist *s;
8762 
8763 	b0 = gen_geneve4(cstate, vni);
8764 	b1 = gen_geneve6(cstate, vni);
8765 
8766 	gen_or(b0, b1);
8767 	b0 = b1;
8768 
8769 	/* Later filters should act on the payload of the Geneve frame,
8770 	 * update all of the header pointers. Attach this code so that
8771 	 * it gets executed in the event that the Geneve filter matches. */
8772 	s = gen_geneve_offsets(cstate);
8773 
8774 	b1 = gen_true(cstate);
8775 	sappend(s, b1->stmts);
8776 	b1->stmts = s;
8777 
8778 	gen_and(b0, b1);
8779 
8780 	cstate->is_geneve = 1;
8781 
8782 	return b1;
8783 }
8784 
8785 /* Check that the encapsulated frame has a link layer header
8786  * for Ethernet filters. */
8787 static struct block *
8788 gen_geneve_ll_check(compiler_state_t *cstate)
8789 {
8790 	struct block *b0;
8791 	struct slist *s, *s1;
8792 
8793 	/* The easiest way to see if there is a link layer present
8794 	 * is to check if the link layer header and payload are not
8795 	 * the same. */
8796 
8797 	/* Geneve always generates pure variable offsets so we can
8798 	 * compare only the registers. */
8799 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
8800 	s->s.k = cstate->off_linkhdr.reg;
8801 
8802 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
8803 	s1->s.k = cstate->off_linkpl.reg;
8804 	sappend(s, s1);
8805 
8806 	b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
8807 	b0->stmts = s;
8808 	b0->s.k = 0;
8809 	gen_not(b0);
8810 
8811 	return b0;
8812 }
8813 
8814 struct block *
8815 gen_atmfield_code(compiler_state_t *cstate, int atmfield, bpf_int32 jvalue,
8816     bpf_u_int32 jtype, int reverse)
8817 {
8818 	struct block *b0;
8819 
8820 	switch (atmfield) {
8821 
8822 	case A_VPI:
8823 		if (!cstate->is_atm)
8824 			bpf_error(cstate, "'vpi' supported only on raw ATM");
8825 		if (cstate->off_vpi == OFFSET_NOT_SET)
8826 			abort();
8827 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B, 0xffffffff, jtype,
8828 		    reverse, jvalue);
8829 		break;
8830 
8831 	case A_VCI:
8832 		if (!cstate->is_atm)
8833 			bpf_error(cstate, "'vci' supported only on raw ATM");
8834 		if (cstate->off_vci == OFFSET_NOT_SET)
8835 			abort();
8836 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H, 0xffffffff, jtype,
8837 		    reverse, jvalue);
8838 		break;
8839 
8840 	case A_PROTOTYPE:
8841 		if (cstate->off_proto == OFFSET_NOT_SET)
8842 			abort();	/* XXX - this isn't on FreeBSD */
8843 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0x0f, jtype,
8844 		    reverse, jvalue);
8845 		break;
8846 
8847 	case A_MSGTYPE:
8848 		if (cstate->off_payload == OFFSET_NOT_SET)
8849 			abort();
8850 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
8851 		    0xffffffff, jtype, reverse, jvalue);
8852 		break;
8853 
8854 	case A_CALLREFTYPE:
8855 		if (!cstate->is_atm)
8856 			bpf_error(cstate, "'callref' supported only on raw ATM");
8857 		if (cstate->off_proto == OFFSET_NOT_SET)
8858 			abort();
8859 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0xffffffff,
8860 		    jtype, reverse, jvalue);
8861 		break;
8862 
8863 	default:
8864 		abort();
8865 	}
8866 	return b0;
8867 }
8868 
8869 struct block *
8870 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
8871 {
8872 	struct block *b0, *b1;
8873 
8874 	switch (type) {
8875 
8876 	case A_METAC:
8877 		/* Get all packets in Meta signalling Circuit */
8878 		if (!cstate->is_atm)
8879 			bpf_error(cstate, "'metac' supported only on raw ATM");
8880 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8881 		b1 = gen_atmfield_code(cstate, A_VCI, 1, BPF_JEQ, 0);
8882 		gen_and(b0, b1);
8883 		break;
8884 
8885 	case A_BCC:
8886 		/* Get all packets in Broadcast Circuit*/
8887 		if (!cstate->is_atm)
8888 			bpf_error(cstate, "'bcc' supported only on raw ATM");
8889 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8890 		b1 = gen_atmfield_code(cstate, A_VCI, 2, BPF_JEQ, 0);
8891 		gen_and(b0, b1);
8892 		break;
8893 
8894 	case A_OAMF4SC:
8895 		/* Get all cells in Segment OAM F4 circuit*/
8896 		if (!cstate->is_atm)
8897 			bpf_error(cstate, "'oam4sc' supported only on raw ATM");
8898 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8899 		b1 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0);
8900 		gen_and(b0, b1);
8901 		break;
8902 
8903 	case A_OAMF4EC:
8904 		/* Get all cells in End-to-End OAM F4 Circuit*/
8905 		if (!cstate->is_atm)
8906 			bpf_error(cstate, "'oam4ec' supported only on raw ATM");
8907 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8908 		b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0);
8909 		gen_and(b0, b1);
8910 		break;
8911 
8912 	case A_SC:
8913 		/*  Get all packets in connection Signalling Circuit */
8914 		if (!cstate->is_atm)
8915 			bpf_error(cstate, "'sc' supported only on raw ATM");
8916 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8917 		b1 = gen_atmfield_code(cstate, A_VCI, 5, BPF_JEQ, 0);
8918 		gen_and(b0, b1);
8919 		break;
8920 
8921 	case A_ILMIC:
8922 		/* Get all packets in ILMI Circuit */
8923 		if (!cstate->is_atm)
8924 			bpf_error(cstate, "'ilmic' supported only on raw ATM");
8925 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
8926 		b1 = gen_atmfield_code(cstate, A_VCI, 16, BPF_JEQ, 0);
8927 		gen_and(b0, b1);
8928 		break;
8929 
8930 	case A_LANE:
8931 		/* Get all LANE packets */
8932 		if (!cstate->is_atm)
8933 			bpf_error(cstate, "'lane' supported only on raw ATM");
8934 		b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8935 
8936 		/*
8937 		 * Arrange that all subsequent tests assume LANE
8938 		 * rather than LLC-encapsulated packets, and set
8939 		 * the offsets appropriately for LANE-encapsulated
8940 		 * Ethernet.
8941 		 *
8942 		 * We assume LANE means Ethernet, not Token Ring.
8943 		 */
8944 		PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
8945 		    cstate->off_payload + 2,	/* Ethernet header */
8946 		    -1);
8947 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
8948 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* Ethernet */
8949 		cstate->off_nl = 0;			/* Ethernet II */
8950 		cstate->off_nl_nosnap = 3;		/* 802.3+802.2 */
8951 		break;
8952 
8953 	case A_LLC:
8954 		/* Get all LLC-encapsulated packets */
8955 		if (!cstate->is_atm)
8956 			bpf_error(cstate, "'llc' supported only on raw ATM");
8957 		b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8958 		cstate->linktype = cstate->prevlinktype;
8959 		break;
8960 
8961 	default:
8962 		abort();
8963 	}
8964 	return b1;
8965 }
8966 
8967 /*
8968  * Filtering for MTP2 messages based on li value
8969  * FISU, length is null
8970  * LSSU, length is 1 or 2
8971  * MSU, length is 3 or more
8972  * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
8973  */
8974 struct block *
8975 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
8976 {
8977 	struct block *b0, *b1;
8978 
8979 	switch (type) {
8980 
8981 	case M_FISU:
8982 		if ( (cstate->linktype != DLT_MTP2) &&
8983 		     (cstate->linktype != DLT_ERF) &&
8984 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8985 			bpf_error(cstate, "'fisu' supported only on MTP2");
8986 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
8987 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8988 		break;
8989 
8990 	case M_LSSU:
8991 		if ( (cstate->linktype != DLT_MTP2) &&
8992 		     (cstate->linktype != DLT_ERF) &&
8993 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
8994 			bpf_error(cstate, "'lssu' supported only on MTP2");
8995 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8996 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8997 		gen_and(b1, b0);
8998 		break;
8999 
9000 	case M_MSU:
9001 		if ( (cstate->linktype != DLT_MTP2) &&
9002 		     (cstate->linktype != DLT_ERF) &&
9003 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9004 			bpf_error(cstate, "'msu' supported only on MTP2");
9005 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
9006 		break;
9007 
9008 	case MH_FISU:
9009 		if ( (cstate->linktype != DLT_MTP2) &&
9010 		     (cstate->linktype != DLT_ERF) &&
9011 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9012 			bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
9013 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9014 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0);
9015 		break;
9016 
9017 	case MH_LSSU:
9018 		if ( (cstate->linktype != DLT_MTP2) &&
9019 		     (cstate->linktype != DLT_ERF) &&
9020 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9021 			bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
9022 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100);
9023 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0);
9024 		gen_and(b1, b0);
9025 		break;
9026 
9027 	case MH_MSU:
9028 		if ( (cstate->linktype != DLT_MTP2) &&
9029 		     (cstate->linktype != DLT_ERF) &&
9030 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9031 			bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
9032 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100);
9033 		break;
9034 
9035 	default:
9036 		abort();
9037 	}
9038 	return b0;
9039 }
9040 
9041 struct block *
9042 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field, bpf_u_int32 jvalue,
9043     bpf_u_int32 jtype, int reverse)
9044 {
9045 	struct block *b0;
9046 	bpf_u_int32 val1 , val2 , val3;
9047 	u_int newoff_sio = cstate->off_sio;
9048 	u_int newoff_opc = cstate->off_opc;
9049 	u_int newoff_dpc = cstate->off_dpc;
9050 	u_int newoff_sls = cstate->off_sls;
9051 
9052 	switch (mtp3field) {
9053 
9054 	case MH_SIO:
9055 		newoff_sio += 3; /* offset for MTP2_HSL */
9056 		/* FALLTHROUGH */
9057 
9058 	case M_SIO:
9059 		if (cstate->off_sio == OFFSET_NOT_SET)
9060 			bpf_error(cstate, "'sio' supported only on SS7");
9061 		/* sio coded on 1 byte so max value 255 */
9062 		if(jvalue > 255)
9063 		        bpf_error(cstate, "sio value %u too big; max value = 255",
9064 		            jvalue);
9065 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffff,
9066 		    (u_int)jtype, reverse, (u_int)jvalue);
9067 		break;
9068 
9069 	case MH_OPC:
9070 		newoff_opc+=3;
9071         case M_OPC:
9072 	        if (cstate->off_opc == OFFSET_NOT_SET)
9073 			bpf_error(cstate, "'opc' supported only on SS7");
9074 		/* opc coded on 14 bits so max value 16383 */
9075 		if (jvalue > 16383)
9076 		        bpf_error(cstate, "opc value %u too big; max value = 16383",
9077 		            jvalue);
9078 		/* the following instructions are made to convert jvalue
9079 		 * to the form used to write opc in an ss7 message*/
9080 		val1 = jvalue & 0x00003c00;
9081 		val1 = val1 >>10;
9082 		val2 = jvalue & 0x000003fc;
9083 		val2 = val2 <<6;
9084 		val3 = jvalue & 0x00000003;
9085 		val3 = val3 <<22;
9086 		jvalue = val1 + val2 + val3;
9087 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f,
9088 		    (u_int)jtype, reverse, (u_int)jvalue);
9089 		break;
9090 
9091 	case MH_DPC:
9092 		newoff_dpc += 3;
9093 		/* FALLTHROUGH */
9094 
9095 	case M_DPC:
9096 	        if (cstate->off_dpc == OFFSET_NOT_SET)
9097 			bpf_error(cstate, "'dpc' supported only on SS7");
9098 		/* dpc coded on 14 bits so max value 16383 */
9099 		if (jvalue > 16383)
9100 		        bpf_error(cstate, "dpc value %u too big; max value = 16383",
9101 		            jvalue);
9102 		/* the following instructions are made to convert jvalue
9103 		 * to the forme used to write dpc in an ss7 message*/
9104 		val1 = jvalue & 0x000000ff;
9105 		val1 = val1 << 24;
9106 		val2 = jvalue & 0x00003f00;
9107 		val2 = val2 << 8;
9108 		jvalue = val1 + val2;
9109 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000,
9110 		    (u_int)jtype, reverse, (u_int)jvalue);
9111 		break;
9112 
9113 	case MH_SLS:
9114 	  newoff_sls+=3;
9115 	case M_SLS:
9116 	        if (cstate->off_sls == OFFSET_NOT_SET)
9117 			bpf_error(cstate, "'sls' supported only on SS7");
9118 		/* sls coded on 4 bits so max value 15 */
9119 		if (jvalue > 15)
9120 		         bpf_error(cstate, "sls value %u too big; max value = 15",
9121 		             jvalue);
9122 		/* the following instruction is made to convert jvalue
9123 		 * to the forme used to write sls in an ss7 message*/
9124 		jvalue = jvalue << 4;
9125 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0,
9126 		    (u_int)jtype,reverse, (u_int)jvalue);
9127 		break;
9128 
9129 	default:
9130 		abort();
9131 	}
9132 	return b0;
9133 }
9134 
9135 static struct block *
9136 gen_msg_abbrev(compiler_state_t *cstate, int type)
9137 {
9138 	struct block *b1;
9139 
9140 	/*
9141 	 * Q.2931 signalling protocol messages for handling virtual circuits
9142 	 * establishment and teardown
9143 	 */
9144 	switch (type) {
9145 
9146 	case A_SETUP:
9147 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
9148 		break;
9149 
9150 	case A_CALLPROCEED:
9151 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
9152 		break;
9153 
9154 	case A_CONNECT:
9155 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
9156 		break;
9157 
9158 	case A_CONNECTACK:
9159 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
9160 		break;
9161 
9162 	case A_RELEASE:
9163 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
9164 		break;
9165 
9166 	case A_RELEASE_DONE:
9167 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
9168 		break;
9169 
9170 	default:
9171 		abort();
9172 	}
9173 	return b1;
9174 }
9175 
9176 struct block *
9177 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
9178 {
9179 	struct block *b0, *b1;
9180 
9181 	switch (type) {
9182 
9183 	case A_OAM:
9184 		if (!cstate->is_atm)
9185 			bpf_error(cstate, "'oam' supported only on raw ATM");
9186 		b1 = gen_atmmulti_abbrev(cstate, A_OAMF4);
9187 		break;
9188 
9189 	case A_OAMF4:
9190 		if (!cstate->is_atm)
9191 			bpf_error(cstate, "'oamf4' supported only on raw ATM");
9192 		/* OAM F4 type */
9193 		b0 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0);
9194 		b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0);
9195 		gen_or(b0, b1);
9196 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0);
9197 		gen_and(b0, b1);
9198 		break;
9199 
9200 	case A_CONNECTMSG:
9201 		/*
9202 		 * Get Q.2931 signalling messages for switched
9203 		 * virtual connection
9204 		 */
9205 		if (!cstate->is_atm)
9206 			bpf_error(cstate, "'connectmsg' supported only on raw ATM");
9207 		b0 = gen_msg_abbrev(cstate, A_SETUP);
9208 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9209 		gen_or(b0, b1);
9210 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
9211 		gen_or(b0, b1);
9212 		b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
9213 		gen_or(b0, b1);
9214 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
9215 		gen_or(b0, b1);
9216 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9217 		gen_or(b0, b1);
9218 		b0 = gen_atmtype_abbrev(cstate, A_SC);
9219 		gen_and(b0, b1);
9220 		break;
9221 
9222 	case A_METACONNECT:
9223 		if (!cstate->is_atm)
9224 			bpf_error(cstate, "'metaconnect' supported only on raw ATM");
9225 		b0 = gen_msg_abbrev(cstate, A_SETUP);
9226 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9227 		gen_or(b0, b1);
9228 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
9229 		gen_or(b0, b1);
9230 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
9231 		gen_or(b0, b1);
9232 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9233 		gen_or(b0, b1);
9234 		b0 = gen_atmtype_abbrev(cstate, A_METAC);
9235 		gen_and(b0, b1);
9236 		break;
9237 
9238 	default:
9239 		abort();
9240 	}
9241 	return b1;
9242 }
9243