1 /* 2 * FILE: sha2.c 3 * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/ 4 * 5 * Copyright (c) 2000-2001, Aaron D. Gifford 6 * All rights reserved. 7 * 8 * Modified by Jelte Jansen to fit in ldns, and not clash with any 9 * system-defined SHA code. 10 * Changes: 11 * - Renamed (external) functions and constants to fit ldns style 12 * - Removed _End and _Data functions 13 * - Added ldns_shaX(data, len, digest) convenience functions 14 * - Removed prototypes of _Transform functions and made those static 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the copyright holder nor the names of contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ 41 */ 42 43 #include <ldns/config.h> 44 #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */ 45 #include <assert.h> /* assert() */ 46 #include <ldns/sha2.h> 47 48 /* 49 * ASSERT NOTE: 50 * Some sanity checking code is included using assert(). On my FreeBSD 51 * system, this additional code can be removed by compiling with NDEBUG 52 * defined. Check your own systems manpage on assert() to see how to 53 * compile WITHOUT the sanity checking code on your system. 54 * 55 * UNROLLED TRANSFORM LOOP NOTE: 56 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform 57 * loop version for the hash transform rounds (defined using macros 58 * later in this file). Either define on the command line, for example: 59 * 60 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c 61 * 62 * or define below: 63 * 64 * #define SHA2_UNROLL_TRANSFORM 65 * 66 */ 67 68 69 /*** SHA-256/384/512 Machine Architecture Definitions *****************/ 70 /* 71 * BYTE_ORDER NOTE: 72 * 73 * Please make sure that your system defines BYTE_ORDER. If your 74 * architecture is little-endian, make sure it also defines 75 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are 76 * equivilent. 77 * 78 * If your system does not define the above, then you can do so by 79 * hand like this: 80 * 81 * #define LITTLE_ENDIAN 1234 82 * #define BIG_ENDIAN 4321 83 * 84 * And for little-endian machines, add: 85 * 86 * #define BYTE_ORDER LITTLE_ENDIAN 87 * 88 * Or for big-endian machines: 89 * 90 * #define BYTE_ORDER BIG_ENDIAN 91 * 92 * The FreeBSD machine this was written on defines BYTE_ORDER 93 * appropriately by including <sys/types.h> (which in turn includes 94 * <machine/endian.h> where the appropriate definitions are actually 95 * made). 96 */ 97 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) 98 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN 99 #endif 100 101 typedef uint8_t sha2_byte; /* Exactly 1 byte */ 102 typedef uint32_t sha2_word32; /* Exactly 4 bytes */ 103 #ifdef S_SPLINT_S 104 typedef unsigned long long sha2_word64; /* lint 8 bytes */ 105 #else 106 typedef uint64_t sha2_word64; /* Exactly 8 bytes */ 107 #endif 108 109 /*** SHA-256/384/512 Various Length Definitions ***********************/ 110 /* NOTE: Most of these are in sha2.h */ 111 #define ldns_sha256_SHORT_BLOCK_LENGTH (LDNS_SHA256_BLOCK_LENGTH - 8) 112 #define ldns_sha384_SHORT_BLOCK_LENGTH (LDNS_SHA384_BLOCK_LENGTH - 16) 113 #define ldns_sha512_SHORT_BLOCK_LENGTH (LDNS_SHA512_BLOCK_LENGTH - 16) 114 115 116 /*** ENDIAN REVERSAL MACROS *******************************************/ 117 #if BYTE_ORDER == LITTLE_ENDIAN 118 #define REVERSE32(w,x) { \ 119 sha2_word32 tmp = (w); \ 120 tmp = (tmp >> 16) | (tmp << 16); \ 121 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ 122 } 123 #ifndef S_SPLINT_S 124 #define REVERSE64(w,x) { \ 125 sha2_word64 tmp = (w); \ 126 tmp = (tmp >> 32) | (tmp << 32); \ 127 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \ 128 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \ 129 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \ 130 ((tmp & 0x0000ffff0000ffffULL) << 16); \ 131 } 132 #else /* splint */ 133 #define REVERSE64(w,x) /* splint */ 134 #endif /* splint */ 135 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 136 137 /* 138 * Macro for incrementally adding the unsigned 64-bit integer n to the 139 * unsigned 128-bit integer (represented using a two-element array of 140 * 64-bit words): 141 */ 142 #define ADDINC128(w,n) { \ 143 (w)[0] += (sha2_word64)(n); \ 144 if ((w)[0] < (n)) { \ 145 (w)[1]++; \ 146 } \ 147 } 148 #ifdef S_SPLINT_S 149 #undef ADDINC128 150 #define ADDINC128(w,n) /* splint */ 151 #endif 152 153 /* 154 * Macros for copying blocks of memory and for zeroing out ranges 155 * of memory. Using these macros makes it easy to switch from 156 * using memset()/memcpy() and using bzero()/bcopy(). 157 * 158 * Please define either SHA2_USE_MEMSET_MEMCPY or define 159 * SHA2_USE_BZERO_BCOPY depending on which function set you 160 * choose to use: 161 */ 162 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) 163 /* Default to memset()/memcpy() if no option is specified */ 164 #define SHA2_USE_MEMSET_MEMCPY 1 165 #endif 166 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) 167 /* Abort with an error if BOTH options are defined */ 168 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! 169 #endif 170 171 #ifdef SHA2_USE_MEMSET_MEMCPY 172 #define MEMSET_BZERO(p,l) memset((p), 0, (l)) 173 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) 174 #endif 175 #ifdef SHA2_USE_BZERO_BCOPY 176 #define MEMSET_BZERO(p,l) bzero((p), (l)) 177 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) 178 #endif 179 180 181 /*** THE SIX LOGICAL FUNCTIONS ****************************************/ 182 /* 183 * Bit shifting and rotation (used by the six SHA-XYZ logical functions: 184 * 185 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and 186 * S is a ROTATION) because the SHA-256/384/512 description document 187 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this 188 * same "backwards" definition. 189 */ 190 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ 191 #define R(b,x) ((x) >> (b)) 192 /* 32-bit Rotate-right (used in SHA-256): */ 193 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) 194 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ 195 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) 196 197 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ 198 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 199 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 200 201 /* Four of six logical functions used in SHA-256: */ 202 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) 203 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) 204 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) 205 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) 206 207 /* Four of six logical functions used in SHA-384 and SHA-512: */ 208 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) 209 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) 210 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) 211 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) 212 213 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ 214 /* Hash constant words K for SHA-256: */ 215 static const sha2_word32 K256[64] = { 216 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 217 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 218 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 219 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 220 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 221 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 222 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 223 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 224 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 225 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 226 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 227 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 228 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 229 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 230 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 231 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL 232 }; 233 234 /* initial hash value H for SHA-256: */ 235 static const sha2_word32 ldns_sha256_initial_hash_value[8] = { 236 0x6a09e667UL, 237 0xbb67ae85UL, 238 0x3c6ef372UL, 239 0xa54ff53aUL, 240 0x510e527fUL, 241 0x9b05688cUL, 242 0x1f83d9abUL, 243 0x5be0cd19UL 244 }; 245 246 /* Hash constant words K for SHA-384 and SHA-512: */ 247 static const sha2_word64 K512[80] = { 248 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 249 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 250 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 251 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 252 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 253 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 254 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 255 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 256 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 257 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 258 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 259 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 260 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 261 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 262 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 263 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 264 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 265 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 266 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 267 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 268 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 269 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 270 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 271 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 272 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 273 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 274 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 275 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 276 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 277 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 278 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 279 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 280 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 281 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 282 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 283 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 284 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 285 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 286 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 287 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL 288 }; 289 290 /* initial hash value H for SHA-384 */ 291 static const sha2_word64 sha384_initial_hash_value[8] = { 292 0xcbbb9d5dc1059ed8ULL, 293 0x629a292a367cd507ULL, 294 0x9159015a3070dd17ULL, 295 0x152fecd8f70e5939ULL, 296 0x67332667ffc00b31ULL, 297 0x8eb44a8768581511ULL, 298 0xdb0c2e0d64f98fa7ULL, 299 0x47b5481dbefa4fa4ULL 300 }; 301 302 /* initial hash value H for SHA-512 */ 303 static const sha2_word64 sha512_initial_hash_value[8] = { 304 0x6a09e667f3bcc908ULL, 305 0xbb67ae8584caa73bULL, 306 0x3c6ef372fe94f82bULL, 307 0xa54ff53a5f1d36f1ULL, 308 0x510e527fade682d1ULL, 309 0x9b05688c2b3e6c1fULL, 310 0x1f83d9abfb41bd6bULL, 311 0x5be0cd19137e2179ULL 312 }; 313 314 /*** SHA-256: *********************************************************/ 315 void ldns_sha256_init(ldns_sha256_CTX* context) { 316 if (context == (ldns_sha256_CTX*)0) { 317 return; 318 } 319 MEMCPY_BCOPY(context->state, ldns_sha256_initial_hash_value, LDNS_SHA256_DIGEST_LENGTH); 320 MEMSET_BZERO(context->buffer, LDNS_SHA256_BLOCK_LENGTH); 321 context->bitcount = 0; 322 } 323 324 #ifdef SHA2_UNROLL_TRANSFORM 325 326 /* Unrolled SHA-256 round macros: */ 327 328 #if BYTE_ORDER == LITTLE_ENDIAN 329 330 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ 331 REVERSE32(*data++, W256[j]); \ 332 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ 333 K256[j] + W256[j]; \ 334 (d) += T1; \ 335 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 336 j++ 337 338 339 #else /* BYTE_ORDER == LITTLE_ENDIAN */ 340 341 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ 342 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ 343 K256[j] + (W256[j] = *data++); \ 344 (d) += T1; \ 345 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 346 j++ 347 348 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 349 350 #define ROUND256(a,b,c,d,e,f,g,h) \ 351 s0 = W256[(j+1)&0x0f]; \ 352 s0 = sigma0_256(s0); \ 353 s1 = W256[(j+14)&0x0f]; \ 354 s1 = sigma1_256(s1); \ 355 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ 356 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ 357 (d) += T1; \ 358 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ 359 j++ 360 361 static void ldns_sha256_Transform(ldns_sha256_CTX* context, 362 const sha2_word32* data) { 363 sha2_word32 a, b, c, d, e, f, g, h, s0, s1; 364 sha2_word32 T1, *W256; 365 int j; 366 367 W256 = (sha2_word32*)context->buffer; 368 369 /* initialize registers with the prev. intermediate value */ 370 a = context->state[0]; 371 b = context->state[1]; 372 c = context->state[2]; 373 d = context->state[3]; 374 e = context->state[4]; 375 f = context->state[5]; 376 g = context->state[6]; 377 h = context->state[7]; 378 379 j = 0; 380 do { 381 /* Rounds 0 to 15 (unrolled): */ 382 ROUND256_0_TO_15(a,b,c,d,e,f,g,h); 383 ROUND256_0_TO_15(h,a,b,c,d,e,f,g); 384 ROUND256_0_TO_15(g,h,a,b,c,d,e,f); 385 ROUND256_0_TO_15(f,g,h,a,b,c,d,e); 386 ROUND256_0_TO_15(e,f,g,h,a,b,c,d); 387 ROUND256_0_TO_15(d,e,f,g,h,a,b,c); 388 ROUND256_0_TO_15(c,d,e,f,g,h,a,b); 389 ROUND256_0_TO_15(b,c,d,e,f,g,h,a); 390 } while (j < 16); 391 392 /* Now for the remaining rounds to 64: */ 393 do { 394 ROUND256(a,b,c,d,e,f,g,h); 395 ROUND256(h,a,b,c,d,e,f,g); 396 ROUND256(g,h,a,b,c,d,e,f); 397 ROUND256(f,g,h,a,b,c,d,e); 398 ROUND256(e,f,g,h,a,b,c,d); 399 ROUND256(d,e,f,g,h,a,b,c); 400 ROUND256(c,d,e,f,g,h,a,b); 401 ROUND256(b,c,d,e,f,g,h,a); 402 } while (j < 64); 403 404 /* Compute the current intermediate hash value */ 405 context->state[0] += a; 406 context->state[1] += b; 407 context->state[2] += c; 408 context->state[3] += d; 409 context->state[4] += e; 410 context->state[5] += f; 411 context->state[6] += g; 412 context->state[7] += h; 413 414 /* Clean up */ 415 a = b = c = d = e = f = g = h = T1 = 0; 416 } 417 418 #else /* SHA2_UNROLL_TRANSFORM */ 419 420 static void ldns_sha256_Transform(ldns_sha256_CTX* context, 421 const sha2_word32* data) { 422 sha2_word32 a, b, c, d, e, f, g, h, s0, s1; 423 sha2_word32 T1, T2, *W256; 424 int j; 425 426 W256 = (sha2_word32*)context->buffer; 427 428 /* initialize registers with the prev. intermediate value */ 429 a = context->state[0]; 430 b = context->state[1]; 431 c = context->state[2]; 432 d = context->state[3]; 433 e = context->state[4]; 434 f = context->state[5]; 435 g = context->state[6]; 436 h = context->state[7]; 437 438 j = 0; 439 do { 440 #if BYTE_ORDER == LITTLE_ENDIAN 441 /* Copy data while converting to host byte order */ 442 REVERSE32(*data++,W256[j]); 443 /* Apply the SHA-256 compression function to update a..h */ 444 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; 445 #else /* BYTE_ORDER == LITTLE_ENDIAN */ 446 /* Apply the SHA-256 compression function to update a..h with copy */ 447 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); 448 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 449 T2 = Sigma0_256(a) + Maj(a, b, c); 450 h = g; 451 g = f; 452 f = e; 453 e = d + T1; 454 d = c; 455 c = b; 456 b = a; 457 a = T1 + T2; 458 459 j++; 460 } while (j < 16); 461 462 do { 463 /* Part of the message block expansion: */ 464 s0 = W256[(j+1)&0x0f]; 465 s0 = sigma0_256(s0); 466 s1 = W256[(j+14)&0x0f]; 467 s1 = sigma1_256(s1); 468 469 /* Apply the SHA-256 compression function to update a..h */ 470 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + 471 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); 472 T2 = Sigma0_256(a) + Maj(a, b, c); 473 h = g; 474 g = f; 475 f = e; 476 e = d + T1; 477 d = c; 478 c = b; 479 b = a; 480 a = T1 + T2; 481 482 j++; 483 } while (j < 64); 484 485 /* Compute the current intermediate hash value */ 486 context->state[0] += a; 487 context->state[1] += b; 488 context->state[2] += c; 489 context->state[3] += d; 490 context->state[4] += e; 491 context->state[5] += f; 492 context->state[6] += g; 493 context->state[7] += h; 494 495 /* Clean up */ 496 a = b = c = d = e = f = g = h = T1 = T2 = 0; 497 } 498 499 #endif /* SHA2_UNROLL_TRANSFORM */ 500 501 void ldns_sha256_update(ldns_sha256_CTX* context, const sha2_byte *data, size_t len) { 502 size_t freespace, usedspace; 503 504 if (len == 0) { 505 /* Calling with no data is valid - we do nothing */ 506 return; 507 } 508 509 /* Sanity check: */ 510 assert(context != (ldns_sha256_CTX*)0 && data != (sha2_byte*)0); 511 512 usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH; 513 if (usedspace > 0) { 514 /* Calculate how much free space is available in the buffer */ 515 freespace = LDNS_SHA256_BLOCK_LENGTH - usedspace; 516 517 if (len >= freespace) { 518 /* Fill the buffer completely and process it */ 519 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); 520 context->bitcount += freespace << 3; 521 len -= freespace; 522 data += freespace; 523 ldns_sha256_Transform(context, (sha2_word32*)context->buffer); 524 } else { 525 /* The buffer is not yet full */ 526 MEMCPY_BCOPY(&context->buffer[usedspace], data, len); 527 context->bitcount += len << 3; 528 /* Clean up: */ 529 usedspace = freespace = 0; 530 return; 531 } 532 } 533 while (len >= LDNS_SHA256_BLOCK_LENGTH) { 534 /* Process as many complete blocks as we can */ 535 ldns_sha256_Transform(context, (sha2_word32*)data); 536 context->bitcount += LDNS_SHA256_BLOCK_LENGTH << 3; 537 len -= LDNS_SHA256_BLOCK_LENGTH; 538 data += LDNS_SHA256_BLOCK_LENGTH; 539 } 540 if (len > 0) { 541 /* There's left-overs, so save 'em */ 542 MEMCPY_BCOPY(context->buffer, data, len); 543 context->bitcount += len << 3; 544 } 545 /* Clean up: */ 546 usedspace = freespace = 0; 547 } 548 549 typedef union _ldns_sha2_buffer_union { 550 uint8_t* theChars; 551 uint64_t* theLongs; 552 } ldns_sha2_buffer_union; 553 554 void ldns_sha256_final(sha2_byte digest[], ldns_sha256_CTX* context) { 555 sha2_word32 *d = (sha2_word32*)digest; 556 size_t usedspace; 557 ldns_sha2_buffer_union cast_var; 558 559 /* Sanity check: */ 560 assert(context != (ldns_sha256_CTX*)0); 561 562 /* If no digest buffer is passed, we don't bother doing this: */ 563 if (digest != (sha2_byte*)0) { 564 usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH; 565 #if BYTE_ORDER == LITTLE_ENDIAN 566 /* Convert FROM host byte order */ 567 REVERSE64(context->bitcount,context->bitcount); 568 #endif 569 if (usedspace > 0) { 570 /* Begin padding with a 1 bit: */ 571 context->buffer[usedspace++] = 0x80; 572 573 if (usedspace <= ldns_sha256_SHORT_BLOCK_LENGTH) { 574 /* Set-up for the last transform: */ 575 MEMSET_BZERO(&context->buffer[usedspace], ldns_sha256_SHORT_BLOCK_LENGTH - usedspace); 576 } else { 577 if (usedspace < LDNS_SHA256_BLOCK_LENGTH) { 578 MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA256_BLOCK_LENGTH - usedspace); 579 } 580 /* Do second-to-last transform: */ 581 ldns_sha256_Transform(context, (sha2_word32*)context->buffer); 582 583 /* And set-up for the last transform: */ 584 MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH); 585 } 586 } else { 587 /* Set-up for the last transform: */ 588 MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH); 589 590 /* Begin padding with a 1 bit: */ 591 *context->buffer = 0x80; 592 } 593 /* Set the bit count: */ 594 cast_var.theChars = context->buffer; 595 cast_var.theLongs[ldns_sha256_SHORT_BLOCK_LENGTH / 8] = context->bitcount; 596 597 /* final transform: */ 598 ldns_sha256_Transform(context, (sha2_word32*)context->buffer); 599 600 #if BYTE_ORDER == LITTLE_ENDIAN 601 { 602 /* Convert TO host byte order */ 603 int j; 604 for (j = 0; j < 8; j++) { 605 REVERSE32(context->state[j],context->state[j]); 606 *d++ = context->state[j]; 607 } 608 } 609 #else 610 MEMCPY_BCOPY(d, context->state, LDNS_SHA256_DIGEST_LENGTH); 611 #endif 612 } 613 614 /* Clean up state data: */ 615 MEMSET_BZERO(context, sizeof(ldns_sha256_CTX)); 616 usedspace = 0; 617 } 618 619 unsigned char * 620 ldns_sha256(unsigned char *data, unsigned int data_len, unsigned char *digest) 621 { 622 ldns_sha256_CTX ctx; 623 ldns_sha256_init(&ctx); 624 ldns_sha256_update(&ctx, data, data_len); 625 ldns_sha256_final(digest, &ctx); 626 return digest; 627 } 628 629 /*** SHA-512: *********************************************************/ 630 void ldns_sha512_init(ldns_sha512_CTX* context) { 631 if (context == (ldns_sha512_CTX*)0) { 632 return; 633 } 634 MEMCPY_BCOPY(context->state, sha512_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH); 635 MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH); 636 context->bitcount[0] = context->bitcount[1] = 0; 637 } 638 639 #ifdef SHA2_UNROLL_TRANSFORM 640 641 /* Unrolled SHA-512 round macros: */ 642 #if BYTE_ORDER == LITTLE_ENDIAN 643 644 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ 645 REVERSE64(*data++, W512[j]); \ 646 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ 647 K512[j] + W512[j]; \ 648 (d) += T1, \ 649 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ 650 j++ 651 652 653 #else /* BYTE_ORDER == LITTLE_ENDIAN */ 654 655 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ 656 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ 657 K512[j] + (W512[j] = *data++); \ 658 (d) += T1; \ 659 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ 660 j++ 661 662 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 663 664 #define ROUND512(a,b,c,d,e,f,g,h) \ 665 s0 = W512[(j+1)&0x0f]; \ 666 s0 = sigma0_512(s0); \ 667 s1 = W512[(j+14)&0x0f]; \ 668 s1 = sigma1_512(s1); \ 669 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ 670 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ 671 (d) += T1; \ 672 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ 673 j++ 674 675 static void ldns_sha512_Transform(ldns_sha512_CTX* context, 676 const sha2_word64* data) { 677 sha2_word64 a, b, c, d, e, f, g, h, s0, s1; 678 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer; 679 int j; 680 681 /* initialize registers with the prev. intermediate value */ 682 a = context->state[0]; 683 b = context->state[1]; 684 c = context->state[2]; 685 d = context->state[3]; 686 e = context->state[4]; 687 f = context->state[5]; 688 g = context->state[6]; 689 h = context->state[7]; 690 691 j = 0; 692 do { 693 ROUND512_0_TO_15(a,b,c,d,e,f,g,h); 694 ROUND512_0_TO_15(h,a,b,c,d,e,f,g); 695 ROUND512_0_TO_15(g,h,a,b,c,d,e,f); 696 ROUND512_0_TO_15(f,g,h,a,b,c,d,e); 697 ROUND512_0_TO_15(e,f,g,h,a,b,c,d); 698 ROUND512_0_TO_15(d,e,f,g,h,a,b,c); 699 ROUND512_0_TO_15(c,d,e,f,g,h,a,b); 700 ROUND512_0_TO_15(b,c,d,e,f,g,h,a); 701 } while (j < 16); 702 703 /* Now for the remaining rounds up to 79: */ 704 do { 705 ROUND512(a,b,c,d,e,f,g,h); 706 ROUND512(h,a,b,c,d,e,f,g); 707 ROUND512(g,h,a,b,c,d,e,f); 708 ROUND512(f,g,h,a,b,c,d,e); 709 ROUND512(e,f,g,h,a,b,c,d); 710 ROUND512(d,e,f,g,h,a,b,c); 711 ROUND512(c,d,e,f,g,h,a,b); 712 ROUND512(b,c,d,e,f,g,h,a); 713 } while (j < 80); 714 715 /* Compute the current intermediate hash value */ 716 context->state[0] += a; 717 context->state[1] += b; 718 context->state[2] += c; 719 context->state[3] += d; 720 context->state[4] += e; 721 context->state[5] += f; 722 context->state[6] += g; 723 context->state[7] += h; 724 725 /* Clean up */ 726 a = b = c = d = e = f = g = h = T1 = 0; 727 } 728 729 #else /* SHA2_UNROLL_TRANSFORM */ 730 731 static void ldns_sha512_Transform(ldns_sha512_CTX* context, 732 const sha2_word64* data) { 733 sha2_word64 a, b, c, d, e, f, g, h, s0, s1; 734 sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer; 735 int j; 736 737 /* initialize registers with the prev. intermediate value */ 738 a = context->state[0]; 739 b = context->state[1]; 740 c = context->state[2]; 741 d = context->state[3]; 742 e = context->state[4]; 743 f = context->state[5]; 744 g = context->state[6]; 745 h = context->state[7]; 746 747 j = 0; 748 do { 749 #if BYTE_ORDER == LITTLE_ENDIAN 750 /* Convert TO host byte order */ 751 REVERSE64(*data++, W512[j]); 752 /* Apply the SHA-512 compression function to update a..h */ 753 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; 754 #else /* BYTE_ORDER == LITTLE_ENDIAN */ 755 /* Apply the SHA-512 compression function to update a..h with copy */ 756 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); 757 #endif /* BYTE_ORDER == LITTLE_ENDIAN */ 758 T2 = Sigma0_512(a) + Maj(a, b, c); 759 h = g; 760 g = f; 761 f = e; 762 e = d + T1; 763 d = c; 764 c = b; 765 b = a; 766 a = T1 + T2; 767 768 j++; 769 } while (j < 16); 770 771 do { 772 /* Part of the message block expansion: */ 773 s0 = W512[(j+1)&0x0f]; 774 s0 = sigma0_512(s0); 775 s1 = W512[(j+14)&0x0f]; 776 s1 = sigma1_512(s1); 777 778 /* Apply the SHA-512 compression function to update a..h */ 779 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + 780 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); 781 T2 = Sigma0_512(a) + Maj(a, b, c); 782 h = g; 783 g = f; 784 f = e; 785 e = d + T1; 786 d = c; 787 c = b; 788 b = a; 789 a = T1 + T2; 790 791 j++; 792 } while (j < 80); 793 794 /* Compute the current intermediate hash value */ 795 context->state[0] += a; 796 context->state[1] += b; 797 context->state[2] += c; 798 context->state[3] += d; 799 context->state[4] += e; 800 context->state[5] += f; 801 context->state[6] += g; 802 context->state[7] += h; 803 804 /* Clean up */ 805 a = b = c = d = e = f = g = h = T1 = T2 = 0; 806 } 807 808 #endif /* SHA2_UNROLL_TRANSFORM */ 809 810 void ldns_sha512_update(ldns_sha512_CTX* context, const sha2_byte *data, size_t len) { 811 size_t freespace, usedspace; 812 813 if (len == 0) { 814 /* Calling with no data is valid - we do nothing */ 815 return; 816 } 817 818 /* Sanity check: */ 819 assert(context != (ldns_sha512_CTX*)0 && data != (sha2_byte*)0); 820 821 usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH; 822 if (usedspace > 0) { 823 /* Calculate how much free space is available in the buffer */ 824 freespace = LDNS_SHA512_BLOCK_LENGTH - usedspace; 825 826 if (len >= freespace) { 827 /* Fill the buffer completely and process it */ 828 MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); 829 ADDINC128(context->bitcount, freespace << 3); 830 len -= freespace; 831 data += freespace; 832 ldns_sha512_Transform(context, (sha2_word64*)context->buffer); 833 } else { 834 /* The buffer is not yet full */ 835 MEMCPY_BCOPY(&context->buffer[usedspace], data, len); 836 ADDINC128(context->bitcount, len << 3); 837 /* Clean up: */ 838 usedspace = freespace = 0; 839 return; 840 } 841 } 842 while (len >= LDNS_SHA512_BLOCK_LENGTH) { 843 /* Process as many complete blocks as we can */ 844 ldns_sha512_Transform(context, (sha2_word64*)data); 845 ADDINC128(context->bitcount, LDNS_SHA512_BLOCK_LENGTH << 3); 846 len -= LDNS_SHA512_BLOCK_LENGTH; 847 data += LDNS_SHA512_BLOCK_LENGTH; 848 } 849 if (len > 0) { 850 /* There's left-overs, so save 'em */ 851 MEMCPY_BCOPY(context->buffer, data, len); 852 ADDINC128(context->bitcount, len << 3); 853 } 854 /* Clean up: */ 855 usedspace = freespace = 0; 856 } 857 858 static void ldns_sha512_Last(ldns_sha512_CTX* context) { 859 size_t usedspace; 860 ldns_sha2_buffer_union cast_var; 861 862 usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH; 863 #if BYTE_ORDER == LITTLE_ENDIAN 864 /* Convert FROM host byte order */ 865 REVERSE64(context->bitcount[0],context->bitcount[0]); 866 REVERSE64(context->bitcount[1],context->bitcount[1]); 867 #endif 868 if (usedspace > 0) { 869 /* Begin padding with a 1 bit: */ 870 context->buffer[usedspace++] = 0x80; 871 872 if (usedspace <= ldns_sha512_SHORT_BLOCK_LENGTH) { 873 /* Set-up for the last transform: */ 874 MEMSET_BZERO(&context->buffer[usedspace], ldns_sha512_SHORT_BLOCK_LENGTH - usedspace); 875 } else { 876 if (usedspace < LDNS_SHA512_BLOCK_LENGTH) { 877 MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA512_BLOCK_LENGTH - usedspace); 878 } 879 /* Do second-to-last transform: */ 880 ldns_sha512_Transform(context, (sha2_word64*)context->buffer); 881 882 /* And set-up for the last transform: */ 883 MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH - 2); 884 } 885 } else { 886 /* Prepare for final transform: */ 887 MEMSET_BZERO(context->buffer, ldns_sha512_SHORT_BLOCK_LENGTH); 888 889 /* Begin padding with a 1 bit: */ 890 *context->buffer = 0x80; 891 } 892 /* Store the length of input data (in bits): */ 893 cast_var.theChars = context->buffer; 894 cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8] = context->bitcount[1]; 895 cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0]; 896 897 /* final transform: */ 898 ldns_sha512_Transform(context, (sha2_word64*)context->buffer); 899 } 900 901 void ldns_sha512_final(sha2_byte digest[], ldns_sha512_CTX* context) { 902 sha2_word64 *d = (sha2_word64*)digest; 903 904 /* Sanity check: */ 905 assert(context != (ldns_sha512_CTX*)0); 906 907 /* If no digest buffer is passed, we don't bother doing this: */ 908 if (digest != (sha2_byte*)0) { 909 ldns_sha512_Last(context); 910 911 /* Save the hash data for output: */ 912 #if BYTE_ORDER == LITTLE_ENDIAN 913 { 914 /* Convert TO host byte order */ 915 int j; 916 for (j = 0; j < 8; j++) { 917 REVERSE64(context->state[j],context->state[j]); 918 *d++ = context->state[j]; 919 } 920 } 921 #else 922 MEMCPY_BCOPY(d, context->state, LDNS_SHA512_DIGEST_LENGTH); 923 #endif 924 } 925 926 /* Zero out state data */ 927 MEMSET_BZERO(context, sizeof(ldns_sha512_CTX)); 928 } 929 930 unsigned char * 931 ldns_sha512(unsigned char *data, unsigned int data_len, unsigned char *digest) 932 { 933 ldns_sha512_CTX ctx; 934 ldns_sha512_init(&ctx); 935 ldns_sha512_update(&ctx, data, data_len); 936 ldns_sha512_final(digest, &ctx); 937 return digest; 938 } 939 940 /*** SHA-384: *********************************************************/ 941 void ldns_sha384_init(ldns_sha384_CTX* context) { 942 if (context == (ldns_sha384_CTX*)0) { 943 return; 944 } 945 MEMCPY_BCOPY(context->state, sha384_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH); 946 MEMSET_BZERO(context->buffer, LDNS_SHA384_BLOCK_LENGTH); 947 context->bitcount[0] = context->bitcount[1] = 0; 948 } 949 950 void ldns_sha384_update(ldns_sha384_CTX* context, const sha2_byte* data, size_t len) { 951 ldns_sha512_update((ldns_sha512_CTX*)context, data, len); 952 } 953 954 void ldns_sha384_final(sha2_byte digest[], ldns_sha384_CTX* context) { 955 sha2_word64 *d = (sha2_word64*)digest; 956 957 /* Sanity check: */ 958 assert(context != (ldns_sha384_CTX*)0); 959 960 /* If no digest buffer is passed, we don't bother doing this: */ 961 if (digest != (sha2_byte*)0) { 962 ldns_sha512_Last((ldns_sha512_CTX*)context); 963 964 /* Save the hash data for output: */ 965 #if BYTE_ORDER == LITTLE_ENDIAN 966 { 967 /* Convert TO host byte order */ 968 int j; 969 for (j = 0; j < 6; j++) { 970 REVERSE64(context->state[j],context->state[j]); 971 *d++ = context->state[j]; 972 } 973 } 974 #else 975 MEMCPY_BCOPY(d, context->state, LDNS_SHA384_DIGEST_LENGTH); 976 #endif 977 } 978 979 /* Zero out state data */ 980 MEMSET_BZERO(context, sizeof(ldns_sha384_CTX)); 981 } 982 983 unsigned char * 984 ldns_sha384(unsigned char *data, unsigned int data_len, unsigned char *digest) 985 { 986 ldns_sha384_CTX ctx; 987 ldns_sha384_init(&ctx); 988 ldns_sha384_update(&ctx, data, data_len); 989 ldns_sha384_final(digest, &ctx); 990 return digest; 991 } 992