1/*- 2 * Copyright (c) 2006-2011 Joseph Koshy 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27#include <sys/cdefs.h> 28 29#include <assert.h> 30#include <libelf.h> 31#include <string.h> 32 33#include "_libelf.h" 34 35ELFTC_VCSID("$Id: libelf_convert.m4 2361 2011-12-28 12:03:05Z jkoshy $"); 36 37/* WARNING: GENERATED FROM __file__. */ 38 39divert(-1) 40 41# Generate conversion routines for converting between in-memory and 42# file representations of Elf data structures. 43# 44# These conversions use the type information defined in `elf_types.m4'. 45 46include(SRCDIR`/elf_types.m4') 47 48# For the purposes of generating conversion code, ELF types may be 49# classified according to the following characteristics: 50# 51# 1. Whether the ELF type can be directly mapped to an integral C 52# language type. For example, the ELF_T_WORD type maps directly to 53# a 'uint32_t', but ELF_T_GNUHASH lacks a matching C type. 54# 55# 2. Whether the type has word size dependent variants. For example, 56# ELT_T_EHDR is represented using C types Elf32_Ehdr and El64_Ehdr, 57# and the ELF_T_ADDR and ELF_T_OFF types have integral C types that 58# can be 32- or 64- bit wide. 59# 60# 3. Whether the ELF types has a fixed representation or not. For 61# example, the ELF_T_SYM type has a fixed size file representation, 62# some types like ELF_T_NOTE and ELF_T_GNUHASH use a variable size 63# representation. 64# 65# We use m4 macros to generate conversion code for ELF types that have 66# a fixed size representation. Conversion functions for the remaining 67# types are coded by hand. 68# 69#* Handling File and Memory Representations 70# 71# `In-memory' representations of an Elf data structure use natural 72# alignments and native byte ordering. This allows pointer arithmetic 73# and casting to work as expected. On the other hand, the `file' 74# representation of an ELF data structure could possibly be packed 75# tighter than its `in-memory' representation, and could be of a 76# differing byte order. Reading ELF objects that are members of `ar' 77# archives present an additional complication: `ar' pads file data to 78# even addresses, so file data structures in an archive member 79# residing inside an `ar' archive could be at misaligned memory 80# addresses when brought into memory. 81# 82# In summary, casting the `char *' pointers that point to memory 83# representations (i.e., source pointers for the *_tof() functions and 84# the destination pointers for the *_tom() functions), is safe, as 85# these pointers should be correctly aligned for the memory type 86# already. However, pointers to file representations have to be 87# treated as being potentially unaligned and no casting can be done. 88 89# NOCVT(TYPE) -- Do not generate the cvt[] structure entry for TYPE 90define(`NOCVT',`define(`NOCVT_'$1,1)') 91 92# NOFUNC(TYPE) -- Do not generate a conversion function for TYPE 93define(`NOFUNC',`define(`NOFUNC_'$1,1)') 94 95# IGNORE(TYPE) -- Completely ignore the type. 96define(`IGNORE',`NOCVT($1)NOFUNC($1)') 97 98# Mark ELF types that should not be processed by the M4 macros below. 99 100# Types for which we use functions with non-standard names. 101IGNORE(`BYTE') # Uses a wrapper around memcpy(). 102IGNORE(`NOTE') # Not a fixed size type. 103 104# Types for which we supply hand-coded functions. 105NOFUNC(`GNUHASH') # A type with complex internal structure. 106NOFUNC(`VDEF') # See MAKE_VERSION_CONVERTERS below. 107NOFUNC(`VNEED') # .. 108 109# Unimplemented types. 110IGNORE(`MOVEP') 111 112# ELF types that don't exist in a 32-bit world. 113NOFUNC(`XWORD32') 114NOFUNC(`SXWORD32') 115 116# `Primitive' ELF types are those that are an alias for an integral 117# type. As they have no internal structure, they can be copied using 118# a `memcpy()', and byteswapped in straightforward way. 119# 120# Mark all ELF types that directly map to integral C types. 121define(`PRIM_ADDR', 1) 122define(`PRIM_BYTE', 1) 123define(`PRIM_HALF', 1) 124define(`PRIM_LWORD', 1) 125define(`PRIM_OFF', 1) 126define(`PRIM_SWORD', 1) 127define(`PRIM_SXWORD', 1) 128define(`PRIM_WORD', 1) 129define(`PRIM_XWORD', 1) 130 131# Note the primitive types that are size-dependent. 132define(`SIZEDEP_ADDR', 1) 133define(`SIZEDEP_OFF', 1) 134 135# Generate conversion functions for primitive types. 136# 137# Macro use: MAKEPRIMFUNCS(ELFTYPE,CTYPE,TYPESIZE,SYMSIZE) 138# `$1': Name of the ELF type. 139# `$2': C structure name suffix. 140# `$3': ELF class specifier for types, one of [`32', `64']. 141# `$4': Additional ELF class specifier, one of [`', `32', `64']. 142# 143# Generates a pair of conversion functions. 144define(`MAKEPRIMFUNCS',` 145static int 146_libelf_cvt_$1$4_tof(char *dst, size_t dsz, char *src, size_t count, 147 int byteswap) 148{ 149 Elf$3_$2 t, *s = (Elf$3_$2 *) (uintptr_t) src; 150 size_t c; 151 152 (void) dsz; 153 154 if (!byteswap) { 155 (void) memcpy(dst, src, count * sizeof(*s)); 156 return (1); 157 } 158 159 for (c = 0; c < count; c++) { 160 t = *s++; 161 SWAP_$1$4(t); 162 WRITE_$1$4(dst,t); 163 } 164 165 return (1); 166} 167 168static int 169_libelf_cvt_$1$4_tom(char *dst, size_t dsz, char *src, size_t count, 170 int byteswap) 171{ 172 Elf$3_$2 t, *d = (Elf$3_$2 *) (uintptr_t) dst; 173 size_t c; 174 175 if (dsz < count * sizeof(Elf$3_$2)) 176 return (0); 177 178 if (!byteswap) { 179 (void) memcpy(dst, src, count * sizeof(*d)); 180 return (1); 181 } 182 183 for (c = 0; c < count; c++) { 184 READ_$1$4(src,t); 185 SWAP_$1$4(t); 186 *d++ = t; 187 } 188 189 return (1); 190} 191') 192 193# 194# Handling composite ELF types 195# 196 197# SWAP_FIELD(FIELDNAME,ELFTYPE) -- Generate code to swap one field. 198define(`SWAP_FIELD', 199 `ifdef(`SIZEDEP_'$2, 200 `SWAP_$2'SZ()`(t.$1); 201 ', 202 `SWAP_$2(t.$1); 203 ')') 204 205# SWAP_MEMBERS(STRUCT) -- Iterate over a structure definition. 206define(`SWAP_MEMBERS', 207 `ifelse($#,1,`/**/', 208 `SWAP_FIELD($1)SWAP_MEMBERS(shift($@))')') 209 210# SWAP_STRUCT(CTYPE,SIZE) -- Generate code to swap an ELF structure. 211define(`SWAP_STRUCT', 212 `pushdef(`SZ',$2)/* Swap an Elf$2_$1 */ 213 SWAP_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')') 214 215# WRITE_FIELD(ELFTYPE,FIELDNAME) -- Generate code to write one field. 216define(`WRITE_FIELD', 217 `ifdef(`SIZEDEP_'$2, 218 `WRITE_$2'SZ()`(dst,t.$1); 219 ', 220 `WRITE_$2(dst,t.$1); 221 ')') 222 223# WRITE_MEMBERS(ELFTYPELIST) -- Iterate over a structure definition. 224define(`WRITE_MEMBERS', 225 `ifelse($#,1,`/**/', 226 `WRITE_FIELD($1)WRITE_MEMBERS(shift($@))')') 227 228# WRITE_STRUCT(CTYPE,SIZE) -- Generate code to write out an ELF structure. 229define(`WRITE_STRUCT', 230 `pushdef(`SZ',$2)/* Write an Elf$2_$1 */ 231 WRITE_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')') 232 233# READ_FIELD(ELFTYPE,CTYPE) -- Generate code to read one field. 234define(`READ_FIELD', 235 `ifdef(`SIZEDEP_'$2, 236 `READ_$2'SZ()`(s,t.$1); 237 ', 238 `READ_$2(s,t.$1); 239 ')') 240 241# READ_MEMBERS(ELFTYPELIST) -- Iterate over a structure definition. 242define(`READ_MEMBERS', 243 `ifelse($#,1,`/**/', 244 `READ_FIELD($1)READ_MEMBERS(shift($@))')') 245 246# READ_STRUCT(CTYPE,SIZE) -- Generate code to read an ELF structure. 247define(`READ_STRUCT', 248 `pushdef(`SZ',$2)/* Read an Elf$2_$1 */ 249 READ_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')') 250 251 252# MAKECOMPFUNCS -- Generate converters for composite ELF structures. 253# 254# When converting data to file representation, the source pointer will 255# be naturally aligned for a data structure's in-memory 256# representation. When converting data to memory, the destination 257# pointer will be similarly aligned. 258# 259# For in-place conversions, when converting to file representations, 260# the source buffer is large enough to hold `file' data. When 261# converting from file to memory, we need to be careful to work 262# `backwards', to avoid overwriting unconverted data. 263# 264# Macro use: 265# `$1': Name of the ELF type. 266# `$2': C structure name suffix. 267# `$3': ELF class specifier, one of [`', `32', `64'] 268define(`MAKECOMPFUNCS', `ifdef(`NOFUNC_'$1$3,`',` 269static int 270_libelf_cvt_$1$3_tof(char *dst, size_t dsz, char *src, size_t count, 271 int byteswap) 272{ 273 Elf$3_$2 t, *s; 274 size_t c; 275 276 (void) dsz; 277 278 s = (Elf$3_$2 *) (uintptr_t) src; 279 for (c = 0; c < count; c++) { 280 t = *s++; 281 if (byteswap) { 282 SWAP_STRUCT($2,$3) 283 } 284 WRITE_STRUCT($2,$3) 285 } 286 287 return (1); 288} 289 290static int 291_libelf_cvt_$1$3_tom(char *dst, size_t dsz, char *src, size_t count, 292 int byteswap) 293{ 294 Elf$3_$2 t, *d; 295 char *s,*s0; 296 size_t fsz; 297 298 fsz = elf$3_fsize(ELF_T_$1, (size_t) 1, EV_CURRENT); 299 d = ((Elf$3_$2 *) (uintptr_t) dst) + (count - 1); 300 s0 = (char *) src + (count - 1) * fsz; 301 302 if (dsz < count * sizeof(Elf$3_$2)) 303 return (0); 304 305 while (count--) { 306 s = s0; 307 READ_STRUCT($2,$3) 308 if (byteswap) { 309 SWAP_STRUCT($2,$3) 310 } 311 *d-- = t; s0 -= fsz; 312 } 313 314 return (1); 315} 316')') 317 318# MAKE_TYPE_CONVERTER(ELFTYPE,CTYPE) 319# 320# Make type convertor functions from the type definition 321# of the ELF type: 322# - Skip convertors marked as `NOFUNC'. 323# - Invoke `MAKEPRIMFUNCS' or `MAKECOMPFUNCS' as appropriate. 324define(`MAKE_TYPE_CONVERTER', 325 `ifdef(`NOFUNC_'$1,`', 326 `ifdef(`PRIM_'$1, 327 `ifdef(`SIZEDEP_'$1, 328 `MAKEPRIMFUNCS($1,$2,32,32)dnl 329 MAKEPRIMFUNCS($1,$2,64,64)', 330 `MAKEPRIMFUNCS($1,$2,64)')', 331 `MAKECOMPFUNCS($1,$2,32)dnl 332 MAKECOMPFUNCS($1,$2,64)')')') 333 334# MAKE_TYPE_CONVERTERS(ELFTYPELIST) -- Generate conversion functions. 335define(`MAKE_TYPE_CONVERTERS', 336 `ifelse($#,1,`', 337 `MAKE_TYPE_CONVERTER($1)MAKE_TYPE_CONVERTERS(shift($@))')') 338 339 340# 341# Macros to generate entries for the table of convertors. 342# 343 344# CONV(ELFTYPE,SIZE,DIRECTION) 345# 346# Generate the name of a convertor function. 347define(`CONV', 348 `ifdef(`NOFUNC_'$1$2, 349 `.$3$2 = NULL', 350 `ifdef(`PRIM_'$1, 351 `ifdef(`SIZEDEP_'$1, 352 `.$3$2 = _libelf_cvt_$1$2_$3', 353 `.$3$2 = _libelf_cvt_$1_$3')', 354 `.$3$2 = _libelf_cvt_$1$2_$3')')') 355 356# CONVERTER_NAME(ELFTYPE) 357# 358# Generate the contents of one `struct cvt' instance. 359define(`CONVERTER_NAME', 360 `ifdef(`NOCVT_'$1,`', 361 ` [ELF_T_$1] = { 362 CONV($1,32,tof), 363 CONV($1,32,tom), 364 CONV($1,64,tof), 365 CONV($1,64,tom) 366 }, 367 368')') 369 370# CONVERTER_NAMES(ELFTYPELIST) 371# 372# Generate the `struct cvt[]' array. 373define(`CONVERTER_NAMES', 374 `ifelse($#,1,`', 375 `CONVERTER_NAME($1)CONVERTER_NAMES(shift($@))')') 376 377# 378# Handling ELF version sections. 379# 380 381# _FSZ(FIELD,BASETYPE) - return the file size for a field. 382define(`_FSZ', 383 `ifelse($2,`HALF',2, 384 $2,`WORD',4)') 385 386# FSZ(STRUCT) - determine the file size of a structure. 387define(`FSZ', 388 `ifelse($#,1,0, 389 `eval(_FSZ($1) + FSZ(shift($@)))')') 390 391# MAKE_VERSION_CONVERTERS(TYPE,BASE,AUX,PFX) -- Generate conversion 392# functions for versioning structures. 393define(`MAKE_VERSION_CONVERTERS', 394 `MAKE_VERSION_CONVERTER($1,$2,$3,$4,32) 395 MAKE_VERSION_CONVERTER($1,$2,$3,$4,64)') 396 397# MAKE_VERSION_CONVERTOR(TYPE,CBASE,CAUX,PFX,SIZE) -- Generate a 398# conversion function. 399define(`MAKE_VERSION_CONVERTER',` 400static int 401_libelf_cvt_$1$5_tof(char *dst, size_t dsz, char *src, size_t count, 402 int byteswap) 403{ 404 Elf$5_$2 t; 405 Elf$5_$3 a; 406 const size_t verfsz = FSZ(Elf$5_$2_DEF); 407 const size_t auxfsz = FSZ(Elf$5_$3_DEF); 408 const size_t vermsz = sizeof(Elf$5_$2); 409 const size_t auxmsz = sizeof(Elf$5_$3); 410 char * const dstend = dst + dsz; 411 char * const srcend = src + count; 412 char *dtmp, *dstaux, *srcaux; 413 Elf$5_Word aux, anext, cnt, vnext; 414 415 for (dtmp = dst, vnext = ~0; 416 vnext != 0 && dtmp + verfsz <= dstend && src + vermsz <= srcend; 417 dtmp += vnext, src += vnext) { 418 419 /* Read in an Elf$5_$2 structure. */ 420 t = *((Elf$5_$2 *) (uintptr_t) src); 421 422 aux = t.$4_aux; 423 cnt = t.$4_cnt; 424 vnext = t.$4_next; 425 426 if (byteswap) { 427 SWAP_STRUCT($2, $5) 428 } 429 430 dst = dtmp; 431 WRITE_STRUCT($2, $5) 432 433 if (aux < verfsz) 434 return (0); 435 436 /* Process AUX entries. */ 437 for (anext = ~0, dstaux = dtmp + aux, srcaux = src + aux; 438 cnt != 0 && anext != 0 && dstaux + auxfsz <= dstend && 439 srcaux + auxmsz <= srcend; 440 dstaux += anext, srcaux += anext, cnt--) { 441 442 /* Read in an Elf$5_$3 structure. */ 443 a = *((Elf$5_$3 *) (uintptr_t) srcaux); 444 anext = a.$4a_next; 445 446 if (byteswap) { 447 pushdef(`t',`a')SWAP_STRUCT($3, $5)popdef(`t') 448 } 449 450 dst = dstaux; 451 pushdef(`t',`a')WRITE_STRUCT($3, $5)popdef(`t') 452 } 453 454 if (anext || cnt) 455 return (0); 456 } 457 458 if (vnext) 459 return (0); 460 461 return (1); 462} 463 464static int 465_libelf_cvt_$1$5_tom(char *dst, size_t dsz, char *src, size_t count, 466 int byteswap) 467{ 468 Elf$5_$2 t, *dp; 469 Elf$5_$3 a, *ap; 470 const size_t verfsz = FSZ(Elf$5_$2_DEF); 471 const size_t auxfsz = FSZ(Elf$5_$3_DEF); 472 const size_t vermsz = sizeof(Elf$5_$2); 473 const size_t auxmsz = sizeof(Elf$5_$3); 474 char * const dstend = dst + dsz; 475 char * const srcend = src + count; 476 char *dstaux, *s, *srcaux, *stmp; 477 Elf$5_Word aux, anext, cnt, vnext; 478 479 for (stmp = src, vnext = ~0; 480 vnext != 0 && stmp + verfsz <= srcend && dst + vermsz <= dstend; 481 stmp += vnext, dst += vnext) { 482 483 /* Read in a $1 structure. */ 484 s = stmp; 485 READ_STRUCT($2, $5) 486 if (byteswap) { 487 SWAP_STRUCT($2, $5) 488 } 489 490 dp = (Elf$5_$2 *) (uintptr_t) dst; 491 *dp = t; 492 493 aux = t.$4_aux; 494 cnt = t.$4_cnt; 495 vnext = t.$4_next; 496 497 if (aux < vermsz) 498 return (0); 499 500 /* Process AUX entries. */ 501 for (anext = ~0, dstaux = dst + aux, srcaux = stmp + aux; 502 cnt != 0 && anext != 0 && dstaux + auxmsz <= dstend && 503 srcaux + auxfsz <= srcend; 504 dstaux += anext, srcaux += anext, cnt--) { 505 506 s = srcaux; 507 pushdef(`t',`a')READ_STRUCT($3, $5)popdef(`t') 508 509 if (byteswap) { 510 pushdef(`t',`a')SWAP_STRUCT($3, $5)popdef(`t') 511 } 512 513 anext = a.$4a_next; 514 515 ap = ((Elf$5_$3 *) (uintptr_t) dstaux); 516 *ap = a; 517 } 518 519 if (anext || cnt) 520 return (0); 521 } 522 523 if (vnext) 524 return (0); 525 526 return (1); 527}') 528 529divert(0) 530 531/* 532 * C macros to byte swap integral quantities. 533 */ 534 535#define SWAP_BYTE(X) do { (void) (X); } while (0) 536#define SWAP_IDENT(X) do { (void) (X); } while (0) 537#define SWAP_HALF(X) do { \ 538 uint16_t _x = (uint16_t) (X); \ 539 uint16_t _t = _x & 0xFF; \ 540 _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ 541 (X) = _t; \ 542 } while (0) 543#define SWAP_WORD(X) do { \ 544 uint32_t _x = (uint32_t) (X); \ 545 uint32_t _t = _x & 0xFF; \ 546 _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ 547 _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ 548 _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ 549 (X) = _t; \ 550 } while (0) 551#define SWAP_ADDR32(X) SWAP_WORD(X) 552#define SWAP_OFF32(X) SWAP_WORD(X) 553#define SWAP_SWORD(X) SWAP_WORD(X) 554#define SWAP_WORD64(X) do { \ 555 uint64_t _x = (uint64_t) (X); \ 556 uint64_t _t = _x & 0xFF; \ 557 _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ 558 _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ 559 _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ 560 _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ 561 _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ 562 _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ 563 _t <<= 8; _x >>= 8; _t |= _x & 0xFF; \ 564 (X) = _t; \ 565 } while (0) 566#define SWAP_ADDR64(X) SWAP_WORD64(X) 567#define SWAP_LWORD(X) SWAP_WORD64(X) 568#define SWAP_OFF64(X) SWAP_WORD64(X) 569#define SWAP_SXWORD(X) SWAP_WORD64(X) 570#define SWAP_XWORD(X) SWAP_WORD64(X) 571 572/* 573 * C macros to write out various integral values. 574 * 575 * Note: 576 * - The destination pointer could be unaligned. 577 * - Values are written out in native byte order. 578 * - The destination pointer is incremented after the write. 579 */ 580#define WRITE_BYTE(P,X) do { \ 581 char *const _p = (char *) (P); \ 582 _p[0] = (char) (X); \ 583 (P) = _p + 1; \ 584 } while (0) 585#define WRITE_HALF(P,X) do { \ 586 uint16_t _t = (X); \ 587 char *const _p = (char *) (P); \ 588 const char *const _q = (char *) &_t; \ 589 _p[0] = _q[0]; \ 590 _p[1] = _q[1]; \ 591 (P) = _p + 2; \ 592 } while (0) 593#define WRITE_WORD(P,X) do { \ 594 uint32_t _t = (X); \ 595 char *const _p = (char *) (P); \ 596 const char *const _q = (char *) &_t; \ 597 _p[0] = _q[0]; \ 598 _p[1] = _q[1]; \ 599 _p[2] = _q[2]; \ 600 _p[3] = _q[3]; \ 601 (P) = _p + 4; \ 602 } while (0) 603#define WRITE_ADDR32(P,X) WRITE_WORD(P,X) 604#define WRITE_OFF32(P,X) WRITE_WORD(P,X) 605#define WRITE_SWORD(P,X) WRITE_WORD(P,X) 606#define WRITE_WORD64(P,X) do { \ 607 uint64_t _t = (X); \ 608 char *const _p = (char *) (P); \ 609 const char *const _q = (char *) &_t; \ 610 _p[0] = _q[0]; \ 611 _p[1] = _q[1]; \ 612 _p[2] = _q[2]; \ 613 _p[3] = _q[3]; \ 614 _p[4] = _q[4]; \ 615 _p[5] = _q[5]; \ 616 _p[6] = _q[6]; \ 617 _p[7] = _q[7]; \ 618 (P) = _p + 8; \ 619 } while (0) 620#define WRITE_ADDR64(P,X) WRITE_WORD64(P,X) 621#define WRITE_LWORD(P,X) WRITE_WORD64(P,X) 622#define WRITE_OFF64(P,X) WRITE_WORD64(P,X) 623#define WRITE_SXWORD(P,X) WRITE_WORD64(P,X) 624#define WRITE_XWORD(P,X) WRITE_WORD64(P,X) 625#define WRITE_IDENT(P,X) do { \ 626 (void) memcpy((P), (X), sizeof((X))); \ 627 (P) = (P) + EI_NIDENT; \ 628 } while (0) 629 630/* 631 * C macros to read in various integral values. 632 * 633 * Note: 634 * - The source pointer could be unaligned. 635 * - Values are read in native byte order. 636 * - The source pointer is incremented appropriately. 637 */ 638 639#define READ_BYTE(P,X) do { \ 640 const char *const _p = \ 641 (const char *) (P); \ 642 (X) = _p[0]; \ 643 (P) = (P) + 1; \ 644 } while (0) 645#define READ_HALF(P,X) do { \ 646 uint16_t _t; \ 647 char *const _q = (char *) &_t; \ 648 const char *const _p = \ 649 (const char *) (P); \ 650 _q[0] = _p[0]; \ 651 _q[1] = _p[1]; \ 652 (P) = (P) + 2; \ 653 (X) = _t; \ 654 } while (0) 655#define READ_WORD(P,X) do { \ 656 uint32_t _t; \ 657 char *const _q = (char *) &_t; \ 658 const char *const _p = \ 659 (const char *) (P); \ 660 _q[0] = _p[0]; \ 661 _q[1] = _p[1]; \ 662 _q[2] = _p[2]; \ 663 _q[3] = _p[3]; \ 664 (P) = (P) + 4; \ 665 (X) = _t; \ 666 } while (0) 667#define READ_ADDR32(P,X) READ_WORD(P,X) 668#define READ_OFF32(P,X) READ_WORD(P,X) 669#define READ_SWORD(P,X) READ_WORD(P,X) 670#define READ_WORD64(P,X) do { \ 671 uint64_t _t; \ 672 char *const _q = (char *) &_t; \ 673 const char *const _p = \ 674 (const char *) (P); \ 675 _q[0] = _p[0]; \ 676 _q[1] = _p[1]; \ 677 _q[2] = _p[2]; \ 678 _q[3] = _p[3]; \ 679 _q[4] = _p[4]; \ 680 _q[5] = _p[5]; \ 681 _q[6] = _p[6]; \ 682 _q[7] = _p[7]; \ 683 (P) = (P) + 8; \ 684 (X) = _t; \ 685 } while (0) 686#define READ_ADDR64(P,X) READ_WORD64(P,X) 687#define READ_LWORD(P,X) READ_WORD64(P,X) 688#define READ_OFF64(P,X) READ_WORD64(P,X) 689#define READ_SXWORD(P,X) READ_WORD64(P,X) 690#define READ_XWORD(P,X) READ_WORD64(P,X) 691#define READ_IDENT(P,X) do { \ 692 (void) memcpy((X), (P), sizeof((X))); \ 693 (P) = (P) + EI_NIDENT; \ 694 } while (0) 695 696#define ROUNDUP2(V,N) (V) = ((((V) + (N) - 1)) & ~((N) - 1)) 697 698/*[*/ 699MAKE_TYPE_CONVERTERS(ELF_TYPE_LIST) 700MAKE_VERSION_CONVERTERS(VDEF,Verdef,Verdaux,vd) 701MAKE_VERSION_CONVERTERS(VNEED,Verneed,Vernaux,vn) 702/*]*/ 703 704/* 705 * Sections of type ELF_T_BYTE are never byteswapped, consequently a 706 * simple memcpy suffices for both directions of conversion. 707 */ 708 709static int 710_libelf_cvt_BYTE_tox(char *dst, size_t dsz, char *src, size_t count, 711 int byteswap) 712{ 713 (void) byteswap; 714 if (dsz < count) 715 return (0); 716 if (dst != src) 717 (void) memcpy(dst, src, count); 718 return (1); 719} 720 721/* 722 * Sections of type ELF_T_GNUHASH start with a header containing 4 32-bit 723 * words. Bloom filter data comes next, followed by hash buckets and the 724 * hash chain. 725 * 726 * Bloom filter words are 64 bit wide on ELFCLASS64 objects and are 32 bit 727 * wide on ELFCLASS32 objects. The other objects in this section are 32 728 * bits wide. 729 * 730 * Argument `srcsz' denotes the number of bytes to be converted. In the 731 * 32-bit case we need to translate `srcsz' to a count of 32-bit words. 732 */ 733 734static int 735_libelf_cvt_GNUHASH32_tom(char *dst, size_t dsz, char *src, size_t srcsz, 736 int byteswap) 737{ 738 return (_libelf_cvt_WORD_tom(dst, dsz, src, srcsz / sizeof(uint32_t), 739 byteswap)); 740} 741 742static int 743_libelf_cvt_GNUHASH32_tof(char *dst, size_t dsz, char *src, size_t srcsz, 744 int byteswap) 745{ 746 return (_libelf_cvt_WORD_tof(dst, dsz, src, srcsz / sizeof(uint32_t), 747 byteswap)); 748} 749 750static int 751_libelf_cvt_GNUHASH64_tom(char *dst, size_t dsz, char *src, size_t srcsz, 752 int byteswap) 753{ 754 size_t sz; 755 uint64_t t64, *bloom64; 756 Elf_GNU_Hash_Header *gh; 757 uint32_t n, nbuckets, nchains, maskwords, shift2, symndx, t32; 758 uint32_t *buckets, *chains; 759 760 sz = 4 * sizeof(uint32_t); /* File header is 4 words long. */ 761 if (dsz < sizeof(Elf_GNU_Hash_Header) || srcsz < sz) 762 return (0); 763 764 /* Read in the section header and byteswap if needed. */ 765 READ_WORD(src, nbuckets); 766 READ_WORD(src, symndx); 767 READ_WORD(src, maskwords); 768 READ_WORD(src, shift2); 769 770 srcsz -= sz; 771 772 if (byteswap) { 773 SWAP_WORD(nbuckets); 774 SWAP_WORD(symndx); 775 SWAP_WORD(maskwords); 776 SWAP_WORD(shift2); 777 } 778 779 /* Check source buffer and destination buffer sizes. */ 780 sz = nbuckets * sizeof(uint32_t) + maskwords * sizeof(uint64_t); 781 if (srcsz < sz || dsz < sz + sizeof(Elf_GNU_Hash_Header)) 782 return (0); 783 784 gh = (Elf_GNU_Hash_Header *) (uintptr_t) dst; 785 gh->gh_nbuckets = nbuckets; 786 gh->gh_symndx = symndx; 787 gh->gh_maskwords = maskwords; 788 gh->gh_shift2 = shift2; 789 790 dsz -= sizeof(Elf_GNU_Hash_Header); 791 dst += sizeof(Elf_GNU_Hash_Header); 792 793 bloom64 = (uint64_t *) (uintptr_t) dst; 794 795 /* Copy bloom filter data. */ 796 for (n = 0; n < maskwords; n++) { 797 READ_XWORD(src, t64); 798 if (byteswap) 799 SWAP_XWORD(t64); 800 bloom64[n] = t64; 801 } 802 803 /* The hash buckets follows the bloom filter. */ 804 dst += maskwords * sizeof(uint64_t); 805 buckets = (uint32_t *) (uintptr_t) dst; 806 807 for (n = 0; n < nbuckets; n++) { 808 READ_WORD(src, t32); 809 if (byteswap) 810 SWAP_WORD(t32); 811 buckets[n] = t32; 812 } 813 814 dst += nbuckets * sizeof(uint32_t); 815 816 /* The hash chain follows the hash buckets. */ 817 dsz -= sz; 818 srcsz -= sz; 819 820 if (dsz < srcsz) /* Destination lacks space. */ 821 return (0); 822 823 nchains = srcsz / sizeof(uint32_t); 824 chains = (uint32_t *) (uintptr_t) dst; 825 826 for (n = 0; n < nchains; n++) { 827 READ_WORD(src, t32); 828 if (byteswap) 829 SWAP_WORD(t32); 830 *chains++ = t32; 831 } 832 833 return (1); 834} 835 836static int 837_libelf_cvt_GNUHASH64_tof(char *dst, size_t dsz, char *src, size_t srcsz, 838 int byteswap) 839{ 840 uint32_t *s32; 841 size_t sz, hdrsz; 842 uint64_t *s64, t64; 843 Elf_GNU_Hash_Header *gh; 844 uint32_t maskwords, n, nbuckets, nchains, t0, t1, t2, t3, t32; 845 846 hdrsz = 4 * sizeof(uint32_t); /* Header is 4x32 bits. */ 847 if (dsz < hdrsz || srcsz < sizeof(Elf_GNU_Hash_Header)) 848 return (0); 849 850 gh = (Elf_GNU_Hash_Header *) (uintptr_t) src; 851 852 t0 = nbuckets = gh->gh_nbuckets; 853 t1 = gh->gh_symndx; 854 t2 = maskwords = gh->gh_maskwords; 855 t3 = gh->gh_shift2; 856 857 src += sizeof(Elf_GNU_Hash_Header); 858 srcsz -= sizeof(Elf_GNU_Hash_Header); 859 dsz -= hdrsz; 860 861 sz = gh->gh_nbuckets * sizeof(uint32_t) + gh->gh_maskwords * 862 sizeof(uint64_t); 863 864 if (srcsz < sz || dsz < sz) 865 return (0); 866 867 /* Write out the header. */ 868 if (byteswap) { 869 SWAP_WORD(t0); 870 SWAP_WORD(t1); 871 SWAP_WORD(t2); 872 SWAP_WORD(t3); 873 } 874 875 WRITE_WORD(dst, t0); 876 WRITE_WORD(dst, t1); 877 WRITE_WORD(dst, t2); 878 WRITE_WORD(dst, t3); 879 880 /* Copy the bloom filter and the hash table. */ 881 s64 = (uint64_t *) (uintptr_t) src; 882 for (n = 0; n < maskwords; n++) { 883 t64 = *s64++; 884 if (byteswap) 885 SWAP_XWORD(t64); 886 WRITE_WORD64(dst, t64); 887 } 888 889 s32 = (uint32_t *) s64; 890 for (n = 0; n < nbuckets; n++) { 891 t32 = *s32++; 892 if (byteswap) 893 SWAP_WORD(t32); 894 WRITE_WORD(dst, t32); 895 } 896 897 srcsz -= sz; 898 dsz -= sz; 899 900 /* Copy out the hash chains. */ 901 if (dsz < srcsz) 902 return (0); 903 904 nchains = srcsz / sizeof(uint32_t); 905 for (n = 0; n < nchains; n++) { 906 t32 = *s32++; 907 if (byteswap) 908 SWAP_WORD(t32); 909 WRITE_WORD(dst, t32); 910 } 911 912 return (1); 913} 914 915/* 916 * Elf_Note structures comprise a fixed size header followed by variable 917 * length strings. The fixed size header needs to be byte swapped, but 918 * not the strings. 919 * 920 * Argument `count' denotes the total number of bytes to be converted. 921 * The destination buffer needs to be at least `count' bytes in size. 922 */ 923static int 924_libelf_cvt_NOTE_tom(char *dst, size_t dsz, char *src, size_t count, 925 int byteswap) 926{ 927 uint32_t namesz, descsz, type; 928 Elf_Note *en; 929 size_t sz, hdrsz; 930 931 if (dsz < count) /* Destination buffer is too small. */ 932 return (0); 933 934 hdrsz = 3 * sizeof(uint32_t); 935 if (count < hdrsz) /* Source too small. */ 936 return (0); 937 938 if (!byteswap) { 939 (void) memcpy(dst, src, count); 940 return (1); 941 } 942 943 /* Process all notes in the section. */ 944 while (count > hdrsz) { 945 /* Read the note header. */ 946 READ_WORD(src, namesz); 947 READ_WORD(src, descsz); 948 READ_WORD(src, type); 949 950 sz = namesz; 951 ROUNDUP2(sz, 4); 952 sz += descsz; 953 ROUNDUP2(sz, 4); 954 955 /* Translate. */ 956 SWAP_WORD(namesz); 957 SWAP_WORD(descsz); 958 SWAP_WORD(type); 959 960 /* Copy out the translated note header. */ 961 en = (Elf_Note *) (uintptr_t) dst; 962 en->n_namesz = namesz; 963 en->n_descsz = descsz; 964 en->n_type = type; 965 966 dsz -= sizeof(Elf_Note); 967 dst += sizeof(Elf_Note); 968 count -= hdrsz; 969 970 if (count < sz || dsz < sz) /* Buffers are too small. */ 971 return (0); 972 973 (void) memcpy(dst, src, sz); 974 975 src += sz; 976 dst += sz; 977 978 count -= sz; 979 dsz -= sz; 980 } 981 982 return (1); 983} 984 985static int 986_libelf_cvt_NOTE_tof(char *dst, size_t dsz, char *src, size_t count, 987 int byteswap) 988{ 989 uint32_t namesz, descsz, type; 990 Elf_Note *en; 991 size_t sz; 992 993 if (dsz < count) 994 return (0); 995 996 if (!byteswap) { 997 (void) memcpy(dst, src, count); 998 return (1); 999 } 1000 1001 while (count > sizeof(Elf_Note)) { 1002 1003 en = (Elf_Note *) (uintptr_t) src; 1004 namesz = en->n_namesz; 1005 descsz = en->n_descsz; 1006 type = en->n_type; 1007 1008 SWAP_WORD(namesz); 1009 SWAP_WORD(descsz); 1010 SWAP_WORD(type); 1011 1012 WRITE_WORD(dst, namesz); 1013 WRITE_WORD(dst, descsz); 1014 WRITE_WORD(dst, type); 1015 1016 src += sizeof(Elf_Note); 1017 1018 ROUNDUP2(namesz, 4); 1019 ROUNDUP2(descsz, 4); 1020 1021 sz = namesz + descsz; 1022 1023 if (count < sz) 1024 sz = count; 1025 1026 (void) memcpy(dst, src, sz); 1027 1028 src += sz; 1029 dst += sz; 1030 count -= sz; 1031 } 1032 1033 return (1); 1034} 1035 1036struct converters { 1037 int (*tof32)(char *dst, size_t dsz, char *src, size_t cnt, 1038 int byteswap); 1039 int (*tom32)(char *dst, size_t dsz, char *src, size_t cnt, 1040 int byteswap); 1041 int (*tof64)(char *dst, size_t dsz, char *src, size_t cnt, 1042 int byteswap); 1043 int (*tom64)(char *dst, size_t dsz, char *src, size_t cnt, 1044 int byteswap); 1045}; 1046 1047 1048static struct converters cvt[ELF_T_NUM] = { 1049 /*[*/ 1050CONVERTER_NAMES(ELF_TYPE_LIST) 1051 /*]*/ 1052 1053 /* 1054 * Types that need hand-coded converters follow. 1055 */ 1056 1057 [ELF_T_BYTE] = { 1058 .tof32 = _libelf_cvt_BYTE_tox, 1059 .tom32 = _libelf_cvt_BYTE_tox, 1060 .tof64 = _libelf_cvt_BYTE_tox, 1061 .tom64 = _libelf_cvt_BYTE_tox 1062 }, 1063 1064 [ELF_T_NOTE] = { 1065 .tof32 = _libelf_cvt_NOTE_tof, 1066 .tom32 = _libelf_cvt_NOTE_tom, 1067 .tof64 = _libelf_cvt_NOTE_tof, 1068 .tom64 = _libelf_cvt_NOTE_tom 1069 } 1070}; 1071 1072int (*_libelf_get_translator(Elf_Type t, int direction, int elfclass)) 1073 (char *_dst, size_t dsz, char *_src, size_t _cnt, int _byteswap) 1074{ 1075 assert(elfclass == ELFCLASS32 || elfclass == ELFCLASS64); 1076 assert(direction == ELF_TOFILE || direction == ELF_TOMEMORY); 1077 1078 if (t >= ELF_T_NUM || 1079 (elfclass != ELFCLASS32 && elfclass != ELFCLASS64) || 1080 (direction != ELF_TOFILE && direction != ELF_TOMEMORY)) 1081 return (NULL); 1082 1083 return ((elfclass == ELFCLASS32) ? 1084 (direction == ELF_TOFILE ? cvt[t].tof32 : cvt[t].tom32) : 1085 (direction == ELF_TOFILE ? cvt[t].tof64 : cvt[t].tom64)); 1086} 1087