1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DWARF to tdata conversion 28 * 29 * For the most part, conversion is straightforward, proceeding in two passes. 30 * On the first pass, we iterate through every die, creating new type nodes as 31 * necessary. Referenced tdesc_t's are created in an uninitialized state, thus 32 * allowing type reference pointers to be filled in. If the tdesc_t 33 * corresponding to a given die can be completely filled out (sizes and offsets 34 * calculated, and so forth) without using any referenced types, the tdesc_t is 35 * marked as resolved. Consider an array type. If the type corresponding to 36 * the array contents has not yet been processed, we will create a blank tdesc 37 * for the contents type (only the type ID will be filled in, relying upon the 38 * later portion of the first pass to encounter and complete the referenced 39 * type). We will then attempt to determine the size of the array. If the 40 * array has a byte size attribute, we will have completely characterized the 41 * array type, and will be able to mark it as resolved. The lack of a byte 42 * size attribute, on the other hand, will prevent us from fully resolving the 43 * type, as the size will only be calculable with reference to the contents 44 * type, which has not, as yet, been encountered. The array type will thus be 45 * left without the resolved flag, and the first pass will continue. 46 * 47 * When we begin the second pass, we will have created tdesc_t nodes for every 48 * type in the section. We will traverse the tree, from the iidescs down, 49 * processing each unresolved node. As the referenced nodes will have been 50 * populated, the array type used in our example above will be able to use the 51 * size of the referenced types (if available) to determine its own type. The 52 * traversal will be repeated until all types have been resolved or we have 53 * failed to make progress. When all tdescs have been resolved, the conversion 54 * is complete. 55 * 56 * There are, as always, a few special cases that are handled during the first 57 * and second passes: 58 * 59 * 1. Empty enums - GCC will occasionally emit an enum without any members. 60 * Later on in the file, it will emit the same enum type, though this time 61 * with the full complement of members. All references to the memberless 62 * enum need to be redirected to the full definition. During the first 63 * pass, each enum is entered in dm_enumhash, along with a pointer to its 64 * corresponding tdesc_t. If, during the second pass, we encounter a 65 * memberless enum, we use the hash to locate the full definition. All 66 * tdescs referencing the empty enum are then redirected. 67 * 68 * 2. Forward declarations - If the compiler sees a forward declaration for 69 * a structure, followed by the definition of that structure, it will emit 70 * DWARF data for both the forward declaration and the definition. We need 71 * to resolve the forward declarations when possible, by redirecting 72 * forward-referencing tdescs to the actual struct/union definitions. This 73 * redirection is done completely within the first pass. We begin by 74 * recording all forward declarations in dw_fwdhash. When we define a 75 * structure, we check to see if there have been any corresponding forward 76 * declarations. If so, we redirect the tdescs which referenced the forward 77 * declarations to the structure or union definition. 78 * 79 * XXX see if a post traverser will allow the elimination of repeated pass 2 80 * traversals. 81 */ 82 83 #include <stdio.h> 84 #include <stdlib.h> 85 #include <string.h> 86 #include <strings.h> 87 #include <errno.h> 88 #include <libelf.h> 89 #include <libdwarf.h> 90 #include <libgen.h> 91 #include <dwarf.h> 92 93 #include "ctf_headers.h" 94 #include "ctftools.h" 95 #include "memory.h" 96 #include "list.h" 97 #include "traverse.h" 98 99 /* 100 * We need to define a couple of our own intrinsics, to smooth out some of the 101 * differences between the GCC and DevPro DWARF emitters. See the referenced 102 * routines and the special cases in the file comment for more details. 103 * 104 * Type IDs are 32 bits wide. We're going to use the top of that field to 105 * indicate types that we've created ourselves. 106 */ 107 #define TID_FILEMAX 0x3fffffff /* highest tid from file */ 108 #define TID_VOID 0x40000001 /* see die_void() */ 109 #define TID_LONG 0x40000002 /* see die_array() */ 110 111 #define TID_MFGTID_BASE 0x40000003 /* first mfg'd tid */ 112 113 /* 114 * To reduce the staggering amount of error-handling code that would otherwise 115 * be required, the attribute-retrieval routines handle most of their own 116 * errors. If the following flag is supplied as the value of the `req' 117 * argument, they will also handle the absence of a requested attribute by 118 * terminating the program. 119 */ 120 #define DW_ATTR_REQ 1 121 122 #define TDESC_HASH_BUCKETS 511 123 124 typedef struct dwarf { 125 Dwarf_Debug dw_dw; /* for libdwarf */ 126 Dwarf_Error dw_err; /* for libdwarf */ 127 Dwarf_Off dw_maxoff; /* highest legal offset in this cu */ 128 tdata_t *dw_td; /* root of the tdesc/iidesc tree */ 129 hash_t *dw_tidhash; /* hash of tdescs by t_id */ 130 hash_t *dw_fwdhash; /* hash of fwd decls by name */ 131 hash_t *dw_enumhash; /* hash of memberless enums by name */ 132 tdesc_t *dw_void; /* manufactured void type */ 133 tdesc_t *dw_long; /* manufactured long type for arrays */ 134 size_t dw_ptrsz; /* size of a pointer in this file */ 135 tid_t dw_mfgtid_last; /* last mfg'd type ID used */ 136 uint_t dw_nunres; /* count of unresolved types */ 137 char *dw_cuname; /* name of compilation unit */ 138 } dwarf_t; 139 140 static void die_create_one(dwarf_t *, Dwarf_Die); 141 static void die_create(dwarf_t *, Dwarf_Die); 142 143 static tid_t 144 mfgtid_next(dwarf_t *dw) 145 { 146 return (++dw->dw_mfgtid_last); 147 } 148 149 static void 150 tdesc_add(dwarf_t *dw, tdesc_t *tdp) 151 { 152 hash_add(dw->dw_tidhash, tdp); 153 } 154 155 static tdesc_t * 156 tdesc_lookup(dwarf_t *dw, int tid) 157 { 158 tdesc_t tmpl; 159 void *tdp; 160 161 tmpl.t_id = tid; 162 163 if (hash_find(dw->dw_tidhash, &tmpl, &tdp)) 164 return (tdp); 165 else 166 return (NULL); 167 } 168 169 /* 170 * Resolve a tdesc down to a node which should have a size. Returns the size, 171 * zero if the size hasn't yet been determined. 172 */ 173 static size_t 174 tdesc_size(tdesc_t *tdp) 175 { 176 for (;;) { 177 switch (tdp->t_type) { 178 case INTRINSIC: 179 case POINTER: 180 case ARRAY: 181 case FUNCTION: 182 case STRUCT: 183 case UNION: 184 case ENUM: 185 return (tdp->t_size); 186 187 case FORWARD: 188 return (0); 189 190 case TYPEDEF: 191 case VOLATILE: 192 case CONST: 193 case RESTRICT: 194 tdp = tdp->t_tdesc; 195 continue; 196 197 case 0: /* not yet defined */ 198 return (0); 199 200 default: 201 terminate("tdp %u: tdesc_size on unknown type %d\n", 202 tdp->t_id, tdp->t_type); 203 } 204 } 205 } 206 207 static size_t 208 tdesc_bitsize(tdesc_t *tdp) 209 { 210 for (;;) { 211 switch (tdp->t_type) { 212 case INTRINSIC: 213 return (tdp->t_intr->intr_nbits); 214 215 case ARRAY: 216 case FUNCTION: 217 case STRUCT: 218 case UNION: 219 case ENUM: 220 case POINTER: 221 return (tdp->t_size * NBBY); 222 223 case FORWARD: 224 return (0); 225 226 case TYPEDEF: 227 case VOLATILE: 228 case RESTRICT: 229 case CONST: 230 tdp = tdp->t_tdesc; 231 continue; 232 233 case 0: /* not yet defined */ 234 return (0); 235 236 default: 237 terminate("tdp %u: tdesc_bitsize on unknown type %d\n", 238 tdp->t_id, tdp->t_type); 239 } 240 } 241 } 242 243 static tdesc_t * 244 tdesc_basetype(tdesc_t *tdp) 245 { 246 for (;;) { 247 switch (tdp->t_type) { 248 case TYPEDEF: 249 case VOLATILE: 250 case RESTRICT: 251 case CONST: 252 tdp = tdp->t_tdesc; 253 break; 254 case 0: /* not yet defined */ 255 return (NULL); 256 default: 257 return (tdp); 258 } 259 } 260 } 261 262 static Dwarf_Off 263 die_off(dwarf_t *dw, Dwarf_Die die) 264 { 265 Dwarf_Off off; 266 267 if (dwarf_dieoffset(die, &off, &dw->dw_err) == DW_DLV_OK) 268 return (off); 269 270 terminate("failed to get offset for die: %s\n", 271 dwarf_errmsg(dw->dw_err)); 272 /*NOTREACHED*/ 273 return (0); 274 } 275 276 static Dwarf_Die 277 die_sibling(dwarf_t *dw, Dwarf_Die die) 278 { 279 Dwarf_Die sib; 280 int rc; 281 282 if ((rc = dwarf_siblingof(dw->dw_dw, die, &sib, &dw->dw_err)) == 283 DW_DLV_OK) 284 return (sib); 285 else if (rc == DW_DLV_NO_ENTRY) 286 return (NULL); 287 288 terminate("die %llu: failed to find type sibling: %s\n", 289 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 290 /*NOTREACHED*/ 291 return (NULL); 292 } 293 294 static Dwarf_Die 295 die_child(dwarf_t *dw, Dwarf_Die die) 296 { 297 Dwarf_Die child; 298 int rc; 299 300 if ((rc = dwarf_child(die, &child, &dw->dw_err)) == DW_DLV_OK) 301 return (child); 302 else if (rc == DW_DLV_NO_ENTRY) 303 return (NULL); 304 305 terminate("die %llu: failed to find type child: %s\n", 306 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 307 /*NOTREACHED*/ 308 return (NULL); 309 } 310 311 static Dwarf_Half 312 die_tag(dwarf_t *dw, Dwarf_Die die) 313 { 314 Dwarf_Half tag; 315 316 if (dwarf_tag(die, &tag, &dw->dw_err) == DW_DLV_OK) 317 return (tag); 318 319 terminate("die %llu: failed to get tag for type: %s\n", 320 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 321 /*NOTREACHED*/ 322 return (0); 323 } 324 325 static Dwarf_Attribute 326 die_attr(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, int req) 327 { 328 Dwarf_Attribute attr; 329 int rc; 330 331 if ((rc = dwarf_attr(die, name, &attr, &dw->dw_err)) == DW_DLV_OK) { 332 return (attr); 333 } else if (rc == DW_DLV_NO_ENTRY) { 334 if (req) { 335 terminate("die %llu: no attr 0x%x\n", die_off(dw, die), 336 name); 337 } else { 338 return (NULL); 339 } 340 } 341 342 terminate("die %llu: failed to get attribute for type: %s\n", 343 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 344 /*NOTREACHED*/ 345 return (NULL); 346 } 347 348 static int 349 die_signed(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Signed *valp, 350 int req) 351 { 352 *valp = 0; 353 if (dwarf_attrval_signed(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 354 if (req) 355 terminate("die %llu: failed to get signed: %s\n", 356 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 357 return (0); 358 } 359 360 return (1); 361 } 362 363 static int 364 die_unsigned(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Unsigned *valp, 365 int req) 366 { 367 *valp = 0; 368 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 369 if (req) 370 terminate("die %llu: failed to get unsigned: %s\n", 371 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 372 return (0); 373 } 374 375 return (1); 376 } 377 378 static int 379 die_bool(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, Dwarf_Bool *valp, int req) 380 { 381 *valp = 0; 382 383 if (dwarf_attrval_flag(die, name, valp, &dw->dw_err) != DW_DLV_OK) { 384 if (req) 385 terminate("die %llu: failed to get flag: %s\n", 386 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 387 return (0); 388 } 389 390 return (1); 391 } 392 393 static int 394 die_string(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, char **strp, int req) 395 { 396 const char *str = NULL; 397 398 if (dwarf_attrval_string(die, name, &str, &dw->dw_err) != DW_DLV_OK || 399 str == NULL) { 400 if (req) 401 terminate("die %llu: failed to get string: %s\n", 402 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 403 else 404 *strp = NULL; 405 return (0); 406 } else 407 *strp = xstrdup(str); 408 409 return (1); 410 } 411 412 static Dwarf_Off 413 die_attr_ref(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 414 { 415 Dwarf_Off off; 416 417 if (dwarf_attrval_unsigned(die, name, &off, &dw->dw_err) != DW_DLV_OK) { 418 terminate("die %llu: failed to get ref: %s\n", 419 die_off(dw, die), dwarf_errmsg(dw->dw_err)); 420 } 421 422 return (off); 423 } 424 425 static char * 426 die_name(dwarf_t *dw, Dwarf_Die die) 427 { 428 char *str = NULL; 429 430 (void) die_string(dw, die, DW_AT_name, &str, 0); 431 if (str == NULL) 432 str = xstrdup(""); 433 434 return (str); 435 } 436 437 static int 438 die_isdecl(dwarf_t *dw, Dwarf_Die die) 439 { 440 Dwarf_Bool val; 441 442 return (die_bool(dw, die, DW_AT_declaration, &val, 0) && val); 443 } 444 445 static int 446 die_isglobal(dwarf_t *dw, Dwarf_Die die) 447 { 448 Dwarf_Signed vis; 449 Dwarf_Bool ext; 450 451 /* 452 * Some compilers (gcc) use DW_AT_external to indicate function 453 * visibility. Others (Sun) use DW_AT_visibility. 454 */ 455 if (die_signed(dw, die, DW_AT_visibility, &vis, 0)) 456 return (vis == DW_VIS_exported); 457 else 458 return (die_bool(dw, die, DW_AT_external, &ext, 0) && ext); 459 } 460 461 static tdesc_t * 462 die_add(dwarf_t *dw, Dwarf_Off off) 463 { 464 tdesc_t *tdp = xcalloc(sizeof (tdesc_t)); 465 466 tdp->t_id = off; 467 468 tdesc_add(dw, tdp); 469 470 return (tdp); 471 } 472 473 static tdesc_t * 474 die_lookup_pass1(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name) 475 { 476 Dwarf_Off ref = die_attr_ref(dw, die, name); 477 tdesc_t *tdp; 478 479 if ((tdp = tdesc_lookup(dw, ref)) != NULL) 480 return (tdp); 481 482 return (die_add(dw, ref)); 483 } 484 485 static int 486 die_mem_offset(dwarf_t *dw, Dwarf_Die die, Dwarf_Half name, 487 Dwarf_Unsigned *valp, int req __unused) 488 { 489 Dwarf_Locdesc *loc = NULL; 490 Dwarf_Signed locnum = 0; 491 Dwarf_Attribute at; 492 Dwarf_Half form; 493 494 if (name != DW_AT_data_member_location) 495 terminate("die %llu: can only process attribute " 496 "DW_AT_data_member_location\n", die_off(dw, die)); 497 498 if ((at = die_attr(dw, die, name, 0)) == NULL) 499 return (0); 500 501 if (dwarf_whatform(at, &form, &dw->dw_err) != DW_DLV_OK) 502 return (0); 503 504 switch (form) { 505 case DW_FORM_sec_offset: 506 case DW_FORM_block: 507 case DW_FORM_block1: 508 case DW_FORM_block2: 509 case DW_FORM_block4: 510 /* 511 * GCC in base and Clang (3.3 or below) generates 512 * DW_AT_data_member_location attribute with DW_FORM_block* 513 * form. The attribute contains one DW_OP_plus_uconst 514 * operator. The member offset stores in the operand. 515 */ 516 if (dwarf_loclist(at, &loc, &locnum, &dw->dw_err) != DW_DLV_OK) 517 return (0); 518 if (locnum != 1 || loc->ld_s->lr_atom != DW_OP_plus_uconst) { 519 terminate("die %llu: cannot parse member offset with " 520 "operator other than DW_OP_plus_uconst\n", 521 die_off(dw, die)); 522 } 523 *valp = loc->ld_s->lr_number; 524 if (loc != NULL) { 525 dwarf_dealloc(dw->dw_dw, loc->ld_s, DW_DLA_LOC_BLOCK); 526 dwarf_dealloc(dw->dw_dw, loc, DW_DLA_LOCDESC); 527 } 528 break; 529 530 case DW_FORM_data1: 531 case DW_FORM_data2: 532 case DW_FORM_data4: 533 case DW_FORM_data8: 534 case DW_FORM_udata: 535 /* 536 * Clang 3.4 generates DW_AT_data_member_location attribute 537 * with DW_FORM_data* form (constant class). The attribute 538 * stores a contant value which is the member offset. 539 * 540 * However, note that DW_FORM_data[48] in DWARF version 2 or 3 541 * could be used as a section offset (offset into .debug_loc in 542 * this case). Here we assume the attribute always stores a 543 * constant because we know Clang 3.4 does this and GCC in 544 * base won't emit DW_FORM_data[48] for this attribute. This 545 * code will remain correct if future vesrions of Clang and 546 * GCC conform to DWARF4 standard and only use the form 547 * DW_FORM_sec_offset for section offset. 548 */ 549 if (dwarf_attrval_unsigned(die, name, valp, &dw->dw_err) != 550 DW_DLV_OK) 551 return (0); 552 break; 553 554 default: 555 terminate("die %llu: cannot parse member offset with form " 556 "%u\n", die_off(dw, die), form); 557 } 558 559 return (1); 560 } 561 562 static tdesc_t * 563 tdesc_intr_common(dwarf_t *dw, int tid, const char *name, size_t sz) 564 { 565 tdesc_t *tdp; 566 intr_t *intr; 567 568 intr = xcalloc(sizeof (intr_t)); 569 intr->intr_type = INTR_INT; 570 intr->intr_signed = 1; 571 intr->intr_nbits = sz * NBBY; 572 573 tdp = xcalloc(sizeof (tdesc_t)); 574 tdp->t_name = xstrdup(name); 575 tdp->t_size = sz; 576 tdp->t_id = tid; 577 tdp->t_type = INTRINSIC; 578 tdp->t_intr = intr; 579 tdp->t_flags = TDESC_F_RESOLVED; 580 581 tdesc_add(dw, tdp); 582 583 return (tdp); 584 } 585 586 /* 587 * Manufacture a void type. Used for gcc-emitted stabs, where the lack of a 588 * type reference implies a reference to a void type. A void *, for example 589 * will be represented by a pointer die without a DW_AT_type. CTF requires 590 * that pointer nodes point to something, so we'll create a void for use as 591 * the target. Note that the DWARF data may already create a void type. Ours 592 * would then be a duplicate, but it'll be removed in the self-uniquification 593 * merge performed at the completion of DWARF->tdesc conversion. 594 */ 595 static tdesc_t * 596 tdesc_intr_void(dwarf_t *dw) 597 { 598 if (dw->dw_void == NULL) 599 dw->dw_void = tdesc_intr_common(dw, TID_VOID, "void", 0); 600 601 return (dw->dw_void); 602 } 603 604 static tdesc_t * 605 tdesc_intr_long(dwarf_t *dw) 606 { 607 if (dw->dw_long == NULL) { 608 dw->dw_long = tdesc_intr_common(dw, TID_LONG, "long", 609 dw->dw_ptrsz); 610 } 611 612 return (dw->dw_long); 613 } 614 615 /* 616 * Used for creating bitfield types. We create a copy of an existing intrinsic, 617 * adjusting the size of the copy to match what the caller requested. The 618 * caller can then use the copy as the type for a bitfield structure member. 619 */ 620 static tdesc_t * 621 tdesc_intr_clone(dwarf_t *dw, tdesc_t *old, size_t bitsz) 622 { 623 tdesc_t *new = xcalloc(sizeof (tdesc_t)); 624 625 if (!(old->t_flags & TDESC_F_RESOLVED)) { 626 terminate("tdp %u: attempt to make a bit field from an " 627 "unresolved type\n", old->t_id); 628 } 629 630 new->t_name = xstrdup(old->t_name); 631 new->t_size = old->t_size; 632 new->t_id = mfgtid_next(dw); 633 new->t_type = INTRINSIC; 634 new->t_flags = TDESC_F_RESOLVED; 635 636 new->t_intr = xcalloc(sizeof (intr_t)); 637 bcopy(old->t_intr, new->t_intr, sizeof (intr_t)); 638 new->t_intr->intr_nbits = bitsz; 639 640 tdesc_add(dw, new); 641 642 return (new); 643 } 644 645 static void 646 tdesc_array_create(dwarf_t *dw, Dwarf_Die dim, tdesc_t *arrtdp, 647 tdesc_t *dimtdp) 648 { 649 Dwarf_Unsigned uval; 650 Dwarf_Signed sval; 651 tdesc_t *ctdp = NULL; 652 Dwarf_Die dim2; 653 ardef_t *ar; 654 655 if ((dim2 = die_sibling(dw, dim)) == NULL) { 656 ctdp = arrtdp; 657 } else if (die_tag(dw, dim2) == DW_TAG_subrange_type) { 658 ctdp = xcalloc(sizeof (tdesc_t)); 659 ctdp->t_id = mfgtid_next(dw); 660 debug(3, "die %llu: creating new type %u for sub-dimension\n", 661 die_off(dw, dim2), ctdp->t_id); 662 tdesc_array_create(dw, dim2, arrtdp, ctdp); 663 } else { 664 terminate("die %llu: unexpected non-subrange node in array\n", 665 die_off(dw, dim2)); 666 } 667 668 dimtdp->t_type = ARRAY; 669 dimtdp->t_ardef = ar = xcalloc(sizeof (ardef_t)); 670 671 /* 672 * Array bounds can be signed or unsigned, but there are several kinds 673 * of signless forms (data1, data2, etc) that take their sign from the 674 * routine that is trying to interpret them. That is, data1 can be 675 * either signed or unsigned, depending on whether you use the signed or 676 * unsigned accessor function. GCC will use the signless forms to store 677 * unsigned values which have their high bit set, so we need to try to 678 * read them first as unsigned to get positive values. We could also 679 * try signed first, falling back to unsigned if we got a negative 680 * value. 681 */ 682 if (die_unsigned(dw, dim, DW_AT_upper_bound, &uval, 0)) 683 ar->ad_nelems = uval + 1; 684 else if (die_signed(dw, dim, DW_AT_upper_bound, &sval, 0)) 685 ar->ad_nelems = sval + 1; 686 else 687 ar->ad_nelems = 0; 688 689 /* 690 * Different compilers use different index types. Force the type to be 691 * a common, known value (long). 692 */ 693 ar->ad_idxtype = tdesc_intr_long(dw); 694 ar->ad_contents = ctdp; 695 696 if (ar->ad_contents->t_size != 0) { 697 dimtdp->t_size = ar->ad_contents->t_size * ar->ad_nelems; 698 dimtdp->t_flags |= TDESC_F_RESOLVED; 699 } 700 } 701 702 /* 703 * Create a tdesc from an array node. Some arrays will come with byte size 704 * attributes, and thus can be resolved immediately. Others don't, and will 705 * need to wait until the second pass for resolution. 706 */ 707 static void 708 die_array_create(dwarf_t *dw, Dwarf_Die arr, Dwarf_Off off, tdesc_t *tdp) 709 { 710 tdesc_t *arrtdp = die_lookup_pass1(dw, arr, DW_AT_type); 711 Dwarf_Unsigned uval; 712 Dwarf_Die dim; 713 714 debug(3, "die %llu <%llx>: creating array\n", off, off); 715 716 if ((dim = die_child(dw, arr)) == NULL || 717 die_tag(dw, dim) != DW_TAG_subrange_type) 718 terminate("die %llu: failed to retrieve array bounds\n", off); 719 720 tdesc_array_create(dw, dim, arrtdp, tdp); 721 722 if (die_unsigned(dw, arr, DW_AT_byte_size, &uval, 0)) { 723 tdesc_t *dimtdp; 724 int flags; 725 726 /* Check for bogus gcc DW_AT_byte_size attribute */ 727 if (uval == (unsigned)-1) { 728 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 729 __func__); 730 uval = 0; 731 } 732 733 tdp->t_size = uval; 734 735 /* 736 * Ensure that sub-dimensions have sizes too before marking 737 * as resolved. 738 */ 739 flags = TDESC_F_RESOLVED; 740 for (dimtdp = tdp->t_ardef->ad_contents; 741 dimtdp->t_type == ARRAY; 742 dimtdp = dimtdp->t_ardef->ad_contents) { 743 if (!(dimtdp->t_flags & TDESC_F_RESOLVED)) { 744 flags = 0; 745 break; 746 } 747 } 748 749 tdp->t_flags |= flags; 750 } 751 752 debug(3, "die %llu <%llx>: array nelems %u size %u\n", off, off, 753 tdp->t_ardef->ad_nelems, tdp->t_size); 754 } 755 756 /*ARGSUSED1*/ 757 static int 758 die_array_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 759 { 760 dwarf_t *dw = private; 761 size_t sz; 762 763 if (tdp->t_flags & TDESC_F_RESOLVED) 764 return (1); 765 766 debug(3, "trying to resolve array %d (cont %d)\n", tdp->t_id, 767 tdp->t_ardef->ad_contents->t_id); 768 769 if ((sz = tdesc_size(tdp->t_ardef->ad_contents)) == 0 && 770 (tdp->t_ardef->ad_contents->t_flags & TDESC_F_RESOLVED) == 0) { 771 debug(3, "unable to resolve array %s (%d) contents %d\n", 772 tdesc_name(tdp), tdp->t_id, 773 tdp->t_ardef->ad_contents->t_id); 774 775 dw->dw_nunres++; 776 return (1); 777 } 778 779 tdp->t_size = sz * tdp->t_ardef->ad_nelems; 780 tdp->t_flags |= TDESC_F_RESOLVED; 781 782 debug(3, "resolved array %d: %u bytes\n", tdp->t_id, tdp->t_size); 783 784 return (1); 785 } 786 787 /*ARGSUSED1*/ 788 static int 789 die_array_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 790 { 791 tdesc_t *cont = tdp->t_ardef->ad_contents; 792 793 if (tdp->t_flags & TDESC_F_RESOLVED) 794 return (1); 795 796 fprintf(stderr, "Array %d: failed to size contents type %s (%d)\n", 797 tdp->t_id, tdesc_name(cont), cont->t_id); 798 799 return (1); 800 } 801 802 /* 803 * Most enums (those with members) will be resolved during this first pass. 804 * Others - those without members (see the file comment) - won't be, and will 805 * need to wait until the second pass when they can be matched with their full 806 * definitions. 807 */ 808 static void 809 die_enum_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 810 { 811 Dwarf_Die mem; 812 Dwarf_Unsigned uval; 813 Dwarf_Signed sval; 814 815 debug(3, "die %llu: creating enum\n", off); 816 817 tdp->t_type = ENUM; 818 819 (void) die_unsigned(dw, die, DW_AT_byte_size, &uval, DW_ATTR_REQ); 820 /* Check for bogus gcc DW_AT_byte_size attribute */ 821 if (uval == (unsigned)-1) { 822 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 823 __func__); 824 uval = 0; 825 } 826 tdp->t_size = uval; 827 828 if ((mem = die_child(dw, die)) != NULL) { 829 elist_t **elastp = &tdp->t_emem; 830 831 do { 832 elist_t *el; 833 834 if (die_tag(dw, mem) != DW_TAG_enumerator) { 835 /* Nested type declaration */ 836 die_create_one(dw, mem); 837 continue; 838 } 839 840 el = xcalloc(sizeof (elist_t)); 841 el->el_name = die_name(dw, mem); 842 843 if (die_signed(dw, mem, DW_AT_const_value, &sval, 0)) { 844 el->el_number = sval; 845 } else if (die_unsigned(dw, mem, DW_AT_const_value, 846 &uval, 0)) { 847 el->el_number = uval; 848 } else { 849 terminate("die %llu: enum %llu: member without " 850 "value\n", off, die_off(dw, mem)); 851 } 852 853 debug(3, "die %llu: enum %llu: created %s = %d\n", off, 854 die_off(dw, mem), el->el_name, el->el_number); 855 856 *elastp = el; 857 elastp = &el->el_next; 858 859 } while ((mem = die_sibling(dw, mem)) != NULL); 860 861 hash_add(dw->dw_enumhash, tdp); 862 863 tdp->t_flags |= TDESC_F_RESOLVED; 864 865 if (tdp->t_name != NULL) { 866 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 867 ii->ii_type = II_SOU; 868 ii->ii_name = xstrdup(tdp->t_name); 869 ii->ii_dtype = tdp; 870 871 iidesc_add(dw->dw_td->td_iihash, ii); 872 } 873 } 874 } 875 876 static int 877 die_enum_match(void *arg1, void *arg2) 878 { 879 tdesc_t *tdp = arg1, **fullp = arg2; 880 881 if (tdp->t_emem != NULL) { 882 *fullp = tdp; 883 return (-1); /* stop the iteration */ 884 } 885 886 return (0); 887 } 888 889 /*ARGSUSED1*/ 890 static int 891 die_enum_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 892 { 893 dwarf_t *dw = private; 894 tdesc_t *full = NULL; 895 896 if (tdp->t_flags & TDESC_F_RESOLVED) 897 return (1); 898 899 (void) hash_find_iter(dw->dw_enumhash, tdp, die_enum_match, &full); 900 901 /* 902 * The answer to this one won't change from iteration to iteration, 903 * so don't even try. 904 */ 905 if (full == NULL) { 906 terminate("tdp %u: enum %s has no members\n", tdp->t_id, 907 tdesc_name(tdp)); 908 } 909 910 debug(3, "tdp %u: enum %s redirected to %u\n", tdp->t_id, 911 tdesc_name(tdp), full->t_id); 912 913 tdp->t_flags |= TDESC_F_RESOLVED; 914 915 return (1); 916 } 917 918 static int 919 die_fwd_map(void *arg1, void *arg2) 920 { 921 tdesc_t *fwd = arg1, *sou = arg2; 922 923 debug(3, "tdp %u: mapped forward %s to sou %u\n", fwd->t_id, 924 tdesc_name(fwd), sou->t_id); 925 fwd->t_tdesc = sou; 926 927 return (0); 928 } 929 930 /* 931 * Structures and unions will never be resolved during the first pass, as we 932 * won't be able to fully determine the member sizes. The second pass, which 933 * have access to sizing information, will be able to complete the resolution. 934 */ 935 static void 936 die_sou_create(dwarf_t *dw, Dwarf_Die str, Dwarf_Off off, tdesc_t *tdp, 937 int type, const char *typename) 938 { 939 Dwarf_Unsigned sz, bitsz, bitoff, maxsz=0; 940 #if BYTE_ORDER == _LITTLE_ENDIAN 941 Dwarf_Unsigned bysz; 942 #endif 943 Dwarf_Die mem; 944 mlist_t *ml, **mlastp; 945 iidesc_t *ii; 946 947 tdp->t_type = (die_isdecl(dw, str) ? FORWARD : type); 948 949 debug(3, "die %llu: creating %s %s\n", off, 950 (tdp->t_type == FORWARD ? "forward decl" : typename), 951 tdesc_name(tdp)); 952 953 if (tdp->t_type == FORWARD) { 954 hash_add(dw->dw_fwdhash, tdp); 955 return; 956 } 957 958 (void) hash_find_iter(dw->dw_fwdhash, tdp, die_fwd_map, tdp); 959 960 (void) die_unsigned(dw, str, DW_AT_byte_size, &sz, DW_ATTR_REQ); 961 tdp->t_size = sz; 962 963 /* 964 * GCC allows empty SOUs as an extension. 965 */ 966 if ((mem = die_child(dw, str)) == NULL) { 967 goto out; 968 } 969 970 mlastp = &tdp->t_members; 971 972 do { 973 Dwarf_Off memoff = die_off(dw, mem); 974 Dwarf_Half tag = die_tag(dw, mem); 975 Dwarf_Unsigned mloff; 976 977 if (tag != DW_TAG_member) { 978 /* Nested type declaration */ 979 die_create_one(dw, mem); 980 continue; 981 } 982 983 debug(3, "die %llu: mem %llu: creating member\n", off, memoff); 984 985 ml = xcalloc(sizeof (mlist_t)); 986 987 /* 988 * This could be a GCC anon struct/union member, so we'll allow 989 * an empty name, even though nothing can really handle them 990 * properly. Note that some versions of GCC miss out debug 991 * info for anon structs, though recent versions are fixed (gcc 992 * bug 11816). 993 */ 994 if ((ml->ml_name = die_name(dw, mem)) == NULL) 995 ml->ml_name = NULL; 996 997 ml->ml_type = die_lookup_pass1(dw, mem, DW_AT_type); 998 debug(3, "die_sou_create(): ml_type = %p t_id = %d\n", 999 ml->ml_type, ml->ml_type->t_id); 1000 1001 if (die_mem_offset(dw, mem, DW_AT_data_member_location, 1002 &mloff, 0)) { 1003 debug(3, "die %llu: got mloff %llx\n", off, 1004 (u_longlong_t)mloff); 1005 ml->ml_offset = mloff * 8; 1006 } 1007 1008 if (die_unsigned(dw, mem, DW_AT_bit_size, &bitsz, 0)) 1009 ml->ml_size = bitsz; 1010 else 1011 ml->ml_size = tdesc_bitsize(ml->ml_type); 1012 1013 if (die_unsigned(dw, mem, DW_AT_bit_offset, &bitoff, 0)) { 1014 #if BYTE_ORDER == _BIG_ENDIAN 1015 ml->ml_offset += bitoff; 1016 #else 1017 /* 1018 * Note that Clang 3.4 will sometimes generate 1019 * member DIE before generating the DIE for the 1020 * member's type. The code can not handle this 1021 * properly so that tdesc_bitsize(ml->ml_type) will 1022 * return 0 because ml->ml_type is unknown. As a 1023 * result, a wrong member offset will be calculated. 1024 * To workaround this, we can instead try to 1025 * retrieve the value of DW_AT_byte_size attribute 1026 * which stores the byte size of the space occupied 1027 * by the type. If this attribute exists, its value 1028 * should equal to tdesc_bitsize(ml->ml_type)/NBBY. 1029 */ 1030 if (die_unsigned(dw, mem, DW_AT_byte_size, &bysz, 0) && 1031 bysz > 0) 1032 ml->ml_offset += bysz * NBBY - bitoff - 1033 ml->ml_size; 1034 else 1035 ml->ml_offset += tdesc_bitsize(ml->ml_type) - 1036 bitoff - ml->ml_size; 1037 #endif 1038 } 1039 1040 debug(3, "die %llu: mem %llu: created \"%s\" (off %u sz %u)\n", 1041 off, memoff, ml->ml_name, ml->ml_offset, ml->ml_size); 1042 1043 *mlastp = ml; 1044 mlastp = &ml->ml_next; 1045 1046 /* Find the size of the largest member to work around a gcc 1047 * bug. See GCC Bugzilla 35998. 1048 */ 1049 if (maxsz < ml->ml_size) 1050 maxsz = ml->ml_size; 1051 1052 } while ((mem = die_sibling(dw, mem)) != NULL); 1053 1054 /* See if we got a bogus DW_AT_byte_size. GCC will sometimes 1055 * emit this. 1056 */ 1057 if (sz == (unsigned)-1) { 1058 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 1059 __func__); 1060 tdp->t_size = maxsz / 8; /* maxsz is in bits, t_size is bytes */ 1061 } 1062 1063 /* 1064 * GCC will attempt to eliminate unused types, thus decreasing the 1065 * size of the emitted dwarf. That is, if you declare a foo_t in your 1066 * header, include said header in your source file, and neglect to 1067 * actually use (directly or indirectly) the foo_t in the source file, 1068 * the foo_t won't make it into the emitted DWARF. So, at least, goes 1069 * the theory. 1070 * 1071 * Occasionally, it'll emit the DW_TAG_structure_type for the foo_t, 1072 * and then neglect to emit the members. Strangely, the loner struct 1073 * tag will always be followed by a proper nested declaration of 1074 * something else. This is clearly a bug, but we're not going to have 1075 * time to get it fixed before this goo goes back, so we'll have to work 1076 * around it. If we see a no-membered struct with a nested declaration 1077 * (i.e. die_child of the struct tag won't be null), we'll ignore it. 1078 * Being paranoid, we won't simply remove it from the hash. Instead, 1079 * we'll decline to create an iidesc for it, thus ensuring that this 1080 * type won't make it into the output file. To be safe, we'll also 1081 * change the name. 1082 */ 1083 if (tdp->t_members == NULL) { 1084 const char *old = tdesc_name(tdp); 1085 size_t newsz = 7 + strlen(old) + 1; 1086 char *new = xmalloc(newsz); 1087 (void) snprintf(new, newsz, "orphan %s", old); 1088 1089 debug(3, "die %llu: worked around %s %s\n", off, typename, old); 1090 1091 if (tdp->t_name != NULL) 1092 free(tdp->t_name); 1093 tdp->t_name = new; 1094 return; 1095 } 1096 1097 out: 1098 if (tdp->t_name != NULL) { 1099 ii = xcalloc(sizeof (iidesc_t)); 1100 ii->ii_type = II_SOU; 1101 ii->ii_name = xstrdup(tdp->t_name); 1102 ii->ii_dtype = tdp; 1103 1104 iidesc_add(dw->dw_td->td_iihash, ii); 1105 } 1106 } 1107 1108 static void 1109 die_struct_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1110 { 1111 die_sou_create(dw, die, off, tdp, STRUCT, "struct"); 1112 } 1113 1114 static void 1115 die_union_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1116 { 1117 die_sou_create(dw, die, off, tdp, UNION, "union"); 1118 } 1119 1120 /*ARGSUSED1*/ 1121 static int 1122 die_sou_resolve(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private) 1123 { 1124 dwarf_t *dw = private; 1125 mlist_t *ml; 1126 tdesc_t *mt; 1127 1128 if (tdp->t_flags & TDESC_F_RESOLVED) 1129 return (1); 1130 1131 debug(3, "resolving sou %s\n", tdesc_name(tdp)); 1132 1133 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1134 if (ml->ml_size == 0) { 1135 mt = tdesc_basetype(ml->ml_type); 1136 1137 if ((ml->ml_size = tdesc_bitsize(mt)) != 0) 1138 continue; 1139 1140 /* 1141 * For empty members, or GCC/C99 flexible array 1142 * members, a size of 0 is correct. Structs and unions 1143 * consisting of flexible array members will also have 1144 * size 0. 1145 */ 1146 if (mt->t_members == NULL) 1147 continue; 1148 if (mt->t_type == ARRAY && mt->t_ardef->ad_nelems == 0) 1149 continue; 1150 if ((mt->t_flags & TDESC_F_RESOLVED) != 0 && 1151 (mt->t_type == STRUCT || mt->t_type == UNION)) 1152 continue; 1153 1154 dw->dw_nunres++; 1155 return (1); 1156 } 1157 1158 if ((mt = tdesc_basetype(ml->ml_type)) == NULL) { 1159 dw->dw_nunres++; 1160 return (1); 1161 } 1162 1163 if (ml->ml_size != 0 && mt->t_type == INTRINSIC && 1164 mt->t_intr->intr_nbits != (int)ml->ml_size) { 1165 /* 1166 * This member is a bitfield, and needs to reference 1167 * an intrinsic type with the same width. If the 1168 * currently-referenced type isn't of the same width, 1169 * we'll copy it, adjusting the width of the copy to 1170 * the size we'd like. 1171 */ 1172 debug(3, "tdp %u: creating bitfield for %d bits\n", 1173 tdp->t_id, ml->ml_size); 1174 1175 ml->ml_type = tdesc_intr_clone(dw, mt, ml->ml_size); 1176 } 1177 } 1178 1179 tdp->t_flags |= TDESC_F_RESOLVED; 1180 1181 return (1); 1182 } 1183 1184 /*ARGSUSED1*/ 1185 static int 1186 die_sou_failed(tdesc_t *tdp, tdesc_t **tdpp __unused, void *private __unused) 1187 { 1188 const char *typename = (tdp->t_type == STRUCT ? "struct" : "union"); 1189 mlist_t *ml; 1190 1191 if (tdp->t_flags & TDESC_F_RESOLVED) 1192 return (1); 1193 1194 for (ml = tdp->t_members; ml != NULL; ml = ml->ml_next) { 1195 if (ml->ml_size == 0) { 1196 fprintf(stderr, "%s %d <%x>: failed to size member \"%s\" " 1197 "of type %s (%d <%x>)\n", typename, tdp->t_id, 1198 tdp->t_id, 1199 ml->ml_name, tdesc_name(ml->ml_type), 1200 ml->ml_type->t_id, ml->ml_type->t_id); 1201 } 1202 } 1203 1204 return (1); 1205 } 1206 1207 static void 1208 die_funcptr_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1209 { 1210 Dwarf_Attribute attr; 1211 Dwarf_Half tag; 1212 Dwarf_Die arg; 1213 fndef_t *fn; 1214 int i; 1215 1216 debug(3, "die %llu <%llx>: creating function pointer\n", off, off); 1217 1218 /* 1219 * We'll begin by processing any type definition nodes that may be 1220 * lurking underneath this one. 1221 */ 1222 for (arg = die_child(dw, die); arg != NULL; 1223 arg = die_sibling(dw, arg)) { 1224 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1225 tag != DW_TAG_unspecified_parameters) { 1226 /* Nested type declaration */ 1227 die_create_one(dw, arg); 1228 } 1229 } 1230 1231 if (die_isdecl(dw, die)) { 1232 /* 1233 * This is a prototype. We don't add prototypes to the 1234 * tree, so we're going to drop the tdesc. Unfortunately, 1235 * it has already been added to the tree. Nobody will reference 1236 * it, though, and it will be leaked. 1237 */ 1238 return; 1239 } 1240 1241 fn = xcalloc(sizeof (fndef_t)); 1242 1243 tdp->t_type = FUNCTION; 1244 1245 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1246 fn->fn_ret = die_lookup_pass1(dw, die, DW_AT_type); 1247 } else { 1248 fn->fn_ret = tdesc_intr_void(dw); 1249 } 1250 1251 /* 1252 * Count the arguments to the function, then read them in. 1253 */ 1254 for (fn->fn_nargs = 0, arg = die_child(dw, die); arg != NULL; 1255 arg = die_sibling(dw, arg)) { 1256 if ((tag = die_tag(dw, arg)) == DW_TAG_formal_parameter) 1257 fn->fn_nargs++; 1258 else if (tag == DW_TAG_unspecified_parameters && 1259 fn->fn_nargs > 0) 1260 fn->fn_vargs = 1; 1261 } 1262 1263 if (fn->fn_nargs != 0) { 1264 debug(3, "die %llu: adding %d argument%s\n", off, fn->fn_nargs, 1265 (fn->fn_nargs > 1 ? "s" : "")); 1266 1267 fn->fn_args = xcalloc(sizeof (tdesc_t *) * fn->fn_nargs); 1268 for (i = 0, arg = die_child(dw, die); 1269 arg != NULL && i < (int) fn->fn_nargs; 1270 arg = die_sibling(dw, arg)) { 1271 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1272 continue; 1273 1274 fn->fn_args[i++] = die_lookup_pass1(dw, arg, 1275 DW_AT_type); 1276 } 1277 } 1278 1279 tdp->t_fndef = fn; 1280 tdp->t_flags |= TDESC_F_RESOLVED; 1281 } 1282 1283 /* 1284 * GCC and DevPro use different names for the base types. While the terms are 1285 * the same, they are arranged in a different order. Some terms, such as int, 1286 * are implied in one, and explicitly named in the other. Given a base type 1287 * as input, this routine will return a common name, along with an intr_t 1288 * that reflects said name. 1289 */ 1290 static intr_t * 1291 die_base_name_parse(const char *name, char **newp) 1292 { 1293 char buf[100]; 1294 char const *base; 1295 char *c; 1296 int nlong = 0, nshort = 0, nchar = 0, nint = 0; 1297 int sign = 1; 1298 char fmt = '\0'; 1299 intr_t *intr; 1300 1301 if (strlen(name) > sizeof (buf) - 1) 1302 terminate("base type name \"%s\" is too long\n", name); 1303 1304 strncpy(buf, name, sizeof (buf)); 1305 1306 for (c = strtok(buf, " "); c != NULL; c = strtok(NULL, " ")) { 1307 if (strcmp(c, "signed") == 0) 1308 sign = 1; 1309 else if (strcmp(c, "unsigned") == 0) 1310 sign = 0; 1311 else if (strcmp(c, "long") == 0) 1312 nlong++; 1313 else if (strcmp(c, "char") == 0) { 1314 nchar++; 1315 fmt = 'c'; 1316 } else if (strcmp(c, "short") == 0) 1317 nshort++; 1318 else if (strcmp(c, "int") == 0) 1319 nint++; 1320 else { 1321 /* 1322 * If we don't recognize any of the tokens, we'll tell 1323 * the caller to fall back to the dwarf-provided 1324 * encoding information. 1325 */ 1326 return (NULL); 1327 } 1328 } 1329 1330 if (nchar > 1 || nshort > 1 || nint > 1 || nlong > 2) 1331 return (NULL); 1332 1333 if (nchar > 0) { 1334 if (nlong > 0 || nshort > 0 || nint > 0) 1335 return (NULL); 1336 1337 base = "char"; 1338 1339 } else if (nshort > 0) { 1340 if (nlong > 0) 1341 return (NULL); 1342 1343 base = "short"; 1344 1345 } else if (nlong > 0) { 1346 base = "long"; 1347 1348 } else { 1349 base = "int"; 1350 } 1351 1352 intr = xcalloc(sizeof (intr_t)); 1353 intr->intr_type = INTR_INT; 1354 intr->intr_signed = sign; 1355 intr->intr_iformat = fmt; 1356 1357 snprintf(buf, sizeof (buf), "%s%s%s", 1358 (sign ? "" : "unsigned "), 1359 (nlong > 1 ? "long " : ""), 1360 base); 1361 1362 *newp = xstrdup(buf); 1363 return (intr); 1364 } 1365 1366 typedef struct fp_size_map { 1367 size_t fsm_typesz[2]; /* size of {32,64} type */ 1368 uint_t fsm_enc[3]; /* CTF_FP_* for {bare,cplx,imagry} type */ 1369 } fp_size_map_t; 1370 1371 static const fp_size_map_t fp_encodings[] = { 1372 { { 4, 4 }, { CTF_FP_SINGLE, CTF_FP_CPLX, CTF_FP_IMAGRY } }, 1373 { { 8, 8 }, { CTF_FP_DOUBLE, CTF_FP_DCPLX, CTF_FP_DIMAGRY } }, 1374 #ifdef __sparc 1375 { { 16, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1376 #else 1377 { { 12, 16 }, { CTF_FP_LDOUBLE, CTF_FP_LDCPLX, CTF_FP_LDIMAGRY } }, 1378 #endif 1379 { { 0, 0 }, { 0, 0, 0 } } 1380 }; 1381 1382 static uint_t 1383 die_base_type2enc(dwarf_t *dw, Dwarf_Off off, Dwarf_Signed enc, size_t sz) 1384 { 1385 const fp_size_map_t *map = fp_encodings; 1386 uint_t szidx = dw->dw_ptrsz == sizeof (uint64_t); 1387 uint_t mult = 1, col = 0; 1388 1389 if (enc == DW_ATE_complex_float) { 1390 mult = 2; 1391 col = 1; 1392 } else if (enc == DW_ATE_imaginary_float 1393 #if defined(sun) 1394 || enc == DW_ATE_SUN_imaginary_float 1395 #endif 1396 ) 1397 col = 2; 1398 1399 while (map->fsm_typesz[szidx] != 0) { 1400 if (map->fsm_typesz[szidx] * mult == sz) 1401 return (map->fsm_enc[col]); 1402 map++; 1403 } 1404 1405 terminate("die %llu: unrecognized real type size %u\n", off, sz); 1406 /*NOTREACHED*/ 1407 return (0); 1408 } 1409 1410 static intr_t * 1411 die_base_from_dwarf(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, size_t sz) 1412 { 1413 intr_t *intr = xcalloc(sizeof (intr_t)); 1414 Dwarf_Signed enc; 1415 1416 (void) die_signed(dw, base, DW_AT_encoding, &enc, DW_ATTR_REQ); 1417 1418 switch (enc) { 1419 case DW_ATE_unsigned: 1420 case DW_ATE_address: 1421 intr->intr_type = INTR_INT; 1422 break; 1423 case DW_ATE_unsigned_char: 1424 intr->intr_type = INTR_INT; 1425 intr->intr_iformat = 'c'; 1426 break; 1427 case DW_ATE_signed: 1428 intr->intr_type = INTR_INT; 1429 intr->intr_signed = 1; 1430 break; 1431 case DW_ATE_signed_char: 1432 intr->intr_type = INTR_INT; 1433 intr->intr_signed = 1; 1434 intr->intr_iformat = 'c'; 1435 break; 1436 case DW_ATE_boolean: 1437 intr->intr_type = INTR_INT; 1438 intr->intr_signed = 1; 1439 intr->intr_iformat = 'b'; 1440 break; 1441 case DW_ATE_float: 1442 case DW_ATE_complex_float: 1443 case DW_ATE_imaginary_float: 1444 #if defined(sun) 1445 case DW_ATE_SUN_imaginary_float: 1446 case DW_ATE_SUN_interval_float: 1447 #endif 1448 intr->intr_type = INTR_REAL; 1449 intr->intr_signed = 1; 1450 intr->intr_fformat = die_base_type2enc(dw, off, enc, sz); 1451 break; 1452 default: 1453 terminate("die %llu: unknown base type encoding 0x%llx\n", 1454 off, enc); 1455 } 1456 1457 return (intr); 1458 } 1459 1460 static void 1461 die_base_create(dwarf_t *dw, Dwarf_Die base, Dwarf_Off off, tdesc_t *tdp) 1462 { 1463 Dwarf_Unsigned sz; 1464 intr_t *intr; 1465 char *new; 1466 1467 debug(3, "die %llu: creating base type\n", off); 1468 1469 /* 1470 * The compilers have their own clever (internally inconsistent) ideas 1471 * as to what base types should look like. Some times gcc will, for 1472 * example, use DW_ATE_signed_char for char. Other times, however, it 1473 * will use DW_ATE_signed. Needless to say, this causes some problems 1474 * down the road, particularly with merging. We do, however, use the 1475 * DWARF idea of type sizes, as this allows us to avoid caring about 1476 * the data model. 1477 */ 1478 (void) die_unsigned(dw, base, DW_AT_byte_size, &sz, DW_ATTR_REQ); 1479 1480 /* Check for bogus gcc DW_AT_byte_size attribute */ 1481 if (sz == (unsigned)-1) { 1482 printf("dwarf.c:%s() working around bogus -1 DW_AT_byte_size\n", 1483 __func__); 1484 sz = 0; 1485 } 1486 1487 if (tdp->t_name == NULL) 1488 terminate("die %llu: base type without name\n", off); 1489 1490 /* XXX make a name parser for float too */ 1491 if ((intr = die_base_name_parse(tdp->t_name, &new)) != NULL) { 1492 /* Found it. We'll use the parsed version */ 1493 debug(3, "die %llu: name \"%s\" remapped to \"%s\"\n", off, 1494 tdesc_name(tdp), new); 1495 1496 free(tdp->t_name); 1497 tdp->t_name = new; 1498 } else { 1499 /* 1500 * We didn't recognize the type, so we'll create an intr_t 1501 * based on the DWARF data. 1502 */ 1503 debug(3, "die %llu: using dwarf data for base \"%s\"\n", off, 1504 tdesc_name(tdp)); 1505 1506 intr = die_base_from_dwarf(dw, base, off, sz); 1507 } 1508 1509 intr->intr_nbits = sz * 8; 1510 1511 tdp->t_type = INTRINSIC; 1512 tdp->t_intr = intr; 1513 tdp->t_size = sz; 1514 1515 tdp->t_flags |= TDESC_F_RESOLVED; 1516 } 1517 1518 static void 1519 die_through_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp, 1520 int type, const char *typename) 1521 { 1522 Dwarf_Attribute attr; 1523 1524 debug(3, "die %llu <%llx>: creating %s type %d\n", off, off, typename, type); 1525 1526 tdp->t_type = type; 1527 1528 if ((attr = die_attr(dw, die, DW_AT_type, 0)) != NULL) { 1529 tdp->t_tdesc = die_lookup_pass1(dw, die, DW_AT_type); 1530 } else { 1531 tdp->t_tdesc = tdesc_intr_void(dw); 1532 } 1533 1534 if (type == POINTER) 1535 tdp->t_size = dw->dw_ptrsz; 1536 1537 tdp->t_flags |= TDESC_F_RESOLVED; 1538 1539 if (type == TYPEDEF) { 1540 iidesc_t *ii = xcalloc(sizeof (iidesc_t)); 1541 ii->ii_type = II_TYPE; 1542 ii->ii_name = xstrdup(tdp->t_name); 1543 ii->ii_dtype = tdp; 1544 1545 iidesc_add(dw->dw_td->td_iihash, ii); 1546 } 1547 } 1548 1549 static void 1550 die_typedef_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1551 { 1552 die_through_create(dw, die, off, tdp, TYPEDEF, "typedef"); 1553 } 1554 1555 static void 1556 die_const_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1557 { 1558 die_through_create(dw, die, off, tdp, CONST, "const"); 1559 } 1560 1561 static void 1562 die_pointer_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1563 { 1564 die_through_create(dw, die, off, tdp, POINTER, "pointer"); 1565 } 1566 1567 static void 1568 die_restrict_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1569 { 1570 die_through_create(dw, die, off, tdp, RESTRICT, "restrict"); 1571 } 1572 1573 static void 1574 die_volatile_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp) 1575 { 1576 die_through_create(dw, die, off, tdp, VOLATILE, "volatile"); 1577 } 1578 1579 /*ARGSUSED3*/ 1580 static void 1581 die_function_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1582 { 1583 Dwarf_Die arg; 1584 Dwarf_Half tag; 1585 iidesc_t *ii; 1586 char *name; 1587 1588 debug(3, "die %llu <%llx>: creating function definition\n", off, off); 1589 1590 /* 1591 * We'll begin by processing any type definition nodes that may be 1592 * lurking underneath this one. 1593 */ 1594 for (arg = die_child(dw, die); arg != NULL; 1595 arg = die_sibling(dw, arg)) { 1596 if ((tag = die_tag(dw, arg)) != DW_TAG_formal_parameter && 1597 tag != DW_TAG_variable) { 1598 /* Nested type declaration */ 1599 die_create_one(dw, arg); 1600 } 1601 } 1602 1603 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) { 1604 /* 1605 * We process neither prototypes nor subprograms without 1606 * names. 1607 */ 1608 return; 1609 } 1610 1611 ii = xcalloc(sizeof (iidesc_t)); 1612 ii->ii_type = die_isglobal(dw, die) ? II_GFUN : II_SFUN; 1613 ii->ii_name = name; 1614 if (ii->ii_type == II_SFUN) 1615 ii->ii_owner = xstrdup(dw->dw_cuname); 1616 1617 debug(3, "die %llu: function %s is %s\n", off, ii->ii_name, 1618 (ii->ii_type == II_GFUN ? "global" : "static")); 1619 1620 if (die_attr(dw, die, DW_AT_type, 0) != NULL) 1621 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1622 else 1623 ii->ii_dtype = tdesc_intr_void(dw); 1624 1625 for (arg = die_child(dw, die); arg != NULL; 1626 arg = die_sibling(dw, arg)) { 1627 char *name1; 1628 1629 debug(3, "die %llu: looking at sub member at %llu\n", 1630 off, die_off(dw, die)); 1631 1632 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1633 continue; 1634 1635 if ((name1 = die_name(dw, arg)) == NULL) { 1636 terminate("die %llu: func arg %d has no name\n", 1637 off, ii->ii_nargs + 1); 1638 } 1639 1640 if (strcmp(name1, "...") == 0) { 1641 free(name1); 1642 ii->ii_vargs = 1; 1643 continue; 1644 } 1645 1646 ii->ii_nargs++; 1647 } 1648 1649 if (ii->ii_nargs > 0) { 1650 int i; 1651 1652 debug(3, "die %llu: function has %d argument%s\n", off, 1653 ii->ii_nargs, (ii->ii_nargs == 1 ? "" : "s")); 1654 1655 ii->ii_args = xcalloc(sizeof (tdesc_t) * ii->ii_nargs); 1656 1657 for (arg = die_child(dw, die), i = 0; 1658 arg != NULL && i < ii->ii_nargs; 1659 arg = die_sibling(dw, arg)) { 1660 if (die_tag(dw, arg) != DW_TAG_formal_parameter) 1661 continue; 1662 1663 ii->ii_args[i++] = die_lookup_pass1(dw, arg, 1664 DW_AT_type); 1665 } 1666 } 1667 1668 iidesc_add(dw->dw_td->td_iihash, ii); 1669 } 1670 1671 /*ARGSUSED3*/ 1672 static void 1673 die_variable_create(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off, tdesc_t *tdp __unused) 1674 { 1675 iidesc_t *ii; 1676 char *name; 1677 1678 debug(3, "die %llu: creating object definition\n", off); 1679 1680 if (die_isdecl(dw, die) || (name = die_name(dw, die)) == NULL) 1681 return; /* skip prototypes and nameless objects */ 1682 1683 ii = xcalloc(sizeof (iidesc_t)); 1684 ii->ii_type = die_isglobal(dw, die) ? II_GVAR : II_SVAR; 1685 ii->ii_name = name; 1686 ii->ii_dtype = die_lookup_pass1(dw, die, DW_AT_type); 1687 if (ii->ii_type == II_SVAR) 1688 ii->ii_owner = xstrdup(dw->dw_cuname); 1689 1690 iidesc_add(dw->dw_td->td_iihash, ii); 1691 } 1692 1693 /*ARGSUSED2*/ 1694 static int 1695 die_fwd_resolve(tdesc_t *fwd, tdesc_t **fwdp, void *private __unused) 1696 { 1697 if (fwd->t_flags & TDESC_F_RESOLVED) 1698 return (1); 1699 1700 if (fwd->t_tdesc != NULL) { 1701 debug(3, "tdp %u: unforwarded %s\n", fwd->t_id, 1702 tdesc_name(fwd)); 1703 *fwdp = fwd->t_tdesc; 1704 } 1705 1706 fwd->t_flags |= TDESC_F_RESOLVED; 1707 1708 return (1); 1709 } 1710 1711 /*ARGSUSED*/ 1712 static void 1713 die_lexblk_descend(dwarf_t *dw, Dwarf_Die die, Dwarf_Off off __unused, tdesc_t *tdp __unused) 1714 { 1715 Dwarf_Die child = die_child(dw, die); 1716 1717 if (child != NULL) 1718 die_create(dw, child); 1719 } 1720 1721 /* 1722 * Used to map the die to a routine which can parse it, using the tag to do the 1723 * mapping. While the processing of most tags entails the creation of a tdesc, 1724 * there are a few which don't - primarily those which result in the creation of 1725 * iidescs which refer to existing tdescs. 1726 */ 1727 1728 #define DW_F_NOTDP 0x1 /* Don't create a tdesc for the creator */ 1729 1730 typedef struct die_creator { 1731 Dwarf_Half dc_tag; 1732 uint16_t dc_flags; 1733 void (*dc_create)(dwarf_t *, Dwarf_Die, Dwarf_Off, tdesc_t *); 1734 } die_creator_t; 1735 1736 static const die_creator_t die_creators[] = { 1737 { DW_TAG_array_type, 0, die_array_create }, 1738 { DW_TAG_enumeration_type, 0, die_enum_create }, 1739 { DW_TAG_lexical_block, DW_F_NOTDP, die_lexblk_descend }, 1740 { DW_TAG_pointer_type, 0, die_pointer_create }, 1741 { DW_TAG_structure_type, 0, die_struct_create }, 1742 { DW_TAG_subroutine_type, 0, die_funcptr_create }, 1743 { DW_TAG_typedef, 0, die_typedef_create }, 1744 { DW_TAG_union_type, 0, die_union_create }, 1745 { DW_TAG_base_type, 0, die_base_create }, 1746 { DW_TAG_const_type, 0, die_const_create }, 1747 { DW_TAG_subprogram, DW_F_NOTDP, die_function_create }, 1748 { DW_TAG_variable, DW_F_NOTDP, die_variable_create }, 1749 { DW_TAG_volatile_type, 0, die_volatile_create }, 1750 { DW_TAG_restrict_type, 0, die_restrict_create }, 1751 { 0, 0, NULL } 1752 }; 1753 1754 static const die_creator_t * 1755 die_tag2ctor(Dwarf_Half tag) 1756 { 1757 const die_creator_t *dc; 1758 1759 for (dc = die_creators; dc->dc_create != NULL; dc++) { 1760 if (dc->dc_tag == tag) 1761 return (dc); 1762 } 1763 1764 return (NULL); 1765 } 1766 1767 static void 1768 die_create_one(dwarf_t *dw, Dwarf_Die die) 1769 { 1770 Dwarf_Off off = die_off(dw, die); 1771 const die_creator_t *dc; 1772 Dwarf_Half tag; 1773 tdesc_t *tdp; 1774 1775 debug(3, "die %llu <%llx>: create_one\n", off, off); 1776 1777 if (off > dw->dw_maxoff) { 1778 terminate("illegal die offset %llu (max %llu)\n", off, 1779 dw->dw_maxoff); 1780 } 1781 1782 tag = die_tag(dw, die); 1783 1784 if ((dc = die_tag2ctor(tag)) == NULL) { 1785 debug(2, "die %llu: ignoring tag type %x\n", off, tag); 1786 return; 1787 } 1788 1789 if ((tdp = tdesc_lookup(dw, off)) == NULL && 1790 !(dc->dc_flags & DW_F_NOTDP)) { 1791 tdp = xcalloc(sizeof (tdesc_t)); 1792 tdp->t_id = off; 1793 tdesc_add(dw, tdp); 1794 } 1795 1796 if (tdp != NULL) 1797 tdp->t_name = die_name(dw, die); 1798 1799 dc->dc_create(dw, die, off, tdp); 1800 } 1801 1802 static void 1803 die_create(dwarf_t *dw, Dwarf_Die die) 1804 { 1805 do { 1806 die_create_one(dw, die); 1807 } while ((die = die_sibling(dw, die)) != NULL); 1808 } 1809 1810 static tdtrav_cb_f die_resolvers[] = { 1811 NULL, 1812 NULL, /* intrinsic */ 1813 NULL, /* pointer */ 1814 die_array_resolve, /* array */ 1815 NULL, /* function */ 1816 die_sou_resolve, /* struct */ 1817 die_sou_resolve, /* union */ 1818 die_enum_resolve, /* enum */ 1819 die_fwd_resolve, /* forward */ 1820 NULL, /* typedef */ 1821 NULL, /* typedef unres */ 1822 NULL, /* volatile */ 1823 NULL, /* const */ 1824 NULL, /* restrict */ 1825 }; 1826 1827 static tdtrav_cb_f die_fail_reporters[] = { 1828 NULL, 1829 NULL, /* intrinsic */ 1830 NULL, /* pointer */ 1831 die_array_failed, /* array */ 1832 NULL, /* function */ 1833 die_sou_failed, /* struct */ 1834 die_sou_failed, /* union */ 1835 NULL, /* enum */ 1836 NULL, /* forward */ 1837 NULL, /* typedef */ 1838 NULL, /* typedef unres */ 1839 NULL, /* volatile */ 1840 NULL, /* const */ 1841 NULL, /* restrict */ 1842 }; 1843 1844 static void 1845 die_resolve(dwarf_t *dw) 1846 { 1847 int last = -1; 1848 int pass = 0; 1849 1850 do { 1851 pass++; 1852 dw->dw_nunres = 0; 1853 1854 (void) iitraverse_hash(dw->dw_td->td_iihash, 1855 &dw->dw_td->td_curvgen, NULL, NULL, die_resolvers, dw); 1856 1857 debug(3, "resolve: pass %d, %u left\n", pass, dw->dw_nunres); 1858 1859 if ((int) dw->dw_nunres == last) { 1860 fprintf(stderr, "%s: failed to resolve the following " 1861 "types:\n", progname); 1862 1863 (void) iitraverse_hash(dw->dw_td->td_iihash, 1864 &dw->dw_td->td_curvgen, NULL, NULL, 1865 die_fail_reporters, dw); 1866 1867 terminate("failed to resolve types\n"); 1868 } 1869 1870 last = dw->dw_nunres; 1871 1872 } while (dw->dw_nunres != 0); 1873 } 1874 1875 /* 1876 * Any object containing a function or object symbol at any scope should also 1877 * contain DWARF data. 1878 */ 1879 static boolean_t 1880 should_have_dwarf(Elf *elf) 1881 { 1882 Elf_Scn *scn = NULL; 1883 Elf_Data *data = NULL; 1884 GElf_Shdr shdr; 1885 GElf_Sym sym; 1886 uint32_t symdx = 0; 1887 size_t nsyms = 0; 1888 boolean_t found = B_FALSE; 1889 1890 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1891 gelf_getshdr(scn, &shdr); 1892 1893 if (shdr.sh_type == SHT_SYMTAB) { 1894 found = B_TRUE; 1895 break; 1896 } 1897 } 1898 1899 if (!found) 1900 terminate("cannot convert stripped objects\n"); 1901 1902 data = elf_getdata(scn, NULL); 1903 nsyms = shdr.sh_size / shdr.sh_entsize; 1904 1905 for (symdx = 0; symdx < nsyms; symdx++) { 1906 gelf_getsym(data, symdx, &sym); 1907 1908 if ((GELF_ST_TYPE(sym.st_info) == STT_FUNC) || 1909 (GELF_ST_TYPE(sym.st_info) == STT_TLS) || 1910 (GELF_ST_TYPE(sym.st_info) == STT_OBJECT)) { 1911 char *name; 1912 1913 name = elf_strptr(elf, shdr.sh_link, sym.st_name); 1914 1915 /* Studio emits these local symbols regardless */ 1916 if ((strcmp(name, "Bbss.bss") != 0) && 1917 (strcmp(name, "Ttbss.bss") != 0) && 1918 (strcmp(name, "Ddata.data") != 0) && 1919 (strcmp(name, "Ttdata.data") != 0) && 1920 (strcmp(name, "Drodata.rodata") != 0)) 1921 return (B_TRUE); 1922 } 1923 } 1924 1925 return (B_FALSE); 1926 } 1927 1928 /*ARGSUSED*/ 1929 int 1930 dw_read(tdata_t *td, Elf *elf, char *filename __unused) 1931 { 1932 Dwarf_Unsigned abboff, hdrlen, nxthdr; 1933 Dwarf_Half vers, addrsz, offsz; 1934 Dwarf_Die cu = 0; 1935 Dwarf_Die child = 0; 1936 dwarf_t dw; 1937 char *prod = NULL; 1938 int rc; 1939 1940 bzero(&dw, sizeof (dwarf_t)); 1941 dw.dw_td = td; 1942 dw.dw_ptrsz = elf_ptrsz(elf); 1943 dw.dw_mfgtid_last = TID_MFGTID_BASE; 1944 dw.dw_tidhash = hash_new(TDESC_HASH_BUCKETS, tdesc_idhash, tdesc_idcmp); 1945 dw.dw_fwdhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1946 tdesc_namecmp); 1947 dw.dw_enumhash = hash_new(TDESC_HASH_BUCKETS, tdesc_namehash, 1948 tdesc_namecmp); 1949 1950 if ((rc = dwarf_elf_init(elf, DW_DLC_READ, NULL, NULL, &dw.dw_dw, 1951 &dw.dw_err)) == DW_DLV_NO_ENTRY) { 1952 if (should_have_dwarf(elf)) { 1953 errno = ENOENT; 1954 return (-1); 1955 } else { 1956 return (0); 1957 } 1958 } else if (rc != DW_DLV_OK) { 1959 if (dwarf_errno(dw.dw_err) == DW_DLE_DEBUG_INFO_NULL) { 1960 /* 1961 * There's no type data in the DWARF section, but 1962 * libdwarf is too clever to handle that properly. 1963 */ 1964 return (0); 1965 } 1966 1967 terminate("failed to initialize DWARF: %s\n", 1968 dwarf_errmsg(dw.dw_err)); 1969 } 1970 1971 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 1972 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_OK) 1973 terminate("rc = %d %s\n", rc, dwarf_errmsg(dw.dw_err)); 1974 1975 if ((cu = die_sibling(&dw, NULL)) == NULL || 1976 (((child = die_child(&dw, cu)) == NULL) && 1977 should_have_dwarf(elf))) { 1978 terminate("file does not contain dwarf type data " 1979 "(try compiling with -g)\n"); 1980 } else if (child == NULL) { 1981 return (0); 1982 } 1983 1984 dw.dw_maxoff = nxthdr - 1; 1985 1986 if (dw.dw_maxoff > TID_FILEMAX) 1987 terminate("file contains too many types\n"); 1988 1989 debug(1, "DWARF version: %d\n", vers); 1990 if (vers < 2 || vers > 4) { 1991 terminate("file contains incompatible version %d DWARF code " 1992 "(version 2, 3 or 4 required)\n", vers); 1993 } 1994 1995 if (die_string(&dw, cu, DW_AT_producer, &prod, 0)) { 1996 debug(1, "DWARF emitter: %s\n", prod); 1997 free(prod); 1998 } 1999 2000 if ((dw.dw_cuname = die_name(&dw, cu)) != NULL) { 2001 char *base = xstrdup(basename(dw.dw_cuname)); 2002 free(dw.dw_cuname); 2003 dw.dw_cuname = base; 2004 2005 debug(1, "CU name: %s\n", dw.dw_cuname); 2006 } 2007 2008 if ((child = die_child(&dw, cu)) != NULL) 2009 die_create(&dw, child); 2010 2011 if ((rc = dwarf_next_cu_header_b(dw.dw_dw, &hdrlen, &vers, &abboff, 2012 &addrsz, &offsz, NULL, &nxthdr, &dw.dw_err)) != DW_DLV_NO_ENTRY) 2013 terminate("multiple compilation units not supported\n"); 2014 2015 (void) dwarf_finish(dw.dw_dw, &dw.dw_err); 2016 2017 die_resolve(&dw); 2018 2019 cvt_fixups(td, dw.dw_ptrsz); 2020 2021 /* leak the dwarf_t */ 2022 2023 return (0); 2024 } 2025