1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #include <generated/utsrelease.h>
14
15 #define CREATE_TRACE_POINTS
16 #include "trace.h"
17
18 #include "nvmet.h"
19 #include "debugfs.h"
20
21 struct kmem_cache *nvmet_bvec_cache;
22 struct workqueue_struct *buffered_io_wq;
23 struct workqueue_struct *zbd_wq;
24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
25 static DEFINE_IDA(cntlid_ida);
26
27 struct workqueue_struct *nvmet_wq;
28 EXPORT_SYMBOL_GPL(nvmet_wq);
29
30 /*
31 * This read/write semaphore is used to synchronize access to configuration
32 * information on a target system that will result in discovery log page
33 * information change for at least one host.
34 * The full list of resources to protected by this semaphore is:
35 *
36 * - subsystems list
37 * - per-subsystem allowed hosts list
38 * - allow_any_host subsystem attribute
39 * - nvmet_genctr
40 * - the nvmet_transports array
41 *
42 * When updating any of those lists/structures write lock should be obtained,
43 * while when reading (populating discovery log page or checking host-subsystem
44 * link) read lock is obtained to allow concurrent reads.
45 */
46 DECLARE_RWSEM(nvmet_config_sem);
47
48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
49 u64 nvmet_ana_chgcnt;
50 DECLARE_RWSEM(nvmet_ana_sem);
51
errno_to_nvme_status(struct nvmet_req * req,int errno)52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
53 {
54 switch (errno) {
55 case 0:
56 return NVME_SC_SUCCESS;
57 case -ENOSPC:
58 req->error_loc = offsetof(struct nvme_rw_command, length);
59 return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
60 case -EREMOTEIO:
61 req->error_loc = offsetof(struct nvme_rw_command, slba);
62 return NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
63 case -EOPNOTSUPP:
64 req->error_loc = offsetof(struct nvme_common_command, opcode);
65 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
66 case -ENODATA:
67 req->error_loc = offsetof(struct nvme_rw_command, nsid);
68 return NVME_SC_ACCESS_DENIED;
69 case -EIO:
70 fallthrough;
71 default:
72 req->error_loc = offsetof(struct nvme_common_command, opcode);
73 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
74 }
75 }
76
nvmet_report_invalid_opcode(struct nvmet_req * req)77 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
78 {
79 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
80 req->sq->qid);
81
82 req->error_loc = offsetof(struct nvme_common_command, opcode);
83 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
84 }
85
86 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
87 const char *subsysnqn);
88
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)89 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
90 size_t len)
91 {
92 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
93 req->error_loc = offsetof(struct nvme_common_command, dptr);
94 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
95 }
96 return 0;
97 }
98
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)99 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
100 {
101 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
102 req->error_loc = offsetof(struct nvme_common_command, dptr);
103 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
104 }
105 return 0;
106 }
107
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)108 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
109 {
110 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
111 req->error_loc = offsetof(struct nvme_common_command, dptr);
112 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
113 }
114 return 0;
115 }
116
nvmet_max_nsid(struct nvmet_subsys * subsys)117 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
118 {
119 struct nvmet_ns *cur;
120 unsigned long idx;
121 u32 nsid = 0;
122
123 nvmet_for_each_enabled_ns(&subsys->namespaces, idx, cur)
124 nsid = cur->nsid;
125
126 return nsid;
127 }
128
nvmet_async_event_result(struct nvmet_async_event * aen)129 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
130 {
131 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
132 }
133
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)134 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
135 {
136 struct nvmet_req *req;
137
138 mutex_lock(&ctrl->lock);
139 while (ctrl->nr_async_event_cmds) {
140 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
141 mutex_unlock(&ctrl->lock);
142 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR);
143 mutex_lock(&ctrl->lock);
144 }
145 mutex_unlock(&ctrl->lock);
146 }
147
nvmet_async_events_process(struct nvmet_ctrl * ctrl)148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
149 {
150 struct nvmet_async_event *aen;
151 struct nvmet_req *req;
152
153 mutex_lock(&ctrl->lock);
154 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
155 aen = list_first_entry(&ctrl->async_events,
156 struct nvmet_async_event, entry);
157 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
158 nvmet_set_result(req, nvmet_async_event_result(aen));
159
160 list_del(&aen->entry);
161 kfree(aen);
162
163 mutex_unlock(&ctrl->lock);
164 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
165 nvmet_req_complete(req, 0);
166 mutex_lock(&ctrl->lock);
167 }
168 mutex_unlock(&ctrl->lock);
169 }
170
nvmet_async_events_free(struct nvmet_ctrl * ctrl)171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
172 {
173 struct nvmet_async_event *aen, *tmp;
174
175 mutex_lock(&ctrl->lock);
176 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
177 list_del(&aen->entry);
178 kfree(aen);
179 }
180 mutex_unlock(&ctrl->lock);
181 }
182
nvmet_async_event_work(struct work_struct * work)183 static void nvmet_async_event_work(struct work_struct *work)
184 {
185 struct nvmet_ctrl *ctrl =
186 container_of(work, struct nvmet_ctrl, async_event_work);
187
188 nvmet_async_events_process(ctrl);
189 }
190
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
192 u8 event_info, u8 log_page)
193 {
194 struct nvmet_async_event *aen;
195
196 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
197 if (!aen)
198 return;
199
200 aen->event_type = event_type;
201 aen->event_info = event_info;
202 aen->log_page = log_page;
203
204 mutex_lock(&ctrl->lock);
205 list_add_tail(&aen->entry, &ctrl->async_events);
206 mutex_unlock(&ctrl->lock);
207
208 queue_work(nvmet_wq, &ctrl->async_event_work);
209 }
210
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
212 {
213 u32 i;
214
215 mutex_lock(&ctrl->lock);
216 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
217 goto out_unlock;
218
219 for (i = 0; i < ctrl->nr_changed_ns; i++) {
220 if (ctrl->changed_ns_list[i] == nsid)
221 goto out_unlock;
222 }
223
224 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
225 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
226 ctrl->nr_changed_ns = U32_MAX;
227 goto out_unlock;
228 }
229
230 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
231 out_unlock:
232 mutex_unlock(&ctrl->lock);
233 }
234
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
236 {
237 struct nvmet_ctrl *ctrl;
238
239 lockdep_assert_held(&subsys->lock);
240
241 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
242 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
243 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
244 continue;
245 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
246 NVME_AER_NOTICE_NS_CHANGED,
247 NVME_LOG_CHANGED_NS);
248 }
249 }
250
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)251 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
252 struct nvmet_port *port)
253 {
254 struct nvmet_ctrl *ctrl;
255
256 mutex_lock(&subsys->lock);
257 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
258 if (port && ctrl->port != port)
259 continue;
260 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
261 continue;
262 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
263 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
264 }
265 mutex_unlock(&subsys->lock);
266 }
267
nvmet_port_send_ana_event(struct nvmet_port * port)268 void nvmet_port_send_ana_event(struct nvmet_port *port)
269 {
270 struct nvmet_subsys_link *p;
271
272 down_read(&nvmet_config_sem);
273 list_for_each_entry(p, &port->subsystems, entry)
274 nvmet_send_ana_event(p->subsys, port);
275 up_read(&nvmet_config_sem);
276 }
277
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
279 {
280 int ret = 0;
281
282 down_write(&nvmet_config_sem);
283 if (nvmet_transports[ops->type])
284 ret = -EINVAL;
285 else
286 nvmet_transports[ops->type] = ops;
287 up_write(&nvmet_config_sem);
288
289 return ret;
290 }
291 EXPORT_SYMBOL_GPL(nvmet_register_transport);
292
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
294 {
295 down_write(&nvmet_config_sem);
296 nvmet_transports[ops->type] = NULL;
297 up_write(&nvmet_config_sem);
298 }
299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
300
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
302 {
303 struct nvmet_ctrl *ctrl;
304
305 mutex_lock(&subsys->lock);
306 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
307 if (ctrl->port == port)
308 ctrl->ops->delete_ctrl(ctrl);
309 }
310 mutex_unlock(&subsys->lock);
311 }
312
nvmet_enable_port(struct nvmet_port * port)313 int nvmet_enable_port(struct nvmet_port *port)
314 {
315 const struct nvmet_fabrics_ops *ops;
316 int ret;
317
318 lockdep_assert_held(&nvmet_config_sem);
319
320 if (port->disc_addr.trtype == NVMF_TRTYPE_MAX)
321 return -EINVAL;
322
323 ops = nvmet_transports[port->disc_addr.trtype];
324 if (!ops) {
325 up_write(&nvmet_config_sem);
326 request_module("nvmet-transport-%d", port->disc_addr.trtype);
327 down_write(&nvmet_config_sem);
328 ops = nvmet_transports[port->disc_addr.trtype];
329 if (!ops) {
330 pr_err("transport type %d not supported\n",
331 port->disc_addr.trtype);
332 return -EINVAL;
333 }
334 }
335
336 if (!try_module_get(ops->owner))
337 return -EINVAL;
338
339 /*
340 * If the user requested PI support and the transport isn't pi capable,
341 * don't enable the port.
342 */
343 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
344 pr_err("T10-PI is not supported by transport type %d\n",
345 port->disc_addr.trtype);
346 ret = -EINVAL;
347 goto out_put;
348 }
349
350 ret = ops->add_port(port);
351 if (ret)
352 goto out_put;
353
354 /* If the transport didn't set inline_data_size, then disable it. */
355 if (port->inline_data_size < 0)
356 port->inline_data_size = 0;
357
358 /*
359 * If the transport didn't set the max_queue_size properly, then clamp
360 * it to the target limits. Also set default values in case the
361 * transport didn't set it at all.
362 */
363 if (port->max_queue_size < 0)
364 port->max_queue_size = NVMET_MAX_QUEUE_SIZE;
365 else
366 port->max_queue_size = clamp_t(int, port->max_queue_size,
367 NVMET_MIN_QUEUE_SIZE,
368 NVMET_MAX_QUEUE_SIZE);
369
370 port->enabled = true;
371 port->tr_ops = ops;
372 return 0;
373
374 out_put:
375 module_put(ops->owner);
376 return ret;
377 }
378
nvmet_disable_port(struct nvmet_port * port)379 void nvmet_disable_port(struct nvmet_port *port)
380 {
381 const struct nvmet_fabrics_ops *ops;
382
383 lockdep_assert_held(&nvmet_config_sem);
384
385 port->enabled = false;
386 port->tr_ops = NULL;
387
388 ops = nvmet_transports[port->disc_addr.trtype];
389 ops->remove_port(port);
390 module_put(ops->owner);
391 }
392
nvmet_keep_alive_timer(struct work_struct * work)393 static void nvmet_keep_alive_timer(struct work_struct *work)
394 {
395 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
396 struct nvmet_ctrl, ka_work);
397 bool reset_tbkas = ctrl->reset_tbkas;
398
399 ctrl->reset_tbkas = false;
400 if (reset_tbkas) {
401 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
402 ctrl->cntlid);
403 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
404 return;
405 }
406
407 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
408 ctrl->cntlid, ctrl->kato);
409
410 nvmet_ctrl_fatal_error(ctrl);
411 }
412
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)413 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
414 {
415 if (unlikely(ctrl->kato == 0))
416 return;
417
418 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
419 ctrl->cntlid, ctrl->kato);
420
421 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
422 }
423
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)424 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
425 {
426 if (unlikely(ctrl->kato == 0))
427 return;
428
429 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
430
431 cancel_delayed_work_sync(&ctrl->ka_work);
432 }
433
nvmet_req_find_ns(struct nvmet_req * req)434 u16 nvmet_req_find_ns(struct nvmet_req *req)
435 {
436 u32 nsid = le32_to_cpu(req->cmd->common.nsid);
437 struct nvmet_subsys *subsys = nvmet_req_subsys(req);
438
439 req->ns = xa_load(&subsys->namespaces, nsid);
440 if (unlikely(!req->ns || !req->ns->enabled)) {
441 req->error_loc = offsetof(struct nvme_common_command, nsid);
442 if (!req->ns) /* ns doesn't exist! */
443 return NVME_SC_INVALID_NS | NVME_STATUS_DNR;
444
445 /* ns exists but it's disabled */
446 req->ns = NULL;
447 return NVME_SC_INTERNAL_PATH_ERROR;
448 }
449
450 percpu_ref_get(&req->ns->ref);
451 return NVME_SC_SUCCESS;
452 }
453
nvmet_destroy_namespace(struct percpu_ref * ref)454 static void nvmet_destroy_namespace(struct percpu_ref *ref)
455 {
456 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
457
458 complete(&ns->disable_done);
459 }
460
nvmet_put_namespace(struct nvmet_ns * ns)461 void nvmet_put_namespace(struct nvmet_ns *ns)
462 {
463 percpu_ref_put(&ns->ref);
464 }
465
nvmet_ns_dev_disable(struct nvmet_ns * ns)466 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
467 {
468 nvmet_bdev_ns_disable(ns);
469 nvmet_file_ns_disable(ns);
470 }
471
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)472 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
473 {
474 int ret;
475 struct pci_dev *p2p_dev;
476
477 if (!ns->use_p2pmem)
478 return 0;
479
480 if (!ns->bdev) {
481 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
482 return -EINVAL;
483 }
484
485 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
486 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
487 ns->device_path);
488 return -EINVAL;
489 }
490
491 if (ns->p2p_dev) {
492 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
493 if (ret < 0)
494 return -EINVAL;
495 } else {
496 /*
497 * Right now we just check that there is p2pmem available so
498 * we can report an error to the user right away if there
499 * is not. We'll find the actual device to use once we
500 * setup the controller when the port's device is available.
501 */
502
503 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
504 if (!p2p_dev) {
505 pr_err("no peer-to-peer memory is available for %s\n",
506 ns->device_path);
507 return -EINVAL;
508 }
509
510 pci_dev_put(p2p_dev);
511 }
512
513 return 0;
514 }
515
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)516 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
517 struct nvmet_ns *ns)
518 {
519 struct device *clients[2];
520 struct pci_dev *p2p_dev;
521 int ret;
522
523 lockdep_assert_held(&ctrl->subsys->lock);
524
525 if (!ctrl->p2p_client || !ns->use_p2pmem)
526 return;
527
528 if (ns->p2p_dev) {
529 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
530 if (ret < 0)
531 return;
532
533 p2p_dev = pci_dev_get(ns->p2p_dev);
534 } else {
535 clients[0] = ctrl->p2p_client;
536 clients[1] = nvmet_ns_dev(ns);
537
538 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
539 if (!p2p_dev) {
540 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
541 dev_name(ctrl->p2p_client), ns->device_path);
542 return;
543 }
544 }
545
546 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
547 if (ret < 0)
548 pci_dev_put(p2p_dev);
549
550 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
551 ns->nsid);
552 }
553
nvmet_ns_revalidate(struct nvmet_ns * ns)554 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
555 {
556 loff_t oldsize = ns->size;
557
558 if (ns->bdev)
559 nvmet_bdev_ns_revalidate(ns);
560 else
561 nvmet_file_ns_revalidate(ns);
562
563 return oldsize != ns->size;
564 }
565
nvmet_ns_enable(struct nvmet_ns * ns)566 int nvmet_ns_enable(struct nvmet_ns *ns)
567 {
568 struct nvmet_subsys *subsys = ns->subsys;
569 struct nvmet_ctrl *ctrl;
570 int ret;
571
572 mutex_lock(&subsys->lock);
573 ret = 0;
574
575 if (nvmet_is_passthru_subsys(subsys)) {
576 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
577 goto out_unlock;
578 }
579
580 if (ns->enabled)
581 goto out_unlock;
582
583 ret = nvmet_bdev_ns_enable(ns);
584 if (ret == -ENOTBLK)
585 ret = nvmet_file_ns_enable(ns);
586 if (ret)
587 goto out_unlock;
588
589 ret = nvmet_p2pmem_ns_enable(ns);
590 if (ret)
591 goto out_dev_disable;
592
593 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
594 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
595
596 if (ns->pr.enable) {
597 ret = nvmet_pr_init_ns(ns);
598 if (ret)
599 goto out_dev_put;
600 }
601
602 if (percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 0, GFP_KERNEL))
603 goto out_pr_exit;
604
605 nvmet_ns_changed(subsys, ns->nsid);
606 ns->enabled = true;
607 xa_set_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
608 ret = 0;
609 out_unlock:
610 mutex_unlock(&subsys->lock);
611 return ret;
612 out_pr_exit:
613 if (ns->pr.enable)
614 nvmet_pr_exit_ns(ns);
615 out_dev_put:
616 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
617 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
618 out_dev_disable:
619 nvmet_ns_dev_disable(ns);
620 goto out_unlock;
621 }
622
nvmet_ns_disable(struct nvmet_ns * ns)623 void nvmet_ns_disable(struct nvmet_ns *ns)
624 {
625 struct nvmet_subsys *subsys = ns->subsys;
626 struct nvmet_ctrl *ctrl;
627
628 mutex_lock(&subsys->lock);
629 if (!ns->enabled)
630 goto out_unlock;
631
632 ns->enabled = false;
633 xa_clear_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
634
635 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
636 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
637
638 mutex_unlock(&subsys->lock);
639
640 /*
641 * Now that we removed the namespaces from the lookup list, we
642 * can kill the per_cpu ref and wait for any remaining references
643 * to be dropped, as well as a RCU grace period for anyone only
644 * using the namespace under rcu_read_lock(). Note that we can't
645 * use call_rcu here as we need to ensure the namespaces have
646 * been fully destroyed before unloading the module.
647 */
648 percpu_ref_kill(&ns->ref);
649 synchronize_rcu();
650 wait_for_completion(&ns->disable_done);
651 percpu_ref_exit(&ns->ref);
652
653 if (ns->pr.enable)
654 nvmet_pr_exit_ns(ns);
655
656 mutex_lock(&subsys->lock);
657 nvmet_ns_changed(subsys, ns->nsid);
658 nvmet_ns_dev_disable(ns);
659 out_unlock:
660 mutex_unlock(&subsys->lock);
661 }
662
nvmet_ns_free(struct nvmet_ns * ns)663 void nvmet_ns_free(struct nvmet_ns *ns)
664 {
665 struct nvmet_subsys *subsys = ns->subsys;
666
667 nvmet_ns_disable(ns);
668
669 mutex_lock(&subsys->lock);
670
671 xa_erase(&subsys->namespaces, ns->nsid);
672 if (ns->nsid == subsys->max_nsid)
673 subsys->max_nsid = nvmet_max_nsid(subsys);
674
675 subsys->nr_namespaces--;
676 mutex_unlock(&subsys->lock);
677
678 down_write(&nvmet_ana_sem);
679 nvmet_ana_group_enabled[ns->anagrpid]--;
680 up_write(&nvmet_ana_sem);
681
682 kfree(ns->device_path);
683 kfree(ns);
684 }
685
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)686 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
687 {
688 struct nvmet_ns *ns;
689
690 mutex_lock(&subsys->lock);
691
692 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
693 goto out_unlock;
694
695 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
696 if (!ns)
697 goto out_unlock;
698
699 init_completion(&ns->disable_done);
700
701 ns->nsid = nsid;
702 ns->subsys = subsys;
703
704 if (ns->nsid > subsys->max_nsid)
705 subsys->max_nsid = nsid;
706
707 if (xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL))
708 goto out_exit;
709
710 subsys->nr_namespaces++;
711
712 mutex_unlock(&subsys->lock);
713
714 down_write(&nvmet_ana_sem);
715 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
716 nvmet_ana_group_enabled[ns->anagrpid]++;
717 up_write(&nvmet_ana_sem);
718
719 uuid_gen(&ns->uuid);
720 ns->buffered_io = false;
721 ns->csi = NVME_CSI_NVM;
722
723 return ns;
724 out_exit:
725 subsys->max_nsid = nvmet_max_nsid(subsys);
726 kfree(ns);
727 out_unlock:
728 mutex_unlock(&subsys->lock);
729 return NULL;
730 }
731
nvmet_update_sq_head(struct nvmet_req * req)732 static void nvmet_update_sq_head(struct nvmet_req *req)
733 {
734 if (req->sq->size) {
735 u32 old_sqhd, new_sqhd;
736
737 old_sqhd = READ_ONCE(req->sq->sqhd);
738 do {
739 new_sqhd = (old_sqhd + 1) % req->sq->size;
740 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
741 }
742 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
743 }
744
nvmet_set_error(struct nvmet_req * req,u16 status)745 static void nvmet_set_error(struct nvmet_req *req, u16 status)
746 {
747 struct nvmet_ctrl *ctrl = req->sq->ctrl;
748 struct nvme_error_slot *new_error_slot;
749 unsigned long flags;
750
751 req->cqe->status = cpu_to_le16(status << 1);
752
753 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
754 return;
755
756 spin_lock_irqsave(&ctrl->error_lock, flags);
757 ctrl->err_counter++;
758 new_error_slot =
759 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
760
761 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
762 new_error_slot->sqid = cpu_to_le16(req->sq->qid);
763 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
764 new_error_slot->status_field = cpu_to_le16(status << 1);
765 new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
766 new_error_slot->lba = cpu_to_le64(req->error_slba);
767 new_error_slot->nsid = req->cmd->common.nsid;
768 spin_unlock_irqrestore(&ctrl->error_lock, flags);
769
770 /* set the more bit for this request */
771 req->cqe->status |= cpu_to_le16(1 << 14);
772 }
773
__nvmet_req_complete(struct nvmet_req * req,u16 status)774 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
775 {
776 struct nvmet_ns *ns = req->ns;
777 struct nvmet_pr_per_ctrl_ref *pc_ref = req->pc_ref;
778
779 if (!req->sq->sqhd_disabled)
780 nvmet_update_sq_head(req);
781 req->cqe->sq_id = cpu_to_le16(req->sq->qid);
782 req->cqe->command_id = req->cmd->common.command_id;
783
784 if (unlikely(status))
785 nvmet_set_error(req, status);
786
787 trace_nvmet_req_complete(req);
788
789 req->ops->queue_response(req);
790
791 if (pc_ref)
792 nvmet_pr_put_ns_pc_ref(pc_ref);
793 if (ns)
794 nvmet_put_namespace(ns);
795 }
796
nvmet_req_complete(struct nvmet_req * req,u16 status)797 void nvmet_req_complete(struct nvmet_req *req, u16 status)
798 {
799 struct nvmet_sq *sq = req->sq;
800
801 __nvmet_req_complete(req, status);
802 percpu_ref_put(&sq->ref);
803 }
804 EXPORT_SYMBOL_GPL(nvmet_req_complete);
805
nvmet_cq_init(struct nvmet_cq * cq)806 void nvmet_cq_init(struct nvmet_cq *cq)
807 {
808 refcount_set(&cq->ref, 1);
809 }
810 EXPORT_SYMBOL_GPL(nvmet_cq_init);
811
nvmet_cq_get(struct nvmet_cq * cq)812 bool nvmet_cq_get(struct nvmet_cq *cq)
813 {
814 return refcount_inc_not_zero(&cq->ref);
815 }
816 EXPORT_SYMBOL_GPL(nvmet_cq_get);
817
nvmet_cq_put(struct nvmet_cq * cq)818 void nvmet_cq_put(struct nvmet_cq *cq)
819 {
820 if (refcount_dec_and_test(&cq->ref))
821 nvmet_cq_destroy(cq);
822 }
823 EXPORT_SYMBOL_GPL(nvmet_cq_put);
824
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)825 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
826 u16 qid, u16 size)
827 {
828 cq->qid = qid;
829 cq->size = size;
830
831 ctrl->cqs[qid] = cq;
832 }
833
nvmet_cq_destroy(struct nvmet_cq * cq)834 void nvmet_cq_destroy(struct nvmet_cq *cq)
835 {
836 struct nvmet_ctrl *ctrl = cq->ctrl;
837
838 if (ctrl) {
839 ctrl->cqs[cq->qid] = NULL;
840 nvmet_ctrl_put(cq->ctrl);
841 cq->ctrl = NULL;
842 }
843 }
844
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)845 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
846 u16 qid, u16 size)
847 {
848 sq->sqhd = 0;
849 sq->qid = qid;
850 sq->size = size;
851
852 ctrl->sqs[qid] = sq;
853 }
854
nvmet_confirm_sq(struct percpu_ref * ref)855 static void nvmet_confirm_sq(struct percpu_ref *ref)
856 {
857 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
858
859 complete(&sq->confirm_done);
860 }
861
nvmet_check_cqid(struct nvmet_ctrl * ctrl,u16 cqid,bool create)862 u16 nvmet_check_cqid(struct nvmet_ctrl *ctrl, u16 cqid, bool create)
863 {
864 if (!ctrl->cqs)
865 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
866
867 if (cqid > ctrl->subsys->max_qid)
868 return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
869
870 if ((create && ctrl->cqs[cqid]) || (!create && !ctrl->cqs[cqid]))
871 return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
872
873 return NVME_SC_SUCCESS;
874 }
875
nvmet_check_io_cqid(struct nvmet_ctrl * ctrl,u16 cqid,bool create)876 u16 nvmet_check_io_cqid(struct nvmet_ctrl *ctrl, u16 cqid, bool create)
877 {
878 if (!cqid)
879 return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
880 return nvmet_check_cqid(ctrl, cqid, create);
881 }
882
nvmet_cq_in_use(struct nvmet_cq * cq)883 bool nvmet_cq_in_use(struct nvmet_cq *cq)
884 {
885 return refcount_read(&cq->ref) > 1;
886 }
887 EXPORT_SYMBOL_GPL(nvmet_cq_in_use);
888
nvmet_cq_create(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)889 u16 nvmet_cq_create(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
890 u16 qid, u16 size)
891 {
892 u16 status;
893
894 status = nvmet_check_cqid(ctrl, qid, true);
895 if (status != NVME_SC_SUCCESS)
896 return status;
897
898 if (!kref_get_unless_zero(&ctrl->ref))
899 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
900 cq->ctrl = ctrl;
901
902 nvmet_cq_init(cq);
903 nvmet_cq_setup(ctrl, cq, qid, size);
904
905 return NVME_SC_SUCCESS;
906 }
907 EXPORT_SYMBOL_GPL(nvmet_cq_create);
908
nvmet_check_sqid(struct nvmet_ctrl * ctrl,u16 sqid,bool create)909 u16 nvmet_check_sqid(struct nvmet_ctrl *ctrl, u16 sqid,
910 bool create)
911 {
912 if (!ctrl->sqs)
913 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
914
915 if (sqid > ctrl->subsys->max_qid)
916 return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
917
918 if ((create && ctrl->sqs[sqid]) ||
919 (!create && !ctrl->sqs[sqid]))
920 return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
921
922 return NVME_SC_SUCCESS;
923 }
924
nvmet_sq_create(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,struct nvmet_cq * cq,u16 sqid,u16 size)925 u16 nvmet_sq_create(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
926 struct nvmet_cq *cq, u16 sqid, u16 size)
927 {
928 u16 status;
929 int ret;
930
931 if (!kref_get_unless_zero(&ctrl->ref))
932 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
933
934 status = nvmet_check_sqid(ctrl, sqid, true);
935 if (status != NVME_SC_SUCCESS)
936 return status;
937
938 ret = nvmet_sq_init(sq, cq);
939 if (ret) {
940 status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
941 goto ctrl_put;
942 }
943
944 nvmet_sq_setup(ctrl, sq, sqid, size);
945 sq->ctrl = ctrl;
946
947 return NVME_SC_SUCCESS;
948
949 ctrl_put:
950 nvmet_ctrl_put(ctrl);
951 return status;
952 }
953 EXPORT_SYMBOL_GPL(nvmet_sq_create);
954
nvmet_sq_destroy(struct nvmet_sq * sq)955 void nvmet_sq_destroy(struct nvmet_sq *sq)
956 {
957 struct nvmet_ctrl *ctrl = sq->ctrl;
958
959 /*
960 * If this is the admin queue, complete all AERs so that our
961 * queue doesn't have outstanding requests on it.
962 */
963 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
964 nvmet_async_events_failall(ctrl);
965 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
966 wait_for_completion(&sq->confirm_done);
967 wait_for_completion(&sq->free_done);
968 percpu_ref_exit(&sq->ref);
969 nvmet_auth_sq_free(sq);
970 nvmet_cq_put(sq->cq);
971
972 /*
973 * we must reference the ctrl again after waiting for inflight IO
974 * to complete. Because admin connect may have sneaked in after we
975 * store sq->ctrl locally, but before we killed the percpu_ref. the
976 * admin connect allocates and assigns sq->ctrl, which now needs a
977 * final ref put, as this ctrl is going away.
978 */
979 ctrl = sq->ctrl;
980
981 if (ctrl) {
982 /*
983 * The teardown flow may take some time, and the host may not
984 * send us keep-alive during this period, hence reset the
985 * traffic based keep-alive timer so we don't trigger a
986 * controller teardown as a result of a keep-alive expiration.
987 */
988 ctrl->reset_tbkas = true;
989 sq->ctrl->sqs[sq->qid] = NULL;
990 nvmet_ctrl_put(ctrl);
991 sq->ctrl = NULL; /* allows reusing the queue later */
992 }
993 }
994 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
995
nvmet_sq_free(struct percpu_ref * ref)996 static void nvmet_sq_free(struct percpu_ref *ref)
997 {
998 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
999
1000 complete(&sq->free_done);
1001 }
1002
nvmet_sq_init(struct nvmet_sq * sq,struct nvmet_cq * cq)1003 int nvmet_sq_init(struct nvmet_sq *sq, struct nvmet_cq *cq)
1004 {
1005 int ret;
1006
1007 if (!nvmet_cq_get(cq))
1008 return -EINVAL;
1009
1010 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
1011 if (ret) {
1012 pr_err("percpu_ref init failed!\n");
1013 nvmet_cq_put(cq);
1014 return ret;
1015 }
1016 init_completion(&sq->free_done);
1017 init_completion(&sq->confirm_done);
1018 nvmet_auth_sq_init(sq);
1019 sq->cq = cq;
1020
1021 return 0;
1022 }
1023 EXPORT_SYMBOL_GPL(nvmet_sq_init);
1024
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)1025 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
1026 struct nvmet_ns *ns)
1027 {
1028 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
1029
1030 if (unlikely(state == NVME_ANA_INACCESSIBLE))
1031 return NVME_SC_ANA_INACCESSIBLE;
1032 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
1033 return NVME_SC_ANA_PERSISTENT_LOSS;
1034 if (unlikely(state == NVME_ANA_CHANGE))
1035 return NVME_SC_ANA_TRANSITION;
1036 return 0;
1037 }
1038
nvmet_io_cmd_check_access(struct nvmet_req * req)1039 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
1040 {
1041 if (unlikely(req->ns->readonly)) {
1042 switch (req->cmd->common.opcode) {
1043 case nvme_cmd_read:
1044 case nvme_cmd_flush:
1045 break;
1046 default:
1047 return NVME_SC_NS_WRITE_PROTECTED;
1048 }
1049 }
1050
1051 return 0;
1052 }
1053
nvmet_io_cmd_transfer_len(struct nvmet_req * req)1054 static u32 nvmet_io_cmd_transfer_len(struct nvmet_req *req)
1055 {
1056 struct nvme_command *cmd = req->cmd;
1057 u32 metadata_len = 0;
1058
1059 if (nvme_is_fabrics(cmd))
1060 return nvmet_fabrics_io_cmd_data_len(req);
1061
1062 if (!req->ns)
1063 return 0;
1064
1065 switch (req->cmd->common.opcode) {
1066 case nvme_cmd_read:
1067 case nvme_cmd_write:
1068 case nvme_cmd_zone_append:
1069 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
1070 metadata_len = nvmet_rw_metadata_len(req);
1071 return nvmet_rw_data_len(req) + metadata_len;
1072 case nvme_cmd_dsm:
1073 return nvmet_dsm_len(req);
1074 case nvme_cmd_zone_mgmt_recv:
1075 return (le32_to_cpu(req->cmd->zmr.numd) + 1) << 2;
1076 default:
1077 return 0;
1078 }
1079 }
1080
nvmet_parse_io_cmd(struct nvmet_req * req)1081 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
1082 {
1083 struct nvme_command *cmd = req->cmd;
1084 u16 ret;
1085
1086 if (nvme_is_fabrics(cmd))
1087 return nvmet_parse_fabrics_io_cmd(req);
1088
1089 if (unlikely(!nvmet_check_auth_status(req)))
1090 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1091
1092 ret = nvmet_check_ctrl_status(req);
1093 if (unlikely(ret))
1094 return ret;
1095
1096 if (nvmet_is_passthru_req(req))
1097 return nvmet_parse_passthru_io_cmd(req);
1098
1099 ret = nvmet_req_find_ns(req);
1100 if (unlikely(ret))
1101 return ret;
1102
1103 ret = nvmet_check_ana_state(req->port, req->ns);
1104 if (unlikely(ret)) {
1105 req->error_loc = offsetof(struct nvme_common_command, nsid);
1106 return ret;
1107 }
1108 ret = nvmet_io_cmd_check_access(req);
1109 if (unlikely(ret)) {
1110 req->error_loc = offsetof(struct nvme_common_command, nsid);
1111 return ret;
1112 }
1113
1114 if (req->ns->pr.enable) {
1115 ret = nvmet_parse_pr_cmd(req);
1116 if (!ret)
1117 return ret;
1118 }
1119
1120 switch (req->ns->csi) {
1121 case NVME_CSI_NVM:
1122 if (req->ns->file)
1123 ret = nvmet_file_parse_io_cmd(req);
1124 else
1125 ret = nvmet_bdev_parse_io_cmd(req);
1126 break;
1127 case NVME_CSI_ZNS:
1128 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
1129 ret = nvmet_bdev_zns_parse_io_cmd(req);
1130 else
1131 ret = NVME_SC_INVALID_IO_CMD_SET;
1132 break;
1133 default:
1134 ret = NVME_SC_INVALID_IO_CMD_SET;
1135 }
1136 if (ret)
1137 return ret;
1138
1139 if (req->ns->pr.enable) {
1140 ret = nvmet_pr_check_cmd_access(req);
1141 if (ret)
1142 return ret;
1143
1144 ret = nvmet_pr_get_ns_pc_ref(req);
1145 }
1146 return ret;
1147 }
1148
nvmet_req_init(struct nvmet_req * req,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)1149 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_sq *sq,
1150 const struct nvmet_fabrics_ops *ops)
1151 {
1152 u8 flags = req->cmd->common.flags;
1153 u16 status;
1154
1155 req->cq = sq->cq;
1156 req->sq = sq;
1157 req->ops = ops;
1158 req->sg = NULL;
1159 req->metadata_sg = NULL;
1160 req->sg_cnt = 0;
1161 req->metadata_sg_cnt = 0;
1162 req->transfer_len = 0;
1163 req->metadata_len = 0;
1164 req->cqe->result.u64 = 0;
1165 req->cqe->status = 0;
1166 req->cqe->sq_head = 0;
1167 req->ns = NULL;
1168 req->error_loc = NVMET_NO_ERROR_LOC;
1169 req->error_slba = 0;
1170 req->pc_ref = NULL;
1171
1172 /* no support for fused commands yet */
1173 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
1174 req->error_loc = offsetof(struct nvme_common_command, flags);
1175 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1176 goto fail;
1177 }
1178
1179 /*
1180 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
1181 * contains an address of a single contiguous physical buffer that is
1182 * byte aligned. For PCI controllers, this is optional so not enforced.
1183 */
1184 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
1185 if (!req->sq->ctrl || !nvmet_is_pci_ctrl(req->sq->ctrl)) {
1186 req->error_loc =
1187 offsetof(struct nvme_common_command, flags);
1188 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1189 goto fail;
1190 }
1191 }
1192
1193 if (unlikely(!req->sq->ctrl))
1194 /* will return an error for any non-connect command: */
1195 status = nvmet_parse_connect_cmd(req);
1196 else if (likely(req->sq->qid != 0))
1197 status = nvmet_parse_io_cmd(req);
1198 else
1199 status = nvmet_parse_admin_cmd(req);
1200
1201 if (status)
1202 goto fail;
1203
1204 trace_nvmet_req_init(req, req->cmd);
1205
1206 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
1207 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1208 goto fail;
1209 }
1210
1211 if (sq->ctrl)
1212 sq->ctrl->reset_tbkas = true;
1213
1214 return true;
1215
1216 fail:
1217 __nvmet_req_complete(req, status);
1218 return false;
1219 }
1220 EXPORT_SYMBOL_GPL(nvmet_req_init);
1221
nvmet_req_uninit(struct nvmet_req * req)1222 void nvmet_req_uninit(struct nvmet_req *req)
1223 {
1224 percpu_ref_put(&req->sq->ref);
1225 if (req->pc_ref)
1226 nvmet_pr_put_ns_pc_ref(req->pc_ref);
1227 if (req->ns)
1228 nvmet_put_namespace(req->ns);
1229 }
1230 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
1231
nvmet_req_transfer_len(struct nvmet_req * req)1232 size_t nvmet_req_transfer_len(struct nvmet_req *req)
1233 {
1234 if (likely(req->sq->qid != 0))
1235 return nvmet_io_cmd_transfer_len(req);
1236 if (unlikely(!req->sq->ctrl))
1237 return nvmet_connect_cmd_data_len(req);
1238 return nvmet_admin_cmd_data_len(req);
1239 }
1240 EXPORT_SYMBOL_GPL(nvmet_req_transfer_len);
1241
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)1242 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1243 {
1244 if (unlikely(len != req->transfer_len)) {
1245 u16 status;
1246
1247 req->error_loc = offsetof(struct nvme_common_command, dptr);
1248 if (req->cmd->common.flags & NVME_CMD_SGL_ALL)
1249 status = NVME_SC_SGL_INVALID_DATA;
1250 else
1251 status = NVME_SC_INVALID_FIELD;
1252 nvmet_req_complete(req, status | NVME_STATUS_DNR);
1253 return false;
1254 }
1255
1256 return true;
1257 }
1258 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1259
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)1260 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1261 {
1262 if (unlikely(data_len > req->transfer_len)) {
1263 u16 status;
1264
1265 req->error_loc = offsetof(struct nvme_common_command, dptr);
1266 if (req->cmd->common.flags & NVME_CMD_SGL_ALL)
1267 status = NVME_SC_SGL_INVALID_DATA;
1268 else
1269 status = NVME_SC_INVALID_FIELD;
1270 nvmet_req_complete(req, status | NVME_STATUS_DNR);
1271 return false;
1272 }
1273
1274 return true;
1275 }
1276
nvmet_data_transfer_len(struct nvmet_req * req)1277 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1278 {
1279 return req->transfer_len - req->metadata_len;
1280 }
1281
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)1282 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1283 struct nvmet_req *req)
1284 {
1285 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1286 nvmet_data_transfer_len(req));
1287 if (!req->sg)
1288 goto out_err;
1289
1290 if (req->metadata_len) {
1291 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1292 &req->metadata_sg_cnt, req->metadata_len);
1293 if (!req->metadata_sg)
1294 goto out_free_sg;
1295 }
1296
1297 req->p2p_dev = p2p_dev;
1298
1299 return 0;
1300 out_free_sg:
1301 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1302 out_err:
1303 return -ENOMEM;
1304 }
1305
nvmet_req_find_p2p_dev(struct nvmet_req * req)1306 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1307 {
1308 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1309 !req->sq->ctrl || !req->sq->qid || !req->ns)
1310 return NULL;
1311 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1312 }
1313
nvmet_req_alloc_sgls(struct nvmet_req * req)1314 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1315 {
1316 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1317
1318 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1319 return 0;
1320
1321 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1322 &req->sg_cnt);
1323 if (unlikely(!req->sg))
1324 goto out;
1325
1326 if (req->metadata_len) {
1327 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1328 &req->metadata_sg_cnt);
1329 if (unlikely(!req->metadata_sg))
1330 goto out_free;
1331 }
1332
1333 return 0;
1334 out_free:
1335 sgl_free(req->sg);
1336 out:
1337 return -ENOMEM;
1338 }
1339 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1340
nvmet_req_free_sgls(struct nvmet_req * req)1341 void nvmet_req_free_sgls(struct nvmet_req *req)
1342 {
1343 if (req->p2p_dev) {
1344 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1345 if (req->metadata_sg)
1346 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1347 req->p2p_dev = NULL;
1348 } else {
1349 sgl_free(req->sg);
1350 if (req->metadata_sg)
1351 sgl_free(req->metadata_sg);
1352 }
1353
1354 req->sg = NULL;
1355 req->metadata_sg = NULL;
1356 req->sg_cnt = 0;
1357 req->metadata_sg_cnt = 0;
1358 }
1359 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1360
nvmet_css_supported(u8 cc_css)1361 static inline bool nvmet_css_supported(u8 cc_css)
1362 {
1363 switch (cc_css << NVME_CC_CSS_SHIFT) {
1364 case NVME_CC_CSS_NVM:
1365 case NVME_CC_CSS_CSI:
1366 return true;
1367 default:
1368 return false;
1369 }
1370 }
1371
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1372 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1373 {
1374 lockdep_assert_held(&ctrl->lock);
1375
1376 /*
1377 * Only I/O controllers should verify iosqes,iocqes.
1378 * Strictly speaking, the spec says a discovery controller
1379 * should verify iosqes,iocqes are zeroed, however that
1380 * would break backwards compatibility, so don't enforce it.
1381 */
1382 if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1383 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1384 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1385 ctrl->csts = NVME_CSTS_CFS;
1386 return;
1387 }
1388
1389 if (nvmet_cc_mps(ctrl->cc) != 0 ||
1390 nvmet_cc_ams(ctrl->cc) != 0 ||
1391 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1392 ctrl->csts = NVME_CSTS_CFS;
1393 return;
1394 }
1395
1396 ctrl->csts = NVME_CSTS_RDY;
1397
1398 /*
1399 * Controllers that are not yet enabled should not really enforce the
1400 * keep alive timeout, but we still want to track a timeout and cleanup
1401 * in case a host died before it enabled the controller. Hence, simply
1402 * reset the keep alive timer when the controller is enabled.
1403 */
1404 if (ctrl->kato)
1405 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1406 }
1407
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1408 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1409 {
1410 lockdep_assert_held(&ctrl->lock);
1411
1412 /* XXX: tear down queues? */
1413 ctrl->csts &= ~NVME_CSTS_RDY;
1414 ctrl->cc = 0;
1415 }
1416
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1417 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1418 {
1419 u32 old;
1420
1421 mutex_lock(&ctrl->lock);
1422 old = ctrl->cc;
1423 ctrl->cc = new;
1424
1425 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1426 nvmet_start_ctrl(ctrl);
1427 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1428 nvmet_clear_ctrl(ctrl);
1429 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1430 nvmet_clear_ctrl(ctrl);
1431 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1432 }
1433 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1434 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1435 mutex_unlock(&ctrl->lock);
1436 }
1437 EXPORT_SYMBOL_GPL(nvmet_update_cc);
1438
nvmet_init_cap(struct nvmet_ctrl * ctrl)1439 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1440 {
1441 /* command sets supported: NVMe command set: */
1442 ctrl->cap = (1ULL << 37);
1443 /* Controller supports one or more I/O Command Sets */
1444 ctrl->cap |= (1ULL << 43);
1445 /* CC.EN timeout in 500msec units: */
1446 ctrl->cap |= (15ULL << 24);
1447 /* maximum queue entries supported: */
1448 if (ctrl->ops->get_max_queue_size)
1449 ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl),
1450 ctrl->port->max_queue_size) - 1;
1451 else
1452 ctrl->cap |= ctrl->port->max_queue_size - 1;
1453
1454 if (nvmet_is_passthru_subsys(ctrl->subsys))
1455 nvmet_passthrough_override_cap(ctrl);
1456 }
1457
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req)1458 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1459 const char *hostnqn, u16 cntlid,
1460 struct nvmet_req *req)
1461 {
1462 struct nvmet_ctrl *ctrl = NULL;
1463 struct nvmet_subsys *subsys;
1464
1465 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1466 if (!subsys) {
1467 pr_warn("connect request for invalid subsystem %s!\n",
1468 subsysnqn);
1469 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1470 goto out;
1471 }
1472
1473 mutex_lock(&subsys->lock);
1474 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1475 if (ctrl->cntlid == cntlid) {
1476 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1477 pr_warn("hostnqn mismatch.\n");
1478 continue;
1479 }
1480 if (!kref_get_unless_zero(&ctrl->ref))
1481 continue;
1482
1483 /* ctrl found */
1484 goto found;
1485 }
1486 }
1487
1488 ctrl = NULL; /* ctrl not found */
1489 pr_warn("could not find controller %d for subsys %s / host %s\n",
1490 cntlid, subsysnqn, hostnqn);
1491 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1492
1493 found:
1494 mutex_unlock(&subsys->lock);
1495 nvmet_subsys_put(subsys);
1496 out:
1497 return ctrl;
1498 }
1499
nvmet_check_ctrl_status(struct nvmet_req * req)1500 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1501 {
1502 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1503 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1504 req->cmd->common.opcode, req->sq->qid);
1505 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1506 }
1507
1508 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1509 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1510 req->cmd->common.opcode, req->sq->qid);
1511 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1512 }
1513
1514 if (unlikely(!nvmet_check_auth_status(req))) {
1515 pr_warn("qid %d not authenticated\n", req->sq->qid);
1516 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1517 }
1518 return 0;
1519 }
1520
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1521 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1522 {
1523 struct nvmet_host_link *p;
1524
1525 lockdep_assert_held(&nvmet_config_sem);
1526
1527 if (subsys->allow_any_host)
1528 return true;
1529
1530 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1531 return true;
1532
1533 list_for_each_entry(p, &subsys->hosts, entry) {
1534 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1535 return true;
1536 }
1537
1538 return false;
1539 }
1540
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct device * p2p_client)1541 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1542 struct device *p2p_client)
1543 {
1544 struct nvmet_ns *ns;
1545 unsigned long idx;
1546
1547 lockdep_assert_held(&ctrl->subsys->lock);
1548
1549 if (!p2p_client)
1550 return;
1551
1552 ctrl->p2p_client = get_device(p2p_client);
1553
1554 nvmet_for_each_enabled_ns(&ctrl->subsys->namespaces, idx, ns)
1555 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1556 }
1557
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1558 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1559 {
1560 struct radix_tree_iter iter;
1561 void __rcu **slot;
1562
1563 lockdep_assert_held(&ctrl->subsys->lock);
1564
1565 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1566 pci_dev_put(radix_tree_deref_slot(slot));
1567
1568 put_device(ctrl->p2p_client);
1569 }
1570
nvmet_fatal_error_handler(struct work_struct * work)1571 static void nvmet_fatal_error_handler(struct work_struct *work)
1572 {
1573 struct nvmet_ctrl *ctrl =
1574 container_of(work, struct nvmet_ctrl, fatal_err_work);
1575
1576 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1577 ctrl->ops->delete_ctrl(ctrl);
1578 }
1579
nvmet_alloc_ctrl(struct nvmet_alloc_ctrl_args * args)1580 struct nvmet_ctrl *nvmet_alloc_ctrl(struct nvmet_alloc_ctrl_args *args)
1581 {
1582 struct nvmet_subsys *subsys;
1583 struct nvmet_ctrl *ctrl;
1584 u32 kato = args->kato;
1585 u8 dhchap_status;
1586 int ret;
1587
1588 args->status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR;
1589 subsys = nvmet_find_get_subsys(args->port, args->subsysnqn);
1590 if (!subsys) {
1591 pr_warn("connect request for invalid subsystem %s!\n",
1592 args->subsysnqn);
1593 args->result = IPO_IATTR_CONNECT_DATA(subsysnqn);
1594 args->error_loc = offsetof(struct nvme_common_command, dptr);
1595 return NULL;
1596 }
1597
1598 down_read(&nvmet_config_sem);
1599 if (!nvmet_host_allowed(subsys, args->hostnqn)) {
1600 pr_info("connect by host %s for subsystem %s not allowed\n",
1601 args->hostnqn, args->subsysnqn);
1602 args->result = IPO_IATTR_CONNECT_DATA(hostnqn);
1603 up_read(&nvmet_config_sem);
1604 args->status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1605 args->error_loc = offsetof(struct nvme_common_command, dptr);
1606 goto out_put_subsystem;
1607 }
1608 up_read(&nvmet_config_sem);
1609
1610 args->status = NVME_SC_INTERNAL;
1611 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1612 if (!ctrl)
1613 goto out_put_subsystem;
1614 mutex_init(&ctrl->lock);
1615
1616 ctrl->port = args->port;
1617 ctrl->ops = args->ops;
1618
1619 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1620 /* By default, set loop targets to clear IDS by default */
1621 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1622 subsys->clear_ids = 1;
1623 #endif
1624
1625 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1626 INIT_LIST_HEAD(&ctrl->async_events);
1627 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1628 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1629 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1630
1631 memcpy(ctrl->hostnqn, args->hostnqn, NVMF_NQN_SIZE);
1632
1633 kref_init(&ctrl->ref);
1634 ctrl->subsys = subsys;
1635 ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support;
1636 nvmet_init_cap(ctrl);
1637 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1638
1639 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1640 sizeof(__le32), GFP_KERNEL);
1641 if (!ctrl->changed_ns_list)
1642 goto out_free_ctrl;
1643
1644 ctrl->sqs = kcalloc(subsys->max_qid + 1,
1645 sizeof(struct nvmet_sq *),
1646 GFP_KERNEL);
1647 if (!ctrl->sqs)
1648 goto out_free_changed_ns_list;
1649
1650 ctrl->cqs = kcalloc(subsys->max_qid + 1, sizeof(struct nvmet_cq *),
1651 GFP_KERNEL);
1652 if (!ctrl->cqs)
1653 goto out_free_sqs;
1654
1655 ret = ida_alloc_range(&cntlid_ida,
1656 subsys->cntlid_min, subsys->cntlid_max,
1657 GFP_KERNEL);
1658 if (ret < 0) {
1659 args->status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR;
1660 goto out_free_cqs;
1661 }
1662 ctrl->cntlid = ret;
1663
1664 /*
1665 * Discovery controllers may use some arbitrary high value
1666 * in order to cleanup stale discovery sessions
1667 */
1668 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1669 kato = NVMET_DISC_KATO_MS;
1670
1671 /* keep-alive timeout in seconds */
1672 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1673
1674 ctrl->err_counter = 0;
1675 spin_lock_init(&ctrl->error_lock);
1676
1677 nvmet_start_keep_alive_timer(ctrl);
1678
1679 mutex_lock(&subsys->lock);
1680 ret = nvmet_ctrl_init_pr(ctrl);
1681 if (ret)
1682 goto init_pr_fail;
1683 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1684 nvmet_setup_p2p_ns_map(ctrl, args->p2p_client);
1685 nvmet_debugfs_ctrl_setup(ctrl);
1686 mutex_unlock(&subsys->lock);
1687
1688 if (args->hostid)
1689 uuid_copy(&ctrl->hostid, args->hostid);
1690
1691 dhchap_status = nvmet_setup_auth(ctrl, args->sq);
1692 if (dhchap_status) {
1693 pr_err("Failed to setup authentication, dhchap status %u\n",
1694 dhchap_status);
1695 nvmet_ctrl_put(ctrl);
1696 if (dhchap_status == NVME_AUTH_DHCHAP_FAILURE_FAILED)
1697 args->status =
1698 NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1699 else
1700 args->status = NVME_SC_INTERNAL;
1701 return NULL;
1702 }
1703
1704 args->status = NVME_SC_SUCCESS;
1705
1706 pr_info("Created %s controller %d for subsystem %s for NQN %s%s%s%s.\n",
1707 nvmet_is_disc_subsys(ctrl->subsys) ? "discovery" : "nvm",
1708 ctrl->cntlid, ctrl->subsys->subsysnqn, ctrl->hostnqn,
1709 ctrl->pi_support ? " T10-PI is enabled" : "",
1710 nvmet_has_auth(ctrl, args->sq) ? " with DH-HMAC-CHAP" : "",
1711 nvmet_queue_tls_keyid(args->sq) ? ", TLS" : "");
1712
1713 return ctrl;
1714
1715 init_pr_fail:
1716 mutex_unlock(&subsys->lock);
1717 nvmet_stop_keep_alive_timer(ctrl);
1718 ida_free(&cntlid_ida, ctrl->cntlid);
1719 out_free_cqs:
1720 kfree(ctrl->cqs);
1721 out_free_sqs:
1722 kfree(ctrl->sqs);
1723 out_free_changed_ns_list:
1724 kfree(ctrl->changed_ns_list);
1725 out_free_ctrl:
1726 kfree(ctrl);
1727 out_put_subsystem:
1728 nvmet_subsys_put(subsys);
1729 return NULL;
1730 }
1731 EXPORT_SYMBOL_GPL(nvmet_alloc_ctrl);
1732
nvmet_ctrl_free(struct kref * ref)1733 static void nvmet_ctrl_free(struct kref *ref)
1734 {
1735 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1736 struct nvmet_subsys *subsys = ctrl->subsys;
1737
1738 mutex_lock(&subsys->lock);
1739 nvmet_ctrl_destroy_pr(ctrl);
1740 nvmet_release_p2p_ns_map(ctrl);
1741 list_del(&ctrl->subsys_entry);
1742 mutex_unlock(&subsys->lock);
1743
1744 nvmet_stop_keep_alive_timer(ctrl);
1745
1746 flush_work(&ctrl->async_event_work);
1747 cancel_work_sync(&ctrl->fatal_err_work);
1748
1749 nvmet_destroy_auth(ctrl);
1750
1751 nvmet_debugfs_ctrl_free(ctrl);
1752
1753 ida_free(&cntlid_ida, ctrl->cntlid);
1754
1755 nvmet_async_events_free(ctrl);
1756 kfree(ctrl->sqs);
1757 kfree(ctrl->cqs);
1758 kfree(ctrl->changed_ns_list);
1759 kfree(ctrl);
1760
1761 nvmet_subsys_put(subsys);
1762 }
1763
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1764 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1765 {
1766 kref_put(&ctrl->ref, nvmet_ctrl_free);
1767 }
1768 EXPORT_SYMBOL_GPL(nvmet_ctrl_put);
1769
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1770 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1771 {
1772 mutex_lock(&ctrl->lock);
1773 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1774 ctrl->csts |= NVME_CSTS_CFS;
1775 queue_work(nvmet_wq, &ctrl->fatal_err_work);
1776 }
1777 mutex_unlock(&ctrl->lock);
1778 }
1779 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1780
nvmet_ctrl_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)1781 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl,
1782 char *traddr, size_t traddr_len)
1783 {
1784 if (!ctrl->ops->host_traddr)
1785 return -EOPNOTSUPP;
1786 return ctrl->ops->host_traddr(ctrl, traddr, traddr_len);
1787 }
1788
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1789 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1790 const char *subsysnqn)
1791 {
1792 struct nvmet_subsys_link *p;
1793
1794 if (!port)
1795 return NULL;
1796
1797 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1798 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1799 return NULL;
1800 return nvmet_disc_subsys;
1801 }
1802
1803 down_read(&nvmet_config_sem);
1804 if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn,
1805 NVMF_NQN_SIZE)) {
1806 if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) {
1807 up_read(&nvmet_config_sem);
1808 return nvmet_disc_subsys;
1809 }
1810 }
1811 list_for_each_entry(p, &port->subsystems, entry) {
1812 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1813 NVMF_NQN_SIZE)) {
1814 if (!kref_get_unless_zero(&p->subsys->ref))
1815 break;
1816 up_read(&nvmet_config_sem);
1817 return p->subsys;
1818 }
1819 }
1820 up_read(&nvmet_config_sem);
1821 return NULL;
1822 }
1823
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1824 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1825 enum nvme_subsys_type type)
1826 {
1827 struct nvmet_subsys *subsys;
1828 char serial[NVMET_SN_MAX_SIZE / 2];
1829 int ret;
1830
1831 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1832 if (!subsys)
1833 return ERR_PTR(-ENOMEM);
1834
1835 subsys->ver = NVMET_DEFAULT_VS;
1836 /* generate a random serial number as our controllers are ephemeral: */
1837 get_random_bytes(&serial, sizeof(serial));
1838 bin2hex(subsys->serial, &serial, sizeof(serial));
1839
1840 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1841 if (!subsys->model_number) {
1842 ret = -ENOMEM;
1843 goto free_subsys;
1844 }
1845
1846 subsys->ieee_oui = 0;
1847
1848 subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1849 if (!subsys->firmware_rev) {
1850 ret = -ENOMEM;
1851 goto free_mn;
1852 }
1853
1854 switch (type) {
1855 case NVME_NQN_NVME:
1856 subsys->max_qid = NVMET_NR_QUEUES;
1857 break;
1858 case NVME_NQN_DISC:
1859 case NVME_NQN_CURR:
1860 subsys->max_qid = 0;
1861 break;
1862 default:
1863 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1864 ret = -EINVAL;
1865 goto free_fr;
1866 }
1867 subsys->type = type;
1868 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1869 GFP_KERNEL);
1870 if (!subsys->subsysnqn) {
1871 ret = -ENOMEM;
1872 goto free_fr;
1873 }
1874 subsys->cntlid_min = NVME_CNTLID_MIN;
1875 subsys->cntlid_max = NVME_CNTLID_MAX;
1876 kref_init(&subsys->ref);
1877
1878 mutex_init(&subsys->lock);
1879 xa_init(&subsys->namespaces);
1880 INIT_LIST_HEAD(&subsys->ctrls);
1881 INIT_LIST_HEAD(&subsys->hosts);
1882
1883 ret = nvmet_debugfs_subsys_setup(subsys);
1884 if (ret)
1885 goto free_subsysnqn;
1886
1887 return subsys;
1888
1889 free_subsysnqn:
1890 kfree(subsys->subsysnqn);
1891 free_fr:
1892 kfree(subsys->firmware_rev);
1893 free_mn:
1894 kfree(subsys->model_number);
1895 free_subsys:
1896 kfree(subsys);
1897 return ERR_PTR(ret);
1898 }
1899
nvmet_subsys_free(struct kref * ref)1900 static void nvmet_subsys_free(struct kref *ref)
1901 {
1902 struct nvmet_subsys *subsys =
1903 container_of(ref, struct nvmet_subsys, ref);
1904
1905 WARN_ON_ONCE(!list_empty(&subsys->ctrls));
1906 WARN_ON_ONCE(!list_empty(&subsys->hosts));
1907 WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1908
1909 nvmet_debugfs_subsys_free(subsys);
1910
1911 xa_destroy(&subsys->namespaces);
1912 nvmet_passthru_subsys_free(subsys);
1913
1914 kfree(subsys->subsysnqn);
1915 kfree(subsys->model_number);
1916 kfree(subsys->firmware_rev);
1917 kfree(subsys);
1918 }
1919
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1920 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1921 {
1922 struct nvmet_ctrl *ctrl;
1923
1924 mutex_lock(&subsys->lock);
1925 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1926 ctrl->ops->delete_ctrl(ctrl);
1927 mutex_unlock(&subsys->lock);
1928 }
1929
nvmet_subsys_put(struct nvmet_subsys * subsys)1930 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1931 {
1932 kref_put(&subsys->ref, nvmet_subsys_free);
1933 }
1934
nvmet_init(void)1935 static int __init nvmet_init(void)
1936 {
1937 int error = -ENOMEM;
1938
1939 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1940
1941 nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1942 NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1943 SLAB_HWCACHE_ALIGN, NULL);
1944 if (!nvmet_bvec_cache)
1945 return -ENOMEM;
1946
1947 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1948 if (!zbd_wq)
1949 goto out_destroy_bvec_cache;
1950
1951 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1952 WQ_MEM_RECLAIM, 0);
1953 if (!buffered_io_wq)
1954 goto out_free_zbd_work_queue;
1955
1956 nvmet_wq = alloc_workqueue("nvmet-wq",
1957 WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_SYSFS, 0);
1958 if (!nvmet_wq)
1959 goto out_free_buffered_work_queue;
1960
1961 error = nvmet_init_debugfs();
1962 if (error)
1963 goto out_free_nvmet_work_queue;
1964
1965 error = nvmet_init_discovery();
1966 if (error)
1967 goto out_exit_debugfs;
1968
1969 error = nvmet_init_configfs();
1970 if (error)
1971 goto out_exit_discovery;
1972
1973 return 0;
1974
1975 out_exit_discovery:
1976 nvmet_exit_discovery();
1977 out_exit_debugfs:
1978 nvmet_exit_debugfs();
1979 out_free_nvmet_work_queue:
1980 destroy_workqueue(nvmet_wq);
1981 out_free_buffered_work_queue:
1982 destroy_workqueue(buffered_io_wq);
1983 out_free_zbd_work_queue:
1984 destroy_workqueue(zbd_wq);
1985 out_destroy_bvec_cache:
1986 kmem_cache_destroy(nvmet_bvec_cache);
1987 return error;
1988 }
1989
nvmet_exit(void)1990 static void __exit nvmet_exit(void)
1991 {
1992 nvmet_exit_configfs();
1993 nvmet_exit_discovery();
1994 nvmet_exit_debugfs();
1995 ida_destroy(&cntlid_ida);
1996 destroy_workqueue(nvmet_wq);
1997 destroy_workqueue(buffered_io_wq);
1998 destroy_workqueue(zbd_wq);
1999 kmem_cache_destroy(nvmet_bvec_cache);
2000
2001 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
2002 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
2003 }
2004
2005 module_init(nvmet_init);
2006 module_exit(nvmet_exit);
2007
2008 MODULE_DESCRIPTION("NVMe target core framework");
2009 MODULE_LICENSE("GPL v2");
2010