xref: /freebsd/usr.sbin/makefs/zfs.c (revision 4e15366c6a6907bcd0e2c28885ba5878ed4280d2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2022 The FreeBSD Foundation
5  *
6  * This software was developed by Mark Johnston under sponsorship from
7  * the FreeBSD Foundation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions are
11  * met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/errno.h>
33 #include <sys/queue.h>
34 
35 #include <assert.h>
36 #include <ctype.h>
37 #include <fcntl.h>
38 #include <stdalign.h>
39 #include <stdbool.h>
40 #include <stddef.h>
41 #include <stdlib.h>
42 #include <string.h>
43 #include <unistd.h>
44 
45 #include <util.h>
46 
47 #include "makefs.h"
48 #include "zfs.h"
49 
50 #define	VDEV_LABEL_SPACE	\
51 	((off_t)(VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE))
52 _Static_assert(VDEV_LABEL_SPACE <= MINDEVSIZE, "");
53 
54 #define	MINMSSIZE		((off_t)1 << 24) /* 16MB */
55 #define	DFLTMSSIZE		((off_t)1 << 29) /* 512MB */
56 #define	MAXMSSIZE		((off_t)1 << 34) /* 16GB */
57 
58 #define	INDIR_LEVELS		6
59 /* Indirect blocks are always 128KB. */
60 #define	BLKPTR_PER_INDIR	(MAXBLOCKSIZE / sizeof(blkptr_t))
61 
62 struct dnode_cursor {
63 	char		inddir[INDIR_LEVELS][MAXBLOCKSIZE];
64 	off_t		indloc;
65 	off_t		indspace;
66 	dnode_phys_t	*dnode;
67 	off_t		dataoff;
68 	off_t		datablksz;
69 };
70 
71 void
zfs_prep_opts(fsinfo_t * fsopts)72 zfs_prep_opts(fsinfo_t *fsopts)
73 {
74 	zfs_opt_t *zfs;
75 	size_t align;
76 
77 	align = alignof(uint64_t);
78 	zfs = aligned_alloc(align, roundup2(sizeof(*zfs), align));
79 	if (zfs == NULL)
80 		err(1, "aligned_alloc");
81 	memset(zfs, 0, sizeof(*zfs));
82 
83 	const option_t zfs_options[] = {
84 		{ '\0', "bootfs", &zfs->bootfs, OPT_STRPTR,
85 		  0, 0, "Bootable dataset" },
86 		{ '\0', "mssize", &zfs->mssize, OPT_INT64,
87 		  MINMSSIZE, MAXMSSIZE, "Metaslab size" },
88 		{ '\0', "poolname", &zfs->poolname, OPT_STRPTR,
89 		  0, 0, "ZFS pool name" },
90 		{ '\0', "rootpath", &zfs->rootpath, OPT_STRPTR,
91 		  0, 0, "Prefix for all dataset mount points" },
92 		{ '\0', "ashift", &zfs->ashift, OPT_INT32,
93 		  MINBLOCKSHIFT, MAXBLOCKSHIFT, "ZFS pool ashift" },
94 		{ '\0', "verify-txgs", &zfs->verify_txgs, OPT_BOOL,
95 		  0, 0, "Make OpenZFS verify data upon import" },
96 		{ '\0', "nowarn", &zfs->nowarn, OPT_BOOL,
97 		  0, 0, "Provided for backwards compatibility, ignored" },
98 		{ .name = NULL }
99 	};
100 
101 	STAILQ_INIT(&zfs->datasetdescs);
102 
103 	fsopts->fs_specific = zfs;
104 	fsopts->fs_options = copy_opts(zfs_options);
105 }
106 
107 int
zfs_parse_opts(const char * option,fsinfo_t * fsopts)108 zfs_parse_opts(const char *option, fsinfo_t *fsopts)
109 {
110 	zfs_opt_t *zfs;
111 	struct dataset_desc *dsdesc;
112 	char buf[BUFSIZ], *opt, *val;
113 	int rv;
114 
115 	zfs = fsopts->fs_specific;
116 
117 	opt = val = estrdup(option);
118 	opt = strsep(&val, "=");
119 	if (strcmp(opt, "fs") == 0) {
120 		if (val == NULL)
121 			errx(1, "invalid filesystem parameters `%s'", option);
122 
123 		/*
124 		 * Dataset descriptions will be parsed later, in dsl_init().
125 		 * Just stash them away for now.
126 		 */
127 		dsdesc = ecalloc(1, sizeof(*dsdesc));
128 		dsdesc->params = estrdup(val);
129 		free(opt);
130 		STAILQ_INSERT_TAIL(&zfs->datasetdescs, dsdesc, next);
131 		return (1);
132 	}
133 	free(opt);
134 
135 	rv = set_option(fsopts->fs_options, option, buf, sizeof(buf));
136 	return (rv == -1 ? 0 : 1);
137 }
138 
139 static void
zfs_size_vdev(fsinfo_t * fsopts)140 zfs_size_vdev(fsinfo_t *fsopts)
141 {
142 	zfs_opt_t *zfs;
143 	off_t asize, mssize, vdevsize, vdevsize1;
144 
145 	zfs = fsopts->fs_specific;
146 
147 	assert(fsopts->maxsize != 0);
148 	assert(zfs->ashift != 0);
149 
150 	/*
151 	 * Figure out how big the vdev should be.
152 	 */
153 	vdevsize = rounddown2(fsopts->maxsize, 1 << zfs->ashift);
154 	if (vdevsize < MINDEVSIZE)
155 		errx(1, "maximum image size is too small");
156 	if (vdevsize < fsopts->minsize || vdevsize > fsopts->maxsize) {
157 		errx(1, "image size bounds must be multiples of %d",
158 		    1 << zfs->ashift);
159 	}
160 	asize = vdevsize - VDEV_LABEL_SPACE;
161 
162 	/*
163 	 * Size metaslabs according to the following heuristic:
164 	 * - provide at least 8 metaslabs,
165 	 * - without using a metaslab size larger than 512MB.
166 	 * This approximates what OpenZFS does without being complicated.  In
167 	 * practice we expect pools to be expanded upon first use, and OpenZFS
168 	 * does not resize metaslabs in that case, so there is no right answer
169 	 * here.  In general we want to provide large metaslabs even if the
170 	 * image size is small, and 512MB is a reasonable size for pools up to
171 	 * several hundred gigabytes.
172 	 *
173 	 * The user may override this heuristic using the "-o mssize" option.
174 	 */
175 	mssize = zfs->mssize;
176 	if (mssize == 0) {
177 		mssize = MAX(MIN(asize / 8, DFLTMSSIZE), MINMSSIZE);
178 		if (!powerof2(mssize))
179 			mssize = 1l << (flsll(mssize) - 1);
180 	}
181 	if (!powerof2(mssize))
182 		errx(1, "metaslab size must be a power of 2");
183 
184 	/*
185 	 * If we have some slop left over, try to cover it by resizing the vdev,
186 	 * subject to the maxsize and minsize parameters.
187 	 */
188 	if (asize % mssize != 0) {
189 		vdevsize1 = rounddown2(asize, mssize) + VDEV_LABEL_SPACE;
190 		if (vdevsize1 < fsopts->minsize)
191 			vdevsize1 = roundup2(asize, mssize) + VDEV_LABEL_SPACE;
192 		if (vdevsize1 <= fsopts->maxsize)
193 			vdevsize = vdevsize1;
194 	}
195 	asize = vdevsize - VDEV_LABEL_SPACE;
196 
197 	zfs->asize = asize;
198 	zfs->vdevsize = vdevsize;
199 	zfs->mssize = mssize;
200 	zfs->msshift = flsll(mssize) - 1;
201 	zfs->mscount = asize / mssize;
202 }
203 
204 /*
205  * Validate options and set some default values.
206  */
207 static void
zfs_check_opts(fsinfo_t * fsopts)208 zfs_check_opts(fsinfo_t *fsopts)
209 {
210 	zfs_opt_t *zfs;
211 
212 	zfs = fsopts->fs_specific;
213 
214 	if (fsopts->offset != 0)
215 		errx(1, "unhandled offset option");
216 	if (fsopts->maxsize == 0)
217 		errx(1, "an image size must be specified");
218 
219 	if (zfs->poolname == NULL)
220 		errx(1, "a pool name must be specified");
221 	if (!isalpha(zfs->poolname[0]))
222 		errx(1, "the pool name must begin with a letter");
223 	for (size_t i = 0, len = strlen(zfs->poolname); i < len; i++) {
224 		if (!isalnum(zfs->poolname[i]) && zfs->poolname[i] != '_')
225 			errx(1, "invalid character '%c' in pool name",
226 			    zfs->poolname[i]);
227 	}
228 	if (strcmp(zfs->poolname, "mirror") == 0 ||
229 	    strcmp(zfs->poolname, "raidz") == 0 ||
230 	    strcmp(zfs->poolname, "draid") == 0) {
231 		errx(1, "pool name '%s' is reserved and cannot be used",
232 		    zfs->poolname);
233 	}
234 
235 	if (zfs->rootpath == NULL)
236 		easprintf(&zfs->rootpath, "/%s", zfs->poolname);
237 	if (zfs->rootpath[0] != '/')
238 		errx(1, "mountpoint `%s' must be absolute", zfs->rootpath);
239 
240 	if (zfs->ashift == 0)
241 		zfs->ashift = 12;
242 
243 	zfs_size_vdev(fsopts);
244 }
245 
246 void
zfs_cleanup_opts(fsinfo_t * fsopts)247 zfs_cleanup_opts(fsinfo_t *fsopts)
248 {
249 	struct dataset_desc *d, *tmp;
250 	zfs_opt_t *zfs;
251 
252 	zfs = fsopts->fs_specific;
253 	free(zfs->rootpath);
254 	free(zfs->bootfs);
255 	free(__DECONST(void *, zfs->poolname));
256 	STAILQ_FOREACH_SAFE(d, &zfs->datasetdescs, next, tmp) {
257 		free(d->params);
258 		free(d);
259 	}
260 	free(zfs);
261 	free(fsopts->fs_options);
262 }
263 
264 static size_t
nvlist_size(const nvlist_t * nvl)265 nvlist_size(const nvlist_t *nvl)
266 {
267 	return (sizeof(nvl->nv_header) + nvl->nv_size);
268 }
269 
270 static void
nvlist_copy(const nvlist_t * nvl,char * buf,size_t sz)271 nvlist_copy(const nvlist_t *nvl, char *buf, size_t sz)
272 {
273 	assert(sz >= nvlist_size(nvl));
274 
275 	memcpy(buf, &nvl->nv_header, sizeof(nvl->nv_header));
276 	memcpy(buf + sizeof(nvl->nv_header), nvl->nv_data, nvl->nv_size);
277 }
278 
279 /*
280  * Avoid returning a GUID of 0, just to avoid the possibility that something
281  * will interpret that as meaning that the GUID is uninitialized.
282  */
283 uint64_t
randomguid(void)284 randomguid(void)
285 {
286 	uint64_t ret;
287 
288 	do {
289 		ret = ((uint64_t)random() << 32) | random();
290 	} while (ret == 0);
291 
292 	return (ret);
293 }
294 
295 static nvlist_t *
pool_config_nvcreate(zfs_opt_t * zfs)296 pool_config_nvcreate(zfs_opt_t *zfs)
297 {
298 	nvlist_t *featuresnv, *poolnv;
299 
300 	poolnv = nvlist_create(NV_UNIQUE_NAME);
301 	nvlist_add_uint64(poolnv, ZPOOL_CONFIG_POOL_TXG, TXG);
302 	nvlist_add_uint64(poolnv, ZPOOL_CONFIG_VERSION, SPA_VERSION);
303 	nvlist_add_uint64(poolnv, ZPOOL_CONFIG_POOL_STATE, POOL_STATE_EXPORTED);
304 	nvlist_add_string(poolnv, ZPOOL_CONFIG_POOL_NAME, zfs->poolname);
305 	nvlist_add_uint64(poolnv, ZPOOL_CONFIG_POOL_GUID, zfs->poolguid);
306 	nvlist_add_uint64(poolnv, ZPOOL_CONFIG_TOP_GUID, zfs->vdevguid);
307 	nvlist_add_uint64(poolnv, ZPOOL_CONFIG_GUID, zfs->vdevguid);
308 	nvlist_add_uint64(poolnv, ZPOOL_CONFIG_VDEV_CHILDREN, 1);
309 
310 	featuresnv = nvlist_create(NV_UNIQUE_NAME);
311 	nvlist_add_nvlist(poolnv, ZPOOL_CONFIG_FEATURES_FOR_READ, featuresnv);
312 	nvlist_destroy(featuresnv);
313 
314 	return (poolnv);
315 }
316 
317 static nvlist_t *
pool_disk_vdev_config_nvcreate(zfs_opt_t * zfs)318 pool_disk_vdev_config_nvcreate(zfs_opt_t *zfs)
319 {
320 	nvlist_t *diskvdevnv;
321 
322 	assert(zfs->objarrid != 0);
323 
324 	diskvdevnv = nvlist_create(NV_UNIQUE_NAME);
325 	nvlist_add_string(diskvdevnv, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK);
326 	nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_ASHIFT, zfs->ashift);
327 	nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_ASIZE, zfs->asize);
328 	nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_GUID, zfs->vdevguid);
329 	nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_ID, 0);
330 	nvlist_add_string(diskvdevnv, ZPOOL_CONFIG_PATH, "/dev/null");
331 	nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_WHOLE_DISK, 1);
332 	nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_CREATE_TXG, TXG);
333 	nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_METASLAB_ARRAY,
334 	    zfs->objarrid);
335 	nvlist_add_uint64(diskvdevnv, ZPOOL_CONFIG_METASLAB_SHIFT,
336 	    zfs->msshift);
337 
338 	return (diskvdevnv);
339 }
340 
341 static nvlist_t *
pool_root_vdev_config_nvcreate(zfs_opt_t * zfs)342 pool_root_vdev_config_nvcreate(zfs_opt_t *zfs)
343 {
344 	nvlist_t *diskvdevnv, *rootvdevnv;
345 
346 	diskvdevnv = pool_disk_vdev_config_nvcreate(zfs);
347 	rootvdevnv = nvlist_create(NV_UNIQUE_NAME);
348 
349 	nvlist_add_uint64(rootvdevnv, ZPOOL_CONFIG_ID, 0);
350 	nvlist_add_uint64(rootvdevnv, ZPOOL_CONFIG_GUID, zfs->poolguid);
351 	nvlist_add_string(rootvdevnv, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
352 	nvlist_add_uint64(rootvdevnv, ZPOOL_CONFIG_CREATE_TXG, TXG);
353 	nvlist_add_nvlist_array(rootvdevnv, ZPOOL_CONFIG_CHILDREN, &diskvdevnv,
354 	    1);
355 	nvlist_destroy(diskvdevnv);
356 
357 	return (rootvdevnv);
358 }
359 
360 /*
361  * Create the pool's "config" object, which contains an nvlist describing pool
362  * parameters and the vdev topology.  It is similar but not identical to the
363  * nvlist stored in vdev labels.  The main difference is that vdev labels do not
364  * describe the full vdev tree and in particular do not contain the "root"
365  * meta-vdev.
366  */
367 static void
pool_init_objdir_config(zfs_opt_t * zfs,zfs_zap_t * objdir)368 pool_init_objdir_config(zfs_opt_t *zfs, zfs_zap_t *objdir)
369 {
370 	dnode_phys_t *dnode;
371 	nvlist_t *poolconfig, *vdevconfig;
372 	void *configbuf;
373 	uint64_t dnid;
374 	off_t configloc, configblksz;
375 	int error;
376 
377 	dnode = objset_dnode_bonus_alloc(zfs->mos, DMU_OT_PACKED_NVLIST,
378 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof(uint64_t), &dnid);
379 
380 	poolconfig = pool_config_nvcreate(zfs);
381 
382 	vdevconfig = pool_root_vdev_config_nvcreate(zfs);
383 	nvlist_add_nvlist(poolconfig, ZPOOL_CONFIG_VDEV_TREE, vdevconfig);
384 	nvlist_destroy(vdevconfig);
385 
386 	error = nvlist_export(poolconfig);
387 	if (error != 0)
388 		errc(1, error, "nvlist_export");
389 
390 	configblksz = nvlist_size(poolconfig);
391 	configloc = objset_space_alloc(zfs, zfs->mos, &configblksz);
392 	configbuf = ecalloc(1, configblksz);
393 	nvlist_copy(poolconfig, configbuf, configblksz);
394 
395 	vdev_pwrite_dnode_data(zfs, dnode, configbuf, configblksz, configloc);
396 
397 	dnode->dn_datablkszsec = configblksz >> MINBLOCKSHIFT;
398 	dnode->dn_flags = DNODE_FLAG_USED_BYTES;
399 	*(uint64_t *)DN_BONUS(dnode) = nvlist_size(poolconfig);
400 
401 	zap_add_uint64(objdir, DMU_POOL_CONFIG, dnid);
402 
403 	nvlist_destroy(poolconfig);
404 	free(configbuf);
405 }
406 
407 /*
408  * Add objects block pointer list objects, used for deferred frees.  We don't do
409  * anything with them, but they need to be present or OpenZFS will refuse to
410  * import the pool.
411  */
412 static void
pool_init_objdir_bplists(zfs_opt_t * zfs __unused,zfs_zap_t * objdir)413 pool_init_objdir_bplists(zfs_opt_t *zfs __unused, zfs_zap_t *objdir)
414 {
415 	uint64_t dnid;
416 
417 	(void)objset_dnode_bonus_alloc(zfs->mos, DMU_OT_BPOBJ, DMU_OT_BPOBJ_HDR,
418 	    BPOBJ_SIZE_V2, &dnid);
419 	zap_add_uint64(objdir, DMU_POOL_FREE_BPOBJ, dnid);
420 
421 	(void)objset_dnode_bonus_alloc(zfs->mos, DMU_OT_BPOBJ, DMU_OT_BPOBJ_HDR,
422 	    BPOBJ_SIZE_V2, &dnid);
423 	zap_add_uint64(objdir, DMU_POOL_SYNC_BPLIST, dnid);
424 }
425 
426 /*
427  * Add required feature metadata objects.  We don't know anything about ZFS
428  * features, so the objects are just empty ZAPs.
429  */
430 static void
pool_init_objdir_feature_maps(zfs_opt_t * zfs,zfs_zap_t * objdir)431 pool_init_objdir_feature_maps(zfs_opt_t *zfs, zfs_zap_t *objdir)
432 {
433 	dnode_phys_t *dnode;
434 	uint64_t dnid;
435 
436 	dnode = objset_dnode_alloc(zfs->mos, DMU_OTN_ZAP_METADATA, &dnid);
437 	zap_add_uint64(objdir, DMU_POOL_FEATURES_FOR_READ, dnid);
438 	zap_write(zfs, zap_alloc(zfs->mos, dnode));
439 
440 	dnode = objset_dnode_alloc(zfs->mos, DMU_OTN_ZAP_METADATA, &dnid);
441 	zap_add_uint64(objdir, DMU_POOL_FEATURES_FOR_WRITE, dnid);
442 	zap_write(zfs, zap_alloc(zfs->mos, dnode));
443 
444 	dnode = objset_dnode_alloc(zfs->mos, DMU_OTN_ZAP_METADATA, &dnid);
445 	zap_add_uint64(objdir, DMU_POOL_FEATURE_DESCRIPTIONS, dnid);
446 	zap_write(zfs, zap_alloc(zfs->mos, dnode));
447 }
448 
449 static void
pool_init_objdir_dsl(zfs_opt_t * zfs,zfs_zap_t * objdir)450 pool_init_objdir_dsl(zfs_opt_t *zfs, zfs_zap_t *objdir)
451 {
452 	zap_add_uint64(objdir, DMU_POOL_ROOT_DATASET,
453 	    dsl_dir_id(zfs->rootdsldir));
454 }
455 
456 static void
pool_init_objdir_poolprops(zfs_opt_t * zfs,zfs_zap_t * objdir)457 pool_init_objdir_poolprops(zfs_opt_t *zfs, zfs_zap_t *objdir)
458 {
459 	dnode_phys_t *dnode;
460 	uint64_t id;
461 
462 	dnode = objset_dnode_alloc(zfs->mos, DMU_OT_POOL_PROPS, &id);
463 	zap_add_uint64(objdir, DMU_POOL_PROPS, id);
464 
465 	zfs->poolprops = zap_alloc(zfs->mos, dnode);
466 }
467 
468 /*
469  * Initialize the MOS object directory, the root of virtually all of the pool's
470  * data and metadata.
471  */
472 static void
pool_init_objdir(zfs_opt_t * zfs)473 pool_init_objdir(zfs_opt_t *zfs)
474 {
475 	zfs_zap_t *zap;
476 	dnode_phys_t *objdir;
477 
478 	objdir = objset_dnode_lookup(zfs->mos, DMU_POOL_DIRECTORY_OBJECT);
479 
480 	zap = zap_alloc(zfs->mos, objdir);
481 	pool_init_objdir_config(zfs, zap);
482 	pool_init_objdir_bplists(zfs, zap);
483 	pool_init_objdir_feature_maps(zfs, zap);
484 	pool_init_objdir_dsl(zfs, zap);
485 	pool_init_objdir_poolprops(zfs, zap);
486 	zap_write(zfs, zap);
487 }
488 
489 /*
490  * Initialize the meta-object set (MOS) and immediately write out several
491  * special objects whose contents are already finalized, including the object
492  * directory.
493  *
494  * Once the MOS is finalized, it'll look roughly like this:
495  *
496  *	object directory (ZAP)
497  *	|-> vdev config object (nvlist)
498  *	|-> features for read
499  *	|-> features for write
500  *	|-> feature descriptions
501  *	|-> sync bplist
502  *	|-> free bplist
503  *	|-> pool properties
504  *	L-> root DSL directory
505  *	    |-> DSL child directory (ZAP)
506  *	    |   |-> $MOS (DSL dir)
507  *	    |   |   |-> child map
508  *	    |   |   L-> props (ZAP)
509  *	    |   |-> $FREE (DSL dir)
510  *	    |   |   |-> child map
511  *	    |   |   L-> props (ZAP)
512  *	    |   |-> $ORIGIN (DSL dir)
513  *	    |   |   |-> child map
514  *	    |   |   |-> dataset
515  *	    |   |   |   L-> deadlist
516  *	    |   |   |-> snapshot
517  *	    |   |   |   |-> deadlist
518  *	    |   |   |   L-> snapshot names
519  *	    |   |   |-> props (ZAP)
520  *	    |   |   L-> clones (ZAP)
521  *	    |   |-> dataset 1 (DSL dir)
522  *	    |   |   |-> DSL dataset
523  *	    |   |   |   |-> snapshot names
524  *	    |   |   |   L-> deadlist
525  *	    |   |   |-> child map
526  *	    |   |   |   L-> ...
527  *	    |   |   L-> props
528  *	    |   |-> dataset 2
529  *	    |   |   L-> ...
530  *	    |   |-> ...
531  *	    |   L-> dataset n
532  *	    |-> DSL root dataset
533  *	    |   |-> snapshot names
534  *	    |   L-> deadlist
535  *	    L-> props (ZAP)
536  *	space map object array
537  *	|-> space map 1
538  *	|-> space map 2
539  *	|-> ...
540  *	L-> space map n (zfs->mscount)
541  *
542  * The space map object array is pointed to by the "msarray" property in the
543  * pool configuration.
544  */
545 static void
pool_init(zfs_opt_t * zfs)546 pool_init(zfs_opt_t *zfs)
547 {
548 	uint64_t dnid;
549 
550 	zfs->poolguid = randomguid();
551 	zfs->vdevguid = randomguid();
552 
553 	zfs->mos = objset_alloc(zfs, DMU_OST_META);
554 
555 	(void)objset_dnode_alloc(zfs->mos, DMU_OT_OBJECT_DIRECTORY, &dnid);
556 	assert(dnid == DMU_POOL_DIRECTORY_OBJECT);
557 
558 	(void)objset_dnode_alloc(zfs->mos, DMU_OT_OBJECT_ARRAY, &zfs->objarrid);
559 
560 	dsl_init(zfs);
561 
562 	pool_init_objdir(zfs);
563 }
564 
565 static void
pool_labels_write(zfs_opt_t * zfs)566 pool_labels_write(zfs_opt_t *zfs)
567 {
568 	uberblock_t *ub;
569 	vdev_label_t *label;
570 	nvlist_t *poolconfig, *vdevconfig;
571 	int error;
572 
573 	label = ecalloc(1, sizeof(*label));
574 
575 	/*
576 	 * Assemble the vdev configuration and store it in the label.
577 	 */
578 	poolconfig = pool_config_nvcreate(zfs);
579 	vdevconfig = pool_disk_vdev_config_nvcreate(zfs);
580 	nvlist_add_nvlist(poolconfig, ZPOOL_CONFIG_VDEV_TREE, vdevconfig);
581 	nvlist_destroy(vdevconfig);
582 
583 	error = nvlist_export(poolconfig);
584 	if (error != 0)
585 		errc(1, error, "nvlist_export");
586 	nvlist_copy(poolconfig, label->vl_vdev_phys.vp_nvlist,
587 	    sizeof(label->vl_vdev_phys.vp_nvlist));
588 	nvlist_destroy(poolconfig);
589 
590 	/*
591 	 * Fill out the uberblock.  Just make each one the same.  The embedded
592 	 * checksum is calculated in vdev_label_write().
593 	 */
594 	for (size_t uoff = 0; uoff < sizeof(label->vl_uberblock);
595 	    uoff += (1 << zfs->ashift)) {
596 		ub = (uberblock_t *)(&label->vl_uberblock[0] + uoff);
597 		ub->ub_magic = UBERBLOCK_MAGIC;
598 		ub->ub_version = SPA_VERSION;
599 
600 		/*
601 		 * Upon import, OpenZFS will perform metadata verification of
602 		 * the last TXG by default.  If all data is written in the same
603 		 * TXG, it'll all get verified, which can be painfully slow in
604 		 * some cases, e.g., initial boot in a cloud environment with
605 		 * slow storage.  So, fabricate additional TXGs to avoid this
606 		 * overhead, unless the user requests otherwise.
607 		 */
608 		ub->ub_txg = TXG;
609 		if (!zfs->verify_txgs)
610 			ub->ub_txg += TXG_SIZE;
611 		ub->ub_guid_sum = zfs->poolguid + zfs->vdevguid;
612 		ub->ub_timestamp = 0;
613 
614 		ub->ub_software_version = SPA_VERSION;
615 		ub->ub_mmp_magic = MMP_MAGIC;
616 		ub->ub_mmp_delay = 0;
617 		ub->ub_mmp_config = 0;
618 		ub->ub_checkpoint_txg = 0;
619 		objset_root_blkptr_copy(zfs->mos, &ub->ub_rootbp);
620 	}
621 
622 	/*
623 	 * Write out four copies of the label: two at the beginning of the vdev
624 	 * and two at the end.
625 	 */
626 	for (int i = 0; i < VDEV_LABELS; i++)
627 		vdev_label_write(zfs, i, label);
628 
629 	free(label);
630 }
631 
632 static void
pool_fini(zfs_opt_t * zfs)633 pool_fini(zfs_opt_t *zfs)
634 {
635 	zap_write(zfs, zfs->poolprops);
636 	dsl_write(zfs);
637 	objset_write(zfs, zfs->mos);
638 	pool_labels_write(zfs);
639 }
640 
641 struct dnode_cursor *
dnode_cursor_init(zfs_opt_t * zfs,zfs_objset_t * os,dnode_phys_t * dnode,off_t size,off_t blksz)642 dnode_cursor_init(zfs_opt_t *zfs, zfs_objset_t *os, dnode_phys_t *dnode,
643     off_t size, off_t blksz)
644 {
645 	struct dnode_cursor *c;
646 	uint64_t nbppindir, indlevel, ndatablks, nindblks;
647 
648 	assert(dnode->dn_nblkptr == 1);
649 	assert(blksz <= MAXBLOCKSIZE);
650 
651 	if (blksz == 0) {
652 		/* Must be between 1<<ashift and 128KB. */
653 		blksz = MIN(MAXBLOCKSIZE, MAX(1 << zfs->ashift,
654 		    powerof2(size) ? size : (1l << flsll(size))));
655 	}
656 	assert(powerof2(blksz));
657 
658 	/*
659 	 * Do we need indirect blocks?  Figure out how many levels are needed
660 	 * (indlevel == 1 means no indirect blocks) and how much space is needed
661 	 * (it has to be allocated up-front to break the dependency cycle
662 	 * described in objset_write()).
663 	 */
664 	ndatablks = size == 0 ? 0 : howmany(size, blksz);
665 	nindblks = 0;
666 	for (indlevel = 1, nbppindir = 1; ndatablks > nbppindir; indlevel++) {
667 		nbppindir *= BLKPTR_PER_INDIR;
668 		nindblks += howmany(ndatablks, indlevel * nbppindir);
669 	}
670 	assert(indlevel < INDIR_LEVELS);
671 
672 	dnode->dn_nlevels = (uint8_t)indlevel;
673 	dnode->dn_maxblkid = ndatablks > 0 ? ndatablks - 1 : 0;
674 	dnode->dn_datablkszsec = blksz >> MINBLOCKSHIFT;
675 
676 	c = ecalloc(1, sizeof(*c));
677 	if (nindblks > 0) {
678 		c->indspace = nindblks * MAXBLOCKSIZE;
679 		c->indloc = objset_space_alloc(zfs, os, &c->indspace);
680 	}
681 	c->dnode = dnode;
682 	c->dataoff = 0;
683 	c->datablksz = blksz;
684 
685 	return (c);
686 }
687 
688 static void
_dnode_cursor_flush(zfs_opt_t * zfs,struct dnode_cursor * c,unsigned int levels)689 _dnode_cursor_flush(zfs_opt_t *zfs, struct dnode_cursor *c, unsigned int levels)
690 {
691 	blkptr_t *bp, *pbp;
692 	void *buf;
693 	uint64_t fill;
694 	off_t blkid, blksz, loc;
695 
696 	assert(levels > 0);
697 	assert(levels <= c->dnode->dn_nlevels - 1U);
698 
699 	blksz = MAXBLOCKSIZE;
700 	blkid = (c->dataoff / c->datablksz) / BLKPTR_PER_INDIR;
701 	for (unsigned int level = 1; level <= levels; level++) {
702 		buf = c->inddir[level - 1];
703 
704 		if (level == c->dnode->dn_nlevels - 1U) {
705 			pbp = &c->dnode->dn_blkptr[0];
706 		} else {
707 			uint64_t iblkid;
708 
709 			iblkid = blkid & (BLKPTR_PER_INDIR - 1);
710 			pbp = (blkptr_t *)
711 			    &c->inddir[level][iblkid * sizeof(blkptr_t)];
712 		}
713 
714 		/*
715 		 * Space for indirect blocks is allocated up-front; see the
716 		 * comment in objset_write().
717 		 */
718 		loc = c->indloc;
719 		c->indloc += blksz;
720 		assert(c->indspace >= blksz);
721 		c->indspace -= blksz;
722 
723 		bp = buf;
724 		fill = 0;
725 		for (size_t i = 0; i < BLKPTR_PER_INDIR; i++)
726 			fill += BP_GET_FILL(&bp[i]);
727 
728 		vdev_pwrite_dnode_indir(zfs, c->dnode, level, fill, buf, blksz,
729 		    loc, pbp);
730 		memset(buf, 0, MAXBLOCKSIZE);
731 
732 		blkid /= BLKPTR_PER_INDIR;
733 	}
734 }
735 
736 blkptr_t *
dnode_cursor_next(zfs_opt_t * zfs,struct dnode_cursor * c,off_t off)737 dnode_cursor_next(zfs_opt_t *zfs, struct dnode_cursor *c, off_t off)
738 {
739 	off_t blkid, l1id;
740 	unsigned int levels;
741 
742 	if (c->dnode->dn_nlevels == 1) {
743 		assert(off < MAXBLOCKSIZE);
744 		return (&c->dnode->dn_blkptr[0]);
745 	}
746 
747 	assert(off % c->datablksz == 0);
748 
749 	/* Do we need to flush any full indirect blocks? */
750 	if (off > 0) {
751 		blkid = off / c->datablksz;
752 		for (levels = 0; levels < c->dnode->dn_nlevels - 1U; levels++) {
753 			if (blkid % BLKPTR_PER_INDIR != 0)
754 				break;
755 			blkid /= BLKPTR_PER_INDIR;
756 		}
757 		if (levels > 0)
758 			_dnode_cursor_flush(zfs, c, levels);
759 	}
760 
761 	c->dataoff = off;
762 	l1id = (off / c->datablksz) & (BLKPTR_PER_INDIR - 1);
763 	return ((blkptr_t *)&c->inddir[0][l1id * sizeof(blkptr_t)]);
764 }
765 
766 void
dnode_cursor_finish(zfs_opt_t * zfs,struct dnode_cursor * c)767 dnode_cursor_finish(zfs_opt_t *zfs, struct dnode_cursor *c)
768 {
769 	unsigned int levels;
770 
771 	assert(c->dnode->dn_nlevels > 0);
772 	levels = c->dnode->dn_nlevels - 1;
773 	if (levels > 0)
774 		_dnode_cursor_flush(zfs, c, levels);
775 	assert(c->indspace == 0);
776 	free(c);
777 }
778 
779 void
zfs_makefs(const char * image,const char * dir,fsnode * root,fsinfo_t * fsopts)780 zfs_makefs(const char *image, const char *dir, fsnode *root, fsinfo_t *fsopts)
781 {
782 	zfs_opt_t *zfs;
783 	int dirfd;
784 
785 	zfs = fsopts->fs_specific;
786 
787 	/*
788 	 * Use a fixed seed to provide reproducible pseudo-random numbers for
789 	 * on-disk structures when needed (e.g., GUIDs, ZAP hash salts).
790 	 */
791 	srandom(1729);
792 
793 	zfs_check_opts(fsopts);
794 
795 	dirfd = open(dir, O_DIRECTORY | O_RDONLY);
796 	if (dirfd < 0)
797 		err(1, "open(%s)", dir);
798 
799 	vdev_init(zfs, image);
800 	pool_init(zfs);
801 	fs_build(zfs, dirfd, root);
802 	pool_fini(zfs);
803 	vdev_fini(zfs);
804 }
805