1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 #pragma ident "%Z%%M% %I% %E% SMI"
28
29 /*
30 * isa-dependent portions of the kmdb target
31 */
32
33 #include <mdb/mdb_kreg_impl.h>
34 #include <mdb/mdb_debug.h>
35 #include <mdb/mdb_modapi.h>
36 #include <mdb/mdb_v9util.h>
37 #include <mdb/mdb_target_impl.h>
38 #include <mdb/mdb_err.h>
39 #include <mdb/mdb_umem.h>
40 #include <kmdb/kmdb_kdi.h>
41 #include <kmdb/kmdb_dpi.h>
42 #include <kmdb/kmdb_promif.h>
43 #include <kmdb/kmdb_asmutil.h>
44 #include <kmdb/kvm.h>
45 #include <mdb/mdb.h>
46
47 #include <sys/types.h>
48 #include <sys/stack.h>
49 #include <sys/regset.h>
50 #include <sys/sysmacros.h>
51 #include <sys/bitmap.h>
52 #include <sys/machtrap.h>
53 #include <sys/trap.h>
54
55 /* Higher than the highest trap number for which we have a specific specifier */
56 #define KMT_MAXTRAPNO 0x1ff
57
58 #define OP(x) ((x) >> 30)
59 #define OP3(x) (((x) >> 19) & 0x3f)
60 #define RD(x) (((x) >> 25) & 0x1f)
61 #define RS1(x) (((x) >> 14) & 0x1f)
62 #define RS2(x) ((x) & 0x1f)
63
64 #define OP_ARITH 0x2
65
66 #define OP3_OR 0x02
67 #define OP3_SAVE 0x3c
68 #define OP3_RESTORE 0x3d
69
70 static int
kmt_stack_iter(mdb_tgt_t * t,const mdb_tgt_gregset_t * gsp,mdb_tgt_stack_f * func,void * arg,int cpuid)71 kmt_stack_iter(mdb_tgt_t *t, const mdb_tgt_gregset_t *gsp,
72 mdb_tgt_stack_f *func, void *arg, int cpuid)
73 {
74 const mdb_tgt_gregset_t *grp;
75 mdb_tgt_gregset_t gregs;
76 kreg_t *kregs = &gregs.kregs[0];
77 long nwin, stopwin, canrestore, wp, i, sp;
78 long argv[6];
79
80 /*
81 * If gsp isn't null, we were asked to dump a trace from a
82 * specific location. The normal iterator can handle that.
83 */
84 if (gsp != NULL) {
85 if (cpuid != DPI_MASTER_CPUID)
86 warn("register set provided - ignoring cpu argument\n");
87 return (mdb_kvm_v9stack_iter(t, gsp, func, arg));
88 }
89
90 if (kmdb_dpi_get_cpu_state(cpuid) < 0) {
91 warn("failed to iterate through stack for cpu %u", cpuid);
92 return (DCMD_ERR);
93 }
94
95 /*
96 * We're being asked to dump the trace for the current CPU.
97 * To do that, we need to iterate first through the saved
98 * register windors. If there's more to the trace than that,
99 * we'll hand off to the normal iterator.
100 */
101 if ((grp = kmdb_dpi_get_gregs(cpuid)) == NULL) {
102 warn("failed to retrieve registers for cpu %d", cpuid);
103 return (DCMD_ERR);
104 }
105
106 bcopy(grp, &gregs, sizeof (mdb_tgt_gregset_t));
107
108 wp = kregs[KREG_CWP];
109 canrestore = kregs[KREG_CANRESTORE];
110 nwin = kmdb_dpi_get_nwin(cpuid);
111 stopwin = ((wp + nwin) - canrestore - 1) % nwin;
112
113 mdb_dprintf(MDB_DBG_KMOD, "dumping cwp = %lu, canrestore = %lu, "
114 "stopwin = %lu\n", wp, canrestore, stopwin);
115
116 for (;;) {
117 struct rwindow rwin;
118
119 for (i = 0; i < 6; i++)
120 argv[i] = kregs[KREG_I0 + i];
121
122 if (kregs[KREG_PC] != 0 &&
123 func(arg, kregs[KREG_PC], 6, argv, &gregs) != 0)
124 return (0);
125
126 kregs[KREG_PC] = kregs[KREG_I7];
127 kregs[KREG_NPC] = kregs[KREG_PC] + 4;
128
129 if ((sp = kregs[KREG_FP] + STACK_BIAS) == STACK_BIAS || sp == 0)
130 return (0); /* Stop if we're at the end of stack */
131
132 if (sp & (STACK_ALIGN - 1))
133 return (set_errno(EMDB_STKALIGN));
134
135 wp = (wp + nwin - 1) % nwin;
136
137 if (wp == stopwin)
138 break;
139
140 bcopy(&kregs[KREG_I0], &kregs[KREG_O0], 8 * sizeof (kreg_t));
141
142 if (kmdb_dpi_get_rwin(cpuid, wp, &rwin) < 0) {
143 warn("unable to get registers from window %ld\n", wp);
144 return (-1);
145 }
146
147 for (i = 0; i < 8; i++)
148 kregs[KREG_L0 + i] = (uintptr_t)rwin.rw_local[i];
149 for (i = 0; i < 8; i++)
150 kregs[KREG_I0 + i] = (uintptr_t)rwin.rw_in[i];
151 }
152
153 mdb_dprintf(MDB_DBG_KMOD, "dumping wp %ld and beyond normally\n", wp);
154
155 /*
156 * hack - if we null out pc here, iterator won't print the frame
157 * that corresponds to the current set of registers. That's what we
158 * want because we just printed them above.
159 */
160 kregs[KREG_PC] = 0;
161 return (mdb_kvm_v9stack_iter(t, &gregs, func, arg));
162 }
163
164 void
kmt_printregs(const mdb_tgt_gregset_t * gregs)165 kmt_printregs(const mdb_tgt_gregset_t *gregs)
166 {
167 mdb_v9printregs(gregs);
168 }
169
170 static int
kmt_stack_common(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv,int cpuid,mdb_tgt_stack_f * func,kreg_t saved_pc)171 kmt_stack_common(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv,
172 int cpuid, mdb_tgt_stack_f *func, kreg_t saved_pc)
173 {
174 mdb_tgt_gregset_t *grp = NULL;
175 mdb_tgt_gregset_t gregs;
176 void *arg = (void *)(uintptr_t)mdb.m_nargs;
177
178 if (flags & DCMD_ADDRSPEC) {
179 bzero(&gregs, sizeof (gregs));
180 gregs.kregs[KREG_FP] = addr;
181 gregs.kregs[KREG_I7] = saved_pc;
182 grp = &gregs;
183 }
184
185 if (argc != 0) {
186 if (argv->a_type == MDB_TYPE_CHAR || argc > 1)
187 return (DCMD_USAGE);
188
189 if (argv->a_type == MDB_TYPE_STRING)
190 arg = (void *)(uintptr_t)(uint_t)
191 mdb_strtoull(argv->a_un.a_str);
192 else
193 arg = (void *)(uintptr_t)(uint_t)argv->a_un.a_val;
194 }
195
196 (void) kmt_stack_iter(mdb.m_target, grp, func, arg, cpuid);
197
198 return (DCMD_OK);
199 }
200
201 int
kmt_cpustack(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv,int cpuid,int verbose)202 kmt_cpustack(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv,
203 int cpuid, int verbose)
204 {
205 return (kmt_stack_common(addr, flags, argc, argv, cpuid,
206 (verbose ? mdb_kvm_v9framev : mdb_kvm_v9frame), 0));
207 }
208
209 int
kmt_stack(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)210 kmt_stack(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
211 {
212 return (kmt_stack_common(addr, flags, argc, argv, DPI_MASTER_CPUID,
213 mdb_kvm_v9frame, 0));
214 }
215
216 int
kmt_stackv(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)217 kmt_stackv(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
218 {
219 return (kmt_stack_common(addr, flags, argc, argv, DPI_MASTER_CPUID,
220 mdb_kvm_v9framev, 0));
221 }
222
223 int
kmt_stackr(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)224 kmt_stackr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
225 {
226 /*
227 * Force printing of the first register window by setting the saved
228 * pc (%i7) to PC_FAKE.
229 */
230 return (kmt_stack_common(addr, flags, argc, argv, DPI_MASTER_CPUID,
231 mdb_kvm_v9framer, PC_FAKE));
232 }
233
234 ssize_t
kmt_write_page(mdb_tgt_t * t,const void * buf,size_t nbytes,uintptr_t addr)235 kmt_write_page(mdb_tgt_t *t, const void *buf, size_t nbytes, uintptr_t addr)
236 {
237 jmp_buf *oldpcb = NULL;
238 jmp_buf pcb;
239 physaddr_t pa;
240
241 /*
242 * Can we write to this page?
243 */
244 if (!(t->t_flags & MDB_TGT_F_ALLOWIO) &&
245 (nbytes = kmdb_kdi_range_is_nontoxic(addr, nbytes, 1)) == 0)
246 return (set_errno(EMDB_NOMAP));
247
248 /*
249 * The OBP va>pa call returns a protection value that's right only some
250 * of the time. We can, however, tell if we failed a write due to a
251 * protection violation. If we get such an error, we'll retry the
252 * write using pwrite.
253 */
254 if (setjmp(pcb) != 0) {
255 /* We failed the write */
256 kmdb_dpi_restore_fault_hdlr(oldpcb);
257
258 if (errno == EACCES && kmdb_prom_vtop(addr, &pa) == 0)
259 return (kmt_pwrite(t, buf, nbytes, pa));
260 return (-1); /* errno is set for us */
261 }
262
263 mdb_dprintf(MDB_DBG_KMOD, "copying %lu bytes from %p to %p\n", nbytes,
264 buf, (void *)addr);
265
266 oldpcb = kmdb_dpi_set_fault_hdlr(&pcb);
267 (void) kmt_writer((void *)buf, nbytes, addr);
268 kmdb_dpi_restore_fault_hdlr(oldpcb);
269
270 return (nbytes);
271 }
272
273 /*ARGSUSED*/
274 ssize_t
kmt_write(mdb_tgt_t * t,const void * buf,size_t nbytes,uintptr_t addr)275 kmt_write(mdb_tgt_t *t, const void *buf, size_t nbytes, uintptr_t addr)
276 {
277 size_t ntowrite, nwritten, n;
278 int rc;
279
280 kmdb_prom_check_interrupt();
281
282 if (nbytes == 0)
283 return (0);
284
285 /*
286 * Break the writes up into page-sized chunks. First, the leading page
287 * fragment (if any), then the subsequent pages.
288 */
289
290 if ((n = (addr & (mdb.m_pagesize - 1))) != 0) {
291 ntowrite = MIN(mdb.m_pagesize - n, nbytes);
292
293 if ((rc = kmt_write_page(t, buf, ntowrite, addr)) != ntowrite)
294 return (rc);
295
296 addr = roundup(addr, mdb.m_pagesize);
297 nbytes -= ntowrite;
298 nwritten = ntowrite;
299 buf = ((caddr_t)buf + ntowrite);
300 }
301
302 while (nbytes > 0) {
303 ntowrite = MIN(mdb.m_pagesize, nbytes);
304
305 if ((rc = kmt_write_page(t, buf, ntowrite, addr)) != ntowrite)
306 return (rc < 0 ? rc : rc + nwritten);
307
308 addr += mdb.m_pagesize;
309 nbytes -= ntowrite;
310 nwritten += ntowrite;
311 buf = ((caddr_t)buf + ntowrite);
312 }
313
314 return (rc);
315 }
316
317 /*ARGSUSED*/
318 ssize_t
kmt_ioread(mdb_tgt_t * t,void * buf,size_t nbytes,uintptr_t addr)319 kmt_ioread(mdb_tgt_t *t, void *buf, size_t nbytes, uintptr_t addr)
320 {
321 return (set_errno(EMDB_TGTHWNOTSUP));
322 }
323
324 /*ARGSUSED*/
325 ssize_t
kmt_iowrite(mdb_tgt_t * t,const void * buf,size_t nbytes,uintptr_t addr)326 kmt_iowrite(mdb_tgt_t *t, const void *buf, size_t nbytes, uintptr_t addr)
327 {
328 return (set_errno(EMDB_TGTHWNOTSUP));
329 }
330
331 const char *
kmt_def_dismode(void)332 kmt_def_dismode(void)
333 {
334 #ifdef __sparcv9
335 return ("v9plus");
336 #else
337 return ("v8");
338 #endif
339 }
340
341 /*
342 * If we are stopped on a save instruction or at the first instruction of a
343 * known function, return %o7 as the step-out address; otherwise return the
344 * current frame's return address (%i7). Significantly better handling of
345 * step out in leaf routines could be accomplished by implementing more
346 * complex decoding of the current function and our current state.
347 */
348 int
kmt_step_out(mdb_tgt_t * t,uintptr_t * p)349 kmt_step_out(mdb_tgt_t *t, uintptr_t *p)
350 {
351 kreg_t pc, i7, o7;
352 GElf_Sym func;
353
354 (void) kmdb_dpi_get_register("pc", &pc);
355 (void) kmdb_dpi_get_register("i7", &i7);
356 (void) kmdb_dpi_get_register("o7", &o7);
357
358 if (mdb_tgt_lookup_by_addr(t, pc, MDB_TGT_SYM_FUZZY, NULL, 0,
359 &func, NULL) == 0 && func.st_value == pc)
360 *p = o7 + 2 * sizeof (mdb_instr_t);
361 else {
362 mdb_instr_t instr;
363
364 if (mdb_tgt_vread(t, &instr, sizeof (instr), pc) !=
365 sizeof (instr)) {
366 warn("failed to read instruction at %p for step out",
367 (void *)pc);
368 return (-1);
369 }
370
371 if (OP(instr) == OP_ARITH && OP3(instr) == OP3_SAVE)
372 *p = o7 + 2 * sizeof (mdb_instr_t);
373 else
374 *p = i7 + 2 * sizeof (mdb_instr_t);
375 }
376
377 return (0);
378 }
379
380 /*ARGSUSED*/
381 int
kmt_step_branch(mdb_tgt_t * t)382 kmt_step_branch(mdb_tgt_t *t)
383 {
384 return (set_errno(EMDB_TGTHWNOTSUP));
385 }
386
387 static const char *
regno2name(int idx)388 regno2name(int idx)
389 {
390 const mdb_tgt_regdesc_t *rd;
391
392 for (rd = mdb_sparcv9_kregs; rd->rd_name != NULL; rd++) {
393 if (idx == rd->rd_num)
394 return (rd->rd_name);
395 }
396
397 ASSERT(rd->rd_name != NULL);
398
399 return ("unknown");
400 }
401
402 /*
403 * Step over call and jmpl by returning the address of the position where a
404 * temporary breakpoint can be set to catch return from the control transfer.
405 * This function does not currently provide advanced decoding of DCTI couples
406 * or any other complex special case; we just fall back to single-step.
407 */
408 int
kmt_next(mdb_tgt_t * t,uintptr_t * p)409 kmt_next(mdb_tgt_t *t, uintptr_t *p)
410 {
411 kreg_t pc, npc;
412 GElf_Sym func;
413
414 (void) kmdb_dpi_get_register("pc", &pc);
415 (void) kmdb_dpi_get_register("npc", &npc);
416
417 if (mdb_tgt_lookup_by_addr(t, pc, MDB_TGT_SYM_FUZZY, NULL, 0,
418 &func, NULL) != 0)
419 return (-1);
420
421 if (npc < func.st_value || func.st_value + func.st_size <= npc) {
422 mdb_instr_t instr;
423 kreg_t reg;
424
425 /*
426 * We're about to transfer control outside this function, so we
427 * want to stop when control returns from the other function.
428 * Normally the return address will be in %o7, tail-calls being
429 * the exception. We try to discover if this is a tail-call and
430 * compute the return address in that case.
431 */
432 if (mdb_tgt_vread(t, &instr, sizeof (instr), pc) !=
433 sizeof (instr)) {
434 warn("failed to read instruction at %p for next",
435 (void *)pc);
436 return (-1);
437 }
438
439 if (OP(instr) == OP_ARITH && OP3(instr) == OP3_RESTORE) {
440 (void) kmdb_dpi_get_register("i7", ®);
441 } else if (OP(instr) == OP_ARITH && OP3(instr) == OP3_OR &&
442 RD(instr) == KREG_O7) {
443 if (RS1(instr) == KREG_G0)
444 return (set_errno(EAGAIN));
445
446 (void) kmdb_dpi_get_register(regno2name(RS2(instr)),
447 ®);
448 } else
449 (void) kmdb_dpi_get_register("o7", ®);
450
451 *p = reg + 2 * sizeof (mdb_instr_t);
452
453 return (0);
454 }
455
456 return (set_errno(EAGAIN));
457 }
458
459 const char *
kmt_trapname(int trapnum)460 kmt_trapname(int trapnum)
461 {
462 static char trapname[11];
463
464 switch (trapnum) {
465 case T_INSTR_EXCEPTION:
466 return ("instruction access error trap");
467 case T_ALIGNMENT:
468 return ("improper alignment trap");
469 case T_UNIMP_INSTR:
470 return ("illegal instruction trap");
471 case T_IDIV0:
472 return ("division by zero trap");
473 case T_FAST_INSTR_MMU_MISS:
474 return ("instruction access MMU miss trap");
475 case T_FAST_DATA_MMU_MISS:
476 return ("data access MMU miss trap");
477 case ST_KMDB_TRAP|T_SOFTWARE_TRAP:
478 return ("debugger entry trap");
479 case ST_KMDB_BREAKPOINT|T_SOFTWARE_TRAP:
480 return ("breakpoint trap");
481 default:
482 (void) mdb_snprintf(trapname, sizeof (trapname), "trap %#x",
483 trapnum);
484 return (trapname);
485 }
486 }
487
488 void
kmt_init_isadep(mdb_tgt_t * t)489 kmt_init_isadep(mdb_tgt_t *t)
490 {
491 kmt_data_t *kmt = t->t_data;
492
493 kmt->kmt_rds = mdb_sparcv9_kregs;
494
495 kmt->kmt_trapmax = KMT_MAXTRAPNO;
496 kmt->kmt_trapmap = mdb_zalloc(BT_SIZEOFMAP(kmt->kmt_trapmax), UM_SLEEP);
497
498 /* Traps for which we want to provide an explicit message */
499 (void) mdb_tgt_add_fault(t, T_INSTR_EXCEPTION, MDB_TGT_SPEC_INTERNAL,
500 no_se_f, NULL);
501 (void) mdb_tgt_add_fault(t, T_ALIGNMENT, MDB_TGT_SPEC_INTERNAL,
502 no_se_f, NULL);
503 (void) mdb_tgt_add_fault(t, T_UNIMP_INSTR, MDB_TGT_SPEC_INTERNAL,
504 no_se_f, NULL);
505 (void) mdb_tgt_add_fault(t, T_IDIV0, MDB_TGT_SPEC_INTERNAL,
506 no_se_f, NULL);
507 (void) mdb_tgt_add_fault(t, T_FAST_INSTR_MMU_MISS,
508 MDB_TGT_SPEC_INTERNAL, no_se_f, NULL);
509 (void) mdb_tgt_add_fault(t, T_FAST_DATA_MMU_MISS, MDB_TGT_SPEC_INTERNAL,
510 no_se_f, NULL);
511
512 /*
513 * Traps which will be handled elsewhere, and which therefore don't
514 * need the trap-based message.
515 */
516 BT_SET(kmt->kmt_trapmap, ST_KMDB_TRAP|T_SOFTWARE_TRAP);
517 BT_SET(kmt->kmt_trapmap, ST_KMDB_BREAKPOINT|T_SOFTWARE_TRAP);
518 BT_SET(kmt->kmt_trapmap, T_PA_WATCHPOINT);
519 BT_SET(kmt->kmt_trapmap, T_VA_WATCHPOINT);
520
521 /* Catch-all for traps not explicitly listed here */
522 (void) mdb_tgt_add_fault(t, KMT_TRAP_NOTENUM, MDB_TGT_SPEC_INTERNAL,
523 no_se_f, NULL);
524 }
525
526 /*ARGSUSED*/
527 void
kmt_startup_isadep(mdb_tgt_t * t)528 kmt_startup_isadep(mdb_tgt_t *t)
529 {
530 }
531