1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright (c) 2011 Bayard G. Bell. All rights reserved.
26 */
27
28 #include <sys/types.h>
29 #include <sys/time.h>
30 #include <sys/nvpair.h>
31 #include <sys/cmn_err.h>
32 #include <sys/cred.h>
33 #include <sys/open.h>
34 #include <sys/ddi.h>
35 #include <sys/sunddi.h>
36 #include <sys/conf.h>
37 #include <sys/modctl.h>
38 #include <sys/cyclic.h>
39 #include <sys/errorq.h>
40 #include <sys/stat.h>
41 #include <sys/cpuvar.h>
42 #include <sys/mc_intel.h>
43 #include <sys/mc.h>
44 #include <sys/fm/protocol.h>
45 #include "nb_log.h"
46 #include "nb5000.h"
47
48 nvlist_t *inb_mc_nvl;
49 krwlock_t inb_mc_lock;
50
51 char *inb_mc_snapshot;
52 uint_t nb_config_gen;
53 uint_t inb_mc_snapshotgen;
54 size_t inb_mc_snapshotsz;
55 static dev_info_t *inb_dip;
56 int nb_allow_detach = 0;
57 int nb_no_smbios;
58
59 static uint64_t
rank_to_base(uint8_t branch,uint8_t rank,uint8_t * interleave,uint64_t * limit,uint64_t * hole_base,uint64_t * hole_size,uint8_t * wayp,uint8_t * branch_interleavep)60 rank_to_base(uint8_t branch, uint8_t rank, uint8_t *interleave, uint64_t *limit,
61 uint64_t *hole_base, uint64_t *hole_size, uint8_t *wayp,
62 uint8_t *branch_interleavep)
63 {
64 uint8_t i, j;
65 uint64_t base = 0;
66 uint64_t lt = 0;
67 uint64_t h = 0;
68 uint64_t hs = 0;
69 uint8_t il = 1;
70 uint8_t way = 0;
71 uint8_t branch_interleave = 0;
72
73 for (i = 0; i < NB_MEM_RANK_SELECT; i++) {
74 for (j = 0; j < NB_RANKS_IN_SELECT; j++) {
75 if (nb_ranks[branch][i].rank[j] == rank) {
76 base = nb_ranks[branch][i].base;
77 lt = nb_ranks[branch][i].limit;
78 il = nb_ranks[branch][i].interleave;
79 h = nb_ranks[branch][i].hole_base;
80 hs = nb_ranks[branch][i].hole_size;
81 way = j;
82 branch_interleave =
83 nb_ranks[branch][i].branch_interleave;
84 i = NB_MEM_RANK_SELECT;
85 break;
86 }
87 }
88 }
89 if (lt == 0) {
90 for (i = 0; lt == 0 && i < NB_MEM_BRANCH_SELECT; i++) {
91 if (nb_banks[i].way[branch] &&
92 base >= nb_banks[i].base &&
93 base < nb_banks[i].base + nb_banks[i].limit) {
94 lt = nb_banks[i].limit;
95 break;
96 }
97 }
98 }
99 *interleave = il;
100 *limit = lt;
101 *hole_base = h;
102 *hole_size = hs;
103 *wayp = way;
104 *branch_interleavep = branch_interleave;
105 return (base);
106 }
107
108 /*ARGSUSED*/
109 void
inb_rank(nvlist_t * newdimm,nb_dimm_t * nb_dimm,uint8_t channel,uint32_t dimm)110 inb_rank(nvlist_t *newdimm, nb_dimm_t *nb_dimm, uint8_t channel, uint32_t dimm)
111 {
112 nvlist_t **newrank;
113 int i;
114
115 newrank = kmem_zalloc(sizeof (nvlist_t *) * nb_dimm->nranks, KM_SLEEP);
116 for (i = 0; i < nb_dimm->nranks; i++) {
117 uint64_t dimm_base;
118 uint64_t limit;
119 uint8_t interleave;
120 uint8_t way;
121 uint8_t branch_interleave;
122 uint64_t hole_base;
123 uint64_t hole_size;
124
125 dimm_base = rank_to_base(channel/nb_channels_per_branch,
126 nb_dimm->start_rank + i, &interleave,
127 &limit, &hole_base, &hole_size, &way, &branch_interleave);
128 (void) nvlist_alloc(&newrank[i], NV_UNIQUE_NAME, KM_SLEEP);
129
130 (void) nvlist_add_uint64(newrank[i], "dimm-rank-base",
131 dimm_base);
132 if (hole_size) {
133 (void) nvlist_add_uint64(newrank[i], "dimm-hole",
134 hole_base);
135 (void) nvlist_add_uint64(newrank[i], "dimm-hole-size",
136 hole_size);
137 }
138 (void) nvlist_add_uint64(newrank[i], "dimm-rank-limit",
139 limit);
140 if (interleave > 1) {
141 (void) nvlist_add_uint32(newrank[i],
142 "dimm-rank-interleave", (uint32_t)interleave);
143 (void) nvlist_add_uint32(newrank[i],
144 "dimm-rank-interleave-way", (uint32_t)way);
145 if (branch_interleave) {
146 (void) nvlist_add_uint32(newrank[i],
147 "dimm-rank-interleave-branch", (uint32_t)1);
148 }
149 }
150 }
151 (void) nvlist_add_nvlist_array(newdimm, MCINTEL_NVLIST_RANKS, newrank,
152 nb_dimm->nranks);
153 for (i = 0; i < nb_dimm->nranks; i++)
154 nvlist_free(newrank[i]);
155 kmem_free(newrank, sizeof (nvlist_t *) * nb_dimm->nranks);
156 }
157
158 nvlist_t *
inb_dimm(nb_dimm_t * nb_dimm,uint8_t channel,uint32_t dimm)159 inb_dimm(nb_dimm_t *nb_dimm, uint8_t channel, uint32_t dimm)
160 {
161 nvlist_t *newdimm;
162 uint8_t t;
163 char sbuf[65];
164
165 (void) nvlist_alloc(&newdimm, NV_UNIQUE_NAME, KM_SLEEP);
166 (void) nvlist_add_uint32(newdimm, "dimm-number", dimm);
167
168 if (nb_dimm->dimm_size >= 1024*1024*1024) {
169 (void) snprintf(sbuf, sizeof (sbuf), "%dG",
170 (int)(nb_dimm->dimm_size / (1024*1024*1024)));
171 } else {
172 (void) snprintf(sbuf, sizeof (sbuf), "%dM",
173 (int)(nb_dimm->dimm_size / (1024*1024)));
174 }
175 (void) nvlist_add_string(newdimm, "dimm-size", sbuf);
176 (void) nvlist_add_uint64(newdimm, "size", nb_dimm->dimm_size);
177 (void) nvlist_add_uint32(newdimm, "nbanks", (uint32_t)nb_dimm->nbanks);
178 (void) nvlist_add_uint32(newdimm, "ncolumn",
179 (uint32_t)nb_dimm->ncolumn);
180 (void) nvlist_add_uint32(newdimm, "nrow", (uint32_t)nb_dimm->nrow);
181 (void) nvlist_add_uint32(newdimm, "width", (uint32_t)nb_dimm->width);
182 (void) nvlist_add_int32(newdimm, MCINTEL_NVLIST_1ST_RANK,
183 (int32_t)nb_dimm->start_rank);
184 (void) nvlist_add_uint32(newdimm, "ranks", (uint32_t)nb_dimm->nranks);
185 inb_rank(newdimm, nb_dimm, channel, dimm);
186 (void) nvlist_add_uint32(newdimm, "manufacture-id",
187 (uint32_t)nb_dimm->manufacture_id);
188 (void) nvlist_add_uint32(newdimm, "manufacture-location",
189 (uint32_t)nb_dimm->manufacture_location);
190 (void) nvlist_add_uint32(newdimm, "manufacture-week",
191 (uint32_t)nb_dimm->manufacture_week);
192 (void) nvlist_add_uint32(newdimm, "manufacture-year",
193 (uint32_t)nb_dimm->manufacture_year + 2000);
194 /* create Sun Serial number from SPD data */
195 (void) snprintf(sbuf, sizeof (sbuf), "%04x%02x%02x%02x%08x",
196 (uint32_t)nb_dimm->manufacture_id & 0x7fff,
197 (uint32_t)nb_dimm->manufacture_location,
198 (uint32_t)nb_dimm->manufacture_year,
199 (uint32_t)nb_dimm->manufacture_week,
200 nb_dimm->serial_number);
201 (void) nvlist_add_string(newdimm, FM_FMRI_HC_SERIAL_ID, sbuf);
202 if (nb_dimm->part_number[0] != '\0') {
203 t = sizeof (nb_dimm->part_number);
204 (void) strncpy(sbuf, nb_dimm->part_number, t);
205 sbuf[t] = 0;
206 (void) nvlist_add_string(newdimm, FM_FMRI_HC_PART, sbuf);
207 }
208 if (nb_dimm->revision[0] != '\0') {
209 t = sizeof (nb_dimm->revision);
210 (void) strncpy(sbuf, nb_dimm->revision, t);
211 sbuf[t] = 0;
212 (void) nvlist_add_string(newdimm, FM_FMRI_HC_REVISION, sbuf);
213 }
214 t = sizeof (nb_dimm->label);
215 (void) strncpy(sbuf, nb_dimm->label, t);
216 sbuf[t] = 0;
217 (void) nvlist_add_string(newdimm, FM_FAULT_FRU_LABEL, sbuf);
218 return (newdimm);
219 }
220
221 static void
inb_dimmlist(nvlist_t * nvl)222 inb_dimmlist(nvlist_t *nvl)
223 {
224 nvlist_t **dimmlist;
225 nvlist_t **newchannel;
226 int nchannels = nb_number_memory_controllers * nb_channels_per_branch;
227 int nd;
228 uint8_t i, j;
229 nb_dimm_t **dimmpp;
230 nb_dimm_t *dimmp;
231
232 dimmlist = kmem_zalloc(sizeof (nvlist_t *) * nb_dimms_per_channel,
233 KM_SLEEP);
234 newchannel = kmem_zalloc(sizeof (nvlist_t *) * nchannels, KM_SLEEP);
235 dimmpp = nb_dimms;
236 for (i = 0; i < nchannels; i++) {
237 (void) nvlist_alloc(&newchannel[i], NV_UNIQUE_NAME, KM_SLEEP);
238 nd = 0;
239 for (j = 0; j < nb_dimms_per_channel; j++) {
240 dimmp = *dimmpp;
241 if (dimmp != NULL) {
242 dimmlist[nd] = inb_dimm(dimmp, i, (uint32_t)j);
243 nd++;
244 }
245 dimmpp++;
246 }
247 if (nd) {
248 (void) nvlist_add_nvlist_array(newchannel[i],
249 "memory-dimms", dimmlist, nd);
250 for (j = 0; j < nd; j++)
251 nvlist_free(dimmlist[j]);
252 }
253 }
254 (void) nvlist_add_nvlist_array(nvl, MCINTEL_NVLIST_MC, newchannel,
255 nchannels);
256 for (i = 0; i < nchannels; i++)
257 nvlist_free(newchannel[i]);
258 kmem_free(dimmlist, sizeof (nvlist_t *) * nb_dimms_per_channel);
259 kmem_free(newchannel, sizeof (nvlist_t *) * nchannels);
260 }
261
262 static char *
inb_mc_name()263 inb_mc_name()
264 {
265 char *mc;
266
267 switch (nb_chipset) {
268 case INTEL_NB_7300:
269 mc = "Intel 7300";
270 break;
271 case INTEL_NB_5400:
272 mc = "Intel 5400";
273 break;
274 case INTEL_NB_5400A:
275 mc = "Intel 5400A";
276 break;
277 case INTEL_NB_5400B:
278 mc = "Intel 5400B";
279 break;
280 case INTEL_NB_5100:
281 mc = "Intel 5100";
282 break;
283 case INTEL_NB_5000P:
284 mc = "Intel 5000P";
285 break;
286 case INTEL_NB_5000V:
287 mc = "Intel 5000V";
288 break;
289 case INTEL_NB_5000X:
290 mc = "Intel 5000X";
291 break;
292 case INTEL_NB_5000Z:
293 mc = "Intel 5000Z";
294 break;
295 default:
296 mc = "Intel 5000";
297 break;
298 }
299 return (mc);
300 }
301
302 static void
inb_create_nvl()303 inb_create_nvl()
304 {
305 nvlist_t *nvl;
306
307 (void) nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP);
308 (void) nvlist_add_uint8(nvl, MCINTEL_NVLIST_VERSTR,
309 MCINTEL_NVLIST_VERS);
310 (void) nvlist_add_string(nvl, "memory-controller", inb_mc_name());
311 if (nb_chipset == INTEL_NB_5100)
312 (void) nvlist_add_uint8(nvl, MCINTEL_NVLIST_NMEM,
313 (uint8_t)nb_number_memory_controllers);
314 inb_dimmlist(nvl);
315
316 nvlist_free(inb_mc_nvl);
317 inb_mc_nvl = nvl;
318 }
319
320 static void
inb_mc_snapshot_destroy()321 inb_mc_snapshot_destroy()
322 {
323 ASSERT(RW_LOCK_HELD(&inb_mc_lock));
324
325 if (inb_mc_snapshot == NULL)
326 return;
327
328 kmem_free(inb_mc_snapshot, inb_mc_snapshotsz);
329 inb_mc_snapshot = NULL;
330 inb_mc_snapshotsz = 0;
331 inb_mc_snapshotgen++;
332 }
333
334 static int
inb_mc_snapshot_update()335 inb_mc_snapshot_update()
336 {
337 ASSERT(RW_LOCK_HELD(&inb_mc_lock));
338
339 if (inb_mc_snapshot != NULL)
340 return (0);
341
342 if (nvlist_pack(inb_mc_nvl, &inb_mc_snapshot, &inb_mc_snapshotsz,
343 NV_ENCODE_XDR, KM_SLEEP) != 0)
344 return (-1);
345
346 return (0);
347 }
348
349 /*ARGSUSED*/
350 static int
inb_mc_ioctl(dev_t dev,int cmd,intptr_t arg,int mode,cred_t * credp,int * rvalp)351 inb_mc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
352 int *rvalp)
353 {
354 int rc = 0;
355 mc_snapshot_info_t mcs;
356
357 if (cmd != MC_IOC_SNAPSHOT_INFO && cmd != MC_IOC_SNAPSHOT)
358 return (EINVAL);
359
360 rw_enter(&inb_mc_lock, RW_READER);
361 if (inb_mc_nvl == NULL || inb_mc_snapshotgen != nb_config_gen) {
362 if (!rw_tryupgrade(&inb_mc_lock)) {
363 rw_exit(&inb_mc_lock);
364 return (EAGAIN);
365 }
366 if (inb_mc_nvl)
367 inb_mc_snapshot_destroy();
368 inb_create_nvl();
369 nb_config_gen = inb_mc_snapshotgen;
370 (void) inb_mc_snapshot_update();
371 }
372 switch (cmd) {
373 case MC_IOC_SNAPSHOT_INFO:
374 mcs.mcs_size = (uint32_t)inb_mc_snapshotsz;
375 mcs.mcs_gen = inb_mc_snapshotgen;
376
377 if (ddi_copyout(&mcs, (void *)arg, sizeof (mc_snapshot_info_t),
378 mode) < 0)
379 rc = EFAULT;
380 break;
381 case MC_IOC_SNAPSHOT:
382 if (ddi_copyout(inb_mc_snapshot, (void *)arg, inb_mc_snapshotsz,
383 mode) < 0)
384 rc = EFAULT;
385 break;
386 }
387 rw_exit(&inb_mc_lock);
388 return (rc);
389 }
390
391 /*ARGSUSED*/
392 static int
inb_mc_getinfo(dev_info_t * dip,ddi_info_cmd_t infocmd,void * arg,void ** result)393 inb_mc_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
394 void **result)
395 {
396 if ((infocmd != DDI_INFO_DEVT2DEVINFO &&
397 infocmd != DDI_INFO_DEVT2INSTANCE) || inb_dip == NULL) {
398 *result = NULL;
399 return (DDI_FAILURE);
400 }
401 if (infocmd == DDI_INFO_DEVT2DEVINFO)
402 *result = inb_dip;
403 else
404 *result = (void *)(uintptr_t)ddi_get_instance(inb_dip);
405 return (0);
406 }
407
408 static int
inb_mc_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)409 inb_mc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
410 {
411 if (cmd == DDI_RESUME) {
412 nb_dev_reinit();
413 return (DDI_SUCCESS);
414 }
415 if (cmd != DDI_ATTACH)
416 return (DDI_FAILURE);
417 if (inb_dip == NULL) {
418 inb_dip = dip;
419 nb_no_smbios = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
420 DDI_PROP_DONTPASS, "no-smbios", 0);
421 nb_pci_cfg_setup(dip);
422 (void) ddi_prop_update_string(DDI_DEV_T_NONE, dip, "model",
423 inb_mc_name());
424 if (nb_dev_init()) {
425 nb_pci_cfg_free();
426 inb_dip = NULL;
427 return (DDI_FAILURE);
428 }
429 if (ddi_create_minor_node(dip, "mc-intel", S_IFCHR, 0,
430 "ddi_mem_ctrl", 0) != DDI_SUCCESS) {
431 cmn_err(CE_WARN, "failed to create minor node"
432 " for memory controller\n");
433 }
434 cmi_hdl_walk(inb_mc_register, NULL, NULL, NULL);
435 }
436
437 return (DDI_SUCCESS);
438 }
439
440 /*ARGSUSED*/
441 static int
inb_mc_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)442 inb_mc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
443 {
444 if (nb_allow_detach && cmd == DDI_DETACH && dip == inb_dip) {
445 rw_enter(&inb_mc_lock, RW_WRITER);
446 inb_mc_snapshot_destroy();
447 rw_exit(&inb_mc_lock);
448 inb_dip = NULL;
449 return (DDI_SUCCESS);
450 } else if (cmd == DDI_SUSPEND || cmd == DDI_PM_SUSPEND) {
451 return (DDI_SUCCESS);
452 } else {
453 return (DDI_FAILURE);
454 }
455 }
456
457 /*ARGSUSED*/
458 static int
inb_mc_open(dev_t * devp,int flag,int otyp,cred_t * credp)459 inb_mc_open(dev_t *devp, int flag, int otyp, cred_t *credp)
460 {
461 if (otyp != OTYP_CHR)
462 return (EINVAL);
463
464 rw_enter(&inb_mc_lock, RW_READER);
465 if (getminor(*devp) >= 1) {
466 rw_exit(&inb_mc_lock);
467 return (EINVAL);
468 }
469 rw_exit(&inb_mc_lock);
470
471 return (0);
472 }
473
474 /*ARGSUSED*/
475 static int
inb_mc_close(dev_t dev,int flag,int otyp,cred_t * credp)476 inb_mc_close(dev_t dev, int flag, int otyp, cred_t *credp)
477 {
478 return (0);
479 }
480
481
482 static struct cb_ops inb_mc_cb_ops = {
483 inb_mc_open,
484 inb_mc_close,
485 nodev, /* not a block driver */
486 nodev, /* no print routine */
487 nodev, /* no dump routine */
488 nodev, /* no read routine */
489 nodev, /* no write routine */
490 inb_mc_ioctl,
491 nodev, /* no devmap routine */
492 nodev, /* no mmap routine */
493 nodev, /* no segmap routine */
494 nochpoll, /* no chpoll routine */
495 ddi_prop_op,
496 0, /* not a STREAMS driver */
497 D_NEW | D_MP, /* safe for multi-thread/multi-processor */
498 };
499
500 static struct dev_ops inb_mc_ops = {
501 DEVO_REV, /* devo_rev */
502 0, /* devo_refcnt */
503 inb_mc_getinfo, /* devo_getinfo */
504 nulldev, /* devo_identify */
505 nulldev, /* devo_probe */
506 inb_mc_attach, /* devo_attach */
507 inb_mc_detach, /* devo_detach */
508 nodev, /* devo_reset */
509 &inb_mc_cb_ops, /* devo_cb_ops */
510 NULL, /* devo_bus_ops */
511 NULL, /* devo_power */
512 ddi_quiesce_not_needed, /* devo_quiesce */
513 };
514
515 static struct modldrv modldrv = {
516 &mod_driverops,
517 "Intel 5000 Memory Controller Hub Module",
518 &inb_mc_ops
519 };
520
521 static struct modlinkage modlinkage = {
522 MODREV_1,
523 (void *)&modldrv,
524 NULL
525 };
526
527 int
_init(void)528 _init(void)
529 {
530 int err;
531
532 err = nb_init();
533 if (err == 0 && (err = mod_install(&modlinkage)) == 0)
534 rw_init(&inb_mc_lock, NULL, RW_DRIVER, NULL);
535
536 return (err);
537 }
538
539 int
_info(struct modinfo * modinfop)540 _info(struct modinfo *modinfop)
541 {
542 return (mod_info(&modlinkage, modinfop));
543 }
544
545 int
_fini(void)546 _fini(void)
547 {
548 int err;
549
550 if ((err = mod_remove(&modlinkage)) == 0) {
551 nb_unload();
552 rw_destroy(&inb_mc_lock);
553 }
554
555 return (err);
556 }
557