xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopSimplifyCFG.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/DomTreeUpdater.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopIterator.h"
22 #include "llvm/Analysis/MemorySSA.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Transforms/Scalar.h"
29 #include "llvm/Transforms/Scalar/LoopPassManager.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 #include "llvm/Transforms/Utils/LoopUtils.h"
32 #include <optional>
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "loop-simplifycfg"
36 
37 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
38                                        cl::init(true));
39 
40 STATISTIC(NumTerminatorsFolded,
41           "Number of terminators folded to unconditional branches");
42 STATISTIC(NumLoopBlocksDeleted,
43           "Number of loop blocks deleted");
44 STATISTIC(NumLoopExitsDeleted,
45           "Number of loop exiting edges deleted");
46 
47 /// If \p BB is a switch or a conditional branch, but only one of its successors
48 /// can be reached from this block in runtime, return this successor. Otherwise,
49 /// return nullptr.
getOnlyLiveSuccessor(BasicBlock * BB)50 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
51   Instruction *TI = BB->getTerminator();
52   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
53     if (BI->isUnconditional())
54       return nullptr;
55     if (BI->getSuccessor(0) == BI->getSuccessor(1))
56       return BI->getSuccessor(0);
57     ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
58     if (!Cond)
59       return nullptr;
60     return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
61   }
62 
63   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
64     auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
65     if (!CI)
66       return nullptr;
67     for (auto Case : SI->cases())
68       if (Case.getCaseValue() == CI)
69         return Case.getCaseSuccessor();
70     return SI->getDefaultDest();
71   }
72 
73   return nullptr;
74 }
75 
76 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
removeBlockFromLoops(BasicBlock * BB,Loop * FirstLoop,Loop * LastLoop=nullptr)77 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
78                                  Loop *LastLoop = nullptr) {
79   assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
80          "First loop is supposed to be inside of last loop!");
81   assert(FirstLoop->contains(BB) && "Must be a loop block!");
82   for (Loop *Current = FirstLoop; Current != LastLoop;
83        Current = Current->getParentLoop())
84     Current->removeBlockFromLoop(BB);
85 }
86 
87 /// Find innermost loop that contains at least one block from \p BBs and
88 /// contains the header of loop \p L.
getInnermostLoopFor(SmallPtrSetImpl<BasicBlock * > & BBs,Loop & L,LoopInfo & LI)89 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
90                                  Loop &L, LoopInfo &LI) {
91   Loop *Innermost = nullptr;
92   for (BasicBlock *BB : BBs) {
93     Loop *BBL = LI.getLoopFor(BB);
94     while (BBL && !BBL->contains(L.getHeader()))
95       BBL = BBL->getParentLoop();
96     if (BBL == &L)
97       BBL = BBL->getParentLoop();
98     if (!BBL)
99       continue;
100     if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
101       Innermost = BBL;
102   }
103   return Innermost;
104 }
105 
106 namespace {
107 /// Helper class that can turn branches and switches with constant conditions
108 /// into unconditional branches.
109 class ConstantTerminatorFoldingImpl {
110 private:
111   Loop &L;
112   LoopInfo &LI;
113   DominatorTree &DT;
114   ScalarEvolution &SE;
115   MemorySSAUpdater *MSSAU;
116   LoopBlocksDFS DFS;
117   DomTreeUpdater DTU;
118   SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
119 
120   // Whether or not the current loop has irreducible CFG.
121   bool HasIrreducibleCFG = false;
122   // Whether or not the current loop will still exist after terminator constant
123   // folding will be done. In theory, there are two ways how it can happen:
124   // 1. Loop's latch(es) become unreachable from loop header;
125   // 2. Loop's header becomes unreachable from method entry.
126   // In practice, the second situation is impossible because we only modify the
127   // current loop and its preheader and do not affect preheader's reachibility
128   // from any other block. So this variable set to true means that loop's latch
129   // has become unreachable from loop header.
130   bool DeleteCurrentLoop = false;
131 
132   // The blocks of the original loop that will still be reachable from entry
133   // after the constant folding.
134   SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
135   // The blocks of the original loop that will become unreachable from entry
136   // after the constant folding.
137   SmallVector<BasicBlock *, 8> DeadLoopBlocks;
138   // The exits of the original loop that will still be reachable from entry
139   // after the constant folding.
140   SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
141   // The exits of the original loop that will become unreachable from entry
142   // after the constant folding.
143   SmallVector<BasicBlock *, 8> DeadExitBlocks;
144   // The blocks that will still be a part of the current loop after folding.
145   SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
146   // The blocks that have terminators with constant condition that can be
147   // folded. Note: fold candidates should be in L but not in any of its
148   // subloops to avoid complex LI updates.
149   SmallVector<BasicBlock *, 8> FoldCandidates;
150 
dump() const151   void dump() const {
152     dbgs() << "Constant terminator folding for loop " << L << "\n";
153     dbgs() << "After terminator constant-folding, the loop will";
154     if (!DeleteCurrentLoop)
155       dbgs() << " not";
156     dbgs() << " be destroyed\n";
157     auto PrintOutVector = [&](const char *Message,
158                            const SmallVectorImpl<BasicBlock *> &S) {
159       dbgs() << Message << "\n";
160       for (const BasicBlock *BB : S)
161         dbgs() << "\t" << BB->getName() << "\n";
162     };
163     auto PrintOutSet = [&](const char *Message,
164                            const SmallPtrSetImpl<BasicBlock *> &S) {
165       dbgs() << Message << "\n";
166       for (const BasicBlock *BB : S)
167         dbgs() << "\t" << BB->getName() << "\n";
168     };
169     PrintOutVector("Blocks in which we can constant-fold terminator:",
170                    FoldCandidates);
171     PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
172     PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
173     PrintOutSet("Live exit blocks:", LiveExitBlocks);
174     PrintOutVector("Dead exit blocks:", DeadExitBlocks);
175     if (!DeleteCurrentLoop)
176       PrintOutSet("The following blocks will still be part of the loop:",
177                   BlocksInLoopAfterFolding);
178   }
179 
180   /// Whether or not the current loop has irreducible CFG.
hasIrreducibleCFG(LoopBlocksDFS & DFS)181   bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
182     assert(DFS.isComplete() && "DFS is expected to be finished");
183     // Index of a basic block in RPO traversal.
184     DenseMap<const BasicBlock *, unsigned> RPO;
185     unsigned Current = 0;
186     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
187       RPO[*I] = Current++;
188 
189     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
190       BasicBlock *BB = *I;
191       for (auto *Succ : successors(BB))
192         if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
193           // If an edge goes from a block with greater order number into a block
194           // with lesses number, and it is not a loop backedge, then it can only
195           // be a part of irreducible non-loop cycle.
196           return true;
197     }
198     return false;
199   }
200 
201   /// Fill all information about status of blocks and exits of the current loop
202   /// if constant folding of all branches will be done.
analyze()203   void analyze() {
204     DFS.perform(&LI);
205     assert(DFS.isComplete() && "DFS is expected to be finished");
206 
207     // TODO: The algorithm below relies on both RPO and Postorder traversals.
208     // When the loop has only reducible CFG inside, then the invariant "all
209     // predecessors of X are processed before X in RPO" is preserved. However
210     // an irreducible loop can break this invariant (e.g. latch does not have to
211     // be the last block in the traversal in this case, and the algorithm relies
212     // on this). We can later decide to support such cases by altering the
213     // algorithms, but so far we just give up analyzing them.
214     if (hasIrreducibleCFG(DFS)) {
215       HasIrreducibleCFG = true;
216       return;
217     }
218 
219     // Collect live and dead loop blocks and exits.
220     LiveLoopBlocks.insert(L.getHeader());
221     for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
222       BasicBlock *BB = *I;
223 
224       // If a loop block wasn't marked as live so far, then it's dead.
225       if (!LiveLoopBlocks.count(BB)) {
226         DeadLoopBlocks.push_back(BB);
227         continue;
228       }
229 
230       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
231 
232       // If a block has only one live successor, it's a candidate on constant
233       // folding. Only handle blocks from current loop: branches in child loops
234       // are skipped because if they can be folded, they should be folded during
235       // the processing of child loops.
236       bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
237       if (TakeFoldCandidate)
238         FoldCandidates.push_back(BB);
239 
240       // Handle successors.
241       for (BasicBlock *Succ : successors(BB))
242         if (!TakeFoldCandidate || TheOnlySucc == Succ) {
243           if (L.contains(Succ))
244             LiveLoopBlocks.insert(Succ);
245           else
246             LiveExitBlocks.insert(Succ);
247         }
248     }
249 
250     // Amount of dead and live loop blocks should match the total number of
251     // blocks in loop.
252     assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
253            "Malformed block sets?");
254 
255     // Now, all exit blocks that are not marked as live are dead, if all their
256     // predecessors are in the loop. This may not be the case, as the input loop
257     // may not by in loop-simplify/canonical form.
258     SmallVector<BasicBlock *, 8> ExitBlocks;
259     L.getExitBlocks(ExitBlocks);
260     SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
261     for (auto *ExitBlock : ExitBlocks)
262       if (!LiveExitBlocks.count(ExitBlock) &&
263           UniqueDeadExits.insert(ExitBlock).second &&
264           all_of(predecessors(ExitBlock),
265                  [this](BasicBlock *Pred) { return L.contains(Pred); }))
266         DeadExitBlocks.push_back(ExitBlock);
267 
268     // Whether or not the edge From->To will still be present in graph after the
269     // folding.
270     auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
271       if (!LiveLoopBlocks.count(From))
272         return false;
273       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
274       return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
275     };
276 
277     // The loop will not be destroyed if its latch is live.
278     DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
279 
280     // If we are going to delete the current loop completely, no extra analysis
281     // is needed.
282     if (DeleteCurrentLoop)
283       return;
284 
285     // Otherwise, we should check which blocks will still be a part of the
286     // current loop after the transform.
287     BlocksInLoopAfterFolding.insert(L.getLoopLatch());
288     // If the loop is live, then we should compute what blocks are still in
289     // loop after all branch folding has been done. A block is in loop if
290     // it has a live edge to another block that is in the loop; by definition,
291     // latch is in the loop.
292     auto BlockIsInLoop = [&](BasicBlock *BB) {
293       return any_of(successors(BB), [&](BasicBlock *Succ) {
294         return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
295       });
296     };
297     for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
298       BasicBlock *BB = *I;
299       if (BlockIsInLoop(BB))
300         BlocksInLoopAfterFolding.insert(BB);
301     }
302 
303     assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
304            "Header not in loop?");
305     assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
306            "All blocks that stay in loop should be live!");
307   }
308 
309   /// We need to preserve static reachibility of all loop exit blocks (this is)
310   /// required by loop pass manager. In order to do it, we make the following
311   /// trick:
312   ///
313   ///  preheader:
314   ///    <preheader code>
315   ///    br label %loop_header
316   ///
317   ///  loop_header:
318   ///    ...
319   ///    br i1 false, label %dead_exit, label %loop_block
320   ///    ...
321   ///
322   /// We cannot simply remove edge from the loop to dead exit because in this
323   /// case dead_exit (and its successors) may become unreachable. To avoid that,
324   /// we insert the following fictive preheader:
325   ///
326   ///  preheader:
327   ///    <preheader code>
328   ///    switch i32 0, label %preheader-split,
329   ///                  [i32 1, label %dead_exit_1],
330   ///                  [i32 2, label %dead_exit_2],
331   ///                  ...
332   ///                  [i32 N, label %dead_exit_N],
333   ///
334   ///  preheader-split:
335   ///    br label %loop_header
336   ///
337   ///  loop_header:
338   ///    ...
339   ///    br i1 false, label %dead_exit_N, label %loop_block
340   ///    ...
341   ///
342   /// Doing so, we preserve static reachibility of all dead exits and can later
343   /// remove edges from the loop to these blocks.
handleDeadExits()344   void handleDeadExits() {
345     // If no dead exits, nothing to do.
346     if (DeadExitBlocks.empty())
347       return;
348 
349     // Construct split preheader and the dummy switch to thread edges from it to
350     // dead exits.
351     BasicBlock *Preheader = L.getLoopPreheader();
352     BasicBlock *NewPreheader = llvm::SplitBlock(
353         Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
354 
355     IRBuilder<> Builder(Preheader->getTerminator());
356     SwitchInst *DummySwitch =
357         Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
358     Preheader->getTerminator()->eraseFromParent();
359 
360     unsigned DummyIdx = 1;
361     for (BasicBlock *BB : DeadExitBlocks) {
362       // Eliminate all Phis and LandingPads from dead exits.
363       // TODO: Consider removing all instructions in this dead block.
364       SmallVector<Instruction *, 4> DeadInstructions;
365       for (auto &PN : BB->phis())
366         DeadInstructions.push_back(&PN);
367 
368       if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
369         DeadInstructions.emplace_back(LandingPad);
370 
371       for (Instruction *I : DeadInstructions) {
372         SE.forgetBlockAndLoopDispositions(I);
373         I->replaceAllUsesWith(PoisonValue::get(I->getType()));
374         I->eraseFromParent();
375       }
376 
377       assert(DummyIdx != 0 && "Too many dead exits!");
378       DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
379       DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
380       ++NumLoopExitsDeleted;
381     }
382 
383     assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
384     if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
385       // When we break dead edges, the outer loop may become unreachable from
386       // the current loop. We need to fix loop info accordingly. For this, we
387       // find the most nested loop that still contains L and remove L from all
388       // loops that are inside of it.
389       Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
390 
391       // Okay, our loop is no longer in the outer loop (and maybe not in some of
392       // its parents as well). Make the fixup.
393       if (StillReachable != OuterLoop) {
394         LI.changeLoopFor(NewPreheader, StillReachable);
395         removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
396         for (auto *BB : L.blocks())
397           removeBlockFromLoops(BB, OuterLoop, StillReachable);
398         OuterLoop->removeChildLoop(&L);
399         if (StillReachable)
400           StillReachable->addChildLoop(&L);
401         else
402           LI.addTopLevelLoop(&L);
403 
404         // Some values from loops in [OuterLoop, StillReachable) could be used
405         // in the current loop. Now it is not their child anymore, so such uses
406         // require LCSSA Phis.
407         Loop *FixLCSSALoop = OuterLoop;
408         while (FixLCSSALoop->getParentLoop() != StillReachable)
409           FixLCSSALoop = FixLCSSALoop->getParentLoop();
410         assert(FixLCSSALoop && "Should be a loop!");
411         // We need all DT updates to be done before forming LCSSA.
412         if (MSSAU)
413           MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
414         else
415           DTU.applyUpdates(DTUpdates);
416         DTUpdates.clear();
417         formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
418         SE.forgetBlockAndLoopDispositions();
419       }
420     }
421 
422     if (MSSAU) {
423       // Clear all updates now. Facilitates deletes that follow.
424       MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
425       DTUpdates.clear();
426       if (VerifyMemorySSA)
427         MSSAU->getMemorySSA()->verifyMemorySSA();
428     }
429   }
430 
431   /// Delete loop blocks that have become unreachable after folding. Make all
432   /// relevant updates to DT and LI.
deleteDeadLoopBlocks()433   void deleteDeadLoopBlocks() {
434     if (MSSAU) {
435       SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
436                                                         DeadLoopBlocks.end());
437       MSSAU->removeBlocks(DeadLoopBlocksSet);
438     }
439 
440     // The function LI.erase has some invariants that need to be preserved when
441     // it tries to remove a loop which is not the top-level loop. In particular,
442     // it requires loop's preheader to be strictly in loop's parent. We cannot
443     // just remove blocks one by one, because after removal of preheader we may
444     // break this invariant for the dead loop. So we detatch and erase all dead
445     // loops beforehand.
446     for (auto *BB : DeadLoopBlocks)
447       if (LI.isLoopHeader(BB)) {
448         assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
449         Loop *DL = LI.getLoopFor(BB);
450         if (!DL->isOutermost()) {
451           for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
452             for (auto *BB : DL->getBlocks())
453               PL->removeBlockFromLoop(BB);
454           DL->getParentLoop()->removeChildLoop(DL);
455           LI.addTopLevelLoop(DL);
456         }
457         LI.erase(DL);
458       }
459 
460     for (auto *BB : DeadLoopBlocks) {
461       assert(BB != L.getHeader() &&
462              "Header of the current loop cannot be dead!");
463       LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
464                         << "\n");
465       LI.removeBlock(BB);
466     }
467 
468     detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
469     DTU.applyUpdates(DTUpdates);
470     DTUpdates.clear();
471     for (auto *BB : DeadLoopBlocks)
472       DTU.deleteBB(BB);
473 
474     NumLoopBlocksDeleted += DeadLoopBlocks.size();
475   }
476 
477   /// Constant-fold terminators of blocks accumulated in FoldCandidates into the
478   /// unconditional branches.
foldTerminators()479   void foldTerminators() {
480     for (BasicBlock *BB : FoldCandidates) {
481       assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
482       BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
483       assert(TheOnlySucc && "Should have one live successor!");
484 
485       LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
486                         << " with an unconditional branch to the block "
487                         << TheOnlySucc->getName() << "\n");
488 
489       SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
490       // Remove all BB's successors except for the live one.
491       unsigned TheOnlySuccDuplicates = 0;
492       for (auto *Succ : successors(BB))
493         if (Succ != TheOnlySucc) {
494           DeadSuccessors.insert(Succ);
495           // If our successor lies in a different loop, we don't want to remove
496           // the one-input Phi because it is a LCSSA Phi.
497           bool PreserveLCSSAPhi = !L.contains(Succ);
498           Succ->removePredecessor(BB, PreserveLCSSAPhi);
499           if (MSSAU)
500             MSSAU->removeEdge(BB, Succ);
501         } else
502           ++TheOnlySuccDuplicates;
503 
504       assert(TheOnlySuccDuplicates > 0 && "Should be!");
505       // If TheOnlySucc was BB's successor more than once, after transform it
506       // will be its successor only once. Remove redundant inputs from
507       // TheOnlySucc's Phis.
508       bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
509       for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
510         TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
511       if (MSSAU && TheOnlySuccDuplicates > 1)
512         MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
513 
514       IRBuilder<> Builder(BB->getContext());
515       Instruction *Term = BB->getTerminator();
516       Builder.SetInsertPoint(Term);
517       Builder.CreateBr(TheOnlySucc);
518       Term->eraseFromParent();
519 
520       for (auto *DeadSucc : DeadSuccessors)
521         DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
522 
523       ++NumTerminatorsFolded;
524     }
525   }
526 
527 public:
ConstantTerminatorFoldingImpl(Loop & L,LoopInfo & LI,DominatorTree & DT,ScalarEvolution & SE,MemorySSAUpdater * MSSAU)528   ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
529                                 ScalarEvolution &SE,
530                                 MemorySSAUpdater *MSSAU)
531       : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
532         DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
run()533   bool run() {
534     assert(L.getLoopLatch() && "Should be single latch!");
535 
536     // Collect all available information about status of blocks after constant
537     // folding.
538     analyze();
539     BasicBlock *Header = L.getHeader();
540     (void)Header;
541 
542     LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
543                       << ": ");
544 
545     if (HasIrreducibleCFG) {
546       LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
547       return false;
548     }
549 
550     // Nothing to constant-fold.
551     if (FoldCandidates.empty()) {
552       LLVM_DEBUG(
553           dbgs() << "No constant terminator folding candidates found in loop "
554                  << Header->getName() << "\n");
555       return false;
556     }
557 
558     // TODO: Support deletion of the current loop.
559     if (DeleteCurrentLoop) {
560       LLVM_DEBUG(
561           dbgs()
562           << "Give up constant terminator folding in loop " << Header->getName()
563           << ": we don't currently support deletion of the current loop.\n");
564       return false;
565     }
566 
567     // TODO: Support blocks that are not dead, but also not in loop after the
568     // folding.
569     if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
570         L.getNumBlocks()) {
571       LLVM_DEBUG(
572           dbgs() << "Give up constant terminator folding in loop "
573                  << Header->getName() << ": we don't currently"
574                     " support blocks that are not dead, but will stop "
575                     "being a part of the loop after constant-folding.\n");
576       return false;
577     }
578 
579     // TODO: Tokens may breach LCSSA form by default. However, the transform for
580     // dead exit blocks requires LCSSA form to be maintained for all values,
581     // tokens included, otherwise it may break use-def dominance (see PR56243).
582     if (!DeadExitBlocks.empty() && !L.isLCSSAForm(DT, /*IgnoreTokens*/ false)) {
583       assert(L.isLCSSAForm(DT, /*IgnoreTokens*/ true) &&
584              "LCSSA broken not by tokens?");
585       LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop "
586                         << Header->getName()
587                         << ": tokens uses potentially break LCSSA form.\n");
588       return false;
589     }
590 
591     SE.forgetTopmostLoop(&L);
592     // Dump analysis results.
593     LLVM_DEBUG(dump());
594 
595     LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
596                       << " terminators in loop " << Header->getName() << "\n");
597 
598     if (!DeadLoopBlocks.empty())
599       SE.forgetBlockAndLoopDispositions();
600 
601     // Make the actual transforms.
602     handleDeadExits();
603     foldTerminators();
604 
605     if (!DeadLoopBlocks.empty()) {
606       LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
607                     << " dead blocks in loop " << Header->getName() << "\n");
608       deleteDeadLoopBlocks();
609     } else {
610       // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
611       DTU.applyUpdates(DTUpdates);
612       DTUpdates.clear();
613     }
614 
615     if (MSSAU && VerifyMemorySSA)
616       MSSAU->getMemorySSA()->verifyMemorySSA();
617 
618 #ifndef NDEBUG
619     // Make sure that we have preserved all data structures after the transform.
620 #if defined(EXPENSIVE_CHECKS)
621     assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
622            "DT broken after transform!");
623 #else
624     assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
625            "DT broken after transform!");
626 #endif
627     assert(DT.isReachableFromEntry(Header));
628     LI.verify(DT);
629 #endif
630 
631     return true;
632   }
633 
foldingBreaksCurrentLoop() const634   bool foldingBreaksCurrentLoop() const {
635     return DeleteCurrentLoop;
636   }
637 };
638 } // namespace
639 
640 /// Turn branches and switches with known constant conditions into unconditional
641 /// branches.
constantFoldTerminators(Loop & L,DominatorTree & DT,LoopInfo & LI,ScalarEvolution & SE,MemorySSAUpdater * MSSAU,bool & IsLoopDeleted)642 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
643                                     ScalarEvolution &SE,
644                                     MemorySSAUpdater *MSSAU,
645                                     bool &IsLoopDeleted) {
646   if (!EnableTermFolding)
647     return false;
648 
649   // To keep things simple, only process loops with single latch. We
650   // canonicalize most loops to this form. We can support multi-latch if needed.
651   if (!L.getLoopLatch())
652     return false;
653 
654   ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
655   bool Changed = BranchFolder.run();
656   IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
657   return Changed;
658 }
659 
mergeBlocksIntoPredecessors(Loop & L,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU,ScalarEvolution & SE)660 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
661                                         LoopInfo &LI, MemorySSAUpdater *MSSAU,
662                                         ScalarEvolution &SE) {
663   bool Changed = false;
664   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
665   // Copy blocks into a temporary array to avoid iterator invalidation issues
666   // as we remove them.
667   SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
668 
669   for (auto &Block : Blocks) {
670     // Attempt to merge blocks in the trivial case. Don't modify blocks which
671     // belong to other loops.
672     BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
673     if (!Succ)
674       continue;
675 
676     BasicBlock *Pred = Succ->getSinglePredecessor();
677     if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
678       continue;
679 
680     // Merge Succ into Pred and delete it.
681     MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
682 
683     if (MSSAU && VerifyMemorySSA)
684       MSSAU->getMemorySSA()->verifyMemorySSA();
685 
686     Changed = true;
687   }
688 
689   if (Changed)
690     SE.forgetBlockAndLoopDispositions();
691 
692   return Changed;
693 }
694 
simplifyLoopCFG(Loop & L,DominatorTree & DT,LoopInfo & LI,ScalarEvolution & SE,MemorySSAUpdater * MSSAU,bool & IsLoopDeleted)695 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
696                             ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
697                             bool &IsLoopDeleted) {
698   bool Changed = false;
699 
700   // Constant-fold terminators with known constant conditions.
701   Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted);
702 
703   if (IsLoopDeleted)
704     return true;
705 
706   // Eliminate unconditional branches by merging blocks into their predecessors.
707   Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU, SE);
708 
709   if (Changed)
710     SE.forgetTopmostLoop(&L);
711 
712   return Changed;
713 }
714 
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & LPMU)715 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
716                                            LoopStandardAnalysisResults &AR,
717                                            LPMUpdater &LPMU) {
718   std::optional<MemorySSAUpdater> MSSAU;
719   if (AR.MSSA)
720     MSSAU = MemorySSAUpdater(AR.MSSA);
721   bool DeleteCurrentLoop = false;
722   if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE, MSSAU ? &*MSSAU : nullptr,
723                        DeleteCurrentLoop))
724     return PreservedAnalyses::all();
725 
726   if (DeleteCurrentLoop)
727     LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
728 
729   auto PA = getLoopPassPreservedAnalyses();
730   if (AR.MSSA)
731     PA.preserve<MemorySSAAnalysis>();
732   return PA;
733 }
734