1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
14 * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15 * Copyright (c) 2016 The MathWorks, Inc. All rights reserved.
16 * Copyright 2018 Joyent, Inc.
17 */
18
19 /*
20 * blkdev driver for NVMe compliant storage devices
21 *
22 * This driver was written to conform to version 1.2.1 of the NVMe
23 * specification. It may work with newer versions, but that is completely
24 * untested and disabled by default.
25 *
26 * The driver has only been tested on x86 systems and will not work on big-
27 * endian systems without changes to the code accessing registers and data
28 * structures used by the hardware.
29 *
30 *
31 * Interrupt Usage:
32 *
33 * The driver will use a single interrupt while configuring the device as the
34 * specification requires, but contrary to the specification it will try to use
35 * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
36 * will switch to multiple-message MSI(-X) if supported. The driver wants to
37 * have one interrupt vector per CPU, but it will work correctly if less are
38 * available. Interrupts can be shared by queues, the interrupt handler will
39 * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
40 * the admin queue will share an interrupt with one I/O queue. The interrupt
41 * handler will retrieve completed commands from all queues sharing an interrupt
42 * vector and will post them to a taskq for completion processing.
43 *
44 *
45 * Command Processing:
46 *
47 * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
48 * to 65536 I/O commands. The driver will configure one I/O queue pair per
49 * available interrupt vector, with the queue length usually much smaller than
50 * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
51 * interrupt vectors will be used.
52 *
53 * Additionally the hardware provides a single special admin queue pair that can
54 * hold up to 4096 admin commands.
55 *
56 * From the hardware perspective both queues of a queue pair are independent,
57 * but they share some driver state: the command array (holding pointers to
58 * commands currently being processed by the hardware) and the active command
59 * counter. Access to a queue pair and the shared state is protected by
60 * nq_mutex.
61 *
62 * When a command is submitted to a queue pair the active command counter is
63 * incremented and a pointer to the command is stored in the command array. The
64 * array index is used as command identifier (CID) in the submission queue
65 * entry. Some commands may take a very long time to complete, and if the queue
66 * wraps around in that time a submission may find the next array slot to still
67 * be used by a long-running command. In this case the array is sequentially
68 * searched for the next free slot. The length of the command array is the same
69 * as the configured queue length. Queue overrun is prevented by the semaphore,
70 * so a command submission may block if the queue is full.
71 *
72 *
73 * Polled I/O Support:
74 *
75 * For kernel core dump support the driver can do polled I/O. As interrupts are
76 * turned off while dumping the driver will just submit a command in the regular
77 * way, and then repeatedly attempt a command retrieval until it gets the
78 * command back.
79 *
80 *
81 * Namespace Support:
82 *
83 * NVMe devices can have multiple namespaces, each being a independent data
84 * store. The driver supports multiple namespaces and creates a blkdev interface
85 * for each namespace found. Namespaces can have various attributes to support
86 * thin provisioning and protection information. This driver does not support
87 * any of this and ignores namespaces that have these attributes.
88 *
89 * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
90 * (EUI64). This driver uses the EUI64 if present to generate the devid and
91 * passes it to blkdev to use it in the device node names. As this is currently
92 * untested namespaces with EUI64 are ignored by default.
93 *
94 * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
95 * single controller. This is an artificial limit imposed by the driver to be
96 * able to address a reasonable number of controllers and namespaces using a
97 * 32bit minor node number.
98 *
99 *
100 * Minor nodes:
101 *
102 * For each NVMe device the driver exposes one minor node for the controller and
103 * one minor node for each namespace. The only operations supported by those
104 * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
105 * interface for the nvmeadm(1M) utility.
106 *
107 *
108 * Blkdev Interface:
109 *
110 * This driver uses blkdev to do all the heavy lifting involved with presenting
111 * a disk device to the system. As a result, the processing of I/O requests is
112 * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
113 * setup, and splitting of transfers into manageable chunks.
114 *
115 * I/O requests coming in from blkdev are turned into NVM commands and posted to
116 * an I/O queue. The queue is selected by taking the CPU id modulo the number of
117 * queues. There is currently no timeout handling of I/O commands.
118 *
119 * Blkdev also supports querying device/media information and generating a
120 * devid. The driver reports the best block size as determined by the namespace
121 * format back to blkdev as physical block size to support partition and block
122 * alignment. The devid is either based on the namespace EUI64, if present, or
123 * composed using the device vendor ID, model number, serial number, and the
124 * namespace ID.
125 *
126 *
127 * Error Handling:
128 *
129 * Error handling is currently limited to detecting fatal hardware errors,
130 * either by asynchronous events, or synchronously through command status or
131 * admin command timeouts. In case of severe errors the device is fenced off,
132 * all further requests will return EIO. FMA is then called to fault the device.
133 *
134 * The hardware has a limit for outstanding asynchronous event requests. Before
135 * this limit is known the driver assumes it is at least 1 and posts a single
136 * asynchronous request. Later when the limit is known more asynchronous event
137 * requests are posted to allow quicker reception of error information. When an
138 * asynchronous event is posted by the hardware the driver will parse the error
139 * status fields and log information or fault the device, depending on the
140 * severity of the asynchronous event. The asynchronous event request is then
141 * reused and posted to the admin queue again.
142 *
143 * On command completion the command status is checked for errors. In case of
144 * errors indicating a driver bug the driver panics. Almost all other error
145 * status values just cause EIO to be returned.
146 *
147 * Command timeouts are currently detected for all admin commands except
148 * asynchronous event requests. If a command times out and the hardware appears
149 * to be healthy the driver attempts to abort the command. The original command
150 * timeout is also applied to the abort command. If the abort times out too the
151 * driver assumes the device to be dead, fences it off, and calls FMA to retire
152 * it. In all other cases the aborted command should return immediately with a
153 * status indicating it was aborted, and the driver will wait indefinitely for
154 * that to happen. No timeout handling of normal I/O commands is presently done.
155 *
156 * Any command that times out due to the controller dropping dead will be put on
157 * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
158 * memory being reused by the system and later be written to by a "dead" NVMe
159 * controller.
160 *
161 *
162 * Locking:
163 *
164 * Each queue pair has its own nq_mutex, which must be held when accessing the
165 * associated queue registers or the shared state of the queue pair. Callers of
166 * nvme_unqueue_cmd() must make sure that nq_mutex is held, while
167 * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of this
168 * themselves.
169 *
170 * Each command also has its own nc_mutex, which is associated with the
171 * condition variable nc_cv. It is only used on admin commands which are run
172 * synchronously. In that case it must be held across calls to
173 * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
174 * nvme_admin_cmd(). It must also be held whenever the completion state of the
175 * command is changed or while a admin command timeout is handled.
176 *
177 * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
178 * More than one nc_mutex may only be held when aborting commands. In this case,
179 * the nc_mutex of the command to be aborted must be held across the call to
180 * nvme_abort_cmd() to prevent the command from completing while the abort is in
181 * progress.
182 *
183 * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
184 * and exclusive-open flag nm_oexcl.
185 *
186 *
187 * Quiesce / Fast Reboot:
188 *
189 * The driver currently does not support fast reboot. A quiesce(9E) entry point
190 * is still provided which is used to send a shutdown notification to the
191 * device.
192 *
193 *
194 * Driver Configuration:
195 *
196 * The following driver properties can be changed to control some aspects of the
197 * drivers operation:
198 * - strict-version: can be set to 0 to allow devices conforming to newer
199 * major versions to be used
200 * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
201 * specific command status as a fatal error leading device faulting
202 * - admin-queue-len: the maximum length of the admin queue (16-4096)
203 * - io-queue-len: the maximum length of the I/O queues (16-65536)
204 * - async-event-limit: the maximum number of asynchronous event requests to be
205 * posted by the driver
206 * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
207 * cache
208 * - min-phys-block-size: the minimum physical block size to report to blkdev,
209 * which is among other things the basis for ZFS vdev ashift
210 *
211 *
212 * TODO:
213 * - figure out sane default for I/O queue depth reported to blkdev
214 * - FMA handling of media errors
215 * - support for devices supporting very large I/O requests using chained PRPs
216 * - support for configuring hardware parameters like interrupt coalescing
217 * - support for media formatting and hard partitioning into namespaces
218 * - support for big-endian systems
219 * - support for fast reboot
220 * - support for firmware updates
221 * - support for NVMe Subsystem Reset (1.1)
222 * - support for Scatter/Gather lists (1.1)
223 * - support for Reservations (1.1)
224 * - support for power management
225 */
226
227 #include <sys/byteorder.h>
228 #ifdef _BIG_ENDIAN
229 #error nvme driver needs porting for big-endian platforms
230 #endif
231
232 #include <sys/modctl.h>
233 #include <sys/conf.h>
234 #include <sys/devops.h>
235 #include <sys/ddi.h>
236 #include <sys/sunddi.h>
237 #include <sys/sunndi.h>
238 #include <sys/bitmap.h>
239 #include <sys/sysmacros.h>
240 #include <sys/param.h>
241 #include <sys/varargs.h>
242 #include <sys/cpuvar.h>
243 #include <sys/disp.h>
244 #include <sys/blkdev.h>
245 #include <sys/atomic.h>
246 #include <sys/archsystm.h>
247 #include <sys/sata/sata_hba.h>
248 #include <sys/stat.h>
249 #include <sys/policy.h>
250 #include <sys/list.h>
251
252 #include <sys/nvme.h>
253
254 #ifdef __x86
255 #include <sys/x86_archext.h>
256 #endif
257
258 #include "nvme_reg.h"
259 #include "nvme_var.h"
260
261 /*
262 * Assertions to make sure that we've properly captured various aspects of the
263 * packed structures and haven't broken them during updates.
264 */
265 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
266 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
267 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
268 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
269 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
270 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
271 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
272
273 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
274 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
275 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
276 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
277 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
278
279 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
280 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
281 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
282
283
284 /* NVMe spec version supported */
285 static const int nvme_version_major = 1;
286
287 /* tunable for admin command timeout in seconds, default is 1s */
288 int nvme_admin_cmd_timeout = 1;
289
290 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
291 int nvme_format_cmd_timeout = 600;
292
293 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
294 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
295 static int nvme_quiesce(dev_info_t *);
296 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
297 static int nvme_setup_interrupts(nvme_t *, int, int);
298 static void nvme_release_interrupts(nvme_t *);
299 static uint_t nvme_intr(caddr_t, caddr_t);
300
301 static void nvme_shutdown(nvme_t *, int, boolean_t);
302 static boolean_t nvme_reset(nvme_t *, boolean_t);
303 static int nvme_init(nvme_t *);
304 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
305 static void nvme_free_cmd(nvme_cmd_t *);
306 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
307 bd_xfer_t *);
308 static void nvme_admin_cmd(nvme_cmd_t *, int);
309 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
310 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
311 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
312 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
313 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
314 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
315 static void nvme_wakeup_cmd(void *);
316 static void nvme_async_event_task(void *);
317
318 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
319 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
320 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
321 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
322 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
323 static inline int nvme_check_cmd_status(nvme_cmd_t *);
324
325 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
326 static void nvme_async_event(nvme_t *);
327 static int nvme_format_nvm(nvme_t *, uint32_t, uint8_t, boolean_t, uint8_t,
328 boolean_t, uint8_t);
329 static int nvme_get_logpage(nvme_t *, void **, size_t *, uint8_t, ...);
330 static int nvme_identify(nvme_t *, uint32_t, void **);
331 static int nvme_set_features(nvme_t *, uint32_t, uint8_t, uint32_t,
332 uint32_t *);
333 static int nvme_get_features(nvme_t *, uint32_t, uint8_t, uint32_t *,
334 void **, size_t *);
335 static int nvme_write_cache_set(nvme_t *, boolean_t);
336 static int nvme_set_nqueues(nvme_t *, uint16_t *);
337
338 static void nvme_free_dma(nvme_dma_t *);
339 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
340 nvme_dma_t **);
341 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
342 nvme_dma_t **);
343 static void nvme_free_qpair(nvme_qpair_t *);
344 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
345 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
346
347 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
348 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
349 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
350 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
351
352 static boolean_t nvme_check_regs_hdl(nvme_t *);
353 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
354
355 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
356
357 static void nvme_bd_xfer_done(void *);
358 static void nvme_bd_driveinfo(void *, bd_drive_t *);
359 static int nvme_bd_mediainfo(void *, bd_media_t *);
360 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
361 static int nvme_bd_read(void *, bd_xfer_t *);
362 static int nvme_bd_write(void *, bd_xfer_t *);
363 static int nvme_bd_sync(void *, bd_xfer_t *);
364 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
365
366 static int nvme_prp_dma_constructor(void *, void *, int);
367 static void nvme_prp_dma_destructor(void *, void *);
368
369 static void nvme_prepare_devid(nvme_t *, uint32_t);
370
371 static int nvme_open(dev_t *, int, int, cred_t *);
372 static int nvme_close(dev_t, int, int, cred_t *);
373 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
374
375 #define NVME_MINOR_INST_SHIFT 9
376 #define NVME_MINOR(inst, nsid) (((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
377 #define NVME_MINOR_INST(minor) ((minor) >> NVME_MINOR_INST_SHIFT)
378 #define NVME_MINOR_NSID(minor) ((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
379 #define NVME_MINOR_MAX (NVME_MINOR(1, 0) - 2)
380
381 static void *nvme_state;
382 static kmem_cache_t *nvme_cmd_cache;
383
384 /*
385 * DMA attributes for queue DMA memory
386 *
387 * Queue DMA memory must be page aligned. The maximum length of a queue is
388 * 65536 entries, and an entry can be 64 bytes long.
389 */
390 static ddi_dma_attr_t nvme_queue_dma_attr = {
391 .dma_attr_version = DMA_ATTR_V0,
392 .dma_attr_addr_lo = 0,
393 .dma_attr_addr_hi = 0xffffffffffffffffULL,
394 .dma_attr_count_max = (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
395 .dma_attr_align = 0x1000,
396 .dma_attr_burstsizes = 0x7ff,
397 .dma_attr_minxfer = 0x1000,
398 .dma_attr_maxxfer = (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
399 .dma_attr_seg = 0xffffffffffffffffULL,
400 .dma_attr_sgllen = 1,
401 .dma_attr_granular = 1,
402 .dma_attr_flags = 0,
403 };
404
405 /*
406 * DMA attributes for transfers using Physical Region Page (PRP) entries
407 *
408 * A PRP entry describes one page of DMA memory using the page size specified
409 * in the controller configuration's memory page size register (CC.MPS). It uses
410 * a 64bit base address aligned to this page size. There is no limitation on
411 * chaining PRPs together for arbitrarily large DMA transfers.
412 */
413 static ddi_dma_attr_t nvme_prp_dma_attr = {
414 .dma_attr_version = DMA_ATTR_V0,
415 .dma_attr_addr_lo = 0,
416 .dma_attr_addr_hi = 0xffffffffffffffffULL,
417 .dma_attr_count_max = 0xfff,
418 .dma_attr_align = 0x1000,
419 .dma_attr_burstsizes = 0x7ff,
420 .dma_attr_minxfer = 0x1000,
421 .dma_attr_maxxfer = 0x1000,
422 .dma_attr_seg = 0xfff,
423 .dma_attr_sgllen = -1,
424 .dma_attr_granular = 1,
425 .dma_attr_flags = 0,
426 };
427
428 /*
429 * DMA attributes for transfers using scatter/gather lists
430 *
431 * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
432 * 32bit length field. SGL Segment and SGL Last Segment entries require the
433 * length to be a multiple of 16 bytes.
434 */
435 static ddi_dma_attr_t nvme_sgl_dma_attr = {
436 .dma_attr_version = DMA_ATTR_V0,
437 .dma_attr_addr_lo = 0,
438 .dma_attr_addr_hi = 0xffffffffffffffffULL,
439 .dma_attr_count_max = 0xffffffffUL,
440 .dma_attr_align = 1,
441 .dma_attr_burstsizes = 0x7ff,
442 .dma_attr_minxfer = 0x10,
443 .dma_attr_maxxfer = 0xfffffffffULL,
444 .dma_attr_seg = 0xffffffffffffffffULL,
445 .dma_attr_sgllen = -1,
446 .dma_attr_granular = 0x10,
447 .dma_attr_flags = 0
448 };
449
450 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
451 .devacc_attr_version = DDI_DEVICE_ATTR_V0,
452 .devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
453 .devacc_attr_dataorder = DDI_STRICTORDER_ACC
454 };
455
456 static struct cb_ops nvme_cb_ops = {
457 .cb_open = nvme_open,
458 .cb_close = nvme_close,
459 .cb_strategy = nodev,
460 .cb_print = nodev,
461 .cb_dump = nodev,
462 .cb_read = nodev,
463 .cb_write = nodev,
464 .cb_ioctl = nvme_ioctl,
465 .cb_devmap = nodev,
466 .cb_mmap = nodev,
467 .cb_segmap = nodev,
468 .cb_chpoll = nochpoll,
469 .cb_prop_op = ddi_prop_op,
470 .cb_str = 0,
471 .cb_flag = D_NEW | D_MP,
472 .cb_rev = CB_REV,
473 .cb_aread = nodev,
474 .cb_awrite = nodev
475 };
476
477 static struct dev_ops nvme_dev_ops = {
478 .devo_rev = DEVO_REV,
479 .devo_refcnt = 0,
480 .devo_getinfo = ddi_no_info,
481 .devo_identify = nulldev,
482 .devo_probe = nulldev,
483 .devo_attach = nvme_attach,
484 .devo_detach = nvme_detach,
485 .devo_reset = nodev,
486 .devo_cb_ops = &nvme_cb_ops,
487 .devo_bus_ops = NULL,
488 .devo_power = NULL,
489 .devo_quiesce = nvme_quiesce,
490 };
491
492 static struct modldrv nvme_modldrv = {
493 .drv_modops = &mod_driverops,
494 .drv_linkinfo = "NVMe v1.1b",
495 .drv_dev_ops = &nvme_dev_ops
496 };
497
498 static struct modlinkage nvme_modlinkage = {
499 .ml_rev = MODREV_1,
500 .ml_linkage = { &nvme_modldrv, NULL }
501 };
502
503 static bd_ops_t nvme_bd_ops = {
504 .o_version = BD_OPS_VERSION_0,
505 .o_drive_info = nvme_bd_driveinfo,
506 .o_media_info = nvme_bd_mediainfo,
507 .o_devid_init = nvme_bd_devid,
508 .o_sync_cache = nvme_bd_sync,
509 .o_read = nvme_bd_read,
510 .o_write = nvme_bd_write,
511 };
512
513 /*
514 * This list will hold commands that have timed out and couldn't be aborted.
515 * As we don't know what the hardware may still do with the DMA memory we can't
516 * free them, so we'll keep them forever on this list where we can easily look
517 * at them with mdb.
518 */
519 static struct list nvme_lost_cmds;
520 static kmutex_t nvme_lc_mutex;
521
522 int
_init(void)523 _init(void)
524 {
525 int error;
526
527 error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
528 if (error != DDI_SUCCESS)
529 return (error);
530
531 nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
532 sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
533
534 mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
535 list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
536 offsetof(nvme_cmd_t, nc_list));
537
538 bd_mod_init(&nvme_dev_ops);
539
540 error = mod_install(&nvme_modlinkage);
541 if (error != DDI_SUCCESS) {
542 ddi_soft_state_fini(&nvme_state);
543 mutex_destroy(&nvme_lc_mutex);
544 list_destroy(&nvme_lost_cmds);
545 bd_mod_fini(&nvme_dev_ops);
546 }
547
548 return (error);
549 }
550
551 int
_fini(void)552 _fini(void)
553 {
554 int error;
555
556 if (!list_is_empty(&nvme_lost_cmds))
557 return (DDI_FAILURE);
558
559 error = mod_remove(&nvme_modlinkage);
560 if (error == DDI_SUCCESS) {
561 ddi_soft_state_fini(&nvme_state);
562 kmem_cache_destroy(nvme_cmd_cache);
563 mutex_destroy(&nvme_lc_mutex);
564 list_destroy(&nvme_lost_cmds);
565 bd_mod_fini(&nvme_dev_ops);
566 }
567
568 return (error);
569 }
570
571 int
_info(struct modinfo * modinfop)572 _info(struct modinfo *modinfop)
573 {
574 return (mod_info(&nvme_modlinkage, modinfop));
575 }
576
577 static inline void
nvme_put64(nvme_t * nvme,uintptr_t reg,uint64_t val)578 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
579 {
580 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
581
582 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
583 ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
584 }
585
586 static inline void
nvme_put32(nvme_t * nvme,uintptr_t reg,uint32_t val)587 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
588 {
589 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
590
591 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
592 ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
593 }
594
595 static inline uint64_t
nvme_get64(nvme_t * nvme,uintptr_t reg)596 nvme_get64(nvme_t *nvme, uintptr_t reg)
597 {
598 uint64_t val;
599
600 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
601
602 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
603 val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
604
605 return (val);
606 }
607
608 static inline uint32_t
nvme_get32(nvme_t * nvme,uintptr_t reg)609 nvme_get32(nvme_t *nvme, uintptr_t reg)
610 {
611 uint32_t val;
612
613 ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
614
615 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
616 val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
617
618 return (val);
619 }
620
621 static boolean_t
nvme_check_regs_hdl(nvme_t * nvme)622 nvme_check_regs_hdl(nvme_t *nvme)
623 {
624 ddi_fm_error_t error;
625
626 ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
627
628 if (error.fme_status != DDI_FM_OK)
629 return (B_TRUE);
630
631 return (B_FALSE);
632 }
633
634 static boolean_t
nvme_check_dma_hdl(nvme_dma_t * dma)635 nvme_check_dma_hdl(nvme_dma_t *dma)
636 {
637 ddi_fm_error_t error;
638
639 if (dma == NULL)
640 return (B_FALSE);
641
642 ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
643
644 if (error.fme_status != DDI_FM_OK)
645 return (B_TRUE);
646
647 return (B_FALSE);
648 }
649
650 static void
nvme_free_dma_common(nvme_dma_t * dma)651 nvme_free_dma_common(nvme_dma_t *dma)
652 {
653 if (dma->nd_dmah != NULL)
654 (void) ddi_dma_unbind_handle(dma->nd_dmah);
655 if (dma->nd_acch != NULL)
656 ddi_dma_mem_free(&dma->nd_acch);
657 if (dma->nd_dmah != NULL)
658 ddi_dma_free_handle(&dma->nd_dmah);
659 }
660
661 static void
nvme_free_dma(nvme_dma_t * dma)662 nvme_free_dma(nvme_dma_t *dma)
663 {
664 nvme_free_dma_common(dma);
665 kmem_free(dma, sizeof (*dma));
666 }
667
668 /* ARGSUSED */
669 static void
nvme_prp_dma_destructor(void * buf,void * private)670 nvme_prp_dma_destructor(void *buf, void *private)
671 {
672 nvme_dma_t *dma = (nvme_dma_t *)buf;
673
674 nvme_free_dma_common(dma);
675 }
676
677 static int
nvme_alloc_dma_common(nvme_t * nvme,nvme_dma_t * dma,size_t len,uint_t flags,ddi_dma_attr_t * dma_attr)678 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
679 size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
680 {
681 if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
682 &dma->nd_dmah) != DDI_SUCCESS) {
683 /*
684 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
685 * the only other possible error is DDI_DMA_BADATTR which
686 * indicates a driver bug which should cause a panic.
687 */
688 dev_err(nvme->n_dip, CE_PANIC,
689 "!failed to get DMA handle, check DMA attributes");
690 return (DDI_FAILURE);
691 }
692
693 /*
694 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
695 * or the flags are conflicting, which isn't the case here.
696 */
697 (void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
698 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
699 &dma->nd_len, &dma->nd_acch);
700
701 if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
702 dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
703 &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
704 dev_err(nvme->n_dip, CE_WARN,
705 "!failed to bind DMA memory");
706 atomic_inc_32(&nvme->n_dma_bind_err);
707 nvme_free_dma_common(dma);
708 return (DDI_FAILURE);
709 }
710
711 return (DDI_SUCCESS);
712 }
713
714 static int
nvme_zalloc_dma(nvme_t * nvme,size_t len,uint_t flags,ddi_dma_attr_t * dma_attr,nvme_dma_t ** ret)715 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
716 ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
717 {
718 nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
719
720 if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
721 DDI_SUCCESS) {
722 *ret = NULL;
723 kmem_free(dma, sizeof (nvme_dma_t));
724 return (DDI_FAILURE);
725 }
726
727 bzero(dma->nd_memp, dma->nd_len);
728
729 *ret = dma;
730 return (DDI_SUCCESS);
731 }
732
733 /* ARGSUSED */
734 static int
nvme_prp_dma_constructor(void * buf,void * private,int flags)735 nvme_prp_dma_constructor(void *buf, void *private, int flags)
736 {
737 nvme_dma_t *dma = (nvme_dma_t *)buf;
738 nvme_t *nvme = (nvme_t *)private;
739
740 dma->nd_dmah = NULL;
741 dma->nd_acch = NULL;
742
743 if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
744 DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
745 return (-1);
746 }
747
748 ASSERT(dma->nd_ncookie == 1);
749
750 dma->nd_cached = B_TRUE;
751
752 return (0);
753 }
754
755 static int
nvme_zalloc_queue_dma(nvme_t * nvme,uint32_t nentry,uint16_t qe_len,uint_t flags,nvme_dma_t ** dma)756 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
757 uint_t flags, nvme_dma_t **dma)
758 {
759 uint32_t len = nentry * qe_len;
760 ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
761
762 len = roundup(len, nvme->n_pagesize);
763
764 q_dma_attr.dma_attr_minxfer = len;
765
766 if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
767 != DDI_SUCCESS) {
768 dev_err(nvme->n_dip, CE_WARN,
769 "!failed to get DMA memory for queue");
770 goto fail;
771 }
772
773 if ((*dma)->nd_ncookie != 1) {
774 dev_err(nvme->n_dip, CE_WARN,
775 "!got too many cookies for queue DMA");
776 goto fail;
777 }
778
779 return (DDI_SUCCESS);
780
781 fail:
782 if (*dma) {
783 nvme_free_dma(*dma);
784 *dma = NULL;
785 }
786
787 return (DDI_FAILURE);
788 }
789
790 static void
nvme_free_qpair(nvme_qpair_t * qp)791 nvme_free_qpair(nvme_qpair_t *qp)
792 {
793 int i;
794
795 mutex_destroy(&qp->nq_mutex);
796 sema_destroy(&qp->nq_sema);
797
798 if (qp->nq_sqdma != NULL)
799 nvme_free_dma(qp->nq_sqdma);
800 if (qp->nq_cqdma != NULL)
801 nvme_free_dma(qp->nq_cqdma);
802
803 if (qp->nq_active_cmds > 0)
804 for (i = 0; i != qp->nq_nentry; i++)
805 if (qp->nq_cmd[i] != NULL)
806 nvme_free_cmd(qp->nq_cmd[i]);
807
808 if (qp->nq_cmd != NULL)
809 kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
810
811 kmem_free(qp, sizeof (nvme_qpair_t));
812 }
813
814 static int
nvme_alloc_qpair(nvme_t * nvme,uint32_t nentry,nvme_qpair_t ** nqp,int idx)815 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
816 int idx)
817 {
818 nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
819
820 mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
821 DDI_INTR_PRI(nvme->n_intr_pri));
822 sema_init(&qp->nq_sema, nentry, NULL, SEMA_DRIVER, NULL);
823
824 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
825 DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
826 goto fail;
827
828 if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
829 DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
830 goto fail;
831
832 qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
833 qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
834 qp->nq_nentry = nentry;
835
836 qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
837 qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
838
839 qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
840 qp->nq_next_cmd = 0;
841
842 *nqp = qp;
843 return (DDI_SUCCESS);
844
845 fail:
846 nvme_free_qpair(qp);
847 *nqp = NULL;
848
849 return (DDI_FAILURE);
850 }
851
852 static nvme_cmd_t *
nvme_alloc_cmd(nvme_t * nvme,int kmflag)853 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
854 {
855 nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
856
857 if (cmd == NULL)
858 return (cmd);
859
860 bzero(cmd, sizeof (nvme_cmd_t));
861
862 cmd->nc_nvme = nvme;
863
864 mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
865 DDI_INTR_PRI(nvme->n_intr_pri));
866 cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
867
868 return (cmd);
869 }
870
871 static void
nvme_free_cmd(nvme_cmd_t * cmd)872 nvme_free_cmd(nvme_cmd_t *cmd)
873 {
874 /* Don't free commands on the lost commands list. */
875 if (list_link_active(&cmd->nc_list))
876 return;
877
878 if (cmd->nc_dma) {
879 if (cmd->nc_dma->nd_cached)
880 kmem_cache_free(cmd->nc_nvme->n_prp_cache,
881 cmd->nc_dma);
882 else
883 nvme_free_dma(cmd->nc_dma);
884 cmd->nc_dma = NULL;
885 }
886
887 cv_destroy(&cmd->nc_cv);
888 mutex_destroy(&cmd->nc_mutex);
889
890 kmem_cache_free(nvme_cmd_cache, cmd);
891 }
892
893 static void
nvme_submit_admin_cmd(nvme_qpair_t * qp,nvme_cmd_t * cmd)894 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
895 {
896 sema_p(&qp->nq_sema);
897 nvme_submit_cmd_common(qp, cmd);
898 }
899
900 static int
nvme_submit_io_cmd(nvme_qpair_t * qp,nvme_cmd_t * cmd)901 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
902 {
903 if (sema_tryp(&qp->nq_sema) == 0)
904 return (EAGAIN);
905
906 nvme_submit_cmd_common(qp, cmd);
907 return (0);
908 }
909
910 static void
nvme_submit_cmd_common(nvme_qpair_t * qp,nvme_cmd_t * cmd)911 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
912 {
913 nvme_reg_sqtdbl_t tail = { 0 };
914
915 mutex_enter(&qp->nq_mutex);
916 cmd->nc_completed = B_FALSE;
917
918 /*
919 * Try to insert the cmd into the active cmd array at the nq_next_cmd
920 * slot. If the slot is already occupied advance to the next slot and
921 * try again. This can happen for long running commands like async event
922 * requests.
923 */
924 while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
925 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
926 qp->nq_cmd[qp->nq_next_cmd] = cmd;
927
928 qp->nq_active_cmds++;
929
930 cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
931 bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
932 (void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
933 sizeof (nvme_sqe_t) * qp->nq_sqtail,
934 sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
935 qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
936
937 tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
938 nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
939
940 mutex_exit(&qp->nq_mutex);
941 }
942
943 static nvme_cmd_t *
nvme_unqueue_cmd(nvme_t * nvme,nvme_qpair_t * qp,int cid)944 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
945 {
946 nvme_cmd_t *cmd;
947
948 ASSERT(mutex_owned(&qp->nq_mutex));
949 ASSERT3S(cid, <, qp->nq_nentry);
950
951 cmd = qp->nq_cmd[cid];
952 qp->nq_cmd[cid] = NULL;
953 ASSERT3U(qp->nq_active_cmds, >, 0);
954 qp->nq_active_cmds--;
955 sema_v(&qp->nq_sema);
956
957 ASSERT3P(cmd, !=, NULL);
958 ASSERT3P(cmd->nc_nvme, ==, nvme);
959 ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
960
961 return (cmd);
962 }
963
964 static nvme_cmd_t *
nvme_retrieve_cmd(nvme_t * nvme,nvme_qpair_t * qp)965 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
966 {
967 nvme_reg_cqhdbl_t head = { 0 };
968
969 nvme_cqe_t *cqe;
970 nvme_cmd_t *cmd;
971
972 (void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
973 sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
974
975 mutex_enter(&qp->nq_mutex);
976 cqe = &qp->nq_cq[qp->nq_cqhead];
977
978 /* Check phase tag of CQE. Hardware inverts it for new entries. */
979 if (cqe->cqe_sf.sf_p == qp->nq_phase) {
980 mutex_exit(&qp->nq_mutex);
981 return (NULL);
982 }
983
984 ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
985
986 cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
987
988 ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
989 bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
990
991 qp->nq_sqhead = cqe->cqe_sqhd;
992
993 head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
994
995 /* Toggle phase on wrap-around. */
996 if (qp->nq_cqhead == 0)
997 qp->nq_phase = qp->nq_phase ? 0 : 1;
998
999 nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
1000 mutex_exit(&qp->nq_mutex);
1001
1002 return (cmd);
1003 }
1004
1005 static int
nvme_check_unknown_cmd_status(nvme_cmd_t * cmd)1006 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1007 {
1008 nvme_cqe_t *cqe = &cmd->nc_cqe;
1009
1010 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1011 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1012 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1013 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1014 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1015
1016 if (cmd->nc_xfer != NULL)
1017 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1018
1019 if (cmd->nc_nvme->n_strict_version) {
1020 cmd->nc_nvme->n_dead = B_TRUE;
1021 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1022 }
1023
1024 return (EIO);
1025 }
1026
1027 static int
nvme_check_vendor_cmd_status(nvme_cmd_t * cmd)1028 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1029 {
1030 nvme_cqe_t *cqe = &cmd->nc_cqe;
1031
1032 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1033 "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1034 "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1035 cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1036 cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1037 if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1038 cmd->nc_nvme->n_dead = B_TRUE;
1039 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1040 }
1041
1042 return (EIO);
1043 }
1044
1045 static int
nvme_check_integrity_cmd_status(nvme_cmd_t * cmd)1046 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1047 {
1048 nvme_cqe_t *cqe = &cmd->nc_cqe;
1049
1050 switch (cqe->cqe_sf.sf_sc) {
1051 case NVME_CQE_SC_INT_NVM_WRITE:
1052 /* write fail */
1053 /* TODO: post ereport */
1054 if (cmd->nc_xfer != NULL)
1055 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1056 return (EIO);
1057
1058 case NVME_CQE_SC_INT_NVM_READ:
1059 /* read fail */
1060 /* TODO: post ereport */
1061 if (cmd->nc_xfer != NULL)
1062 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1063 return (EIO);
1064
1065 default:
1066 return (nvme_check_unknown_cmd_status(cmd));
1067 }
1068 }
1069
1070 static int
nvme_check_generic_cmd_status(nvme_cmd_t * cmd)1071 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1072 {
1073 nvme_cqe_t *cqe = &cmd->nc_cqe;
1074
1075 switch (cqe->cqe_sf.sf_sc) {
1076 case NVME_CQE_SC_GEN_SUCCESS:
1077 return (0);
1078
1079 /*
1080 * Errors indicating a bug in the driver should cause a panic.
1081 */
1082 case NVME_CQE_SC_GEN_INV_OPC:
1083 /* Invalid Command Opcode */
1084 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1085 "invalid opcode in cmd %p", (void *)cmd);
1086 return (0);
1087
1088 case NVME_CQE_SC_GEN_INV_FLD:
1089 /* Invalid Field in Command */
1090 if (!cmd->nc_dontpanic)
1091 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1092 "programming error: invalid field in cmd %p",
1093 (void *)cmd);
1094 return (EIO);
1095
1096 case NVME_CQE_SC_GEN_ID_CNFL:
1097 /* Command ID Conflict */
1098 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1099 "cmd ID conflict in cmd %p", (void *)cmd);
1100 return (0);
1101
1102 case NVME_CQE_SC_GEN_INV_NS:
1103 /* Invalid Namespace or Format */
1104 if (!cmd->nc_dontpanic)
1105 dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1106 "programming error: " "invalid NS/format in cmd %p",
1107 (void *)cmd);
1108 return (EINVAL);
1109
1110 case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1111 /* LBA Out Of Range */
1112 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1113 "LBA out of range in cmd %p", (void *)cmd);
1114 return (0);
1115
1116 /*
1117 * Non-fatal errors, handle gracefully.
1118 */
1119 case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1120 /* Data Transfer Error (DMA) */
1121 /* TODO: post ereport */
1122 atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1123 if (cmd->nc_xfer != NULL)
1124 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1125 return (EIO);
1126
1127 case NVME_CQE_SC_GEN_INTERNAL_ERR:
1128 /*
1129 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1130 * detailed error information is returned as async event,
1131 * so we pretty much ignore the error here and handle it
1132 * in the async event handler.
1133 */
1134 atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1135 if (cmd->nc_xfer != NULL)
1136 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1137 return (EIO);
1138
1139 case NVME_CQE_SC_GEN_ABORT_REQUEST:
1140 /*
1141 * Command Abort Requested. This normally happens only when a
1142 * command times out.
1143 */
1144 /* TODO: post ereport or change blkdev to handle this? */
1145 atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1146 return (ECANCELED);
1147
1148 case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1149 /* Command Aborted due to Power Loss Notification */
1150 ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1151 cmd->nc_nvme->n_dead = B_TRUE;
1152 return (EIO);
1153
1154 case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1155 /* Command Aborted due to SQ Deletion */
1156 atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1157 return (EIO);
1158
1159 case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1160 /* Capacity Exceeded */
1161 atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1162 if (cmd->nc_xfer != NULL)
1163 bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1164 return (EIO);
1165
1166 case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1167 /* Namespace Not Ready */
1168 atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1169 if (cmd->nc_xfer != NULL)
1170 bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1171 return (EIO);
1172
1173 default:
1174 return (nvme_check_unknown_cmd_status(cmd));
1175 }
1176 }
1177
1178 static int
nvme_check_specific_cmd_status(nvme_cmd_t * cmd)1179 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1180 {
1181 nvme_cqe_t *cqe = &cmd->nc_cqe;
1182
1183 switch (cqe->cqe_sf.sf_sc) {
1184 case NVME_CQE_SC_SPC_INV_CQ:
1185 /* Completion Queue Invalid */
1186 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1187 atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1188 return (EINVAL);
1189
1190 case NVME_CQE_SC_SPC_INV_QID:
1191 /* Invalid Queue Identifier */
1192 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1193 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1194 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1195 cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1196 atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1197 return (EINVAL);
1198
1199 case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1200 /* Max Queue Size Exceeded */
1201 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1202 cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1203 atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1204 return (EINVAL);
1205
1206 case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1207 /* Abort Command Limit Exceeded */
1208 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1209 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1210 "abort command limit exceeded in cmd %p", (void *)cmd);
1211 return (0);
1212
1213 case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1214 /* Async Event Request Limit Exceeded */
1215 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1216 dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1217 "async event request limit exceeded in cmd %p",
1218 (void *)cmd);
1219 return (0);
1220
1221 case NVME_CQE_SC_SPC_INV_INT_VECT:
1222 /* Invalid Interrupt Vector */
1223 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1224 atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1225 return (EINVAL);
1226
1227 case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1228 /* Invalid Log Page */
1229 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1230 atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1231 return (EINVAL);
1232
1233 case NVME_CQE_SC_SPC_INV_FORMAT:
1234 /* Invalid Format */
1235 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1236 atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1237 if (cmd->nc_xfer != NULL)
1238 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1239 return (EINVAL);
1240
1241 case NVME_CQE_SC_SPC_INV_Q_DEL:
1242 /* Invalid Queue Deletion */
1243 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1244 atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1245 return (EINVAL);
1246
1247 case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1248 /* Conflicting Attributes */
1249 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1250 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1251 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1252 atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1253 if (cmd->nc_xfer != NULL)
1254 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1255 return (EINVAL);
1256
1257 case NVME_CQE_SC_SPC_NVM_INV_PROT:
1258 /* Invalid Protection Information */
1259 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1260 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1261 cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1262 atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1263 if (cmd->nc_xfer != NULL)
1264 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1265 return (EINVAL);
1266
1267 case NVME_CQE_SC_SPC_NVM_READONLY:
1268 /* Write to Read Only Range */
1269 ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1270 atomic_inc_32(&cmd->nc_nvme->n_readonly);
1271 if (cmd->nc_xfer != NULL)
1272 bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1273 return (EROFS);
1274
1275 default:
1276 return (nvme_check_unknown_cmd_status(cmd));
1277 }
1278 }
1279
1280 static inline int
nvme_check_cmd_status(nvme_cmd_t * cmd)1281 nvme_check_cmd_status(nvme_cmd_t *cmd)
1282 {
1283 nvme_cqe_t *cqe = &cmd->nc_cqe;
1284
1285 /*
1286 * Take a shortcut if the controller is dead, or if
1287 * command status indicates no error.
1288 */
1289 if (cmd->nc_nvme->n_dead)
1290 return (EIO);
1291
1292 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1293 cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1294 return (0);
1295
1296 if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1297 return (nvme_check_generic_cmd_status(cmd));
1298 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1299 return (nvme_check_specific_cmd_status(cmd));
1300 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1301 return (nvme_check_integrity_cmd_status(cmd));
1302 else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1303 return (nvme_check_vendor_cmd_status(cmd));
1304
1305 return (nvme_check_unknown_cmd_status(cmd));
1306 }
1307
1308 static int
nvme_abort_cmd(nvme_cmd_t * abort_cmd,uint_t sec)1309 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1310 {
1311 nvme_t *nvme = abort_cmd->nc_nvme;
1312 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1313 nvme_abort_cmd_t ac = { 0 };
1314 int ret = 0;
1315
1316 sema_p(&nvme->n_abort_sema);
1317
1318 ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1319 ac.b.ac_sqid = abort_cmd->nc_sqid;
1320
1321 cmd->nc_sqid = 0;
1322 cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1323 cmd->nc_callback = nvme_wakeup_cmd;
1324 cmd->nc_sqe.sqe_cdw10 = ac.r;
1325
1326 /*
1327 * Send the ABORT to the hardware. The ABORT command will return _after_
1328 * the aborted command has completed (aborted or otherwise), but since
1329 * we still hold the aborted command's mutex its callback hasn't been
1330 * processed yet.
1331 */
1332 nvme_admin_cmd(cmd, sec);
1333 sema_v(&nvme->n_abort_sema);
1334
1335 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1336 dev_err(nvme->n_dip, CE_WARN,
1337 "!ABORT failed with sct = %x, sc = %x",
1338 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1339 atomic_inc_32(&nvme->n_abort_failed);
1340 } else {
1341 dev_err(nvme->n_dip, CE_WARN,
1342 "!ABORT of command %d/%d %ssuccessful",
1343 abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1344 cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1345 if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1346 atomic_inc_32(&nvme->n_cmd_aborted);
1347 }
1348
1349 nvme_free_cmd(cmd);
1350 return (ret);
1351 }
1352
1353 /*
1354 * nvme_wait_cmd -- wait for command completion or timeout
1355 *
1356 * In case of a serious error or a timeout of the abort command the hardware
1357 * will be declared dead and FMA will be notified.
1358 */
1359 static void
nvme_wait_cmd(nvme_cmd_t * cmd,uint_t sec)1360 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1361 {
1362 clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1363 nvme_t *nvme = cmd->nc_nvme;
1364 nvme_reg_csts_t csts;
1365 nvme_qpair_t *qp;
1366
1367 ASSERT(mutex_owned(&cmd->nc_mutex));
1368
1369 while (!cmd->nc_completed) {
1370 if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1371 break;
1372 }
1373
1374 if (cmd->nc_completed)
1375 return;
1376
1377 /*
1378 * The command timed out.
1379 *
1380 * Check controller for fatal status, any errors associated with the
1381 * register or DMA handle, or for a double timeout (abort command timed
1382 * out). If necessary log a warning and call FMA.
1383 */
1384 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1385 dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1386 "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1387 cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1388 atomic_inc_32(&nvme->n_cmd_timeout);
1389
1390 if (csts.b.csts_cfs ||
1391 nvme_check_regs_hdl(nvme) ||
1392 nvme_check_dma_hdl(cmd->nc_dma) ||
1393 cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1394 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1395 nvme->n_dead = B_TRUE;
1396 } else if (nvme_abort_cmd(cmd, sec) == 0) {
1397 /*
1398 * If the abort succeeded the command should complete
1399 * immediately with an appropriate status.
1400 */
1401 while (!cmd->nc_completed)
1402 cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1403
1404 return;
1405 }
1406
1407 qp = nvme->n_ioq[cmd->nc_sqid];
1408
1409 mutex_enter(&qp->nq_mutex);
1410 (void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1411 mutex_exit(&qp->nq_mutex);
1412
1413 /*
1414 * As we don't know what the presumed dead hardware might still do with
1415 * the DMA memory, we'll put the command on the lost commands list if it
1416 * has any DMA memory.
1417 */
1418 if (cmd->nc_dma != NULL) {
1419 mutex_enter(&nvme_lc_mutex);
1420 list_insert_head(&nvme_lost_cmds, cmd);
1421 mutex_exit(&nvme_lc_mutex);
1422 }
1423 }
1424
1425 static void
nvme_wakeup_cmd(void * arg)1426 nvme_wakeup_cmd(void *arg)
1427 {
1428 nvme_cmd_t *cmd = arg;
1429
1430 mutex_enter(&cmd->nc_mutex);
1431 cmd->nc_completed = B_TRUE;
1432 cv_signal(&cmd->nc_cv);
1433 mutex_exit(&cmd->nc_mutex);
1434 }
1435
1436 static void
nvme_async_event_task(void * arg)1437 nvme_async_event_task(void *arg)
1438 {
1439 nvme_cmd_t *cmd = arg;
1440 nvme_t *nvme = cmd->nc_nvme;
1441 nvme_error_log_entry_t *error_log = NULL;
1442 nvme_health_log_t *health_log = NULL;
1443 size_t logsize = 0;
1444 nvme_async_event_t event;
1445
1446 /*
1447 * Check for errors associated with the async request itself. The only
1448 * command-specific error is "async event limit exceeded", which
1449 * indicates a programming error in the driver and causes a panic in
1450 * nvme_check_cmd_status().
1451 *
1452 * Other possible errors are various scenarios where the async request
1453 * was aborted, or internal errors in the device. Internal errors are
1454 * reported to FMA, the command aborts need no special handling here.
1455 */
1456 if (nvme_check_cmd_status(cmd) != 0) {
1457 dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1458 "!async event request returned failure, sct = %x, "
1459 "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1460 cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1461 cmd->nc_cqe.cqe_sf.sf_m);
1462
1463 if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1464 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1465 cmd->nc_nvme->n_dead = B_TRUE;
1466 ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1467 DDI_SERVICE_LOST);
1468 }
1469 nvme_free_cmd(cmd);
1470 return;
1471 }
1472
1473
1474 event.r = cmd->nc_cqe.cqe_dw0;
1475
1476 /* Clear CQE and re-submit the async request. */
1477 bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1478 nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1479
1480 switch (event.b.ae_type) {
1481 case NVME_ASYNC_TYPE_ERROR:
1482 if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1483 (void) nvme_get_logpage(nvme, (void **)&error_log,
1484 &logsize, event.b.ae_logpage);
1485 } else {
1486 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1487 "async event reply: %d", event.b.ae_logpage);
1488 atomic_inc_32(&nvme->n_wrong_logpage);
1489 }
1490
1491 switch (event.b.ae_info) {
1492 case NVME_ASYNC_ERROR_INV_SQ:
1493 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1494 "invalid submission queue");
1495 return;
1496
1497 case NVME_ASYNC_ERROR_INV_DBL:
1498 dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1499 "invalid doorbell write value");
1500 return;
1501
1502 case NVME_ASYNC_ERROR_DIAGFAIL:
1503 dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1504 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1505 nvme->n_dead = B_TRUE;
1506 atomic_inc_32(&nvme->n_diagfail_event);
1507 break;
1508
1509 case NVME_ASYNC_ERROR_PERSISTENT:
1510 dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1511 "device error");
1512 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1513 nvme->n_dead = B_TRUE;
1514 atomic_inc_32(&nvme->n_persistent_event);
1515 break;
1516
1517 case NVME_ASYNC_ERROR_TRANSIENT:
1518 dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1519 "device error");
1520 /* TODO: send ereport */
1521 atomic_inc_32(&nvme->n_transient_event);
1522 break;
1523
1524 case NVME_ASYNC_ERROR_FW_LOAD:
1525 dev_err(nvme->n_dip, CE_WARN,
1526 "!firmware image load error");
1527 atomic_inc_32(&nvme->n_fw_load_event);
1528 break;
1529 }
1530 break;
1531
1532 case NVME_ASYNC_TYPE_HEALTH:
1533 if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1534 (void) nvme_get_logpage(nvme, (void **)&health_log,
1535 &logsize, event.b.ae_logpage, -1);
1536 } else {
1537 dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1538 "async event reply: %d", event.b.ae_logpage);
1539 atomic_inc_32(&nvme->n_wrong_logpage);
1540 }
1541
1542 switch (event.b.ae_info) {
1543 case NVME_ASYNC_HEALTH_RELIABILITY:
1544 dev_err(nvme->n_dip, CE_WARN,
1545 "!device reliability compromised");
1546 /* TODO: send ereport */
1547 atomic_inc_32(&nvme->n_reliability_event);
1548 break;
1549
1550 case NVME_ASYNC_HEALTH_TEMPERATURE:
1551 dev_err(nvme->n_dip, CE_WARN,
1552 "!temperature above threshold");
1553 /* TODO: send ereport */
1554 atomic_inc_32(&nvme->n_temperature_event);
1555 break;
1556
1557 case NVME_ASYNC_HEALTH_SPARE:
1558 dev_err(nvme->n_dip, CE_WARN,
1559 "!spare space below threshold");
1560 /* TODO: send ereport */
1561 atomic_inc_32(&nvme->n_spare_event);
1562 break;
1563 }
1564 break;
1565
1566 case NVME_ASYNC_TYPE_VENDOR:
1567 dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1568 "received, info = %x, logpage = %x", event.b.ae_info,
1569 event.b.ae_logpage);
1570 atomic_inc_32(&nvme->n_vendor_event);
1571 break;
1572
1573 default:
1574 dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1575 "type = %x, info = %x, logpage = %x", event.b.ae_type,
1576 event.b.ae_info, event.b.ae_logpage);
1577 atomic_inc_32(&nvme->n_unknown_event);
1578 break;
1579 }
1580
1581 if (error_log)
1582 kmem_free(error_log, logsize);
1583
1584 if (health_log)
1585 kmem_free(health_log, logsize);
1586 }
1587
1588 static void
nvme_admin_cmd(nvme_cmd_t * cmd,int sec)1589 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1590 {
1591 mutex_enter(&cmd->nc_mutex);
1592 nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1593 nvme_wait_cmd(cmd, sec);
1594 mutex_exit(&cmd->nc_mutex);
1595 }
1596
1597 static void
nvme_async_event(nvme_t * nvme)1598 nvme_async_event(nvme_t *nvme)
1599 {
1600 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1601
1602 cmd->nc_sqid = 0;
1603 cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1604 cmd->nc_callback = nvme_async_event_task;
1605
1606 nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1607 }
1608
1609 static int
nvme_format_nvm(nvme_t * nvme,uint32_t nsid,uint8_t lbaf,boolean_t ms,uint8_t pi,boolean_t pil,uint8_t ses)1610 nvme_format_nvm(nvme_t *nvme, uint32_t nsid, uint8_t lbaf, boolean_t ms,
1611 uint8_t pi, boolean_t pil, uint8_t ses)
1612 {
1613 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1614 nvme_format_nvm_t format_nvm = { 0 };
1615 int ret;
1616
1617 format_nvm.b.fm_lbaf = lbaf & 0xf;
1618 format_nvm.b.fm_ms = ms ? 1 : 0;
1619 format_nvm.b.fm_pi = pi & 0x7;
1620 format_nvm.b.fm_pil = pil ? 1 : 0;
1621 format_nvm.b.fm_ses = ses & 0x7;
1622
1623 cmd->nc_sqid = 0;
1624 cmd->nc_callback = nvme_wakeup_cmd;
1625 cmd->nc_sqe.sqe_nsid = nsid;
1626 cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1627 cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1628
1629 /*
1630 * Some devices like Samsung SM951 don't allow formatting of all
1631 * namespaces in one command. Handle that gracefully.
1632 */
1633 if (nsid == (uint32_t)-1)
1634 cmd->nc_dontpanic = B_TRUE;
1635
1636 nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1637
1638 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1639 dev_err(nvme->n_dip, CE_WARN,
1640 "!FORMAT failed with sct = %x, sc = %x",
1641 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1642 }
1643
1644 nvme_free_cmd(cmd);
1645 return (ret);
1646 }
1647
1648 static int
nvme_get_logpage(nvme_t * nvme,void ** buf,size_t * bufsize,uint8_t logpage,...)1649 nvme_get_logpage(nvme_t *nvme, void **buf, size_t *bufsize, uint8_t logpage,
1650 ...)
1651 {
1652 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1653 nvme_getlogpage_t getlogpage = { 0 };
1654 va_list ap;
1655 int ret;
1656
1657 va_start(ap, logpage);
1658
1659 cmd->nc_sqid = 0;
1660 cmd->nc_callback = nvme_wakeup_cmd;
1661 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1662
1663 getlogpage.b.lp_lid = logpage;
1664
1665 switch (logpage) {
1666 case NVME_LOGPAGE_ERROR:
1667 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1668 /*
1669 * The GET LOG PAGE command can use at most 2 pages to return
1670 * data, PRP lists are not supported.
1671 */
1672 *bufsize = MIN(2 * nvme->n_pagesize,
1673 nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1674 break;
1675
1676 case NVME_LOGPAGE_HEALTH:
1677 cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1678 *bufsize = sizeof (nvme_health_log_t);
1679 break;
1680
1681 case NVME_LOGPAGE_FWSLOT:
1682 cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1683 *bufsize = sizeof (nvme_fwslot_log_t);
1684 break;
1685
1686 default:
1687 dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1688 logpage);
1689 atomic_inc_32(&nvme->n_unknown_logpage);
1690 ret = EINVAL;
1691 goto fail;
1692 }
1693
1694 va_end(ap);
1695
1696 getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1697
1698 cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1699
1700 if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1701 DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1702 dev_err(nvme->n_dip, CE_WARN,
1703 "!nvme_zalloc_dma failed for GET LOG PAGE");
1704 ret = ENOMEM;
1705 goto fail;
1706 }
1707
1708 if (cmd->nc_dma->nd_ncookie > 2) {
1709 dev_err(nvme->n_dip, CE_WARN,
1710 "!too many DMA cookies for GET LOG PAGE");
1711 atomic_inc_32(&nvme->n_too_many_cookies);
1712 ret = ENOMEM;
1713 goto fail;
1714 }
1715
1716 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1717 if (cmd->nc_dma->nd_ncookie > 1) {
1718 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1719 &cmd->nc_dma->nd_cookie);
1720 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1721 cmd->nc_dma->nd_cookie.dmac_laddress;
1722 }
1723
1724 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1725
1726 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1727 dev_err(nvme->n_dip, CE_WARN,
1728 "!GET LOG PAGE failed with sct = %x, sc = %x",
1729 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1730 goto fail;
1731 }
1732
1733 *buf = kmem_alloc(*bufsize, KM_SLEEP);
1734 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1735
1736 fail:
1737 nvme_free_cmd(cmd);
1738
1739 return (ret);
1740 }
1741
1742 static int
nvme_identify(nvme_t * nvme,uint32_t nsid,void ** buf)1743 nvme_identify(nvme_t *nvme, uint32_t nsid, void **buf)
1744 {
1745 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1746 int ret;
1747
1748 if (buf == NULL)
1749 return (EINVAL);
1750
1751 cmd->nc_sqid = 0;
1752 cmd->nc_callback = nvme_wakeup_cmd;
1753 cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1754 cmd->nc_sqe.sqe_nsid = nsid;
1755 cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1756
1757 if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1758 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1759 dev_err(nvme->n_dip, CE_WARN,
1760 "!nvme_zalloc_dma failed for IDENTIFY");
1761 ret = ENOMEM;
1762 goto fail;
1763 }
1764
1765 if (cmd->nc_dma->nd_ncookie > 2) {
1766 dev_err(nvme->n_dip, CE_WARN,
1767 "!too many DMA cookies for IDENTIFY");
1768 atomic_inc_32(&nvme->n_too_many_cookies);
1769 ret = ENOMEM;
1770 goto fail;
1771 }
1772
1773 cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1774 if (cmd->nc_dma->nd_ncookie > 1) {
1775 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1776 &cmd->nc_dma->nd_cookie);
1777 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1778 cmd->nc_dma->nd_cookie.dmac_laddress;
1779 }
1780
1781 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1782
1783 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1784 dev_err(nvme->n_dip, CE_WARN,
1785 "!IDENTIFY failed with sct = %x, sc = %x",
1786 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1787 goto fail;
1788 }
1789
1790 *buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1791 bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
1792
1793 fail:
1794 nvme_free_cmd(cmd);
1795
1796 return (ret);
1797 }
1798
1799 static int
nvme_set_features(nvme_t * nvme,uint32_t nsid,uint8_t feature,uint32_t val,uint32_t * res)1800 nvme_set_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t val,
1801 uint32_t *res)
1802 {
1803 _NOTE(ARGUNUSED(nsid));
1804 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1805 int ret = EINVAL;
1806
1807 ASSERT(res != NULL);
1808
1809 cmd->nc_sqid = 0;
1810 cmd->nc_callback = nvme_wakeup_cmd;
1811 cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1812 cmd->nc_sqe.sqe_cdw10 = feature;
1813 cmd->nc_sqe.sqe_cdw11 = val;
1814
1815 switch (feature) {
1816 case NVME_FEAT_WRITE_CACHE:
1817 if (!nvme->n_write_cache_present)
1818 goto fail;
1819 break;
1820
1821 case NVME_FEAT_NQUEUES:
1822 break;
1823
1824 default:
1825 goto fail;
1826 }
1827
1828 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1829
1830 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1831 dev_err(nvme->n_dip, CE_WARN,
1832 "!SET FEATURES %d failed with sct = %x, sc = %x",
1833 feature, cmd->nc_cqe.cqe_sf.sf_sct,
1834 cmd->nc_cqe.cqe_sf.sf_sc);
1835 goto fail;
1836 }
1837
1838 *res = cmd->nc_cqe.cqe_dw0;
1839
1840 fail:
1841 nvme_free_cmd(cmd);
1842 return (ret);
1843 }
1844
1845 static int
nvme_get_features(nvme_t * nvme,uint32_t nsid,uint8_t feature,uint32_t * res,void ** buf,size_t * bufsize)1846 nvme_get_features(nvme_t *nvme, uint32_t nsid, uint8_t feature, uint32_t *res,
1847 void **buf, size_t *bufsize)
1848 {
1849 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1850 int ret = EINVAL;
1851
1852 ASSERT(res != NULL);
1853
1854 if (bufsize != NULL)
1855 *bufsize = 0;
1856
1857 cmd->nc_sqid = 0;
1858 cmd->nc_callback = nvme_wakeup_cmd;
1859 cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
1860 cmd->nc_sqe.sqe_cdw10 = feature;
1861 cmd->nc_sqe.sqe_cdw11 = *res;
1862
1863 switch (feature) {
1864 case NVME_FEAT_ARBITRATION:
1865 case NVME_FEAT_POWER_MGMT:
1866 case NVME_FEAT_TEMPERATURE:
1867 case NVME_FEAT_ERROR:
1868 case NVME_FEAT_NQUEUES:
1869 case NVME_FEAT_INTR_COAL:
1870 case NVME_FEAT_INTR_VECT:
1871 case NVME_FEAT_WRITE_ATOM:
1872 case NVME_FEAT_ASYNC_EVENT:
1873 case NVME_FEAT_PROGRESS:
1874 break;
1875
1876 case NVME_FEAT_WRITE_CACHE:
1877 if (!nvme->n_write_cache_present)
1878 goto fail;
1879 break;
1880
1881 case NVME_FEAT_LBA_RANGE:
1882 if (!nvme->n_lba_range_supported)
1883 goto fail;
1884
1885 /*
1886 * The LBA Range Type feature is optional. There doesn't seem
1887 * be a method of detecting whether it is supported other than
1888 * using it. This will cause a "invalid field in command" error,
1889 * which is normally considered a programming error and causes
1890 * panic in nvme_check_generic_cmd_status().
1891 */
1892 cmd->nc_dontpanic = B_TRUE;
1893 cmd->nc_sqe.sqe_nsid = nsid;
1894 ASSERT(bufsize != NULL);
1895 *bufsize = NVME_LBA_RANGE_BUFSIZE;
1896
1897 break;
1898
1899 case NVME_FEAT_AUTO_PST:
1900 if (!nvme->n_auto_pst_supported)
1901 goto fail;
1902
1903 ASSERT(bufsize != NULL);
1904 *bufsize = NVME_AUTO_PST_BUFSIZE;
1905 break;
1906
1907 default:
1908 goto fail;
1909 }
1910
1911 if (bufsize != NULL && *bufsize != 0) {
1912 if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
1913 &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1914 dev_err(nvme->n_dip, CE_WARN,
1915 "!nvme_zalloc_dma failed for GET FEATURES");
1916 ret = ENOMEM;
1917 goto fail;
1918 }
1919
1920 if (cmd->nc_dma->nd_ncookie > 2) {
1921 dev_err(nvme->n_dip, CE_WARN,
1922 "!too many DMA cookies for GET FEATURES");
1923 atomic_inc_32(&nvme->n_too_many_cookies);
1924 ret = ENOMEM;
1925 goto fail;
1926 }
1927
1928 cmd->nc_sqe.sqe_dptr.d_prp[0] =
1929 cmd->nc_dma->nd_cookie.dmac_laddress;
1930 if (cmd->nc_dma->nd_ncookie > 1) {
1931 ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1932 &cmd->nc_dma->nd_cookie);
1933 cmd->nc_sqe.sqe_dptr.d_prp[1] =
1934 cmd->nc_dma->nd_cookie.dmac_laddress;
1935 }
1936 }
1937
1938 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
1939
1940 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1941 if (feature == NVME_FEAT_LBA_RANGE &&
1942 cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1943 cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD)
1944 nvme->n_lba_range_supported = B_FALSE;
1945 else
1946 dev_err(nvme->n_dip, CE_WARN,
1947 "!GET FEATURES %d failed with sct = %x, sc = %x",
1948 feature, cmd->nc_cqe.cqe_sf.sf_sct,
1949 cmd->nc_cqe.cqe_sf.sf_sc);
1950 goto fail;
1951 }
1952
1953 if (bufsize != NULL && *bufsize != 0) {
1954 ASSERT(buf != NULL);
1955 *buf = kmem_alloc(*bufsize, KM_SLEEP);
1956 bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
1957 }
1958
1959 *res = cmd->nc_cqe.cqe_dw0;
1960
1961 fail:
1962 nvme_free_cmd(cmd);
1963 return (ret);
1964 }
1965
1966 static int
nvme_write_cache_set(nvme_t * nvme,boolean_t enable)1967 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
1968 {
1969 nvme_write_cache_t nwc = { 0 };
1970
1971 if (enable)
1972 nwc.b.wc_wce = 1;
1973
1974 return (nvme_set_features(nvme, 0, NVME_FEAT_WRITE_CACHE, nwc.r,
1975 &nwc.r));
1976 }
1977
1978 static int
nvme_set_nqueues(nvme_t * nvme,uint16_t * nqueues)1979 nvme_set_nqueues(nvme_t *nvme, uint16_t *nqueues)
1980 {
1981 nvme_nqueues_t nq = { 0 };
1982 int ret;
1983
1984 nq.b.nq_nsq = nq.b.nq_ncq = *nqueues - 1;
1985
1986 ret = nvme_set_features(nvme, 0, NVME_FEAT_NQUEUES, nq.r, &nq.r);
1987
1988 if (ret == 0) {
1989 /*
1990 * Always use the same number of submission and completion
1991 * queues, and never use more than the requested number of
1992 * queues.
1993 */
1994 *nqueues = MIN(*nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq) + 1);
1995 }
1996
1997 return (ret);
1998 }
1999
2000 static int
nvme_create_io_qpair(nvme_t * nvme,nvme_qpair_t * qp,uint16_t idx)2001 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2002 {
2003 nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2004 nvme_create_queue_dw10_t dw10 = { 0 };
2005 nvme_create_cq_dw11_t c_dw11 = { 0 };
2006 nvme_create_sq_dw11_t s_dw11 = { 0 };
2007 int ret;
2008
2009 dw10.b.q_qid = idx;
2010 dw10.b.q_qsize = qp->nq_nentry - 1;
2011
2012 c_dw11.b.cq_pc = 1;
2013 c_dw11.b.cq_ien = 1;
2014 c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
2015
2016 cmd->nc_sqid = 0;
2017 cmd->nc_callback = nvme_wakeup_cmd;
2018 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2019 cmd->nc_sqe.sqe_cdw10 = dw10.r;
2020 cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2021 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
2022
2023 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2024
2025 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2026 dev_err(nvme->n_dip, CE_WARN,
2027 "!CREATE CQUEUE failed with sct = %x, sc = %x",
2028 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2029 goto fail;
2030 }
2031
2032 nvme_free_cmd(cmd);
2033
2034 s_dw11.b.sq_pc = 1;
2035 s_dw11.b.sq_cqid = idx;
2036
2037 cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2038 cmd->nc_sqid = 0;
2039 cmd->nc_callback = nvme_wakeup_cmd;
2040 cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2041 cmd->nc_sqe.sqe_cdw10 = dw10.r;
2042 cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2043 cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2044
2045 nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2046
2047 if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2048 dev_err(nvme->n_dip, CE_WARN,
2049 "!CREATE SQUEUE failed with sct = %x, sc = %x",
2050 cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2051 goto fail;
2052 }
2053
2054 fail:
2055 nvme_free_cmd(cmd);
2056
2057 return (ret);
2058 }
2059
2060 static boolean_t
nvme_reset(nvme_t * nvme,boolean_t quiesce)2061 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2062 {
2063 nvme_reg_csts_t csts;
2064 int i;
2065
2066 nvme_put32(nvme, NVME_REG_CC, 0);
2067
2068 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2069 if (csts.b.csts_rdy == 1) {
2070 nvme_put32(nvme, NVME_REG_CC, 0);
2071 for (i = 0; i != nvme->n_timeout * 10; i++) {
2072 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2073 if (csts.b.csts_rdy == 0)
2074 break;
2075
2076 if (quiesce)
2077 drv_usecwait(50000);
2078 else
2079 delay(drv_usectohz(50000));
2080 }
2081 }
2082
2083 nvme_put32(nvme, NVME_REG_AQA, 0);
2084 nvme_put32(nvme, NVME_REG_ASQ, 0);
2085 nvme_put32(nvme, NVME_REG_ACQ, 0);
2086
2087 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2088 return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2089 }
2090
2091 static void
nvme_shutdown(nvme_t * nvme,int mode,boolean_t quiesce)2092 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2093 {
2094 nvme_reg_cc_t cc;
2095 nvme_reg_csts_t csts;
2096 int i;
2097
2098 ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2099
2100 cc.r = nvme_get32(nvme, NVME_REG_CC);
2101 cc.b.cc_shn = mode & 0x3;
2102 nvme_put32(nvme, NVME_REG_CC, cc.r);
2103
2104 for (i = 0; i != 10; i++) {
2105 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2106 if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2107 break;
2108
2109 if (quiesce)
2110 drv_usecwait(100000);
2111 else
2112 delay(drv_usectohz(100000));
2113 }
2114 }
2115
2116
2117 static void
nvme_prepare_devid(nvme_t * nvme,uint32_t nsid)2118 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2119 {
2120 /*
2121 * Section 7.7 of the spec describes how to get a unique ID for
2122 * the controller: the vendor ID, the model name and the serial
2123 * number shall be unique when combined.
2124 *
2125 * If a namespace has no EUI64 we use the above and add the hex
2126 * namespace ID to get a unique ID for the namespace.
2127 */
2128 char model[sizeof (nvme->n_idctl->id_model) + 1];
2129 char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2130
2131 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2132 bcopy(nvme->n_idctl->id_serial, serial,
2133 sizeof (nvme->n_idctl->id_serial));
2134
2135 model[sizeof (nvme->n_idctl->id_model)] = '\0';
2136 serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2137
2138 nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2139 nvme->n_idctl->id_vid, model, serial, nsid);
2140 }
2141
2142 static int
nvme_init_ns(nvme_t * nvme,int nsid)2143 nvme_init_ns(nvme_t *nvme, int nsid)
2144 {
2145 nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2146 nvme_identify_nsid_t *idns;
2147 int last_rp;
2148
2149 ns->ns_nvme = nvme;
2150
2151 if (nvme_identify(nvme, nsid, (void **)&idns) != 0) {
2152 dev_err(nvme->n_dip, CE_WARN,
2153 "!failed to identify namespace %d", nsid);
2154 return (DDI_FAILURE);
2155 }
2156
2157 ns->ns_idns = idns;
2158 ns->ns_id = nsid;
2159 ns->ns_block_count = idns->id_nsize;
2160 ns->ns_block_size =
2161 1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2162 ns->ns_best_block_size = ns->ns_block_size;
2163
2164 /*
2165 * Get the EUI64 if present. Use it for devid and device node names.
2166 */
2167 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2168 bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2169
2170 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
2171 if (*(uint64_t *)ns->ns_eui64 != 0) {
2172 uint8_t *eui64 = ns->ns_eui64;
2173
2174 (void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2175 "%02x%02x%02x%02x%02x%02x%02x%02x",
2176 eui64[0], eui64[1], eui64[2], eui64[3],
2177 eui64[4], eui64[5], eui64[6], eui64[7]);
2178 } else {
2179 (void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2180 ns->ns_id);
2181
2182 nvme_prepare_devid(nvme, ns->ns_id);
2183 }
2184
2185 /*
2186 * Find the LBA format with no metadata and the best relative
2187 * performance. A value of 3 means "degraded", 0 is best.
2188 */
2189 last_rp = 3;
2190 for (int j = 0; j <= idns->id_nlbaf; j++) {
2191 if (idns->id_lbaf[j].lbaf_lbads == 0)
2192 break;
2193 if (idns->id_lbaf[j].lbaf_ms != 0)
2194 continue;
2195 if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2196 continue;
2197 last_rp = idns->id_lbaf[j].lbaf_rp;
2198 ns->ns_best_block_size =
2199 1 << idns->id_lbaf[j].lbaf_lbads;
2200 }
2201
2202 if (ns->ns_best_block_size < nvme->n_min_block_size)
2203 ns->ns_best_block_size = nvme->n_min_block_size;
2204
2205 /*
2206 * We currently don't support namespaces that use either:
2207 * - thin provisioning
2208 * - protection information
2209 * - illegal block size (< 512)
2210 */
2211 if (idns->id_nsfeat.f_thin ||
2212 idns->id_dps.dp_pinfo) {
2213 dev_err(nvme->n_dip, CE_WARN,
2214 "!ignoring namespace %d, unsupported features: "
2215 "thin = %d, pinfo = %d", nsid,
2216 idns->id_nsfeat.f_thin, idns->id_dps.dp_pinfo);
2217 ns->ns_ignore = B_TRUE;
2218 } else if (ns->ns_block_size < 512) {
2219 dev_err(nvme->n_dip, CE_WARN,
2220 "!ignoring namespace %d, unsupported block size %"PRIu64,
2221 nsid, (uint64_t)ns->ns_block_size);
2222 ns->ns_ignore = B_TRUE;
2223 } else {
2224 ns->ns_ignore = B_FALSE;
2225 }
2226
2227 return (DDI_SUCCESS);
2228 }
2229
2230 static int
nvme_init(nvme_t * nvme)2231 nvme_init(nvme_t *nvme)
2232 {
2233 nvme_reg_cc_t cc = { 0 };
2234 nvme_reg_aqa_t aqa = { 0 };
2235 nvme_reg_asq_t asq = { 0 };
2236 nvme_reg_acq_t acq = { 0 };
2237 nvme_reg_cap_t cap;
2238 nvme_reg_vs_t vs;
2239 nvme_reg_csts_t csts;
2240 int i = 0;
2241 uint16_t nqueues;
2242 char model[sizeof (nvme->n_idctl->id_model) + 1];
2243 char *vendor, *product;
2244
2245 /* Check controller version */
2246 vs.r = nvme_get32(nvme, NVME_REG_VS);
2247 nvme->n_version.v_major = vs.b.vs_mjr;
2248 nvme->n_version.v_minor = vs.b.vs_mnr;
2249 dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2250 nvme->n_version.v_major, nvme->n_version.v_minor);
2251
2252 if (nvme->n_version.v_major > nvme_version_major) {
2253 dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2254 nvme_version_major);
2255 if (nvme->n_strict_version)
2256 goto fail;
2257 }
2258
2259 /* retrieve controller configuration */
2260 cap.r = nvme_get64(nvme, NVME_REG_CAP);
2261
2262 if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2263 dev_err(nvme->n_dip, CE_WARN,
2264 "!NVM command set not supported by hardware");
2265 goto fail;
2266 }
2267
2268 nvme->n_nssr_supported = cap.b.cap_nssrs;
2269 nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2270 nvme->n_timeout = cap.b.cap_to;
2271 nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2272 nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2273 nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2274
2275 /*
2276 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2277 * the base page size of 4k (1<<12), so add 12 here to get the real
2278 * page size value.
2279 */
2280 nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2281 cap.b.cap_mpsmax + 12);
2282 nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2283
2284 /*
2285 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2286 */
2287 nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2288 nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2289
2290 /*
2291 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2292 * Maxxfer may be increased after we identified the controller limits.
2293 */
2294 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2295 nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2296 nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2297 nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2298
2299 /*
2300 * Reset controller if it's still in ready state.
2301 */
2302 if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2303 dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2304 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2305 nvme->n_dead = B_TRUE;
2306 goto fail;
2307 }
2308
2309 /*
2310 * Create the admin queue pair.
2311 */
2312 if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2313 != DDI_SUCCESS) {
2314 dev_err(nvme->n_dip, CE_WARN,
2315 "!unable to allocate admin qpair");
2316 goto fail;
2317 }
2318 nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2319 nvme->n_ioq[0] = nvme->n_adminq;
2320
2321 nvme->n_progress |= NVME_ADMIN_QUEUE;
2322
2323 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2324 "admin-queue-len", nvme->n_admin_queue_len);
2325
2326 aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2327 asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2328 acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
2329
2330 ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2331 ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2332
2333 nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2334 nvme_put64(nvme, NVME_REG_ASQ, asq);
2335 nvme_put64(nvme, NVME_REG_ACQ, acq);
2336
2337 cc.b.cc_ams = 0; /* use Round-Robin arbitration */
2338 cc.b.cc_css = 0; /* use NVM command set */
2339 cc.b.cc_mps = nvme->n_pageshift - 12;
2340 cc.b.cc_shn = 0; /* no shutdown in progress */
2341 cc.b.cc_en = 1; /* enable controller */
2342 cc.b.cc_iosqes = 6; /* submission queue entry is 2^6 bytes long */
2343 cc.b.cc_iocqes = 4; /* completion queue entry is 2^4 bytes long */
2344
2345 nvme_put32(nvme, NVME_REG_CC, cc.r);
2346
2347 /*
2348 * Wait for the controller to become ready.
2349 */
2350 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2351 if (csts.b.csts_rdy == 0) {
2352 for (i = 0; i != nvme->n_timeout * 10; i++) {
2353 delay(drv_usectohz(50000));
2354 csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2355
2356 if (csts.b.csts_cfs == 1) {
2357 dev_err(nvme->n_dip, CE_WARN,
2358 "!controller fatal status at init");
2359 ddi_fm_service_impact(nvme->n_dip,
2360 DDI_SERVICE_LOST);
2361 nvme->n_dead = B_TRUE;
2362 goto fail;
2363 }
2364
2365 if (csts.b.csts_rdy == 1)
2366 break;
2367 }
2368 }
2369
2370 if (csts.b.csts_rdy == 0) {
2371 dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2372 ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2373 nvme->n_dead = B_TRUE;
2374 goto fail;
2375 }
2376
2377 /*
2378 * Assume an abort command limit of 1. We'll destroy and re-init
2379 * that later when we know the true abort command limit.
2380 */
2381 sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2382
2383 /*
2384 * Setup initial interrupt for admin queue.
2385 */
2386 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2387 != DDI_SUCCESS) &&
2388 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2389 != DDI_SUCCESS) &&
2390 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2391 != DDI_SUCCESS)) {
2392 dev_err(nvme->n_dip, CE_WARN,
2393 "!failed to setup initial interrupt");
2394 goto fail;
2395 }
2396
2397 /*
2398 * Post an asynchronous event command to catch errors.
2399 */
2400 nvme_async_event(nvme);
2401
2402 /*
2403 * Identify Controller
2404 */
2405 if (nvme_identify(nvme, 0, (void **)&nvme->n_idctl) != 0) {
2406 dev_err(nvme->n_dip, CE_WARN,
2407 "!failed to identify controller");
2408 goto fail;
2409 }
2410
2411 /*
2412 * Get Vendor & Product ID
2413 */
2414 bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2415 model[sizeof (nvme->n_idctl->id_model)] = '\0';
2416 sata_split_model(model, &vendor, &product);
2417
2418 if (vendor == NULL)
2419 nvme->n_vendor = strdup("NVMe");
2420 else
2421 nvme->n_vendor = strdup(vendor);
2422
2423 nvme->n_product = strdup(product);
2424
2425 /*
2426 * Get controller limits.
2427 */
2428 nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2429 MIN(nvme->n_admin_queue_len / 10,
2430 MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2431
2432 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2433 "async-event-limit", nvme->n_async_event_limit);
2434
2435 nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2436
2437 /*
2438 * Reinitialize the semaphore with the true abort command limit
2439 * supported by the hardware. It's not necessary to disable interrupts
2440 * as only command aborts use the semaphore, and no commands are
2441 * executed or aborted while we're here.
2442 */
2443 sema_destroy(&nvme->n_abort_sema);
2444 sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2445 SEMA_DRIVER, NULL);
2446
2447 nvme->n_progress |= NVME_CTRL_LIMITS;
2448
2449 if (nvme->n_idctl->id_mdts == 0)
2450 nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2451 else
2452 nvme->n_max_data_transfer_size =
2453 1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2454
2455 nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2456
2457 /*
2458 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2459 * Chained PRPs are currently unsupported.
2460 *
2461 * This is a no-op on hardware which doesn't support a transfer size
2462 * big enough to require chained PRPs.
2463 */
2464 nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2465 (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2466
2467 nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2468
2469 /*
2470 * Make sure the minimum/maximum queue entry sizes are not
2471 * larger/smaller than the default.
2472 */
2473
2474 if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2475 ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2476 ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2477 ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2478 goto fail;
2479
2480 /*
2481 * Check for the presence of a Volatile Write Cache. If present,
2482 * enable or disable based on the value of the property
2483 * volatile-write-cache-enable (default is enabled).
2484 */
2485 nvme->n_write_cache_present =
2486 nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2487
2488 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2489 "volatile-write-cache-present",
2490 nvme->n_write_cache_present ? 1 : 0);
2491
2492 if (!nvme->n_write_cache_present) {
2493 nvme->n_write_cache_enabled = B_FALSE;
2494 } else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2495 != 0) {
2496 dev_err(nvme->n_dip, CE_WARN,
2497 "!failed to %sable volatile write cache",
2498 nvme->n_write_cache_enabled ? "en" : "dis");
2499 /*
2500 * Assume the cache is (still) enabled.
2501 */
2502 nvme->n_write_cache_enabled = B_TRUE;
2503 }
2504
2505 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2506 "volatile-write-cache-enable",
2507 nvme->n_write_cache_enabled ? 1 : 0);
2508
2509 /*
2510 * Assume LBA Range Type feature is supported. If it isn't this
2511 * will be set to B_FALSE by nvme_get_features().
2512 */
2513 nvme->n_lba_range_supported = B_TRUE;
2514
2515 /*
2516 * Check support for Autonomous Power State Transition.
2517 */
2518 if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2519 nvme->n_auto_pst_supported =
2520 nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2521
2522 /*
2523 * Identify Namespaces
2524 */
2525 nvme->n_namespace_count = nvme->n_idctl->id_nn;
2526 if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2527 dev_err(nvme->n_dip, CE_WARN,
2528 "!too many namespaces: %d, limiting to %d\n",
2529 nvme->n_namespace_count, NVME_MINOR_MAX);
2530 nvme->n_namespace_count = NVME_MINOR_MAX;
2531 }
2532
2533 nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2534 nvme->n_namespace_count, KM_SLEEP);
2535
2536 for (i = 0; i != nvme->n_namespace_count; i++) {
2537 mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2538 NULL);
2539 if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2540 goto fail;
2541 }
2542
2543 /*
2544 * Try to set up MSI/MSI-X interrupts.
2545 */
2546 if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2547 != 0) {
2548 nvme_release_interrupts(nvme);
2549
2550 nqueues = MIN(UINT16_MAX, ncpus);
2551
2552 if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2553 nqueues) != DDI_SUCCESS) &&
2554 (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2555 nqueues) != DDI_SUCCESS)) {
2556 dev_err(nvme->n_dip, CE_WARN,
2557 "!failed to setup MSI/MSI-X interrupts");
2558 goto fail;
2559 }
2560 }
2561
2562 nqueues = nvme->n_intr_cnt;
2563
2564 /*
2565 * Create I/O queue pairs.
2566 */
2567
2568 if (nvme_set_nqueues(nvme, &nqueues) != 0) {
2569 dev_err(nvme->n_dip, CE_WARN,
2570 "!failed to set number of I/O queues to %d",
2571 nvme->n_intr_cnt);
2572 goto fail;
2573 }
2574
2575 /*
2576 * Reallocate I/O queue array
2577 */
2578 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2579 nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2580 (nqueues + 1), KM_SLEEP);
2581 nvme->n_ioq[0] = nvme->n_adminq;
2582
2583 nvme->n_ioq_count = nqueues;
2584
2585 /*
2586 * If we got less queues than we asked for we might as well give
2587 * some of the interrupt vectors back to the system.
2588 */
2589 if (nvme->n_ioq_count < nvme->n_intr_cnt) {
2590 nvme_release_interrupts(nvme);
2591
2592 if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
2593 nvme->n_ioq_count) != DDI_SUCCESS) {
2594 dev_err(nvme->n_dip, CE_WARN,
2595 "!failed to reduce number of interrupts");
2596 goto fail;
2597 }
2598 }
2599
2600 /*
2601 * Alloc & register I/O queue pairs
2602 */
2603 nvme->n_io_queue_len =
2604 MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2605 (void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2606 nvme->n_io_queue_len);
2607
2608 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2609 if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2610 &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2611 dev_err(nvme->n_dip, CE_WARN,
2612 "!unable to allocate I/O qpair %d", i);
2613 goto fail;
2614 }
2615
2616 if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
2617 dev_err(nvme->n_dip, CE_WARN,
2618 "!unable to create I/O qpair %d", i);
2619 goto fail;
2620 }
2621 }
2622
2623 /*
2624 * Post more asynchronous events commands to reduce event reporting
2625 * latency as suggested by the spec.
2626 */
2627 for (i = 1; i != nvme->n_async_event_limit; i++)
2628 nvme_async_event(nvme);
2629
2630 return (DDI_SUCCESS);
2631
2632 fail:
2633 (void) nvme_reset(nvme, B_FALSE);
2634 return (DDI_FAILURE);
2635 }
2636
2637 static uint_t
nvme_intr(caddr_t arg1,caddr_t arg2)2638 nvme_intr(caddr_t arg1, caddr_t arg2)
2639 {
2640 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
2641 nvme_t *nvme = (nvme_t *)arg1;
2642 int inum = (int)(uintptr_t)arg2;
2643 int ccnt = 0;
2644 int qnum;
2645 nvme_cmd_t *cmd;
2646
2647 if (inum >= nvme->n_intr_cnt)
2648 return (DDI_INTR_UNCLAIMED);
2649
2650 if (nvme->n_dead)
2651 return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
2652 DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
2653
2654 /*
2655 * The interrupt vector a queue uses is calculated as queue_idx %
2656 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2657 * in steps of n_intr_cnt to process all queues using this vector.
2658 */
2659 for (qnum = inum;
2660 qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2661 qnum += nvme->n_intr_cnt) {
2662 while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2663 taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2664 cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2665 ccnt++;
2666 }
2667 }
2668
2669 return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2670 }
2671
2672 static void
nvme_release_interrupts(nvme_t * nvme)2673 nvme_release_interrupts(nvme_t *nvme)
2674 {
2675 int i;
2676
2677 for (i = 0; i < nvme->n_intr_cnt; i++) {
2678 if (nvme->n_inth[i] == NULL)
2679 break;
2680
2681 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2682 (void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2683 else
2684 (void) ddi_intr_disable(nvme->n_inth[i]);
2685
2686 (void) ddi_intr_remove_handler(nvme->n_inth[i]);
2687 (void) ddi_intr_free(nvme->n_inth[i]);
2688 }
2689
2690 kmem_free(nvme->n_inth, nvme->n_inth_sz);
2691 nvme->n_inth = NULL;
2692 nvme->n_inth_sz = 0;
2693
2694 nvme->n_progress &= ~NVME_INTERRUPTS;
2695 }
2696
2697 static int
nvme_setup_interrupts(nvme_t * nvme,int intr_type,int nqpairs)2698 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2699 {
2700 int nintrs, navail, count;
2701 int ret;
2702 int i;
2703
2704 if (nvme->n_intr_types == 0) {
2705 ret = ddi_intr_get_supported_types(nvme->n_dip,
2706 &nvme->n_intr_types);
2707 if (ret != DDI_SUCCESS) {
2708 dev_err(nvme->n_dip, CE_WARN,
2709 "!%s: ddi_intr_get_supported types failed",
2710 __func__);
2711 return (ret);
2712 }
2713 #ifdef __x86
2714 if (get_hwenv() == HW_VMWARE)
2715 nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
2716 #endif
2717 }
2718
2719 if ((nvme->n_intr_types & intr_type) == 0)
2720 return (DDI_FAILURE);
2721
2722 ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2723 if (ret != DDI_SUCCESS) {
2724 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2725 __func__);
2726 return (ret);
2727 }
2728
2729 ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2730 if (ret != DDI_SUCCESS) {
2731 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2732 __func__);
2733 return (ret);
2734 }
2735
2736 /* We want at most one interrupt per queue pair. */
2737 if (navail > nqpairs)
2738 navail = nqpairs;
2739
2740 nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2741 nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2742
2743 ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2744 &count, 0);
2745 if (ret != DDI_SUCCESS) {
2746 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2747 __func__);
2748 goto fail;
2749 }
2750
2751 nvme->n_intr_cnt = count;
2752
2753 ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2754 if (ret != DDI_SUCCESS) {
2755 dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2756 __func__);
2757 goto fail;
2758 }
2759
2760 for (i = 0; i < count; i++) {
2761 ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2762 (void *)nvme, (void *)(uintptr_t)i);
2763 if (ret != DDI_SUCCESS) {
2764 dev_err(nvme->n_dip, CE_WARN,
2765 "!%s: ddi_intr_add_handler failed", __func__);
2766 goto fail;
2767 }
2768 }
2769
2770 (void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2771
2772 for (i = 0; i < count; i++) {
2773 if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2774 ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
2775 else
2776 ret = ddi_intr_enable(nvme->n_inth[i]);
2777
2778 if (ret != DDI_SUCCESS) {
2779 dev_err(nvme->n_dip, CE_WARN,
2780 "!%s: enabling interrupt %d failed", __func__, i);
2781 goto fail;
2782 }
2783 }
2784
2785 nvme->n_intr_type = intr_type;
2786
2787 nvme->n_progress |= NVME_INTERRUPTS;
2788
2789 return (DDI_SUCCESS);
2790
2791 fail:
2792 nvme_release_interrupts(nvme);
2793
2794 return (ret);
2795 }
2796
2797 static int
nvme_fm_errcb(dev_info_t * dip,ddi_fm_error_t * fm_error,const void * arg)2798 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2799 {
2800 _NOTE(ARGUNUSED(arg));
2801
2802 pci_ereport_post(dip, fm_error, NULL);
2803 return (fm_error->fme_status);
2804 }
2805
2806 static int
nvme_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)2807 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2808 {
2809 nvme_t *nvme;
2810 int instance;
2811 int nregs;
2812 off_t regsize;
2813 int i;
2814 char name[32];
2815
2816 if (cmd != DDI_ATTACH)
2817 return (DDI_FAILURE);
2818
2819 instance = ddi_get_instance(dip);
2820
2821 if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2822 return (DDI_FAILURE);
2823
2824 nvme = ddi_get_soft_state(nvme_state, instance);
2825 ddi_set_driver_private(dip, nvme);
2826 nvme->n_dip = dip;
2827
2828 mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
2829
2830 nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2831 DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2832 nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2833 dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2834 B_TRUE : B_FALSE;
2835 nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2836 DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2837 nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2838 DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2839 nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2840 DDI_PROP_DONTPASS, "async-event-limit",
2841 NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2842 nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2843 DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
2844 B_TRUE : B_FALSE;
2845 nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2846 DDI_PROP_DONTPASS, "min-phys-block-size",
2847 NVME_DEFAULT_MIN_BLOCK_SIZE);
2848
2849 if (!ISP2(nvme->n_min_block_size) ||
2850 (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
2851 dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
2852 "using default %d", ISP2(nvme->n_min_block_size) ?
2853 "too low" : "not a power of 2",
2854 NVME_DEFAULT_MIN_BLOCK_SIZE);
2855 nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
2856 }
2857
2858 if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2859 nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2860 else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2861 nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2862
2863 if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2864 nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2865
2866 if (nvme->n_async_event_limit < 1)
2867 nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2868
2869 nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2870 nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2871 nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2872 nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2873
2874 /*
2875 * Setup FMA support.
2876 */
2877 nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2878 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2879 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2880 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2881
2882 ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2883
2884 if (nvme->n_fm_cap) {
2885 if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2886 nvme->n_reg_acc_attr.devacc_attr_access =
2887 DDI_FLAGERR_ACC;
2888
2889 if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2890 nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2891 nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2892 }
2893
2894 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2895 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2896 pci_ereport_setup(dip);
2897
2898 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2899 ddi_fm_handler_register(dip, nvme_fm_errcb,
2900 (void *)nvme);
2901 }
2902
2903 nvme->n_progress |= NVME_FMA_INIT;
2904
2905 /*
2906 * The spec defines several register sets. Only the controller
2907 * registers (set 1) are currently used.
2908 */
2909 if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2910 nregs < 2 ||
2911 ddi_dev_regsize(dip, 1, ®size) == DDI_FAILURE)
2912 goto fail;
2913
2914 if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2915 &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2916 dev_err(dip, CE_WARN, "!failed to map regset 1");
2917 goto fail;
2918 }
2919
2920 nvme->n_progress |= NVME_REGS_MAPPED;
2921
2922 /*
2923 * Create taskq for command completion.
2924 */
2925 (void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2926 ddi_driver_name(dip), ddi_get_instance(dip));
2927 nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2928 TASKQ_DEFAULTPRI, 0);
2929 if (nvme->n_cmd_taskq == NULL) {
2930 dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2931 goto fail;
2932 }
2933
2934 /*
2935 * Create PRP DMA cache
2936 */
2937 (void) snprintf(name, sizeof (name), "%s%d_prp_cache",
2938 ddi_driver_name(dip), ddi_get_instance(dip));
2939 nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
2940 0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
2941 NULL, (void *)nvme, NULL, 0);
2942
2943 if (nvme_init(nvme) != DDI_SUCCESS)
2944 goto fail;
2945
2946 /*
2947 * Attach the blkdev driver for each namespace.
2948 */
2949 for (i = 0; i != nvme->n_namespace_count; i++) {
2950 if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
2951 S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
2952 DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
2953 dev_err(dip, CE_WARN,
2954 "!failed to create minor node for namespace %d", i);
2955 goto fail;
2956 }
2957
2958 if (nvme->n_ns[i].ns_ignore)
2959 continue;
2960
2961 nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2962 &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2963
2964 if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2965 dev_err(dip, CE_WARN,
2966 "!failed to get blkdev handle for namespace %d", i);
2967 goto fail;
2968 }
2969
2970 if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2971 != DDI_SUCCESS) {
2972 dev_err(dip, CE_WARN,
2973 "!failed to attach blkdev handle for namespace %d",
2974 i);
2975 goto fail;
2976 }
2977 }
2978
2979 if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
2980 NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
2981 != DDI_SUCCESS) {
2982 dev_err(dip, CE_WARN, "nvme_attach: "
2983 "cannot create devctl minor node");
2984 goto fail;
2985 }
2986
2987 return (DDI_SUCCESS);
2988
2989 fail:
2990 /* attach successful anyway so that FMA can retire the device */
2991 if (nvme->n_dead)
2992 return (DDI_SUCCESS);
2993
2994 (void) nvme_detach(dip, DDI_DETACH);
2995
2996 return (DDI_FAILURE);
2997 }
2998
2999 static int
nvme_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)3000 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3001 {
3002 int instance, i;
3003 nvme_t *nvme;
3004
3005 if (cmd != DDI_DETACH)
3006 return (DDI_FAILURE);
3007
3008 instance = ddi_get_instance(dip);
3009
3010 nvme = ddi_get_soft_state(nvme_state, instance);
3011
3012 if (nvme == NULL)
3013 return (DDI_FAILURE);
3014
3015 ddi_remove_minor_node(dip, "devctl");
3016 mutex_destroy(&nvme->n_minor.nm_mutex);
3017
3018 if (nvme->n_ns) {
3019 for (i = 0; i != nvme->n_namespace_count; i++) {
3020 ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3021 mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3022
3023 if (nvme->n_ns[i].ns_bd_hdl) {
3024 (void) bd_detach_handle(
3025 nvme->n_ns[i].ns_bd_hdl);
3026 bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3027 }
3028
3029 if (nvme->n_ns[i].ns_idns)
3030 kmem_free(nvme->n_ns[i].ns_idns,
3031 sizeof (nvme_identify_nsid_t));
3032 if (nvme->n_ns[i].ns_devid)
3033 strfree(nvme->n_ns[i].ns_devid);
3034 }
3035
3036 kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3037 nvme->n_namespace_count);
3038 }
3039
3040 if (nvme->n_progress & NVME_INTERRUPTS)
3041 nvme_release_interrupts(nvme);
3042
3043 if (nvme->n_cmd_taskq)
3044 ddi_taskq_wait(nvme->n_cmd_taskq);
3045
3046 if (nvme->n_ioq_count > 0) {
3047 for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3048 if (nvme->n_ioq[i] != NULL) {
3049 /* TODO: send destroy queue commands */
3050 nvme_free_qpair(nvme->n_ioq[i]);
3051 }
3052 }
3053
3054 kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3055 (nvme->n_ioq_count + 1));
3056 }
3057
3058 if (nvme->n_prp_cache != NULL) {
3059 kmem_cache_destroy(nvme->n_prp_cache);
3060 }
3061
3062 if (nvme->n_progress & NVME_REGS_MAPPED) {
3063 nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3064 (void) nvme_reset(nvme, B_FALSE);
3065 }
3066
3067 if (nvme->n_cmd_taskq)
3068 ddi_taskq_destroy(nvme->n_cmd_taskq);
3069
3070 if (nvme->n_progress & NVME_CTRL_LIMITS)
3071 sema_destroy(&nvme->n_abort_sema);
3072
3073 if (nvme->n_progress & NVME_ADMIN_QUEUE)
3074 nvme_free_qpair(nvme->n_adminq);
3075
3076 if (nvme->n_idctl)
3077 kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3078
3079 if (nvme->n_progress & NVME_REGS_MAPPED)
3080 ddi_regs_map_free(&nvme->n_regh);
3081
3082 if (nvme->n_progress & NVME_FMA_INIT) {
3083 if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3084 ddi_fm_handler_unregister(nvme->n_dip);
3085
3086 if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3087 DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3088 pci_ereport_teardown(nvme->n_dip);
3089
3090 ddi_fm_fini(nvme->n_dip);
3091 }
3092
3093 if (nvme->n_vendor != NULL)
3094 strfree(nvme->n_vendor);
3095
3096 if (nvme->n_product != NULL)
3097 strfree(nvme->n_product);
3098
3099 ddi_soft_state_free(nvme_state, instance);
3100
3101 return (DDI_SUCCESS);
3102 }
3103
3104 static int
nvme_quiesce(dev_info_t * dip)3105 nvme_quiesce(dev_info_t *dip)
3106 {
3107 int instance;
3108 nvme_t *nvme;
3109
3110 instance = ddi_get_instance(dip);
3111
3112 nvme = ddi_get_soft_state(nvme_state, instance);
3113
3114 if (nvme == NULL)
3115 return (DDI_FAILURE);
3116
3117 nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3118
3119 (void) nvme_reset(nvme, B_TRUE);
3120
3121 return (DDI_FAILURE);
3122 }
3123
3124 static int
nvme_fill_prp(nvme_cmd_t * cmd,bd_xfer_t * xfer)3125 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3126 {
3127 nvme_t *nvme = cmd->nc_nvme;
3128 int nprp_page, nprp;
3129 uint64_t *prp;
3130
3131 if (xfer->x_ndmac == 0)
3132 return (DDI_FAILURE);
3133
3134 cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3135 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3136
3137 if (xfer->x_ndmac == 1) {
3138 cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3139 return (DDI_SUCCESS);
3140 } else if (xfer->x_ndmac == 2) {
3141 cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3142 return (DDI_SUCCESS);
3143 }
3144
3145 xfer->x_ndmac--;
3146
3147 nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
3148 ASSERT(nprp_page > 0);
3149 nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3150
3151 /*
3152 * We currently don't support chained PRPs and set up our DMA
3153 * attributes to reflect that. If we still get an I/O request
3154 * that needs a chained PRP something is very wrong.
3155 */
3156 VERIFY(nprp == 1);
3157
3158 cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3159 bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3160
3161 cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3162
3163 /*LINTED: E_PTR_BAD_CAST_ALIGN*/
3164 for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3165 xfer->x_ndmac > 0;
3166 prp++, xfer->x_ndmac--) {
3167 *prp = xfer->x_dmac.dmac_laddress;
3168 ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3169 }
3170
3171 (void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3172 DDI_DMA_SYNC_FORDEV);
3173 return (DDI_SUCCESS);
3174 }
3175
3176 static nvme_cmd_t *
nvme_create_nvm_cmd(nvme_namespace_t * ns,uint8_t opc,bd_xfer_t * xfer)3177 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3178 {
3179 nvme_t *nvme = ns->ns_nvme;
3180 nvme_cmd_t *cmd;
3181
3182 /*
3183 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3184 */
3185 cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3186 KM_NOSLEEP : KM_SLEEP);
3187
3188 if (cmd == NULL)
3189 return (NULL);
3190
3191 cmd->nc_sqe.sqe_opc = opc;
3192 cmd->nc_callback = nvme_bd_xfer_done;
3193 cmd->nc_xfer = xfer;
3194
3195 switch (opc) {
3196 case NVME_OPC_NVM_WRITE:
3197 case NVME_OPC_NVM_READ:
3198 VERIFY(xfer->x_nblks <= 0x10000);
3199
3200 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3201
3202 cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3203 cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3204 cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3205
3206 if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3207 goto fail;
3208 break;
3209
3210 case NVME_OPC_NVM_FLUSH:
3211 cmd->nc_sqe.sqe_nsid = ns->ns_id;
3212 break;
3213
3214 default:
3215 goto fail;
3216 }
3217
3218 return (cmd);
3219
3220 fail:
3221 nvme_free_cmd(cmd);
3222 return (NULL);
3223 }
3224
3225 static void
nvme_bd_xfer_done(void * arg)3226 nvme_bd_xfer_done(void *arg)
3227 {
3228 nvme_cmd_t *cmd = arg;
3229 bd_xfer_t *xfer = cmd->nc_xfer;
3230 int error = 0;
3231
3232 error = nvme_check_cmd_status(cmd);
3233 nvme_free_cmd(cmd);
3234
3235 bd_xfer_done(xfer, error);
3236 }
3237
3238 static void
nvme_bd_driveinfo(void * arg,bd_drive_t * drive)3239 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3240 {
3241 nvme_namespace_t *ns = arg;
3242 nvme_t *nvme = ns->ns_nvme;
3243
3244 /*
3245 * blkdev maintains one queue size per instance (namespace),
3246 * but all namespace share the I/O queues.
3247 * TODO: need to figure out a sane default, or use per-NS I/O queues,
3248 * or change blkdev to handle EAGAIN
3249 */
3250 drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
3251 / nvme->n_namespace_count;
3252
3253 /*
3254 * d_maxxfer is not set, which means the value is taken from the DMA
3255 * attributes specified to bd_alloc_handle.
3256 */
3257
3258 drive->d_removable = B_FALSE;
3259 drive->d_hotpluggable = B_FALSE;
3260
3261 bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3262 drive->d_target = ns->ns_id;
3263 drive->d_lun = 0;
3264
3265 drive->d_model = nvme->n_idctl->id_model;
3266 drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3267 drive->d_vendor = nvme->n_vendor;
3268 drive->d_vendor_len = strlen(nvme->n_vendor);
3269 drive->d_product = nvme->n_product;
3270 drive->d_product_len = strlen(nvme->n_product);
3271 drive->d_serial = nvme->n_idctl->id_serial;
3272 drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3273 drive->d_revision = nvme->n_idctl->id_fwrev;
3274 drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3275 }
3276
3277 static int
nvme_bd_mediainfo(void * arg,bd_media_t * media)3278 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3279 {
3280 nvme_namespace_t *ns = arg;
3281
3282 media->m_nblks = ns->ns_block_count;
3283 media->m_blksize = ns->ns_block_size;
3284 media->m_readonly = B_FALSE;
3285 media->m_solidstate = B_TRUE;
3286
3287 media->m_pblksize = ns->ns_best_block_size;
3288
3289 return (0);
3290 }
3291
3292 static int
nvme_bd_cmd(nvme_namespace_t * ns,bd_xfer_t * xfer,uint8_t opc)3293 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3294 {
3295 nvme_t *nvme = ns->ns_nvme;
3296 nvme_cmd_t *cmd;
3297 nvme_qpair_t *ioq;
3298 boolean_t poll;
3299 int ret;
3300
3301 if (nvme->n_dead)
3302 return (EIO);
3303
3304 cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3305 if (cmd == NULL)
3306 return (ENOMEM);
3307
3308 cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
3309 ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3310 ioq = nvme->n_ioq[cmd->nc_sqid];
3311
3312 /*
3313 * Get the polling flag before submitting the command. The command may
3314 * complete immediately after it was submitted, which means we must
3315 * treat both cmd and xfer as if they have been freed already.
3316 */
3317 poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3318
3319 ret = nvme_submit_io_cmd(ioq, cmd);
3320
3321 if (ret != 0)
3322 return (ret);
3323
3324 if (!poll)
3325 return (0);
3326
3327 do {
3328 cmd = nvme_retrieve_cmd(nvme, ioq);
3329 if (cmd != NULL)
3330 nvme_bd_xfer_done(cmd);
3331 else
3332 drv_usecwait(10);
3333 } while (ioq->nq_active_cmds != 0);
3334
3335 return (0);
3336 }
3337
3338 static int
nvme_bd_read(void * arg,bd_xfer_t * xfer)3339 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3340 {
3341 nvme_namespace_t *ns = arg;
3342
3343 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3344 }
3345
3346 static int
nvme_bd_write(void * arg,bd_xfer_t * xfer)3347 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3348 {
3349 nvme_namespace_t *ns = arg;
3350
3351 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3352 }
3353
3354 static int
nvme_bd_sync(void * arg,bd_xfer_t * xfer)3355 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3356 {
3357 nvme_namespace_t *ns = arg;
3358
3359 if (ns->ns_nvme->n_dead)
3360 return (EIO);
3361
3362 /*
3363 * If the volatile write cache is not present or not enabled the FLUSH
3364 * command is a no-op, so we can take a shortcut here.
3365 */
3366 if (!ns->ns_nvme->n_write_cache_present) {
3367 bd_xfer_done(xfer, ENOTSUP);
3368 return (0);
3369 }
3370
3371 if (!ns->ns_nvme->n_write_cache_enabled) {
3372 bd_xfer_done(xfer, 0);
3373 return (0);
3374 }
3375
3376 return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3377 }
3378
3379 static int
nvme_bd_devid(void * arg,dev_info_t * devinfo,ddi_devid_t * devid)3380 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3381 {
3382 nvme_namespace_t *ns = arg;
3383
3384 /*LINTED: E_BAD_PTR_CAST_ALIGN*/
3385 if (*(uint64_t *)ns->ns_eui64 != 0) {
3386 return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3387 sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3388 } else {
3389 return (ddi_devid_init(devinfo, DEVID_ENCAP,
3390 strlen(ns->ns_devid), ns->ns_devid, devid));
3391 }
3392 }
3393
3394 static int
nvme_open(dev_t * devp,int flag,int otyp,cred_t * cred_p)3395 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3396 {
3397 #ifndef __lock_lint
3398 _NOTE(ARGUNUSED(cred_p));
3399 #endif
3400 minor_t minor = getminor(*devp);
3401 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3402 int nsid = NVME_MINOR_NSID(minor);
3403 nvme_minor_state_t *nm;
3404 int rv = 0;
3405
3406 if (otyp != OTYP_CHR)
3407 return (EINVAL);
3408
3409 if (nvme == NULL)
3410 return (ENXIO);
3411
3412 if (nsid > nvme->n_namespace_count)
3413 return (ENXIO);
3414
3415 if (nvme->n_dead)
3416 return (EIO);
3417
3418 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3419
3420 mutex_enter(&nm->nm_mutex);
3421 if (nm->nm_oexcl) {
3422 rv = EBUSY;
3423 goto out;
3424 }
3425
3426 if (flag & FEXCL) {
3427 if (nm->nm_ocnt != 0) {
3428 rv = EBUSY;
3429 goto out;
3430 }
3431 nm->nm_oexcl = B_TRUE;
3432 }
3433
3434 nm->nm_ocnt++;
3435
3436 out:
3437 mutex_exit(&nm->nm_mutex);
3438 return (rv);
3439
3440 }
3441
3442 static int
nvme_close(dev_t dev,int flag,int otyp,cred_t * cred_p)3443 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3444 {
3445 #ifndef __lock_lint
3446 _NOTE(ARGUNUSED(cred_p));
3447 _NOTE(ARGUNUSED(flag));
3448 #endif
3449 minor_t minor = getminor(dev);
3450 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3451 int nsid = NVME_MINOR_NSID(minor);
3452 nvme_minor_state_t *nm;
3453
3454 if (otyp != OTYP_CHR)
3455 return (ENXIO);
3456
3457 if (nvme == NULL)
3458 return (ENXIO);
3459
3460 if (nsid > nvme->n_namespace_count)
3461 return (ENXIO);
3462
3463 nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3464
3465 mutex_enter(&nm->nm_mutex);
3466 if (nm->nm_oexcl)
3467 nm->nm_oexcl = B_FALSE;
3468
3469 ASSERT(nm->nm_ocnt > 0);
3470 nm->nm_ocnt--;
3471 mutex_exit(&nm->nm_mutex);
3472
3473 return (0);
3474 }
3475
3476 static int
nvme_ioctl_identify(nvme_t * nvme,int nsid,nvme_ioctl_t * nioc,int mode,cred_t * cred_p)3477 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3478 cred_t *cred_p)
3479 {
3480 _NOTE(ARGUNUSED(cred_p));
3481 int rv = 0;
3482 void *idctl;
3483
3484 if ((mode & FREAD) == 0)
3485 return (EPERM);
3486
3487 if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
3488 return (EINVAL);
3489
3490 if ((rv = nvme_identify(nvme, nsid, (void **)&idctl)) != 0)
3491 return (rv);
3492
3493 if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
3494 != 0)
3495 rv = EFAULT;
3496
3497 kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
3498
3499 return (rv);
3500 }
3501
3502 static int
nvme_ioctl_capabilities(nvme_t * nvme,int nsid,nvme_ioctl_t * nioc,int mode,cred_t * cred_p)3503 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3504 int mode, cred_t *cred_p)
3505 {
3506 _NOTE(ARGUNUSED(nsid, cred_p));
3507 int rv = 0;
3508 nvme_reg_cap_t cap = { 0 };
3509 nvme_capabilities_t nc;
3510
3511 if ((mode & FREAD) == 0)
3512 return (EPERM);
3513
3514 if (nioc->n_len < sizeof (nc))
3515 return (EINVAL);
3516
3517 cap.r = nvme_get64(nvme, NVME_REG_CAP);
3518
3519 /*
3520 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
3521 * specify the base page size of 4k (1<<12), so add 12 here to
3522 * get the real page size value.
3523 */
3524 nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
3525 nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
3526
3527 if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
3528 rv = EFAULT;
3529
3530 return (rv);
3531 }
3532
3533 static int
nvme_ioctl_get_logpage(nvme_t * nvme,int nsid,nvme_ioctl_t * nioc,int mode,cred_t * cred_p)3534 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3535 int mode, cred_t *cred_p)
3536 {
3537 _NOTE(ARGUNUSED(cred_p));
3538 void *log = NULL;
3539 size_t bufsize = 0;
3540 int rv = 0;
3541
3542 if ((mode & FREAD) == 0)
3543 return (EPERM);
3544
3545 switch (nioc->n_arg) {
3546 case NVME_LOGPAGE_ERROR:
3547 if (nsid != 0)
3548 return (EINVAL);
3549 break;
3550 case NVME_LOGPAGE_HEALTH:
3551 if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
3552 return (EINVAL);
3553
3554 if (nsid == 0)
3555 nsid = (uint32_t)-1;
3556
3557 break;
3558 case NVME_LOGPAGE_FWSLOT:
3559 if (nsid != 0)
3560 return (EINVAL);
3561 break;
3562 default:
3563 return (EINVAL);
3564 }
3565
3566 if (nvme_get_logpage(nvme, &log, &bufsize, nioc->n_arg, nsid)
3567 != DDI_SUCCESS)
3568 return (EIO);
3569
3570 if (nioc->n_len < bufsize) {
3571 kmem_free(log, bufsize);
3572 return (EINVAL);
3573 }
3574
3575 if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
3576 rv = EFAULT;
3577
3578 nioc->n_len = bufsize;
3579 kmem_free(log, bufsize);
3580
3581 return (rv);
3582 }
3583
3584 static int
nvme_ioctl_get_features(nvme_t * nvme,int nsid,nvme_ioctl_t * nioc,int mode,cred_t * cred_p)3585 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
3586 int mode, cred_t *cred_p)
3587 {
3588 _NOTE(ARGUNUSED(cred_p));
3589 void *buf = NULL;
3590 size_t bufsize = 0;
3591 uint32_t res = 0;
3592 uint8_t feature;
3593 int rv = 0;
3594
3595 if ((mode & FREAD) == 0)
3596 return (EPERM);
3597
3598 if ((nioc->n_arg >> 32) > 0xff)
3599 return (EINVAL);
3600
3601 feature = (uint8_t)(nioc->n_arg >> 32);
3602
3603 switch (feature) {
3604 case NVME_FEAT_ARBITRATION:
3605 case NVME_FEAT_POWER_MGMT:
3606 case NVME_FEAT_TEMPERATURE:
3607 case NVME_FEAT_ERROR:
3608 case NVME_FEAT_NQUEUES:
3609 case NVME_FEAT_INTR_COAL:
3610 case NVME_FEAT_WRITE_ATOM:
3611 case NVME_FEAT_ASYNC_EVENT:
3612 case NVME_FEAT_PROGRESS:
3613 if (nsid != 0)
3614 return (EINVAL);
3615 break;
3616
3617 case NVME_FEAT_INTR_VECT:
3618 if (nsid != 0)
3619 return (EINVAL);
3620
3621 res = nioc->n_arg & 0xffffffffUL;
3622 if (res >= nvme->n_intr_cnt)
3623 return (EINVAL);
3624 break;
3625
3626 case NVME_FEAT_LBA_RANGE:
3627 if (nvme->n_lba_range_supported == B_FALSE)
3628 return (EINVAL);
3629
3630 if (nsid == 0 ||
3631 nsid > nvme->n_namespace_count)
3632 return (EINVAL);
3633
3634 break;
3635
3636 case NVME_FEAT_WRITE_CACHE:
3637 if (nsid != 0)
3638 return (EINVAL);
3639
3640 if (!nvme->n_write_cache_present)
3641 return (EINVAL);
3642
3643 break;
3644
3645 case NVME_FEAT_AUTO_PST:
3646 if (nsid != 0)
3647 return (EINVAL);
3648
3649 if (!nvme->n_auto_pst_supported)
3650 return (EINVAL);
3651
3652 break;
3653
3654 default:
3655 return (EINVAL);
3656 }
3657
3658 rv = nvme_get_features(nvme, nsid, feature, &res, &buf, &bufsize);
3659 if (rv != 0)
3660 return (rv);
3661
3662 if (nioc->n_len < bufsize) {
3663 kmem_free(buf, bufsize);
3664 return (EINVAL);
3665 }
3666
3667 if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
3668 rv = EFAULT;
3669
3670 kmem_free(buf, bufsize);
3671 nioc->n_arg = res;
3672 nioc->n_len = bufsize;
3673
3674 return (rv);
3675 }
3676
3677 static int
nvme_ioctl_intr_cnt(nvme_t * nvme,int nsid,nvme_ioctl_t * nioc,int mode,cred_t * cred_p)3678 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3679 cred_t *cred_p)
3680 {
3681 _NOTE(ARGUNUSED(nsid, mode, cred_p));
3682
3683 if ((mode & FREAD) == 0)
3684 return (EPERM);
3685
3686 nioc->n_arg = nvme->n_intr_cnt;
3687 return (0);
3688 }
3689
3690 static int
nvme_ioctl_version(nvme_t * nvme,int nsid,nvme_ioctl_t * nioc,int mode,cred_t * cred_p)3691 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3692 cred_t *cred_p)
3693 {
3694 _NOTE(ARGUNUSED(nsid, cred_p));
3695 int rv = 0;
3696
3697 if ((mode & FREAD) == 0)
3698 return (EPERM);
3699
3700 if (nioc->n_len < sizeof (nvme->n_version))
3701 return (ENOMEM);
3702
3703 if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
3704 sizeof (nvme->n_version), mode) != 0)
3705 rv = EFAULT;
3706
3707 return (rv);
3708 }
3709
3710 static int
nvme_ioctl_format(nvme_t * nvme,int nsid,nvme_ioctl_t * nioc,int mode,cred_t * cred_p)3711 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3712 cred_t *cred_p)
3713 {
3714 _NOTE(ARGUNUSED(mode));
3715 nvme_format_nvm_t frmt = { 0 };
3716 int c_nsid = nsid != 0 ? nsid - 1 : 0;
3717
3718 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3719 return (EPERM);
3720
3721 frmt.r = nioc->n_arg & 0xffffffff;
3722
3723 /*
3724 * Check whether the FORMAT NVM command is supported.
3725 */
3726 if (nvme->n_idctl->id_oacs.oa_format == 0)
3727 return (EINVAL);
3728
3729 /*
3730 * Don't allow format or secure erase of individual namespace if that
3731 * would cause a format or secure erase of all namespaces.
3732 */
3733 if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
3734 return (EINVAL);
3735
3736 if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
3737 nvme->n_idctl->id_fna.fn_sec_erase != 0)
3738 return (EINVAL);
3739
3740 /*
3741 * Don't allow formatting with Protection Information.
3742 */
3743 if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
3744 return (EINVAL);
3745
3746 /*
3747 * Don't allow formatting using an illegal LBA format, or any LBA format
3748 * that uses metadata.
3749 */
3750 if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
3751 nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
3752 return (EINVAL);
3753
3754 /*
3755 * Don't allow formatting using an illegal Secure Erase setting.
3756 */
3757 if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
3758 (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
3759 nvme->n_idctl->id_fna.fn_crypt_erase == 0))
3760 return (EINVAL);
3761
3762 if (nsid == 0)
3763 nsid = (uint32_t)-1;
3764
3765 return (nvme_format_nvm(nvme, nsid, frmt.b.fm_lbaf, B_FALSE, 0, B_FALSE,
3766 frmt.b.fm_ses));
3767 }
3768
3769 static int
nvme_ioctl_detach(nvme_t * nvme,int nsid,nvme_ioctl_t * nioc,int mode,cred_t * cred_p)3770 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3771 cred_t *cred_p)
3772 {
3773 _NOTE(ARGUNUSED(nioc, mode));
3774 int rv = 0;
3775
3776 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3777 return (EPERM);
3778
3779 if (nsid == 0)
3780 return (EINVAL);
3781
3782 rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
3783 if (rv != DDI_SUCCESS)
3784 rv = EBUSY;
3785
3786 return (rv);
3787 }
3788
3789 static int
nvme_ioctl_attach(nvme_t * nvme,int nsid,nvme_ioctl_t * nioc,int mode,cred_t * cred_p)3790 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
3791 cred_t *cred_p)
3792 {
3793 _NOTE(ARGUNUSED(nioc, mode));
3794 nvme_identify_nsid_t *idns;
3795 int rv = 0;
3796
3797 if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
3798 return (EPERM);
3799
3800 if (nsid == 0)
3801 return (EINVAL);
3802
3803 /*
3804 * Identify namespace again, free old identify data.
3805 */
3806 idns = nvme->n_ns[nsid - 1].ns_idns;
3807 if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
3808 return (EIO);
3809
3810 kmem_free(idns, sizeof (nvme_identify_nsid_t));
3811
3812 rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
3813 if (rv != DDI_SUCCESS)
3814 rv = EBUSY;
3815
3816 return (rv);
3817 }
3818
3819 static int
nvme_ioctl(dev_t dev,int cmd,intptr_t arg,int mode,cred_t * cred_p,int * rval_p)3820 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
3821 int *rval_p)
3822 {
3823 #ifndef __lock_lint
3824 _NOTE(ARGUNUSED(rval_p));
3825 #endif
3826 minor_t minor = getminor(dev);
3827 nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3828 int nsid = NVME_MINOR_NSID(minor);
3829 int rv = 0;
3830 nvme_ioctl_t nioc;
3831
3832 int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
3833 NULL,
3834 nvme_ioctl_identify,
3835 nvme_ioctl_identify,
3836 nvme_ioctl_capabilities,
3837 nvme_ioctl_get_logpage,
3838 nvme_ioctl_get_features,
3839 nvme_ioctl_intr_cnt,
3840 nvme_ioctl_version,
3841 nvme_ioctl_format,
3842 nvme_ioctl_detach,
3843 nvme_ioctl_attach
3844 };
3845
3846 if (nvme == NULL)
3847 return (ENXIO);
3848
3849 if (nsid > nvme->n_namespace_count)
3850 return (ENXIO);
3851
3852 if (IS_DEVCTL(cmd))
3853 return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
3854
3855 #ifdef _MULTI_DATAMODEL
3856 switch (ddi_model_convert_from(mode & FMODELS)) {
3857 case DDI_MODEL_ILP32: {
3858 nvme_ioctl32_t nioc32;
3859 if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
3860 mode) != 0)
3861 return (EFAULT);
3862 nioc.n_len = nioc32.n_len;
3863 nioc.n_buf = nioc32.n_buf;
3864 nioc.n_arg = nioc32.n_arg;
3865 break;
3866 }
3867 case DDI_MODEL_NONE:
3868 #endif
3869 if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
3870 != 0)
3871 return (EFAULT);
3872 #ifdef _MULTI_DATAMODEL
3873 break;
3874 }
3875 #endif
3876
3877 if (nvme->n_dead && cmd != NVME_IOC_DETACH)
3878 return (EIO);
3879
3880
3881 if (cmd == NVME_IOC_IDENTIFY_CTRL) {
3882 /*
3883 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
3884 * attachment point nodes.
3885 */
3886 nsid = 0;
3887 } else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
3888 /*
3889 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
3890 * will always return identify data for namespace 1.
3891 */
3892 nsid = 1;
3893 }
3894
3895 if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
3896 rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
3897 cred_p);
3898 else
3899 rv = EINVAL;
3900
3901 #ifdef _MULTI_DATAMODEL
3902 switch (ddi_model_convert_from(mode & FMODELS)) {
3903 case DDI_MODEL_ILP32: {
3904 nvme_ioctl32_t nioc32;
3905
3906 nioc32.n_len = (size32_t)nioc.n_len;
3907 nioc32.n_buf = (uintptr32_t)nioc.n_buf;
3908 nioc32.n_arg = nioc.n_arg;
3909
3910 if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
3911 mode) != 0)
3912 return (EFAULT);
3913 break;
3914 }
3915 case DDI_MODEL_NONE:
3916 #endif
3917 if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
3918 != 0)
3919 return (EFAULT);
3920 #ifdef _MULTI_DATAMODEL
3921 break;
3922 }
3923 #endif
3924
3925 return (rv);
3926 }
3927