1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2001-2024, Intel Corporation
5 * Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
6 * Copyright (c) 2024 Kevin Bowling <kbowling@FreeBSD.org>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include "if_em.h"
31 #include <sys/sbuf.h>
32 #include <machine/_inttypes.h>
33
34 #define em_mac_min e1000_82571
35 #define igb_mac_min e1000_82575
36
37 /*********************************************************************
38 * Driver version:
39 *********************************************************************/
40 static const char em_driver_version[] = "7.7.8-fbsd";
41 static const char igb_driver_version[] = "2.5.28-fbsd";
42
43 /*********************************************************************
44 * PCI Device ID Table
45 *
46 * Used by probe to select devices to load on
47 * Last field stores an index into e1000_strings
48 * Last entry must be all 0s
49 *
50 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
51 *********************************************************************/
52
53 static const pci_vendor_info_t em_vendor_info_array[] =
54 {
55 /* Intel(R) - lem-class legacy devices */
56 PVID(0x8086, E1000_DEV_ID_82540EM,
57 "Intel(R) Legacy PRO/1000 MT 82540EM"),
58 PVID(0x8086, E1000_DEV_ID_82540EM_LOM,
59 "Intel(R) Legacy PRO/1000 MT 82540EM (LOM)"),
60 PVID(0x8086, E1000_DEV_ID_82540EP,
61 "Intel(R) Legacy PRO/1000 MT 82540EP"),
62 PVID(0x8086, E1000_DEV_ID_82540EP_LOM,
63 "Intel(R) Legacy PRO/1000 MT 82540EP (LOM)"),
64 PVID(0x8086, E1000_DEV_ID_82540EP_LP,
65 "Intel(R) Legacy PRO/1000 MT 82540EP (Mobile)"),
66
67 PVID(0x8086, E1000_DEV_ID_82541EI,
68 "Intel(R) Legacy PRO/1000 MT 82541EI (Copper)"),
69 PVID(0x8086, E1000_DEV_ID_82541ER,
70 "Intel(R) Legacy PRO/1000 82541ER"),
71 PVID(0x8086, E1000_DEV_ID_82541ER_LOM,
72 "Intel(R) Legacy PRO/1000 MT 82541ER"),
73 PVID(0x8086, E1000_DEV_ID_82541EI_MOBILE,
74 "Intel(R) Legacy PRO/1000 MT 82541EI (Mobile)"),
75 PVID(0x8086, E1000_DEV_ID_82541GI,
76 "Intel(R) Legacy PRO/1000 MT 82541GI"),
77 PVID(0x8086, E1000_DEV_ID_82541GI_LF,
78 "Intel(R) Legacy PRO/1000 GT 82541PI"),
79 PVID(0x8086, E1000_DEV_ID_82541GI_MOBILE,
80 "Intel(R) Legacy PRO/1000 MT 82541GI (Mobile)"),
81
82 PVID(0x8086, E1000_DEV_ID_82542,
83 "Intel(R) Legacy PRO/1000 82542 (Fiber)"),
84
85 PVID(0x8086, E1000_DEV_ID_82543GC_FIBER,
86 "Intel(R) Legacy PRO/1000 F 82543GC (Fiber)"),
87 PVID(0x8086, E1000_DEV_ID_82543GC_COPPER,
88 "Intel(R) Legacy PRO/1000 T 82543GC (Copper)"),
89
90 PVID(0x8086, E1000_DEV_ID_82544EI_COPPER,
91 "Intel(R) Legacy PRO/1000 XT 82544EI (Copper)"),
92 PVID(0x8086, E1000_DEV_ID_82544EI_FIBER,
93 "Intel(R) Legacy PRO/1000 XF 82544EI (Fiber)"),
94 PVID(0x8086, E1000_DEV_ID_82544GC_COPPER,
95 "Intel(R) Legacy PRO/1000 T 82544GC (Copper)"),
96 PVID(0x8086, E1000_DEV_ID_82544GC_LOM,
97 "Intel(R) Legacy PRO/1000 XT 82544GC (LOM)"),
98
99 PVID(0x8086, E1000_DEV_ID_82545EM_COPPER,
100 "Intel(R) Legacy PRO/1000 MT 82545EM (Copper)"),
101 PVID(0x8086, E1000_DEV_ID_82545EM_FIBER,
102 "Intel(R) Legacy PRO/1000 MF 82545EM (Fiber)"),
103 PVID(0x8086, E1000_DEV_ID_82545GM_COPPER,
104 "Intel(R) Legacy PRO/1000 MT 82545GM (Copper)"),
105 PVID(0x8086, E1000_DEV_ID_82545GM_FIBER,
106 "Intel(R) Legacy PRO/1000 MF 82545GM (Fiber)"),
107 PVID(0x8086, E1000_DEV_ID_82545GM_SERDES,
108 "Intel(R) Legacy PRO/1000 MB 82545GM (SERDES)"),
109
110 PVID(0x8086, E1000_DEV_ID_82546EB_COPPER,
111 "Intel(R) Legacy PRO/1000 MT 82546EB (Copper)"),
112 PVID(0x8086, E1000_DEV_ID_82546EB_FIBER,
113 "Intel(R) Legacy PRO/1000 MF 82546EB (Fiber)"),
114 PVID(0x8086, E1000_DEV_ID_82546EB_QUAD_COPPER,
115 "Intel(R) Legacy PRO/1000 MT 82546EB (Quad Copper"),
116 PVID(0x8086, E1000_DEV_ID_82546GB_COPPER,
117 "Intel(R) Legacy PRO/1000 MT 82546GB (Copper)"),
118 PVID(0x8086, E1000_DEV_ID_82546GB_FIBER,
119 "Intel(R) Legacy PRO/1000 MF 82546GB (Fiber)"),
120 PVID(0x8086, E1000_DEV_ID_82546GB_SERDES,
121 "Intel(R) Legacy PRO/1000 MB 82546GB (SERDES)"),
122 PVID(0x8086, E1000_DEV_ID_82546GB_PCIE,
123 "Intel(R) Legacy PRO/1000 P 82546GB (PCIe)"),
124 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER,
125 "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
126 PVID(0x8086, E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3,
127 "Intel(R) Legacy PRO/1000 GT 82546GB (Quad Copper)"),
128
129 PVID(0x8086, E1000_DEV_ID_82547EI,
130 "Intel(R) Legacy PRO/1000 CT 82547EI"),
131 PVID(0x8086, E1000_DEV_ID_82547EI_MOBILE,
132 "Intel(R) Legacy PRO/1000 CT 82547EI (Mobile)"),
133 PVID(0x8086, E1000_DEV_ID_82547GI,
134 "Intel(R) Legacy PRO/1000 CT 82547GI"),
135
136 /* Intel(R) - em-class devices */
137 PVID(0x8086, E1000_DEV_ID_82571EB_COPPER,
138 "Intel(R) PRO/1000 PT 82571EB/82571GB (Copper)"),
139 PVID(0x8086, E1000_DEV_ID_82571EB_FIBER,
140 "Intel(R) PRO/1000 PF 82571EB/82571GB (Fiber)"),
141 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES,
142 "Intel(R) PRO/1000 PB 82571EB (SERDES)"),
143 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_DUAL,
144 "Intel(R) PRO/1000 82571EB (Dual Mezzanine)"),
145 PVID(0x8086, E1000_DEV_ID_82571EB_SERDES_QUAD,
146 "Intel(R) PRO/1000 82571EB (Quad Mezzanine)"),
147 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER,
148 "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
149 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_COPPER_LP,
150 "Intel(R) PRO/1000 PT 82571EB/82571GB (Quad Copper)"),
151 PVID(0x8086, E1000_DEV_ID_82571EB_QUAD_FIBER,
152 "Intel(R) PRO/1000 PF 82571EB (Quad Fiber)"),
153 PVID(0x8086, E1000_DEV_ID_82571PT_QUAD_COPPER,
154 "Intel(R) PRO/1000 PT 82571PT (Quad Copper)"),
155 PVID(0x8086, E1000_DEV_ID_82572EI,
156 "Intel(R) PRO/1000 PT 82572EI (Copper)"),
157 PVID(0x8086, E1000_DEV_ID_82572EI_COPPER,
158 "Intel(R) PRO/1000 PT 82572EI (Copper)"),
159 PVID(0x8086, E1000_DEV_ID_82572EI_FIBER,
160 "Intel(R) PRO/1000 PF 82572EI (Fiber)"),
161 PVID(0x8086, E1000_DEV_ID_82572EI_SERDES,
162 "Intel(R) PRO/1000 82572EI (SERDES)"),
163 PVID(0x8086, E1000_DEV_ID_82573E,
164 "Intel(R) PRO/1000 82573E (Copper)"),
165 PVID(0x8086, E1000_DEV_ID_82573E_IAMT,
166 "Intel(R) PRO/1000 82573E AMT (Copper)"),
167 PVID(0x8086, E1000_DEV_ID_82573L, "Intel(R) PRO/1000 82573L"),
168 PVID(0x8086, E1000_DEV_ID_82583V, "Intel(R) 82583V"),
169 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_SPT,
170 "Intel(R) 80003ES2LAN (Copper)"),
171 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_SPT,
172 "Intel(R) 80003ES2LAN (SERDES)"),
173 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_COPPER_DPT,
174 "Intel(R) 80003ES2LAN (Dual Copper)"),
175 PVID(0x8086, E1000_DEV_ID_80003ES2LAN_SERDES_DPT,
176 "Intel(R) 80003ES2LAN (Dual SERDES)"),
177 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M_AMT,
178 "Intel(R) 82566MM ICH8 AMT (Mobile)"),
179 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_AMT, "Intel(R) 82566DM ICH8 AMT"),
180 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_C, "Intel(R) 82566DC ICH8"),
181 PVID(0x8086, E1000_DEV_ID_ICH8_IFE, "Intel(R) 82562V ICH8"),
182 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_GT, "Intel(R) 82562GT ICH8"),
183 PVID(0x8086, E1000_DEV_ID_ICH8_IFE_G, "Intel(R) 82562G ICH8"),
184 PVID(0x8086, E1000_DEV_ID_ICH8_IGP_M, "Intel(R) 82566MC ICH8"),
185 PVID(0x8086, E1000_DEV_ID_ICH8_82567V_3, "Intel(R) 82567V-3 ICH8"),
186 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_AMT,
187 "Intel(R) 82567LM ICH9 AMT"),
188 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_AMT,
189 "Intel(R) 82566DM-2 ICH9 AMT"),
190 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_C, "Intel(R) 82566DC-2 ICH9"),
191 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M, "Intel(R) 82567LF ICH9"),
192 PVID(0x8086, E1000_DEV_ID_ICH9_IGP_M_V, "Intel(R) 82567V ICH9"),
193 PVID(0x8086, E1000_DEV_ID_ICH9_IFE, "Intel(R) 82562V-2 ICH9"),
194 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_GT, "Intel(R) 82562GT-2 ICH9"),
195 PVID(0x8086, E1000_DEV_ID_ICH9_IFE_G, "Intel(R) 82562G-2 ICH9"),
196 PVID(0x8086, E1000_DEV_ID_ICH9_BM, "Intel(R) 82567LM-4 ICH9"),
197 PVID(0x8086, E1000_DEV_ID_82574L, "Intel(R) Gigabit CT 82574L"),
198 PVID(0x8086, E1000_DEV_ID_82574LA, "Intel(R) 82574L-Apple"),
199 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LM, "Intel(R) 82567LM-2 ICH10"),
200 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_LF, "Intel(R) 82567LF-2 ICH10"),
201 PVID(0x8086, E1000_DEV_ID_ICH10_R_BM_V, "Intel(R) 82567V-2 ICH10"),
202 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LM, "Intel(R) 82567LM-3 ICH10"),
203 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_LF, "Intel(R) 82567LF-3 ICH10"),
204 PVID(0x8086, E1000_DEV_ID_ICH10_D_BM_V, "Intel(R) 82567V-4 ICH10"),
205 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LM, "Intel(R) 82577LM"),
206 PVID(0x8086, E1000_DEV_ID_PCH_M_HV_LC, "Intel(R) 82577LC"),
207 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DM, "Intel(R) 82578DM"),
208 PVID(0x8086, E1000_DEV_ID_PCH_D_HV_DC, "Intel(R) 82578DC"),
209 PVID(0x8086, E1000_DEV_ID_PCH2_LV_LM, "Intel(R) 82579LM"),
210 PVID(0x8086, E1000_DEV_ID_PCH2_LV_V, "Intel(R) 82579V"),
211 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_LM, "Intel(R) I217-LM LPT"),
212 PVID(0x8086, E1000_DEV_ID_PCH_LPT_I217_V, "Intel(R) I217-V LPT"),
213 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_LM,
214 "Intel(R) I218-LM LPTLP"),
215 PVID(0x8086, E1000_DEV_ID_PCH_LPTLP_I218_V, "Intel(R) I218-V LPTLP"),
216 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM2, "Intel(R) I218-LM (2)"),
217 PVID(0x8086, E1000_DEV_ID_PCH_I218_V2, "Intel(R) I218-V (2)"),
218 PVID(0x8086, E1000_DEV_ID_PCH_I218_LM3, "Intel(R) I218-LM (3)"),
219 PVID(0x8086, E1000_DEV_ID_PCH_I218_V3, "Intel(R) I218-V (3)"),
220 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM, "Intel(R) I219-LM SPT"),
221 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V, "Intel(R) I219-V SPT"),
222 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM2,
223 "Intel(R) I219-LM SPT-H(2)"),
224 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V2,
225 "Intel(R) I219-V SPT-H(2)"),
226 PVID(0x8086, E1000_DEV_ID_PCH_LBG_I219_LM3,
227 "Intel(R) I219-LM LBG(3)"),
228 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM4,
229 "Intel(R) I219-LM SPT(4)"),
230 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V4, "Intel(R) I219-V SPT(4)"),
231 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_LM5,
232 "Intel(R) I219-LM SPT(5)"),
233 PVID(0x8086, E1000_DEV_ID_PCH_SPT_I219_V5, "Intel(R) I219-V SPT(5)"),
234 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM6,
235 "Intel(R) I219-LM CNP(6)"),
236 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V6, "Intel(R) I219-V CNP(6)"),
237 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_LM7,
238 "Intel(R) I219-LM CNP(7)"),
239 PVID(0x8086, E1000_DEV_ID_PCH_CNP_I219_V7, "Intel(R) I219-V CNP(7)"),
240 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM8,
241 "Intel(R) I219-LM ICP(8)"),
242 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V8, "Intel(R) I219-V ICP(8)"),
243 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_LM9,
244 "Intel(R) I219-LM ICP(9)"),
245 PVID(0x8086, E1000_DEV_ID_PCH_ICP_I219_V9, "Intel(R) I219-V ICP(9)"),
246 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM10,
247 "Intel(R) I219-LM CMP(10)"),
248 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V10,
249 "Intel(R) I219-V CMP(10)"),
250 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM11,
251 "Intel(R) I219-LM CMP(11)"),
252 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V11,
253 "Intel(R) I219-V CMP(11)"),
254 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_LM12,
255 "Intel(R) I219-LM CMP(12)"),
256 PVID(0x8086, E1000_DEV_ID_PCH_CMP_I219_V12,
257 "Intel(R) I219-V CMP(12)"),
258 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM13,
259 "Intel(R) I219-LM TGP(13)"),
260 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V13,
261 "Intel(R) I219-V TGP(13)"),
262 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM14,
263 "Intel(R) I219-LM TGP(14)"),
264 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V14,
265 "Intel(R) I219-V GTP(14)"),
266 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_LM15,
267 "Intel(R) I219-LM TGP(15)"),
268 PVID(0x8086, E1000_DEV_ID_PCH_TGP_I219_V15,
269 "Intel(R) I219-V TGP(15)"),
270 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM16,
271 "Intel(R) I219-LM ADL(16)"),
272 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V16,
273 "Intel(R) I219-V ADL(16)"),
274 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM17,
275 "Intel(R) I219-LM ADL(17)"),
276 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V17,
277 "Intel(R) I219-V ADL(17)"),
278 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_LM18,
279 "Intel(R) I219-LM MTP(18)"),
280 PVID(0x8086, E1000_DEV_ID_PCH_MTP_I219_V18,
281 "Intel(R) I219-V MTP(18)"),
282 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_LM19,
283 "Intel(R) I219-LM ADL(19)"),
284 PVID(0x8086, E1000_DEV_ID_PCH_ADL_I219_V19,
285 "Intel(R) I219-V ADL(19)"),
286 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM20,
287 "Intel(R) I219-LM LNL(20)"),
288 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V20,
289 "Intel(R) I219-V LNL(20)"),
290 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_LM21,
291 "Intel(R) I219-LM LNL(21)"),
292 PVID(0x8086, E1000_DEV_ID_PCH_LNL_I219_V21,
293 "Intel(R) I219-V LNL(21)"),
294 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM22,
295 "Intel(R) I219-LM RPL(22)"),
296 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V22,
297 "Intel(R) I219-V RPL(22)"),
298 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_LM23,
299 "Intel(R) I219-LM RPL(23)"),
300 PVID(0x8086, E1000_DEV_ID_PCH_RPL_I219_V23,
301 "Intel(R) I219-V RPL(23)"),
302 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_LM24,
303 "Intel(R) I219-LM ARL(24)"),
304 PVID(0x8086, E1000_DEV_ID_PCH_ARL_I219_V24,
305 "Intel(R) I219-V ARL(24)"),
306 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM25,
307 "Intel(R) I219-LM PTP(25)"),
308 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V25,
309 "Intel(R) I219-V PTP(25)"),
310 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM26,
311 "Intel(R) I219-LM PTP(26)"),
312 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V26,
313 "Intel(R) I219-V PTP(26)"),
314 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_LM27,
315 "Intel(R) I219-LM PTP(27)"),
316 PVID(0x8086, E1000_DEV_ID_PCH_PTP_I219_V27,
317 "Intel(R) I219-V PTP(27)"),
318 /* required last entry */
319 PVID_END
320 };
321
322 static const pci_vendor_info_t igb_vendor_info_array[] =
323 {
324 /* Intel(R) - igb-class devices */
325 PVID(0x8086, E1000_DEV_ID_82575EB_COPPER,
326 "Intel(R) PRO/1000 82575EB (Copper)"),
327 PVID(0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
328 "Intel(R) PRO/1000 82575EB (SERDES)"),
329 PVID(0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
330 "Intel(R) PRO/1000 VT 82575GB (Quad Copper)"),
331 PVID(0x8086, E1000_DEV_ID_82576, "Intel(R) PRO/1000 82576"),
332 PVID(0x8086, E1000_DEV_ID_82576_NS, "Intel(R) PRO/1000 82576NS"),
333 PVID(0x8086, E1000_DEV_ID_82576_NS_SERDES,
334 "Intel(R) PRO/1000 82576NS (SERDES)"),
335 PVID(0x8086, E1000_DEV_ID_82576_FIBER,
336 "Intel(R) PRO/1000 EF 82576 (Dual Fiber)"),
337 PVID(0x8086, E1000_DEV_ID_82576_SERDES,
338 "Intel(R) PRO/1000 82576 (Dual SERDES)"),
339 PVID(0x8086, E1000_DEV_ID_82576_SERDES_QUAD,
340 "Intel(R) PRO/1000 ET 82576 (Quad SERDES)"),
341 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER,
342 "Intel(R) PRO/1000 ET 82576 (Quad Copper)"),
343 PVID(0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2,
344 "Intel(R) PRO/1000 ET(2) 82576 (Quad Copper)"),
345 PVID(0x8086, E1000_DEV_ID_82576_VF,
346 "Intel(R) PRO/1000 82576 Virtual Function"),
347 PVID(0x8086, E1000_DEV_ID_82580_COPPER,
348 "Intel(R) I340 82580 (Copper)"),
349 PVID(0x8086, E1000_DEV_ID_82580_FIBER, "Intel(R) I340 82580 (Fiber)"),
350 PVID(0x8086, E1000_DEV_ID_82580_SERDES,
351 "Intel(R) I340 82580 (SERDES)"),
352 PVID(0x8086, E1000_DEV_ID_82580_SGMII, "Intel(R) I340 82580 (SGMII)"),
353 PVID(0x8086, E1000_DEV_ID_82580_COPPER_DUAL,
354 "Intel(R) I340-T2 82580 (Dual Copper)"),
355 PVID(0x8086, E1000_DEV_ID_82580_QUAD_FIBER,
356 "Intel(R) I340-F4 82580 (Quad Fiber)"),
357 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SERDES,
358 "Intel(R) DH89XXCC (SERDES)"),
359 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SGMII,
360 "Intel(R) I347-AT4 DH89XXCC"),
361 PVID(0x8086, E1000_DEV_ID_DH89XXCC_SFP, "Intel(R) DH89XXCC (SFP)"),
362 PVID(0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE,
363 "Intel(R) DH89XXCC (Backplane)"),
364 PVID(0x8086, E1000_DEV_ID_I350_COPPER, "Intel(R) I350 (Copper)"),
365 PVID(0x8086, E1000_DEV_ID_I350_FIBER, "Intel(R) I350 (Fiber)"),
366 PVID(0x8086, E1000_DEV_ID_I350_SERDES, "Intel(R) I350 (SERDES)"),
367 PVID(0x8086, E1000_DEV_ID_I350_SGMII, "Intel(R) I350 (SGMII)"),
368 PVID(0x8086, E1000_DEV_ID_I350_VF, "Intel(R) I350 Virtual Function"),
369 PVID(0x8086, E1000_DEV_ID_I210_COPPER, "Intel(R) I210 (Copper)"),
370 PVID(0x8086, E1000_DEV_ID_I210_COPPER_IT,
371 "Intel(R) I210 IT (Copper)"),
372 PVID(0x8086, E1000_DEV_ID_I210_COPPER_OEM1, "Intel(R) I210 (OEM)"),
373 PVID(0x8086, E1000_DEV_ID_I210_COPPER_FLASHLESS,
374 "Intel(R) I210 Flashless (Copper)"),
375 PVID(0x8086, E1000_DEV_ID_I210_SERDES_FLASHLESS,
376 "Intel(R) I210 Flashless (SERDES)"),
377 PVID(0x8086, E1000_DEV_ID_I210_SGMII_FLASHLESS,
378 "Intel(R) I210 Flashless (SGMII)"),
379 PVID(0x8086, E1000_DEV_ID_I210_FIBER, "Intel(R) I210 (Fiber)"),
380 PVID(0x8086, E1000_DEV_ID_I210_SERDES, "Intel(R) I210 (SERDES)"),
381 PVID(0x8086, E1000_DEV_ID_I210_SGMII, "Intel(R) I210 (SGMII)"),
382 PVID(0x8086, E1000_DEV_ID_I211_COPPER, "Intel(R) I211 (Copper)"),
383 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_1GBPS,
384 "Intel(R) I354 (1.0 GbE Backplane)"),
385 PVID(0x8086, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS,
386 "Intel(R) I354 (2.5 GbE Backplane)"),
387 PVID(0x8086, E1000_DEV_ID_I354_SGMII, "Intel(R) I354 (SGMII)"),
388 /* required last entry */
389 PVID_END
390 };
391
392 /*********************************************************************
393 * Function prototypes
394 *********************************************************************/
395 static void *em_register(device_t);
396 static void *igb_register(device_t);
397 static int em_if_attach_pre(if_ctx_t);
398 static int em_if_attach_post(if_ctx_t);
399 static int em_if_detach(if_ctx_t);
400 static int em_if_shutdown(if_ctx_t);
401 static int em_if_suspend(if_ctx_t);
402 static int em_if_resume(if_ctx_t);
403
404 static int em_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
405 int);
406 static int em_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int,
407 int);
408 static void em_if_queues_free(if_ctx_t);
409
410 static uint64_t em_if_get_counter(if_ctx_t, ift_counter);
411 static void em_if_init(if_ctx_t);
412 static void em_if_stop(if_ctx_t);
413 static void em_if_media_status(if_ctx_t, struct ifmediareq *);
414 static int em_if_media_change(if_ctx_t);
415 static int em_if_mtu_set(if_ctx_t, uint32_t);
416 static void em_if_timer(if_ctx_t, uint16_t);
417 static void em_if_vlan_register(if_ctx_t, u16);
418 static void em_if_vlan_unregister(if_ctx_t, u16);
419 static void em_if_watchdog_reset(if_ctx_t);
420 static bool em_if_needs_restart(if_ctx_t, enum iflib_restart_event);
421
422 static void em_identify_hardware(if_ctx_t);
423 static int em_allocate_pci_resources(if_ctx_t);
424 static void em_free_pci_resources(if_ctx_t);
425 static void em_reset(if_ctx_t);
426 static int em_setup_interface(if_ctx_t);
427 static int em_setup_msix(if_ctx_t);
428
429 static void em_initialize_transmit_unit(if_ctx_t);
430 static void em_initialize_receive_unit(if_ctx_t);
431
432 static void em_if_intr_enable(if_ctx_t);
433 static void em_if_intr_disable(if_ctx_t);
434 static void igb_if_intr_enable(if_ctx_t);
435 static void igb_if_intr_disable(if_ctx_t);
436 static int em_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
437 static int em_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
438 static int igb_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
439 static int igb_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
440 static void em_if_multi_set(if_ctx_t);
441 static void em_if_update_admin_status(if_ctx_t);
442 static void em_if_debug(if_ctx_t);
443 static void em_update_stats_counters(struct e1000_softc *);
444 static void em_add_hw_stats(struct e1000_softc *);
445 static int em_if_set_promisc(if_ctx_t, int);
446 static bool em_if_vlan_filter_capable(if_ctx_t);
447 static bool em_if_vlan_filter_used(if_ctx_t);
448 static void em_if_vlan_filter_enable(struct e1000_softc *);
449 static void em_if_vlan_filter_disable(struct e1000_softc *);
450 static void em_if_vlan_filter_write(struct e1000_softc *);
451 static void em_setup_vlan_hw_support(if_ctx_t ctx);
452 static int em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
453 static void em_print_nvm_info(struct e1000_softc *);
454 static void em_fw_version_locked(if_ctx_t);
455 static void em_sbuf_fw_version(struct e1000_fw_version *, struct sbuf *);
456 static void em_print_fw_version(struct e1000_softc *);
457 static int em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS);
458 static int em_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
459 static int em_get_rs(SYSCTL_HANDLER_ARGS);
460 static void em_print_debug_info(struct e1000_softc *);
461 static int em_is_valid_ether_addr(u8 *);
462 static void em_newitr(struct e1000_softc *, struct em_rx_queue *,
463 struct tx_ring *, struct rx_ring *);
464 static bool em_automask_tso(if_ctx_t);
465 static int em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS);
466 static int em_sysctl_int_delay(SYSCTL_HANDLER_ARGS);
467 static void em_add_int_delay_sysctl(struct e1000_softc *, const char *,
468 const char *, struct em_int_delay_info *, int, int);
469 /* Management and WOL Support */
470 static void em_init_manageability(struct e1000_softc *);
471 static void em_release_manageability(struct e1000_softc *);
472 static void em_get_hw_control(struct e1000_softc *);
473 static void em_release_hw_control(struct e1000_softc *);
474 static void em_get_wakeup(if_ctx_t);
475 static void em_enable_wakeup(if_ctx_t);
476 static int em_enable_phy_wakeup(struct e1000_softc *);
477 static void em_disable_aspm(struct e1000_softc *);
478
479 int em_intr(void *);
480
481 /* MSI-X handlers */
482 static int em_if_msix_intr_assign(if_ctx_t, int);
483 static int em_msix_link(void *);
484 static void em_handle_link(void *);
485
486 static void em_enable_vectors_82574(if_ctx_t);
487
488 static int em_set_flowcntl(SYSCTL_HANDLER_ARGS);
489 static int em_sysctl_eee(SYSCTL_HANDLER_ARGS);
490 static int igb_sysctl_dmac(SYSCTL_HANDLER_ARGS);
491 static void em_if_led_func(if_ctx_t, int);
492
493 static int em_get_regs(SYSCTL_HANDLER_ARGS);
494
495 static void lem_smartspeed(struct e1000_softc *);
496 static void igb_configure_queues(struct e1000_softc *);
497 static void em_flush_desc_rings(struct e1000_softc *);
498
499
500 /*********************************************************************
501 * FreeBSD Device Interface Entry Points
502 *********************************************************************/
503 static device_method_t em_methods[] = {
504 /* Device interface */
505 DEVMETHOD(device_register, em_register),
506 DEVMETHOD(device_probe, iflib_device_probe),
507 DEVMETHOD(device_attach, iflib_device_attach),
508 DEVMETHOD(device_detach, iflib_device_detach),
509 DEVMETHOD(device_shutdown, iflib_device_shutdown),
510 DEVMETHOD(device_suspend, iflib_device_suspend),
511 DEVMETHOD(device_resume, iflib_device_resume),
512 DEVMETHOD_END
513 };
514
515 static device_method_t igb_methods[] = {
516 /* Device interface */
517 DEVMETHOD(device_register, igb_register),
518 DEVMETHOD(device_probe, iflib_device_probe),
519 DEVMETHOD(device_attach, iflib_device_attach),
520 DEVMETHOD(device_detach, iflib_device_detach),
521 DEVMETHOD(device_shutdown, iflib_device_shutdown),
522 DEVMETHOD(device_suspend, iflib_device_suspend),
523 DEVMETHOD(device_resume, iflib_device_resume),
524 DEVMETHOD_END
525 };
526
527
528 static driver_t em_driver = {
529 "em", em_methods, sizeof(struct e1000_softc),
530 };
531
532 DRIVER_MODULE(em, pci, em_driver, 0, 0);
533
534 MODULE_DEPEND(em, pci, 1, 1, 1);
535 MODULE_DEPEND(em, ether, 1, 1, 1);
536 MODULE_DEPEND(em, iflib, 1, 1, 1);
537
538 IFLIB_PNP_INFO(pci, em, em_vendor_info_array);
539
540 static driver_t igb_driver = {
541 "igb", igb_methods, sizeof(struct e1000_softc),
542 };
543
544 DRIVER_MODULE(igb, pci, igb_driver, 0, 0);
545
546 MODULE_DEPEND(igb, pci, 1, 1, 1);
547 MODULE_DEPEND(igb, ether, 1, 1, 1);
548 MODULE_DEPEND(igb, iflib, 1, 1, 1);
549
550 IFLIB_PNP_INFO(pci, igb, igb_vendor_info_array);
551
552 static device_method_t em_if_methods[] = {
553 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
554 DEVMETHOD(ifdi_attach_post, em_if_attach_post),
555 DEVMETHOD(ifdi_detach, em_if_detach),
556 DEVMETHOD(ifdi_shutdown, em_if_shutdown),
557 DEVMETHOD(ifdi_suspend, em_if_suspend),
558 DEVMETHOD(ifdi_resume, em_if_resume),
559 DEVMETHOD(ifdi_init, em_if_init),
560 DEVMETHOD(ifdi_stop, em_if_stop),
561 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
562 DEVMETHOD(ifdi_intr_enable, em_if_intr_enable),
563 DEVMETHOD(ifdi_intr_disable, em_if_intr_disable),
564 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
565 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
566 DEVMETHOD(ifdi_queues_free, em_if_queues_free),
567 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
568 DEVMETHOD(ifdi_multi_set, em_if_multi_set),
569 DEVMETHOD(ifdi_media_status, em_if_media_status),
570 DEVMETHOD(ifdi_media_change, em_if_media_change),
571 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
572 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
573 DEVMETHOD(ifdi_timer, em_if_timer),
574 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
575 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
576 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
577 DEVMETHOD(ifdi_get_counter, em_if_get_counter),
578 DEVMETHOD(ifdi_led_func, em_if_led_func),
579 DEVMETHOD(ifdi_rx_queue_intr_enable, em_if_rx_queue_intr_enable),
580 DEVMETHOD(ifdi_tx_queue_intr_enable, em_if_tx_queue_intr_enable),
581 DEVMETHOD(ifdi_debug, em_if_debug),
582 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
583 DEVMETHOD_END
584 };
585
586 static driver_t em_if_driver = {
587 "em_if", em_if_methods, sizeof(struct e1000_softc)
588 };
589
590 static device_method_t igb_if_methods[] = {
591 DEVMETHOD(ifdi_attach_pre, em_if_attach_pre),
592 DEVMETHOD(ifdi_attach_post, em_if_attach_post),
593 DEVMETHOD(ifdi_detach, em_if_detach),
594 DEVMETHOD(ifdi_shutdown, em_if_shutdown),
595 DEVMETHOD(ifdi_suspend, em_if_suspend),
596 DEVMETHOD(ifdi_resume, em_if_resume),
597 DEVMETHOD(ifdi_init, em_if_init),
598 DEVMETHOD(ifdi_stop, em_if_stop),
599 DEVMETHOD(ifdi_msix_intr_assign, em_if_msix_intr_assign),
600 DEVMETHOD(ifdi_intr_enable, igb_if_intr_enable),
601 DEVMETHOD(ifdi_intr_disable, igb_if_intr_disable),
602 DEVMETHOD(ifdi_tx_queues_alloc, em_if_tx_queues_alloc),
603 DEVMETHOD(ifdi_rx_queues_alloc, em_if_rx_queues_alloc),
604 DEVMETHOD(ifdi_queues_free, em_if_queues_free),
605 DEVMETHOD(ifdi_update_admin_status, em_if_update_admin_status),
606 DEVMETHOD(ifdi_multi_set, em_if_multi_set),
607 DEVMETHOD(ifdi_media_status, em_if_media_status),
608 DEVMETHOD(ifdi_media_change, em_if_media_change),
609 DEVMETHOD(ifdi_mtu_set, em_if_mtu_set),
610 DEVMETHOD(ifdi_promisc_set, em_if_set_promisc),
611 DEVMETHOD(ifdi_timer, em_if_timer),
612 DEVMETHOD(ifdi_watchdog_reset, em_if_watchdog_reset),
613 DEVMETHOD(ifdi_vlan_register, em_if_vlan_register),
614 DEVMETHOD(ifdi_vlan_unregister, em_if_vlan_unregister),
615 DEVMETHOD(ifdi_get_counter, em_if_get_counter),
616 DEVMETHOD(ifdi_led_func, em_if_led_func),
617 DEVMETHOD(ifdi_rx_queue_intr_enable, igb_if_rx_queue_intr_enable),
618 DEVMETHOD(ifdi_tx_queue_intr_enable, igb_if_tx_queue_intr_enable),
619 DEVMETHOD(ifdi_debug, em_if_debug),
620 DEVMETHOD(ifdi_needs_restart, em_if_needs_restart),
621 DEVMETHOD_END
622 };
623
624 static driver_t igb_if_driver = {
625 "igb_if", igb_if_methods, sizeof(struct e1000_softc)
626 };
627
628 /*********************************************************************
629 * Tunable default values.
630 *********************************************************************/
631
632 #define EM_TICKS_TO_USECS(ticks) ((1024 * (ticks) + 500) / 1000)
633 #define EM_USECS_TO_TICKS(usecs) ((1000 * (usecs) + 512) / 1024)
634
635 /* Allow common code without TSO */
636 #ifndef CSUM_TSO
637 #define CSUM_TSO 0
638 #endif
639
640 static SYSCTL_NODE(_hw, OID_AUTO, em, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
641 "EM driver parameters");
642
643 static int em_disable_crc_stripping = 0;
644 SYSCTL_INT(_hw_em, OID_AUTO, disable_crc_stripping, CTLFLAG_RDTUN,
645 &em_disable_crc_stripping, 0, "Disable CRC Stripping");
646
647 static int em_tx_int_delay_dflt = EM_TICKS_TO_USECS(EM_TIDV);
648 static int em_rx_int_delay_dflt = EM_TICKS_TO_USECS(EM_RDTR);
649 SYSCTL_INT(_hw_em, OID_AUTO, tx_int_delay, CTLFLAG_RDTUN,
650 &em_tx_int_delay_dflt, 0, "Default transmit interrupt delay in usecs");
651 SYSCTL_INT(_hw_em, OID_AUTO, rx_int_delay, CTLFLAG_RDTUN,
652 &em_rx_int_delay_dflt, 0, "Default receive interrupt delay in usecs");
653
654 static int em_tx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_TADV);
655 static int em_rx_abs_int_delay_dflt = EM_TICKS_TO_USECS(EM_RADV);
656 SYSCTL_INT(_hw_em, OID_AUTO, tx_abs_int_delay, CTLFLAG_RDTUN,
657 &em_tx_abs_int_delay_dflt, 0,
658 "Default transmit interrupt delay limit in usecs");
659 SYSCTL_INT(_hw_em, OID_AUTO, rx_abs_int_delay, CTLFLAG_RDTUN,
660 &em_rx_abs_int_delay_dflt, 0,
661 "Default receive interrupt delay limit in usecs");
662
663 static int em_smart_pwr_down = false;
664 SYSCTL_INT(_hw_em, OID_AUTO, smart_pwr_down, CTLFLAG_RDTUN,
665 &em_smart_pwr_down,
666 0, "Set to true to leave smart power down enabled on newer adapters");
667
668 static bool em_unsupported_tso = false;
669 SYSCTL_BOOL(_hw_em, OID_AUTO, unsupported_tso, CTLFLAG_RDTUN,
670 &em_unsupported_tso, 0, "Allow unsupported em(4) TSO configurations");
671
672 /* Controls whether promiscuous also shows bad packets */
673 static int em_debug_sbp = false;
674 SYSCTL_INT(_hw_em, OID_AUTO, sbp, CTLFLAG_RDTUN, &em_debug_sbp, 0,
675 "Show bad packets in promiscuous mode");
676
677 /* Energy efficient ethernet - default to OFF */
678 static int eee_setting = 1;
679 SYSCTL_INT(_hw_em, OID_AUTO, eee_setting, CTLFLAG_RDTUN, &eee_setting, 0,
680 "Enable Energy Efficient Ethernet");
681
682 /*
683 * AIM: Adaptive Interrupt Moderation
684 * which means that the interrupt rate is varied over time based on the
685 * traffic for that interrupt vector
686 */
687 static int em_enable_aim = 1;
688 SYSCTL_INT(_hw_em, OID_AUTO, enable_aim, CTLFLAG_RWTUN, &em_enable_aim,
689 0, "Enable adaptive interrupt moderation (1=normal, 2=lowlatency)");
690
691 /*
692 ** Tuneable Interrupt rate
693 */
694 static int em_max_interrupt_rate = EM_INTS_DEFAULT;
695 SYSCTL_INT(_hw_em, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
696 &em_max_interrupt_rate, 0, "Maximum interrupts per second");
697
698 /* Global used in WOL setup with multiport cards */
699 static int global_quad_port_a = 0;
700
701 extern struct if_txrx igb_txrx;
702 extern struct if_txrx em_txrx;
703 extern struct if_txrx lem_txrx;
704
705 static struct if_shared_ctx em_sctx_init = {
706 .isc_magic = IFLIB_MAGIC,
707 .isc_q_align = PAGE_SIZE,
708 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
709 .isc_tx_maxsegsize = PAGE_SIZE,
710 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
711 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
712 .isc_rx_maxsize = MJUM9BYTES,
713 .isc_rx_nsegments = 1,
714 .isc_rx_maxsegsize = MJUM9BYTES,
715 .isc_nfl = 1,
716 .isc_nrxqs = 1,
717 .isc_ntxqs = 1,
718 .isc_admin_intrcnt = 1,
719 .isc_vendor_info = em_vendor_info_array,
720 .isc_driver_version = em_driver_version,
721 .isc_driver = &em_if_driver,
722 .isc_flags =
723 IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
724
725 .isc_nrxd_min = {EM_MIN_RXD},
726 .isc_ntxd_min = {EM_MIN_TXD},
727 .isc_nrxd_max = {EM_MAX_RXD},
728 .isc_ntxd_max = {EM_MAX_TXD},
729 .isc_nrxd_default = {EM_DEFAULT_RXD},
730 .isc_ntxd_default = {EM_DEFAULT_TXD},
731 };
732
733 static struct if_shared_ctx igb_sctx_init = {
734 .isc_magic = IFLIB_MAGIC,
735 .isc_q_align = PAGE_SIZE,
736 .isc_tx_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
737 .isc_tx_maxsegsize = PAGE_SIZE,
738 .isc_tso_maxsize = EM_TSO_SIZE + sizeof(struct ether_vlan_header),
739 .isc_tso_maxsegsize = EM_TSO_SEG_SIZE,
740 .isc_rx_maxsize = MJUM9BYTES,
741 .isc_rx_nsegments = 1,
742 .isc_rx_maxsegsize = MJUM9BYTES,
743 .isc_nfl = 1,
744 .isc_nrxqs = 1,
745 .isc_ntxqs = 1,
746 .isc_admin_intrcnt = 1,
747 .isc_vendor_info = igb_vendor_info_array,
748 .isc_driver_version = igb_driver_version,
749 .isc_driver = &igb_if_driver,
750 .isc_flags =
751 IFLIB_NEED_SCRATCH | IFLIB_TSO_INIT_IP | IFLIB_NEED_ZERO_CSUM,
752
753 .isc_nrxd_min = {EM_MIN_RXD},
754 .isc_ntxd_min = {EM_MIN_TXD},
755 .isc_nrxd_max = {IGB_MAX_RXD},
756 .isc_ntxd_max = {IGB_MAX_TXD},
757 .isc_nrxd_default = {EM_DEFAULT_RXD},
758 .isc_ntxd_default = {EM_DEFAULT_TXD},
759 };
760
761 /*****************************************************************
762 *
763 * Dump Registers
764 *
765 ****************************************************************/
766 #define IGB_REGS_LEN 739
767
em_get_regs(SYSCTL_HANDLER_ARGS)768 static int em_get_regs(SYSCTL_HANDLER_ARGS)
769 {
770 struct e1000_softc *sc = (struct e1000_softc *)arg1;
771 struct e1000_hw *hw = &sc->hw;
772 struct sbuf *sb;
773 u32 *regs_buff;
774 int rc;
775
776 regs_buff = malloc(sizeof(u32) * IGB_REGS_LEN, M_DEVBUF, M_WAITOK);
777 memset(regs_buff, 0, IGB_REGS_LEN * sizeof(u32));
778
779 rc = sysctl_wire_old_buffer(req, 0);
780 MPASS(rc == 0);
781 if (rc != 0) {
782 free(regs_buff, M_DEVBUF);
783 return (rc);
784 }
785
786 sb = sbuf_new_for_sysctl(NULL, NULL, 32*400, req);
787 MPASS(sb != NULL);
788 if (sb == NULL) {
789 free(regs_buff, M_DEVBUF);
790 return (ENOMEM);
791 }
792
793 /* General Registers */
794 regs_buff[0] = E1000_READ_REG(hw, E1000_CTRL);
795 regs_buff[1] = E1000_READ_REG(hw, E1000_STATUS);
796 regs_buff[2] = E1000_READ_REG(hw, E1000_CTRL_EXT);
797 regs_buff[3] = E1000_READ_REG(hw, E1000_ICR);
798 regs_buff[4] = E1000_READ_REG(hw, E1000_RCTL);
799 regs_buff[5] = E1000_READ_REG(hw, E1000_RDLEN(0));
800 regs_buff[6] = E1000_READ_REG(hw, E1000_RDH(0));
801 regs_buff[7] = E1000_READ_REG(hw, E1000_RDT(0));
802 regs_buff[8] = E1000_READ_REG(hw, E1000_RXDCTL(0));
803 regs_buff[9] = E1000_READ_REG(hw, E1000_RDBAL(0));
804 regs_buff[10] = E1000_READ_REG(hw, E1000_RDBAH(0));
805 regs_buff[11] = E1000_READ_REG(hw, E1000_TCTL);
806 regs_buff[12] = E1000_READ_REG(hw, E1000_TDBAL(0));
807 regs_buff[13] = E1000_READ_REG(hw, E1000_TDBAH(0));
808 regs_buff[14] = E1000_READ_REG(hw, E1000_TDLEN(0));
809 regs_buff[15] = E1000_READ_REG(hw, E1000_TDH(0));
810 regs_buff[16] = E1000_READ_REG(hw, E1000_TDT(0));
811 regs_buff[17] = E1000_READ_REG(hw, E1000_TXDCTL(0));
812 regs_buff[18] = E1000_READ_REG(hw, E1000_TDFH);
813 regs_buff[19] = E1000_READ_REG(hw, E1000_TDFT);
814 regs_buff[20] = E1000_READ_REG(hw, E1000_TDFHS);
815 regs_buff[21] = E1000_READ_REG(hw, E1000_TDFPC);
816
817 sbuf_printf(sb, "General Registers\n");
818 sbuf_printf(sb, "\tCTRL\t %08x\n", regs_buff[0]);
819 sbuf_printf(sb, "\tSTATUS\t %08x\n", regs_buff[1]);
820 sbuf_printf(sb, "\tCTRL_EXT\t %08x\n\n", regs_buff[2]);
821
822 sbuf_printf(sb, "Interrupt Registers\n");
823 sbuf_printf(sb, "\tICR\t %08x\n\n", regs_buff[3]);
824
825 sbuf_printf(sb, "RX Registers\n");
826 sbuf_printf(sb, "\tRCTL\t %08x\n", regs_buff[4]);
827 sbuf_printf(sb, "\tRDLEN\t %08x\n", regs_buff[5]);
828 sbuf_printf(sb, "\tRDH\t %08x\n", regs_buff[6]);
829 sbuf_printf(sb, "\tRDT\t %08x\n", regs_buff[7]);
830 sbuf_printf(sb, "\tRXDCTL\t %08x\n", regs_buff[8]);
831 sbuf_printf(sb, "\tRDBAL\t %08x\n", regs_buff[9]);
832 sbuf_printf(sb, "\tRDBAH\t %08x\n\n", regs_buff[10]);
833
834 sbuf_printf(sb, "TX Registers\n");
835 sbuf_printf(sb, "\tTCTL\t %08x\n", regs_buff[11]);
836 sbuf_printf(sb, "\tTDBAL\t %08x\n", regs_buff[12]);
837 sbuf_printf(sb, "\tTDBAH\t %08x\n", regs_buff[13]);
838 sbuf_printf(sb, "\tTDLEN\t %08x\n", regs_buff[14]);
839 sbuf_printf(sb, "\tTDH\t %08x\n", regs_buff[15]);
840 sbuf_printf(sb, "\tTDT\t %08x\n", regs_buff[16]);
841 sbuf_printf(sb, "\tTXDCTL\t %08x\n", regs_buff[17]);
842 sbuf_printf(sb, "\tTDFH\t %08x\n", regs_buff[18]);
843 sbuf_printf(sb, "\tTDFT\t %08x\n", regs_buff[19]);
844 sbuf_printf(sb, "\tTDFHS\t %08x\n", regs_buff[20]);
845 sbuf_printf(sb, "\tTDFPC\t %08x\n\n", regs_buff[21]);
846
847 free(regs_buff, M_DEVBUF);
848
849 #ifdef DUMP_DESCS
850 {
851 if_softc_ctx_t scctx = sc->shared;
852 struct rx_ring *rxr = &rx_que->rxr;
853 struct tx_ring *txr = &tx_que->txr;
854 int ntxd = scctx->isc_ntxd[0];
855 int nrxd = scctx->isc_nrxd[0];
856 int j;
857
858 for (j = 0; j < nrxd; j++) {
859 u32 staterr = le32toh(rxr->rx_base[j].wb.upper.status_error);
860 u32 length = le32toh(rxr->rx_base[j].wb.upper.length);
861 sbuf_printf(sb, "\tReceive Descriptor Address %d: %08"
862 PRIx64 " Error:%d Length:%d\n",
863 j, rxr->rx_base[j].read.buffer_addr, staterr, length);
864 }
865
866 for (j = 0; j < min(ntxd, 256); j++) {
867 unsigned int *ptr = (unsigned int *)&txr->tx_base[j];
868
869 sbuf_printf(sb,
870 "\tTXD[%03d] [0]: %08x [1]: %08x [2]: %08x [3]: %08x"
871 " eop: %d DD=%d\n",
872 j, ptr[0], ptr[1], ptr[2], ptr[3], buf->eop,
873 buf->eop != -1 ?
874 txr->tx_base[buf->eop].upper.fields.status &
875 E1000_TXD_STAT_DD : 0);
876
877 }
878 }
879 #endif
880
881 rc = sbuf_finish(sb);
882 sbuf_delete(sb);
883 return(rc);
884 }
885
886 static void *
em_register(device_t dev)887 em_register(device_t dev)
888 {
889 return (&em_sctx_init);
890 }
891
892 static void *
igb_register(device_t dev)893 igb_register(device_t dev)
894 {
895 return (&igb_sctx_init);
896 }
897
898 static int
em_set_num_queues(if_ctx_t ctx)899 em_set_num_queues(if_ctx_t ctx)
900 {
901 struct e1000_softc *sc = iflib_get_softc(ctx);
902 int maxqueues;
903
904 /* Sanity check based on HW */
905 switch (sc->hw.mac.type) {
906 case e1000_82576:
907 case e1000_82580:
908 case e1000_i350:
909 case e1000_i354:
910 maxqueues = 8;
911 break;
912 case e1000_i210:
913 case e1000_82575:
914 maxqueues = 4;
915 break;
916 case e1000_i211:
917 case e1000_82574:
918 maxqueues = 2;
919 break;
920 default:
921 maxqueues = 1;
922 break;
923 }
924
925 return (maxqueues);
926 }
927
928 #define LEM_CAPS \
929 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
930 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
931 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6
932
933 #define EM_CAPS \
934 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
935 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
936 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
937 IFCAP_TSO6
938
939 #define IGB_CAPS \
940 IFCAP_HWCSUM | IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | \
941 IFCAP_VLAN_HWCSUM | IFCAP_WOL | IFCAP_VLAN_HWFILTER | IFCAP_TSO4 | \
942 IFCAP_LRO | IFCAP_VLAN_HWTSO | IFCAP_JUMBO_MTU | IFCAP_HWCSUM_IPV6 | \
943 IFCAP_TSO6
944
945 /*********************************************************************
946 * Device initialization routine
947 *
948 * The attach entry point is called when the driver is being loaded.
949 * This routine identifies the type of hardware, allocates all resources
950 * and initializes the hardware.
951 *
952 * return 0 on success, positive on failure
953 *********************************************************************/
954 static int
em_if_attach_pre(if_ctx_t ctx)955 em_if_attach_pre(if_ctx_t ctx)
956 {
957 struct e1000_softc *sc;
958 if_softc_ctx_t scctx;
959 device_t dev;
960 struct e1000_hw *hw;
961 struct sysctl_oid_list *child;
962 struct sysctl_ctx_list *ctx_list;
963 int error = 0;
964
965 INIT_DEBUGOUT("em_if_attach_pre: begin");
966 dev = iflib_get_dev(ctx);
967 sc = iflib_get_softc(ctx);
968
969 sc->ctx = sc->osdep.ctx = ctx;
970 sc->dev = sc->osdep.dev = dev;
971 scctx = sc->shared = iflib_get_softc_ctx(ctx);
972 sc->media = iflib_get_media(ctx);
973 hw = &sc->hw;
974
975 /* Determine hardware and mac info */
976 em_identify_hardware(ctx);
977
978 /* SYSCTL stuff */
979 ctx_list = device_get_sysctl_ctx(dev);
980 child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
981
982 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "nvm",
983 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
984 em_sysctl_nvm_info, "I", "NVM Information");
985
986 sc->enable_aim = em_enable_aim;
987 SYSCTL_ADD_INT(ctx_list, child, OID_AUTO, "enable_aim",
988 CTLFLAG_RW, &sc->enable_aim, 0,
989 "Interrupt Moderation (1=normal, 2=lowlatency)");
990
991 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fw_version",
992 CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
993 em_sysctl_print_fw_version, "A",
994 "Prints FW/NVM Versions");
995
996 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "debug",
997 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
998 em_sysctl_debug_info, "I", "Debug Information");
999
1000 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "fc",
1001 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1002 em_set_flowcntl, "I", "Flow Control");
1003
1004 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "reg_dump",
1005 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, 0,
1006 em_get_regs, "A", "Dump Registers");
1007
1008 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "rs_dump",
1009 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1010 em_get_rs, "I", "Dump RS indexes");
1011
1012 if (hw->mac.type >= e1000_i350) {
1013 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "dmac",
1014 CTLTYPE_INT | CTLFLAG_RW, sc, 0,
1015 igb_sysctl_dmac, "I", "DMA Coalesce");
1016 }
1017
1018 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1019 "tso_tcp_flags_mask_first_segment",
1020 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1021 sc, 0, em_sysctl_tso_tcp_flags_mask, "IU",
1022 "TSO TCP flags mask for first segment");
1023
1024 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1025 "tso_tcp_flags_mask_middle_segment",
1026 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1027 sc, 1, em_sysctl_tso_tcp_flags_mask, "IU",
1028 "TSO TCP flags mask for middle segment");
1029
1030 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO,
1031 "tso_tcp_flags_mask_last_segment",
1032 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
1033 sc, 2, em_sysctl_tso_tcp_flags_mask, "IU",
1034 "TSO TCP flags mask for last segment");
1035
1036 scctx->isc_tx_nsegments = EM_MAX_SCATTER;
1037 scctx->isc_nrxqsets_max =
1038 scctx->isc_ntxqsets_max = em_set_num_queues(ctx);
1039 if (bootverbose)
1040 device_printf(dev, "attach_pre capping queues at %d\n",
1041 scctx->isc_ntxqsets_max);
1042
1043 if (hw->mac.type >= igb_mac_min) {
1044 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
1045 sizeof(union e1000_adv_tx_desc), EM_DBA_ALIGN);
1046 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
1047 sizeof(union e1000_adv_rx_desc), EM_DBA_ALIGN);
1048 scctx->isc_txd_size[0] = sizeof(union e1000_adv_tx_desc);
1049 scctx->isc_rxd_size[0] = sizeof(union e1000_adv_rx_desc);
1050 scctx->isc_txrx = &igb_txrx;
1051 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1052 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1053 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1054 scctx->isc_capabilities = scctx->isc_capenable = IGB_CAPS;
1055 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_TSO |
1056 CSUM_IP6_TCP | CSUM_IP6_UDP;
1057 if (hw->mac.type != e1000_82575)
1058 scctx->isc_tx_csum_flags |= CSUM_SCTP | CSUM_IP6_SCTP;
1059 /*
1060 ** Some new devices, as with ixgbe, now may
1061 ** use a different BAR, so we need to keep
1062 ** track of which is used.
1063 */
1064 scctx->isc_msix_bar = pci_msix_table_bar(dev);
1065 } else if (hw->mac.type >= em_mac_min) {
1066 scctx->isc_txqsizes[0] = roundup2(scctx->isc_ntxd[0] *
1067 sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
1068 scctx->isc_rxqsizes[0] = roundup2(scctx->isc_nrxd[0] *
1069 sizeof(union e1000_rx_desc_extended), EM_DBA_ALIGN);
1070 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
1071 scctx->isc_rxd_size[0] = sizeof(union e1000_rx_desc_extended);
1072 scctx->isc_txrx = &em_txrx;
1073 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1074 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1075 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1076 scctx->isc_capabilities = scctx->isc_capenable = EM_CAPS;
1077 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
1078 CSUM_IP6_TCP | CSUM_IP6_UDP;
1079
1080 /* Disable TSO on all em(4) until ring stalls are debugged */
1081 scctx->isc_capenable &= ~IFCAP_TSO;
1082
1083 /*
1084 * Disable TSO on SPT due to errata that downclocks DMA
1085 * performance
1086 * i218-i219 Specification Update 1.5.4.5
1087 */
1088 if (hw->mac.type == e1000_pch_spt)
1089 scctx->isc_capenable &= ~IFCAP_TSO;
1090
1091 /*
1092 * We support MSI-X with 82574 only, but indicate to iflib(4)
1093 * that it shall give MSI at least a try with other devices.
1094 */
1095 if (hw->mac.type == e1000_82574) {
1096 scctx->isc_msix_bar = pci_msix_table_bar(dev);
1097 } else {
1098 scctx->isc_msix_bar = -1;
1099 scctx->isc_disable_msix = 1;
1100 }
1101 } else {
1102 scctx->isc_txqsizes[0] = roundup2((scctx->isc_ntxd[0] + 1) *
1103 sizeof(struct e1000_tx_desc), EM_DBA_ALIGN);
1104 scctx->isc_rxqsizes[0] = roundup2((scctx->isc_nrxd[0] + 1) *
1105 sizeof(struct e1000_rx_desc), EM_DBA_ALIGN);
1106 scctx->isc_txd_size[0] = sizeof(struct e1000_tx_desc);
1107 scctx->isc_rxd_size[0] = sizeof(struct e1000_rx_desc);
1108 scctx->isc_txrx = &lem_txrx;
1109 scctx->isc_tx_tso_segments_max = EM_MAX_SCATTER;
1110 scctx->isc_tx_tso_size_max = EM_TSO_SIZE;
1111 scctx->isc_tx_tso_segsize_max = EM_TSO_SEG_SIZE;
1112 scctx->isc_capabilities = scctx->isc_capenable = LEM_CAPS;
1113 if (em_unsupported_tso)
1114 scctx->isc_capabilities |= IFCAP_TSO6;
1115 scctx->isc_tx_csum_flags = CSUM_TCP | CSUM_UDP | CSUM_IP_TSO |
1116 CSUM_IP6_TCP | CSUM_IP6_UDP;
1117
1118 /* Disable TSO on all lem(4) until ring stalls debugged */
1119 scctx->isc_capenable &= ~IFCAP_TSO;
1120
1121 /* 82541ER doesn't do HW tagging */
1122 if (hw->device_id == E1000_DEV_ID_82541ER ||
1123 hw->device_id == E1000_DEV_ID_82541ER_LOM) {
1124 scctx->isc_capabilities &= ~IFCAP_VLAN_HWTAGGING;
1125 scctx->isc_capenable = scctx->isc_capabilities;
1126 }
1127 /* This is the first e1000 chip and it does not do offloads */
1128 if (hw->mac.type == e1000_82542) {
1129 scctx->isc_capabilities &= ~(IFCAP_HWCSUM |
1130 IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6 |
1131 IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWFILTER |
1132 IFCAP_TSO | IFCAP_VLAN_HWTSO);
1133 scctx->isc_capenable = scctx->isc_capabilities;
1134 }
1135 /* These can't do TSO for various reasons */
1136 if (hw->mac.type < e1000_82544 ||
1137 hw->mac.type == e1000_82547 ||
1138 hw->mac.type == e1000_82547_rev_2) {
1139 scctx->isc_capabilities &=
1140 ~(IFCAP_TSO |IFCAP_VLAN_HWTSO);
1141 scctx->isc_capenable = scctx->isc_capabilities;
1142 }
1143 /* XXXKB: No IPv6 before this? */
1144 if (hw->mac.type < e1000_82545){
1145 scctx->isc_capabilities &= ~IFCAP_HWCSUM_IPV6;
1146 scctx->isc_capenable = scctx->isc_capabilities;
1147 }
1148 /*
1149 * "PCI/PCI-X SDM 4.0" page 33 (b):
1150 * FDX requirement on these chips
1151 */
1152 if (hw->mac.type == e1000_82547 ||
1153 hw->mac.type == e1000_82547_rev_2)
1154 scctx->isc_capenable &= ~(IFCAP_HWCSUM |
1155 IFCAP_VLAN_HWCSUM | IFCAP_HWCSUM_IPV6);
1156
1157 /* INTx only */
1158 scctx->isc_msix_bar = 0;
1159 }
1160
1161 /* Setup PCI resources */
1162 if (em_allocate_pci_resources(ctx)) {
1163 device_printf(dev, "Allocation of PCI resources failed\n");
1164 error = ENXIO;
1165 goto err_pci;
1166 }
1167
1168 /*
1169 ** For ICH8 and family we need to
1170 ** map the flash memory, and this
1171 ** must happen after the MAC is
1172 ** identified
1173 */
1174 if ((hw->mac.type == e1000_ich8lan) ||
1175 (hw->mac.type == e1000_ich9lan) ||
1176 (hw->mac.type == e1000_ich10lan) ||
1177 (hw->mac.type == e1000_pchlan) ||
1178 (hw->mac.type == e1000_pch2lan) ||
1179 (hw->mac.type == e1000_pch_lpt)) {
1180 int rid = EM_BAR_TYPE_FLASH;
1181 sc->flash = bus_alloc_resource_any(dev,
1182 SYS_RES_MEMORY, &rid, RF_ACTIVE);
1183 if (sc->flash == NULL) {
1184 device_printf(dev, "Mapping of Flash failed\n");
1185 error = ENXIO;
1186 goto err_pci;
1187 }
1188 /* This is used in the shared code */
1189 hw->flash_address = (u8 *)sc->flash;
1190 sc->osdep.flash_bus_space_tag =
1191 rman_get_bustag(sc->flash);
1192 sc->osdep.flash_bus_space_handle =
1193 rman_get_bushandle(sc->flash);
1194 }
1195 /*
1196 ** In the new SPT device flash is not a
1197 ** separate BAR, rather it is also in BAR0,
1198 ** so use the same tag and an offset handle for the
1199 ** FLASH read/write macros in the shared code.
1200 */
1201 else if (hw->mac.type >= e1000_pch_spt) {
1202 sc->osdep.flash_bus_space_tag = sc->osdep.mem_bus_space_tag;
1203 sc->osdep.flash_bus_space_handle =
1204 sc->osdep.mem_bus_space_handle + E1000_FLASH_BASE_ADDR;
1205 }
1206
1207 /* Do Shared Code initialization */
1208 error = e1000_setup_init_funcs(hw, true);
1209 if (error) {
1210 device_printf(dev, "Setup of Shared code failed, error %d\n",
1211 error);
1212 error = ENXIO;
1213 goto err_pci;
1214 }
1215
1216 em_setup_msix(ctx);
1217 e1000_get_bus_info(hw);
1218
1219 /* Set up some sysctls for the tunable interrupt delays */
1220 if (hw->mac.type < igb_mac_min) {
1221 em_add_int_delay_sysctl(sc, "rx_int_delay",
1222 "receive interrupt delay in usecs", &sc->rx_int_delay,
1223 E1000_REGISTER(hw, E1000_RDTR), em_rx_int_delay_dflt);
1224 em_add_int_delay_sysctl(sc, "tx_int_delay",
1225 "transmit interrupt delay in usecs", &sc->tx_int_delay,
1226 E1000_REGISTER(hw, E1000_TIDV), em_tx_int_delay_dflt);
1227 }
1228 if (hw->mac.type >= e1000_82540 && hw->mac.type < igb_mac_min) {
1229 em_add_int_delay_sysctl(sc, "rx_abs_int_delay",
1230 "receive interrupt delay limit in usecs",
1231 &sc->rx_abs_int_delay,
1232 E1000_REGISTER(hw, E1000_RADV), em_rx_abs_int_delay_dflt);
1233 em_add_int_delay_sysctl(sc, "tx_abs_int_delay",
1234 "transmit interrupt delay limit in usecs",
1235 &sc->tx_abs_int_delay,
1236 E1000_REGISTER(hw, E1000_TADV), em_tx_abs_int_delay_dflt);
1237 }
1238
1239 hw->mac.autoneg = DO_AUTO_NEG;
1240 hw->phy.autoneg_wait_to_complete = false;
1241 hw->phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1242
1243 if (hw->mac.type < em_mac_min) {
1244 e1000_init_script_state_82541(hw, true);
1245 e1000_set_tbi_compatibility_82543(hw, true);
1246 }
1247 /* Copper options */
1248 if (hw->phy.media_type == e1000_media_type_copper) {
1249 hw->phy.mdix = AUTO_ALL_MODES;
1250 hw->phy.disable_polarity_correction = false;
1251 hw->phy.ms_type = EM_MASTER_SLAVE;
1252 }
1253
1254 /*
1255 * Set the frame limits assuming
1256 * standard ethernet sized frames.
1257 */
1258 scctx->isc_max_frame_size = hw->mac.max_frame_size =
1259 ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
1260
1261 /*
1262 * This controls when hardware reports transmit completion
1263 * status.
1264 */
1265 hw->mac.report_tx_early = 1;
1266
1267 /* Allocate multicast array memory. */
1268 sc->mta = malloc(sizeof(u8) * ETHER_ADDR_LEN *
1269 MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
1270 if (sc->mta == NULL) {
1271 device_printf(dev,
1272 "Can not allocate multicast setup array\n");
1273 error = ENOMEM;
1274 goto err_late;
1275 }
1276
1277 /* Clear the IFCAP_TSO auto mask */
1278 sc->tso_automasked = 0;
1279
1280 /* Check SOL/IDER usage */
1281 if (e1000_check_reset_block(hw))
1282 device_printf(dev,
1283 "PHY reset is blocked due to SOL/IDER session.\n");
1284
1285 /* Sysctl for setting Energy Efficient Ethernet */
1286 if (hw->mac.type < igb_mac_min)
1287 hw->dev_spec.ich8lan.eee_disable = eee_setting;
1288 else
1289 hw->dev_spec._82575.eee_disable = eee_setting;
1290 SYSCTL_ADD_PROC(ctx_list, child, OID_AUTO, "eee_control",
1291 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
1292 em_sysctl_eee, "I", "Disable Energy Efficient Ethernet");
1293
1294 /*
1295 ** Start from a known state, this is
1296 ** important in reading the nvm and
1297 ** mac from that.
1298 */
1299 e1000_reset_hw(hw);
1300
1301 /* Make sure we have a good EEPROM before we read from it */
1302 if (e1000_validate_nvm_checksum(hw) < 0) {
1303 /*
1304 ** Some PCI-E parts fail the first check due to
1305 ** the link being in sleep state, call it again,
1306 ** if it fails a second time its a real issue.
1307 */
1308 if (e1000_validate_nvm_checksum(hw) < 0) {
1309 device_printf(dev,
1310 "The EEPROM Checksum Is Not Valid\n");
1311 error = EIO;
1312 goto err_late;
1313 }
1314 }
1315
1316 /* Copy the permanent MAC address out of the EEPROM */
1317 if (e1000_read_mac_addr(hw) < 0) {
1318 device_printf(dev,
1319 "EEPROM read error while reading MAC address\n");
1320 error = EIO;
1321 goto err_late;
1322 }
1323
1324 if (!em_is_valid_ether_addr(hw->mac.addr)) {
1325 if (sc->vf_ifp) {
1326 ether_gen_addr(iflib_get_ifp(ctx),
1327 (struct ether_addr *)hw->mac.addr);
1328 } else {
1329 device_printf(dev, "Invalid MAC address\n");
1330 error = EIO;
1331 goto err_late;
1332 }
1333 }
1334
1335 /* Save the EEPROM/NVM versions, must be done under IFLIB_CTX_LOCK */
1336 em_fw_version_locked(ctx);
1337
1338 em_print_fw_version(sc);
1339
1340 /*
1341 * Get Wake-on-Lan and Management info for later use
1342 */
1343 em_get_wakeup(ctx);
1344
1345 /* Enable only WOL MAGIC by default */
1346 scctx->isc_capenable &= ~IFCAP_WOL;
1347 if (sc->wol != 0)
1348 scctx->isc_capenable |= IFCAP_WOL_MAGIC;
1349
1350 iflib_set_mac(ctx, hw->mac.addr);
1351
1352 return (0);
1353
1354 err_late:
1355 em_release_hw_control(sc);
1356 err_pci:
1357 em_free_pci_resources(ctx);
1358 free(sc->mta, M_DEVBUF);
1359
1360 return (error);
1361 }
1362
1363 static int
em_if_attach_post(if_ctx_t ctx)1364 em_if_attach_post(if_ctx_t ctx)
1365 {
1366 struct e1000_softc *sc = iflib_get_softc(ctx);
1367 struct e1000_hw *hw = &sc->hw;
1368 int error = 0;
1369
1370 /* Setup OS specific network interface */
1371 error = em_setup_interface(ctx);
1372 if (error != 0) {
1373 device_printf(sc->dev, "Interface setup failed: %d\n", error);
1374 goto err_late;
1375 }
1376
1377 em_reset(ctx);
1378
1379 /* Initialize statistics */
1380 em_update_stats_counters(sc);
1381 hw->mac.get_link_status = 1;
1382 em_if_update_admin_status(ctx);
1383 em_add_hw_stats(sc);
1384
1385 /* Non-AMT based hardware can now take control from firmware */
1386 if (sc->has_manage && !sc->has_amt)
1387 em_get_hw_control(sc);
1388
1389 INIT_DEBUGOUT("em_if_attach_post: end");
1390
1391 return (0);
1392
1393 err_late:
1394 /*
1395 * Upon em_if_attach_post() error, iflib calls em_if_detach() to
1396 * free resources
1397 */
1398 return (error);
1399 }
1400
1401 /*********************************************************************
1402 * Device removal routine
1403 *
1404 * The detach entry point is called when the driver is being removed.
1405 * This routine stops the adapter and deallocates all the resources
1406 * that were allocated for driver operation.
1407 *
1408 * return 0 on success, positive on failure
1409 *********************************************************************/
1410 static int
em_if_detach(if_ctx_t ctx)1411 em_if_detach(if_ctx_t ctx)
1412 {
1413 struct e1000_softc *sc = iflib_get_softc(ctx);
1414
1415 INIT_DEBUGOUT("em_if_detach: begin");
1416
1417 e1000_phy_hw_reset(&sc->hw);
1418
1419 em_release_manageability(sc);
1420 em_release_hw_control(sc);
1421 em_free_pci_resources(ctx);
1422 free(sc->mta, M_DEVBUF);
1423 sc->mta = NULL;
1424
1425 return (0);
1426 }
1427
1428 /*********************************************************************
1429 *
1430 * Shutdown entry point
1431 *
1432 **********************************************************************/
1433
1434 static int
em_if_shutdown(if_ctx_t ctx)1435 em_if_shutdown(if_ctx_t ctx)
1436 {
1437 return em_if_suspend(ctx);
1438 }
1439
1440 /*
1441 * Suspend/resume device methods.
1442 */
1443 static int
em_if_suspend(if_ctx_t ctx)1444 em_if_suspend(if_ctx_t ctx)
1445 {
1446 struct e1000_softc *sc = iflib_get_softc(ctx);
1447
1448 em_release_manageability(sc);
1449 em_release_hw_control(sc);
1450 em_enable_wakeup(ctx);
1451 return (0);
1452 }
1453
1454 static int
em_if_resume(if_ctx_t ctx)1455 em_if_resume(if_ctx_t ctx)
1456 {
1457 struct e1000_softc *sc = iflib_get_softc(ctx);
1458
1459 if (sc->hw.mac.type == e1000_pch2lan)
1460 e1000_resume_workarounds_pchlan(&sc->hw);
1461 em_if_init(ctx);
1462 em_init_manageability(sc);
1463
1464 return(0);
1465 }
1466
1467 static int
em_if_mtu_set(if_ctx_t ctx,uint32_t mtu)1468 em_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
1469 {
1470 int max_frame_size;
1471 struct e1000_softc *sc = iflib_get_softc(ctx);
1472 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
1473
1474 IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
1475
1476 switch (sc->hw.mac.type) {
1477 case e1000_82571:
1478 case e1000_82572:
1479 case e1000_ich9lan:
1480 case e1000_ich10lan:
1481 case e1000_pch2lan:
1482 case e1000_pch_lpt:
1483 case e1000_pch_spt:
1484 case e1000_pch_cnp:
1485 case e1000_pch_tgp:
1486 case e1000_pch_adp:
1487 case e1000_pch_mtp:
1488 case e1000_pch_ptp:
1489 case e1000_82574:
1490 case e1000_82583:
1491 case e1000_80003es2lan:
1492 /* 9K Jumbo Frame size */
1493 max_frame_size = 9234;
1494 break;
1495 case e1000_pchlan:
1496 max_frame_size = 4096;
1497 break;
1498 case e1000_82542:
1499 case e1000_ich8lan:
1500 /* Adapters that do not support jumbo frames */
1501 max_frame_size = ETHER_MAX_LEN;
1502 break;
1503 default:
1504 if (sc->hw.mac.type >= igb_mac_min)
1505 max_frame_size = 9234;
1506 else /* lem */
1507 max_frame_size = MAX_JUMBO_FRAME_SIZE;
1508 }
1509 if (mtu > max_frame_size - ETHER_HDR_LEN - ETHER_CRC_LEN) {
1510 return (EINVAL);
1511 }
1512
1513 scctx->isc_max_frame_size = sc->hw.mac.max_frame_size =
1514 mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
1515 return (0);
1516 }
1517
1518 /*********************************************************************
1519 * Init entry point
1520 *
1521 * This routine is used in two ways. It is used by the stack as
1522 * init entry point in network interface structure. It is also used
1523 * by the driver as a hw/sw initialization routine to get to a
1524 * consistent state.
1525 *
1526 **********************************************************************/
1527 static void
em_if_init(if_ctx_t ctx)1528 em_if_init(if_ctx_t ctx)
1529 {
1530 struct e1000_softc *sc = iflib_get_softc(ctx);
1531 if_softc_ctx_t scctx = sc->shared;
1532 if_t ifp = iflib_get_ifp(ctx);
1533 struct em_tx_queue *tx_que;
1534 int i;
1535
1536 INIT_DEBUGOUT("em_if_init: begin");
1537
1538 /* Get the latest mac address, User can use a LAA */
1539 bcopy(if_getlladdr(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
1540
1541 /* Put the address into the Receive Address Array */
1542 e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
1543
1544 /*
1545 * With the 82571 adapter, RAR[0] may be overwritten
1546 * when the other port is reset, we make a duplicate
1547 * in RAR[14] for that eventuality, this assures
1548 * the interface continues to function.
1549 */
1550 if (sc->hw.mac.type == e1000_82571) {
1551 e1000_set_laa_state_82571(&sc->hw, true);
1552 e1000_rar_set(&sc->hw, sc->hw.mac.addr,
1553 E1000_RAR_ENTRIES - 1);
1554 }
1555
1556 /* Initialize the hardware */
1557 em_reset(ctx);
1558 em_if_update_admin_status(ctx);
1559
1560 for (i = 0, tx_que = sc->tx_queues; i < sc->tx_num_queues;
1561 i++, tx_que++) {
1562 struct tx_ring *txr = &tx_que->txr;
1563
1564 txr->tx_rs_cidx = txr->tx_rs_pidx;
1565
1566 /* Initialize the last processed descriptor to be the end of
1567 * the ring, rather than the start, so that we avoid an
1568 * off-by-one error when calculating how many descriptors are
1569 * done in the credits_update function.
1570 */
1571 txr->tx_cidx_processed = scctx->isc_ntxd[0] - 1;
1572 }
1573
1574 /* Setup VLAN support, basic and offload if available */
1575 E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1576
1577 /* Clear bad data from Rx FIFOs */
1578 if (sc->hw.mac.type >= igb_mac_min)
1579 e1000_rx_fifo_flush_base(&sc->hw);
1580
1581 /* Configure for OS presence */
1582 em_init_manageability(sc);
1583
1584 /* Prepare transmit descriptors and buffers */
1585 em_initialize_transmit_unit(ctx);
1586
1587 /* Setup Multicast table */
1588 em_if_multi_set(ctx);
1589
1590 sc->rx_mbuf_sz = iflib_get_rx_mbuf_sz(ctx);
1591 em_initialize_receive_unit(ctx);
1592
1593 /* Set up VLAN support and filter */
1594 em_setup_vlan_hw_support(ctx);
1595
1596 /* Don't lose promiscuous settings */
1597 em_if_set_promisc(ctx, if_getflags(ifp));
1598 e1000_clear_hw_cntrs_base_generic(&sc->hw);
1599
1600 /* MSI-X configuration for 82574 */
1601 if (sc->hw.mac.type == e1000_82574) {
1602 int tmp = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
1603
1604 tmp |= E1000_CTRL_EXT_PBA_CLR;
1605 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, tmp);
1606 /* Set the IVAR - interrupt vector routing. */
1607 E1000_WRITE_REG(&sc->hw, E1000_IVAR, sc->ivars);
1608 } else if (sc->intr_type == IFLIB_INTR_MSIX) {
1609 /* Set up queue routing */
1610 igb_configure_queues(sc);
1611 }
1612
1613 /* this clears any pending interrupts */
1614 E1000_READ_REG(&sc->hw, E1000_ICR);
1615 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1616
1617 /* AMT based hardware can now take control from firmware */
1618 if (sc->has_manage && sc->has_amt)
1619 em_get_hw_control(sc);
1620
1621 /* Set Energy Efficient Ethernet */
1622 if (sc->hw.mac.type >= igb_mac_min &&
1623 sc->hw.phy.media_type == e1000_media_type_copper) {
1624 if (sc->hw.mac.type == e1000_i354)
1625 e1000_set_eee_i354(&sc->hw, true, true);
1626 else
1627 e1000_set_eee_i350(&sc->hw, true, true);
1628 }
1629 }
1630
1631 enum itr_latency_target {
1632 itr_latency_disabled = 0,
1633 itr_latency_lowest = 1,
1634 itr_latency_low = 2,
1635 itr_latency_bulk = 3
1636 };
1637 /*********************************************************************
1638 *
1639 * Helper to calculate next (E)ITR value for AIM
1640 *
1641 *********************************************************************/
1642 static void
em_newitr(struct e1000_softc * sc,struct em_rx_queue * que,struct tx_ring * txr,struct rx_ring * rxr)1643 em_newitr(struct e1000_softc *sc, struct em_rx_queue *que,
1644 struct tx_ring *txr, struct rx_ring *rxr)
1645 {
1646 struct e1000_hw *hw = &sc->hw;
1647 u32 newitr;
1648 u32 bytes;
1649 u32 bytes_packets;
1650 u32 packets;
1651 u8 nextlatency;
1652
1653 /* Idle, do nothing */
1654 if ((txr->tx_bytes == 0) && (rxr->rx_bytes == 0))
1655 return;
1656
1657 newitr = 0;
1658
1659 if (sc->enable_aim) {
1660 nextlatency = rxr->rx_nextlatency;
1661
1662 /* Use half default (4K) ITR if sub-gig */
1663 if (sc->link_speed != 1000) {
1664 newitr = EM_INTS_4K;
1665 goto em_set_next_itr;
1666 }
1667 /* Want at least enough packet buffer for two frames to AIM */
1668 if (sc->shared->isc_max_frame_size * 2 > (sc->pba << 10)) {
1669 newitr = em_max_interrupt_rate;
1670 sc->enable_aim = 0;
1671 goto em_set_next_itr;
1672 }
1673
1674 /* Get largest values from the associated tx and rx ring */
1675 if (txr->tx_bytes && txr->tx_packets) {
1676 bytes = txr->tx_bytes;
1677 bytes_packets = txr->tx_bytes/txr->tx_packets;
1678 packets = txr->tx_packets;
1679 }
1680 if (rxr->rx_bytes && rxr->rx_packets) {
1681 bytes = max(bytes, rxr->rx_bytes);
1682 bytes_packets =
1683 max(bytes_packets, rxr->rx_bytes/rxr->rx_packets);
1684 packets = max(packets, rxr->rx_packets);
1685 }
1686
1687 /* Latency state machine */
1688 switch (nextlatency) {
1689 case itr_latency_disabled: /* Bootstrapping */
1690 nextlatency = itr_latency_low;
1691 break;
1692 case itr_latency_lowest: /* 70k ints/s */
1693 /* TSO and jumbo frames */
1694 if (bytes_packets > 8000)
1695 nextlatency = itr_latency_bulk;
1696 else if ((packets < 5) && (bytes > 512))
1697 nextlatency = itr_latency_low;
1698 break;
1699 case itr_latency_low: /* 20k ints/s */
1700 if (bytes > 10000) {
1701 /* Handle TSO */
1702 if (bytes_packets > 8000)
1703 nextlatency = itr_latency_bulk;
1704 else if ((packets < 10) ||
1705 (bytes_packets > 1200))
1706 nextlatency = itr_latency_bulk;
1707 else if (packets > 35)
1708 nextlatency = itr_latency_lowest;
1709 } else if (bytes_packets > 2000) {
1710 nextlatency = itr_latency_bulk;
1711 } else if (packets < 3 && bytes < 512) {
1712 nextlatency = itr_latency_lowest;
1713 }
1714 break;
1715 case itr_latency_bulk: /* 4k ints/s */
1716 if (bytes > 25000) {
1717 if (packets > 35)
1718 nextlatency = itr_latency_low;
1719 } else if (bytes < 1500)
1720 nextlatency = itr_latency_low;
1721 break;
1722 default:
1723 nextlatency = itr_latency_low;
1724 device_printf(sc->dev,
1725 "Unexpected newitr transition %d\n", nextlatency);
1726 break;
1727 }
1728
1729 /* Trim itr_latency_lowest for default AIM setting */
1730 if (sc->enable_aim == 1 && nextlatency == itr_latency_lowest)
1731 nextlatency = itr_latency_low;
1732
1733 /* Request new latency */
1734 rxr->rx_nextlatency = nextlatency;
1735 } else {
1736 /* We may have toggled to AIM disabled */
1737 nextlatency = itr_latency_disabled;
1738 rxr->rx_nextlatency = nextlatency;
1739 }
1740
1741 /* ITR state machine */
1742 switch(nextlatency) {
1743 case itr_latency_lowest:
1744 newitr = EM_INTS_70K;
1745 break;
1746 case itr_latency_low:
1747 newitr = EM_INTS_20K;
1748 break;
1749 case itr_latency_bulk:
1750 newitr = EM_INTS_4K;
1751 break;
1752 case itr_latency_disabled:
1753 default:
1754 newitr = em_max_interrupt_rate;
1755 break;
1756 }
1757
1758 em_set_next_itr:
1759 if (hw->mac.type >= igb_mac_min) {
1760 newitr = IGB_INTS_TO_EITR(newitr);
1761
1762 if (hw->mac.type == e1000_82575)
1763 newitr |= newitr << 16;
1764 else
1765 newitr |= E1000_EITR_CNT_IGNR;
1766
1767 if (newitr != que->itr_setting) {
1768 que->itr_setting = newitr;
1769 E1000_WRITE_REG(hw, E1000_EITR(que->msix),
1770 que->itr_setting);
1771 }
1772 } else {
1773 newitr = EM_INTS_TO_ITR(newitr);
1774
1775 if (newitr != que->itr_setting) {
1776 que->itr_setting = newitr;
1777 if (hw->mac.type == e1000_82574 && que->msix) {
1778 E1000_WRITE_REG(hw,
1779 E1000_EITR_82574(que->msix),
1780 que->itr_setting);
1781 } else {
1782 E1000_WRITE_REG(hw, E1000_ITR,
1783 que->itr_setting);
1784 }
1785 }
1786 }
1787 }
1788
1789 /*********************************************************************
1790 *
1791 * Fast Legacy/MSI Combined Interrupt Service routine
1792 *
1793 *********************************************************************/
1794 int
em_intr(void * arg)1795 em_intr(void *arg)
1796 {
1797 struct e1000_softc *sc = arg;
1798 struct e1000_hw *hw = &sc->hw;
1799 struct em_rx_queue *que = &sc->rx_queues[0];
1800 struct tx_ring *txr = &sc->tx_queues[0].txr;
1801 struct rx_ring *rxr = &que->rxr;
1802 if_ctx_t ctx = sc->ctx;
1803 u32 reg_icr;
1804
1805 reg_icr = E1000_READ_REG(hw, E1000_ICR);
1806
1807 /* Hot eject? */
1808 if (reg_icr == 0xffffffff)
1809 return FILTER_STRAY;
1810
1811 /* Definitely not our interrupt. */
1812 if (reg_icr == 0x0)
1813 return FILTER_STRAY;
1814
1815 /*
1816 * Starting with the 82571 chip, bit 31 should be used to
1817 * determine whether the interrupt belongs to us.
1818 */
1819 if (hw->mac.type >= e1000_82571 &&
1820 (reg_icr & E1000_ICR_INT_ASSERTED) == 0)
1821 return FILTER_STRAY;
1822
1823 /*
1824 * Only MSI-X interrupts have one-shot behavior by taking advantage
1825 * of the EIAC register. Thus, explicitly disable interrupts. This
1826 * also works around the MSI message reordering errata on certain
1827 * systems.
1828 */
1829 IFDI_INTR_DISABLE(ctx);
1830
1831 /* Link status change */
1832 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1833 em_handle_link(ctx);
1834
1835 if (reg_icr & E1000_ICR_RXO)
1836 sc->rx_overruns++;
1837
1838 if (hw->mac.type >= e1000_82540)
1839 em_newitr(sc, que, txr, rxr);
1840
1841 /* Reset state */
1842 txr->tx_bytes = 0;
1843 txr->tx_packets = 0;
1844 rxr->rx_bytes = 0;
1845 rxr->rx_packets = 0;
1846
1847 return (FILTER_SCHEDULE_THREAD);
1848 }
1849
1850 static int
em_if_rx_queue_intr_enable(if_ctx_t ctx,uint16_t rxqid)1851 em_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1852 {
1853 struct e1000_softc *sc = iflib_get_softc(ctx);
1854 struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1855
1856 E1000_WRITE_REG(&sc->hw, E1000_IMS, rxq->eims);
1857 return (0);
1858 }
1859
1860 static int
em_if_tx_queue_intr_enable(if_ctx_t ctx,uint16_t txqid)1861 em_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1862 {
1863 struct e1000_softc *sc = iflib_get_softc(ctx);
1864 struct em_tx_queue *txq = &sc->tx_queues[txqid];
1865
1866 E1000_WRITE_REG(&sc->hw, E1000_IMS, txq->eims);
1867 return (0);
1868 }
1869
1870 static int
igb_if_rx_queue_intr_enable(if_ctx_t ctx,uint16_t rxqid)1871 igb_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t rxqid)
1872 {
1873 struct e1000_softc *sc = iflib_get_softc(ctx);
1874 struct em_rx_queue *rxq = &sc->rx_queues[rxqid];
1875
1876 E1000_WRITE_REG(&sc->hw, E1000_EIMS, rxq->eims);
1877 return (0);
1878 }
1879
1880 static int
igb_if_tx_queue_intr_enable(if_ctx_t ctx,uint16_t txqid)1881 igb_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t txqid)
1882 {
1883 struct e1000_softc *sc = iflib_get_softc(ctx);
1884 struct em_tx_queue *txq = &sc->tx_queues[txqid];
1885
1886 E1000_WRITE_REG(&sc->hw, E1000_EIMS, txq->eims);
1887 return (0);
1888 }
1889
1890 /*********************************************************************
1891 *
1892 * MSI-X RX Interrupt Service routine
1893 *
1894 **********************************************************************/
1895 static int
em_msix_que(void * arg)1896 em_msix_que(void *arg)
1897 {
1898 struct em_rx_queue *que = arg;
1899 struct e1000_softc *sc = que->sc;
1900 struct tx_ring *txr = &sc->tx_queues[que->msix].txr;
1901 struct rx_ring *rxr = &que->rxr;
1902
1903 ++que->irqs;
1904
1905 em_newitr(sc, que, txr, rxr);
1906
1907 /* Reset state */
1908 txr->tx_bytes = 0;
1909 txr->tx_packets = 0;
1910 rxr->rx_bytes = 0;
1911 rxr->rx_packets = 0;
1912
1913 return (FILTER_SCHEDULE_THREAD);
1914 }
1915
1916 /*********************************************************************
1917 *
1918 * MSI-X Link Fast Interrupt Service routine
1919 *
1920 **********************************************************************/
1921 static int
em_msix_link(void * arg)1922 em_msix_link(void *arg)
1923 {
1924 struct e1000_softc *sc = arg;
1925 u32 reg_icr;
1926
1927 ++sc->link_irq;
1928 MPASS(sc->hw.back != NULL);
1929 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
1930
1931 if (reg_icr & E1000_ICR_RXO)
1932 sc->rx_overruns++;
1933
1934 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
1935 em_handle_link(sc->ctx);
1936
1937 /* Re-arm unconditionally */
1938 if (sc->hw.mac.type >= igb_mac_min) {
1939 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1940 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->link_mask);
1941 } else if (sc->hw.mac.type == e1000_82574) {
1942 E1000_WRITE_REG(&sc->hw, E1000_IMS,
1943 E1000_IMS_LSC | E1000_IMS_OTHER);
1944 /*
1945 * Because we must read the ICR for this interrupt it may
1946 * clear other causes using autoclear, for this reason we
1947 * simply create a soft interrupt for all these vectors.
1948 */
1949 if (reg_icr)
1950 E1000_WRITE_REG(&sc->hw, E1000_ICS, sc->ims);
1951 } else
1952 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
1953
1954 return (FILTER_HANDLED);
1955 }
1956
1957 static void
em_handle_link(void * context)1958 em_handle_link(void *context)
1959 {
1960 if_ctx_t ctx = context;
1961 struct e1000_softc *sc = iflib_get_softc(ctx);
1962
1963 sc->hw.mac.get_link_status = 1;
1964 iflib_admin_intr_deferred(ctx);
1965 }
1966
1967 /*********************************************************************
1968 *
1969 * Media Ioctl callback
1970 *
1971 * This routine is called whenever the user queries the status of
1972 * the interface using ifconfig.
1973 *
1974 **********************************************************************/
1975 static void
em_if_media_status(if_ctx_t ctx,struct ifmediareq * ifmr)1976 em_if_media_status(if_ctx_t ctx, struct ifmediareq *ifmr)
1977 {
1978 struct e1000_softc *sc = iflib_get_softc(ctx);
1979 u_char fiber_type = IFM_1000_SX;
1980
1981 INIT_DEBUGOUT("em_if_media_status: begin");
1982
1983 iflib_admin_intr_deferred(ctx);
1984
1985 ifmr->ifm_status = IFM_AVALID;
1986 ifmr->ifm_active = IFM_ETHER;
1987
1988 if (!sc->link_active) {
1989 return;
1990 }
1991
1992 ifmr->ifm_status |= IFM_ACTIVE;
1993
1994 if ((sc->hw.phy.media_type == e1000_media_type_fiber) ||
1995 (sc->hw.phy.media_type == e1000_media_type_internal_serdes)) {
1996 if (sc->hw.mac.type == e1000_82545)
1997 fiber_type = IFM_1000_LX;
1998 switch (sc->link_speed) {
1999 case 10:
2000 ifmr->ifm_active |= IFM_10_FL;
2001 break;
2002 case 100:
2003 ifmr->ifm_active |= IFM_100_FX;
2004 break;
2005 case 1000:
2006 default:
2007 ifmr->ifm_active |= fiber_type | IFM_FDX;
2008 break;
2009 }
2010 } else {
2011 switch (sc->link_speed) {
2012 case 10:
2013 ifmr->ifm_active |= IFM_10_T;
2014 break;
2015 case 100:
2016 ifmr->ifm_active |= IFM_100_TX;
2017 break;
2018 case 1000:
2019 ifmr->ifm_active |= IFM_1000_T;
2020 break;
2021 }
2022 }
2023
2024 if (sc->link_duplex == FULL_DUPLEX)
2025 ifmr->ifm_active |= IFM_FDX;
2026 else
2027 ifmr->ifm_active |= IFM_HDX;
2028 }
2029
2030 /*********************************************************************
2031 *
2032 * Media Ioctl callback
2033 *
2034 * This routine is called when the user changes speed/duplex using
2035 * media/mediopt option with ifconfig.
2036 *
2037 **********************************************************************/
2038 static int
em_if_media_change(if_ctx_t ctx)2039 em_if_media_change(if_ctx_t ctx)
2040 {
2041 struct e1000_softc *sc = iflib_get_softc(ctx);
2042 struct ifmedia *ifm = iflib_get_media(ctx);
2043
2044 INIT_DEBUGOUT("em_if_media_change: begin");
2045
2046 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2047 return (EINVAL);
2048
2049 switch (IFM_SUBTYPE(ifm->ifm_media)) {
2050 case IFM_AUTO:
2051 sc->hw.mac.autoneg = DO_AUTO_NEG;
2052 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
2053 break;
2054 case IFM_1000_LX:
2055 case IFM_1000_SX:
2056 case IFM_1000_T:
2057 sc->hw.mac.autoneg = DO_AUTO_NEG;
2058 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
2059 break;
2060 case IFM_100_TX:
2061 sc->hw.mac.autoneg = DO_AUTO_NEG;
2062 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2063 sc->hw.phy.autoneg_advertised = ADVERTISE_100_FULL;
2064 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
2065 } else {
2066 sc->hw.phy.autoneg_advertised = ADVERTISE_100_HALF;
2067 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
2068 }
2069 break;
2070 case IFM_10_T:
2071 sc->hw.mac.autoneg = DO_AUTO_NEG;
2072 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2073 sc->hw.phy.autoneg_advertised = ADVERTISE_10_FULL;
2074 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
2075 } else {
2076 sc->hw.phy.autoneg_advertised = ADVERTISE_10_HALF;
2077 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
2078 }
2079 break;
2080 case IFM_100_FX:
2081 sc->hw.mac.autoneg = false;
2082 sc->hw.phy.autoneg_advertised = 0;
2083 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2084 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
2085 else
2086 sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
2087 break;
2088 case IFM_10_FL:
2089 sc->hw.mac.autoneg = false;
2090 sc->hw.phy.autoneg_advertised = 0;
2091 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2092 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
2093 else
2094 sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
2095 break;
2096 default:
2097 device_printf(sc->dev, "Unsupported media type\n");
2098 }
2099
2100 em_if_init(ctx);
2101
2102 return (0);
2103 }
2104
2105 static int
em_if_set_promisc(if_ctx_t ctx,int flags)2106 em_if_set_promisc(if_ctx_t ctx, int flags)
2107 {
2108 struct e1000_softc *sc = iflib_get_softc(ctx);
2109 if_t ifp = iflib_get_ifp(ctx);
2110 u32 reg_rctl;
2111 int mcnt = 0;
2112
2113 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2114 reg_rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_UPE);
2115 if (flags & IFF_ALLMULTI)
2116 mcnt = MAX_NUM_MULTICAST_ADDRESSES;
2117 else
2118 mcnt = min(if_llmaddr_count(ifp),
2119 MAX_NUM_MULTICAST_ADDRESSES);
2120
2121 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2122 reg_rctl &= (~E1000_RCTL_MPE);
2123 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2124
2125 if (flags & IFF_PROMISC) {
2126 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2127 em_if_vlan_filter_disable(sc);
2128 /* Turn this on if you want to see bad packets */
2129 if (em_debug_sbp)
2130 reg_rctl |= E1000_RCTL_SBP;
2131 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2132 } else {
2133 if (flags & IFF_ALLMULTI) {
2134 reg_rctl |= E1000_RCTL_MPE;
2135 reg_rctl &= ~E1000_RCTL_UPE;
2136 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2137 }
2138 if (em_if_vlan_filter_used(ctx))
2139 em_if_vlan_filter_enable(sc);
2140 }
2141 return (0);
2142 }
2143
2144 static u_int
em_copy_maddr(void * arg,struct sockaddr_dl * sdl,u_int idx)2145 em_copy_maddr(void *arg, struct sockaddr_dl *sdl, u_int idx)
2146 {
2147 u8 *mta = arg;
2148
2149 if (idx == MAX_NUM_MULTICAST_ADDRESSES)
2150 return (0);
2151
2152 bcopy(LLADDR(sdl), &mta[idx * ETHER_ADDR_LEN], ETHER_ADDR_LEN);
2153
2154 return (1);
2155 }
2156
2157 /*********************************************************************
2158 * Multicast Update
2159 *
2160 * This routine is called whenever multicast address list is updated.
2161 *
2162 **********************************************************************/
2163 static void
em_if_multi_set(if_ctx_t ctx)2164 em_if_multi_set(if_ctx_t ctx)
2165 {
2166 struct e1000_softc *sc = iflib_get_softc(ctx);
2167 if_t ifp = iflib_get_ifp(ctx);
2168 u8 *mta; /* Multicast array memory */
2169 u32 reg_rctl = 0;
2170 int mcnt = 0;
2171
2172 IOCTL_DEBUGOUT("em_set_multi: begin");
2173
2174 mta = sc->mta;
2175 bzero(mta, sizeof(u8) * ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
2176
2177 if (sc->hw.mac.type == e1000_82542 &&
2178 sc->hw.revision_id == E1000_REVISION_2) {
2179 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2180 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2181 e1000_pci_clear_mwi(&sc->hw);
2182 reg_rctl |= E1000_RCTL_RST;
2183 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2184 msec_delay(5);
2185 }
2186
2187 mcnt = if_foreach_llmaddr(ifp, em_copy_maddr, mta);
2188
2189 if (mcnt < MAX_NUM_MULTICAST_ADDRESSES)
2190 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
2191
2192 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2193
2194 if (if_getflags(ifp) & IFF_PROMISC)
2195 reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2196 else if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES ||
2197 if_getflags(ifp) & IFF_ALLMULTI) {
2198 reg_rctl |= E1000_RCTL_MPE;
2199 reg_rctl &= ~E1000_RCTL_UPE;
2200 } else
2201 reg_rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2202
2203 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2204
2205 if (sc->hw.mac.type == e1000_82542 &&
2206 sc->hw.revision_id == E1000_REVISION_2) {
2207 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
2208 reg_rctl &= ~E1000_RCTL_RST;
2209 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
2210 msec_delay(5);
2211 if (sc->hw.bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2212 e1000_pci_set_mwi(&sc->hw);
2213 }
2214 }
2215
2216 /*********************************************************************
2217 * Timer routine
2218 *
2219 * This routine schedules em_if_update_admin_status() to check for
2220 * link status and to gather statistics as well as to perform some
2221 * controller-specific hardware patting.
2222 *
2223 **********************************************************************/
2224 static void
em_if_timer(if_ctx_t ctx,uint16_t qid)2225 em_if_timer(if_ctx_t ctx, uint16_t qid)
2226 {
2227 if (qid != 0)
2228 return;
2229
2230 iflib_admin_intr_deferred(ctx);
2231 }
2232
2233 static void
em_if_update_admin_status(if_ctx_t ctx)2234 em_if_update_admin_status(if_ctx_t ctx)
2235 {
2236 struct e1000_softc *sc = iflib_get_softc(ctx);
2237 struct e1000_hw *hw = &sc->hw;
2238 device_t dev = iflib_get_dev(ctx);
2239 u32 link_check, thstat, ctrl;
2240 bool automasked = false;
2241
2242 link_check = thstat = ctrl = 0;
2243 /* Get the cached link value or read phy for real */
2244 switch (hw->phy.media_type) {
2245 case e1000_media_type_copper:
2246 if (hw->mac.get_link_status) {
2247 if (hw->mac.type == e1000_pch_spt)
2248 msec_delay(50);
2249 /* Do the work to read phy */
2250 e1000_check_for_link(hw);
2251 link_check = !hw->mac.get_link_status;
2252 if (link_check) /* ESB2 fix */
2253 e1000_cfg_on_link_up(hw);
2254 } else {
2255 link_check = true;
2256 }
2257 break;
2258 case e1000_media_type_fiber:
2259 e1000_check_for_link(hw);
2260 link_check =
2261 (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
2262 break;
2263 case e1000_media_type_internal_serdes:
2264 e1000_check_for_link(hw);
2265 link_check = hw->mac.serdes_has_link;
2266 break;
2267 /* VF device is type_unknown */
2268 case e1000_media_type_unknown:
2269 e1000_check_for_link(hw);
2270 link_check = !hw->mac.get_link_status;
2271 /* FALLTHROUGH */
2272 default:
2273 break;
2274 }
2275
2276 /* Check for thermal downshift or shutdown */
2277 if (hw->mac.type == e1000_i350) {
2278 thstat = E1000_READ_REG(hw, E1000_THSTAT);
2279 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
2280 }
2281
2282 /* Now check for a transition */
2283 if (link_check && (sc->link_active == 0)) {
2284 e1000_get_speed_and_duplex(hw, &sc->link_speed,
2285 &sc->link_duplex);
2286 /* Check if we must disable SPEED_MODE bit on PCI-E */
2287 if ((sc->link_speed != SPEED_1000) &&
2288 ((hw->mac.type == e1000_82571) ||
2289 (hw->mac.type == e1000_82572))) {
2290 int tarc0;
2291 tarc0 = E1000_READ_REG(hw, E1000_TARC(0));
2292 tarc0 &= ~TARC_SPEED_MODE_BIT;
2293 E1000_WRITE_REG(hw, E1000_TARC(0), tarc0);
2294 }
2295 if (bootverbose)
2296 device_printf(dev, "Link is up %d Mbps %s\n",
2297 sc->link_speed,
2298 ((sc->link_duplex == FULL_DUPLEX) ?
2299 "Full Duplex" : "Half Duplex"));
2300 sc->link_active = 1;
2301 sc->smartspeed = 0;
2302 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_MASK) ==
2303 E1000_CTRL_EXT_LINK_MODE_GMII &&
2304 (thstat & E1000_THSTAT_LINK_THROTTLE))
2305 device_printf(dev, "Link: thermal downshift\n");
2306 /* Delay Link Up for Phy update */
2307 if (((hw->mac.type == e1000_i210) ||
2308 (hw->mac.type == e1000_i211)) &&
2309 (hw->phy.id == I210_I_PHY_ID))
2310 msec_delay(I210_LINK_DELAY);
2311 /* Reset if the media type changed. */
2312 if (hw->dev_spec._82575.media_changed &&
2313 hw->mac.type >= igb_mac_min) {
2314 hw->dev_spec._82575.media_changed = false;
2315 sc->flags |= IGB_MEDIA_RESET;
2316 em_reset(ctx);
2317 }
2318 /* Only do TSO on gigabit for older chips due to errata */
2319 if (hw->mac.type < igb_mac_min)
2320 automasked = em_automask_tso(ctx);
2321
2322 /* Automasking resets the interface so don't mark it up yet */
2323 if (!automasked)
2324 iflib_link_state_change(ctx, LINK_STATE_UP,
2325 IF_Mbps(sc->link_speed));
2326 } else if (!link_check && (sc->link_active == 1)) {
2327 sc->link_speed = 0;
2328 sc->link_duplex = 0;
2329 sc->link_active = 0;
2330 iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
2331 }
2332 em_update_stats_counters(sc);
2333
2334 /* Reset LAA into RAR[0] on 82571 */
2335 if (hw->mac.type == e1000_82571 && e1000_get_laa_state_82571(hw))
2336 e1000_rar_set(hw, hw->mac.addr, 0);
2337
2338 if (hw->mac.type < em_mac_min)
2339 lem_smartspeed(sc);
2340 }
2341
2342 static void
em_if_watchdog_reset(if_ctx_t ctx)2343 em_if_watchdog_reset(if_ctx_t ctx)
2344 {
2345 struct e1000_softc *sc = iflib_get_softc(ctx);
2346
2347 /*
2348 * Just count the event; iflib(4) will already trigger a
2349 * sufficient reset of the controller.
2350 */
2351 sc->watchdog_events++;
2352 }
2353
2354 /*********************************************************************
2355 *
2356 * This routine disables all traffic on the adapter by issuing a
2357 * global reset on the MAC.
2358 *
2359 **********************************************************************/
2360 static void
em_if_stop(if_ctx_t ctx)2361 em_if_stop(if_ctx_t ctx)
2362 {
2363 struct e1000_softc *sc = iflib_get_softc(ctx);
2364
2365 INIT_DEBUGOUT("em_if_stop: begin");
2366
2367 /* I219 needs special flushing to avoid hangs */
2368 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
2369 em_flush_desc_rings(sc);
2370
2371 e1000_reset_hw(&sc->hw);
2372 if (sc->hw.mac.type >= e1000_82544)
2373 E1000_WRITE_REG(&sc->hw, E1000_WUFC, 0);
2374
2375 e1000_led_off(&sc->hw);
2376 e1000_cleanup_led(&sc->hw);
2377 }
2378
2379 /*********************************************************************
2380 *
2381 * Determine hardware revision.
2382 *
2383 **********************************************************************/
2384 static void
em_identify_hardware(if_ctx_t ctx)2385 em_identify_hardware(if_ctx_t ctx)
2386 {
2387 device_t dev = iflib_get_dev(ctx);
2388 struct e1000_softc *sc = iflib_get_softc(ctx);
2389
2390 /* Make sure our PCI config space has the necessary stuff set */
2391 sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
2392
2393 /* Save off the information about this board */
2394 sc->hw.vendor_id = pci_get_vendor(dev);
2395 sc->hw.device_id = pci_get_device(dev);
2396 sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
2397 sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
2398 sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
2399
2400 /* Do Shared Code Init and Setup */
2401 if (e1000_set_mac_type(&sc->hw)) {
2402 device_printf(dev, "Setup init failure\n");
2403 return;
2404 }
2405
2406 /* Are we a VF device? */
2407 if ((sc->hw.mac.type == e1000_vfadapt) ||
2408 (sc->hw.mac.type == e1000_vfadapt_i350))
2409 sc->vf_ifp = 1;
2410 else
2411 sc->vf_ifp = 0;
2412 }
2413
2414 static int
em_allocate_pci_resources(if_ctx_t ctx)2415 em_allocate_pci_resources(if_ctx_t ctx)
2416 {
2417 struct e1000_softc *sc = iflib_get_softc(ctx);
2418 device_t dev = iflib_get_dev(ctx);
2419 int rid, val;
2420
2421 rid = PCIR_BAR(0);
2422 sc->memory = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2423 RF_ACTIVE);
2424 if (sc->memory == NULL) {
2425 device_printf(dev,
2426 "Unable to allocate bus resource: memory\n");
2427 return (ENXIO);
2428 }
2429 sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->memory);
2430 sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->memory);
2431 sc->hw.hw_addr = (u8 *)&sc->osdep.mem_bus_space_handle;
2432
2433 /* Only older adapters use IO mapping */
2434 if (sc->hw.mac.type < em_mac_min && sc->hw.mac.type > e1000_82543) {
2435 /* Figure our where our IO BAR is ? */
2436 for (rid = PCIR_BAR(0); rid < PCIR_CIS;) {
2437 val = pci_read_config(dev, rid, 4);
2438 if (EM_BAR_TYPE(val) == EM_BAR_TYPE_IO) {
2439 break;
2440 }
2441 rid += 4;
2442 /* check for 64bit BAR */
2443 if (EM_BAR_MEM_TYPE(val) == EM_BAR_MEM_TYPE_64BIT)
2444 rid += 4;
2445 }
2446 if (rid >= PCIR_CIS) {
2447 device_printf(dev, "Unable to locate IO BAR\n");
2448 return (ENXIO);
2449 }
2450 sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
2451 &rid, RF_ACTIVE);
2452 if (sc->ioport == NULL) {
2453 device_printf(dev,
2454 "Unable to allocate bus resource: ioport\n");
2455 return (ENXIO);
2456 }
2457 sc->hw.io_base = 0;
2458 sc->osdep.io_bus_space_tag =
2459 rman_get_bustag(sc->ioport);
2460 sc->osdep.io_bus_space_handle =
2461 rman_get_bushandle(sc->ioport);
2462 }
2463
2464 sc->hw.back = &sc->osdep;
2465
2466 return (0);
2467 }
2468
2469 /*********************************************************************
2470 *
2471 * Set up the MSI-X Interrupt handlers
2472 *
2473 **********************************************************************/
2474 static int
em_if_msix_intr_assign(if_ctx_t ctx,int msix)2475 em_if_msix_intr_assign(if_ctx_t ctx, int msix)
2476 {
2477 struct e1000_softc *sc = iflib_get_softc(ctx);
2478 struct em_rx_queue *rx_que = sc->rx_queues;
2479 struct em_tx_queue *tx_que = sc->tx_queues;
2480 int error, rid, i, vector = 0, rx_vectors;
2481 char buf[16];
2482
2483 /* First set up ring resources */
2484 for (i = 0; i < sc->rx_num_queues; i++, rx_que++, vector++) {
2485 rid = vector + 1;
2486 snprintf(buf, sizeof(buf), "rxq%d", i);
2487 error = iflib_irq_alloc_generic(ctx, &rx_que->que_irq, rid,
2488 IFLIB_INTR_RXTX, em_msix_que, rx_que, rx_que->me, buf);
2489 if (error) {
2490 device_printf(iflib_get_dev(ctx),
2491 "Failed to allocate que int %d err: %d",
2492 i, error);
2493 sc->rx_num_queues = i + 1;
2494 goto fail;
2495 }
2496
2497 rx_que->msix = vector;
2498
2499 /*
2500 * Set the bit to enable interrupt
2501 * in E1000_IMS -- bits 20 and 21
2502 * are for RX0 and RX1, note this has
2503 * NOTHING to do with the MSI-X vector
2504 */
2505 if (sc->hw.mac.type == e1000_82574) {
2506 rx_que->eims = 1 << (20 + i);
2507 sc->ims |= rx_que->eims;
2508 sc->ivars |= (8 | rx_que->msix) << (i * 4);
2509 } else if (sc->hw.mac.type == e1000_82575)
2510 rx_que->eims = E1000_EICR_TX_QUEUE0 << vector;
2511 else
2512 rx_que->eims = 1 << vector;
2513 }
2514 rx_vectors = vector;
2515
2516 vector = 0;
2517 for (i = 0; i < sc->tx_num_queues; i++, tx_que++, vector++) {
2518 snprintf(buf, sizeof(buf), "txq%d", i);
2519 tx_que = &sc->tx_queues[i];
2520 iflib_softirq_alloc_generic(ctx,
2521 &sc->rx_queues[i % sc->rx_num_queues].que_irq,
2522 IFLIB_INTR_TX, tx_que, tx_que->me, buf);
2523
2524 tx_que->msix = (vector % sc->rx_num_queues);
2525
2526 /*
2527 * Set the bit to enable interrupt
2528 * in E1000_IMS -- bits 22 and 23
2529 * are for TX0 and TX1, note this has
2530 * NOTHING to do with the MSI-X vector
2531 */
2532 if (sc->hw.mac.type == e1000_82574) {
2533 tx_que->eims = 1 << (22 + i);
2534 sc->ims |= tx_que->eims;
2535 sc->ivars |= (8 | tx_que->msix) << (8 + (i * 4));
2536 } else if (sc->hw.mac.type == e1000_82575) {
2537 tx_que->eims = E1000_EICR_TX_QUEUE0 << i;
2538 } else {
2539 tx_que->eims = 1 << i;
2540 }
2541 }
2542
2543 /* Link interrupt */
2544 rid = rx_vectors + 1;
2545 error = iflib_irq_alloc_generic(ctx, &sc->irq, rid, IFLIB_INTR_ADMIN,
2546 em_msix_link, sc, 0, "aq");
2547
2548 if (error) {
2549 device_printf(iflib_get_dev(ctx),
2550 "Failed to register admin handler");
2551 goto fail;
2552 }
2553 sc->linkvec = rx_vectors;
2554 if (sc->hw.mac.type < igb_mac_min) {
2555 sc->ivars |= (8 | rx_vectors) << 16;
2556 sc->ivars |= 0x80000000;
2557 /* Enable the "Other" interrupt type for link status change */
2558 sc->ims |= E1000_IMS_OTHER;
2559 }
2560
2561 return (0);
2562 fail:
2563 iflib_irq_free(ctx, &sc->irq);
2564 rx_que = sc->rx_queues;
2565 for (int i = 0; i < sc->rx_num_queues; i++, rx_que++)
2566 iflib_irq_free(ctx, &rx_que->que_irq);
2567 return (error);
2568 }
2569
2570 static void
igb_configure_queues(struct e1000_softc * sc)2571 igb_configure_queues(struct e1000_softc *sc)
2572 {
2573 struct e1000_hw *hw = &sc->hw;
2574 struct em_rx_queue *rx_que;
2575 struct em_tx_queue *tx_que;
2576 u32 tmp, ivar = 0, newitr = 0;
2577
2578 /* First turn on RSS capability */
2579 if (hw->mac.type != e1000_82575)
2580 E1000_WRITE_REG(hw, E1000_GPIE,
2581 E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
2582 E1000_GPIE_PBA | E1000_GPIE_NSICR);
2583
2584 /* Turn on MSI-X */
2585 switch (hw->mac.type) {
2586 case e1000_82580:
2587 case e1000_i350:
2588 case e1000_i354:
2589 case e1000_i210:
2590 case e1000_i211:
2591 case e1000_vfadapt:
2592 case e1000_vfadapt_i350:
2593 /* RX entries */
2594 for (int i = 0; i < sc->rx_num_queues; i++) {
2595 u32 index = i >> 1;
2596 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2597 rx_que = &sc->rx_queues[i];
2598 if (i & 1) {
2599 ivar &= 0xFF00FFFF;
2600 ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
2601 16;
2602 } else {
2603 ivar &= 0xFFFFFF00;
2604 ivar |= rx_que->msix | E1000_IVAR_VALID;
2605 }
2606 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2607 }
2608 /* TX entries */
2609 for (int i = 0; i < sc->tx_num_queues; i++) {
2610 u32 index = i >> 1;
2611 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2612 tx_que = &sc->tx_queues[i];
2613 if (i & 1) {
2614 ivar &= 0x00FFFFFF;
2615 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2616 24;
2617 } else {
2618 ivar &= 0xFFFF00FF;
2619 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2620 8;
2621 }
2622 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2623 sc->que_mask |= tx_que->eims;
2624 }
2625
2626 /* And for the link interrupt */
2627 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2628 sc->link_mask = 1 << sc->linkvec;
2629 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2630 break;
2631 case e1000_82576:
2632 /* RX entries */
2633 for (int i = 0; i < sc->rx_num_queues; i++) {
2634 u32 index = i & 0x7; /* Each IVAR has two entries */
2635 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2636 rx_que = &sc->rx_queues[i];
2637 if (i < 8) {
2638 ivar &= 0xFFFFFF00;
2639 ivar |= rx_que->msix | E1000_IVAR_VALID;
2640 } else {
2641 ivar &= 0xFF00FFFF;
2642 ivar |= (rx_que->msix | E1000_IVAR_VALID) <<
2643 16;
2644 }
2645 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2646 sc->que_mask |= rx_que->eims;
2647 }
2648 /* TX entries */
2649 for (int i = 0; i < sc->tx_num_queues; i++) {
2650 u32 index = i & 0x7; /* Each IVAR has two entries */
2651 ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
2652 tx_que = &sc->tx_queues[i];
2653 if (i < 8) {
2654 ivar &= 0xFFFF00FF;
2655 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2656 8;
2657 } else {
2658 ivar &= 0x00FFFFFF;
2659 ivar |= (tx_que->msix | E1000_IVAR_VALID) <<
2660 24;
2661 }
2662 E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
2663 sc->que_mask |= tx_que->eims;
2664 }
2665
2666 /* And for the link interrupt */
2667 ivar = (sc->linkvec | E1000_IVAR_VALID) << 8;
2668 sc->link_mask = 1 << sc->linkvec;
2669 E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
2670 break;
2671
2672 case e1000_82575:
2673 /* enable MSI-X support*/
2674 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
2675 tmp |= E1000_CTRL_EXT_PBA_CLR;
2676 /* Auto-Mask interrupts upon ICR read. */
2677 tmp |= E1000_CTRL_EXT_EIAME;
2678 tmp |= E1000_CTRL_EXT_IRCA;
2679 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
2680
2681 /* Queues */
2682 for (int i = 0; i < sc->rx_num_queues; i++) {
2683 rx_que = &sc->rx_queues[i];
2684 tmp = E1000_EICR_RX_QUEUE0 << i;
2685 tmp |= E1000_EICR_TX_QUEUE0 << i;
2686 rx_que->eims = tmp;
2687 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), i,
2688 rx_que->eims);
2689 sc->que_mask |= rx_que->eims;
2690 }
2691
2692 /* Link */
2693 E1000_WRITE_REG(hw, E1000_MSIXBM(sc->linkvec),
2694 E1000_EIMS_OTHER);
2695 sc->link_mask |= E1000_EIMS_OTHER;
2696 default:
2697 break;
2698 }
2699
2700 /* Set the igb starting interrupt rate */
2701 if (em_max_interrupt_rate > 0) {
2702 newitr = IGB_INTS_TO_EITR(em_max_interrupt_rate);
2703
2704 if (hw->mac.type == e1000_82575)
2705 newitr |= newitr << 16;
2706 else
2707 newitr |= E1000_EITR_CNT_IGNR;
2708
2709 for (int i = 0; i < sc->rx_num_queues; i++) {
2710 rx_que = &sc->rx_queues[i];
2711 E1000_WRITE_REG(hw, E1000_EITR(rx_que->msix), newitr);
2712 }
2713 }
2714
2715 return;
2716 }
2717
2718 static void
em_free_pci_resources(if_ctx_t ctx)2719 em_free_pci_resources(if_ctx_t ctx)
2720 {
2721 struct e1000_softc *sc = iflib_get_softc(ctx);
2722 struct em_rx_queue *que = sc->rx_queues;
2723 device_t dev = iflib_get_dev(ctx);
2724
2725 /* Release all MSI-X queue resources */
2726 if (sc->intr_type == IFLIB_INTR_MSIX)
2727 iflib_irq_free(ctx, &sc->irq);
2728
2729 if (que != NULL) {
2730 for (int i = 0; i < sc->rx_num_queues; i++, que++) {
2731 iflib_irq_free(ctx, &que->que_irq);
2732 }
2733 }
2734
2735 if (sc->memory != NULL) {
2736 bus_release_resource(dev, SYS_RES_MEMORY,
2737 rman_get_rid(sc->memory), sc->memory);
2738 sc->memory = NULL;
2739 }
2740
2741 if (sc->flash != NULL) {
2742 bus_release_resource(dev, SYS_RES_MEMORY,
2743 rman_get_rid(sc->flash), sc->flash);
2744 sc->flash = NULL;
2745 }
2746
2747 if (sc->ioport != NULL) {
2748 bus_release_resource(dev, SYS_RES_IOPORT,
2749 rman_get_rid(sc->ioport), sc->ioport);
2750 sc->ioport = NULL;
2751 }
2752 }
2753
2754 /* Set up MSI or MSI-X */
2755 static int
em_setup_msix(if_ctx_t ctx)2756 em_setup_msix(if_ctx_t ctx)
2757 {
2758 struct e1000_softc *sc = iflib_get_softc(ctx);
2759
2760 if (sc->hw.mac.type == e1000_82574) {
2761 em_enable_vectors_82574(ctx);
2762 }
2763 return (0);
2764 }
2765
2766 /*********************************************************************
2767 *
2768 * Workaround for SmartSpeed on 82541 and 82547 controllers
2769 *
2770 **********************************************************************/
2771 static void
lem_smartspeed(struct e1000_softc * sc)2772 lem_smartspeed(struct e1000_softc *sc)
2773 {
2774 u16 phy_tmp;
2775
2776 if (sc->link_active || (sc->hw.phy.type != e1000_phy_igp) ||
2777 sc->hw.mac.autoneg == 0 ||
2778 (sc->hw.phy.autoneg_advertised & ADVERTISE_1000_FULL) == 0)
2779 return;
2780
2781 if (sc->smartspeed == 0) {
2782 /* If Master/Slave config fault is asserted twice,
2783 * we assume back-to-back */
2784 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2785 if (!(phy_tmp & SR_1000T_MS_CONFIG_FAULT))
2786 return;
2787 e1000_read_phy_reg(&sc->hw, PHY_1000T_STATUS, &phy_tmp);
2788 if (phy_tmp & SR_1000T_MS_CONFIG_FAULT) {
2789 e1000_read_phy_reg(&sc->hw,
2790 PHY_1000T_CTRL, &phy_tmp);
2791 if(phy_tmp & CR_1000T_MS_ENABLE) {
2792 phy_tmp &= ~CR_1000T_MS_ENABLE;
2793 e1000_write_phy_reg(&sc->hw,
2794 PHY_1000T_CTRL, phy_tmp);
2795 sc->smartspeed++;
2796 if(sc->hw.mac.autoneg &&
2797 !e1000_copper_link_autoneg(&sc->hw) &&
2798 !e1000_read_phy_reg(&sc->hw,
2799 PHY_CONTROL, &phy_tmp)) {
2800 phy_tmp |= (MII_CR_AUTO_NEG_EN |
2801 MII_CR_RESTART_AUTO_NEG);
2802 e1000_write_phy_reg(&sc->hw,
2803 PHY_CONTROL, phy_tmp);
2804 }
2805 }
2806 }
2807 return;
2808 } else if(sc->smartspeed == EM_SMARTSPEED_DOWNSHIFT) {
2809 /* If still no link, perhaps using 2/3 pair cable */
2810 e1000_read_phy_reg(&sc->hw, PHY_1000T_CTRL, &phy_tmp);
2811 phy_tmp |= CR_1000T_MS_ENABLE;
2812 e1000_write_phy_reg(&sc->hw, PHY_1000T_CTRL, phy_tmp);
2813 if(sc->hw.mac.autoneg &&
2814 !e1000_copper_link_autoneg(&sc->hw) &&
2815 !e1000_read_phy_reg(&sc->hw, PHY_CONTROL, &phy_tmp)) {
2816 phy_tmp |= (MII_CR_AUTO_NEG_EN |
2817 MII_CR_RESTART_AUTO_NEG);
2818 e1000_write_phy_reg(&sc->hw, PHY_CONTROL, phy_tmp);
2819 }
2820 }
2821 /* Restart process after EM_SMARTSPEED_MAX iterations */
2822 if(sc->smartspeed++ == EM_SMARTSPEED_MAX)
2823 sc->smartspeed = 0;
2824 }
2825
2826 /*********************************************************************
2827 *
2828 * Initialize the DMA Coalescing feature
2829 *
2830 **********************************************************************/
2831 static void
igb_init_dmac(struct e1000_softc * sc,u32 pba)2832 igb_init_dmac(struct e1000_softc *sc, u32 pba)
2833 {
2834 device_t dev = sc->dev;
2835 struct e1000_hw *hw = &sc->hw;
2836 u32 dmac, reg = ~E1000_DMACR_DMAC_EN;
2837 u16 hwm;
2838 u16 max_frame_size;
2839
2840 if (hw->mac.type == e1000_i211)
2841 return;
2842
2843 max_frame_size = sc->shared->isc_max_frame_size;
2844 if (hw->mac.type > e1000_82580) {
2845
2846 if (sc->dmac == 0) { /* Disabling it */
2847 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2848 return;
2849 } else
2850 device_printf(dev, "DMA Coalescing enabled\n");
2851
2852 /* Set starting threshold */
2853 E1000_WRITE_REG(hw, E1000_DMCTXTH, 0);
2854
2855 hwm = 64 * pba - max_frame_size / 16;
2856 if (hwm < 64 * (pba - 6))
2857 hwm = 64 * (pba - 6);
2858 reg = E1000_READ_REG(hw, E1000_FCRTC);
2859 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
2860 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
2861 & E1000_FCRTC_RTH_COAL_MASK);
2862 E1000_WRITE_REG(hw, E1000_FCRTC, reg);
2863
2864
2865 dmac = pba - max_frame_size / 512;
2866 if (dmac < pba - 10)
2867 dmac = pba - 10;
2868 reg = E1000_READ_REG(hw, E1000_DMACR);
2869 reg &= ~E1000_DMACR_DMACTHR_MASK;
2870 reg |= ((dmac << E1000_DMACR_DMACTHR_SHIFT)
2871 & E1000_DMACR_DMACTHR_MASK);
2872
2873 /* transition to L0x or L1 if available..*/
2874 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
2875
2876 /* Check if status is 2.5Gb backplane connection
2877 * before configuration of watchdog timer, which is
2878 * in msec values in 12.8usec intervals
2879 * watchdog timer= msec values in 32usec intervals
2880 * for non 2.5Gb connection
2881 */
2882 if (hw->mac.type == e1000_i354) {
2883 int status = E1000_READ_REG(hw, E1000_STATUS);
2884 if ((status & E1000_STATUS_2P5_SKU) &&
2885 (!(status & E1000_STATUS_2P5_SKU_OVER)))
2886 reg |= ((sc->dmac * 5) >> 6);
2887 else
2888 reg |= (sc->dmac >> 5);
2889 } else {
2890 reg |= (sc->dmac >> 5);
2891 }
2892
2893 E1000_WRITE_REG(hw, E1000_DMACR, reg);
2894
2895 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
2896
2897 /* Set the interval before transition */
2898 reg = E1000_READ_REG(hw, E1000_DMCTLX);
2899 if (hw->mac.type == e1000_i350)
2900 reg |= IGB_DMCTLX_DCFLUSH_DIS;
2901 /*
2902 ** in 2.5Gb connection, TTLX unit is 0.4 usec
2903 ** which is 0x4*2 = 0xA. But delay is still 4 usec
2904 */
2905 if (hw->mac.type == e1000_i354) {
2906 int status = E1000_READ_REG(hw, E1000_STATUS);
2907 if ((status & E1000_STATUS_2P5_SKU) &&
2908 (!(status & E1000_STATUS_2P5_SKU_OVER)))
2909 reg |= 0xA;
2910 else
2911 reg |= 0x4;
2912 } else {
2913 reg |= 0x4;
2914 }
2915
2916 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
2917
2918 /* free space in tx packet buffer to wake from DMA coal */
2919 E1000_WRITE_REG(hw, E1000_DMCTXTH, (IGB_TXPBSIZE -
2920 (2 * max_frame_size)) >> 6);
2921
2922 /* make low power state decision controlled by DMA coal */
2923 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2924 reg &= ~E1000_PCIEMISC_LX_DECISION;
2925 E1000_WRITE_REG(hw, E1000_PCIEMISC, reg);
2926
2927 } else if (hw->mac.type == e1000_82580) {
2928 u32 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
2929 E1000_WRITE_REG(hw, E1000_PCIEMISC,
2930 reg & ~E1000_PCIEMISC_LX_DECISION);
2931 E1000_WRITE_REG(hw, E1000_DMACR, 0);
2932 }
2933 }
2934 /*********************************************************************
2935 * The 3 following flush routines are used as a workaround in the
2936 * I219 client parts and only for them.
2937 *
2938 * em_flush_tx_ring - remove all descriptors from the tx_ring
2939 *
2940 * We want to clear all pending descriptors from the TX ring.
2941 * zeroing happens when the HW reads the regs. We assign the ring itself as
2942 * the data of the next descriptor. We don't care about the data we are about
2943 * to reset the HW.
2944 **********************************************************************/
2945 static void
em_flush_tx_ring(struct e1000_softc * sc)2946 em_flush_tx_ring(struct e1000_softc *sc)
2947 {
2948 struct e1000_hw *hw = &sc->hw;
2949 struct tx_ring *txr = &sc->tx_queues->txr;
2950 struct e1000_tx_desc *txd;
2951 u32 tctl, txd_lower = E1000_TXD_CMD_IFCS;
2952 u16 size = 512;
2953
2954 tctl = E1000_READ_REG(hw, E1000_TCTL);
2955 E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
2956
2957 txd = &txr->tx_base[txr->tx_cidx_processed];
2958
2959 /* Just use the ring as a dummy buffer addr */
2960 txd->buffer_addr = txr->tx_paddr;
2961 txd->lower.data = htole32(txd_lower | size);
2962 txd->upper.data = 0;
2963
2964 /* flush descriptors to memory before notifying the HW */
2965 wmb();
2966
2967 E1000_WRITE_REG(hw, E1000_TDT(0), txr->tx_cidx_processed);
2968 mb();
2969 usec_delay(250);
2970 }
2971
2972 /*********************************************************************
2973 * em_flush_rx_ring - remove all descriptors from the rx_ring
2974 *
2975 * Mark all descriptors in the RX ring as consumed and disable the rx ring
2976 **********************************************************************/
2977 static void
em_flush_rx_ring(struct e1000_softc * sc)2978 em_flush_rx_ring(struct e1000_softc *sc)
2979 {
2980 struct e1000_hw *hw = &sc->hw;
2981 u32 rctl, rxdctl;
2982
2983 rctl = E1000_READ_REG(hw, E1000_RCTL);
2984 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2985 E1000_WRITE_FLUSH(hw);
2986 usec_delay(150);
2987
2988 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
2989 /* zero the lower 14 bits (prefetch and host thresholds) */
2990 rxdctl &= 0xffffc000;
2991 /*
2992 * update thresholds: prefetch threshold to 31, host threshold to 1
2993 * and make sure the granularity is "descriptors" and not
2994 * "cache lines"
2995 */
2996 rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
2997 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl);
2998
2999 /* momentarily enable the RX ring for the changes to take effect */
3000 E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
3001 E1000_WRITE_FLUSH(hw);
3002 usec_delay(150);
3003 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3004 }
3005
3006 /*********************************************************************
3007 * em_flush_desc_rings - remove all descriptors from the descriptor rings
3008 *
3009 * In I219, the descriptor rings must be emptied before resetting the HW
3010 * or before changing the device state to D3 during runtime (runtime PM).
3011 *
3012 * Failure to do this will cause the HW to enter a unit hang state which can
3013 * only be released by PCI reset on the device
3014 *
3015 **********************************************************************/
3016 static void
em_flush_desc_rings(struct e1000_softc * sc)3017 em_flush_desc_rings(struct e1000_softc *sc)
3018 {
3019 struct e1000_hw *hw = &sc->hw;
3020 device_t dev = sc->dev;
3021 u16 hang_state;
3022 u32 fext_nvm11, tdlen;
3023
3024 /* First, disable MULR fix in FEXTNVM11 */
3025 fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
3026 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3027 E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
3028
3029 /* do nothing if we're not in faulty state, or the queue is empty */
3030 tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
3031 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
3032 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3033 return;
3034 em_flush_tx_ring(sc);
3035
3036 /* recheck, maybe the fault is caused by the rx ring */
3037 hang_state = pci_read_config(dev, PCICFG_DESC_RING_STATUS, 2);
3038 if (hang_state & FLUSH_DESC_REQUIRED)
3039 em_flush_rx_ring(sc);
3040 }
3041
3042
3043 /*********************************************************************
3044 *
3045 * Initialize the hardware to a configuration as specified by the
3046 * sc structure.
3047 *
3048 **********************************************************************/
3049 static void
em_reset(if_ctx_t ctx)3050 em_reset(if_ctx_t ctx)
3051 {
3052 device_t dev = iflib_get_dev(ctx);
3053 struct e1000_softc *sc = iflib_get_softc(ctx);
3054 if_t ifp = iflib_get_ifp(ctx);
3055 struct e1000_hw *hw = &sc->hw;
3056 u32 rx_buffer_size;
3057 u32 pba;
3058
3059 INIT_DEBUGOUT("em_reset: begin");
3060 /* Let the firmware know the OS is in control */
3061 em_get_hw_control(sc);
3062
3063 /* Set up smart power down as default off on newer adapters. */
3064 if (!em_smart_pwr_down && (hw->mac.type == e1000_82571 ||
3065 hw->mac.type == e1000_82572)) {
3066 u16 phy_tmp = 0;
3067
3068 /* Speed up time to link by disabling smart power down. */
3069 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_tmp);
3070 phy_tmp &= ~IGP02E1000_PM_SPD;
3071 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_tmp);
3072 }
3073
3074 /*
3075 * Packet Buffer Allocation (PBA)
3076 * Writing PBA sets the receive portion of the buffer
3077 * the remainder is used for the transmit buffer.
3078 */
3079 switch (hw->mac.type) {
3080 /* 82547: Total Packet Buffer is 40K */
3081 case e1000_82547:
3082 case e1000_82547_rev_2:
3083 if (hw->mac.max_frame_size > 8192)
3084 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
3085 else
3086 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
3087 break;
3088 /* 82571/82572/80003es2lan: Total Packet Buffer is 48K */
3089 case e1000_82571:
3090 case e1000_82572:
3091 case e1000_80003es2lan:
3092 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
3093 break;
3094 /* 82573: Total Packet Buffer is 32K */
3095 case e1000_82573:
3096 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
3097 break;
3098 case e1000_82574:
3099 case e1000_82583:
3100 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
3101 break;
3102 case e1000_ich8lan:
3103 pba = E1000_PBA_8K;
3104 break;
3105 case e1000_ich9lan:
3106 case e1000_ich10lan:
3107 /* Boost Receive side for jumbo frames */
3108 if (hw->mac.max_frame_size > 4096)
3109 pba = E1000_PBA_14K;
3110 else
3111 pba = E1000_PBA_10K;
3112 break;
3113 case e1000_pchlan:
3114 case e1000_pch2lan:
3115 case e1000_pch_lpt:
3116 case e1000_pch_spt:
3117 case e1000_pch_cnp:
3118 case e1000_pch_tgp:
3119 case e1000_pch_adp:
3120 case e1000_pch_mtp:
3121 case e1000_pch_ptp:
3122 pba = E1000_PBA_26K;
3123 break;
3124 case e1000_82575:
3125 pba = E1000_PBA_32K;
3126 break;
3127 case e1000_82576:
3128 case e1000_vfadapt:
3129 pba = E1000_READ_REG(hw, E1000_RXPBS);
3130 pba &= E1000_RXPBS_SIZE_MASK_82576;
3131 break;
3132 case e1000_82580:
3133 case e1000_i350:
3134 case e1000_i354:
3135 case e1000_vfadapt_i350:
3136 pba = E1000_READ_REG(hw, E1000_RXPBS);
3137 pba = e1000_rxpbs_adjust_82580(pba);
3138 break;
3139 case e1000_i210:
3140 case e1000_i211:
3141 pba = E1000_PBA_34K;
3142 break;
3143 default:
3144 /* Remaining devices assumed to have Packet Buffer of 64K. */
3145 if (hw->mac.max_frame_size > 8192)
3146 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
3147 else
3148 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
3149 }
3150
3151 /* Special needs in case of Jumbo frames */
3152 if ((hw->mac.type == e1000_82575) && (if_getmtu(ifp) > ETHERMTU)) {
3153 u32 tx_space, min_tx, min_rx;
3154 pba = E1000_READ_REG(hw, E1000_PBA);
3155 tx_space = pba >> 16;
3156 pba &= 0xffff;
3157 min_tx = (hw->mac.max_frame_size +
3158 sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
3159 min_tx = roundup2(min_tx, 1024);
3160 min_tx >>= 10;
3161 min_rx = hw->mac.max_frame_size;
3162 min_rx = roundup2(min_rx, 1024);
3163 min_rx >>= 10;
3164 if (tx_space < min_tx &&
3165 ((min_tx - tx_space) < pba)) {
3166 pba = pba - (min_tx - tx_space);
3167 /*
3168 * if short on rx space, rx wins
3169 * and must trump tx adjustment
3170 */
3171 if (pba < min_rx)
3172 pba = min_rx;
3173 }
3174 E1000_WRITE_REG(hw, E1000_PBA, pba);
3175 }
3176
3177 if (hw->mac.type < igb_mac_min)
3178 E1000_WRITE_REG(hw, E1000_PBA, pba);
3179
3180 INIT_DEBUGOUT1("em_reset: pba=%dK",pba);
3181
3182 /*
3183 * These parameters control the automatic generation (Tx) and
3184 * response (Rx) to Ethernet PAUSE frames.
3185 * - High water mark should allow for at least two frames to be
3186 * received after sending an XOFF.
3187 * - Low water mark works best when it is very near the high water
3188 mark.
3189 * This allows the receiver to restart by sending XON when it has
3190 * drained a bit. Here we use an arbitrary value of 1500 which will
3191 * restart after one full frame is pulled from the buffer. There
3192 * could be several smaller frames in the buffer and if so they will
3193 * not trigger the XON until their total number reduces the buffer
3194 * by 1500.
3195 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
3196 */
3197 rx_buffer_size = (pba & 0xffff) << 10;
3198 hw->fc.high_water = rx_buffer_size -
3199 roundup2(hw->mac.max_frame_size, 1024);
3200 hw->fc.low_water = hw->fc.high_water - 1500;
3201
3202 if (sc->fc) /* locally set flow control value? */
3203 hw->fc.requested_mode = sc->fc;
3204 else
3205 hw->fc.requested_mode = e1000_fc_full;
3206
3207 if (hw->mac.type == e1000_80003es2lan)
3208 hw->fc.pause_time = 0xFFFF;
3209 else
3210 hw->fc.pause_time = EM_FC_PAUSE_TIME;
3211
3212 hw->fc.send_xon = true;
3213
3214 /* Device specific overrides/settings */
3215 switch (hw->mac.type) {
3216 case e1000_pchlan:
3217 /* Workaround: no TX flow ctrl for PCH */
3218 hw->fc.requested_mode = e1000_fc_rx_pause;
3219 hw->fc.pause_time = 0xFFFF; /* override */
3220 if (if_getmtu(ifp) > ETHERMTU) {
3221 hw->fc.high_water = 0x3500;
3222 hw->fc.low_water = 0x1500;
3223 } else {
3224 hw->fc.high_water = 0x5000;
3225 hw->fc.low_water = 0x3000;
3226 }
3227 hw->fc.refresh_time = 0x1000;
3228 break;
3229 case e1000_pch2lan:
3230 case e1000_pch_lpt:
3231 case e1000_pch_spt:
3232 case e1000_pch_cnp:
3233 case e1000_pch_tgp:
3234 case e1000_pch_adp:
3235 case e1000_pch_mtp:
3236 case e1000_pch_ptp:
3237 hw->fc.high_water = 0x5C20;
3238 hw->fc.low_water = 0x5048;
3239 hw->fc.pause_time = 0x0650;
3240 hw->fc.refresh_time = 0x0400;
3241 /* Jumbos need adjusted PBA */
3242 if (if_getmtu(ifp) > ETHERMTU)
3243 E1000_WRITE_REG(hw, E1000_PBA, 12);
3244 else
3245 E1000_WRITE_REG(hw, E1000_PBA, 26);
3246 break;
3247 case e1000_82575:
3248 case e1000_82576:
3249 /* 8-byte granularity */
3250 hw->fc.low_water = hw->fc.high_water - 8;
3251 break;
3252 case e1000_82580:
3253 case e1000_i350:
3254 case e1000_i354:
3255 case e1000_i210:
3256 case e1000_i211:
3257 case e1000_vfadapt:
3258 case e1000_vfadapt_i350:
3259 /* 16-byte granularity */
3260 hw->fc.low_water = hw->fc.high_water - 16;
3261 break;
3262 case e1000_ich9lan:
3263 case e1000_ich10lan:
3264 if (if_getmtu(ifp) > ETHERMTU) {
3265 hw->fc.high_water = 0x2800;
3266 hw->fc.low_water = hw->fc.high_water - 8;
3267 break;
3268 }
3269 /* FALLTHROUGH */
3270 default:
3271 if (hw->mac.type == e1000_80003es2lan)
3272 hw->fc.pause_time = 0xFFFF;
3273 break;
3274 }
3275
3276 /* I219 needs some special flushing to avoid hangs */
3277 if (sc->hw.mac.type >= e1000_pch_spt && sc->hw.mac.type < igb_mac_min)
3278 em_flush_desc_rings(sc);
3279
3280 /* Issue a global reset */
3281 e1000_reset_hw(hw);
3282 if (hw->mac.type >= igb_mac_min) {
3283 E1000_WRITE_REG(hw, E1000_WUC, 0);
3284 } else {
3285 E1000_WRITE_REG(hw, E1000_WUFC, 0);
3286 em_disable_aspm(sc);
3287 }
3288 if (sc->flags & IGB_MEDIA_RESET) {
3289 e1000_setup_init_funcs(hw, true);
3290 e1000_get_bus_info(hw);
3291 sc->flags &= ~IGB_MEDIA_RESET;
3292 }
3293 /* and a re-init */
3294 if (e1000_init_hw(hw) < 0) {
3295 device_printf(dev, "Hardware Initialization Failed\n");
3296 return;
3297 }
3298 if (hw->mac.type >= igb_mac_min)
3299 igb_init_dmac(sc, pba);
3300
3301 /* Save the final PBA off if it needs to be used elsewhere i.e. AIM */
3302 sc->pba = pba;
3303
3304 E1000_WRITE_REG(hw, E1000_VET, ETHERTYPE_VLAN);
3305 e1000_get_phy_info(hw);
3306 e1000_check_for_link(hw);
3307 }
3308
3309 /*
3310 * Initialise the RSS mapping for NICs that support multiple transmit/
3311 * receive rings.
3312 */
3313
3314 #define RSSKEYLEN 10
3315 static void
em_initialize_rss_mapping(struct e1000_softc * sc)3316 em_initialize_rss_mapping(struct e1000_softc *sc)
3317 {
3318 uint8_t rss_key[4 * RSSKEYLEN];
3319 uint32_t reta = 0;
3320 struct e1000_hw *hw = &sc->hw;
3321 int i;
3322
3323 /*
3324 * Configure RSS key
3325 */
3326 arc4rand(rss_key, sizeof(rss_key), 0);
3327 for (i = 0; i < RSSKEYLEN; ++i) {
3328 uint32_t rssrk = 0;
3329
3330 rssrk = EM_RSSRK_VAL(rss_key, i);
3331 E1000_WRITE_REG(hw,E1000_RSSRK(i), rssrk);
3332 }
3333
3334 /*
3335 * Configure RSS redirect table in following fashion:
3336 * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
3337 */
3338 for (i = 0; i < sizeof(reta); ++i) {
3339 uint32_t q;
3340
3341 q = (i % sc->rx_num_queues) << 7;
3342 reta |= q << (8 * i);
3343 }
3344
3345 for (i = 0; i < 32; ++i)
3346 E1000_WRITE_REG(hw, E1000_RETA(i), reta);
3347
3348 E1000_WRITE_REG(hw, E1000_MRQC, E1000_MRQC_RSS_ENABLE_2Q |
3349 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3350 E1000_MRQC_RSS_FIELD_IPV4 |
3351 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX |
3352 E1000_MRQC_RSS_FIELD_IPV6_EX |
3353 E1000_MRQC_RSS_FIELD_IPV6);
3354 }
3355
3356 static void
igb_initialize_rss_mapping(struct e1000_softc * sc)3357 igb_initialize_rss_mapping(struct e1000_softc *sc)
3358 {
3359 struct e1000_hw *hw = &sc->hw;
3360 int i;
3361 int queue_id;
3362 u32 reta;
3363 u32 rss_key[10], mrqc, shift = 0;
3364
3365 /* XXX? */
3366 if (hw->mac.type == e1000_82575)
3367 shift = 6;
3368
3369 /*
3370 * The redirection table controls which destination
3371 * queue each bucket redirects traffic to.
3372 * Each DWORD represents four queues, with the LSB
3373 * being the first queue in the DWORD.
3374 *
3375 * This just allocates buckets to queues using round-robin
3376 * allocation.
3377 *
3378 * NOTE: It Just Happens to line up with the default
3379 * RSS allocation method.
3380 */
3381
3382 /* Warning FM follows */
3383 reta = 0;
3384 for (i = 0; i < 128; i++) {
3385 #ifdef RSS
3386 queue_id = rss_get_indirection_to_bucket(i);
3387 /*
3388 * If we have more queues than buckets, we'll
3389 * end up mapping buckets to a subset of the
3390 * queues.
3391 *
3392 * If we have more buckets than queues, we'll
3393 * end up instead assigning multiple buckets
3394 * to queues.
3395 *
3396 * Both are suboptimal, but we need to handle
3397 * the case so we don't go out of bounds
3398 * indexing arrays and such.
3399 */
3400 queue_id = queue_id % sc->rx_num_queues;
3401 #else
3402 queue_id = (i % sc->rx_num_queues);
3403 #endif
3404 /* Adjust if required */
3405 queue_id = queue_id << shift;
3406
3407 /*
3408 * The low 8 bits are for hash value (n+0);
3409 * The next 8 bits are for hash value (n+1), etc.
3410 */
3411 reta = reta >> 8;
3412 reta = reta | ( ((uint32_t) queue_id) << 24);
3413 if ((i & 3) == 3) {
3414 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3415 reta = 0;
3416 }
3417 }
3418
3419 /* Now fill in hash table */
3420
3421 /*
3422 * MRQC: Multiple Receive Queues Command
3423 * Set queuing to RSS control, number depends on the device.
3424 */
3425 mrqc = E1000_MRQC_ENABLE_RSS_MQ;
3426
3427 #ifdef RSS
3428 /* XXX ew typecasting */
3429 rss_getkey((uint8_t *) &rss_key);
3430 #else
3431 arc4rand(&rss_key, sizeof(rss_key), 0);
3432 #endif
3433 for (i = 0; i < 10; i++)
3434 E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key[i]);
3435
3436 /*
3437 * Configure the RSS fields to hash upon.
3438 */
3439 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
3440 E1000_MRQC_RSS_FIELD_IPV4_TCP);
3441 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
3442 E1000_MRQC_RSS_FIELD_IPV6_TCP);
3443 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
3444 E1000_MRQC_RSS_FIELD_IPV6_UDP);
3445 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
3446 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3447
3448 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
3449 }
3450
3451 /*********************************************************************
3452 *
3453 * Setup networking device structure and register interface media.
3454 *
3455 **********************************************************************/
3456 static int
em_setup_interface(if_ctx_t ctx)3457 em_setup_interface(if_ctx_t ctx)
3458 {
3459 if_t ifp = iflib_get_ifp(ctx);
3460 struct e1000_softc *sc = iflib_get_softc(ctx);
3461 if_softc_ctx_t scctx = sc->shared;
3462
3463 INIT_DEBUGOUT("em_setup_interface: begin");
3464
3465 /* Single Queue */
3466 if (sc->tx_num_queues == 1) {
3467 if_setsendqlen(ifp, scctx->isc_ntxd[0] - 1);
3468 if_setsendqready(ifp);
3469 }
3470
3471 /*
3472 * Specify the media types supported by this adapter and register
3473 * callbacks to update media and link information
3474 */
3475 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
3476 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
3477 u_char fiber_type = IFM_1000_SX; /* default type */
3478
3479 if (sc->hw.mac.type == e1000_82545)
3480 fiber_type = IFM_1000_LX;
3481 ifmedia_add(sc->media,
3482 IFM_ETHER | fiber_type | IFM_FDX, 0, NULL);
3483 ifmedia_add(sc->media, IFM_ETHER | fiber_type, 0, NULL);
3484 } else {
3485 ifmedia_add(sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
3486 ifmedia_add(sc->media,
3487 IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
3488 ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
3489 ifmedia_add(sc->media,
3490 IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
3491 if (sc->hw.phy.type != e1000_phy_ife) {
3492 ifmedia_add(sc->media,
3493 IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
3494 ifmedia_add(sc->media,
3495 IFM_ETHER | IFM_1000_T, 0, NULL);
3496 }
3497 }
3498 ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
3499 ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
3500 return (0);
3501 }
3502
3503 static int
em_if_tx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int ntxqs,int ntxqsets)3504 em_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
3505 int ntxqs, int ntxqsets)
3506 {
3507 struct e1000_softc *sc = iflib_get_softc(ctx);
3508 if_softc_ctx_t scctx = sc->shared;
3509 int error = E1000_SUCCESS;
3510 struct em_tx_queue *que;
3511 int i, j;
3512
3513 MPASS(sc->tx_num_queues > 0);
3514 MPASS(sc->tx_num_queues == ntxqsets);
3515
3516 /* First allocate the top level queue structs */
3517 if (!(sc->tx_queues =
3518 (struct em_tx_queue *) malloc(sizeof(struct em_tx_queue) *
3519 sc->tx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3520 device_printf(iflib_get_dev(ctx),
3521 "Unable to allocate queue memory\n");
3522 return(ENOMEM);
3523 }
3524
3525 for (i = 0, que = sc->tx_queues; i < sc->tx_num_queues; i++, que++) {
3526 /* Set up some basics */
3527
3528 struct tx_ring *txr = &que->txr;
3529 txr->sc = que->sc = sc;
3530 que->me = txr->me = i;
3531
3532 /* Allocate report status array */
3533 if (!(txr->tx_rsq =
3534 (qidx_t *) malloc(sizeof(qidx_t) * scctx->isc_ntxd[0],
3535 M_DEVBUF, M_NOWAIT | M_ZERO))) {
3536 device_printf(iflib_get_dev(ctx),
3537 "failed to allocate rs_idxs memory\n");
3538 error = ENOMEM;
3539 goto fail;
3540 }
3541 for (j = 0; j < scctx->isc_ntxd[0]; j++)
3542 txr->tx_rsq[j] = QIDX_INVALID;
3543 /* get the virtual and physical address of hardware queues */
3544 txr->tx_base = (struct e1000_tx_desc *)vaddrs[i*ntxqs];
3545 txr->tx_paddr = paddrs[i*ntxqs];
3546 }
3547
3548 if (bootverbose)
3549 device_printf(iflib_get_dev(ctx),
3550 "allocated for %d tx_queues\n", sc->tx_num_queues);
3551 return (0);
3552 fail:
3553 em_if_queues_free(ctx);
3554 return (error);
3555 }
3556
3557 static int
em_if_rx_queues_alloc(if_ctx_t ctx,caddr_t * vaddrs,uint64_t * paddrs,int nrxqs,int nrxqsets)3558 em_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *vaddrs, uint64_t *paddrs,
3559 int nrxqs, int nrxqsets)
3560 {
3561 struct e1000_softc *sc = iflib_get_softc(ctx);
3562 int error = E1000_SUCCESS;
3563 struct em_rx_queue *que;
3564 int i;
3565
3566 MPASS(sc->rx_num_queues > 0);
3567 MPASS(sc->rx_num_queues == nrxqsets);
3568
3569 /* First allocate the top level queue structs */
3570 if (!(sc->rx_queues =
3571 (struct em_rx_queue *) malloc(sizeof(struct em_rx_queue) *
3572 sc->rx_num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
3573 device_printf(iflib_get_dev(ctx),
3574 "Unable to allocate queue memory\n");
3575 error = ENOMEM;
3576 goto fail;
3577 }
3578
3579 for (i = 0, que = sc->rx_queues; i < nrxqsets; i++, que++) {
3580 /* Set up some basics */
3581 struct rx_ring *rxr = &que->rxr;
3582 rxr->sc = que->sc = sc;
3583 rxr->que = que;
3584 que->me = rxr->me = i;
3585
3586 /* get the virtual and physical address of hardware queues */
3587 rxr->rx_base =
3588 (union e1000_rx_desc_extended *)vaddrs[i*nrxqs];
3589 rxr->rx_paddr = paddrs[i*nrxqs];
3590 }
3591
3592 if (bootverbose)
3593 device_printf(iflib_get_dev(ctx),
3594 "allocated for %d rx_queues\n", sc->rx_num_queues);
3595
3596 return (0);
3597 fail:
3598 em_if_queues_free(ctx);
3599 return (error);
3600 }
3601
3602 static void
em_if_queues_free(if_ctx_t ctx)3603 em_if_queues_free(if_ctx_t ctx)
3604 {
3605 struct e1000_softc *sc = iflib_get_softc(ctx);
3606 struct em_tx_queue *tx_que = sc->tx_queues;
3607 struct em_rx_queue *rx_que = sc->rx_queues;
3608
3609 if (tx_que != NULL) {
3610 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
3611 struct tx_ring *txr = &tx_que->txr;
3612 if (txr->tx_rsq == NULL)
3613 break;
3614
3615 free(txr->tx_rsq, M_DEVBUF);
3616 txr->tx_rsq = NULL;
3617 }
3618 free(sc->tx_queues, M_DEVBUF);
3619 sc->tx_queues = NULL;
3620 }
3621
3622 if (rx_que != NULL) {
3623 free(sc->rx_queues, M_DEVBUF);
3624 sc->rx_queues = NULL;
3625 }
3626 }
3627
3628 /*********************************************************************
3629 *
3630 * Enable transmit unit.
3631 *
3632 **********************************************************************/
3633 static void
em_initialize_transmit_unit(if_ctx_t ctx)3634 em_initialize_transmit_unit(if_ctx_t ctx)
3635 {
3636 struct e1000_softc *sc = iflib_get_softc(ctx);
3637 if_softc_ctx_t scctx = sc->shared;
3638 struct em_tx_queue *que;
3639 struct tx_ring *txr;
3640 struct e1000_hw *hw = &sc->hw;
3641 u32 tctl, txdctl = 0, tarc, tipg = 0;
3642
3643 INIT_DEBUGOUT("em_initialize_transmit_unit: begin");
3644
3645 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
3646 u64 bus_addr;
3647 caddr_t offp, endp;
3648
3649 que = &sc->tx_queues[i];
3650 txr = &que->txr;
3651 bus_addr = txr->tx_paddr;
3652
3653 /* Clear checksum offload context. */
3654 offp = (caddr_t)&txr->csum_flags;
3655 endp = (caddr_t)(txr + 1);
3656 bzero(offp, endp - offp);
3657
3658 /* Base and Len of TX Ring */
3659 E1000_WRITE_REG(hw, E1000_TDLEN(i),
3660 scctx->isc_ntxd[0] * sizeof(struct e1000_tx_desc));
3661 E1000_WRITE_REG(hw, E1000_TDBAH(i), (u32)(bus_addr >> 32));
3662 E1000_WRITE_REG(hw, E1000_TDBAL(i), (u32)bus_addr);
3663 /* Init the HEAD/TAIL indices */
3664 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
3665 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
3666
3667 HW_DEBUGOUT2("Base = %x, Length = %x\n",
3668 E1000_READ_REG(hw, E1000_TDBAL(i)),
3669 E1000_READ_REG(hw, E1000_TDLEN(i)));
3670
3671 txdctl = 0; /* clear txdctl */
3672 txdctl |= 0x1f; /* PTHRESH */
3673 txdctl |= 1 << 8; /* HTHRESH */
3674 txdctl |= 1 << 16;/* WTHRESH */
3675 txdctl |= 1 << 22; /* Reserved bit 22 must always be 1 */
3676 txdctl |= E1000_TXDCTL_GRAN;
3677 txdctl |= 1 << 25; /* LWTHRESH */
3678
3679 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
3680 }
3681
3682 /* Set the default values for the Tx Inter Packet Gap timer */
3683 switch (hw->mac.type) {
3684 case e1000_80003es2lan:
3685 tipg = DEFAULT_82543_TIPG_IPGR1;
3686 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGR2 <<
3687 E1000_TIPG_IPGR2_SHIFT;
3688 break;
3689 case e1000_82542:
3690 tipg = DEFAULT_82542_TIPG_IPGT;
3691 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3692 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3693 break;
3694 default:
3695 if (hw->phy.media_type == e1000_media_type_fiber ||
3696 hw->phy.media_type == e1000_media_type_internal_serdes)
3697 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
3698 else
3699 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
3700 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
3701 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
3702 }
3703
3704 if (hw->mac.type < igb_mac_min) {
3705 E1000_WRITE_REG(hw, E1000_TIPG, tipg);
3706 E1000_WRITE_REG(hw, E1000_TIDV, sc->tx_int_delay.value);
3707
3708 if (sc->tx_int_delay.value > 0)
3709 sc->txd_cmd |= E1000_TXD_CMD_IDE;
3710 }
3711
3712 if (hw->mac.type >= e1000_82540)
3713 E1000_WRITE_REG(hw, E1000_TADV, sc->tx_abs_int_delay.value);
3714
3715 if (hw->mac.type == e1000_82571 || hw->mac.type == e1000_82572) {
3716 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3717 tarc |= TARC_SPEED_MODE_BIT;
3718 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3719 } else if (hw->mac.type == e1000_80003es2lan) {
3720 /* errata: program both queues to unweighted RR */
3721 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3722 tarc |= 1;
3723 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3724 tarc = E1000_READ_REG(hw, E1000_TARC(1));
3725 tarc |= 1;
3726 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3727 } else if (hw->mac.type == e1000_82574) {
3728 tarc = E1000_READ_REG(hw, E1000_TARC(0));
3729 tarc |= TARC_ERRATA_BIT;
3730 if ( sc->tx_num_queues > 1) {
3731 tarc |= (TARC_COMPENSATION_MODE | TARC_MQ_FIX);
3732 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3733 E1000_WRITE_REG(hw, E1000_TARC(1), tarc);
3734 } else
3735 E1000_WRITE_REG(hw, E1000_TARC(0), tarc);
3736 }
3737
3738 /* Program the Transmit Control Register */
3739 tctl = E1000_READ_REG(hw, E1000_TCTL);
3740 tctl &= ~E1000_TCTL_CT;
3741 tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
3742 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
3743
3744 if (hw->mac.type >= e1000_82571 && hw->mac.type < igb_mac_min)
3745 tctl |= E1000_TCTL_MULR;
3746
3747 /* This write will effectively turn on the transmit unit. */
3748 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
3749
3750 /* SPT and KBL errata workarounds */
3751 if (hw->mac.type == e1000_pch_spt) {
3752 u32 reg;
3753 reg = E1000_READ_REG(hw, E1000_IOSFPC);
3754 reg |= E1000_RCTL_RDMTS_HEX;
3755 E1000_WRITE_REG(hw, E1000_IOSFPC, reg);
3756 /* i218-i219 Specification Update 1.5.4.5 */
3757 reg = E1000_READ_REG(hw, E1000_TARC(0));
3758 reg &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3759 reg |= E1000_TARC0_CB_MULTIQ_2_REQ;
3760 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
3761 }
3762 }
3763
3764 /*********************************************************************
3765 *
3766 * Enable receive unit.
3767 *
3768 **********************************************************************/
3769 #define BSIZEPKT_ROUNDUP ((1<<E1000_SRRCTL_BSIZEPKT_SHIFT)-1)
3770
3771 static void
em_initialize_receive_unit(if_ctx_t ctx)3772 em_initialize_receive_unit(if_ctx_t ctx)
3773 {
3774 struct e1000_softc *sc = iflib_get_softc(ctx);
3775 if_softc_ctx_t scctx = sc->shared;
3776 if_t ifp = iflib_get_ifp(ctx);
3777 struct e1000_hw *hw = &sc->hw;
3778 struct em_rx_queue *que;
3779 int i;
3780 uint32_t rctl, rxcsum;
3781
3782 INIT_DEBUGOUT("em_initialize_receive_units: begin");
3783
3784 /*
3785 * Make sure receives are disabled while setting
3786 * up the descriptor ring
3787 */
3788 rctl = E1000_READ_REG(hw, E1000_RCTL);
3789 /* Do not disable if ever enabled on this hardware */
3790 if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3791 E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
3792
3793 /* Setup the Receive Control Register */
3794 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3795 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3796 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3797 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3798
3799 /* Do not store bad packets */
3800 rctl &= ~E1000_RCTL_SBP;
3801
3802 /* Enable Long Packet receive */
3803 if (if_getmtu(ifp) > ETHERMTU)
3804 rctl |= E1000_RCTL_LPE;
3805 else
3806 rctl &= ~E1000_RCTL_LPE;
3807
3808 /* Strip the CRC */
3809 if (!em_disable_crc_stripping)
3810 rctl |= E1000_RCTL_SECRC;
3811
3812 /* lem/em default interrupt moderation */
3813 if (hw->mac.type < igb_mac_min) {
3814 if (hw->mac.type >= e1000_82540) {
3815 E1000_WRITE_REG(hw, E1000_RADV,
3816 sc->rx_abs_int_delay.value);
3817
3818 /* Set the default interrupt throttling rate */
3819 E1000_WRITE_REG(hw, E1000_ITR,
3820 EM_INTS_TO_ITR(em_max_interrupt_rate));
3821 }
3822
3823 /* XXX TEMPORARY WORKAROUND: on some systems with 82573
3824 * long latencies are observed, like Lenovo X60. This
3825 * change eliminates the problem, but since having positive
3826 * values in RDTR is a known source of problems on other
3827 * platforms another solution is being sought.
3828 */
3829 if (hw->mac.type == e1000_82573)
3830 E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
3831 else
3832 E1000_WRITE_REG(hw, E1000_RDTR,
3833 sc->rx_int_delay.value);
3834 }
3835
3836 if (hw->mac.type >= em_mac_min) {
3837 uint32_t rfctl;
3838 /* Use extended rx descriptor formats */
3839 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3840 rfctl |= E1000_RFCTL_EXTEN;
3841
3842 /*
3843 * When using MSI-X interrupts we need to throttle
3844 * using the EITR register (82574 only)
3845 */
3846 if (hw->mac.type == e1000_82574) {
3847 for (int i = 0; i < 4; i++)
3848 E1000_WRITE_REG(hw, E1000_EITR_82574(i),
3849 EM_INTS_TO_ITR(em_max_interrupt_rate));
3850 /* Disable accelerated acknowledge */
3851 rfctl |= E1000_RFCTL_ACK_DIS;
3852 }
3853 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3854 }
3855
3856 /* Set up L3 and L4 csum Rx descriptor offloads */
3857 rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
3858 if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3859 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPOFL;
3860 if (hw->mac.type > e1000_82575)
3861 rxcsum |= E1000_RXCSUM_CRCOFL;
3862 else if (hw->mac.type < em_mac_min &&
3863 if_getcapenable(ifp) & IFCAP_HWCSUM_IPV6)
3864 rxcsum |= E1000_RXCSUM_IPV6OFL;
3865 } else {
3866 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL);
3867 if (hw->mac.type > e1000_82575)
3868 rxcsum &= ~E1000_RXCSUM_CRCOFL;
3869 else if (hw->mac.type < em_mac_min)
3870 rxcsum &= ~E1000_RXCSUM_IPV6OFL;
3871 }
3872
3873 if (sc->rx_num_queues > 1) {
3874 /* RSS hash needed in the Rx descriptor */
3875 rxcsum |= E1000_RXCSUM_PCSD;
3876
3877 if (hw->mac.type >= igb_mac_min)
3878 igb_initialize_rss_mapping(sc);
3879 else
3880 em_initialize_rss_mapping(sc);
3881 }
3882 E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
3883
3884 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues; i++, que++) {
3885 struct rx_ring *rxr = &que->rxr;
3886 /* Setup the Base and Length of the Rx Descriptor Ring */
3887 u64 bus_addr = rxr->rx_paddr;
3888 #if 0
3889 u32 rdt = sc->rx_num_queues -1; /* default */
3890 #endif
3891
3892 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3893 scctx->isc_nrxd[0] *
3894 sizeof(union e1000_rx_desc_extended));
3895 E1000_WRITE_REG(hw, E1000_RDBAH(i), (u32)(bus_addr >> 32));
3896 E1000_WRITE_REG(hw, E1000_RDBAL(i), (u32)bus_addr);
3897 /* Setup the Head and Tail Descriptor Pointers */
3898 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
3899 E1000_WRITE_REG(hw, E1000_RDT(i), 0);
3900 }
3901
3902 /*
3903 * Set PTHRESH for improved jumbo performance
3904 * According to 10.2.5.11 of Intel 82574 Datasheet,
3905 * RXDCTL(1) is written whenever RXDCTL(0) is written.
3906 * Only write to RXDCTL(1) if there is a need for different
3907 * settings.
3908 */
3909 if ((hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_pch2lan ||
3910 hw->mac.type == e1000_ich10lan) && if_getmtu(ifp) > ETHERMTU) {
3911 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
3912 E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
3913 } else if (hw->mac.type == e1000_82574) {
3914 for (int i = 0; i < sc->rx_num_queues; i++) {
3915 u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3916 rxdctl |= 0x20; /* PTHRESH */
3917 rxdctl |= 4 << 8; /* HTHRESH */
3918 rxdctl |= 4 << 16;/* WTHRESH */
3919 rxdctl |= 1 << 24; /* Switch to granularity */
3920 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3921 }
3922 } else if (hw->mac.type >= igb_mac_min) {
3923 u32 psize, srrctl = 0;
3924
3925 if (if_getmtu(ifp) > ETHERMTU) {
3926 psize = scctx->isc_max_frame_size;
3927 /* are we on a vlan? */
3928 if (if_vlantrunkinuse(ifp))
3929 psize += VLAN_TAG_SIZE;
3930
3931 if (sc->vf_ifp)
3932 e1000_rlpml_set_vf(hw, psize);
3933 else
3934 E1000_WRITE_REG(hw, E1000_RLPML, psize);
3935 }
3936
3937 /* Set maximum packet buffer len */
3938 srrctl |= (sc->rx_mbuf_sz + BSIZEPKT_ROUNDUP) >>
3939 E1000_SRRCTL_BSIZEPKT_SHIFT;
3940
3941 /*
3942 * If TX flow control is disabled and there's >1 queue
3943 * defined, enable DROP.
3944 *
3945 * This drops frames rather than hanging the RX MAC for all
3946 * queues.
3947 */
3948 if ((sc->rx_num_queues > 1) &&
3949 (sc->fc == e1000_fc_none ||
3950 sc->fc == e1000_fc_rx_pause)) {
3951 srrctl |= E1000_SRRCTL_DROP_EN;
3952 }
3953 /* Setup the Base and Length of the Rx Descriptor Rings */
3954 for (i = 0, que = sc->rx_queues; i < sc->rx_num_queues;
3955 i++, que++) {
3956 struct rx_ring *rxr = &que->rxr;
3957 u64 bus_addr = rxr->rx_paddr;
3958 u32 rxdctl;
3959
3960 #ifdef notyet
3961 /* Configure for header split? -- ignore for now */
3962 rxr->hdr_split = igb_header_split;
3963 #else
3964 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3965 #endif
3966
3967 E1000_WRITE_REG(hw, E1000_RDLEN(i),
3968 scctx->isc_nrxd[0] *
3969 sizeof(struct e1000_rx_desc));
3970 E1000_WRITE_REG(hw, E1000_RDBAH(i),
3971 (uint32_t)(bus_addr >> 32));
3972 E1000_WRITE_REG(hw, E1000_RDBAL(i),
3973 (uint32_t)bus_addr);
3974 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
3975 /* Enable this Queue */
3976 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
3977 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3978 rxdctl &= 0xFFF00000;
3979 rxdctl |= IGB_RX_PTHRESH;
3980 rxdctl |= IGB_RX_HTHRESH << 8;
3981 rxdctl |= IGB_RX_WTHRESH << 16;
3982 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
3983 }
3984 } else if (hw->mac.type >= e1000_pch2lan) {
3985 if (if_getmtu(ifp) > ETHERMTU)
3986 e1000_lv_jumbo_workaround_ich8lan(hw, true);
3987 else
3988 e1000_lv_jumbo_workaround_ich8lan(hw, false);
3989 }
3990
3991 /* Make sure VLAN Filters are off */
3992 rctl &= ~E1000_RCTL_VFE;
3993
3994 /* Set up packet buffer size, overridden by per queue srrctl on igb */
3995 if (hw->mac.type < igb_mac_min) {
3996 if (sc->rx_mbuf_sz > 2048 && sc->rx_mbuf_sz <= 4096)
3997 rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
3998 else if (sc->rx_mbuf_sz > 4096 && sc->rx_mbuf_sz <= 8192)
3999 rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
4000 else if (sc->rx_mbuf_sz > 8192)
4001 rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX;
4002 else {
4003 rctl |= E1000_RCTL_SZ_2048;
4004 rctl &= ~E1000_RCTL_BSEX;
4005 }
4006 } else
4007 rctl |= E1000_RCTL_SZ_2048;
4008
4009 /*
4010 * rctl bits 11:10 are as follows
4011 * lem: reserved
4012 * em: DTYPE
4013 * igb: reserved
4014 * and should be 00 on all of the above
4015 */
4016 rctl &= ~0x00000C00;
4017
4018 /* Write out the settings */
4019 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4020
4021 return;
4022 }
4023
4024 static void
em_if_vlan_register(if_ctx_t ctx,u16 vtag)4025 em_if_vlan_register(if_ctx_t ctx, u16 vtag)
4026 {
4027 struct e1000_softc *sc = iflib_get_softc(ctx);
4028 u32 index, bit;
4029
4030 index = (vtag >> 5) & 0x7F;
4031 bit = vtag & 0x1F;
4032 sc->shadow_vfta[index] |= (1 << bit);
4033 ++sc->num_vlans;
4034 em_if_vlan_filter_write(sc);
4035 }
4036
4037 static void
em_if_vlan_unregister(if_ctx_t ctx,u16 vtag)4038 em_if_vlan_unregister(if_ctx_t ctx, u16 vtag)
4039 {
4040 struct e1000_softc *sc = iflib_get_softc(ctx);
4041 u32 index, bit;
4042
4043 index = (vtag >> 5) & 0x7F;
4044 bit = vtag & 0x1F;
4045 sc->shadow_vfta[index] &= ~(1 << bit);
4046 --sc->num_vlans;
4047 em_if_vlan_filter_write(sc);
4048 }
4049
4050 static bool
em_if_vlan_filter_capable(if_ctx_t ctx)4051 em_if_vlan_filter_capable(if_ctx_t ctx)
4052 {
4053 if_t ifp = iflib_get_ifp(ctx);
4054
4055 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWFILTER) &&
4056 !em_disable_crc_stripping)
4057 return (true);
4058
4059 return (false);
4060 }
4061
4062 static bool
em_if_vlan_filter_used(if_ctx_t ctx)4063 em_if_vlan_filter_used(if_ctx_t ctx)
4064 {
4065 struct e1000_softc *sc = iflib_get_softc(ctx);
4066
4067 if (!em_if_vlan_filter_capable(ctx))
4068 return (false);
4069
4070 for (int i = 0; i < EM_VFTA_SIZE; i++)
4071 if (sc->shadow_vfta[i] != 0)
4072 return (true);
4073
4074 return (false);
4075 }
4076
4077 static void
em_if_vlan_filter_enable(struct e1000_softc * sc)4078 em_if_vlan_filter_enable(struct e1000_softc *sc)
4079 {
4080 struct e1000_hw *hw = &sc->hw;
4081 u32 reg;
4082
4083 reg = E1000_READ_REG(hw, E1000_RCTL);
4084 reg &= ~E1000_RCTL_CFIEN;
4085 reg |= E1000_RCTL_VFE;
4086 E1000_WRITE_REG(hw, E1000_RCTL, reg);
4087 }
4088
4089 static void
em_if_vlan_filter_disable(struct e1000_softc * sc)4090 em_if_vlan_filter_disable(struct e1000_softc *sc)
4091 {
4092 struct e1000_hw *hw = &sc->hw;
4093 u32 reg;
4094
4095 reg = E1000_READ_REG(hw, E1000_RCTL);
4096 reg &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
4097 E1000_WRITE_REG(hw, E1000_RCTL, reg);
4098 }
4099
4100 static void
em_if_vlan_filter_write(struct e1000_softc * sc)4101 em_if_vlan_filter_write(struct e1000_softc *sc)
4102 {
4103 struct e1000_hw *hw = &sc->hw;
4104
4105 if (sc->vf_ifp)
4106 return;
4107
4108 /* Disable interrupts for lem(4) devices during the filter change */
4109 if (hw->mac.type < em_mac_min)
4110 em_if_intr_disable(sc->ctx);
4111
4112 for (int i = 0; i < EM_VFTA_SIZE; i++)
4113 if (sc->shadow_vfta[i] != 0) {
4114 /* XXXKB: incomplete VF support, we returned above */
4115 if (sc->vf_ifp)
4116 e1000_vfta_set_vf(hw, sc->shadow_vfta[i],
4117 true);
4118 else
4119 e1000_write_vfta(hw, i, sc->shadow_vfta[i]);
4120 }
4121
4122 /* Re-enable interrupts for lem-class devices */
4123 if (hw->mac.type < em_mac_min)
4124 em_if_intr_enable(sc->ctx);
4125 }
4126
4127 static void
em_setup_vlan_hw_support(if_ctx_t ctx)4128 em_setup_vlan_hw_support(if_ctx_t ctx)
4129 {
4130 struct e1000_softc *sc = iflib_get_softc(ctx);
4131 struct e1000_hw *hw = &sc->hw;
4132 if_t ifp = iflib_get_ifp(ctx);
4133 u32 reg;
4134
4135 /* XXXKB: Return early if we are a VF until VF decap and filter
4136 * management is ready and tested.
4137 */
4138 if (sc->vf_ifp)
4139 return;
4140
4141 if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4142 !em_disable_crc_stripping) {
4143 reg = E1000_READ_REG(hw, E1000_CTRL);
4144 reg |= E1000_CTRL_VME;
4145 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4146 } else {
4147 reg = E1000_READ_REG(hw, E1000_CTRL);
4148 reg &= ~E1000_CTRL_VME;
4149 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4150 }
4151
4152 /* If we aren't doing HW filtering, we're done */
4153 if (!em_if_vlan_filter_capable(ctx)) {
4154 em_if_vlan_filter_disable(sc);
4155 return;
4156 }
4157
4158 /*
4159 * A soft reset zero's out the VFTA, so
4160 * we need to repopulate it now.
4161 * We also insert VLAN 0 in the filter list, so we pass VLAN 0 tagged
4162 * traffic through. This will write the entire table.
4163 */
4164 em_if_vlan_register(ctx, 0);
4165
4166 /* Enable the Filter Table */
4167 em_if_vlan_filter_enable(sc);
4168 }
4169
4170 static void
em_if_intr_enable(if_ctx_t ctx)4171 em_if_intr_enable(if_ctx_t ctx)
4172 {
4173 struct e1000_softc *sc = iflib_get_softc(ctx);
4174 struct e1000_hw *hw = &sc->hw;
4175 u32 ims_mask = IMS_ENABLE_MASK;
4176
4177 if (sc->intr_type == IFLIB_INTR_MSIX) {
4178 E1000_WRITE_REG(hw, EM_EIAC, sc->ims);
4179 ims_mask |= sc->ims;
4180 }
4181
4182 E1000_WRITE_REG(hw, E1000_IMS, ims_mask);
4183 E1000_WRITE_FLUSH(hw);
4184 }
4185
4186 static void
em_if_intr_disable(if_ctx_t ctx)4187 em_if_intr_disable(if_ctx_t ctx)
4188 {
4189 struct e1000_softc *sc = iflib_get_softc(ctx);
4190 struct e1000_hw *hw = &sc->hw;
4191
4192 if (sc->intr_type == IFLIB_INTR_MSIX)
4193 E1000_WRITE_REG(hw, EM_EIAC, 0);
4194 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4195 E1000_WRITE_FLUSH(hw);
4196 }
4197
4198 static void
igb_if_intr_enable(if_ctx_t ctx)4199 igb_if_intr_enable(if_ctx_t ctx)
4200 {
4201 struct e1000_softc *sc = iflib_get_softc(ctx);
4202 struct e1000_hw *hw = &sc->hw;
4203 u32 mask;
4204
4205 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
4206 mask = (sc->que_mask | sc->link_mask);
4207 E1000_WRITE_REG(hw, E1000_EIAC, mask);
4208 E1000_WRITE_REG(hw, E1000_EIAM, mask);
4209 E1000_WRITE_REG(hw, E1000_EIMS, mask);
4210 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
4211 } else
4212 E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
4213 E1000_WRITE_FLUSH(hw);
4214 }
4215
4216 static void
igb_if_intr_disable(if_ctx_t ctx)4217 igb_if_intr_disable(if_ctx_t ctx)
4218 {
4219 struct e1000_softc *sc = iflib_get_softc(ctx);
4220 struct e1000_hw *hw = &sc->hw;
4221
4222 if (__predict_true(sc->intr_type == IFLIB_INTR_MSIX)) {
4223 E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff);
4224 E1000_WRITE_REG(hw, E1000_EIAC, 0);
4225 }
4226 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4227 E1000_WRITE_FLUSH(hw);
4228 }
4229
4230 /*
4231 * Bit of a misnomer, what this really means is
4232 * to enable OS management of the system... aka
4233 * to disable special hardware management features
4234 */
4235 static void
em_init_manageability(struct e1000_softc * sc)4236 em_init_manageability(struct e1000_softc *sc)
4237 {
4238 /* A shared code workaround */
4239 #define E1000_82542_MANC2H E1000_MANC2H
4240 if (sc->has_manage) {
4241 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
4242 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4243
4244 /* disable hardware interception of ARP */
4245 manc &= ~(E1000_MANC_ARP_EN);
4246
4247 /* enable receiving management packets to the host */
4248 manc |= E1000_MANC_EN_MNG2HOST;
4249 #define E1000_MNG2HOST_PORT_623 (1 << 5)
4250 #define E1000_MNG2HOST_PORT_664 (1 << 6)
4251 manc2h |= E1000_MNG2HOST_PORT_623;
4252 manc2h |= E1000_MNG2HOST_PORT_664;
4253 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
4254 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4255 }
4256 }
4257
4258 /*
4259 * Give control back to hardware management
4260 * controller if there is one.
4261 */
4262 static void
em_release_manageability(struct e1000_softc * sc)4263 em_release_manageability(struct e1000_softc *sc)
4264 {
4265 if (sc->has_manage) {
4266 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
4267
4268 /* re-enable hardware interception of ARP */
4269 manc |= E1000_MANC_ARP_EN;
4270 manc &= ~E1000_MANC_EN_MNG2HOST;
4271
4272 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
4273 }
4274 }
4275
4276 /*
4277 * em_get_hw_control sets the {CTRL_EXT|FWSM}:DRV_LOAD bit.
4278 * For ASF and Pass Through versions of f/w this means
4279 * that the driver is loaded. For AMT version type f/w
4280 * this means that the network i/f is open.
4281 */
4282 static void
em_get_hw_control(struct e1000_softc * sc)4283 em_get_hw_control(struct e1000_softc *sc)
4284 {
4285 u32 ctrl_ext, swsm;
4286
4287 if (sc->vf_ifp)
4288 return;
4289
4290 if (sc->hw.mac.type == e1000_82573) {
4291 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4292 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4293 swsm | E1000_SWSM_DRV_LOAD);
4294 return;
4295 }
4296 /* else */
4297 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4298 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4299 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
4300 }
4301
4302 /*
4303 * em_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
4304 * For ASF and Pass Through versions of f/w this means that
4305 * the driver is no longer loaded. For AMT versions of the
4306 * f/w this means that the network i/f is closed.
4307 */
4308 static void
em_release_hw_control(struct e1000_softc * sc)4309 em_release_hw_control(struct e1000_softc *sc)
4310 {
4311 u32 ctrl_ext, swsm;
4312
4313 if (!sc->has_manage)
4314 return;
4315
4316 if (sc->hw.mac.type == e1000_82573) {
4317 swsm = E1000_READ_REG(&sc->hw, E1000_SWSM);
4318 E1000_WRITE_REG(&sc->hw, E1000_SWSM,
4319 swsm & ~E1000_SWSM_DRV_LOAD);
4320 return;
4321 }
4322 /* else */
4323 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4324 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
4325 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
4326 return;
4327 }
4328
4329 static int
em_is_valid_ether_addr(u8 * addr)4330 em_is_valid_ether_addr(u8 *addr)
4331 {
4332 char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
4333
4334 if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
4335 return (false);
4336 }
4337
4338 return (true);
4339 }
4340
4341 static bool
em_automask_tso(if_ctx_t ctx)4342 em_automask_tso(if_ctx_t ctx)
4343 {
4344 struct e1000_softc *sc = iflib_get_softc(ctx);
4345 if_softc_ctx_t scctx = iflib_get_softc_ctx(ctx);
4346 if_t ifp = iflib_get_ifp(ctx);
4347
4348 if (!em_unsupported_tso && sc->link_speed &&
4349 sc->link_speed != SPEED_1000 &&
4350 scctx->isc_capenable & IFCAP_TSO) {
4351 device_printf(sc->dev,
4352 "Disabling TSO for 10/100 Ethernet.\n");
4353 sc->tso_automasked = scctx->isc_capenable & IFCAP_TSO;
4354 scctx->isc_capenable &= ~IFCAP_TSO;
4355 if_setcapenablebit(ifp, 0, IFCAP_TSO);
4356 /* iflib_init_locked handles ifnet hwassistbits */
4357 iflib_request_reset(ctx);
4358 return true;
4359 } else if (sc->link_speed == SPEED_1000 && sc->tso_automasked) {
4360 device_printf(sc->dev, "Re-enabling TSO for GbE.\n");
4361 scctx->isc_capenable |= sc->tso_automasked;
4362 if_setcapenablebit(ifp, sc->tso_automasked, 0);
4363 sc->tso_automasked = 0;
4364 /* iflib_init_locked handles ifnet hwassistbits */
4365 iflib_request_reset(ctx);
4366 return true;
4367 }
4368
4369 return false;
4370 }
4371
4372 /*
4373 ** Parse the interface capabilities with regard
4374 ** to both system management and wake-on-lan for
4375 ** later use.
4376 */
4377 static void
em_get_wakeup(if_ctx_t ctx)4378 em_get_wakeup(if_ctx_t ctx)
4379 {
4380 struct e1000_softc *sc = iflib_get_softc(ctx);
4381 device_t dev = iflib_get_dev(ctx);
4382 u16 eeprom_data = 0, device_id, apme_mask;
4383
4384 sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
4385 apme_mask = EM_EEPROM_APME;
4386
4387 switch (sc->hw.mac.type) {
4388 case e1000_82542:
4389 case e1000_82543:
4390 break;
4391 case e1000_82544:
4392 e1000_read_nvm(&sc->hw,
4393 NVM_INIT_CONTROL2_REG, 1, &eeprom_data);
4394 apme_mask = EM_82544_APME;
4395 break;
4396 case e1000_82546:
4397 case e1000_82546_rev_3:
4398 if (sc->hw.bus.func == 1) {
4399 e1000_read_nvm(&sc->hw,
4400 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4401 break;
4402 } else
4403 e1000_read_nvm(&sc->hw,
4404 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4405 break;
4406 case e1000_82573:
4407 case e1000_82583:
4408 sc->has_amt = true;
4409 /* FALLTHROUGH */
4410 case e1000_82571:
4411 case e1000_82572:
4412 case e1000_80003es2lan:
4413 if (sc->hw.bus.func == 1) {
4414 e1000_read_nvm(&sc->hw,
4415 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4416 break;
4417 } else
4418 e1000_read_nvm(&sc->hw,
4419 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4420 break;
4421 case e1000_ich8lan:
4422 case e1000_ich9lan:
4423 case e1000_ich10lan:
4424 case e1000_pchlan:
4425 case e1000_pch2lan:
4426 case e1000_pch_lpt:
4427 case e1000_pch_spt:
4428 case e1000_82575: /* listing all igb devices */
4429 case e1000_82576:
4430 case e1000_82580:
4431 case e1000_i350:
4432 case e1000_i354:
4433 case e1000_i210:
4434 case e1000_i211:
4435 case e1000_vfadapt:
4436 case e1000_vfadapt_i350:
4437 apme_mask = E1000_WUC_APME;
4438 sc->has_amt = true;
4439 eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC);
4440 break;
4441 default:
4442 e1000_read_nvm(&sc->hw,
4443 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4444 break;
4445 }
4446 if (eeprom_data & apme_mask)
4447 sc->wol = (E1000_WUFC_MAG | E1000_WUFC_MC);
4448 /*
4449 * We have the eeprom settings, now apply the special cases
4450 * where the eeprom may be wrong or the board won't support
4451 * wake on lan on a particular port
4452 */
4453 device_id = pci_get_device(dev);
4454 switch (device_id) {
4455 case E1000_DEV_ID_82546GB_PCIE:
4456 sc->wol = 0;
4457 break;
4458 case E1000_DEV_ID_82546EB_FIBER:
4459 case E1000_DEV_ID_82546GB_FIBER:
4460 /* Wake events only supported on port A for dual fiber
4461 * regardless of eeprom setting */
4462 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4463 E1000_STATUS_FUNC_1)
4464 sc->wol = 0;
4465 break;
4466 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
4467 /* if quad port adapter, disable WoL on all but port A */
4468 if (global_quad_port_a != 0)
4469 sc->wol = 0;
4470 /* Reset for multiple quad port adapters */
4471 if (++global_quad_port_a == 4)
4472 global_quad_port_a = 0;
4473 break;
4474 case E1000_DEV_ID_82571EB_FIBER:
4475 /* Wake events only supported on port A for dual fiber
4476 * regardless of eeprom setting */
4477 if (E1000_READ_REG(&sc->hw, E1000_STATUS) &
4478 E1000_STATUS_FUNC_1)
4479 sc->wol = 0;
4480 break;
4481 case E1000_DEV_ID_82571EB_QUAD_COPPER:
4482 case E1000_DEV_ID_82571EB_QUAD_FIBER:
4483 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
4484 /* if quad port adapter, disable WoL on all but port A */
4485 if (global_quad_port_a != 0)
4486 sc->wol = 0;
4487 /* Reset for multiple quad port adapters */
4488 if (++global_quad_port_a == 4)
4489 global_quad_port_a = 0;
4490 break;
4491 }
4492 return;
4493 }
4494
4495
4496 /*
4497 * Enable PCI Wake On Lan capability
4498 */
4499 static void
em_enable_wakeup(if_ctx_t ctx)4500 em_enable_wakeup(if_ctx_t ctx)
4501 {
4502 struct e1000_softc *sc = iflib_get_softc(ctx);
4503 device_t dev = iflib_get_dev(ctx);
4504 if_t ifp = iflib_get_ifp(ctx);
4505 int error = 0;
4506 u32 pmc, ctrl, ctrl_ext, rctl;
4507 u16 status;
4508
4509 if (pci_find_cap(dev, PCIY_PMG, &pmc) != 0)
4510 return;
4511
4512 /*
4513 * Determine type of Wakeup: note that wol
4514 * is set with all bits on by default.
4515 */
4516 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) == 0)
4517 sc->wol &= ~E1000_WUFC_MAG;
4518
4519 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) == 0)
4520 sc->wol &= ~E1000_WUFC_EX;
4521
4522 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) == 0)
4523 sc->wol &= ~E1000_WUFC_MC;
4524 else {
4525 rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
4526 rctl |= E1000_RCTL_MPE;
4527 E1000_WRITE_REG(&sc->hw, E1000_RCTL, rctl);
4528 }
4529
4530 if (!(sc->wol & (E1000_WUFC_EX | E1000_WUFC_MAG | E1000_WUFC_MC)))
4531 goto pme;
4532
4533 /* Advertise the wakeup capability */
4534 ctrl = E1000_READ_REG(&sc->hw, E1000_CTRL);
4535 ctrl |= (E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN3);
4536 E1000_WRITE_REG(&sc->hw, E1000_CTRL, ctrl);
4537
4538 /* Keep the laser running on Fiber adapters */
4539 if (sc->hw.phy.media_type == e1000_media_type_fiber ||
4540 sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
4541 ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
4542 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4543 E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT, ctrl_ext);
4544 }
4545
4546 if ((sc->hw.mac.type == e1000_ich8lan) ||
4547 (sc->hw.mac.type == e1000_pchlan) ||
4548 (sc->hw.mac.type == e1000_ich9lan) ||
4549 (sc->hw.mac.type == e1000_ich10lan))
4550 e1000_suspend_workarounds_ich8lan(&sc->hw);
4551
4552 if ( sc->hw.mac.type >= e1000_pchlan) {
4553 error = em_enable_phy_wakeup(sc);
4554 if (error)
4555 goto pme;
4556 } else {
4557 /* Enable wakeup by the MAC */
4558 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
4559 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
4560 }
4561
4562 if (sc->hw.phy.type == e1000_phy_igp_3)
4563 e1000_igp3_phy_powerdown_workaround_ich8lan(&sc->hw);
4564
4565 pme:
4566 status = pci_read_config(dev, pmc + PCIR_POWER_STATUS, 2);
4567 status &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
4568 if (!error && (if_getcapenable(ifp) & IFCAP_WOL))
4569 status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
4570 pci_write_config(dev, pmc + PCIR_POWER_STATUS, status, 2);
4571
4572 return;
4573 }
4574
4575 /*
4576 * WOL in the newer chipset interfaces (pchlan)
4577 * require thing to be copied into the phy
4578 */
4579 static int
em_enable_phy_wakeup(struct e1000_softc * sc)4580 em_enable_phy_wakeup(struct e1000_softc *sc)
4581 {
4582 struct e1000_hw *hw = &sc->hw;
4583 u32 mreg, ret = 0;
4584 u16 preg;
4585
4586 /* copy MAC RARs to PHY RARs */
4587 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
4588
4589 /* copy MAC MTA to PHY MTA */
4590 for (int i = 0; i < hw->mac.mta_reg_count; i++) {
4591 mreg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4592 e1000_write_phy_reg(hw, BM_MTA(i), (u16)(mreg & 0xFFFF));
4593 e1000_write_phy_reg(hw, BM_MTA(i) + 1,
4594 (u16)((mreg >> 16) & 0xFFFF));
4595 }
4596
4597 /* configure PHY Rx Control register */
4598 e1000_read_phy_reg(hw, BM_RCTL, &preg);
4599 mreg = E1000_READ_REG(hw, E1000_RCTL);
4600 if (mreg & E1000_RCTL_UPE)
4601 preg |= BM_RCTL_UPE;
4602 if (mreg & E1000_RCTL_MPE)
4603 preg |= BM_RCTL_MPE;
4604 preg &= ~(BM_RCTL_MO_MASK);
4605 if (mreg & E1000_RCTL_MO_3)
4606 preg |= (((mreg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4607 << BM_RCTL_MO_SHIFT);
4608 if (mreg & E1000_RCTL_BAM)
4609 preg |= BM_RCTL_BAM;
4610 if (mreg & E1000_RCTL_PMCF)
4611 preg |= BM_RCTL_PMCF;
4612 mreg = E1000_READ_REG(hw, E1000_CTRL);
4613 if (mreg & E1000_CTRL_RFCE)
4614 preg |= BM_RCTL_RFCE;
4615 e1000_write_phy_reg(hw, BM_RCTL, preg);
4616
4617 /* enable PHY wakeup in MAC register */
4618 E1000_WRITE_REG(hw, E1000_WUC,
4619 E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN | E1000_WUC_APME);
4620 E1000_WRITE_REG(hw, E1000_WUFC, sc->wol);
4621
4622 /* configure and enable PHY wakeup in PHY registers */
4623 e1000_write_phy_reg(hw, BM_WUFC, sc->wol);
4624 e1000_write_phy_reg(hw, BM_WUC, E1000_WUC_PME_EN);
4625
4626 /* activate PHY wakeup */
4627 ret = hw->phy.ops.acquire(hw);
4628 if (ret) {
4629 printf("Could not acquire PHY\n");
4630 return ret;
4631 }
4632 e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4633 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4634 ret = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &preg);
4635 if (ret) {
4636 printf("Could not read PHY page 769\n");
4637 goto out;
4638 }
4639 preg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4640 ret = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, preg);
4641 if (ret)
4642 printf("Could not set PHY Host Wakeup bit\n");
4643 out:
4644 hw->phy.ops.release(hw);
4645
4646 return ret;
4647 }
4648
4649 static void
em_if_led_func(if_ctx_t ctx,int onoff)4650 em_if_led_func(if_ctx_t ctx, int onoff)
4651 {
4652 struct e1000_softc *sc = iflib_get_softc(ctx);
4653
4654 if (onoff) {
4655 e1000_setup_led(&sc->hw);
4656 e1000_led_on(&sc->hw);
4657 } else {
4658 e1000_led_off(&sc->hw);
4659 e1000_cleanup_led(&sc->hw);
4660 }
4661 }
4662
4663 /*
4664 * Disable the L0S and L1 LINK states
4665 */
4666 static void
em_disable_aspm(struct e1000_softc * sc)4667 em_disable_aspm(struct e1000_softc *sc)
4668 {
4669 int base, reg;
4670 u16 link_cap,link_ctrl;
4671 device_t dev = sc->dev;
4672
4673 switch (sc->hw.mac.type) {
4674 case e1000_82573:
4675 case e1000_82574:
4676 case e1000_82583:
4677 break;
4678 default:
4679 return;
4680 }
4681 if (pci_find_cap(dev, PCIY_EXPRESS, &base) != 0)
4682 return;
4683 reg = base + PCIER_LINK_CAP;
4684 link_cap = pci_read_config(dev, reg, 2);
4685 if ((link_cap & PCIEM_LINK_CAP_ASPM) == 0)
4686 return;
4687 reg = base + PCIER_LINK_CTL;
4688 link_ctrl = pci_read_config(dev, reg, 2);
4689 link_ctrl &= ~PCIEM_LINK_CTL_ASPMC;
4690 pci_write_config(dev, reg, link_ctrl, 2);
4691 return;
4692 }
4693
4694 /**********************************************************************
4695 *
4696 * Update the board statistics counters.
4697 *
4698 **********************************************************************/
4699 static void
em_update_stats_counters(struct e1000_softc * sc)4700 em_update_stats_counters(struct e1000_softc *sc)
4701 {
4702 u64 prev_xoffrxc = sc->stats.xoffrxc;
4703
4704 if(sc->hw.phy.media_type == e1000_media_type_copper ||
4705 (E1000_READ_REG(&sc->hw, E1000_STATUS) & E1000_STATUS_LU)) {
4706 sc->stats.symerrs += E1000_READ_REG(&sc->hw, E1000_SYMERRS);
4707 sc->stats.sec += E1000_READ_REG(&sc->hw, E1000_SEC);
4708 }
4709 sc->stats.crcerrs += E1000_READ_REG(&sc->hw, E1000_CRCERRS);
4710 sc->stats.mpc += E1000_READ_REG(&sc->hw, E1000_MPC);
4711 sc->stats.scc += E1000_READ_REG(&sc->hw, E1000_SCC);
4712 sc->stats.ecol += E1000_READ_REG(&sc->hw, E1000_ECOL);
4713
4714 sc->stats.mcc += E1000_READ_REG(&sc->hw, E1000_MCC);
4715 sc->stats.latecol += E1000_READ_REG(&sc->hw, E1000_LATECOL);
4716 sc->stats.colc += E1000_READ_REG(&sc->hw, E1000_COLC);
4717 sc->stats.dc += E1000_READ_REG(&sc->hw, E1000_DC);
4718 sc->stats.rlec += E1000_READ_REG(&sc->hw, E1000_RLEC);
4719 sc->stats.xonrxc += E1000_READ_REG(&sc->hw, E1000_XONRXC);
4720 sc->stats.xontxc += E1000_READ_REG(&sc->hw, E1000_XONTXC);
4721 sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, E1000_XOFFRXC);
4722 /*
4723 ** For watchdog management we need to know if we have been
4724 ** paused during the last interval, so capture that here.
4725 */
4726 if (sc->stats.xoffrxc != prev_xoffrxc)
4727 sc->shared->isc_pause_frames = 1;
4728 sc->stats.xofftxc += E1000_READ_REG(&sc->hw, E1000_XOFFTXC);
4729 sc->stats.fcruc += E1000_READ_REG(&sc->hw, E1000_FCRUC);
4730 sc->stats.prc64 += E1000_READ_REG(&sc->hw, E1000_PRC64);
4731 sc->stats.prc127 += E1000_READ_REG(&sc->hw, E1000_PRC127);
4732 sc->stats.prc255 += E1000_READ_REG(&sc->hw, E1000_PRC255);
4733 sc->stats.prc511 += E1000_READ_REG(&sc->hw, E1000_PRC511);
4734 sc->stats.prc1023 += E1000_READ_REG(&sc->hw, E1000_PRC1023);
4735 sc->stats.prc1522 += E1000_READ_REG(&sc->hw, E1000_PRC1522);
4736 sc->stats.gprc += E1000_READ_REG(&sc->hw, E1000_GPRC);
4737 sc->stats.bprc += E1000_READ_REG(&sc->hw, E1000_BPRC);
4738 sc->stats.mprc += E1000_READ_REG(&sc->hw, E1000_MPRC);
4739 sc->stats.gptc += E1000_READ_REG(&sc->hw, E1000_GPTC);
4740
4741 /* For the 64-bit byte counters the low dword must be read first. */
4742 /* Both registers clear on the read of the high dword */
4743
4744 sc->stats.gorc += E1000_READ_REG(&sc->hw, E1000_GORCL) +
4745 ((u64)E1000_READ_REG(&sc->hw, E1000_GORCH) << 32);
4746 sc->stats.gotc += E1000_READ_REG(&sc->hw, E1000_GOTCL) +
4747 ((u64)E1000_READ_REG(&sc->hw, E1000_GOTCH) << 32);
4748
4749 sc->stats.rnbc += E1000_READ_REG(&sc->hw, E1000_RNBC);
4750 sc->stats.ruc += E1000_READ_REG(&sc->hw, E1000_RUC);
4751 sc->stats.rfc += E1000_READ_REG(&sc->hw, E1000_RFC);
4752 sc->stats.roc += E1000_READ_REG(&sc->hw, E1000_ROC);
4753 sc->stats.rjc += E1000_READ_REG(&sc->hw, E1000_RJC);
4754
4755 sc->stats.mgprc += E1000_READ_REG(&sc->hw, E1000_MGTPRC);
4756 sc->stats.mgpdc += E1000_READ_REG(&sc->hw, E1000_MGTPDC);
4757 sc->stats.mgptc += E1000_READ_REG(&sc->hw, E1000_MGTPTC);
4758
4759 sc->stats.tor += E1000_READ_REG(&sc->hw, E1000_TORH);
4760 sc->stats.tot += E1000_READ_REG(&sc->hw, E1000_TOTH);
4761
4762 sc->stats.tpr += E1000_READ_REG(&sc->hw, E1000_TPR);
4763 sc->stats.tpt += E1000_READ_REG(&sc->hw, E1000_TPT);
4764 sc->stats.ptc64 += E1000_READ_REG(&sc->hw, E1000_PTC64);
4765 sc->stats.ptc127 += E1000_READ_REG(&sc->hw, E1000_PTC127);
4766 sc->stats.ptc255 += E1000_READ_REG(&sc->hw, E1000_PTC255);
4767 sc->stats.ptc511 += E1000_READ_REG(&sc->hw, E1000_PTC511);
4768 sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, E1000_PTC1023);
4769 sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, E1000_PTC1522);
4770 sc->stats.mptc += E1000_READ_REG(&sc->hw, E1000_MPTC);
4771 sc->stats.bptc += E1000_READ_REG(&sc->hw, E1000_BPTC);
4772
4773 /* Interrupt Counts */
4774
4775 sc->stats.iac += E1000_READ_REG(&sc->hw, E1000_IAC);
4776 sc->stats.icrxptc += E1000_READ_REG(&sc->hw, E1000_ICRXPTC);
4777 sc->stats.icrxatc += E1000_READ_REG(&sc->hw, E1000_ICRXATC);
4778 sc->stats.ictxptc += E1000_READ_REG(&sc->hw, E1000_ICTXPTC);
4779 sc->stats.ictxatc += E1000_READ_REG(&sc->hw, E1000_ICTXATC);
4780 sc->stats.ictxqec += E1000_READ_REG(&sc->hw, E1000_ICTXQEC);
4781 sc->stats.ictxqmtc += E1000_READ_REG(&sc->hw, E1000_ICTXQMTC);
4782 sc->stats.icrxdmtc += E1000_READ_REG(&sc->hw, E1000_ICRXDMTC);
4783 sc->stats.icrxoc += E1000_READ_REG(&sc->hw, E1000_ICRXOC);
4784
4785 if (sc->hw.mac.type >= e1000_82543) {
4786 sc->stats.algnerrc +=
4787 E1000_READ_REG(&sc->hw, E1000_ALGNERRC);
4788 sc->stats.rxerrc +=
4789 E1000_READ_REG(&sc->hw, E1000_RXERRC);
4790 sc->stats.tncrs +=
4791 E1000_READ_REG(&sc->hw, E1000_TNCRS);
4792 sc->stats.cexterr +=
4793 E1000_READ_REG(&sc->hw, E1000_CEXTERR);
4794 sc->stats.tsctc +=
4795 E1000_READ_REG(&sc->hw, E1000_TSCTC);
4796 sc->stats.tsctfc +=
4797 E1000_READ_REG(&sc->hw, E1000_TSCTFC);
4798 }
4799 }
4800
4801 static uint64_t
em_if_get_counter(if_ctx_t ctx,ift_counter cnt)4802 em_if_get_counter(if_ctx_t ctx, ift_counter cnt)
4803 {
4804 struct e1000_softc *sc = iflib_get_softc(ctx);
4805 if_t ifp = iflib_get_ifp(ctx);
4806
4807 switch (cnt) {
4808 case IFCOUNTER_COLLISIONS:
4809 return (sc->stats.colc);
4810 case IFCOUNTER_IERRORS:
4811 return (sc->dropped_pkts + sc->stats.rxerrc +
4812 sc->stats.crcerrs + sc->stats.algnerrc +
4813 sc->stats.ruc + sc->stats.roc +
4814 sc->stats.mpc + sc->stats.cexterr);
4815 case IFCOUNTER_OERRORS:
4816 return (sc->stats.ecol + sc->stats.latecol +
4817 sc->watchdog_events);
4818 default:
4819 return (if_get_counter_default(ifp, cnt));
4820 }
4821 }
4822
4823 /* em_if_needs_restart - Tell iflib when the driver needs to be reinitialized
4824 * @ctx: iflib context
4825 * @event: event code to check
4826 *
4827 * Defaults to returning false for unknown events.
4828 *
4829 * @returns true if iflib needs to reinit the interface
4830 */
4831 static bool
em_if_needs_restart(if_ctx_t ctx __unused,enum iflib_restart_event event)4832 em_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
4833 {
4834 switch (event) {
4835 case IFLIB_RESTART_VLAN_CONFIG:
4836 default:
4837 return (false);
4838 }
4839 }
4840
4841 /* Export a single 32-bit register via a read-only sysctl. */
4842 static int
em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)4843 em_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
4844 {
4845 struct e1000_softc *sc;
4846 u_int val;
4847
4848 sc = oidp->oid_arg1;
4849 val = E1000_READ_REG(&sc->hw, oidp->oid_arg2);
4850 return (sysctl_handle_int(oidp, &val, 0, req));
4851 }
4852
4853 /* Per queue holdoff interrupt rate handler */
4854 static int
em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)4855 em_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
4856 {
4857 struct em_rx_queue *rque;
4858 struct em_tx_queue *tque;
4859 struct e1000_hw *hw;
4860 int error;
4861 u32 reg, usec, rate;
4862
4863 bool tx = oidp->oid_arg2;
4864
4865 if (tx) {
4866 tque = oidp->oid_arg1;
4867 hw = &tque->sc->hw;
4868 if (hw->mac.type >= igb_mac_min)
4869 reg = E1000_READ_REG(hw, E1000_EITR(tque->me));
4870 else if (hw->mac.type == e1000_82574 && tque->msix)
4871 reg = E1000_READ_REG(hw, E1000_EITR_82574(tque->me));
4872 else
4873 reg = E1000_READ_REG(hw, E1000_ITR);
4874 } else {
4875 rque = oidp->oid_arg1;
4876 hw = &rque->sc->hw;
4877 if (hw->mac.type >= igb_mac_min)
4878 reg = E1000_READ_REG(hw, E1000_EITR(rque->msix));
4879 else if (hw->mac.type == e1000_82574 && rque->msix)
4880 reg = E1000_READ_REG(hw,
4881 E1000_EITR_82574(rque->msix));
4882 else
4883 reg = E1000_READ_REG(hw, E1000_ITR);
4884 }
4885
4886 if (hw->mac.type < igb_mac_min) {
4887 if (reg > 0)
4888 rate = EM_INTS_TO_ITR(reg);
4889 else
4890 rate = 0;
4891 } else {
4892 usec = (reg & IGB_QVECTOR_MASK);
4893 if (usec > 0)
4894 rate = IGB_INTS_TO_EITR(usec);
4895 else
4896 rate = 0;
4897 }
4898
4899 error = sysctl_handle_int(oidp, &rate, 0, req);
4900 if (error || !req->newptr)
4901 return error;
4902 return 0;
4903 }
4904
4905 /*
4906 * Add sysctl variables, one per statistic, to the system.
4907 */
4908 static void
em_add_hw_stats(struct e1000_softc * sc)4909 em_add_hw_stats(struct e1000_softc *sc)
4910 {
4911 device_t dev = iflib_get_dev(sc->ctx);
4912 struct em_tx_queue *tx_que = sc->tx_queues;
4913 struct em_rx_queue *rx_que = sc->rx_queues;
4914
4915 struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
4916 struct sysctl_oid *tree = device_get_sysctl_tree(dev);
4917 struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
4918 struct e1000_hw_stats *stats = &sc->stats;
4919
4920 struct sysctl_oid *stat_node, *queue_node, *int_node;
4921 struct sysctl_oid_list *stat_list, *queue_list, *int_list;
4922
4923 #define QUEUE_NAME_LEN 32
4924 char namebuf[QUEUE_NAME_LEN];
4925
4926 /* Driver Statistics */
4927 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
4928 CTLFLAG_RD, &sc->dropped_pkts,
4929 "Driver dropped packets");
4930 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "link_irq",
4931 CTLFLAG_RD, &sc->link_irq,
4932 "Link MSI-X IRQ Handled");
4933 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
4934 CTLFLAG_RD, &sc->rx_overruns,
4935 "RX overruns");
4936 SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
4937 CTLFLAG_RD, &sc->watchdog_events,
4938 "Watchdog timeouts");
4939 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "device_control",
4940 CTLTYPE_UINT | CTLFLAG_RD,
4941 sc, E1000_CTRL, em_sysctl_reg_handler, "IU",
4942 "Device Control Register");
4943 SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "rx_control",
4944 CTLTYPE_UINT | CTLFLAG_RD,
4945 sc, E1000_RCTL, em_sysctl_reg_handler, "IU",
4946 "Receiver Control Register");
4947 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
4948 CTLFLAG_RD, &sc->hw.fc.high_water, 0,
4949 "Flow Control High Watermark");
4950 SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
4951 CTLFLAG_RD, &sc->hw.fc.low_water, 0,
4952 "Flow Control Low Watermark");
4953
4954 for (int i = 0; i < sc->tx_num_queues; i++, tx_que++) {
4955 struct tx_ring *txr = &tx_que->txr;
4956 snprintf(namebuf, QUEUE_NAME_LEN, "queue_tx_%d", i);
4957 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4958 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TX Queue Name");
4959 queue_list = SYSCTL_CHILDREN(queue_node);
4960
4961 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
4962 CTLTYPE_UINT | CTLFLAG_RD, tx_que,
4963 true, em_sysctl_interrupt_rate_handler,
4964 "IU", "Interrupt Rate");
4965
4966 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
4967 CTLTYPE_UINT | CTLFLAG_RD, sc,
4968 E1000_TDH(txr->me), em_sysctl_reg_handler, "IU",
4969 "Transmit Descriptor Head");
4970 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
4971 CTLTYPE_UINT | CTLFLAG_RD, sc,
4972 E1000_TDT(txr->me), em_sysctl_reg_handler, "IU",
4973 "Transmit Descriptor Tail");
4974 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "tx_irq",
4975 CTLFLAG_RD, &txr->tx_irq,
4976 "Queue MSI-X Transmit Interrupts");
4977 }
4978
4979 for (int j = 0; j < sc->rx_num_queues; j++, rx_que++) {
4980 struct rx_ring *rxr = &rx_que->rxr;
4981 snprintf(namebuf, QUEUE_NAME_LEN, "queue_rx_%d", j);
4982 queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
4983 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "RX Queue Name");
4984 queue_list = SYSCTL_CHILDREN(queue_node);
4985
4986 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
4987 CTLTYPE_UINT | CTLFLAG_RD, rx_que,
4988 false, em_sysctl_interrupt_rate_handler,
4989 "IU", "Interrupt Rate");
4990
4991 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
4992 CTLTYPE_UINT | CTLFLAG_RD, sc,
4993 E1000_RDH(rxr->me), em_sysctl_reg_handler, "IU",
4994 "Receive Descriptor Head");
4995 SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
4996 CTLTYPE_UINT | CTLFLAG_RD, sc,
4997 E1000_RDT(rxr->me), em_sysctl_reg_handler, "IU",
4998 "Receive Descriptor Tail");
4999 SYSCTL_ADD_ULONG(ctx, queue_list, OID_AUTO, "rx_irq",
5000 CTLFLAG_RD, &rxr->rx_irq,
5001 "Queue MSI-X Receive Interrupts");
5002 }
5003
5004 /* MAC stats get their own sub node */
5005 stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
5006 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Statistics");
5007 stat_list = SYSCTL_CHILDREN(stat_node);
5008
5009 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "excess_coll",
5010 CTLFLAG_RD, &stats->ecol,
5011 "Excessive collisions");
5012 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "single_coll",
5013 CTLFLAG_RD, &stats->scc,
5014 "Single collisions");
5015 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
5016 CTLFLAG_RD, &stats->mcc,
5017 "Multiple collisions");
5018 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "late_coll",
5019 CTLFLAG_RD, &stats->latecol,
5020 "Late collisions");
5021 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "collision_count",
5022 CTLFLAG_RD, &stats->colc,
5023 "Collision Count");
5024 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
5025 CTLFLAG_RD, &sc->stats.symerrs,
5026 "Symbol Errors");
5027 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
5028 CTLFLAG_RD, &sc->stats.sec,
5029 "Sequence Errors");
5030 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "defer_count",
5031 CTLFLAG_RD, &sc->stats.dc,
5032 "Defer Count");
5033 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "missed_packets",
5034 CTLFLAG_RD, &sc->stats.mpc,
5035 "Missed Packets");
5036 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_length_errors",
5037 CTLFLAG_RD, &sc->stats.rlec,
5038 "Receive Length Errors");
5039 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
5040 CTLFLAG_RD, &sc->stats.rnbc,
5041 "Receive No Buffers");
5042 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
5043 CTLFLAG_RD, &sc->stats.ruc,
5044 "Receive Undersize");
5045 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
5046 CTLFLAG_RD, &sc->stats.rfc,
5047 "Fragmented Packets Received ");
5048 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
5049 CTLFLAG_RD, &sc->stats.roc,
5050 "Oversized Packets Received");
5051 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
5052 CTLFLAG_RD, &sc->stats.rjc,
5053 "Recevied Jabber");
5054 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "recv_errs",
5055 CTLFLAG_RD, &sc->stats.rxerrc,
5056 "Receive Errors");
5057 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "crc_errs",
5058 CTLFLAG_RD, &sc->stats.crcerrs,
5059 "CRC errors");
5060 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
5061 CTLFLAG_RD, &sc->stats.algnerrc,
5062 "Alignment Errors");
5063 /* On 82575 these are collision counts */
5064 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
5065 CTLFLAG_RD, &sc->stats.cexterr,
5066 "Collision/Carrier extension errors");
5067 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
5068 CTLFLAG_RD, &sc->stats.xonrxc,
5069 "XON Received");
5070 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xon_txd",
5071 CTLFLAG_RD, &sc->stats.xontxc,
5072 "XON Transmitted");
5073 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
5074 CTLFLAG_RD, &sc->stats.xoffrxc,
5075 "XOFF Received");
5076 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
5077 CTLFLAG_RD, &sc->stats.xofftxc,
5078 "XOFF Transmitted");
5079 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "unsupported_fc_recvd",
5080 CTLFLAG_RD, &sc->stats.fcruc,
5081 "Unsupported Flow Control Received");
5082 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_recvd",
5083 CTLFLAG_RD, &sc->stats.mgprc,
5084 "Management Packets Received");
5085 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_drop",
5086 CTLFLAG_RD, &sc->stats.mgpdc,
5087 "Management Packets Dropped");
5088 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mgmt_pkts_txd",
5089 CTLFLAG_RD, &sc->stats.mgptc,
5090 "Management Packets Transmitted");
5091
5092 /* Packet Reception Stats */
5093 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
5094 CTLFLAG_RD, &sc->stats.tpr,
5095 "Total Packets Received ");
5096 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
5097 CTLFLAG_RD, &sc->stats.gprc,
5098 "Good Packets Received");
5099 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
5100 CTLFLAG_RD, &sc->stats.bprc,
5101 "Broadcast Packets Received");
5102 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
5103 CTLFLAG_RD, &sc->stats.mprc,
5104 "Multicast Packets Received");
5105 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
5106 CTLFLAG_RD, &sc->stats.prc64,
5107 "64 byte frames received ");
5108 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
5109 CTLFLAG_RD, &sc->stats.prc127,
5110 "65-127 byte frames received");
5111 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
5112 CTLFLAG_RD, &sc->stats.prc255,
5113 "128-255 byte frames received");
5114 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
5115 CTLFLAG_RD, &sc->stats.prc511,
5116 "256-511 byte frames received");
5117 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
5118 CTLFLAG_RD, &sc->stats.prc1023,
5119 "512-1023 byte frames received");
5120 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
5121 CTLFLAG_RD, &sc->stats.prc1522,
5122 "1023-1522 byte frames received");
5123 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
5124 CTLFLAG_RD, &sc->stats.gorc,
5125 "Good Octets Received");
5126
5127 /* Packet Transmission Stats */
5128 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
5129 CTLFLAG_RD, &sc->stats.gotc,
5130 "Good Octets Transmitted");
5131 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
5132 CTLFLAG_RD, &sc->stats.tpt,
5133 "Total Packets Transmitted");
5134 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
5135 CTLFLAG_RD, &sc->stats.gptc,
5136 "Good Packets Transmitted");
5137 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
5138 CTLFLAG_RD, &sc->stats.bptc,
5139 "Broadcast Packets Transmitted");
5140 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
5141 CTLFLAG_RD, &sc->stats.mptc,
5142 "Multicast Packets Transmitted");
5143 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
5144 CTLFLAG_RD, &sc->stats.ptc64,
5145 "64 byte frames transmitted ");
5146 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
5147 CTLFLAG_RD, &sc->stats.ptc127,
5148 "65-127 byte frames transmitted");
5149 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
5150 CTLFLAG_RD, &sc->stats.ptc255,
5151 "128-255 byte frames transmitted");
5152 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
5153 CTLFLAG_RD, &sc->stats.ptc511,
5154 "256-511 byte frames transmitted");
5155 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
5156 CTLFLAG_RD, &sc->stats.ptc1023,
5157 "512-1023 byte frames transmitted");
5158 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
5159 CTLFLAG_RD, &sc->stats.ptc1522,
5160 "1024-1522 byte frames transmitted");
5161 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_txd",
5162 CTLFLAG_RD, &sc->stats.tsctc,
5163 "TSO Contexts Transmitted");
5164 SYSCTL_ADD_UQUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
5165 CTLFLAG_RD, &sc->stats.tsctfc,
5166 "TSO Contexts Failed");
5167
5168 /* Interrupt Stats */
5169 int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
5170 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Interrupt Statistics");
5171 int_list = SYSCTL_CHILDREN(int_node);
5172
5173 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "asserts",
5174 CTLFLAG_RD, &sc->stats.iac,
5175 "Interrupt Assertion Count");
5176
5177 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
5178 CTLFLAG_RD, &sc->stats.icrxptc,
5179 "Interrupt Cause Rx Pkt Timer Expire Count");
5180
5181 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
5182 CTLFLAG_RD, &sc->stats.icrxatc,
5183 "Interrupt Cause Rx Abs Timer Expire Count");
5184
5185 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
5186 CTLFLAG_RD, &sc->stats.ictxptc,
5187 "Interrupt Cause Tx Pkt Timer Expire Count");
5188
5189 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
5190 CTLFLAG_RD, &sc->stats.ictxatc,
5191 "Interrupt Cause Tx Abs Timer Expire Count");
5192
5193 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
5194 CTLFLAG_RD, &sc->stats.ictxqec,
5195 "Interrupt Cause Tx Queue Empty Count");
5196
5197 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
5198 CTLFLAG_RD, &sc->stats.ictxqmtc,
5199 "Interrupt Cause Tx Queue Min Thresh Count");
5200
5201 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
5202 CTLFLAG_RD, &sc->stats.icrxdmtc,
5203 "Interrupt Cause Rx Desc Min Thresh Count");
5204
5205 SYSCTL_ADD_UQUAD(ctx, int_list, OID_AUTO, "rx_overrun",
5206 CTLFLAG_RD, &sc->stats.icrxoc,
5207 "Interrupt Cause Receiver Overrun Count");
5208 }
5209
5210 static void
em_fw_version_locked(if_ctx_t ctx)5211 em_fw_version_locked(if_ctx_t ctx)
5212 {
5213 struct e1000_softc *sc = iflib_get_softc(ctx);
5214 struct e1000_hw *hw = &sc->hw;
5215 struct e1000_fw_version *fw_ver = &sc->fw_ver;
5216 uint16_t eep = 0;
5217
5218 /*
5219 * em_fw_version_locked() must run under the IFLIB_CTX_LOCK to meet
5220 * the NVM locking model, so we do it in em_if_attach_pre() and store
5221 * the info in the softc
5222 */
5223 ASSERT_CTX_LOCK_HELD(hw);
5224
5225 *fw_ver = (struct e1000_fw_version){0};
5226
5227 if (hw->mac.type >= igb_mac_min) {
5228 /*
5229 * Use the Shared Code for igb(4)
5230 */
5231 e1000_get_fw_version(hw, fw_ver);
5232 } else {
5233 /*
5234 * Otherwise, EEPROM version should be present on (almost?)
5235 * all devices here
5236 */
5237 if(e1000_read_nvm(hw, NVM_VERSION, 1, &eep)) {
5238 INIT_DEBUGOUT("can't get EEPROM version");
5239 return;
5240 }
5241
5242 fw_ver->eep_major = (eep & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
5243 fw_ver->eep_minor = (eep & NVM_MINOR_MASK) >> NVM_MINOR_SHIFT;
5244 fw_ver->eep_build = (eep & NVM_IMAGE_ID_MASK);
5245 }
5246 }
5247
5248 static void
em_sbuf_fw_version(struct e1000_fw_version * fw_ver,struct sbuf * buf)5249 em_sbuf_fw_version(struct e1000_fw_version *fw_ver, struct sbuf *buf)
5250 {
5251 const char *space = "";
5252
5253 if (fw_ver->eep_major || fw_ver->eep_minor || fw_ver->eep_build) {
5254 sbuf_printf(buf, "EEPROM V%d.%d-%d", fw_ver->eep_major,
5255 fw_ver->eep_minor, fw_ver->eep_build);
5256 space = " ";
5257 }
5258
5259 if (fw_ver->invm_major || fw_ver->invm_minor ||
5260 fw_ver->invm_img_type) {
5261 sbuf_printf(buf, "%sNVM V%d.%d imgtype%d",
5262 space, fw_ver->invm_major, fw_ver->invm_minor,
5263 fw_ver->invm_img_type);
5264 space = " ";
5265 }
5266
5267 if (fw_ver->or_valid) {
5268 sbuf_printf(buf, "%sOption ROM V%d-b%d-p%d",
5269 space, fw_ver->or_major, fw_ver->or_build,
5270 fw_ver->or_patch);
5271 space = " ";
5272 }
5273
5274 if (fw_ver->etrack_id)
5275 sbuf_printf(buf, "%seTrack 0x%08x", space, fw_ver->etrack_id);
5276 }
5277
5278 static void
em_print_fw_version(struct e1000_softc * sc)5279 em_print_fw_version(struct e1000_softc *sc )
5280 {
5281 device_t dev = sc->dev;
5282 struct sbuf *buf;
5283 int error = 0;
5284
5285 buf = sbuf_new_auto();
5286 if (!buf) {
5287 device_printf(dev, "Could not allocate sbuf for output.\n");
5288 return;
5289 }
5290
5291 em_sbuf_fw_version(&sc->fw_ver, buf);
5292
5293 error = sbuf_finish(buf);
5294 if (error)
5295 device_printf(dev, "Error finishing sbuf: %d\n", error);
5296 else if (sbuf_len(buf))
5297 device_printf(dev, "%s\n", sbuf_data(buf));
5298
5299 sbuf_delete(buf);
5300 }
5301
5302 static int
em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)5303 em_sysctl_print_fw_version(SYSCTL_HANDLER_ARGS)
5304 {
5305 struct e1000_softc *sc = (struct e1000_softc *)arg1;
5306 device_t dev = sc->dev;
5307 struct sbuf *buf;
5308 int error = 0;
5309
5310 buf = sbuf_new_for_sysctl(NULL, NULL, 128, req);
5311 if (!buf) {
5312 device_printf(dev, "Could not allocate sbuf for output.\n");
5313 return (ENOMEM);
5314 }
5315
5316 em_sbuf_fw_version(&sc->fw_ver, buf);
5317
5318 error = sbuf_finish(buf);
5319 if (error)
5320 device_printf(dev, "Error finishing sbuf: %d\n", error);
5321
5322 sbuf_delete(buf);
5323
5324 return (0);
5325 }
5326
5327 /**********************************************************************
5328 *
5329 * This routine provides a way to dump out the adapter eeprom,
5330 * often a useful debug/service tool. This only dumps the first
5331 * 32 words, stuff that matters is in that extent.
5332 *
5333 **********************************************************************/
5334 static int
em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)5335 em_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
5336 {
5337 struct e1000_softc *sc = (struct e1000_softc *)arg1;
5338 int error;
5339 int result;
5340
5341 result = -1;
5342 error = sysctl_handle_int(oidp, &result, 0, req);
5343
5344 if (error || !req->newptr)
5345 return (error);
5346
5347 /*
5348 * This value will cause a hex dump of the
5349 * first 32 16-bit words of the EEPROM to
5350 * the screen.
5351 */
5352 if (result == 1)
5353 em_print_nvm_info(sc);
5354
5355 return (error);
5356 }
5357
5358 static void
em_print_nvm_info(struct e1000_softc * sc)5359 em_print_nvm_info(struct e1000_softc *sc)
5360 {
5361 struct e1000_hw *hw = &sc->hw;
5362 struct sx *iflib_ctx_lock = iflib_ctx_lock_get(sc->ctx);
5363 u16 eeprom_data;
5364 int i, j, row = 0;
5365
5366 /* Its a bit crude, but it gets the job done */
5367 printf("\nInterface EEPROM Dump:\n");
5368 printf("Offset\n0x0000 ");
5369
5370 /* We rely on the IFLIB_CTX_LOCK as part of NVM locking model */
5371 sx_xlock(iflib_ctx_lock);
5372 ASSERT_CTX_LOCK_HELD(hw);
5373 for (i = 0, j = 0; i < 32; i++, j++) {
5374 if (j == 8) { /* Make the offset block */
5375 j = 0; ++row;
5376 printf("\n0x00%x0 ",row);
5377 }
5378 e1000_read_nvm(hw, i, 1, &eeprom_data);
5379 printf("%04x ", eeprom_data);
5380 }
5381 sx_xunlock(iflib_ctx_lock);
5382 printf("\n");
5383 }
5384
5385 static int
em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)5386 em_sysctl_int_delay(SYSCTL_HANDLER_ARGS)
5387 {
5388 struct em_int_delay_info *info;
5389 struct e1000_softc *sc;
5390 u32 regval;
5391 int error, usecs, ticks;
5392
5393 info = (struct em_int_delay_info *) arg1;
5394 usecs = info->value;
5395 error = sysctl_handle_int(oidp, &usecs, 0, req);
5396 if (error != 0 || req->newptr == NULL)
5397 return (error);
5398 if (usecs < 0 || usecs > EM_TICKS_TO_USECS(65535))
5399 return (EINVAL);
5400 info->value = usecs;
5401 ticks = EM_USECS_TO_TICKS(usecs);
5402
5403 sc = info->sc;
5404
5405 regval = E1000_READ_OFFSET(&sc->hw, info->offset);
5406 regval = (regval & ~0xffff) | (ticks & 0xffff);
5407 /* Handle a few special cases. */
5408 switch (info->offset) {
5409 case E1000_RDTR:
5410 break;
5411 case E1000_TIDV:
5412 if (ticks == 0) {
5413 sc->txd_cmd &= ~E1000_TXD_CMD_IDE;
5414 /* Don't write 0 into the TIDV register. */
5415 regval++;
5416 } else
5417 sc->txd_cmd |= E1000_TXD_CMD_IDE;
5418 break;
5419 }
5420 E1000_WRITE_OFFSET(&sc->hw, info->offset, regval);
5421 return (0);
5422 }
5423
5424 static int
em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)5425 em_sysctl_tso_tcp_flags_mask(SYSCTL_HANDLER_ARGS)
5426 {
5427 struct e1000_softc *sc;
5428 u32 reg, val, shift;
5429 int error, mask;
5430
5431 sc = oidp->oid_arg1;
5432 switch (oidp->oid_arg2) {
5433 case 0:
5434 reg = E1000_DTXTCPFLGL;
5435 shift = 0;
5436 break;
5437 case 1:
5438 reg = E1000_DTXTCPFLGL;
5439 shift = 16;
5440 break;
5441 case 2:
5442 reg = E1000_DTXTCPFLGH;
5443 shift = 0;
5444 break;
5445 default:
5446 return (EINVAL);
5447 break;
5448 }
5449 val = E1000_READ_REG(&sc->hw, reg);
5450 mask = (val >> shift) & 0xfff;
5451 error = sysctl_handle_int(oidp, &mask, 0, req);
5452 if (error != 0 || req->newptr == NULL)
5453 return (error);
5454 if (mask < 0 || mask > 0xfff)
5455 return (EINVAL);
5456 val = (val & ~(0xfff << shift)) | (mask << shift);
5457 E1000_WRITE_REG(&sc->hw, reg, val);
5458 return (0);
5459 }
5460
5461 static void
em_add_int_delay_sysctl(struct e1000_softc * sc,const char * name,const char * description,struct em_int_delay_info * info,int offset,int value)5462 em_add_int_delay_sysctl(struct e1000_softc *sc, const char *name,
5463 const char *description, struct em_int_delay_info *info, int offset,
5464 int value)
5465 {
5466 info->sc = sc;
5467 info->offset = offset;
5468 info->value = value;
5469 SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->dev),
5470 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
5471 OID_AUTO, name, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
5472 info, 0, em_sysctl_int_delay, "I", description);
5473 }
5474
5475 /*
5476 * Set flow control using sysctl:
5477 * Flow control values:
5478 * 0 - off
5479 * 1 - rx pause
5480 * 2 - tx pause
5481 * 3 - full
5482 */
5483 static int
em_set_flowcntl(SYSCTL_HANDLER_ARGS)5484 em_set_flowcntl(SYSCTL_HANDLER_ARGS)
5485 {
5486 int error;
5487 static int input = 3; /* default is full */
5488 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5489
5490 error = sysctl_handle_int(oidp, &input, 0, req);
5491
5492 if ((error) || (req->newptr == NULL))
5493 return (error);
5494
5495 if (input == sc->fc) /* no change? */
5496 return (error);
5497
5498 switch (input) {
5499 case e1000_fc_rx_pause:
5500 case e1000_fc_tx_pause:
5501 case e1000_fc_full:
5502 case e1000_fc_none:
5503 sc->hw.fc.requested_mode = input;
5504 sc->fc = input;
5505 break;
5506 default:
5507 /* Do nothing */
5508 return (error);
5509 }
5510
5511 sc->hw.fc.current_mode = sc->hw.fc.requested_mode;
5512 e1000_force_mac_fc(&sc->hw);
5513 return (error);
5514 }
5515
5516 /*
5517 * Manage DMA Coalesce:
5518 * Control values:
5519 * 0/1 - off/on
5520 * Legal timer values are:
5521 * 250,500,1000-10000 in thousands
5522 */
5523 static int
igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)5524 igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)
5525 {
5526 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5527 int error;
5528
5529 error = sysctl_handle_int(oidp, &sc->dmac, 0, req);
5530
5531 if ((error) || (req->newptr == NULL))
5532 return (error);
5533
5534 switch (sc->dmac) {
5535 case 0:
5536 /* Disabling */
5537 break;
5538 case 1: /* Just enable and use default */
5539 sc->dmac = 1000;
5540 break;
5541 case 250:
5542 case 500:
5543 case 1000:
5544 case 2000:
5545 case 3000:
5546 case 4000:
5547 case 5000:
5548 case 6000:
5549 case 7000:
5550 case 8000:
5551 case 9000:
5552 case 10000:
5553 /* Legal values - allow */
5554 break;
5555 default:
5556 /* Do nothing, illegal value */
5557 sc->dmac = 0;
5558 return (EINVAL);
5559 }
5560 /* Reinit the interface */
5561 em_if_init(sc->ctx);
5562 return (error);
5563 }
5564
5565 /*
5566 * Manage Energy Efficient Ethernet:
5567 * Control values:
5568 * 0/1 - enabled/disabled
5569 */
5570 static int
em_sysctl_eee(SYSCTL_HANDLER_ARGS)5571 em_sysctl_eee(SYSCTL_HANDLER_ARGS)
5572 {
5573 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5574 int error, value;
5575
5576 if (sc->hw.mac.type < igb_mac_min)
5577 value = sc->hw.dev_spec.ich8lan.eee_disable;
5578 else
5579 value = sc->hw.dev_spec._82575.eee_disable;
5580 error = sysctl_handle_int(oidp, &value, 0, req);
5581 if (error || req->newptr == NULL)
5582 return (error);
5583 if (sc->hw.mac.type < igb_mac_min)
5584 sc->hw.dev_spec.ich8lan.eee_disable = (value != 0);
5585 else
5586 sc->hw.dev_spec._82575.eee_disable = (value != 0);
5587 em_if_init(sc->ctx);
5588
5589 return (0);
5590 }
5591
5592 static int
em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)5593 em_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
5594 {
5595 struct e1000_softc *sc;
5596 int error;
5597 int result;
5598
5599 result = -1;
5600 error = sysctl_handle_int(oidp, &result, 0, req);
5601
5602 if (error || !req->newptr)
5603 return (error);
5604
5605 if (result == 1) {
5606 sc = (struct e1000_softc *) arg1;
5607 em_print_debug_info(sc);
5608 }
5609
5610 return (error);
5611 }
5612
5613 static int
em_get_rs(SYSCTL_HANDLER_ARGS)5614 em_get_rs(SYSCTL_HANDLER_ARGS)
5615 {
5616 struct e1000_softc *sc = (struct e1000_softc *) arg1;
5617 int error;
5618 int result;
5619
5620 result = 0;
5621 error = sysctl_handle_int(oidp, &result, 0, req);
5622
5623 if (error || !req->newptr || result != 1)
5624 return (error);
5625 em_dump_rs(sc);
5626
5627 return (error);
5628 }
5629
5630 static void
em_if_debug(if_ctx_t ctx)5631 em_if_debug(if_ctx_t ctx)
5632 {
5633 em_dump_rs(iflib_get_softc(ctx));
5634 }
5635
5636 /*
5637 * This routine is meant to be fluid, add whatever is
5638 * needed for debugging a problem. -jfv
5639 */
5640 static void
em_print_debug_info(struct e1000_softc * sc)5641 em_print_debug_info(struct e1000_softc *sc)
5642 {
5643 device_t dev = iflib_get_dev(sc->ctx);
5644 if_t ifp = iflib_get_ifp(sc->ctx);
5645 struct tx_ring *txr = &sc->tx_queues->txr;
5646 struct rx_ring *rxr = &sc->rx_queues->rxr;
5647
5648 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5649 printf("Interface is RUNNING ");
5650 else
5651 printf("Interface is NOT RUNNING\n");
5652
5653 if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE)
5654 printf("and INACTIVE\n");
5655 else
5656 printf("and ACTIVE\n");
5657
5658 for (int i = 0; i < sc->tx_num_queues; i++, txr++) {
5659 device_printf(dev, "TX Queue %d ------\n", i);
5660 device_printf(dev, "hw tdh = %d, hw tdt = %d\n",
5661 E1000_READ_REG(&sc->hw, E1000_TDH(i)),
5662 E1000_READ_REG(&sc->hw, E1000_TDT(i)));
5663
5664 }
5665 for (int j=0; j < sc->rx_num_queues; j++, rxr++) {
5666 device_printf(dev, "RX Queue %d ------\n", j);
5667 device_printf(dev, "hw rdh = %d, hw rdt = %d\n",
5668 E1000_READ_REG(&sc->hw, E1000_RDH(j)),
5669 E1000_READ_REG(&sc->hw, E1000_RDT(j)));
5670 }
5671 }
5672
5673 /*
5674 * 82574 only:
5675 * Write a new value to the EEPROM increasing the number of MSI-X
5676 * vectors from 3 to 5, for proper multiqueue support.
5677 */
5678 static void
em_enable_vectors_82574(if_ctx_t ctx)5679 em_enable_vectors_82574(if_ctx_t ctx)
5680 {
5681 struct e1000_softc *sc = iflib_get_softc(ctx);
5682 struct e1000_hw *hw = &sc->hw;
5683 device_t dev = iflib_get_dev(ctx);
5684 u16 edata;
5685
5686 e1000_read_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5687 if (bootverbose)
5688 device_printf(dev, "EM_NVM_PCIE_CTRL = %#06x\n", edata);
5689 if (((edata & EM_NVM_MSIX_N_MASK) >> EM_NVM_MSIX_N_SHIFT) != 4) {
5690 device_printf(dev, "Writing to eeprom: increasing "
5691 "reported MSI-X vectors from 3 to 5...\n");
5692 edata &= ~(EM_NVM_MSIX_N_MASK);
5693 edata |= 4 << EM_NVM_MSIX_N_SHIFT;
5694 e1000_write_nvm(hw, EM_NVM_PCIE_CTRL, 1, &edata);
5695 e1000_update_nvm_checksum(hw);
5696 device_printf(dev, "Writing to eeprom: done\n");
5697 }
5698 }
5699