xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_crtc.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4  * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
5  * Copyright (C) 2013 Red Hat
6  * Author: Rob Clark <robdclark@gmail.com>
7  */
8 
9 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
10 #include <linux/sort.h>
11 #include <linux/debugfs.h>
12 #include <linux/ktime.h>
13 #include <linux/bits.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_blend.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_flip_work.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_mode.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_rect.h>
23 #include <drm/drm_vblank.h>
24 #include <drm/drm_self_refresh_helper.h>
25 
26 #include "dpu_kms.h"
27 #include "dpu_hw_lm.h"
28 #include "dpu_hw_ctl.h"
29 #include "dpu_hw_dspp.h"
30 #include "dpu_crtc.h"
31 #include "dpu_plane.h"
32 #include "dpu_encoder.h"
33 #include "dpu_vbif.h"
34 #include "dpu_core_perf.h"
35 #include "dpu_trace.h"
36 
37 /* layer mixer index on dpu_crtc */
38 #define LEFT_MIXER 0
39 #define RIGHT_MIXER 1
40 
41 /* timeout in ms waiting for frame done */
42 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS	60
43 
44 #define	CONVERT_S3_15(val) \
45 	(((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
46 
_dpu_crtc_get_kms(struct drm_crtc * crtc)47 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
48 {
49 	struct msm_drm_private *priv = crtc->dev->dev_private;
50 
51 	return to_dpu_kms(priv->kms);
52 }
53 
get_encoder_from_crtc(struct drm_crtc * crtc)54 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
55 {
56 	struct drm_device *dev = crtc->dev;
57 	struct drm_encoder *encoder;
58 
59 	drm_for_each_encoder(encoder, dev)
60 		if (encoder->crtc == crtc)
61 			return encoder;
62 
63 	return NULL;
64 }
65 
dpu_crtc_parse_crc_source(const char * src_name)66 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name)
67 {
68 	if (!src_name ||
69 	    !strcmp(src_name, "none"))
70 		return DPU_CRTC_CRC_SOURCE_NONE;
71 	if (!strcmp(src_name, "auto") ||
72 	    !strcmp(src_name, "lm"))
73 		return DPU_CRTC_CRC_SOURCE_LAYER_MIXER;
74 	if (!strcmp(src_name, "encoder"))
75 		return DPU_CRTC_CRC_SOURCE_ENCODER;
76 
77 	return DPU_CRTC_CRC_SOURCE_INVALID;
78 }
79 
dpu_crtc_verify_crc_source(struct drm_crtc * crtc,const char * src_name,size_t * values_cnt)80 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc,
81 		const char *src_name, size_t *values_cnt)
82 {
83 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
84 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
85 
86 	if (source < 0) {
87 		DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index);
88 		return -EINVAL;
89 	}
90 
91 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) {
92 		*values_cnt = crtc_state->num_mixers;
93 	} else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) {
94 		struct drm_encoder *drm_enc;
95 
96 		*values_cnt = 0;
97 
98 		drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
99 			*values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc);
100 	}
101 
102 	return 0;
103 }
104 
dpu_crtc_setup_lm_misr(struct dpu_crtc_state * crtc_state)105 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state)
106 {
107 	struct dpu_crtc_mixer *m;
108 	int i;
109 
110 	for (i = 0; i < crtc_state->num_mixers; ++i) {
111 		m = &crtc_state->mixers[i];
112 
113 		if (!m->hw_lm || !m->hw_lm->ops.setup_misr)
114 			continue;
115 
116 		/* Calculate MISR over 1 frame */
117 		m->hw_lm->ops.setup_misr(m->hw_lm);
118 	}
119 }
120 
dpu_crtc_setup_encoder_misr(struct drm_crtc * crtc)121 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc)
122 {
123 	struct drm_encoder *drm_enc;
124 
125 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
126 		dpu_encoder_setup_misr(drm_enc);
127 }
128 
dpu_crtc_set_crc_source(struct drm_crtc * crtc,const char * src_name)129 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name)
130 {
131 	enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
132 	enum dpu_crtc_crc_source current_source;
133 	struct dpu_crtc_state *crtc_state;
134 	struct drm_device *drm_dev = crtc->dev;
135 
136 	bool was_enabled;
137 	bool enable = false;
138 	int ret = 0;
139 
140 	if (source < 0) {
141 		DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index);
142 		return -EINVAL;
143 	}
144 
145 	ret = drm_modeset_lock(&crtc->mutex, NULL);
146 
147 	if (ret)
148 		return ret;
149 
150 	enable = (source != DPU_CRTC_CRC_SOURCE_NONE);
151 	crtc_state = to_dpu_crtc_state(crtc->state);
152 
153 	spin_lock_irq(&drm_dev->event_lock);
154 	current_source = crtc_state->crc_source;
155 	spin_unlock_irq(&drm_dev->event_lock);
156 
157 	was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE);
158 
159 	if (!was_enabled && enable) {
160 		ret = drm_crtc_vblank_get(crtc);
161 
162 		if (ret)
163 			goto cleanup;
164 
165 	} else if (was_enabled && !enable) {
166 		drm_crtc_vblank_put(crtc);
167 	}
168 
169 	spin_lock_irq(&drm_dev->event_lock);
170 	crtc_state->crc_source = source;
171 	spin_unlock_irq(&drm_dev->event_lock);
172 
173 	crtc_state->crc_frame_skip_count = 0;
174 
175 	if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
176 		dpu_crtc_setup_lm_misr(crtc_state);
177 	else if (source == DPU_CRTC_CRC_SOURCE_ENCODER)
178 		dpu_crtc_setup_encoder_misr(crtc);
179 	else
180 		ret = -EINVAL;
181 
182 cleanup:
183 	drm_modeset_unlock(&crtc->mutex);
184 
185 	return ret;
186 }
187 
dpu_crtc_get_vblank_counter(struct drm_crtc * crtc)188 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
189 {
190 	struct drm_encoder *encoder = get_encoder_from_crtc(crtc);
191 	if (!encoder) {
192 		DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
193 		return 0;
194 	}
195 
196 	return dpu_encoder_get_vsync_count(encoder);
197 }
198 
dpu_crtc_get_lm_crc(struct drm_crtc * crtc,struct dpu_crtc_state * crtc_state)199 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc,
200 		struct dpu_crtc_state *crtc_state)
201 {
202 	struct dpu_crtc_mixer *m;
203 	u32 crcs[CRTC_QUAD_MIXERS];
204 
205 	int rc = 0;
206 	int i;
207 
208 	BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers));
209 
210 	for (i = 0; i < crtc_state->num_mixers; ++i) {
211 
212 		m = &crtc_state->mixers[i];
213 
214 		if (!m->hw_lm || !m->hw_lm->ops.collect_misr)
215 			continue;
216 
217 		rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]);
218 
219 		if (rc) {
220 			if (rc != -ENODATA)
221 				DRM_DEBUG_DRIVER("MISR read failed\n");
222 			return rc;
223 		}
224 	}
225 
226 	return drm_crtc_add_crc_entry(crtc, true,
227 			drm_crtc_accurate_vblank_count(crtc), crcs);
228 }
229 
dpu_crtc_get_encoder_crc(struct drm_crtc * crtc)230 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc)
231 {
232 	struct drm_encoder *drm_enc;
233 	int rc, pos = 0;
234 	u32 crcs[INTF_MAX];
235 
236 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) {
237 		rc = dpu_encoder_get_crc(drm_enc, crcs, pos);
238 		if (rc < 0) {
239 			if (rc != -ENODATA)
240 				DRM_DEBUG_DRIVER("MISR read failed\n");
241 
242 			return rc;
243 		}
244 
245 		pos += rc;
246 	}
247 
248 	return drm_crtc_add_crc_entry(crtc, true,
249 			drm_crtc_accurate_vblank_count(crtc), crcs);
250 }
251 
dpu_crtc_get_crc(struct drm_crtc * crtc)252 static int dpu_crtc_get_crc(struct drm_crtc *crtc)
253 {
254 	struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
255 
256 	/* Skip first 2 frames in case of "uncooked" CRCs */
257 	if (crtc_state->crc_frame_skip_count < 2) {
258 		crtc_state->crc_frame_skip_count++;
259 		return 0;
260 	}
261 
262 	if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
263 		return dpu_crtc_get_lm_crc(crtc, crtc_state);
264 	else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER)
265 		return dpu_crtc_get_encoder_crc(crtc);
266 
267 	return -EINVAL;
268 }
269 
dpu_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)270 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
271 					   bool in_vblank_irq,
272 					   int *vpos, int *hpos,
273 					   ktime_t *stime, ktime_t *etime,
274 					   const struct drm_display_mode *mode)
275 {
276 	unsigned int pipe = crtc->index;
277 	struct drm_encoder *encoder;
278 	int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
279 
280 	encoder = get_encoder_from_crtc(crtc);
281 	if (!encoder) {
282 		DRM_ERROR("no encoder found for crtc %d\n", pipe);
283 		return false;
284 	}
285 
286 	vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
287 	vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
288 
289 	/*
290 	 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
291 	 * the end of VFP. Translate the porch values relative to the line
292 	 * counter positions.
293 	 */
294 
295 	vactive_start = vsw + vbp + 1;
296 	vactive_end = vactive_start + mode->crtc_vdisplay;
297 
298 	/* last scan line before VSYNC */
299 	vfp_end = mode->crtc_vtotal;
300 
301 	if (stime)
302 		*stime = ktime_get();
303 
304 	line = dpu_encoder_get_linecount(encoder);
305 
306 	if (line < vactive_start)
307 		line -= vactive_start;
308 	else if (line > vactive_end)
309 		line = line - vfp_end - vactive_start;
310 	else
311 		line -= vactive_start;
312 
313 	*vpos = line;
314 	*hpos = 0;
315 
316 	if (etime)
317 		*etime = ktime_get();
318 
319 	return true;
320 }
321 
_dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer * mixer,struct dpu_plane_state * pstate,const struct msm_format * format,const struct dpu_mdss_version * mdss_ver)322 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
323 				      struct dpu_plane_state *pstate,
324 				      const struct msm_format *format,
325 				      const struct dpu_mdss_version *mdss_ver)
326 {
327 	struct dpu_hw_mixer *lm = mixer->hw_lm;
328 	u32 blend_op;
329 	u32 fg_alpha, bg_alpha, max_alpha;
330 
331 	if (mdss_ver->core_major_ver < 12) {
332 		max_alpha = 0xff;
333 		fg_alpha = pstate->base.alpha >> 8;
334 	} else {
335 		max_alpha = 0x3ff;
336 		fg_alpha = pstate->base.alpha >> 6;
337 	}
338 	bg_alpha = max_alpha - fg_alpha;
339 
340 	/* default to opaque blending */
341 	if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
342 	    !format->alpha_enable) {
343 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
344 			DPU_BLEND_BG_ALPHA_BG_CONST;
345 	} else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
346 		blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
347 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
348 		if (fg_alpha != max_alpha) {
349 			bg_alpha = fg_alpha;
350 			blend_op |= DPU_BLEND_BG_MOD_ALPHA |
351 				    DPU_BLEND_BG_INV_MOD_ALPHA;
352 		} else {
353 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
354 		}
355 	} else {
356 		/* coverage blending */
357 		blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
358 			DPU_BLEND_BG_ALPHA_FG_PIXEL;
359 		if (fg_alpha != max_alpha) {
360 			bg_alpha = fg_alpha;
361 			blend_op |= DPU_BLEND_FG_MOD_ALPHA |
362 				    DPU_BLEND_FG_INV_MOD_ALPHA |
363 				    DPU_BLEND_BG_MOD_ALPHA |
364 				    DPU_BLEND_BG_INV_MOD_ALPHA;
365 		} else {
366 			blend_op |= DPU_BLEND_BG_INV_ALPHA;
367 		}
368 	}
369 
370 	lm->ops.setup_blend_config(lm, pstate->stage,
371 				fg_alpha, bg_alpha, blend_op);
372 
373 	DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
374 		  &format->pixel_format, format->alpha_enable, blend_op);
375 }
376 
_dpu_crtc_program_lm_output_roi(struct drm_crtc * crtc)377 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
378 {
379 	struct dpu_crtc_state *crtc_state;
380 	int lm_idx;
381 
382 	crtc_state = to_dpu_crtc_state(crtc->state);
383 
384 	for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
385 		const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
386 		struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
387 		struct dpu_hw_mixer_cfg cfg;
388 
389 		if (!lm_roi || !drm_rect_visible(lm_roi))
390 			continue;
391 
392 		cfg.out_width = drm_rect_width(lm_roi);
393 		cfg.out_height = drm_rect_height(lm_roi);
394 		cfg.right_mixer = lm_idx & 0x1;
395 		cfg.flags = 0;
396 		hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
397 	}
398 }
399 
_dpu_crtc_blend_setup_pipe(struct drm_crtc * crtc,struct drm_plane * plane,struct dpu_crtc_mixer * mixer,u32 lms_in_pair,enum dpu_stage stage,const struct msm_format * format,uint64_t modifier,struct dpu_sw_pipe * pipe,unsigned int stage_idx,struct dpu_hw_stage_cfg * stage_cfg)400 static void _dpu_crtc_blend_setup_pipe(struct drm_crtc *crtc,
401 				       struct drm_plane *plane,
402 				       struct dpu_crtc_mixer *mixer,
403 				       u32 lms_in_pair,
404 				       enum dpu_stage stage,
405 				       const struct msm_format *format,
406 				       uint64_t modifier,
407 				       struct dpu_sw_pipe *pipe,
408 				       unsigned int stage_idx,
409 				       struct dpu_hw_stage_cfg *stage_cfg
410 				      )
411 {
412 	u32 lm_idx;
413 	enum dpu_sspp sspp_idx;
414 	struct drm_plane_state *state;
415 
416 	sspp_idx = pipe->sspp->idx;
417 
418 	state = plane->state;
419 
420 	trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
421 				   state, to_dpu_plane_state(state), stage_idx,
422 				   format->pixel_format, pipe,
423 				   modifier);
424 
425 	DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d multirect_idx %d\n",
426 			 crtc->base.id,
427 			 stage,
428 			 plane->base.id,
429 			 sspp_idx - SSPP_NONE,
430 			 state->fb ? state->fb->base.id : -1,
431 			 pipe->multirect_index);
432 
433 	stage_cfg->stage[stage][stage_idx] = sspp_idx;
434 	stage_cfg->multirect_index[stage][stage_idx] = pipe->multirect_index;
435 
436 	/* blend config update */
437 	for (lm_idx = 0; lm_idx < lms_in_pair; lm_idx++)
438 		mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl, sspp_idx);
439 }
440 
_dpu_crtc_blend_setup_mixer(struct drm_crtc * crtc,struct dpu_crtc * dpu_crtc,struct dpu_crtc_mixer * mixer,struct dpu_hw_stage_cfg * stage_cfg)441 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
442 	struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer,
443 	struct dpu_hw_stage_cfg *stage_cfg)
444 {
445 	struct drm_plane *plane;
446 	struct drm_framebuffer *fb;
447 	struct drm_plane_state *state;
448 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
449 	struct dpu_plane_state *pstate = NULL;
450 	const struct msm_format *format;
451 	struct dpu_hw_ctl *ctl = mixer->lm_ctl;
452 	u32 lm_idx, stage, i, pipe_idx, head_pipe_in_stage, lms_in_pair;
453 	bool bg_alpha_enable = false;
454 	DECLARE_BITMAP(active_fetch, SSPP_MAX);
455 	DECLARE_BITMAP(active_pipes, SSPP_MAX);
456 
457 	memset(active_fetch, 0, sizeof(active_fetch));
458 	memset(active_pipes, 0, sizeof(active_pipes));
459 	drm_atomic_crtc_for_each_plane(plane, crtc) {
460 		state = plane->state;
461 		if (!state)
462 			continue;
463 
464 		if (!state->visible)
465 			continue;
466 
467 		pstate = to_dpu_plane_state(state);
468 		fb = state->fb;
469 
470 		format = msm_framebuffer_format(pstate->base.fb);
471 
472 		if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
473 			bg_alpha_enable = true;
474 
475 		/* loop pipe per mixer pair with config in stage structure */
476 		for (stage = 0; stage < STAGES_PER_PLANE; stage++) {
477 			head_pipe_in_stage = stage * PIPES_PER_STAGE;
478 			for (i = 0; i < PIPES_PER_STAGE; i++) {
479 				pipe_idx = i + head_pipe_in_stage;
480 				if (!pstate->pipe[pipe_idx].sspp)
481 					continue;
482 				lms_in_pair = min(cstate->num_mixers - (stage * PIPES_PER_STAGE),
483 						  PIPES_PER_STAGE);
484 				set_bit(pstate->pipe[pipe_idx].sspp->idx, active_fetch);
485 				set_bit(pstate->pipe[pipe_idx].sspp->idx, active_pipes);
486 				_dpu_crtc_blend_setup_pipe(crtc, plane,
487 							   &mixer[head_pipe_in_stage],
488 							   lms_in_pair,
489 							   pstate->stage,
490 							   format, fb ? fb->modifier : 0,
491 							   &pstate->pipe[pipe_idx], i,
492 							   &stage_cfg[stage]);
493 			}
494 		}
495 
496 		/* blend config update */
497 		for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
498 			_dpu_crtc_setup_blend_cfg(mixer + lm_idx, pstate, format,
499 						  ctl->mdss_ver);
500 
501 			if (bg_alpha_enable && !format->alpha_enable)
502 				mixer[lm_idx].mixer_op_mode = 0;
503 			else
504 				mixer[lm_idx].mixer_op_mode |=
505 						1 << pstate->stage;
506 		}
507 	}
508 
509 	if (ctl->ops.set_active_fetch_pipes)
510 		ctl->ops.set_active_fetch_pipes(ctl, active_fetch);
511 
512 	if (ctl->ops.set_active_pipes)
513 		ctl->ops.set_active_pipes(ctl, active_pipes);
514 
515 	_dpu_crtc_program_lm_output_roi(crtc);
516 }
517 
518 /**
519  * _dpu_crtc_blend_setup - configure crtc mixers
520  * @crtc: Pointer to drm crtc structure
521  */
_dpu_crtc_blend_setup(struct drm_crtc * crtc)522 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
523 {
524 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
525 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
526 	struct dpu_crtc_mixer *mixer = cstate->mixers;
527 	struct dpu_hw_ctl *ctl;
528 	struct dpu_hw_mixer *lm;
529 	struct dpu_hw_stage_cfg stage_cfg[STAGES_PER_PLANE];
530 	DECLARE_BITMAP(active_lms, LM_MAX);
531 	int i;
532 
533 	DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
534 
535 	for (i = 0; i < cstate->num_mixers; i++) {
536 		mixer[i].mixer_op_mode = 0;
537 		if (mixer[i].lm_ctl->ops.clear_all_blendstages)
538 			mixer[i].lm_ctl->ops.clear_all_blendstages(
539 					mixer[i].lm_ctl);
540 		if (mixer[i].lm_ctl->ops.set_active_fetch_pipes)
541 			mixer[i].lm_ctl->ops.set_active_fetch_pipes(mixer[i].lm_ctl, NULL);
542 		if (mixer[i].lm_ctl->ops.set_active_pipes)
543 			mixer[i].lm_ctl->ops.set_active_pipes(mixer[i].lm_ctl, NULL);
544 
545 		if (mixer[i].hw_lm->ops.clear_all_blendstages)
546 			mixer[i].hw_lm->ops.clear_all_blendstages(mixer[i].hw_lm);
547 	}
548 
549 	/* initialize stage cfg */
550 	memset(&stage_cfg, 0, sizeof(stage_cfg));
551 	memset(active_lms, 0, sizeof(active_lms));
552 
553 	_dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, stage_cfg);
554 
555 	for (i = 0; i < cstate->num_mixers; i++) {
556 		ctl = mixer[i].lm_ctl;
557 		lm = mixer[i].hw_lm;
558 
559 		lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
560 
561 		/* stage config flush mask */
562 		ctl->ops.update_pending_flush_mixer(ctl,
563 			mixer[i].hw_lm->idx);
564 
565 		set_bit(lm->idx, active_lms);
566 		if (ctl->ops.set_active_lms)
567 			ctl->ops.set_active_lms(ctl, active_lms);
568 
569 		DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n",
570 			mixer[i].hw_lm->idx - LM_0,
571 			mixer[i].mixer_op_mode,
572 			ctl->idx - CTL_0);
573 
574 		/*
575 		 * call dpu_hw_ctl_setup_blendstage() to blend layers per stage cfg.
576 		 * stage data is shared between PIPES_PER_STAGE pipes.
577 		 */
578 		if (ctl->ops.setup_blendstage)
579 			ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
580 				&stage_cfg[i / PIPES_PER_STAGE]);
581 
582 		if (lm->ops.setup_blendstage)
583 			lm->ops.setup_blendstage(lm, mixer[i].hw_lm->idx,
584 				&stage_cfg[i / PIPES_PER_STAGE]);
585 	}
586 }
587 
588 /**
589  *  _dpu_crtc_complete_flip - signal pending page_flip events
590  * Any pending vblank events are added to the vblank_event_list
591  * so that the next vblank interrupt shall signal them.
592  * However PAGE_FLIP events are not handled through the vblank_event_list.
593  * This API signals any pending PAGE_FLIP events requested through
594  * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
595  * @crtc: Pointer to drm crtc structure
596  */
_dpu_crtc_complete_flip(struct drm_crtc * crtc)597 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
598 {
599 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
600 	struct drm_device *dev = crtc->dev;
601 	unsigned long flags;
602 
603 	spin_lock_irqsave(&dev->event_lock, flags);
604 	if (dpu_crtc->event) {
605 		DRM_DEBUG_VBL("%s: send event: %p\n", dpu_crtc->name,
606 			      dpu_crtc->event);
607 		trace_dpu_crtc_complete_flip(DRMID(crtc));
608 		drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
609 		dpu_crtc->event = NULL;
610 	}
611 	spin_unlock_irqrestore(&dev->event_lock, flags);
612 }
613 
614 /**
615  * dpu_crtc_get_intf_mode - get interface mode of the given crtc
616  * @crtc: Pointert to crtc
617  */
dpu_crtc_get_intf_mode(struct drm_crtc * crtc)618 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
619 {
620 	struct drm_encoder *encoder;
621 
622 	/*
623 	 * TODO: This function is called from dpu debugfs and as part of atomic
624 	 * check. When called from debugfs, the crtc->mutex must be held to
625 	 * read crtc->state. However reading crtc->state from atomic check isn't
626 	 * allowed (unless you have a good reason, a big comment, and a deep
627 	 * understanding of how the atomic/modeset locks work (<- and this is
628 	 * probably not possible)). So we'll keep the WARN_ON here for now, but
629 	 * really we need to figure out a better way to track our operating mode
630 	 */
631 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
632 
633 	/* TODO: Returns the first INTF_MODE, could there be multiple values? */
634 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
635 		return dpu_encoder_get_intf_mode(encoder);
636 
637 	return INTF_MODE_NONE;
638 }
639 
640 /**
641  * dpu_crtc_vblank_callback - called on vblank irq, issues completion events
642  * @crtc: Pointer to drm crtc object
643  */
dpu_crtc_vblank_callback(struct drm_crtc * crtc)644 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
645 {
646 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
647 
648 	/* keep statistics on vblank callback - with auto reset via debugfs */
649 	if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
650 		dpu_crtc->vblank_cb_time = ktime_get();
651 	else
652 		dpu_crtc->vblank_cb_count++;
653 
654 	dpu_crtc_get_crc(crtc);
655 
656 	drm_crtc_handle_vblank(crtc);
657 	trace_dpu_crtc_vblank_cb(DRMID(crtc));
658 }
659 
dpu_crtc_frame_event_work(struct kthread_work * work)660 static void dpu_crtc_frame_event_work(struct kthread_work *work)
661 {
662 	struct dpu_crtc_frame_event *fevent = container_of(work,
663 			struct dpu_crtc_frame_event, work);
664 	struct drm_crtc *crtc = fevent->crtc;
665 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
666 	unsigned long flags;
667 	bool frame_done = false;
668 
669 	DPU_ATRACE_BEGIN("crtc_frame_event");
670 
671 	DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
672 			ktime_to_ns(fevent->ts));
673 
674 	if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
675 				| DPU_ENCODER_FRAME_EVENT_ERROR
676 				| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
677 
678 		if (atomic_read(&dpu_crtc->frame_pending) < 1) {
679 			/* ignore vblank when not pending */
680 		} else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
681 			/* release bandwidth and other resources */
682 			trace_dpu_crtc_frame_event_done(DRMID(crtc),
683 							fevent->event);
684 			dpu_core_perf_crtc_release_bw(crtc);
685 		} else {
686 			trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
687 								fevent->event);
688 		}
689 
690 		if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
691 					| DPU_ENCODER_FRAME_EVENT_ERROR))
692 			frame_done = true;
693 	}
694 
695 	if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
696 		DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
697 				crtc->base.id, ktime_to_ns(fevent->ts));
698 
699 	if (frame_done)
700 		complete_all(&dpu_crtc->frame_done_comp);
701 
702 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
703 	list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
704 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
705 	DPU_ATRACE_END("crtc_frame_event");
706 }
707 
708 /**
709  * dpu_crtc_frame_event_cb - crtc frame event callback API
710  * @crtc: Pointer to crtc
711  * @event: Event to process
712  *
713  * Encoder may call this for different events from different context - IRQ,
714  * user thread, commit_thread, etc. Each event should be carefully reviewed and
715  * should be processed in proper task context to avoid schedulin delay or
716  * properly manage the irq context's bottom half processing.
717  */
dpu_crtc_frame_event_cb(struct drm_crtc * crtc,u32 event)718 void dpu_crtc_frame_event_cb(struct drm_crtc *crtc, u32 event)
719 {
720 	struct dpu_crtc *dpu_crtc;
721 	struct msm_drm_private *priv;
722 	struct dpu_crtc_frame_event *fevent;
723 	unsigned long flags;
724 	u32 crtc_id;
725 
726 	/* Nothing to do on idle event */
727 	if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
728 		return;
729 
730 	dpu_crtc = to_dpu_crtc(crtc);
731 	priv = crtc->dev->dev_private;
732 	crtc_id = drm_crtc_index(crtc);
733 
734 	trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
735 
736 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
737 	fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
738 			struct dpu_crtc_frame_event, list);
739 	if (fevent)
740 		list_del_init(&fevent->list);
741 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
742 
743 	if (!fevent) {
744 		DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
745 		return;
746 	}
747 
748 	fevent->event = event;
749 	fevent->crtc = crtc;
750 	fevent->ts = ktime_get();
751 	kthread_queue_work(priv->kms->event_thread[crtc_id].worker, &fevent->work);
752 }
753 
754 /**
755  * dpu_crtc_complete_commit - callback signalling completion of current commit
756  * @crtc: Pointer to drm crtc object
757  */
dpu_crtc_complete_commit(struct drm_crtc * crtc)758 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
759 {
760 	trace_dpu_crtc_complete_commit(DRMID(crtc));
761 	dpu_core_perf_crtc_update(crtc, 0);
762 	_dpu_crtc_complete_flip(crtc);
763 }
764 
_dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc * crtc,struct drm_crtc_state * state)765 static int _dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc *crtc,
766 		struct drm_crtc_state *state)
767 {
768 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
769 	struct drm_display_mode *adj_mode = &state->adjusted_mode;
770 	u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
771 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
772 	int i;
773 
774 	/* if we cannot merge 2 LMs (no 3d mux) better to fail earlier
775 	 * before even checking the width after the split
776 	 */
777 	if (!dpu_kms->catalog->caps->has_3d_merge &&
778 	    adj_mode->hdisplay > dpu_kms->catalog->caps->max_mixer_width)
779 		return -E2BIG;
780 
781 	for (i = 0; i < cstate->num_mixers; i++) {
782 		struct drm_rect *r = &cstate->lm_bounds[i];
783 		r->x1 = crtc_split_width * i;
784 		r->y1 = 0;
785 		r->x2 = r->x1 + crtc_split_width;
786 		r->y2 = adj_mode->vdisplay;
787 
788 		trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
789 
790 		if (drm_rect_width(r) > dpu_kms->catalog->caps->max_mixer_width)
791 			return -E2BIG;
792 	}
793 
794 	return 0;
795 }
796 
_dpu_crtc_get_pcc_coeff(struct drm_crtc_state * state,struct dpu_hw_pcc_cfg * cfg)797 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
798 		struct dpu_hw_pcc_cfg *cfg)
799 {
800 	struct drm_color_ctm *ctm;
801 
802 	memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
803 
804 	ctm = (struct drm_color_ctm *)state->ctm->data;
805 
806 	if (!ctm)
807 		return;
808 
809 	cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
810 	cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
811 	cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
812 
813 	cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
814 	cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
815 	cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
816 
817 	cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
818 	cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
819 	cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
820 }
821 
_dpu_crtc_setup_cp_blocks(struct drm_crtc * crtc)822 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
823 {
824 	struct drm_crtc_state *state = crtc->state;
825 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
826 	struct dpu_crtc_mixer *mixer = cstate->mixers;
827 	struct dpu_hw_pcc_cfg cfg;
828 	struct dpu_hw_ctl *ctl;
829 	struct dpu_hw_dspp *dspp;
830 	int i;
831 
832 
833 	if (!state->color_mgmt_changed && !drm_atomic_crtc_needs_modeset(state))
834 		return;
835 
836 	for (i = 0; i < cstate->num_mixers; i++) {
837 		ctl = mixer[i].lm_ctl;
838 		dspp = mixer[i].hw_dspp;
839 
840 		if (!dspp || !dspp->ops.setup_pcc)
841 			continue;
842 
843 		if (!state->ctm) {
844 			dspp->ops.setup_pcc(dspp, NULL);
845 		} else {
846 			_dpu_crtc_get_pcc_coeff(state, &cfg);
847 			dspp->ops.setup_pcc(dspp, &cfg);
848 		}
849 
850 		/* stage config flush mask */
851 		ctl->ops.update_pending_flush_dspp(ctl,
852 			mixer[i].hw_dspp->idx, DPU_DSPP_PCC);
853 	}
854 }
855 
dpu_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)856 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
857 		struct drm_atomic_state *state)
858 {
859 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
860 	struct drm_encoder *encoder;
861 
862 	if (!crtc->state->enable) {
863 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
864 				crtc->base.id, crtc->state->enable);
865 		return;
866 	}
867 
868 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
869 
870 	_dpu_crtc_check_and_setup_lm_bounds(crtc, crtc->state);
871 
872 	/* encoder will trigger pending mask now */
873 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
874 		dpu_encoder_trigger_kickoff_pending(encoder);
875 
876 	/*
877 	 * If no mixers have been allocated in dpu_crtc_atomic_check(),
878 	 * it means we are trying to flush a CRTC whose state is disabled:
879 	 * nothing else needs to be done.
880 	 */
881 	if (unlikely(!cstate->num_mixers))
882 		return;
883 
884 	_dpu_crtc_blend_setup(crtc);
885 
886 	_dpu_crtc_setup_cp_blocks(crtc);
887 
888 	/*
889 	 * PP_DONE irq is only used by command mode for now.
890 	 * It is better to request pending before FLUSH and START trigger
891 	 * to make sure no pp_done irq missed.
892 	 * This is safe because no pp_done will happen before SW trigger
893 	 * in command mode.
894 	 */
895 }
896 
dpu_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)897 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
898 		struct drm_atomic_state *state)
899 {
900 	struct dpu_crtc *dpu_crtc;
901 	struct drm_device *dev;
902 	struct drm_plane *plane;
903 	struct msm_drm_private *priv;
904 	unsigned long flags;
905 	struct dpu_crtc_state *cstate;
906 
907 	if (!crtc->state->enable) {
908 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
909 				crtc->base.id, crtc->state->enable);
910 		return;
911 	}
912 
913 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
914 
915 	dpu_crtc = to_dpu_crtc(crtc);
916 	cstate = to_dpu_crtc_state(crtc->state);
917 	dev = crtc->dev;
918 	priv = dev->dev_private;
919 
920 	if (crtc->index >= ARRAY_SIZE(priv->kms->event_thread)) {
921 		DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
922 		return;
923 	}
924 
925 	WARN_ON(dpu_crtc->event);
926 	spin_lock_irqsave(&dev->event_lock, flags);
927 	dpu_crtc->event = crtc->state->event;
928 	crtc->state->event = NULL;
929 	spin_unlock_irqrestore(&dev->event_lock, flags);
930 
931 	/*
932 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
933 	 * it means we are trying to flush a CRTC whose state is disabled:
934 	 * nothing else needs to be done.
935 	 */
936 	if (unlikely(!cstate->num_mixers))
937 		return;
938 
939 	/* update performance setting before crtc kickoff */
940 	dpu_core_perf_crtc_update(crtc, 1);
941 
942 	/*
943 	 * Final plane updates: Give each plane a chance to complete all
944 	 *                      required writes/flushing before crtc's "flush
945 	 *                      everything" call below.
946 	 */
947 	drm_atomic_crtc_for_each_plane(plane, crtc) {
948 		if (dpu_crtc->smmu_state.transition_error)
949 			dpu_plane_set_error(plane, true);
950 		dpu_plane_flush(plane);
951 	}
952 
953 	/* Kickoff will be scheduled by outer layer */
954 }
955 
956 /**
957  * dpu_crtc_destroy_state - state destroy hook
958  * @crtc: drm CRTC
959  * @state: CRTC state object to release
960  */
dpu_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)961 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
962 		struct drm_crtc_state *state)
963 {
964 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
965 
966 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
967 
968 	__drm_atomic_helper_crtc_destroy_state(state);
969 
970 	kfree(cstate);
971 }
972 
_dpu_crtc_wait_for_frame_done(struct drm_crtc * crtc)973 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
974 {
975 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
976 	int ret, rc = 0;
977 
978 	if (!atomic_read(&dpu_crtc->frame_pending)) {
979 		DRM_DEBUG_ATOMIC("no frames pending\n");
980 		return 0;
981 	}
982 
983 	DPU_ATRACE_BEGIN("frame done completion wait");
984 	ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
985 			msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
986 	if (!ret) {
987 		DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
988 		rc = -ETIMEDOUT;
989 	}
990 	DPU_ATRACE_END("frame done completion wait");
991 
992 	return rc;
993 }
994 
dpu_crtc_kickoff_clone_mode(struct drm_crtc * crtc)995 static int dpu_crtc_kickoff_clone_mode(struct drm_crtc *crtc)
996 {
997 	struct drm_encoder *encoder;
998 	struct drm_encoder *rt_encoder = NULL, *wb_encoder = NULL;
999 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1000 
1001 	/* Find encoder for real time display */
1002 	drm_for_each_encoder_mask(encoder, crtc->dev,
1003 				  crtc->state->encoder_mask) {
1004 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1005 			wb_encoder = encoder;
1006 		else
1007 			rt_encoder = encoder;
1008 	}
1009 
1010 	if (!rt_encoder || !wb_encoder) {
1011 		DRM_DEBUG_ATOMIC("real time or wb encoder not found\n");
1012 		return -EINVAL;
1013 	}
1014 
1015 	dpu_encoder_prepare_for_kickoff(wb_encoder);
1016 	dpu_encoder_prepare_for_kickoff(rt_encoder);
1017 
1018 	dpu_vbif_clear_errors(dpu_kms);
1019 
1020 	/*
1021 	 * Kickoff real time encoder last as it's the encoder that
1022 	 * will do the flush
1023 	 */
1024 	dpu_encoder_kickoff(wb_encoder);
1025 	dpu_encoder_kickoff(rt_encoder);
1026 
1027 	/* Don't start frame done timers until the kickoffs have finished */
1028 	dpu_encoder_start_frame_done_timer(wb_encoder);
1029 	dpu_encoder_start_frame_done_timer(rt_encoder);
1030 
1031 	return 0;
1032 }
1033 
1034 /**
1035  * dpu_crtc_commit_kickoff - trigger kickoff of the commit for this crtc
1036  * @crtc: Pointer to drm crtc object
1037  */
dpu_crtc_commit_kickoff(struct drm_crtc * crtc)1038 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
1039 {
1040 	struct drm_encoder *encoder;
1041 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1042 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1043 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1044 
1045 	/*
1046 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
1047 	 * it means we are trying to start a CRTC whose state is disabled:
1048 	 * nothing else needs to be done.
1049 	 */
1050 	if (unlikely(!cstate->num_mixers))
1051 		return;
1052 
1053 	DPU_ATRACE_BEGIN("crtc_commit");
1054 
1055 	drm_for_each_encoder_mask(encoder, crtc->dev,
1056 			crtc->state->encoder_mask) {
1057 		if (!dpu_encoder_is_valid_for_commit(encoder)) {
1058 			DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n");
1059 			goto end;
1060 		}
1061 	}
1062 
1063 	if (drm_crtc_in_clone_mode(crtc->state)) {
1064 		if (dpu_crtc_kickoff_clone_mode(crtc))
1065 			goto end;
1066 	} else {
1067 		/*
1068 		 * Encoder will flush/start now, unless it has a tx pending.
1069 		 * If so, it may delay and flush at an irq event (e.g. ppdone)
1070 		 */
1071 		drm_for_each_encoder_mask(encoder, crtc->dev,
1072 				crtc->state->encoder_mask)
1073 			dpu_encoder_prepare_for_kickoff(encoder);
1074 
1075 		dpu_vbif_clear_errors(dpu_kms);
1076 
1077 		drm_for_each_encoder_mask(encoder, crtc->dev,
1078 				crtc->state->encoder_mask) {
1079 			dpu_encoder_kickoff(encoder);
1080 			dpu_encoder_start_frame_done_timer(encoder);
1081 		}
1082 	}
1083 
1084 	if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
1085 		/* acquire bandwidth and other resources */
1086 		DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
1087 	} else
1088 		DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
1089 
1090 	dpu_crtc->play_count++;
1091 
1092 	reinit_completion(&dpu_crtc->frame_done_comp);
1093 
1094 end:
1095 	DPU_ATRACE_END("crtc_commit");
1096 }
1097 
dpu_crtc_reset(struct drm_crtc * crtc)1098 static void dpu_crtc_reset(struct drm_crtc *crtc)
1099 {
1100 	struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
1101 
1102 	if (crtc->state)
1103 		dpu_crtc_destroy_state(crtc, crtc->state);
1104 
1105 	if (cstate)
1106 		__drm_atomic_helper_crtc_reset(crtc, &cstate->base);
1107 	else
1108 		__drm_atomic_helper_crtc_reset(crtc, NULL);
1109 }
1110 
1111 /**
1112  * dpu_crtc_duplicate_state - state duplicate hook
1113  * @crtc: Pointer to drm crtc structure
1114  */
dpu_crtc_duplicate_state(struct drm_crtc * crtc)1115 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
1116 {
1117 	struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
1118 
1119 	cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
1120 	if (!cstate) {
1121 		DPU_ERROR("failed to allocate state\n");
1122 		return NULL;
1123 	}
1124 
1125 	/* duplicate base helper */
1126 	__drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
1127 
1128 	return &cstate->base;
1129 }
1130 
dpu_crtc_atomic_print_state(struct drm_printer * p,const struct drm_crtc_state * state)1131 static void dpu_crtc_atomic_print_state(struct drm_printer *p,
1132 					const struct drm_crtc_state *state)
1133 {
1134 	const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
1135 	int i;
1136 
1137 	for (i = 0; i < cstate->num_mixers; i++) {
1138 		drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0);
1139 		drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0);
1140 		if (cstate->mixers[i].hw_dspp)
1141 			drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0);
1142 	}
1143 }
1144 
dpu_crtc_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)1145 static void dpu_crtc_disable(struct drm_crtc *crtc,
1146 			     struct drm_atomic_state *state)
1147 {
1148 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1149 									      crtc);
1150 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1151 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1152 	struct drm_encoder *encoder;
1153 	unsigned long flags;
1154 	bool release_bandwidth = false;
1155 
1156 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1157 
1158 	/* If disable is triggered while in self refresh mode,
1159 	 * reset the encoder software state so that in enable
1160 	 * it won't trigger a warn while assigning crtc.
1161 	 */
1162 	if (old_crtc_state->self_refresh_active) {
1163 		drm_for_each_encoder_mask(encoder, crtc->dev,
1164 					old_crtc_state->encoder_mask) {
1165 			dpu_encoder_assign_crtc(encoder, NULL);
1166 		}
1167 		return;
1168 	}
1169 
1170 	/* Disable/save vblank irq handling */
1171 	drm_crtc_vblank_off(crtc);
1172 
1173 	drm_for_each_encoder_mask(encoder, crtc->dev,
1174 				  old_crtc_state->encoder_mask) {
1175 		/* in video mode, we hold an extra bandwidth reference
1176 		 * as we cannot drop bandwidth at frame-done if any
1177 		 * crtc is being used in video mode.
1178 		 */
1179 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1180 			release_bandwidth = true;
1181 
1182 		/*
1183 		 * If disable is triggered during psr active(e.g: screen dim in PSR),
1184 		 * we will need encoder->crtc connection to process the device sleep &
1185 		 * preserve it during psr sequence.
1186 		 */
1187 		if (!crtc->state->self_refresh_active)
1188 			dpu_encoder_assign_crtc(encoder, NULL);
1189 	}
1190 
1191 	/* wait for frame_event_done completion */
1192 	if (_dpu_crtc_wait_for_frame_done(crtc))
1193 		DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
1194 				crtc->base.id,
1195 				atomic_read(&dpu_crtc->frame_pending));
1196 
1197 	trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
1198 	dpu_crtc->enabled = false;
1199 
1200 	if (atomic_read(&dpu_crtc->frame_pending)) {
1201 		trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
1202 				     atomic_read(&dpu_crtc->frame_pending));
1203 		if (release_bandwidth)
1204 			dpu_core_perf_crtc_release_bw(crtc);
1205 		atomic_set(&dpu_crtc->frame_pending, 0);
1206 	}
1207 
1208 	dpu_core_perf_crtc_update(crtc, 0);
1209 
1210 	/* disable clk & bw control until clk & bw properties are set */
1211 	cstate->bw_control = false;
1212 	cstate->bw_split_vote = false;
1213 
1214 	if (crtc->state->event && !crtc->state->active) {
1215 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1216 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1217 		crtc->state->event = NULL;
1218 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1219 	}
1220 
1221 	pm_runtime_put_sync(crtc->dev->dev);
1222 }
1223 
dpu_crtc_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)1224 static void dpu_crtc_enable(struct drm_crtc *crtc,
1225 		struct drm_atomic_state *state)
1226 {
1227 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1228 	struct drm_encoder *encoder;
1229 	bool request_bandwidth = false;
1230 	struct drm_crtc_state *old_crtc_state;
1231 
1232 	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1233 
1234 	pm_runtime_get_sync(crtc->dev->dev);
1235 
1236 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1237 
1238 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
1239 		/* in video mode, we hold an extra bandwidth reference
1240 		 * as we cannot drop bandwidth at frame-done if any
1241 		 * crtc is being used in video mode.
1242 		 */
1243 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1244 			request_bandwidth = true;
1245 	}
1246 
1247 	if (request_bandwidth)
1248 		atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1249 
1250 	trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
1251 	dpu_crtc->enabled = true;
1252 
1253 	if (!old_crtc_state->self_refresh_active) {
1254 		drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1255 			dpu_encoder_assign_crtc(encoder, crtc);
1256 	}
1257 
1258 	/* Enable/restore vblank irq handling */
1259 	drm_crtc_vblank_on(crtc);
1260 }
1261 
dpu_crtc_needs_dirtyfb(struct drm_crtc_state * cstate)1262 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate)
1263 {
1264 	struct drm_crtc *crtc = cstate->crtc;
1265 	struct drm_encoder *encoder;
1266 
1267 	if (cstate->self_refresh_active)
1268 		return true;
1269 
1270 	drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) {
1271 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) {
1272 			return true;
1273 		}
1274 	}
1275 
1276 	return false;
1277 }
1278 
dpu_crtc_reassign_planes(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)1279 static int dpu_crtc_reassign_planes(struct drm_crtc *crtc, struct drm_crtc_state *crtc_state)
1280 {
1281 	int total_planes = crtc->dev->mode_config.num_total_plane;
1282 	struct drm_atomic_state *state = crtc_state->state;
1283 	struct dpu_global_state *global_state;
1284 	struct drm_plane_state **states;
1285 	struct drm_plane *plane;
1286 	int ret;
1287 
1288 	global_state = dpu_kms_get_global_state(crtc_state->state);
1289 	if (IS_ERR(global_state))
1290 		return PTR_ERR(global_state);
1291 
1292 	dpu_rm_release_all_sspp(global_state, crtc);
1293 
1294 	if (!crtc_state->enable)
1295 		return 0;
1296 
1297 	states = kcalloc(total_planes, sizeof(*states), GFP_KERNEL);
1298 	if (!states)
1299 		return -ENOMEM;
1300 
1301 	drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1302 		struct drm_plane_state *plane_state =
1303 			drm_atomic_get_plane_state(state, plane);
1304 
1305 		if (IS_ERR(plane_state)) {
1306 			ret = PTR_ERR(plane_state);
1307 			goto done;
1308 		}
1309 
1310 		states[plane_state->normalized_zpos] = plane_state;
1311 	}
1312 
1313 	ret = dpu_assign_plane_resources(global_state, state, crtc, states, total_planes);
1314 
1315 done:
1316 	kfree(states);
1317 	return ret;
1318 }
1319 
1320 #define MAX_CHANNELS_PER_CRTC PIPES_PER_PLANE
1321 #define MAX_HDISPLAY_SPLIT 1080
1322 
dpu_crtc_get_topology(struct drm_crtc * crtc,struct dpu_kms * dpu_kms,struct drm_crtc_state * crtc_state)1323 static struct msm_display_topology dpu_crtc_get_topology(
1324 		struct drm_crtc *crtc,
1325 		struct dpu_kms *dpu_kms,
1326 		struct drm_crtc_state *crtc_state)
1327 {
1328 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
1329 	struct msm_display_topology topology = {0};
1330 	struct drm_encoder *drm_enc;
1331 	u32 num_rt_intf;
1332 
1333 	drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc_state->encoder_mask)
1334 		dpu_encoder_update_topology(drm_enc, &topology, crtc_state->state,
1335 					    &crtc_state->adjusted_mode);
1336 
1337 	topology.cwb_enabled = drm_crtc_in_clone_mode(crtc_state);
1338 
1339 	/*
1340 	 * Datapath topology selection
1341 	 *
1342 	 * Dual display
1343 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
1344 	 *
1345 	 * If DSC is enabled, try to use 4:4:2 topology if there is enough
1346 	 * resource. Otherwise, use 2:2:2 topology.
1347 	 *
1348 	 * Single display
1349 	 * 1 LM, 1 INTF
1350 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
1351 	 *
1352 	 * If DSC is enabled, use 2:2:1 topology
1353 	 *
1354 	 * Add dspps to the reservation requirements if ctm is requested
1355 	 *
1356 	 * Only hardcode num_lm to 2 for cases where num_intf == 2 and CWB is not
1357 	 * enabled. This is because in cases where CWB is enabled, num_intf will
1358 	 * count both the WB and real-time phys encoders.
1359 	 *
1360 	 * For non-DSC CWB usecases, have the num_lm be decided by the
1361 	 * (mode->hdisplay > MAX_HDISPLAY_SPLIT) check.
1362 	 */
1363 
1364 	num_rt_intf = topology.num_intf;
1365 	if (topology.cwb_enabled)
1366 		num_rt_intf--;
1367 
1368 	if (topology.num_dsc) {
1369 		if (dpu_kms->catalog->dsc_count >= num_rt_intf * 2)
1370 			topology.num_dsc = num_rt_intf * 2;
1371 		else
1372 			topology.num_dsc = num_rt_intf;
1373 		topology.num_lm = topology.num_dsc;
1374 	} else if (num_rt_intf == 2) {
1375 		topology.num_lm = 2;
1376 	} else if (dpu_kms->catalog->caps->has_3d_merge) {
1377 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
1378 	} else {
1379 		topology.num_lm = 1;
1380 	}
1381 
1382 	if (crtc_state->ctm)
1383 		topology.num_dspp = topology.num_lm;
1384 
1385 	return topology;
1386 }
1387 
dpu_crtc_assign_resources(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)1388 static int dpu_crtc_assign_resources(struct drm_crtc *crtc,
1389 				     struct drm_crtc_state *crtc_state)
1390 {
1391 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_CRTC];
1392 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_CRTC];
1393 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_CRTC];
1394 	int i, num_lm, num_ctl, num_dspp;
1395 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1396 	struct dpu_global_state *global_state;
1397 	struct dpu_crtc_state *cstate;
1398 	struct msm_display_topology topology;
1399 	int ret;
1400 
1401 	/*
1402 	 * Release and Allocate resources on every modeset
1403 	 */
1404 	global_state = dpu_kms_get_global_state(crtc_state->state);
1405 	if (IS_ERR(global_state))
1406 		return PTR_ERR(global_state);
1407 
1408 	dpu_rm_release(global_state, crtc);
1409 
1410 	if (!crtc_state->enable)
1411 		return 0;
1412 
1413 	topology = dpu_crtc_get_topology(crtc, dpu_kms, crtc_state);
1414 	ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
1415 			     crtc_state->crtc, &topology);
1416 	if (ret)
1417 		return ret;
1418 
1419 	cstate = to_dpu_crtc_state(crtc_state);
1420 
1421 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1422 						crtc_state->crtc,
1423 						DPU_HW_BLK_CTL, hw_ctl,
1424 						ARRAY_SIZE(hw_ctl));
1425 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1426 					       crtc_state->crtc,
1427 					       DPU_HW_BLK_LM, hw_lm,
1428 					       ARRAY_SIZE(hw_lm));
1429 	num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1430 						 crtc_state->crtc,
1431 						 DPU_HW_BLK_DSPP, hw_dspp,
1432 						 ARRAY_SIZE(hw_dspp));
1433 
1434 	for (i = 0; i < num_lm; i++) {
1435 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1436 
1437 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1438 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1439 		if (i < num_dspp)
1440 			cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1441 	}
1442 
1443 	cstate->num_mixers = num_lm;
1444 
1445 	return 0;
1446 }
1447 
1448 /**
1449  * dpu_crtc_check_mode_changed: check if full modeset is required
1450  * @old_crtc_state:	Previous CRTC state
1451  * @new_crtc_state:	Corresponding CRTC state to be checked
1452  *
1453  * Check if the changes in the object properties demand full mode set.
1454  */
dpu_crtc_check_mode_changed(struct drm_crtc_state * old_crtc_state,struct drm_crtc_state * new_crtc_state)1455 int dpu_crtc_check_mode_changed(struct drm_crtc_state *old_crtc_state,
1456 				struct drm_crtc_state *new_crtc_state)
1457 {
1458 	struct drm_encoder *drm_enc;
1459 	struct drm_crtc *crtc = new_crtc_state->crtc;
1460 	bool clone_mode_enabled = drm_crtc_in_clone_mode(old_crtc_state);
1461 	bool clone_mode_requested = drm_crtc_in_clone_mode(new_crtc_state);
1462 
1463 	DRM_DEBUG_ATOMIC("%d\n", crtc->base.id);
1464 
1465 	/* there might be cases where encoder needs a modeset too */
1466 	drm_for_each_encoder_mask(drm_enc, crtc->dev, new_crtc_state->encoder_mask) {
1467 		if (dpu_encoder_needs_modeset(drm_enc, new_crtc_state->state))
1468 			new_crtc_state->mode_changed = true;
1469 	}
1470 
1471 	if ((clone_mode_requested && !clone_mode_enabled) ||
1472 	    (!clone_mode_requested && clone_mode_enabled))
1473 		new_crtc_state->mode_changed = true;
1474 
1475 	return 0;
1476 }
1477 
dpu_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)1478 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
1479 		struct drm_atomic_state *state)
1480 {
1481 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1482 									  crtc);
1483 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1484 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
1485 
1486 	const struct drm_plane_state *pstate;
1487 	struct drm_plane *plane;
1488 
1489 	int rc = 0;
1490 
1491 	bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state);
1492 
1493 	/* don't reallocate resources if only ACTIVE has beeen changed */
1494 	if (crtc_state->mode_changed || crtc_state->connectors_changed) {
1495 		rc = dpu_crtc_assign_resources(crtc, crtc_state);
1496 		if (rc < 0)
1497 			return rc;
1498 	}
1499 
1500 	if (dpu_use_virtual_planes &&
1501 	    (crtc_state->planes_changed || crtc_state->zpos_changed)) {
1502 		rc = dpu_crtc_reassign_planes(crtc, crtc_state);
1503 		if (rc < 0)
1504 			return rc;
1505 	}
1506 
1507 	if (!crtc_state->enable || !drm_atomic_crtc_effectively_active(crtc_state)) {
1508 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
1509 				crtc->base.id, crtc_state->enable,
1510 				crtc_state->active);
1511 		memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
1512 		return 0;
1513 	}
1514 
1515 	DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
1516 
1517 	if (cstate->num_mixers) {
1518 		rc = _dpu_crtc_check_and_setup_lm_bounds(crtc, crtc_state);
1519 		if (rc)
1520 			return rc;
1521 	}
1522 
1523 	/* FIXME: move this to dpu_plane_atomic_check? */
1524 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
1525 		struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate);
1526 
1527 		if (IS_ERR_OR_NULL(pstate)) {
1528 			rc = PTR_ERR(pstate);
1529 			DPU_ERROR("%s: failed to get plane%d state, %d\n",
1530 					dpu_crtc->name, plane->base.id, rc);
1531 			return rc;
1532 		}
1533 
1534 		if (!pstate->visible)
1535 			continue;
1536 
1537 		dpu_pstate->needs_dirtyfb = needs_dirtyfb;
1538 	}
1539 
1540 	atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1541 
1542 	rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1543 	if (rc) {
1544 		DPU_ERROR("crtc%d failed performance check %d\n",
1545 				crtc->base.id, rc);
1546 		return rc;
1547 	}
1548 
1549 	return 0;
1550 }
1551 
dpu_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)1552 static enum drm_mode_status dpu_crtc_mode_valid(struct drm_crtc *crtc,
1553 						const struct drm_display_mode *mode)
1554 {
1555 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1556 	u64 adjusted_mode_clk;
1557 
1558 	/* if there is no 3d_mux block we cannot merge LMs so we cannot
1559 	 * split the large layer into 2 LMs, filter out such modes
1560 	 */
1561 	if (!dpu_kms->catalog->caps->has_3d_merge &&
1562 	    mode->hdisplay > dpu_kms->catalog->caps->max_mixer_width)
1563 		return MODE_BAD_HVALUE;
1564 
1565 	adjusted_mode_clk = dpu_core_perf_adjusted_mode_clk(mode->clock,
1566 							    dpu_kms->perf.perf_cfg);
1567 
1568 	if (dpu_kms->catalog->caps->has_3d_merge)
1569 		adjusted_mode_clk /= 2;
1570 
1571 	/*
1572 	 * The given mode, adjusted for the perf clock factor, should not exceed
1573 	 * the max core clock rate
1574 	 */
1575 	if (dpu_kms->perf.max_core_clk_rate < adjusted_mode_clk * 1000)
1576 		return MODE_CLOCK_HIGH;
1577 
1578 	/*
1579 	 * max crtc width is equal to the max mixer width * 2 and max height is 4K
1580 	 */
1581 	return drm_mode_validate_size(mode,
1582 				      2 * dpu_kms->catalog->caps->max_mixer_width,
1583 				      4096);
1584 }
1585 
1586 /**
1587  * dpu_crtc_vblank - enable or disable vblanks for this crtc
1588  * @crtc: Pointer to drm crtc object
1589  * @en: true to enable vblanks, false to disable
1590  */
dpu_crtc_vblank(struct drm_crtc * crtc,bool en)1591 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1592 {
1593 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1594 	struct drm_encoder *enc;
1595 
1596 	trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1597 
1598 	/*
1599 	 * Normally we would iterate through encoder_mask in crtc state to find
1600 	 * attached encoders. In this case, we might be disabling vblank _after_
1601 	 * encoder_mask has been cleared.
1602 	 *
1603 	 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1604 	 * disable (which is also after encoder_mask is cleared). So instead of
1605 	 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1606 	 * currently assigned to our crtc.
1607 	 *
1608 	 * Note also that this function cannot be called while crtc is disabled
1609 	 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1610 	 * about the assigned crtcs being inconsistent with the current state
1611 	 * (which means no need to worry about modeset locks).
1612 	 */
1613 	list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1614 		trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1615 					     dpu_crtc);
1616 
1617 		dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 /**
1624  * dpu_crtc_get_num_lm - Get mixer number in this CRTC pipeline
1625  * @state: Pointer to drm crtc state object
1626  */
dpu_crtc_get_num_lm(const struct drm_crtc_state * state)1627 unsigned int dpu_crtc_get_num_lm(const struct drm_crtc_state *state)
1628 {
1629 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
1630 
1631 	return cstate->num_mixers;
1632 }
1633 
1634 #ifdef CONFIG_DEBUG_FS
_dpu_debugfs_status_show(struct seq_file * s,void * data)1635 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1636 {
1637 	struct dpu_crtc *dpu_crtc;
1638 	struct dpu_plane_state *pstate = NULL;
1639 	struct dpu_crtc_mixer *m;
1640 
1641 	struct drm_crtc *crtc;
1642 	struct drm_plane *plane;
1643 	struct drm_display_mode *mode;
1644 	struct drm_framebuffer *fb;
1645 	struct drm_plane_state *state;
1646 	struct dpu_crtc_state *cstate;
1647 
1648 	int i, out_width;
1649 
1650 	dpu_crtc = s->private;
1651 	crtc = &dpu_crtc->base;
1652 
1653 	drm_modeset_lock_all(crtc->dev);
1654 	cstate = to_dpu_crtc_state(crtc->state);
1655 
1656 	mode = &crtc->state->adjusted_mode;
1657 	out_width = mode->hdisplay / cstate->num_mixers;
1658 
1659 	seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1660 				mode->hdisplay, mode->vdisplay);
1661 
1662 	seq_puts(s, "\n");
1663 
1664 	for (i = 0; i < cstate->num_mixers; ++i) {
1665 		m = &cstate->mixers[i];
1666 		seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1667 			m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1668 			out_width, mode->vdisplay);
1669 	}
1670 
1671 	seq_puts(s, "\n");
1672 
1673 	drm_atomic_crtc_for_each_plane(plane, crtc) {
1674 		pstate = to_dpu_plane_state(plane->state);
1675 		state = plane->state;
1676 
1677 		if (!pstate || !state)
1678 			continue;
1679 
1680 		seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1681 			pstate->stage);
1682 
1683 		if (plane->state->fb) {
1684 			fb = plane->state->fb;
1685 
1686 			seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1687 				fb->base.id, (char *) &fb->format->format,
1688 				fb->width, fb->height);
1689 			for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1690 				seq_printf(s, "cpp[%d]:%u ",
1691 						i, fb->format->cpp[i]);
1692 			seq_puts(s, "\n\t");
1693 
1694 			seq_printf(s, "modifier:%8llu ", fb->modifier);
1695 			seq_puts(s, "\n");
1696 
1697 			seq_puts(s, "\t");
1698 			for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1699 				seq_printf(s, "pitches[%d]:%8u ", i,
1700 							fb->pitches[i]);
1701 			seq_puts(s, "\n");
1702 
1703 			seq_puts(s, "\t");
1704 			for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1705 				seq_printf(s, "offsets[%d]:%8u ", i,
1706 							fb->offsets[i]);
1707 			seq_puts(s, "\n");
1708 		}
1709 
1710 		seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1711 			state->src_x, state->src_y, state->src_w, state->src_h);
1712 
1713 		seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1714 			state->crtc_x, state->crtc_y, state->crtc_w,
1715 			state->crtc_h);
1716 
1717 		for (i = 0; i < PIPES_PER_PLANE; i++) {
1718 			if (!pstate->pipe[i].sspp)
1719 				continue;
1720 			seq_printf(s, "\tsspp[%d]:%s\n",
1721 				   i, pstate->pipe[i].sspp->cap->name);
1722 			seq_printf(s, "\tmultirect[%d]: mode: %d index: %d\n",
1723 				   i, pstate->pipe[i].multirect_mode,
1724 				   pstate->pipe[i].multirect_index);
1725 		}
1726 
1727 		seq_puts(s, "\n");
1728 	}
1729 	if (dpu_crtc->vblank_cb_count) {
1730 		ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1731 		s64 diff_ms = ktime_to_ms(diff);
1732 		s64 fps = diff_ms ? div_s64(
1733 				dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1734 
1735 		seq_printf(s,
1736 			"vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1737 				fps, dpu_crtc->vblank_cb_count,
1738 				ktime_to_ms(diff), dpu_crtc->play_count);
1739 
1740 		/* reset time & count for next measurement */
1741 		dpu_crtc->vblank_cb_count = 0;
1742 		dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1743 	}
1744 
1745 	drm_modeset_unlock_all(crtc->dev);
1746 
1747 	return 0;
1748 }
1749 
1750 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1751 
dpu_crtc_debugfs_state_show(struct seq_file * s,void * v)1752 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1753 {
1754 	struct drm_crtc *crtc = s->private;
1755 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1756 
1757 	seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1758 	seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1759 	seq_printf(s, "core_clk_rate: %llu\n",
1760 			dpu_crtc->cur_perf.core_clk_rate);
1761 	seq_printf(s, "bw_ctl: %uk\n",
1762 		   (u32)DIV_ROUND_UP_ULL(dpu_crtc->cur_perf.bw_ctl, 1000));
1763 	seq_printf(s, "max_per_pipe_ib: %u\n",
1764 				dpu_crtc->cur_perf.max_per_pipe_ib);
1765 
1766 	return 0;
1767 }
1768 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1769 
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1770 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1771 {
1772 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1773 
1774 	debugfs_create_file("status", 0400,
1775 			crtc->debugfs_entry,
1776 			dpu_crtc, &_dpu_debugfs_status_fops);
1777 	debugfs_create_file("state", 0600,
1778 			crtc->debugfs_entry,
1779 			&dpu_crtc->base,
1780 			&dpu_crtc_debugfs_state_fops);
1781 
1782 	return 0;
1783 }
1784 #else
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1785 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1786 {
1787 	return 0;
1788 }
1789 #endif /* CONFIG_DEBUG_FS */
1790 
dpu_crtc_late_register(struct drm_crtc * crtc)1791 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1792 {
1793 	return _dpu_crtc_init_debugfs(crtc);
1794 }
1795 
1796 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1797 	.set_config = drm_atomic_helper_set_config,
1798 	.page_flip = drm_atomic_helper_page_flip,
1799 	.reset = dpu_crtc_reset,
1800 	.atomic_duplicate_state = dpu_crtc_duplicate_state,
1801 	.atomic_destroy_state = dpu_crtc_destroy_state,
1802 	.atomic_print_state = dpu_crtc_atomic_print_state,
1803 	.late_register = dpu_crtc_late_register,
1804 	.verify_crc_source = dpu_crtc_verify_crc_source,
1805 	.set_crc_source = dpu_crtc_set_crc_source,
1806 	.enable_vblank  = msm_crtc_enable_vblank,
1807 	.disable_vblank = msm_crtc_disable_vblank,
1808 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1809 	.get_vblank_counter = dpu_crtc_get_vblank_counter,
1810 };
1811 
1812 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1813 	.atomic_disable = dpu_crtc_disable,
1814 	.atomic_enable = dpu_crtc_enable,
1815 	.atomic_check = dpu_crtc_atomic_check,
1816 	.atomic_begin = dpu_crtc_atomic_begin,
1817 	.atomic_flush = dpu_crtc_atomic_flush,
1818 	.mode_valid = dpu_crtc_mode_valid,
1819 	.get_scanout_position = dpu_crtc_get_scanout_position,
1820 };
1821 
1822 /**
1823  * dpu_crtc_init - create a new crtc object
1824  * @dev: dpu device
1825  * @plane: base plane
1826  * @cursor: cursor plane
1827  * @return: new crtc object or error
1828  *
1829  * initialize CRTC
1830  */
dpu_crtc_init(struct drm_device * dev,struct drm_plane * plane,struct drm_plane * cursor)1831 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1832 				struct drm_plane *cursor)
1833 {
1834 	struct msm_drm_private *priv = dev->dev_private;
1835 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
1836 	struct drm_crtc *crtc = NULL;
1837 	struct dpu_crtc *dpu_crtc;
1838 	int i, ret;
1839 
1840 	dpu_crtc = drmm_crtc_alloc_with_planes(dev, struct dpu_crtc, base,
1841 					       plane, cursor,
1842 					       &dpu_crtc_funcs,
1843 					       NULL);
1844 
1845 	if (IS_ERR(dpu_crtc))
1846 		return ERR_CAST(dpu_crtc);
1847 
1848 	crtc = &dpu_crtc->base;
1849 	crtc->dev = dev;
1850 
1851 	spin_lock_init(&dpu_crtc->spin_lock);
1852 	atomic_set(&dpu_crtc->frame_pending, 0);
1853 
1854 	init_completion(&dpu_crtc->frame_done_comp);
1855 
1856 	INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1857 
1858 	for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1859 		INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1860 		list_add(&dpu_crtc->frame_events[i].list,
1861 				&dpu_crtc->frame_event_list);
1862 		kthread_init_work(&dpu_crtc->frame_events[i].work,
1863 				dpu_crtc_frame_event_work);
1864 	}
1865 
1866 	drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1867 
1868 	if (dpu_kms->catalog->dspp_count)
1869 		drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1870 
1871 	/* save user friendly CRTC name for later */
1872 	snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1873 
1874 	/* initialize event handling */
1875 	spin_lock_init(&dpu_crtc->event_lock);
1876 
1877 	ret = drm_self_refresh_helper_init(crtc);
1878 	if (ret) {
1879 		DPU_ERROR("Failed to initialize %s with self-refresh helpers %d\n",
1880 			crtc->name, ret);
1881 		return ERR_PTR(ret);
1882 	}
1883 
1884 	DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1885 	return crtc;
1886 }
1887