1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
4 * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
5 * Copyright (C) 2013 Red Hat
6 * Author: Rob Clark <robdclark@gmail.com>
7 */
8
9 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
10 #include <linux/sort.h>
11 #include <linux/debugfs.h>
12 #include <linux/ktime.h>
13 #include <linux/bits.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_blend.h>
17 #include <drm/drm_crtc.h>
18 #include <drm/drm_flip_work.h>
19 #include <drm/drm_framebuffer.h>
20 #include <drm/drm_mode.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_rect.h>
23 #include <drm/drm_vblank.h>
24 #include <drm/drm_self_refresh_helper.h>
25
26 #include "dpu_kms.h"
27 #include "dpu_hw_lm.h"
28 #include "dpu_hw_ctl.h"
29 #include "dpu_hw_dspp.h"
30 #include "dpu_crtc.h"
31 #include "dpu_plane.h"
32 #include "dpu_encoder.h"
33 #include "dpu_vbif.h"
34 #include "dpu_core_perf.h"
35 #include "dpu_trace.h"
36
37 /* layer mixer index on dpu_crtc */
38 #define LEFT_MIXER 0
39 #define RIGHT_MIXER 1
40
41 /* timeout in ms waiting for frame done */
42 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60
43
44 #define CONVERT_S3_15(val) \
45 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
46
_dpu_crtc_get_kms(struct drm_crtc * crtc)47 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
48 {
49 struct msm_drm_private *priv = crtc->dev->dev_private;
50
51 return to_dpu_kms(priv->kms);
52 }
53
get_encoder_from_crtc(struct drm_crtc * crtc)54 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
55 {
56 struct drm_device *dev = crtc->dev;
57 struct drm_encoder *encoder;
58
59 drm_for_each_encoder(encoder, dev)
60 if (encoder->crtc == crtc)
61 return encoder;
62
63 return NULL;
64 }
65
dpu_crtc_parse_crc_source(const char * src_name)66 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name)
67 {
68 if (!src_name ||
69 !strcmp(src_name, "none"))
70 return DPU_CRTC_CRC_SOURCE_NONE;
71 if (!strcmp(src_name, "auto") ||
72 !strcmp(src_name, "lm"))
73 return DPU_CRTC_CRC_SOURCE_LAYER_MIXER;
74 if (!strcmp(src_name, "encoder"))
75 return DPU_CRTC_CRC_SOURCE_ENCODER;
76
77 return DPU_CRTC_CRC_SOURCE_INVALID;
78 }
79
dpu_crtc_verify_crc_source(struct drm_crtc * crtc,const char * src_name,size_t * values_cnt)80 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc,
81 const char *src_name, size_t *values_cnt)
82 {
83 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
84 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
85
86 if (source < 0) {
87 DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index);
88 return -EINVAL;
89 }
90
91 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) {
92 *values_cnt = crtc_state->num_mixers;
93 } else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) {
94 struct drm_encoder *drm_enc;
95
96 *values_cnt = 0;
97
98 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
99 *values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc);
100 }
101
102 return 0;
103 }
104
dpu_crtc_setup_lm_misr(struct dpu_crtc_state * crtc_state)105 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state)
106 {
107 struct dpu_crtc_mixer *m;
108 int i;
109
110 for (i = 0; i < crtc_state->num_mixers; ++i) {
111 m = &crtc_state->mixers[i];
112
113 if (!m->hw_lm || !m->hw_lm->ops.setup_misr)
114 continue;
115
116 /* Calculate MISR over 1 frame */
117 m->hw_lm->ops.setup_misr(m->hw_lm);
118 }
119 }
120
dpu_crtc_setup_encoder_misr(struct drm_crtc * crtc)121 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc)
122 {
123 struct drm_encoder *drm_enc;
124
125 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask)
126 dpu_encoder_setup_misr(drm_enc);
127 }
128
dpu_crtc_set_crc_source(struct drm_crtc * crtc,const char * src_name)129 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name)
130 {
131 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name);
132 enum dpu_crtc_crc_source current_source;
133 struct dpu_crtc_state *crtc_state;
134 struct drm_device *drm_dev = crtc->dev;
135
136 bool was_enabled;
137 bool enable = false;
138 int ret = 0;
139
140 if (source < 0) {
141 DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index);
142 return -EINVAL;
143 }
144
145 ret = drm_modeset_lock(&crtc->mutex, NULL);
146
147 if (ret)
148 return ret;
149
150 enable = (source != DPU_CRTC_CRC_SOURCE_NONE);
151 crtc_state = to_dpu_crtc_state(crtc->state);
152
153 spin_lock_irq(&drm_dev->event_lock);
154 current_source = crtc_state->crc_source;
155 spin_unlock_irq(&drm_dev->event_lock);
156
157 was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE);
158
159 if (!was_enabled && enable) {
160 ret = drm_crtc_vblank_get(crtc);
161
162 if (ret)
163 goto cleanup;
164
165 } else if (was_enabled && !enable) {
166 drm_crtc_vblank_put(crtc);
167 }
168
169 spin_lock_irq(&drm_dev->event_lock);
170 crtc_state->crc_source = source;
171 spin_unlock_irq(&drm_dev->event_lock);
172
173 crtc_state->crc_frame_skip_count = 0;
174
175 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
176 dpu_crtc_setup_lm_misr(crtc_state);
177 else if (source == DPU_CRTC_CRC_SOURCE_ENCODER)
178 dpu_crtc_setup_encoder_misr(crtc);
179 else
180 ret = -EINVAL;
181
182 cleanup:
183 drm_modeset_unlock(&crtc->mutex);
184
185 return ret;
186 }
187
dpu_crtc_get_vblank_counter(struct drm_crtc * crtc)188 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
189 {
190 struct drm_encoder *encoder = get_encoder_from_crtc(crtc);
191 if (!encoder) {
192 DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
193 return 0;
194 }
195
196 return dpu_encoder_get_vsync_count(encoder);
197 }
198
dpu_crtc_get_lm_crc(struct drm_crtc * crtc,struct dpu_crtc_state * crtc_state)199 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc,
200 struct dpu_crtc_state *crtc_state)
201 {
202 struct dpu_crtc_mixer *m;
203 u32 crcs[CRTC_QUAD_MIXERS];
204
205 int rc = 0;
206 int i;
207
208 BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers));
209
210 for (i = 0; i < crtc_state->num_mixers; ++i) {
211
212 m = &crtc_state->mixers[i];
213
214 if (!m->hw_lm || !m->hw_lm->ops.collect_misr)
215 continue;
216
217 rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]);
218
219 if (rc) {
220 if (rc != -ENODATA)
221 DRM_DEBUG_DRIVER("MISR read failed\n");
222 return rc;
223 }
224 }
225
226 return drm_crtc_add_crc_entry(crtc, true,
227 drm_crtc_accurate_vblank_count(crtc), crcs);
228 }
229
dpu_crtc_get_encoder_crc(struct drm_crtc * crtc)230 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc)
231 {
232 struct drm_encoder *drm_enc;
233 int rc, pos = 0;
234 u32 crcs[INTF_MAX];
235
236 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) {
237 rc = dpu_encoder_get_crc(drm_enc, crcs, pos);
238 if (rc < 0) {
239 if (rc != -ENODATA)
240 DRM_DEBUG_DRIVER("MISR read failed\n");
241
242 return rc;
243 }
244
245 pos += rc;
246 }
247
248 return drm_crtc_add_crc_entry(crtc, true,
249 drm_crtc_accurate_vblank_count(crtc), crcs);
250 }
251
dpu_crtc_get_crc(struct drm_crtc * crtc)252 static int dpu_crtc_get_crc(struct drm_crtc *crtc)
253 {
254 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state);
255
256 /* Skip first 2 frames in case of "uncooked" CRCs */
257 if (crtc_state->crc_frame_skip_count < 2) {
258 crtc_state->crc_frame_skip_count++;
259 return 0;
260 }
261
262 if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER)
263 return dpu_crtc_get_lm_crc(crtc, crtc_state);
264 else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER)
265 return dpu_crtc_get_encoder_crc(crtc);
266
267 return -EINVAL;
268 }
269
dpu_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)270 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
271 bool in_vblank_irq,
272 int *vpos, int *hpos,
273 ktime_t *stime, ktime_t *etime,
274 const struct drm_display_mode *mode)
275 {
276 unsigned int pipe = crtc->index;
277 struct drm_encoder *encoder;
278 int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
279
280 encoder = get_encoder_from_crtc(crtc);
281 if (!encoder) {
282 DRM_ERROR("no encoder found for crtc %d\n", pipe);
283 return false;
284 }
285
286 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
287 vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
288
289 /*
290 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
291 * the end of VFP. Translate the porch values relative to the line
292 * counter positions.
293 */
294
295 vactive_start = vsw + vbp + 1;
296 vactive_end = vactive_start + mode->crtc_vdisplay;
297
298 /* last scan line before VSYNC */
299 vfp_end = mode->crtc_vtotal;
300
301 if (stime)
302 *stime = ktime_get();
303
304 line = dpu_encoder_get_linecount(encoder);
305
306 if (line < vactive_start)
307 line -= vactive_start;
308 else if (line > vactive_end)
309 line = line - vfp_end - vactive_start;
310 else
311 line -= vactive_start;
312
313 *vpos = line;
314 *hpos = 0;
315
316 if (etime)
317 *etime = ktime_get();
318
319 return true;
320 }
321
_dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer * mixer,struct dpu_plane_state * pstate,const struct msm_format * format,const struct dpu_mdss_version * mdss_ver)322 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
323 struct dpu_plane_state *pstate,
324 const struct msm_format *format,
325 const struct dpu_mdss_version *mdss_ver)
326 {
327 struct dpu_hw_mixer *lm = mixer->hw_lm;
328 u32 blend_op;
329 u32 fg_alpha, bg_alpha, max_alpha;
330
331 if (mdss_ver->core_major_ver < 12) {
332 max_alpha = 0xff;
333 fg_alpha = pstate->base.alpha >> 8;
334 } else {
335 max_alpha = 0x3ff;
336 fg_alpha = pstate->base.alpha >> 6;
337 }
338 bg_alpha = max_alpha - fg_alpha;
339
340 /* default to opaque blending */
341 if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE ||
342 !format->alpha_enable) {
343 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
344 DPU_BLEND_BG_ALPHA_BG_CONST;
345 } else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) {
346 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
347 DPU_BLEND_BG_ALPHA_FG_PIXEL;
348 if (fg_alpha != max_alpha) {
349 bg_alpha = fg_alpha;
350 blend_op |= DPU_BLEND_BG_MOD_ALPHA |
351 DPU_BLEND_BG_INV_MOD_ALPHA;
352 } else {
353 blend_op |= DPU_BLEND_BG_INV_ALPHA;
354 }
355 } else {
356 /* coverage blending */
357 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
358 DPU_BLEND_BG_ALPHA_FG_PIXEL;
359 if (fg_alpha != max_alpha) {
360 bg_alpha = fg_alpha;
361 blend_op |= DPU_BLEND_FG_MOD_ALPHA |
362 DPU_BLEND_FG_INV_MOD_ALPHA |
363 DPU_BLEND_BG_MOD_ALPHA |
364 DPU_BLEND_BG_INV_MOD_ALPHA;
365 } else {
366 blend_op |= DPU_BLEND_BG_INV_ALPHA;
367 }
368 }
369
370 lm->ops.setup_blend_config(lm, pstate->stage,
371 fg_alpha, bg_alpha, blend_op);
372
373 DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
374 &format->pixel_format, format->alpha_enable, blend_op);
375 }
376
_dpu_crtc_program_lm_output_roi(struct drm_crtc * crtc)377 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
378 {
379 struct dpu_crtc_state *crtc_state;
380 int lm_idx;
381
382 crtc_state = to_dpu_crtc_state(crtc->state);
383
384 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
385 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
386 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
387 struct dpu_hw_mixer_cfg cfg;
388
389 if (!lm_roi || !drm_rect_visible(lm_roi))
390 continue;
391
392 cfg.out_width = drm_rect_width(lm_roi);
393 cfg.out_height = drm_rect_height(lm_roi);
394 cfg.right_mixer = lm_idx & 0x1;
395 cfg.flags = 0;
396 hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
397 }
398 }
399
_dpu_crtc_blend_setup_pipe(struct drm_crtc * crtc,struct drm_plane * plane,struct dpu_crtc_mixer * mixer,u32 lms_in_pair,enum dpu_stage stage,const struct msm_format * format,uint64_t modifier,struct dpu_sw_pipe * pipe,unsigned int stage_idx,struct dpu_hw_stage_cfg * stage_cfg)400 static void _dpu_crtc_blend_setup_pipe(struct drm_crtc *crtc,
401 struct drm_plane *plane,
402 struct dpu_crtc_mixer *mixer,
403 u32 lms_in_pair,
404 enum dpu_stage stage,
405 const struct msm_format *format,
406 uint64_t modifier,
407 struct dpu_sw_pipe *pipe,
408 unsigned int stage_idx,
409 struct dpu_hw_stage_cfg *stage_cfg
410 )
411 {
412 u32 lm_idx;
413 enum dpu_sspp sspp_idx;
414 struct drm_plane_state *state;
415
416 sspp_idx = pipe->sspp->idx;
417
418 state = plane->state;
419
420 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
421 state, to_dpu_plane_state(state), stage_idx,
422 format->pixel_format, pipe,
423 modifier);
424
425 DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d multirect_idx %d\n",
426 crtc->base.id,
427 stage,
428 plane->base.id,
429 sspp_idx - SSPP_NONE,
430 state->fb ? state->fb->base.id : -1,
431 pipe->multirect_index);
432
433 stage_cfg->stage[stage][stage_idx] = sspp_idx;
434 stage_cfg->multirect_index[stage][stage_idx] = pipe->multirect_index;
435
436 /* blend config update */
437 for (lm_idx = 0; lm_idx < lms_in_pair; lm_idx++)
438 mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl, sspp_idx);
439 }
440
_dpu_crtc_blend_setup_mixer(struct drm_crtc * crtc,struct dpu_crtc * dpu_crtc,struct dpu_crtc_mixer * mixer,struct dpu_hw_stage_cfg * stage_cfg)441 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
442 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer,
443 struct dpu_hw_stage_cfg *stage_cfg)
444 {
445 struct drm_plane *plane;
446 struct drm_framebuffer *fb;
447 struct drm_plane_state *state;
448 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
449 struct dpu_plane_state *pstate = NULL;
450 const struct msm_format *format;
451 struct dpu_hw_ctl *ctl = mixer->lm_ctl;
452 u32 lm_idx, stage, i, pipe_idx, head_pipe_in_stage, lms_in_pair;
453 bool bg_alpha_enable = false;
454 DECLARE_BITMAP(active_fetch, SSPP_MAX);
455 DECLARE_BITMAP(active_pipes, SSPP_MAX);
456
457 memset(active_fetch, 0, sizeof(active_fetch));
458 memset(active_pipes, 0, sizeof(active_pipes));
459 drm_atomic_crtc_for_each_plane(plane, crtc) {
460 state = plane->state;
461 if (!state)
462 continue;
463
464 if (!state->visible)
465 continue;
466
467 pstate = to_dpu_plane_state(state);
468 fb = state->fb;
469
470 format = msm_framebuffer_format(pstate->base.fb);
471
472 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
473 bg_alpha_enable = true;
474
475 /* loop pipe per mixer pair with config in stage structure */
476 for (stage = 0; stage < STAGES_PER_PLANE; stage++) {
477 head_pipe_in_stage = stage * PIPES_PER_STAGE;
478 for (i = 0; i < PIPES_PER_STAGE; i++) {
479 pipe_idx = i + head_pipe_in_stage;
480 if (!pstate->pipe[pipe_idx].sspp)
481 continue;
482 lms_in_pair = min(cstate->num_mixers - (stage * PIPES_PER_STAGE),
483 PIPES_PER_STAGE);
484 set_bit(pstate->pipe[pipe_idx].sspp->idx, active_fetch);
485 set_bit(pstate->pipe[pipe_idx].sspp->idx, active_pipes);
486 _dpu_crtc_blend_setup_pipe(crtc, plane,
487 &mixer[head_pipe_in_stage],
488 lms_in_pair,
489 pstate->stage,
490 format, fb ? fb->modifier : 0,
491 &pstate->pipe[pipe_idx], i,
492 &stage_cfg[stage]);
493 }
494 }
495
496 /* blend config update */
497 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
498 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, pstate, format,
499 ctl->mdss_ver);
500
501 if (bg_alpha_enable && !format->alpha_enable)
502 mixer[lm_idx].mixer_op_mode = 0;
503 else
504 mixer[lm_idx].mixer_op_mode |=
505 1 << pstate->stage;
506 }
507 }
508
509 if (ctl->ops.set_active_fetch_pipes)
510 ctl->ops.set_active_fetch_pipes(ctl, active_fetch);
511
512 if (ctl->ops.set_active_pipes)
513 ctl->ops.set_active_pipes(ctl, active_pipes);
514
515 _dpu_crtc_program_lm_output_roi(crtc);
516 }
517
518 /**
519 * _dpu_crtc_blend_setup - configure crtc mixers
520 * @crtc: Pointer to drm crtc structure
521 */
_dpu_crtc_blend_setup(struct drm_crtc * crtc)522 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
523 {
524 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
525 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
526 struct dpu_crtc_mixer *mixer = cstate->mixers;
527 struct dpu_hw_ctl *ctl;
528 struct dpu_hw_mixer *lm;
529 struct dpu_hw_stage_cfg stage_cfg[STAGES_PER_PLANE];
530 DECLARE_BITMAP(active_lms, LM_MAX);
531 int i;
532
533 DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
534
535 for (i = 0; i < cstate->num_mixers; i++) {
536 mixer[i].mixer_op_mode = 0;
537 if (mixer[i].lm_ctl->ops.clear_all_blendstages)
538 mixer[i].lm_ctl->ops.clear_all_blendstages(
539 mixer[i].lm_ctl);
540 if (mixer[i].lm_ctl->ops.set_active_fetch_pipes)
541 mixer[i].lm_ctl->ops.set_active_fetch_pipes(mixer[i].lm_ctl, NULL);
542 if (mixer[i].lm_ctl->ops.set_active_pipes)
543 mixer[i].lm_ctl->ops.set_active_pipes(mixer[i].lm_ctl, NULL);
544
545 if (mixer[i].hw_lm->ops.clear_all_blendstages)
546 mixer[i].hw_lm->ops.clear_all_blendstages(mixer[i].hw_lm);
547 }
548
549 /* initialize stage cfg */
550 memset(&stage_cfg, 0, sizeof(stage_cfg));
551 memset(active_lms, 0, sizeof(active_lms));
552
553 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, stage_cfg);
554
555 for (i = 0; i < cstate->num_mixers; i++) {
556 ctl = mixer[i].lm_ctl;
557 lm = mixer[i].hw_lm;
558
559 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
560
561 /* stage config flush mask */
562 ctl->ops.update_pending_flush_mixer(ctl,
563 mixer[i].hw_lm->idx);
564
565 set_bit(lm->idx, active_lms);
566 if (ctl->ops.set_active_lms)
567 ctl->ops.set_active_lms(ctl, active_lms);
568
569 DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n",
570 mixer[i].hw_lm->idx - LM_0,
571 mixer[i].mixer_op_mode,
572 ctl->idx - CTL_0);
573
574 /*
575 * call dpu_hw_ctl_setup_blendstage() to blend layers per stage cfg.
576 * stage data is shared between PIPES_PER_STAGE pipes.
577 */
578 if (ctl->ops.setup_blendstage)
579 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
580 &stage_cfg[i / PIPES_PER_STAGE]);
581
582 if (lm->ops.setup_blendstage)
583 lm->ops.setup_blendstage(lm, mixer[i].hw_lm->idx,
584 &stage_cfg[i / PIPES_PER_STAGE]);
585 }
586 }
587
588 /**
589 * _dpu_crtc_complete_flip - signal pending page_flip events
590 * Any pending vblank events are added to the vblank_event_list
591 * so that the next vblank interrupt shall signal them.
592 * However PAGE_FLIP events are not handled through the vblank_event_list.
593 * This API signals any pending PAGE_FLIP events requested through
594 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
595 * @crtc: Pointer to drm crtc structure
596 */
_dpu_crtc_complete_flip(struct drm_crtc * crtc)597 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
598 {
599 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
600 struct drm_device *dev = crtc->dev;
601 unsigned long flags;
602
603 spin_lock_irqsave(&dev->event_lock, flags);
604 if (dpu_crtc->event) {
605 DRM_DEBUG_VBL("%s: send event: %p\n", dpu_crtc->name,
606 dpu_crtc->event);
607 trace_dpu_crtc_complete_flip(DRMID(crtc));
608 drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
609 dpu_crtc->event = NULL;
610 }
611 spin_unlock_irqrestore(&dev->event_lock, flags);
612 }
613
614 /**
615 * dpu_crtc_get_intf_mode - get interface mode of the given crtc
616 * @crtc: Pointert to crtc
617 */
dpu_crtc_get_intf_mode(struct drm_crtc * crtc)618 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
619 {
620 struct drm_encoder *encoder;
621
622 /*
623 * TODO: This function is called from dpu debugfs and as part of atomic
624 * check. When called from debugfs, the crtc->mutex must be held to
625 * read crtc->state. However reading crtc->state from atomic check isn't
626 * allowed (unless you have a good reason, a big comment, and a deep
627 * understanding of how the atomic/modeset locks work (<- and this is
628 * probably not possible)). So we'll keep the WARN_ON here for now, but
629 * really we need to figure out a better way to track our operating mode
630 */
631 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
632
633 /* TODO: Returns the first INTF_MODE, could there be multiple values? */
634 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
635 return dpu_encoder_get_intf_mode(encoder);
636
637 return INTF_MODE_NONE;
638 }
639
640 /**
641 * dpu_crtc_vblank_callback - called on vblank irq, issues completion events
642 * @crtc: Pointer to drm crtc object
643 */
dpu_crtc_vblank_callback(struct drm_crtc * crtc)644 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
645 {
646 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
647
648 /* keep statistics on vblank callback - with auto reset via debugfs */
649 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
650 dpu_crtc->vblank_cb_time = ktime_get();
651 else
652 dpu_crtc->vblank_cb_count++;
653
654 dpu_crtc_get_crc(crtc);
655
656 drm_crtc_handle_vblank(crtc);
657 trace_dpu_crtc_vblank_cb(DRMID(crtc));
658 }
659
dpu_crtc_frame_event_work(struct kthread_work * work)660 static void dpu_crtc_frame_event_work(struct kthread_work *work)
661 {
662 struct dpu_crtc_frame_event *fevent = container_of(work,
663 struct dpu_crtc_frame_event, work);
664 struct drm_crtc *crtc = fevent->crtc;
665 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
666 unsigned long flags;
667 bool frame_done = false;
668
669 DPU_ATRACE_BEGIN("crtc_frame_event");
670
671 DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
672 ktime_to_ns(fevent->ts));
673
674 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
675 | DPU_ENCODER_FRAME_EVENT_ERROR
676 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
677
678 if (atomic_read(&dpu_crtc->frame_pending) < 1) {
679 /* ignore vblank when not pending */
680 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
681 /* release bandwidth and other resources */
682 trace_dpu_crtc_frame_event_done(DRMID(crtc),
683 fevent->event);
684 dpu_core_perf_crtc_release_bw(crtc);
685 } else {
686 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
687 fevent->event);
688 }
689
690 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
691 | DPU_ENCODER_FRAME_EVENT_ERROR))
692 frame_done = true;
693 }
694
695 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
696 DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
697 crtc->base.id, ktime_to_ns(fevent->ts));
698
699 if (frame_done)
700 complete_all(&dpu_crtc->frame_done_comp);
701
702 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
703 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
704 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
705 DPU_ATRACE_END("crtc_frame_event");
706 }
707
708 /**
709 * dpu_crtc_frame_event_cb - crtc frame event callback API
710 * @crtc: Pointer to crtc
711 * @event: Event to process
712 *
713 * Encoder may call this for different events from different context - IRQ,
714 * user thread, commit_thread, etc. Each event should be carefully reviewed and
715 * should be processed in proper task context to avoid schedulin delay or
716 * properly manage the irq context's bottom half processing.
717 */
dpu_crtc_frame_event_cb(struct drm_crtc * crtc,u32 event)718 void dpu_crtc_frame_event_cb(struct drm_crtc *crtc, u32 event)
719 {
720 struct dpu_crtc *dpu_crtc;
721 struct msm_drm_private *priv;
722 struct dpu_crtc_frame_event *fevent;
723 unsigned long flags;
724 u32 crtc_id;
725
726 /* Nothing to do on idle event */
727 if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
728 return;
729
730 dpu_crtc = to_dpu_crtc(crtc);
731 priv = crtc->dev->dev_private;
732 crtc_id = drm_crtc_index(crtc);
733
734 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
735
736 spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
737 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
738 struct dpu_crtc_frame_event, list);
739 if (fevent)
740 list_del_init(&fevent->list);
741 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
742
743 if (!fevent) {
744 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
745 return;
746 }
747
748 fevent->event = event;
749 fevent->crtc = crtc;
750 fevent->ts = ktime_get();
751 kthread_queue_work(priv->kms->event_thread[crtc_id].worker, &fevent->work);
752 }
753
754 /**
755 * dpu_crtc_complete_commit - callback signalling completion of current commit
756 * @crtc: Pointer to drm crtc object
757 */
dpu_crtc_complete_commit(struct drm_crtc * crtc)758 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
759 {
760 trace_dpu_crtc_complete_commit(DRMID(crtc));
761 dpu_core_perf_crtc_update(crtc, 0);
762 _dpu_crtc_complete_flip(crtc);
763 }
764
_dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc * crtc,struct drm_crtc_state * state)765 static int _dpu_crtc_check_and_setup_lm_bounds(struct drm_crtc *crtc,
766 struct drm_crtc_state *state)
767 {
768 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
769 struct drm_display_mode *adj_mode = &state->adjusted_mode;
770 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
771 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
772 int i;
773
774 /* if we cannot merge 2 LMs (no 3d mux) better to fail earlier
775 * before even checking the width after the split
776 */
777 if (!dpu_kms->catalog->caps->has_3d_merge &&
778 adj_mode->hdisplay > dpu_kms->catalog->caps->max_mixer_width)
779 return -E2BIG;
780
781 for (i = 0; i < cstate->num_mixers; i++) {
782 struct drm_rect *r = &cstate->lm_bounds[i];
783 r->x1 = crtc_split_width * i;
784 r->y1 = 0;
785 r->x2 = r->x1 + crtc_split_width;
786 r->y2 = adj_mode->vdisplay;
787
788 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
789
790 if (drm_rect_width(r) > dpu_kms->catalog->caps->max_mixer_width)
791 return -E2BIG;
792 }
793
794 return 0;
795 }
796
_dpu_crtc_get_pcc_coeff(struct drm_crtc_state * state,struct dpu_hw_pcc_cfg * cfg)797 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
798 struct dpu_hw_pcc_cfg *cfg)
799 {
800 struct drm_color_ctm *ctm;
801
802 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
803
804 ctm = (struct drm_color_ctm *)state->ctm->data;
805
806 if (!ctm)
807 return;
808
809 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
810 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
811 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
812
813 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
814 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
815 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
816
817 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
818 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
819 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
820 }
821
_dpu_crtc_setup_cp_blocks(struct drm_crtc * crtc)822 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
823 {
824 struct drm_crtc_state *state = crtc->state;
825 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
826 struct dpu_crtc_mixer *mixer = cstate->mixers;
827 struct dpu_hw_pcc_cfg cfg;
828 struct dpu_hw_ctl *ctl;
829 struct dpu_hw_dspp *dspp;
830 int i;
831
832
833 if (!state->color_mgmt_changed && !drm_atomic_crtc_needs_modeset(state))
834 return;
835
836 for (i = 0; i < cstate->num_mixers; i++) {
837 ctl = mixer[i].lm_ctl;
838 dspp = mixer[i].hw_dspp;
839
840 if (!dspp || !dspp->ops.setup_pcc)
841 continue;
842
843 if (!state->ctm) {
844 dspp->ops.setup_pcc(dspp, NULL);
845 } else {
846 _dpu_crtc_get_pcc_coeff(state, &cfg);
847 dspp->ops.setup_pcc(dspp, &cfg);
848 }
849
850 /* stage config flush mask */
851 ctl->ops.update_pending_flush_dspp(ctl,
852 mixer[i].hw_dspp->idx, DPU_DSPP_PCC);
853 }
854 }
855
dpu_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)856 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
857 struct drm_atomic_state *state)
858 {
859 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
860 struct drm_encoder *encoder;
861
862 if (!crtc->state->enable) {
863 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
864 crtc->base.id, crtc->state->enable);
865 return;
866 }
867
868 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
869
870 _dpu_crtc_check_and_setup_lm_bounds(crtc, crtc->state);
871
872 /* encoder will trigger pending mask now */
873 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
874 dpu_encoder_trigger_kickoff_pending(encoder);
875
876 /*
877 * If no mixers have been allocated in dpu_crtc_atomic_check(),
878 * it means we are trying to flush a CRTC whose state is disabled:
879 * nothing else needs to be done.
880 */
881 if (unlikely(!cstate->num_mixers))
882 return;
883
884 _dpu_crtc_blend_setup(crtc);
885
886 _dpu_crtc_setup_cp_blocks(crtc);
887
888 /*
889 * PP_DONE irq is only used by command mode for now.
890 * It is better to request pending before FLUSH and START trigger
891 * to make sure no pp_done irq missed.
892 * This is safe because no pp_done will happen before SW trigger
893 * in command mode.
894 */
895 }
896
dpu_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)897 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
898 struct drm_atomic_state *state)
899 {
900 struct dpu_crtc *dpu_crtc;
901 struct drm_device *dev;
902 struct drm_plane *plane;
903 struct msm_drm_private *priv;
904 unsigned long flags;
905 struct dpu_crtc_state *cstate;
906
907 if (!crtc->state->enable) {
908 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
909 crtc->base.id, crtc->state->enable);
910 return;
911 }
912
913 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
914
915 dpu_crtc = to_dpu_crtc(crtc);
916 cstate = to_dpu_crtc_state(crtc->state);
917 dev = crtc->dev;
918 priv = dev->dev_private;
919
920 if (crtc->index >= ARRAY_SIZE(priv->kms->event_thread)) {
921 DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
922 return;
923 }
924
925 WARN_ON(dpu_crtc->event);
926 spin_lock_irqsave(&dev->event_lock, flags);
927 dpu_crtc->event = crtc->state->event;
928 crtc->state->event = NULL;
929 spin_unlock_irqrestore(&dev->event_lock, flags);
930
931 /*
932 * If no mixers has been allocated in dpu_crtc_atomic_check(),
933 * it means we are trying to flush a CRTC whose state is disabled:
934 * nothing else needs to be done.
935 */
936 if (unlikely(!cstate->num_mixers))
937 return;
938
939 /* update performance setting before crtc kickoff */
940 dpu_core_perf_crtc_update(crtc, 1);
941
942 /*
943 * Final plane updates: Give each plane a chance to complete all
944 * required writes/flushing before crtc's "flush
945 * everything" call below.
946 */
947 drm_atomic_crtc_for_each_plane(plane, crtc) {
948 if (dpu_crtc->smmu_state.transition_error)
949 dpu_plane_set_error(plane, true);
950 dpu_plane_flush(plane);
951 }
952
953 /* Kickoff will be scheduled by outer layer */
954 }
955
956 /**
957 * dpu_crtc_destroy_state - state destroy hook
958 * @crtc: drm CRTC
959 * @state: CRTC state object to release
960 */
dpu_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)961 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
962 struct drm_crtc_state *state)
963 {
964 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
965
966 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
967
968 __drm_atomic_helper_crtc_destroy_state(state);
969
970 kfree(cstate);
971 }
972
_dpu_crtc_wait_for_frame_done(struct drm_crtc * crtc)973 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
974 {
975 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
976 int ret, rc = 0;
977
978 if (!atomic_read(&dpu_crtc->frame_pending)) {
979 DRM_DEBUG_ATOMIC("no frames pending\n");
980 return 0;
981 }
982
983 DPU_ATRACE_BEGIN("frame done completion wait");
984 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
985 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
986 if (!ret) {
987 DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
988 rc = -ETIMEDOUT;
989 }
990 DPU_ATRACE_END("frame done completion wait");
991
992 return rc;
993 }
994
dpu_crtc_kickoff_clone_mode(struct drm_crtc * crtc)995 static int dpu_crtc_kickoff_clone_mode(struct drm_crtc *crtc)
996 {
997 struct drm_encoder *encoder;
998 struct drm_encoder *rt_encoder = NULL, *wb_encoder = NULL;
999 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1000
1001 /* Find encoder for real time display */
1002 drm_for_each_encoder_mask(encoder, crtc->dev,
1003 crtc->state->encoder_mask) {
1004 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1005 wb_encoder = encoder;
1006 else
1007 rt_encoder = encoder;
1008 }
1009
1010 if (!rt_encoder || !wb_encoder) {
1011 DRM_DEBUG_ATOMIC("real time or wb encoder not found\n");
1012 return -EINVAL;
1013 }
1014
1015 dpu_encoder_prepare_for_kickoff(wb_encoder);
1016 dpu_encoder_prepare_for_kickoff(rt_encoder);
1017
1018 dpu_vbif_clear_errors(dpu_kms);
1019
1020 /*
1021 * Kickoff real time encoder last as it's the encoder that
1022 * will do the flush
1023 */
1024 dpu_encoder_kickoff(wb_encoder);
1025 dpu_encoder_kickoff(rt_encoder);
1026
1027 /* Don't start frame done timers until the kickoffs have finished */
1028 dpu_encoder_start_frame_done_timer(wb_encoder);
1029 dpu_encoder_start_frame_done_timer(rt_encoder);
1030
1031 return 0;
1032 }
1033
1034 /**
1035 * dpu_crtc_commit_kickoff - trigger kickoff of the commit for this crtc
1036 * @crtc: Pointer to drm crtc object
1037 */
dpu_crtc_commit_kickoff(struct drm_crtc * crtc)1038 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
1039 {
1040 struct drm_encoder *encoder;
1041 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1042 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1043 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1044
1045 /*
1046 * If no mixers has been allocated in dpu_crtc_atomic_check(),
1047 * it means we are trying to start a CRTC whose state is disabled:
1048 * nothing else needs to be done.
1049 */
1050 if (unlikely(!cstate->num_mixers))
1051 return;
1052
1053 DPU_ATRACE_BEGIN("crtc_commit");
1054
1055 drm_for_each_encoder_mask(encoder, crtc->dev,
1056 crtc->state->encoder_mask) {
1057 if (!dpu_encoder_is_valid_for_commit(encoder)) {
1058 DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n");
1059 goto end;
1060 }
1061 }
1062
1063 if (drm_crtc_in_clone_mode(crtc->state)) {
1064 if (dpu_crtc_kickoff_clone_mode(crtc))
1065 goto end;
1066 } else {
1067 /*
1068 * Encoder will flush/start now, unless it has a tx pending.
1069 * If so, it may delay and flush at an irq event (e.g. ppdone)
1070 */
1071 drm_for_each_encoder_mask(encoder, crtc->dev,
1072 crtc->state->encoder_mask)
1073 dpu_encoder_prepare_for_kickoff(encoder);
1074
1075 dpu_vbif_clear_errors(dpu_kms);
1076
1077 drm_for_each_encoder_mask(encoder, crtc->dev,
1078 crtc->state->encoder_mask) {
1079 dpu_encoder_kickoff(encoder);
1080 dpu_encoder_start_frame_done_timer(encoder);
1081 }
1082 }
1083
1084 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
1085 /* acquire bandwidth and other resources */
1086 DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
1087 } else
1088 DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
1089
1090 dpu_crtc->play_count++;
1091
1092 reinit_completion(&dpu_crtc->frame_done_comp);
1093
1094 end:
1095 DPU_ATRACE_END("crtc_commit");
1096 }
1097
dpu_crtc_reset(struct drm_crtc * crtc)1098 static void dpu_crtc_reset(struct drm_crtc *crtc)
1099 {
1100 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
1101
1102 if (crtc->state)
1103 dpu_crtc_destroy_state(crtc, crtc->state);
1104
1105 if (cstate)
1106 __drm_atomic_helper_crtc_reset(crtc, &cstate->base);
1107 else
1108 __drm_atomic_helper_crtc_reset(crtc, NULL);
1109 }
1110
1111 /**
1112 * dpu_crtc_duplicate_state - state duplicate hook
1113 * @crtc: Pointer to drm crtc structure
1114 */
dpu_crtc_duplicate_state(struct drm_crtc * crtc)1115 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
1116 {
1117 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
1118
1119 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
1120 if (!cstate) {
1121 DPU_ERROR("failed to allocate state\n");
1122 return NULL;
1123 }
1124
1125 /* duplicate base helper */
1126 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
1127
1128 return &cstate->base;
1129 }
1130
dpu_crtc_atomic_print_state(struct drm_printer * p,const struct drm_crtc_state * state)1131 static void dpu_crtc_atomic_print_state(struct drm_printer *p,
1132 const struct drm_crtc_state *state)
1133 {
1134 const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
1135 int i;
1136
1137 for (i = 0; i < cstate->num_mixers; i++) {
1138 drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0);
1139 drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0);
1140 if (cstate->mixers[i].hw_dspp)
1141 drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0);
1142 }
1143 }
1144
dpu_crtc_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)1145 static void dpu_crtc_disable(struct drm_crtc *crtc,
1146 struct drm_atomic_state *state)
1147 {
1148 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1149 crtc);
1150 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1151 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
1152 struct drm_encoder *encoder;
1153 unsigned long flags;
1154 bool release_bandwidth = false;
1155
1156 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1157
1158 /* If disable is triggered while in self refresh mode,
1159 * reset the encoder software state so that in enable
1160 * it won't trigger a warn while assigning crtc.
1161 */
1162 if (old_crtc_state->self_refresh_active) {
1163 drm_for_each_encoder_mask(encoder, crtc->dev,
1164 old_crtc_state->encoder_mask) {
1165 dpu_encoder_assign_crtc(encoder, NULL);
1166 }
1167 return;
1168 }
1169
1170 /* Disable/save vblank irq handling */
1171 drm_crtc_vblank_off(crtc);
1172
1173 drm_for_each_encoder_mask(encoder, crtc->dev,
1174 old_crtc_state->encoder_mask) {
1175 /* in video mode, we hold an extra bandwidth reference
1176 * as we cannot drop bandwidth at frame-done if any
1177 * crtc is being used in video mode.
1178 */
1179 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1180 release_bandwidth = true;
1181
1182 /*
1183 * If disable is triggered during psr active(e.g: screen dim in PSR),
1184 * we will need encoder->crtc connection to process the device sleep &
1185 * preserve it during psr sequence.
1186 */
1187 if (!crtc->state->self_refresh_active)
1188 dpu_encoder_assign_crtc(encoder, NULL);
1189 }
1190
1191 /* wait for frame_event_done completion */
1192 if (_dpu_crtc_wait_for_frame_done(crtc))
1193 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
1194 crtc->base.id,
1195 atomic_read(&dpu_crtc->frame_pending));
1196
1197 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
1198 dpu_crtc->enabled = false;
1199
1200 if (atomic_read(&dpu_crtc->frame_pending)) {
1201 trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
1202 atomic_read(&dpu_crtc->frame_pending));
1203 if (release_bandwidth)
1204 dpu_core_perf_crtc_release_bw(crtc);
1205 atomic_set(&dpu_crtc->frame_pending, 0);
1206 }
1207
1208 dpu_core_perf_crtc_update(crtc, 0);
1209
1210 /* disable clk & bw control until clk & bw properties are set */
1211 cstate->bw_control = false;
1212 cstate->bw_split_vote = false;
1213
1214 if (crtc->state->event && !crtc->state->active) {
1215 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1216 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1217 crtc->state->event = NULL;
1218 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1219 }
1220
1221 pm_runtime_put_sync(crtc->dev->dev);
1222 }
1223
dpu_crtc_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)1224 static void dpu_crtc_enable(struct drm_crtc *crtc,
1225 struct drm_atomic_state *state)
1226 {
1227 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1228 struct drm_encoder *encoder;
1229 bool request_bandwidth = false;
1230 struct drm_crtc_state *old_crtc_state;
1231
1232 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1233
1234 pm_runtime_get_sync(crtc->dev->dev);
1235
1236 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
1237
1238 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
1239 /* in video mode, we hold an extra bandwidth reference
1240 * as we cannot drop bandwidth at frame-done if any
1241 * crtc is being used in video mode.
1242 */
1243 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
1244 request_bandwidth = true;
1245 }
1246
1247 if (request_bandwidth)
1248 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1249
1250 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
1251 dpu_crtc->enabled = true;
1252
1253 if (!old_crtc_state->self_refresh_active) {
1254 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
1255 dpu_encoder_assign_crtc(encoder, crtc);
1256 }
1257
1258 /* Enable/restore vblank irq handling */
1259 drm_crtc_vblank_on(crtc);
1260 }
1261
dpu_crtc_needs_dirtyfb(struct drm_crtc_state * cstate)1262 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate)
1263 {
1264 struct drm_crtc *crtc = cstate->crtc;
1265 struct drm_encoder *encoder;
1266
1267 if (cstate->self_refresh_active)
1268 return true;
1269
1270 drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) {
1271 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) {
1272 return true;
1273 }
1274 }
1275
1276 return false;
1277 }
1278
dpu_crtc_reassign_planes(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)1279 static int dpu_crtc_reassign_planes(struct drm_crtc *crtc, struct drm_crtc_state *crtc_state)
1280 {
1281 int total_planes = crtc->dev->mode_config.num_total_plane;
1282 struct drm_atomic_state *state = crtc_state->state;
1283 struct dpu_global_state *global_state;
1284 struct drm_plane_state **states;
1285 struct drm_plane *plane;
1286 int ret;
1287
1288 global_state = dpu_kms_get_global_state(crtc_state->state);
1289 if (IS_ERR(global_state))
1290 return PTR_ERR(global_state);
1291
1292 dpu_rm_release_all_sspp(global_state, crtc);
1293
1294 if (!crtc_state->enable)
1295 return 0;
1296
1297 states = kcalloc(total_planes, sizeof(*states), GFP_KERNEL);
1298 if (!states)
1299 return -ENOMEM;
1300
1301 drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1302 struct drm_plane_state *plane_state =
1303 drm_atomic_get_plane_state(state, plane);
1304
1305 if (IS_ERR(plane_state)) {
1306 ret = PTR_ERR(plane_state);
1307 goto done;
1308 }
1309
1310 states[plane_state->normalized_zpos] = plane_state;
1311 }
1312
1313 ret = dpu_assign_plane_resources(global_state, state, crtc, states, total_planes);
1314
1315 done:
1316 kfree(states);
1317 return ret;
1318 }
1319
1320 #define MAX_CHANNELS_PER_CRTC PIPES_PER_PLANE
1321 #define MAX_HDISPLAY_SPLIT 1080
1322
dpu_crtc_get_topology(struct drm_crtc * crtc,struct dpu_kms * dpu_kms,struct drm_crtc_state * crtc_state)1323 static struct msm_display_topology dpu_crtc_get_topology(
1324 struct drm_crtc *crtc,
1325 struct dpu_kms *dpu_kms,
1326 struct drm_crtc_state *crtc_state)
1327 {
1328 struct drm_display_mode *mode = &crtc_state->adjusted_mode;
1329 struct msm_display_topology topology = {0};
1330 struct drm_encoder *drm_enc;
1331 u32 num_rt_intf;
1332
1333 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc_state->encoder_mask)
1334 dpu_encoder_update_topology(drm_enc, &topology, crtc_state->state,
1335 &crtc_state->adjusted_mode);
1336
1337 topology.cwb_enabled = drm_crtc_in_clone_mode(crtc_state);
1338
1339 /*
1340 * Datapath topology selection
1341 *
1342 * Dual display
1343 * 2 LM, 2 INTF ( Split display using 2 interfaces)
1344 *
1345 * If DSC is enabled, try to use 4:4:2 topology if there is enough
1346 * resource. Otherwise, use 2:2:2 topology.
1347 *
1348 * Single display
1349 * 1 LM, 1 INTF
1350 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
1351 *
1352 * If DSC is enabled, use 2:2:1 topology
1353 *
1354 * Add dspps to the reservation requirements if ctm is requested
1355 *
1356 * Only hardcode num_lm to 2 for cases where num_intf == 2 and CWB is not
1357 * enabled. This is because in cases where CWB is enabled, num_intf will
1358 * count both the WB and real-time phys encoders.
1359 *
1360 * For non-DSC CWB usecases, have the num_lm be decided by the
1361 * (mode->hdisplay > MAX_HDISPLAY_SPLIT) check.
1362 */
1363
1364 num_rt_intf = topology.num_intf;
1365 if (topology.cwb_enabled)
1366 num_rt_intf--;
1367
1368 if (topology.num_dsc) {
1369 if (dpu_kms->catalog->dsc_count >= num_rt_intf * 2)
1370 topology.num_dsc = num_rt_intf * 2;
1371 else
1372 topology.num_dsc = num_rt_intf;
1373 topology.num_lm = topology.num_dsc;
1374 } else if (num_rt_intf == 2) {
1375 topology.num_lm = 2;
1376 } else if (dpu_kms->catalog->caps->has_3d_merge) {
1377 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
1378 } else {
1379 topology.num_lm = 1;
1380 }
1381
1382 if (crtc_state->ctm)
1383 topology.num_dspp = topology.num_lm;
1384
1385 return topology;
1386 }
1387
dpu_crtc_assign_resources(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)1388 static int dpu_crtc_assign_resources(struct drm_crtc *crtc,
1389 struct drm_crtc_state *crtc_state)
1390 {
1391 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_CRTC];
1392 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_CRTC];
1393 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_CRTC];
1394 int i, num_lm, num_ctl, num_dspp;
1395 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1396 struct dpu_global_state *global_state;
1397 struct dpu_crtc_state *cstate;
1398 struct msm_display_topology topology;
1399 int ret;
1400
1401 /*
1402 * Release and Allocate resources on every modeset
1403 */
1404 global_state = dpu_kms_get_global_state(crtc_state->state);
1405 if (IS_ERR(global_state))
1406 return PTR_ERR(global_state);
1407
1408 dpu_rm_release(global_state, crtc);
1409
1410 if (!crtc_state->enable)
1411 return 0;
1412
1413 topology = dpu_crtc_get_topology(crtc, dpu_kms, crtc_state);
1414 ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
1415 crtc_state->crtc, &topology);
1416 if (ret)
1417 return ret;
1418
1419 cstate = to_dpu_crtc_state(crtc_state);
1420
1421 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1422 crtc_state->crtc,
1423 DPU_HW_BLK_CTL, hw_ctl,
1424 ARRAY_SIZE(hw_ctl));
1425 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1426 crtc_state->crtc,
1427 DPU_HW_BLK_LM, hw_lm,
1428 ARRAY_SIZE(hw_lm));
1429 num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1430 crtc_state->crtc,
1431 DPU_HW_BLK_DSPP, hw_dspp,
1432 ARRAY_SIZE(hw_dspp));
1433
1434 for (i = 0; i < num_lm; i++) {
1435 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1436
1437 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1438 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1439 if (i < num_dspp)
1440 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1441 }
1442
1443 cstate->num_mixers = num_lm;
1444
1445 return 0;
1446 }
1447
1448 /**
1449 * dpu_crtc_check_mode_changed: check if full modeset is required
1450 * @old_crtc_state: Previous CRTC state
1451 * @new_crtc_state: Corresponding CRTC state to be checked
1452 *
1453 * Check if the changes in the object properties demand full mode set.
1454 */
dpu_crtc_check_mode_changed(struct drm_crtc_state * old_crtc_state,struct drm_crtc_state * new_crtc_state)1455 int dpu_crtc_check_mode_changed(struct drm_crtc_state *old_crtc_state,
1456 struct drm_crtc_state *new_crtc_state)
1457 {
1458 struct drm_encoder *drm_enc;
1459 struct drm_crtc *crtc = new_crtc_state->crtc;
1460 bool clone_mode_enabled = drm_crtc_in_clone_mode(old_crtc_state);
1461 bool clone_mode_requested = drm_crtc_in_clone_mode(new_crtc_state);
1462
1463 DRM_DEBUG_ATOMIC("%d\n", crtc->base.id);
1464
1465 /* there might be cases where encoder needs a modeset too */
1466 drm_for_each_encoder_mask(drm_enc, crtc->dev, new_crtc_state->encoder_mask) {
1467 if (dpu_encoder_needs_modeset(drm_enc, new_crtc_state->state))
1468 new_crtc_state->mode_changed = true;
1469 }
1470
1471 if ((clone_mode_requested && !clone_mode_enabled) ||
1472 (!clone_mode_requested && clone_mode_enabled))
1473 new_crtc_state->mode_changed = true;
1474
1475 return 0;
1476 }
1477
dpu_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)1478 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
1479 struct drm_atomic_state *state)
1480 {
1481 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1482 crtc);
1483 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1484 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
1485
1486 const struct drm_plane_state *pstate;
1487 struct drm_plane *plane;
1488
1489 int rc = 0;
1490
1491 bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state);
1492
1493 /* don't reallocate resources if only ACTIVE has beeen changed */
1494 if (crtc_state->mode_changed || crtc_state->connectors_changed) {
1495 rc = dpu_crtc_assign_resources(crtc, crtc_state);
1496 if (rc < 0)
1497 return rc;
1498 }
1499
1500 if (dpu_use_virtual_planes &&
1501 (crtc_state->planes_changed || crtc_state->zpos_changed)) {
1502 rc = dpu_crtc_reassign_planes(crtc, crtc_state);
1503 if (rc < 0)
1504 return rc;
1505 }
1506
1507 if (!crtc_state->enable || !drm_atomic_crtc_effectively_active(crtc_state)) {
1508 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
1509 crtc->base.id, crtc_state->enable,
1510 crtc_state->active);
1511 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
1512 return 0;
1513 }
1514
1515 DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
1516
1517 if (cstate->num_mixers) {
1518 rc = _dpu_crtc_check_and_setup_lm_bounds(crtc, crtc_state);
1519 if (rc)
1520 return rc;
1521 }
1522
1523 /* FIXME: move this to dpu_plane_atomic_check? */
1524 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
1525 struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate);
1526
1527 if (IS_ERR_OR_NULL(pstate)) {
1528 rc = PTR_ERR(pstate);
1529 DPU_ERROR("%s: failed to get plane%d state, %d\n",
1530 dpu_crtc->name, plane->base.id, rc);
1531 return rc;
1532 }
1533
1534 if (!pstate->visible)
1535 continue;
1536
1537 dpu_pstate->needs_dirtyfb = needs_dirtyfb;
1538 }
1539
1540 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1541
1542 rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1543 if (rc) {
1544 DPU_ERROR("crtc%d failed performance check %d\n",
1545 crtc->base.id, rc);
1546 return rc;
1547 }
1548
1549 return 0;
1550 }
1551
dpu_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)1552 static enum drm_mode_status dpu_crtc_mode_valid(struct drm_crtc *crtc,
1553 const struct drm_display_mode *mode)
1554 {
1555 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
1556 u64 adjusted_mode_clk;
1557
1558 /* if there is no 3d_mux block we cannot merge LMs so we cannot
1559 * split the large layer into 2 LMs, filter out such modes
1560 */
1561 if (!dpu_kms->catalog->caps->has_3d_merge &&
1562 mode->hdisplay > dpu_kms->catalog->caps->max_mixer_width)
1563 return MODE_BAD_HVALUE;
1564
1565 adjusted_mode_clk = dpu_core_perf_adjusted_mode_clk(mode->clock,
1566 dpu_kms->perf.perf_cfg);
1567
1568 if (dpu_kms->catalog->caps->has_3d_merge)
1569 adjusted_mode_clk /= 2;
1570
1571 /*
1572 * The given mode, adjusted for the perf clock factor, should not exceed
1573 * the max core clock rate
1574 */
1575 if (dpu_kms->perf.max_core_clk_rate < adjusted_mode_clk * 1000)
1576 return MODE_CLOCK_HIGH;
1577
1578 /*
1579 * max crtc width is equal to the max mixer width * 2 and max height is 4K
1580 */
1581 return drm_mode_validate_size(mode,
1582 2 * dpu_kms->catalog->caps->max_mixer_width,
1583 4096);
1584 }
1585
1586 /**
1587 * dpu_crtc_vblank - enable or disable vblanks for this crtc
1588 * @crtc: Pointer to drm crtc object
1589 * @en: true to enable vblanks, false to disable
1590 */
dpu_crtc_vblank(struct drm_crtc * crtc,bool en)1591 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1592 {
1593 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1594 struct drm_encoder *enc;
1595
1596 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1597
1598 /*
1599 * Normally we would iterate through encoder_mask in crtc state to find
1600 * attached encoders. In this case, we might be disabling vblank _after_
1601 * encoder_mask has been cleared.
1602 *
1603 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1604 * disable (which is also after encoder_mask is cleared). So instead of
1605 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1606 * currently assigned to our crtc.
1607 *
1608 * Note also that this function cannot be called while crtc is disabled
1609 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1610 * about the assigned crtcs being inconsistent with the current state
1611 * (which means no need to worry about modeset locks).
1612 */
1613 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1614 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1615 dpu_crtc);
1616
1617 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1618 }
1619
1620 return 0;
1621 }
1622
1623 /**
1624 * dpu_crtc_get_num_lm - Get mixer number in this CRTC pipeline
1625 * @state: Pointer to drm crtc state object
1626 */
dpu_crtc_get_num_lm(const struct drm_crtc_state * state)1627 unsigned int dpu_crtc_get_num_lm(const struct drm_crtc_state *state)
1628 {
1629 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
1630
1631 return cstate->num_mixers;
1632 }
1633
1634 #ifdef CONFIG_DEBUG_FS
_dpu_debugfs_status_show(struct seq_file * s,void * data)1635 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1636 {
1637 struct dpu_crtc *dpu_crtc;
1638 struct dpu_plane_state *pstate = NULL;
1639 struct dpu_crtc_mixer *m;
1640
1641 struct drm_crtc *crtc;
1642 struct drm_plane *plane;
1643 struct drm_display_mode *mode;
1644 struct drm_framebuffer *fb;
1645 struct drm_plane_state *state;
1646 struct dpu_crtc_state *cstate;
1647
1648 int i, out_width;
1649
1650 dpu_crtc = s->private;
1651 crtc = &dpu_crtc->base;
1652
1653 drm_modeset_lock_all(crtc->dev);
1654 cstate = to_dpu_crtc_state(crtc->state);
1655
1656 mode = &crtc->state->adjusted_mode;
1657 out_width = mode->hdisplay / cstate->num_mixers;
1658
1659 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1660 mode->hdisplay, mode->vdisplay);
1661
1662 seq_puts(s, "\n");
1663
1664 for (i = 0; i < cstate->num_mixers; ++i) {
1665 m = &cstate->mixers[i];
1666 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1667 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1668 out_width, mode->vdisplay);
1669 }
1670
1671 seq_puts(s, "\n");
1672
1673 drm_atomic_crtc_for_each_plane(plane, crtc) {
1674 pstate = to_dpu_plane_state(plane->state);
1675 state = plane->state;
1676
1677 if (!pstate || !state)
1678 continue;
1679
1680 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1681 pstate->stage);
1682
1683 if (plane->state->fb) {
1684 fb = plane->state->fb;
1685
1686 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1687 fb->base.id, (char *) &fb->format->format,
1688 fb->width, fb->height);
1689 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1690 seq_printf(s, "cpp[%d]:%u ",
1691 i, fb->format->cpp[i]);
1692 seq_puts(s, "\n\t");
1693
1694 seq_printf(s, "modifier:%8llu ", fb->modifier);
1695 seq_puts(s, "\n");
1696
1697 seq_puts(s, "\t");
1698 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1699 seq_printf(s, "pitches[%d]:%8u ", i,
1700 fb->pitches[i]);
1701 seq_puts(s, "\n");
1702
1703 seq_puts(s, "\t");
1704 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1705 seq_printf(s, "offsets[%d]:%8u ", i,
1706 fb->offsets[i]);
1707 seq_puts(s, "\n");
1708 }
1709
1710 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1711 state->src_x, state->src_y, state->src_w, state->src_h);
1712
1713 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1714 state->crtc_x, state->crtc_y, state->crtc_w,
1715 state->crtc_h);
1716
1717 for (i = 0; i < PIPES_PER_PLANE; i++) {
1718 if (!pstate->pipe[i].sspp)
1719 continue;
1720 seq_printf(s, "\tsspp[%d]:%s\n",
1721 i, pstate->pipe[i].sspp->cap->name);
1722 seq_printf(s, "\tmultirect[%d]: mode: %d index: %d\n",
1723 i, pstate->pipe[i].multirect_mode,
1724 pstate->pipe[i].multirect_index);
1725 }
1726
1727 seq_puts(s, "\n");
1728 }
1729 if (dpu_crtc->vblank_cb_count) {
1730 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1731 s64 diff_ms = ktime_to_ms(diff);
1732 s64 fps = diff_ms ? div_s64(
1733 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1734
1735 seq_printf(s,
1736 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1737 fps, dpu_crtc->vblank_cb_count,
1738 ktime_to_ms(diff), dpu_crtc->play_count);
1739
1740 /* reset time & count for next measurement */
1741 dpu_crtc->vblank_cb_count = 0;
1742 dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1743 }
1744
1745 drm_modeset_unlock_all(crtc->dev);
1746
1747 return 0;
1748 }
1749
1750 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1751
dpu_crtc_debugfs_state_show(struct seq_file * s,void * v)1752 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1753 {
1754 struct drm_crtc *crtc = s->private;
1755 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1756
1757 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1758 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1759 seq_printf(s, "core_clk_rate: %llu\n",
1760 dpu_crtc->cur_perf.core_clk_rate);
1761 seq_printf(s, "bw_ctl: %uk\n",
1762 (u32)DIV_ROUND_UP_ULL(dpu_crtc->cur_perf.bw_ctl, 1000));
1763 seq_printf(s, "max_per_pipe_ib: %u\n",
1764 dpu_crtc->cur_perf.max_per_pipe_ib);
1765
1766 return 0;
1767 }
1768 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1769
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1770 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1771 {
1772 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1773
1774 debugfs_create_file("status", 0400,
1775 crtc->debugfs_entry,
1776 dpu_crtc, &_dpu_debugfs_status_fops);
1777 debugfs_create_file("state", 0600,
1778 crtc->debugfs_entry,
1779 &dpu_crtc->base,
1780 &dpu_crtc_debugfs_state_fops);
1781
1782 return 0;
1783 }
1784 #else
_dpu_crtc_init_debugfs(struct drm_crtc * crtc)1785 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1786 {
1787 return 0;
1788 }
1789 #endif /* CONFIG_DEBUG_FS */
1790
dpu_crtc_late_register(struct drm_crtc * crtc)1791 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1792 {
1793 return _dpu_crtc_init_debugfs(crtc);
1794 }
1795
1796 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1797 .set_config = drm_atomic_helper_set_config,
1798 .page_flip = drm_atomic_helper_page_flip,
1799 .reset = dpu_crtc_reset,
1800 .atomic_duplicate_state = dpu_crtc_duplicate_state,
1801 .atomic_destroy_state = dpu_crtc_destroy_state,
1802 .atomic_print_state = dpu_crtc_atomic_print_state,
1803 .late_register = dpu_crtc_late_register,
1804 .verify_crc_source = dpu_crtc_verify_crc_source,
1805 .set_crc_source = dpu_crtc_set_crc_source,
1806 .enable_vblank = msm_crtc_enable_vblank,
1807 .disable_vblank = msm_crtc_disable_vblank,
1808 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1809 .get_vblank_counter = dpu_crtc_get_vblank_counter,
1810 };
1811
1812 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1813 .atomic_disable = dpu_crtc_disable,
1814 .atomic_enable = dpu_crtc_enable,
1815 .atomic_check = dpu_crtc_atomic_check,
1816 .atomic_begin = dpu_crtc_atomic_begin,
1817 .atomic_flush = dpu_crtc_atomic_flush,
1818 .mode_valid = dpu_crtc_mode_valid,
1819 .get_scanout_position = dpu_crtc_get_scanout_position,
1820 };
1821
1822 /**
1823 * dpu_crtc_init - create a new crtc object
1824 * @dev: dpu device
1825 * @plane: base plane
1826 * @cursor: cursor plane
1827 * @return: new crtc object or error
1828 *
1829 * initialize CRTC
1830 */
dpu_crtc_init(struct drm_device * dev,struct drm_plane * plane,struct drm_plane * cursor)1831 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1832 struct drm_plane *cursor)
1833 {
1834 struct msm_drm_private *priv = dev->dev_private;
1835 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
1836 struct drm_crtc *crtc = NULL;
1837 struct dpu_crtc *dpu_crtc;
1838 int i, ret;
1839
1840 dpu_crtc = drmm_crtc_alloc_with_planes(dev, struct dpu_crtc, base,
1841 plane, cursor,
1842 &dpu_crtc_funcs,
1843 NULL);
1844
1845 if (IS_ERR(dpu_crtc))
1846 return ERR_CAST(dpu_crtc);
1847
1848 crtc = &dpu_crtc->base;
1849 crtc->dev = dev;
1850
1851 spin_lock_init(&dpu_crtc->spin_lock);
1852 atomic_set(&dpu_crtc->frame_pending, 0);
1853
1854 init_completion(&dpu_crtc->frame_done_comp);
1855
1856 INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1857
1858 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1859 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1860 list_add(&dpu_crtc->frame_events[i].list,
1861 &dpu_crtc->frame_event_list);
1862 kthread_init_work(&dpu_crtc->frame_events[i].work,
1863 dpu_crtc_frame_event_work);
1864 }
1865
1866 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1867
1868 if (dpu_kms->catalog->dspp_count)
1869 drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1870
1871 /* save user friendly CRTC name for later */
1872 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1873
1874 /* initialize event handling */
1875 spin_lock_init(&dpu_crtc->event_lock);
1876
1877 ret = drm_self_refresh_helper_init(crtc);
1878 if (ret) {
1879 DPU_ERROR("Failed to initialize %s with self-refresh helpers %d\n",
1880 crtc->name, ret);
1881 return ERR_PTR(ret);
1882 }
1883
1884 DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1885 return crtc;
1886 }
1887