xref: /titanic_44/usr/src/uts/common/fs/zfs/spa_config.c (revision e2dcee5754c56d91c6e1ff847db294541069ca0d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2013 by Delphix. All rights reserved.
26  */
27 
28 #include <sys/spa.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa_impl.h>
31 #include <sys/nvpair.h>
32 #include <sys/uio.h>
33 #include <sys/fs/zfs.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zfs_ioctl.h>
36 #include <sys/utsname.h>
37 #include <sys/systeminfo.h>
38 #include <sys/sunddi.h>
39 #include <sys/zfeature.h>
40 #ifdef _KERNEL
41 #include <sys/kobj.h>
42 #include <sys/zone.h>
43 #endif
44 
45 /*
46  * Pool configuration repository.
47  *
48  * Pool configuration is stored as a packed nvlist on the filesystem.  By
49  * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot
50  * (when the ZFS module is loaded).  Pools can also have the 'cachefile'
51  * property set that allows them to be stored in an alternate location until
52  * the control of external software.
53  *
54  * For each cache file, we have a single nvlist which holds all the
55  * configuration information.  When the module loads, we read this information
56  * from /etc/zfs/zpool.cache and populate the SPA namespace.  This namespace is
57  * maintained independently in spa.c.  Whenever the namespace is modified, or
58  * the configuration of a pool is changed, we call spa_config_sync(), which
59  * walks through all the active pools and writes the configuration to disk.
60  */
61 
62 static uint64_t spa_config_generation = 1;
63 
64 /*
65  * This can be overridden in userland to preserve an alternate namespace for
66  * userland pools when doing testing.
67  */
68 const char *spa_config_path = ZPOOL_CACHE;
69 
70 /*
71  * Called when the module is first loaded, this routine loads the configuration
72  * file into the SPA namespace.  It does not actually open or load the pools; it
73  * only populates the namespace.
74  */
75 void
spa_config_load(void)76 spa_config_load(void)
77 {
78 	void *buf = NULL;
79 	nvlist_t *nvlist, *child;
80 	nvpair_t *nvpair;
81 	char *pathname;
82 	struct _buf *file;
83 	uint64_t fsize;
84 
85 	/*
86 	 * Open the configuration file.
87 	 */
88 	pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
89 
90 	(void) snprintf(pathname, MAXPATHLEN, "%s%s",
91 	    (rootdir != NULL) ? "./" : "", spa_config_path);
92 
93 	file = kobj_open_file(pathname);
94 
95 	kmem_free(pathname, MAXPATHLEN);
96 
97 	if (file == (struct _buf *)-1)
98 		return;
99 
100 	if (kobj_get_filesize(file, &fsize) != 0)
101 		goto out;
102 
103 	buf = kmem_alloc(fsize, KM_SLEEP);
104 
105 	/*
106 	 * Read the nvlist from the file.
107 	 */
108 	if (kobj_read_file(file, buf, fsize, 0) < 0)
109 		goto out;
110 
111 	/*
112 	 * Unpack the nvlist.
113 	 */
114 	if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
115 		goto out;
116 
117 	/*
118 	 * Iterate over all elements in the nvlist, creating a new spa_t for
119 	 * each one with the specified configuration.
120 	 */
121 	mutex_enter(&spa_namespace_lock);
122 	nvpair = NULL;
123 	while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
124 		if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
125 			continue;
126 
127 		VERIFY(nvpair_value_nvlist(nvpair, &child) == 0);
128 
129 		if (spa_lookup(nvpair_name(nvpair)) != NULL)
130 			continue;
131 		(void) spa_add(nvpair_name(nvpair), child, NULL);
132 	}
133 	mutex_exit(&spa_namespace_lock);
134 
135 	nvlist_free(nvlist);
136 
137 out:
138 	if (buf != NULL)
139 		kmem_free(buf, fsize);
140 
141 	kobj_close_file(file);
142 }
143 
144 static int
spa_config_write(spa_config_dirent_t * dp,nvlist_t * nvl)145 spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl)
146 {
147 	size_t buflen;
148 	char *buf;
149 	vnode_t *vp;
150 	int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX;
151 	char *temp;
152 	int err;
153 
154 	/*
155 	 * If the nvlist is empty (NULL), then remove the old cachefile.
156 	 */
157 	if (nvl == NULL) {
158 		err = vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE);
159 		return (err);
160 	}
161 
162 	/*
163 	 * Pack the configuration into a buffer.
164 	 */
165 	VERIFY(nvlist_size(nvl, &buflen, NV_ENCODE_XDR) == 0);
166 
167 	buf = kmem_alloc(buflen, KM_SLEEP);
168 	temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
169 
170 	VERIFY(nvlist_pack(nvl, &buf, &buflen, NV_ENCODE_XDR,
171 	    KM_SLEEP) == 0);
172 
173 	/*
174 	 * Write the configuration to disk.  We need to do the traditional
175 	 * 'write to temporary file, sync, move over original' to make sure we
176 	 * always have a consistent view of the data.
177 	 */
178 	(void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path);
179 
180 	err = vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0);
181 	if (err == 0) {
182 		err = vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE,
183 		    0, RLIM64_INFINITY, kcred, NULL);
184 		if (err == 0)
185 			err = VOP_FSYNC(vp, FSYNC, kcred, NULL);
186 		if (err == 0)
187 			err = vn_rename(temp, dp->scd_path, UIO_SYSSPACE);
188 		(void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
189 		VN_RELE(vp);
190 	}
191 
192 	(void) vn_remove(temp, UIO_SYSSPACE, RMFILE);
193 
194 	kmem_free(buf, buflen);
195 	kmem_free(temp, MAXPATHLEN);
196 	return (err);
197 }
198 
199 /*
200  * Synchronize pool configuration to disk.  This must be called with the
201  * namespace lock held. Synchronizing the pool cache is typically done after
202  * the configuration has been synced to the MOS. This exposes a window where
203  * the MOS config will have been updated but the cache file has not. If
204  * the system were to crash at that instant then the cached config may not
205  * contain the correct information to open the pool and an explicity import
206  * would be required.
207  */
208 void
spa_config_sync(spa_t * target,boolean_t removing,boolean_t postsysevent)209 spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent)
210 {
211 	spa_config_dirent_t *dp, *tdp;
212 	nvlist_t *nvl;
213 	boolean_t ccw_failure;
214 	int error;
215 
216 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
217 
218 	if (rootdir == NULL || !(spa_mode_global & FWRITE))
219 		return;
220 
221 	/*
222 	 * Iterate over all cachefiles for the pool, past or present.  When the
223 	 * cachefile is changed, the new one is pushed onto this list, allowing
224 	 * us to update previous cachefiles that no longer contain this pool.
225 	 */
226 	ccw_failure = B_FALSE;
227 	for (dp = list_head(&target->spa_config_list); dp != NULL;
228 	    dp = list_next(&target->spa_config_list, dp)) {
229 		spa_t *spa = NULL;
230 		if (dp->scd_path == NULL)
231 			continue;
232 
233 		/*
234 		 * Iterate over all pools, adding any matching pools to 'nvl'.
235 		 */
236 		nvl = NULL;
237 		while ((spa = spa_next(spa)) != NULL) {
238 			/*
239 			 * Skip over our own pool if we're about to remove
240 			 * ourselves from the spa namespace or any pool that
241 			 * is readonly. Since we cannot guarantee that a
242 			 * readonly pool would successfully import upon reboot,
243 			 * we don't allow them to be written to the cache file.
244 			 */
245 			if ((spa == target && removing) ||
246 			    !spa_writeable(spa))
247 				continue;
248 
249 			mutex_enter(&spa->spa_props_lock);
250 			tdp = list_head(&spa->spa_config_list);
251 			if (spa->spa_config == NULL ||
252 			    tdp->scd_path == NULL ||
253 			    strcmp(tdp->scd_path, dp->scd_path) != 0) {
254 				mutex_exit(&spa->spa_props_lock);
255 				continue;
256 			}
257 
258 			if (nvl == NULL)
259 				VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME,
260 				    KM_SLEEP) == 0);
261 
262 			VERIFY(nvlist_add_nvlist(nvl, spa->spa_name,
263 			    spa->spa_config) == 0);
264 			mutex_exit(&spa->spa_props_lock);
265 		}
266 
267 		error = spa_config_write(dp, nvl);
268 		if (error != 0)
269 			ccw_failure = B_TRUE;
270 		nvlist_free(nvl);
271 	}
272 
273 	if (ccw_failure) {
274 		/*
275 		 * Keep trying so that configuration data is
276 		 * written if/when any temporary filesystem
277 		 * resource issues are resolved.
278 		 */
279 		if (target->spa_ccw_fail_time == 0) {
280 			zfs_ereport_post(FM_EREPORT_ZFS_CONFIG_CACHE_WRITE,
281 			    target, NULL, NULL, 0, 0);
282 		}
283 		target->spa_ccw_fail_time = gethrtime();
284 		spa_async_request(target, SPA_ASYNC_CONFIG_UPDATE);
285 	} else {
286 		/*
287 		 * Do not rate limit future attempts to update
288 		 * the config cache.
289 		 */
290 		target->spa_ccw_fail_time = 0;
291 	}
292 
293 	/*
294 	 * Remove any config entries older than the current one.
295 	 */
296 	dp = list_head(&target->spa_config_list);
297 	while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) {
298 		list_remove(&target->spa_config_list, tdp);
299 		if (tdp->scd_path != NULL)
300 			spa_strfree(tdp->scd_path);
301 		kmem_free(tdp, sizeof (spa_config_dirent_t));
302 	}
303 
304 	spa_config_generation++;
305 
306 	if (postsysevent)
307 		spa_event_notify(target, NULL, ESC_ZFS_CONFIG_SYNC);
308 }
309 
310 /*
311  * Sigh.  Inside a local zone, we don't have access to /etc/zfs/zpool.cache,
312  * and we don't want to allow the local zone to see all the pools anyway.
313  * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration
314  * information for all pool visible within the zone.
315  */
316 nvlist_t *
spa_all_configs(uint64_t * generation)317 spa_all_configs(uint64_t *generation)
318 {
319 	nvlist_t *pools;
320 	spa_t *spa = NULL;
321 
322 	if (*generation == spa_config_generation)
323 		return (NULL);
324 
325 	VERIFY(nvlist_alloc(&pools, NV_UNIQUE_NAME, KM_SLEEP) == 0);
326 
327 	mutex_enter(&spa_namespace_lock);
328 	while ((spa = spa_next(spa)) != NULL) {
329 		if (INGLOBALZONE(curproc) ||
330 		    zone_dataset_visible(spa_name(spa), NULL)) {
331 			mutex_enter(&spa->spa_props_lock);
332 			VERIFY(nvlist_add_nvlist(pools, spa_name(spa),
333 			    spa->spa_config) == 0);
334 			mutex_exit(&spa->spa_props_lock);
335 		}
336 	}
337 	*generation = spa_config_generation;
338 	mutex_exit(&spa_namespace_lock);
339 
340 	return (pools);
341 }
342 
343 void
spa_config_set(spa_t * spa,nvlist_t * config)344 spa_config_set(spa_t *spa, nvlist_t *config)
345 {
346 	mutex_enter(&spa->spa_props_lock);
347 	nvlist_free(spa->spa_config);
348 	spa->spa_config = config;
349 	mutex_exit(&spa->spa_props_lock);
350 }
351 
352 /*
353  * Generate the pool's configuration based on the current in-core state.
354  *
355  * We infer whether to generate a complete config or just one top-level config
356  * based on whether vd is the root vdev.
357  */
358 nvlist_t *
spa_config_generate(spa_t * spa,vdev_t * vd,uint64_t txg,int getstats)359 spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)
360 {
361 	nvlist_t *config, *nvroot;
362 	vdev_t *rvd = spa->spa_root_vdev;
363 	unsigned long hostid = 0;
364 	boolean_t locked = B_FALSE;
365 	uint64_t split_guid;
366 
367 	if (vd == NULL) {
368 		vd = rvd;
369 		locked = B_TRUE;
370 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
371 	}
372 
373 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
374 	    (SCL_CONFIG | SCL_STATE));
375 
376 	/*
377 	 * If txg is -1, report the current value of spa->spa_config_txg.
378 	 */
379 	if (txg == -1ULL)
380 		txg = spa->spa_config_txg;
381 
382 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0);
383 
384 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
385 	    spa_version(spa)) == 0);
386 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
387 	    spa_name(spa)) == 0);
388 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
389 	    spa_state(spa)) == 0);
390 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
391 	    txg) == 0);
392 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
393 	    spa_guid(spa)) == 0);
394 	VERIFY(spa->spa_comment == NULL || nvlist_add_string(config,
395 	    ZPOOL_CONFIG_COMMENT, spa->spa_comment) == 0);
396 
397 
398 #ifdef	_KERNEL
399 	hostid = zone_get_hostid(NULL);
400 #else	/* _KERNEL */
401 	/*
402 	 * We're emulating the system's hostid in userland, so we can't use
403 	 * zone_get_hostid().
404 	 */
405 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
406 #endif	/* _KERNEL */
407 	if (hostid != 0) {
408 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
409 		    hostid) == 0);
410 	}
411 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
412 	    utsname.nodename) == 0);
413 
414 	if (vd != rvd) {
415 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID,
416 		    vd->vdev_top->vdev_guid) == 0);
417 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID,
418 		    vd->vdev_guid) == 0);
419 		if (vd->vdev_isspare)
420 			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE,
421 			    1ULL) == 0);
422 		if (vd->vdev_islog)
423 			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG,
424 			    1ULL) == 0);
425 		vd = vd->vdev_top;		/* label contains top config */
426 	} else {
427 		/*
428 		 * Only add the (potentially large) split information
429 		 * in the mos config, and not in the vdev labels
430 		 */
431 		if (spa->spa_config_splitting != NULL)
432 			VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT,
433 			    spa->spa_config_splitting) == 0);
434 	}
435 
436 	/*
437 	 * Add the top-level config.  We even add this on pools which
438 	 * don't support holes in the namespace.
439 	 */
440 	vdev_top_config_generate(spa, config);
441 
442 	/*
443 	 * If we're splitting, record the original pool's guid.
444 	 */
445 	if (spa->spa_config_splitting != NULL &&
446 	    nvlist_lookup_uint64(spa->spa_config_splitting,
447 	    ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) {
448 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID,
449 		    split_guid) == 0);
450 	}
451 
452 	nvroot = vdev_config_generate(spa, vd, getstats, 0);
453 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
454 	nvlist_free(nvroot);
455 
456 	/*
457 	 * Store what's necessary for reading the MOS in the label.
458 	 */
459 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
460 	    spa->spa_label_features) == 0);
461 
462 	if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) {
463 		ddt_histogram_t *ddh;
464 		ddt_stat_t *dds;
465 		ddt_object_t *ddo;
466 
467 		ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
468 		ddt_get_dedup_histogram(spa, ddh);
469 		VERIFY(nvlist_add_uint64_array(config,
470 		    ZPOOL_CONFIG_DDT_HISTOGRAM,
471 		    (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0);
472 		kmem_free(ddh, sizeof (ddt_histogram_t));
473 
474 		ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP);
475 		ddt_get_dedup_object_stats(spa, ddo);
476 		VERIFY(nvlist_add_uint64_array(config,
477 		    ZPOOL_CONFIG_DDT_OBJ_STATS,
478 		    (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0);
479 		kmem_free(ddo, sizeof (ddt_object_t));
480 
481 		dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP);
482 		ddt_get_dedup_stats(spa, dds);
483 		VERIFY(nvlist_add_uint64_array(config,
484 		    ZPOOL_CONFIG_DDT_STATS,
485 		    (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0);
486 		kmem_free(dds, sizeof (ddt_stat_t));
487 	}
488 
489 	if (locked)
490 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
491 
492 	return (config);
493 }
494 
495 /*
496  * Update all disk labels, generate a fresh config based on the current
497  * in-core state, and sync the global config cache (do not sync the config
498  * cache if this is a booting rootpool).
499  */
500 void
spa_config_update(spa_t * spa,int what)501 spa_config_update(spa_t *spa, int what)
502 {
503 	vdev_t *rvd = spa->spa_root_vdev;
504 	uint64_t txg;
505 	int c;
506 
507 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
508 
509 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
510 	txg = spa_last_synced_txg(spa) + 1;
511 	if (what == SPA_CONFIG_UPDATE_POOL) {
512 		vdev_config_dirty(rvd);
513 	} else {
514 		/*
515 		 * If we have top-level vdevs that were added but have
516 		 * not yet been prepared for allocation, do that now.
517 		 * (It's safe now because the config cache is up to date,
518 		 * so it will be able to translate the new DVAs.)
519 		 * See comments in spa_vdev_add() for full details.
520 		 */
521 		for (c = 0; c < rvd->vdev_children; c++) {
522 			vdev_t *tvd = rvd->vdev_child[c];
523 			if (tvd->vdev_ms_array == 0)
524 				vdev_metaslab_set_size(tvd);
525 			vdev_expand(tvd, txg);
526 		}
527 	}
528 	spa_config_exit(spa, SCL_ALL, FTAG);
529 
530 	/*
531 	 * Wait for the mosconfig to be regenerated and synced.
532 	 */
533 	txg_wait_synced(spa->spa_dsl_pool, txg);
534 
535 	/*
536 	 * Update the global config cache to reflect the new mosconfig.
537 	 */
538 	if (!spa->spa_is_root)
539 		spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL);
540 
541 	if (what == SPA_CONFIG_UPDATE_POOL)
542 		spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
543 }
544