1 /* $OpenBSD: sha2.c,v 1.28 2019/07/23 12:35:22 dtucker Exp $ */
2
3 /*
4 * FILE: sha2.c
5 * AUTHOR: Aaron D. Gifford <me@aarongifford.com>
6 *
7 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the copyright holder nor the names of contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35 */
36
37 /* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
38
39 #include "includes.h"
40
41 #if !defined(HAVE_SHA256UPDATE) || !defined(HAVE_SHA384UPDATE) || \
42 !defined(HAVE_SHA512UPDATE)
43
44 /* no-op out, similar to DEF_WEAK but only needed here */
45 #define MAKE_CLONE(x, y) void __ssh_compat_make_clone_##x_##y(void)
46
47 #include <string.h>
48 #include "openbsd-compat/sha2.h"
49
50 /*
51 * UNROLLED TRANSFORM LOOP NOTE:
52 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
53 * loop version for the hash transform rounds (defined using macros
54 * later in this file). Either define on the command line, for example:
55 *
56 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
57 *
58 * or define below:
59 *
60 * #define SHA2_UNROLL_TRANSFORM
61 *
62 */
63 #ifndef SHA2_SMALL
64 #if defined(__amd64__) || defined(__i386__)
65 #define SHA2_UNROLL_TRANSFORM
66 #endif
67 #endif
68
69 /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/
70 /*
71 * BYTE_ORDER NOTE:
72 *
73 * Please make sure that your system defines BYTE_ORDER. If your
74 * architecture is little-endian, make sure it also defines
75 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
76 * equivalent.
77 *
78 * If your system does not define the above, then you can do so by
79 * hand like this:
80 *
81 * #define LITTLE_ENDIAN 1234
82 * #define BIG_ENDIAN 4321
83 *
84 * And for little-endian machines, add:
85 *
86 * #define BYTE_ORDER LITTLE_ENDIAN
87 *
88 * Or for big-endian machines:
89 *
90 * #define BYTE_ORDER BIG_ENDIAN
91 *
92 * The FreeBSD machine this was written on defines BYTE_ORDER
93 * appropriately by including <sys/types.h> (which in turn includes
94 * <machine/endian.h> where the appropriate definitions are actually
95 * made).
96 */
97 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
98 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
99 #endif
100
101
102 /*** SHA-224/256/384/512 Various Length Definitions ***********************/
103 /* NOTE: Most of these are in sha2.h */
104 #define SHA224_SHORT_BLOCK_LENGTH (SHA224_BLOCK_LENGTH - 8)
105 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
106 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
107 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
108
109 /*** ENDIAN SPECIFIC COPY MACROS **************************************/
110 #define BE_8_TO_32(dst, cp) do { \
111 (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \
112 ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \
113 } while(0)
114
115 #define BE_8_TO_64(dst, cp) do { \
116 (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \
117 ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \
118 ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \
119 ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \
120 } while (0)
121
122 #define BE_64_TO_8(cp, src) do { \
123 (cp)[0] = (src) >> 56; \
124 (cp)[1] = (src) >> 48; \
125 (cp)[2] = (src) >> 40; \
126 (cp)[3] = (src) >> 32; \
127 (cp)[4] = (src) >> 24; \
128 (cp)[5] = (src) >> 16; \
129 (cp)[6] = (src) >> 8; \
130 (cp)[7] = (src); \
131 } while (0)
132
133 #define BE_32_TO_8(cp, src) do { \
134 (cp)[0] = (src) >> 24; \
135 (cp)[1] = (src) >> 16; \
136 (cp)[2] = (src) >> 8; \
137 (cp)[3] = (src); \
138 } while (0)
139
140 /*
141 * Macro for incrementally adding the unsigned 64-bit integer n to the
142 * unsigned 128-bit integer (represented using a two-element array of
143 * 64-bit words):
144 */
145 #define ADDINC128(w,n) do { \
146 (w)[0] += (u_int64_t)(n); \
147 if ((w)[0] < (n)) { \
148 (w)[1]++; \
149 } \
150 } while (0)
151
152 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
153 /*
154 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
155 *
156 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
157 * S is a ROTATION) because the SHA-224/256/384/512 description document
158 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
159 * same "backwards" definition.
160 */
161 /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */
162 #define R(b,x) ((x) >> (b))
163 /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */
164 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
165 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
166 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
167
168 /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */
169 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
170 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
171
172 /* Four of six logical functions used in SHA-224 and SHA-256: */
173 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
174 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
175 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
176 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
177
178 /* Four of six logical functions used in SHA-384 and SHA-512: */
179 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
180 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
181 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
182 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
183
184
185 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
186 /* Hash constant words K for SHA-224 and SHA-256: */
187 static const u_int32_t K256[64] = {
188 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
189 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
190 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
191 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
192 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
193 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
194 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
195 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
196 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
197 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
198 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
199 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
200 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
201 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
202 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
203 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
204 };
205
206 /* Initial hash value H for SHA-256: */
207 static const u_int32_t sha256_initial_hash_value[8] = {
208 0x6a09e667UL,
209 0xbb67ae85UL,
210 0x3c6ef372UL,
211 0xa54ff53aUL,
212 0x510e527fUL,
213 0x9b05688cUL,
214 0x1f83d9abUL,
215 0x5be0cd19UL
216 };
217
218 /* Hash constant words K for SHA-384 and SHA-512: */
219 static const u_int64_t K512[80] = {
220 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
221 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
222 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
223 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
224 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
225 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
226 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
227 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
228 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
229 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
230 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
231 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
232 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
233 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
234 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
235 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
236 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
237 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
238 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
239 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
240 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
241 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
242 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
243 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
244 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
245 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
246 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
247 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
248 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
249 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
250 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
251 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
252 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
253 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
254 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
255 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
256 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
257 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
258 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
259 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
260 };
261
262 /* Initial hash value H for SHA-512 */
263 static const u_int64_t sha512_initial_hash_value[8] = {
264 0x6a09e667f3bcc908ULL,
265 0xbb67ae8584caa73bULL,
266 0x3c6ef372fe94f82bULL,
267 0xa54ff53a5f1d36f1ULL,
268 0x510e527fade682d1ULL,
269 0x9b05688c2b3e6c1fULL,
270 0x1f83d9abfb41bd6bULL,
271 0x5be0cd19137e2179ULL
272 };
273
274 #if !defined(SHA2_SMALL)
275 #if 0
276 /* Initial hash value H for SHA-224: */
277 static const u_int32_t sha224_initial_hash_value[8] = {
278 0xc1059ed8UL,
279 0x367cd507UL,
280 0x3070dd17UL,
281 0xf70e5939UL,
282 0xffc00b31UL,
283 0x68581511UL,
284 0x64f98fa7UL,
285 0xbefa4fa4UL
286 };
287 #endif /* 0 */
288
289 /* Initial hash value H for SHA-384 */
290 static const u_int64_t sha384_initial_hash_value[8] = {
291 0xcbbb9d5dc1059ed8ULL,
292 0x629a292a367cd507ULL,
293 0x9159015a3070dd17ULL,
294 0x152fecd8f70e5939ULL,
295 0x67332667ffc00b31ULL,
296 0x8eb44a8768581511ULL,
297 0xdb0c2e0d64f98fa7ULL,
298 0x47b5481dbefa4fa4ULL
299 };
300
301 #if 0
302 /* Initial hash value H for SHA-512-256 */
303 static const u_int64_t sha512_256_initial_hash_value[8] = {
304 0x22312194fc2bf72cULL,
305 0x9f555fa3c84c64c2ULL,
306 0x2393b86b6f53b151ULL,
307 0x963877195940eabdULL,
308 0x96283ee2a88effe3ULL,
309 0xbe5e1e2553863992ULL,
310 0x2b0199fc2c85b8aaULL,
311 0x0eb72ddc81c52ca2ULL
312 };
313
314 /*** SHA-224: *********************************************************/
315 void
316 SHA224Init(SHA2_CTX *context)
317 {
318 memcpy(context->state.st32, sha224_initial_hash_value,
319 sizeof(sha224_initial_hash_value));
320 memset(context->buffer, 0, sizeof(context->buffer));
321 context->bitcount[0] = 0;
322 }
323 DEF_WEAK(SHA224Init);
324
325 MAKE_CLONE(SHA224Transform, SHA256Transform);
326 MAKE_CLONE(SHA224Update, SHA256Update);
327 MAKE_CLONE(SHA224Pad, SHA256Pad);
328 DEF_WEAK(SHA224Transform);
329 DEF_WEAK(SHA224Update);
330 DEF_WEAK(SHA224Pad);
331
332 void
333 SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH], SHA2_CTX *context)
334 {
335 SHA224Pad(context);
336
337 #if BYTE_ORDER == LITTLE_ENDIAN
338 int i;
339
340 /* Convert TO host byte order */
341 for (i = 0; i < 7; i++)
342 BE_32_TO_8(digest + i * 4, context->state.st32[i]);
343 #else
344 memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH);
345 #endif
346 explicit_bzero(context, sizeof(*context));
347 }
348 DEF_WEAK(SHA224Final);
349 #endif /* !defined(SHA2_SMALL) */
350 #endif /* 0 */
351
352 /*** SHA-256: *********************************************************/
353 void
SHA256Init(SHA2_CTX * context)354 SHA256Init(SHA2_CTX *context)
355 {
356 memcpy(context->state.st32, sha256_initial_hash_value,
357 sizeof(sha256_initial_hash_value));
358 memset(context->buffer, 0, sizeof(context->buffer));
359 context->bitcount[0] = 0;
360 }
361 DEF_WEAK(SHA256Init);
362
363 #ifdef SHA2_UNROLL_TRANSFORM
364
365 /* Unrolled SHA-256 round macros: */
366
367 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \
368 BE_8_TO_32(W256[j], data); \
369 data += 4; \
370 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
371 (d) += T1; \
372 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
373 j++; \
374 } while(0)
375
376 #define ROUND256(a,b,c,d,e,f,g,h) do { \
377 s0 = W256[(j+1)&0x0f]; \
378 s0 = sigma0_256(s0); \
379 s1 = W256[(j+14)&0x0f]; \
380 s1 = sigma1_256(s1); \
381 T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \
382 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
383 (d) += T1; \
384 (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \
385 j++; \
386 } while(0)
387
388 void
SHA256Transform(u_int32_t state[8],const u_int8_t data[SHA256_BLOCK_LENGTH])389 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
390 {
391 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
392 u_int32_t T1, W256[16];
393 int j;
394
395 /* Initialize registers with the prev. intermediate value */
396 a = state[0];
397 b = state[1];
398 c = state[2];
399 d = state[3];
400 e = state[4];
401 f = state[5];
402 g = state[6];
403 h = state[7];
404
405 j = 0;
406 do {
407 /* Rounds 0 to 15 (unrolled): */
408 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
409 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
410 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
411 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
412 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
413 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
414 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
415 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
416 } while (j < 16);
417
418 /* Now for the remaining rounds up to 63: */
419 do {
420 ROUND256(a,b,c,d,e,f,g,h);
421 ROUND256(h,a,b,c,d,e,f,g);
422 ROUND256(g,h,a,b,c,d,e,f);
423 ROUND256(f,g,h,a,b,c,d,e);
424 ROUND256(e,f,g,h,a,b,c,d);
425 ROUND256(d,e,f,g,h,a,b,c);
426 ROUND256(c,d,e,f,g,h,a,b);
427 ROUND256(b,c,d,e,f,g,h,a);
428 } while (j < 64);
429
430 /* Compute the current intermediate hash value */
431 state[0] += a;
432 state[1] += b;
433 state[2] += c;
434 state[3] += d;
435 state[4] += e;
436 state[5] += f;
437 state[6] += g;
438 state[7] += h;
439
440 /* Clean up */
441 a = b = c = d = e = f = g = h = T1 = 0;
442 }
443
444 #else /* SHA2_UNROLL_TRANSFORM */
445
446 void
SHA256Transform(u_int32_t state[8],const u_int8_t data[SHA256_BLOCK_LENGTH])447 SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
448 {
449 u_int32_t a, b, c, d, e, f, g, h, s0, s1;
450 u_int32_t T1, T2, W256[16];
451 int j;
452
453 /* Initialize registers with the prev. intermediate value */
454 a = state[0];
455 b = state[1];
456 c = state[2];
457 d = state[3];
458 e = state[4];
459 f = state[5];
460 g = state[6];
461 h = state[7];
462
463 j = 0;
464 do {
465 BE_8_TO_32(W256[j], data);
466 data += 4;
467 /* Apply the SHA-256 compression function to update a..h */
468 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
469 T2 = Sigma0_256(a) + Maj(a, b, c);
470 h = g;
471 g = f;
472 f = e;
473 e = d + T1;
474 d = c;
475 c = b;
476 b = a;
477 a = T1 + T2;
478
479 j++;
480 } while (j < 16);
481
482 do {
483 /* Part of the message block expansion: */
484 s0 = W256[(j+1)&0x0f];
485 s0 = sigma0_256(s0);
486 s1 = W256[(j+14)&0x0f];
487 s1 = sigma1_256(s1);
488
489 /* Apply the SHA-256 compression function to update a..h */
490 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
491 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
492 T2 = Sigma0_256(a) + Maj(a, b, c);
493 h = g;
494 g = f;
495 f = e;
496 e = d + T1;
497 d = c;
498 c = b;
499 b = a;
500 a = T1 + T2;
501
502 j++;
503 } while (j < 64);
504
505 /* Compute the current intermediate hash value */
506 state[0] += a;
507 state[1] += b;
508 state[2] += c;
509 state[3] += d;
510 state[4] += e;
511 state[5] += f;
512 state[6] += g;
513 state[7] += h;
514
515 /* Clean up */
516 a = b = c = d = e = f = g = h = T1 = T2 = 0;
517 }
518
519 #endif /* SHA2_UNROLL_TRANSFORM */
520 DEF_WEAK(SHA256Transform);
521
522 void
SHA256Update(SHA2_CTX * context,const u_int8_t * data,size_t len)523 SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
524 {
525 u_int64_t freespace, usedspace;
526
527 /* Calling with no data is valid (we do nothing) */
528 if (len == 0)
529 return;
530
531 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
532 if (usedspace > 0) {
533 /* Calculate how much free space is available in the buffer */
534 freespace = SHA256_BLOCK_LENGTH - usedspace;
535
536 if (len >= freespace) {
537 /* Fill the buffer completely and process it */
538 memcpy(&context->buffer[usedspace], data, freespace);
539 context->bitcount[0] += freespace << 3;
540 len -= freespace;
541 data += freespace;
542 SHA256Transform(context->state.st32, context->buffer);
543 } else {
544 /* The buffer is not yet full */
545 memcpy(&context->buffer[usedspace], data, len);
546 context->bitcount[0] += (u_int64_t)len << 3;
547 /* Clean up: */
548 usedspace = freespace = 0;
549 return;
550 }
551 }
552 while (len >= SHA256_BLOCK_LENGTH) {
553 /* Process as many complete blocks as we can */
554 SHA256Transform(context->state.st32, data);
555 context->bitcount[0] += SHA256_BLOCK_LENGTH << 3;
556 len -= SHA256_BLOCK_LENGTH;
557 data += SHA256_BLOCK_LENGTH;
558 }
559 if (len > 0) {
560 /* There's left-overs, so save 'em */
561 memcpy(context->buffer, data, len);
562 context->bitcount[0] += len << 3;
563 }
564 /* Clean up: */
565 usedspace = freespace = 0;
566 }
567 DEF_WEAK(SHA256Update);
568
569 void
SHA256Pad(SHA2_CTX * context)570 SHA256Pad(SHA2_CTX *context)
571 {
572 unsigned int usedspace;
573
574 usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH;
575 if (usedspace > 0) {
576 /* Begin padding with a 1 bit: */
577 context->buffer[usedspace++] = 0x80;
578
579 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
580 /* Set-up for the last transform: */
581 memset(&context->buffer[usedspace], 0,
582 SHA256_SHORT_BLOCK_LENGTH - usedspace);
583 } else {
584 if (usedspace < SHA256_BLOCK_LENGTH) {
585 memset(&context->buffer[usedspace], 0,
586 SHA256_BLOCK_LENGTH - usedspace);
587 }
588 /* Do second-to-last transform: */
589 SHA256Transform(context->state.st32, context->buffer);
590
591 /* Prepare for last transform: */
592 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
593 }
594 } else {
595 /* Set-up for the last transform: */
596 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
597
598 /* Begin padding with a 1 bit: */
599 *context->buffer = 0x80;
600 }
601 /* Store the length of input data (in bits) in big endian format: */
602 BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
603 context->bitcount[0]);
604
605 /* Final transform: */
606 SHA256Transform(context->state.st32, context->buffer);
607
608 /* Clean up: */
609 usedspace = 0;
610 }
611 DEF_WEAK(SHA256Pad);
612
613 void
SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH],SHA2_CTX * context)614 SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA2_CTX *context)
615 {
616 SHA256Pad(context);
617
618 #if BYTE_ORDER == LITTLE_ENDIAN
619 int i;
620
621 /* Convert TO host byte order */
622 for (i = 0; i < 8; i++)
623 BE_32_TO_8(digest + i * 4, context->state.st32[i]);
624 #else
625 memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH);
626 #endif
627 explicit_bzero(context, sizeof(*context));
628 }
629 DEF_WEAK(SHA256Final);
630
631
632 /*** SHA-512: *********************************************************/
633 void
SHA512Init(SHA2_CTX * context)634 SHA512Init(SHA2_CTX *context)
635 {
636 memcpy(context->state.st64, sha512_initial_hash_value,
637 sizeof(sha512_initial_hash_value));
638 memset(context->buffer, 0, sizeof(context->buffer));
639 context->bitcount[0] = context->bitcount[1] = 0;
640 }
641 DEF_WEAK(SHA512Init);
642
643 #ifdef SHA2_UNROLL_TRANSFORM
644
645 /* Unrolled SHA-512 round macros: */
646
647 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \
648 BE_8_TO_64(W512[j], data); \
649 data += 8; \
650 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
651 (d) += T1; \
652 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
653 j++; \
654 } while(0)
655
656
657 #define ROUND512(a,b,c,d,e,f,g,h) do { \
658 s0 = W512[(j+1)&0x0f]; \
659 s0 = sigma0_512(s0); \
660 s1 = W512[(j+14)&0x0f]; \
661 s1 = sigma1_512(s1); \
662 T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \
663 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
664 (d) += T1; \
665 (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \
666 j++; \
667 } while(0)
668
669 void
SHA512Transform(u_int64_t state[8],const u_int8_t data[SHA512_BLOCK_LENGTH])670 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
671 {
672 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
673 u_int64_t T1, W512[16];
674 int j;
675
676 /* Initialize registers with the prev. intermediate value */
677 a = state[0];
678 b = state[1];
679 c = state[2];
680 d = state[3];
681 e = state[4];
682 f = state[5];
683 g = state[6];
684 h = state[7];
685
686 j = 0;
687 do {
688 /* Rounds 0 to 15 (unrolled): */
689 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
690 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
691 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
692 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
693 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
694 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
695 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
696 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
697 } while (j < 16);
698
699 /* Now for the remaining rounds up to 79: */
700 do {
701 ROUND512(a,b,c,d,e,f,g,h);
702 ROUND512(h,a,b,c,d,e,f,g);
703 ROUND512(g,h,a,b,c,d,e,f);
704 ROUND512(f,g,h,a,b,c,d,e);
705 ROUND512(e,f,g,h,a,b,c,d);
706 ROUND512(d,e,f,g,h,a,b,c);
707 ROUND512(c,d,e,f,g,h,a,b);
708 ROUND512(b,c,d,e,f,g,h,a);
709 } while (j < 80);
710
711 /* Compute the current intermediate hash value */
712 state[0] += a;
713 state[1] += b;
714 state[2] += c;
715 state[3] += d;
716 state[4] += e;
717 state[5] += f;
718 state[6] += g;
719 state[7] += h;
720
721 /* Clean up */
722 a = b = c = d = e = f = g = h = T1 = 0;
723 }
724
725 #else /* SHA2_UNROLL_TRANSFORM */
726
727 void
SHA512Transform(u_int64_t state[8],const u_int8_t data[SHA512_BLOCK_LENGTH])728 SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
729 {
730 u_int64_t a, b, c, d, e, f, g, h, s0, s1;
731 u_int64_t T1, T2, W512[16];
732 int j;
733
734 /* Initialize registers with the prev. intermediate value */
735 a = state[0];
736 b = state[1];
737 c = state[2];
738 d = state[3];
739 e = state[4];
740 f = state[5];
741 g = state[6];
742 h = state[7];
743
744 j = 0;
745 do {
746 BE_8_TO_64(W512[j], data);
747 data += 8;
748 /* Apply the SHA-512 compression function to update a..h */
749 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
750 T2 = Sigma0_512(a) + Maj(a, b, c);
751 h = g;
752 g = f;
753 f = e;
754 e = d + T1;
755 d = c;
756 c = b;
757 b = a;
758 a = T1 + T2;
759
760 j++;
761 } while (j < 16);
762
763 do {
764 /* Part of the message block expansion: */
765 s0 = W512[(j+1)&0x0f];
766 s0 = sigma0_512(s0);
767 s1 = W512[(j+14)&0x0f];
768 s1 = sigma1_512(s1);
769
770 /* Apply the SHA-512 compression function to update a..h */
771 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
772 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
773 T2 = Sigma0_512(a) + Maj(a, b, c);
774 h = g;
775 g = f;
776 f = e;
777 e = d + T1;
778 d = c;
779 c = b;
780 b = a;
781 a = T1 + T2;
782
783 j++;
784 } while (j < 80);
785
786 /* Compute the current intermediate hash value */
787 state[0] += a;
788 state[1] += b;
789 state[2] += c;
790 state[3] += d;
791 state[4] += e;
792 state[5] += f;
793 state[6] += g;
794 state[7] += h;
795
796 /* Clean up */
797 a = b = c = d = e = f = g = h = T1 = T2 = 0;
798 }
799
800 #endif /* SHA2_UNROLL_TRANSFORM */
801 DEF_WEAK(SHA512Transform);
802
803 void
SHA512Update(SHA2_CTX * context,const u_int8_t * data,size_t len)804 SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
805 {
806 size_t freespace, usedspace;
807
808 /* Calling with no data is valid (we do nothing) */
809 if (len == 0)
810 return;
811
812 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
813 if (usedspace > 0) {
814 /* Calculate how much free space is available in the buffer */
815 freespace = SHA512_BLOCK_LENGTH - usedspace;
816
817 if (len >= freespace) {
818 /* Fill the buffer completely and process it */
819 memcpy(&context->buffer[usedspace], data, freespace);
820 ADDINC128(context->bitcount, freespace << 3);
821 len -= freespace;
822 data += freespace;
823 SHA512Transform(context->state.st64, context->buffer);
824 } else {
825 /* The buffer is not yet full */
826 memcpy(&context->buffer[usedspace], data, len);
827 ADDINC128(context->bitcount, len << 3);
828 /* Clean up: */
829 usedspace = freespace = 0;
830 return;
831 }
832 }
833 while (len >= SHA512_BLOCK_LENGTH) {
834 /* Process as many complete blocks as we can */
835 SHA512Transform(context->state.st64, data);
836 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
837 len -= SHA512_BLOCK_LENGTH;
838 data += SHA512_BLOCK_LENGTH;
839 }
840 if (len > 0) {
841 /* There's left-overs, so save 'em */
842 memcpy(context->buffer, data, len);
843 ADDINC128(context->bitcount, len << 3);
844 }
845 /* Clean up: */
846 usedspace = freespace = 0;
847 }
848 DEF_WEAK(SHA512Update);
849
850 void
SHA512Pad(SHA2_CTX * context)851 SHA512Pad(SHA2_CTX *context)
852 {
853 unsigned int usedspace;
854
855 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
856 if (usedspace > 0) {
857 /* Begin padding with a 1 bit: */
858 context->buffer[usedspace++] = 0x80;
859
860 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
861 /* Set-up for the last transform: */
862 memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
863 } else {
864 if (usedspace < SHA512_BLOCK_LENGTH) {
865 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
866 }
867 /* Do second-to-last transform: */
868 SHA512Transform(context->state.st64, context->buffer);
869
870 /* And set-up for the last transform: */
871 memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
872 }
873 } else {
874 /* Prepare for final transform: */
875 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
876
877 /* Begin padding with a 1 bit: */
878 *context->buffer = 0x80;
879 }
880 /* Store the length of input data (in bits) in big endian format: */
881 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
882 context->bitcount[1]);
883 BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
884 context->bitcount[0]);
885
886 /* Final transform: */
887 SHA512Transform(context->state.st64, context->buffer);
888
889 /* Clean up: */
890 usedspace = 0;
891 }
892 DEF_WEAK(SHA512Pad);
893
894 void
SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH],SHA2_CTX * context)895 SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA2_CTX *context)
896 {
897 SHA512Pad(context);
898
899 #if BYTE_ORDER == LITTLE_ENDIAN
900 int i;
901
902 /* Convert TO host byte order */
903 for (i = 0; i < 8; i++)
904 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
905 #else
906 memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH);
907 #endif
908 explicit_bzero(context, sizeof(*context));
909 }
910 DEF_WEAK(SHA512Final);
911
912 #if !defined(SHA2_SMALL)
913
914 /*** SHA-384: *********************************************************/
915 void
SHA384Init(SHA2_CTX * context)916 SHA384Init(SHA2_CTX *context)
917 {
918 memcpy(context->state.st64, sha384_initial_hash_value,
919 sizeof(sha384_initial_hash_value));
920 memset(context->buffer, 0, sizeof(context->buffer));
921 context->bitcount[0] = context->bitcount[1] = 0;
922 }
923 DEF_WEAK(SHA384Init);
924
925 MAKE_CLONE(SHA384Transform, SHA512Transform);
926 MAKE_CLONE(SHA384Update, SHA512Update);
927 MAKE_CLONE(SHA384Pad, SHA512Pad);
928 DEF_WEAK(SHA384Transform);
929 DEF_WEAK(SHA384Update);
930 DEF_WEAK(SHA384Pad);
931
932 /* Equivalent of MAKE_CLONE (which is a no-op) for SHA384 funcs */
933 void
SHA384Transform(u_int64_t state[8],const u_int8_t data[SHA512_BLOCK_LENGTH])934 SHA384Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
935 {
936 SHA512Transform(state, data);
937 }
938
939 void
SHA384Update(SHA2_CTX * context,const u_int8_t * data,size_t len)940 SHA384Update(SHA2_CTX *context, const u_int8_t *data, size_t len)
941 {
942 SHA512Update(context, data, len);
943 }
944
945 void
SHA384Pad(SHA2_CTX * context)946 SHA384Pad(SHA2_CTX *context)
947 {
948 SHA512Pad(context);
949 }
950
951 void
SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH],SHA2_CTX * context)952 SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA2_CTX *context)
953 {
954 SHA384Pad(context);
955
956 #if BYTE_ORDER == LITTLE_ENDIAN
957 int i;
958
959 /* Convert TO host byte order */
960 for (i = 0; i < 6; i++)
961 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
962 #else
963 memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH);
964 #endif
965 /* Zero out state data */
966 explicit_bzero(context, sizeof(*context));
967 }
968 DEF_WEAK(SHA384Final);
969
970 #if 0
971 /*** SHA-512/256: *********************************************************/
972 void
973 SHA512_256Init(SHA2_CTX *context)
974 {
975 memcpy(context->state.st64, sha512_256_initial_hash_value,
976 sizeof(sha512_256_initial_hash_value));
977 memset(context->buffer, 0, sizeof(context->buffer));
978 context->bitcount[0] = context->bitcount[1] = 0;
979 }
980 DEF_WEAK(SHA512_256Init);
981
982 MAKE_CLONE(SHA512_256Transform, SHA512Transform);
983 MAKE_CLONE(SHA512_256Update, SHA512Update);
984 MAKE_CLONE(SHA512_256Pad, SHA512Pad);
985 DEF_WEAK(SHA512_256Transform);
986 DEF_WEAK(SHA512_256Update);
987 DEF_WEAK(SHA512_256Pad);
988
989 void
990 SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH], SHA2_CTX *context)
991 {
992 SHA512_256Pad(context);
993
994 #if BYTE_ORDER == LITTLE_ENDIAN
995 int i;
996
997 /* Convert TO host byte order */
998 for (i = 0; i < 4; i++)
999 BE_64_TO_8(digest + i * 8, context->state.st64[i]);
1000 #else
1001 memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH);
1002 #endif
1003 /* Zero out state data */
1004 explicit_bzero(context, sizeof(*context));
1005 }
1006 DEF_WEAK(SHA512_256Final);
1007 #endif /* !defined(SHA2_SMALL) */
1008 #endif /* 0 */
1009
1010 #endif /* HAVE_SHA{256,384,512}UPDATE */
1011