/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * Portions of this source code were derived from Berkeley 4.3 BSD * under license from the Regents of the University of California. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * UNIX machine dependent virtual memory support. */ #include <sys/vm.h> #include <sys/exec.h> #include <sys/cmn_err.h> #include <sys/cpu_module.h> #include <sys/cpu.h> #include <sys/elf_SPARC.h> #include <sys/archsystm.h> #include <vm/hat_sfmmu.h> #include <sys/memnode.h> #include <sys/mem_cage.h> #include <vm/vm_dep.h> #include <sys/error.h> #include <sys/machsystm.h> #include <vm/seg_kmem.h> #include <sys/stack.h> #include <sys/atomic.h> uint_t page_colors = 0; uint_t page_colors_mask = 0; uint_t page_coloring_shift = 0; int consistent_coloring; uint_t mmu_page_sizes = MMU_PAGE_SIZES; uint_t max_mmu_page_sizes = MMU_PAGE_SIZES; uint_t mmu_hashcnt = MAX_HASHCNT; uint_t max_mmu_hashcnt = MAX_HASHCNT; size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE; /* * A bitmask of the page sizes supported by hardware based upon szc. * The base pagesize (p_szc == 0) must always be supported by the hardware. */ int mmu_exported_pagesize_mask; uint_t mmu_exported_page_sizes; uint_t szc_2_userszc[MMU_PAGE_SIZES]; uint_t userszc_2_szc[MMU_PAGE_SIZES]; extern uint_t vac_colors_mask; extern int vac_shift; hw_pagesize_t hw_page_array[] = { {MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT}, {MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0, MMU_PAGESIZE64K >> MMU_PAGESHIFT}, {MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0, MMU_PAGESIZE512K >> MMU_PAGESHIFT}, {MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT}, {MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0, MMU_PAGESIZE32M >> MMU_PAGESHIFT}, {MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0, MMU_PAGESIZE256M >> MMU_PAGESHIFT}, {0, 0, 0, 0} }; /* * Maximum and default segment size tunables for user heap, stack, private * and shared anonymous memory, and user text and initialized data. */ size_t max_uheap_lpsize = MMU_PAGESIZE64K; size_t default_uheap_lpsize = MMU_PAGESIZE64K; size_t max_ustack_lpsize = MMU_PAGESIZE64K; size_t default_ustack_lpsize = MMU_PAGESIZE64K; size_t max_privmap_lpsize = MMU_PAGESIZE64K; size_t max_uidata_lpsize = MMU_PAGESIZE64K; size_t max_utext_lpsize = MMU_PAGESIZE4M; size_t max_shm_lpsize = MMU_PAGESIZE4M; /* * map_addr_proc() is the routine called when the system is to * choose an address for the user. We will pick an address * range which is just below the current stack limit. The * algorithm used for cache consistency on machines with virtual * address caches is such that offset 0 in the vnode is always * on a shm_alignment'ed aligned address. Unfortunately, this * means that vnodes which are demand paged will not be mapped * cache consistently with the executable images. When the * cache alignment for a given object is inconsistent, the * lower level code must manage the translations so that this * is not seen here (at the cost of efficiency, of course). * * addrp is a value/result parameter. * On input it is a hint from the user to be used in a completely * machine dependent fashion. For MAP_ALIGN, addrp contains the * minimal alignment. * * On output it is NULL if no address can be found in the current * processes address space or else an address that is currently * not mapped for len bytes with a page of red zone on either side. * If vacalign is true, then the selected address will obey the alignment * constraints of a vac machine based on the given off value. */ /*ARGSUSED3*/ void map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign, caddr_t userlimit, struct proc *p, uint_t flags) { struct as *as = p->p_as; caddr_t addr; caddr_t base; size_t slen; uintptr_t align_amount; int allow_largepage_alignment = 1; base = p->p_brkbase; if (userlimit < as->a_userlimit) { /* * This happens when a program wants to map something in * a range that's accessible to a program in a smaller * address space. For example, a 64-bit program might * be calling mmap32(2) to guarantee that the returned * address is below 4Gbytes. */ ASSERT(userlimit > base); slen = userlimit - base; } else { slen = p->p_usrstack - base - (((size_t)rctl_enforced_value( rctlproc_legacy[RLIMIT_STACK], p->p_rctls, p) + PAGEOFFSET) & PAGEMASK); } len = (len + PAGEOFFSET) & PAGEMASK; /* * Redzone for each side of the request. This is done to leave * one page unmapped between segments. This is not required, but * it's useful for the user because if their program strays across * a segment boundary, it will catch a fault immediately making * debugging a little easier. */ len += (2 * PAGESIZE); /* * If the request is larger than the size of a particular * mmu level, then we use that level to map the request. * But this requires that both the virtual and the physical * addresses be aligned with respect to that level, so we * do the virtual bit of nastiness here. * * For 32-bit processes, only those which have specified * MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise * we can potentially waste up to 256MB of the 4G process address * space just for alignment. * * XXXQ Should iterate trough hw_page_array here to catch * all supported pagesizes */ if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 || ((uintptr_t)*addrp) != 0)) { allow_largepage_alignment = 0; } if ((mmu_page_sizes == max_mmu_page_sizes) && allow_largepage_alignment && (len >= MMU_PAGESIZE256M)) { /* 256MB mappings */ align_amount = MMU_PAGESIZE256M; } else if ((mmu_page_sizes == max_mmu_page_sizes) && allow_largepage_alignment && (len >= MMU_PAGESIZE32M)) { /* 32MB mappings */ align_amount = MMU_PAGESIZE32M; } else if (len >= MMU_PAGESIZE4M) { /* 4MB mappings */ align_amount = MMU_PAGESIZE4M; } else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */ align_amount = MMU_PAGESIZE512K; } else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */ align_amount = MMU_PAGESIZE64K; } else { /* * Align virtual addresses on a 64K boundary to ensure * that ELF shared libraries are mapped with the appropriate * alignment constraints by the run-time linker. */ align_amount = ELF_SPARC_MAXPGSZ; if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) && ((uintptr_t)*addrp < align_amount)) align_amount = (uintptr_t)*addrp; } /* * 64-bit processes require 1024K alignment of ELF shared libraries. */ if (p->p_model == DATAMODEL_LP64) align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ); #ifdef VAC if (vac && vacalign && (align_amount < shm_alignment)) align_amount = shm_alignment; #endif if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) { align_amount = (uintptr_t)*addrp; } len += align_amount; /* * Look for a large enough hole starting below the stack limit. * After finding it, use the upper part. Addition of PAGESIZE is * for the redzone as described above. */ as_purge(as); if (as_gap(as, len, &base, &slen, AH_HI, NULL) == 0) { caddr_t as_addr; addr = base + slen - len + PAGESIZE; as_addr = addr; /* * Round address DOWN to the alignment amount, * add the offset, and if this address is less * than the original address, add alignment amount. */ addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l))); addr += (long)(off & (align_amount - 1l)); if (addr < as_addr) { addr += align_amount; } ASSERT(addr <= (as_addr + align_amount)); ASSERT(((uintptr_t)addr & (align_amount - 1l)) == ((uintptr_t)(off & (align_amount - 1l)))); *addrp = addr; } else { *addrp = NULL; /* no more virtual space */ } } /* * Platform-dependent page scrub call. * We call hypervisor to scrub the page. */ void pagescrub(page_t *pp, uint_t off, uint_t len) { uint64_t pa, length; pa = (uint64_t)(pp->p_pagenum << MMU_PAGESHIFT + off); length = (uint64_t)len; (void) mem_scrub(pa, length); } void sync_data_memory(caddr_t va, size_t len) { /* Call memory sync function */ (void) mem_sync(va, len); } size_t mmu_get_kernel_lpsize(size_t lpsize) { extern int mmu_exported_pagesize_mask; uint_t tte; if (lpsize == 0) { /* no setting for segkmem_lpsize in /etc/system: use default */ if (mmu_exported_pagesize_mask & (1 << TTE256M)) { lpsize = MMU_PAGESIZE256M; } else if (mmu_exported_pagesize_mask & (1 << TTE4M)) { lpsize = MMU_PAGESIZE4M; } else if (mmu_exported_pagesize_mask & (1 << TTE64K)) { lpsize = MMU_PAGESIZE64K; } else { lpsize = MMU_PAGESIZE; } return (lpsize); } for (tte = TTE8K; tte <= TTE256M; tte++) { if ((mmu_exported_pagesize_mask & (1 << tte)) == 0) continue; if (lpsize == TTEBYTES(tte)) return (lpsize); } lpsize = TTEBYTES(TTE8K); return (lpsize); } void mmu_init_kcontext() { } /*ARGSUSED*/ void mmu_init_kernel_pgsz(struct hat *hat) { } #define QUANTUM_SIZE 64 static vmem_t *contig_mem_slab_arena; static vmem_t *contig_mem_arena; uint_t contig_mem_slab_size = MMU_PAGESIZE4M; static void * contig_mem_span_alloc(vmem_t *vmp, size_t size, int vmflag) { page_t *ppl; page_t *rootpp; caddr_t addr = NULL; pgcnt_t npages = btopr(size); page_t **ppa; int pgflags; int i = 0; /* * The import request should be at least * contig_mem_slab_size because that is the * slab arena's quantum. The size can be * further restricted since contiguous * allocations larger than contig_mem_slab_size * are not supported here. */ ASSERT(size == contig_mem_slab_size); if ((addr = vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag)) == NULL) { return (NULL); } /* The address should be slab-size aligned. */ ASSERT(((uintptr_t)addr & (contig_mem_slab_size - 1)) == 0); if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { vmem_xfree(vmp, addr, size); return (NULL); } pgflags = PG_EXCL; if ((vmflag & VM_NOSLEEP) == 0) pgflags |= PG_WAIT; if (vmflag & VM_PANIC) pgflags |= PG_PANIC; if (vmflag & VM_PUSHPAGE) pgflags |= PG_PUSHPAGE; ppl = page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, pgflags, &kvseg, addr, NULL); if (ppl == NULL) { vmem_xfree(vmp, addr, size); page_unresv(npages); return (NULL); } rootpp = ppl; ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP); while (ppl != NULL) { page_t *pp = ppl; ppa[i++] = pp; page_sub(&ppl, pp); ASSERT(page_iolock_assert(pp)); page_io_unlock(pp); } /* * Load the locked entry. It's OK to preload the entry into * the TSB since we now support large mappings in the kernel TSB. */ hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size, ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC, HAT_LOAD_LOCK); for (--i; i >= 0; --i) { (void) page_pp_lock(ppa[i], 0, 1); page_unlock(ppa[i]); } kmem_free(ppa, npages * sizeof (page_t *)); return (addr); } void contig_mem_span_free(vmem_t *vmp, void *inaddr, size_t size) { page_t *pp; caddr_t addr = inaddr; caddr_t eaddr; pgcnt_t npages = btopr(size); pgcnt_t pgs_left = npages; page_t *rootpp = NULL; ASSERT(((uintptr_t)addr & (contig_mem_slab_size - 1)) == 0); hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); if (pp == NULL) panic("contig_mem_span_free: page not found"); ASSERT(PAGE_EXCL(pp)); page_pp_unlock(pp, 0, 1); if (rootpp == NULL) rootpp = pp; if (--pgs_left == 0) { /* * similar logic to segspt_free_pages, but we know we * have one large page. */ page_destroy_pages(rootpp); } } page_unresv(npages); if (vmp != NULL) vmem_xfree(vmp, inaddr, size); } static void * contig_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag) { return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag)); } /* * conting_mem_alloc_align allocates real contiguous memory with the specified * alignment upto contig_mem_slab_size. The alignment must be a power of 2. */ void * contig_mem_alloc_align(size_t size, size_t align) { ASSERT(align <= contig_mem_slab_size); if ((align & (align - 1)) != 0) return (NULL); return (vmem_xalloc(contig_mem_arena, size, align, 0, 0, NULL, NULL, VM_NOSLEEP)); } /* * Allocates size aligned contiguous memory upto contig_mem_slab_size. * Size must be a power of 2. */ void * contig_mem_alloc(size_t size) { ASSERT((size & (size - 1)) == 0); return (contig_mem_alloc_align(size, size)); } void contig_mem_free(void *vaddr, size_t size) { vmem_xfree(contig_mem_arena, vaddr, size); } /* * We create a set of stacked vmem arenas to enable us to * allocate large >PAGESIZE chucks of contiguous Real Address space * This is what the Dynamics TSB support does for TSBs. * The contig_mem_arena import functions are exactly the same as the * TSB kmem_default arena import functions. */ void contig_mem_init(void) { contig_mem_slab_arena = vmem_create("contig_mem_slab_arena", NULL, 0, contig_mem_slab_size, contig_vmem_xalloc_aligned_wrapper, vmem_xfree, heap_arena, 0, VM_SLEEP); contig_mem_arena = vmem_create("contig_mem_arena", NULL, 0, QUANTUM_SIZE, contig_mem_span_alloc, contig_mem_span_free, contig_mem_slab_arena, 0, VM_SLEEP | VM_BESTFIT); } static uint_t sp_color_stride = 16; static uint_t sp_color_mask = 0x1f; static uint_t sp_current_color = (uint_t)-1; size_t exec_get_spslew(void) { uint_t spcolor = atomic_inc_32_nv(&sp_current_color); return ((size_t)((spcolor & sp_color_mask) * SA(sp_color_stride))); }