/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Sun4u PCI to PCI bus bridge nexus driver */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define NUM_LOGICAL_SLOTS 32 #define PPB_RANGE_LEN 2 #define PPB_32BIT_IO 1 #define PPB_32bit_MEM 1 #define PPB_MEMGRAIN 0x100000 #define PPB_IOGRAIN 0x1000 #define PPB_16bit_IOADDR(addr) ((uint16_t)(((uint8_t)(addr) & 0xF0) << 8)) #define PPB_LADDR(lo, hi) (((uint16_t)(hi) << 16) | (uint16_t)(lo)) #define PPB_32bit_MEMADDR(addr) (PPB_LADDR(0, ((uint16_t)(addr) & 0xFFF0))) typedef struct slot_table { uchar_t bus_id[128]; uchar_t slot_name[32]; uint8_t device_no; uint8_t phys_slot_num; } slot_table_t; /* * The variable controls the default setting of the command register * for pci devices. See ppb_initchild() for details. */ static ushort_t ppb_command_default = PCI_COMM_SERR_ENABLE | PCI_COMM_WAIT_CYC_ENAB | PCI_COMM_PARITY_DETECT | PCI_COMM_ME | PCI_COMM_MAE | PCI_COMM_IO; static int ppb_bus_map(dev_info_t *, dev_info_t *, ddi_map_req_t *, off_t, off_t, caddr_t *); static int ppb_ctlops(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, void *); static int ppb_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result); /* * fm_init busop to initialize our children */ static int ppb_fm_init_child(dev_info_t *dip, dev_info_t *tdip, int cap, ddi_iblock_cookie_t *ibc); static void ppb_bus_enter(dev_info_t *dip, ddi_acc_handle_t handle); static void ppb_bus_exit(dev_info_t *dip, ddi_acc_handle_t handle); static int ppb_bus_power(dev_info_t *dip, void *impl_arg, pm_bus_power_op_t op, void *arg, void *result); struct bus_ops ppb_bus_ops = { BUSO_REV, ppb_bus_map, 0, 0, 0, i_ddi_map_fault, ddi_dma_map, ddi_dma_allochdl, ddi_dma_freehdl, ddi_dma_bindhdl, ddi_dma_unbindhdl, ddi_dma_flush, ddi_dma_win, ddi_dma_mctl, ppb_ctlops, ddi_bus_prop_op, ndi_busop_get_eventcookie, /* (*bus_get_eventcookie)(); */ ndi_busop_add_eventcall, /* (*bus_add_eventcall)(); */ ndi_busop_remove_eventcall, /* (*bus_remove_eventcall)(); */ ndi_post_event, /* (*bus_post_event)(); */ 0, /* (*bus_intr_ctl)(); */ 0, /* (*bus_config)(); */ 0, /* (*bus_unconfig)(); */ ppb_fm_init_child, /* (*bus_fm_init)(); */ NULL, /* (*bus_fm_fini)(); */ ppb_bus_enter, /* (*bus_enter)() */ ppb_bus_exit, /* (*bus_exit)() */ ppb_bus_power, /* (*bus_power)() */ ppb_intr_ops /* (*bus_intr_op)(); */ }; static int ppb_open(dev_t *devp, int flags, int otyp, cred_t *credp); static int ppb_close(dev_t dev, int flags, int otyp, cred_t *credp); static int ppb_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp); static int ppb_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int flags, char *name, caddr_t valuep, int *lengthp); static struct cb_ops ppb_cb_ops = { ppb_open, /* open */ ppb_close, /* close */ nulldev, /* strategy */ nulldev, /* print */ nulldev, /* dump */ nulldev, /* read */ nulldev, /* write */ ppb_ioctl, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* poll */ ppb_prop_op, /* cb_prop_op */ NULL, /* streamtab */ D_NEW | D_MP | D_HOTPLUG, /* Driver compatibility flag */ CB_REV, /* rev */ nodev, /* int (*cb_aread)() */ nodev /* int (*cb_awrite)() */ }; static int ppb_probe(dev_info_t *); static int ppb_attach(dev_info_t *devi, ddi_attach_cmd_t cmd); static int ppb_detach(dev_info_t *devi, ddi_detach_cmd_t cmd); static int ppb_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result); static int ppb_pwr(dev_info_t *dip, int component, int level); struct dev_ops ppb_ops = { DEVO_REV, /* devo_rev */ 0, /* refcnt */ ppb_info, /* info */ nulldev, /* identify */ ppb_probe, /* probe */ ppb_attach, /* attach */ ppb_detach, /* detach */ nulldev, /* reset */ &ppb_cb_ops, /* driver operations */ &ppb_bus_ops, /* bus operations */ ppb_pwr }; /* * Module linkage information for the kernel. */ static struct modldrv modldrv = { &mod_driverops, /* Type of module */ "Standard PCI to PCI bridge nexus driver %I%", &ppb_ops, /* driver ops */ }; static struct modlinkage modlinkage = { MODREV_1, (void *)&modldrv, NULL }; /* * soft state pointer and structure template: */ static void *ppb_state; struct ppb_cfg_state { dev_info_t *dip; ushort_t command; uchar_t cache_line_size; uchar_t latency_timer; uchar_t header_type; uchar_t sec_latency_timer; ushort_t bridge_control; }; typedef struct { dev_info_t *dip; /* * configuration register state for the bus: */ uchar_t ppb_cache_line_size; uchar_t ppb_latency_timer; /* * PM support */ ddi_acc_handle_t ppb_conf_hdl; uint16_t ppb_pm_cap_ptr; pci_pwr_t *ppb_pwr_p; /* * HP support */ boolean_t hotplug_capable; kmutex_t ppb_mutex; uint_t ppb_soft_state; #define PPB_SOFT_STATE_CLOSED 0x00 #define PPB_SOFT_STATE_OPEN 0x01 #define PPB_SOFT_STATE_OPEN_EXCL 0x02 int fm_cap; ddi_iblock_cookie_t fm_ibc; uint8_t parent_bus; } ppb_devstate_t; /* * The following variable enables a workaround for the following obp bug: * * 1234181 - obp should set latency timer registers in pci * configuration header * * Until this bug gets fixed in the obp, the following workaround should * be enabled. */ static uint_t ppb_set_latency_timer_register = 1; /* * The following variable enables a workaround for an obp bug to be * submitted. A bug requesting a workaround fof this problem has * been filed: * * 1235094 - need workarounds on positron nexus drivers to set cache * line size registers * * Until this bug gets fixed in the obp, the following workaround should * be enabled. */ static uint_t ppb_set_cache_line_size_register = 1; /* * forward function declarations: */ /* * FMA error callback * Register error handling callback with our parent. We will just call * our children's error callbacks and return their status. */ static int ppb_err_callback(dev_info_t *dip, ddi_fm_error_t *derr, const void *impl_data); /* * init/fini routines to alloc/dealloc fm structures and * register/unregister our callback. */ static void ppb_fm_init(ppb_devstate_t *ppb_p); static void ppb_fm_fini(ppb_devstate_t *ppb_p); static void ppb_removechild(dev_info_t *); static int ppb_initchild(dev_info_t *child); static void ppb_uninitchild(dev_info_t *child); static dev_info_t *get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip); static void ppb_pwr_setup(ppb_devstate_t *ppb, dev_info_t *dip); static void ppb_pwr_teardown(ppb_devstate_t *ppb, dev_info_t *dip); static void ppb_init_hotplug(ppb_devstate_t *ppb); static void ppb_create_ranges_prop(dev_info_t *, ddi_acc_handle_t); uint64_t pci_debug_flags = 0; int _init(void) { int e; if ((e = ddi_soft_state_init(&ppb_state, sizeof (ppb_devstate_t), 1)) == 0 && (e = mod_install(&modlinkage)) != 0) ddi_soft_state_fini(&ppb_state); return (e); } int _fini(void) { int e; if ((e = mod_remove(&modlinkage)) == 0) ddi_soft_state_fini(&ppb_state); return (e); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } /*ARGSUSED*/ static int ppb_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { ppb_devstate_t *ppb_p; /* per ppb state pointer */ minor_t minor = getminor((dev_t)arg); int instance = PCIHP_AP_MINOR_NUM_TO_INSTANCE(minor); ppb_p = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, instance); switch (infocmd) { default: return (DDI_FAILURE); case DDI_INFO_DEVT2INSTANCE: *result = (void *)(uintptr_t)instance; return (DDI_SUCCESS); case DDI_INFO_DEVT2DEVINFO: if (ppb_p == NULL) return (DDI_FAILURE); *result = (void *)ppb_p->dip; return (DDI_SUCCESS); } } /*ARGSUSED*/ static int ppb_probe(register dev_info_t *devi) { return (DDI_PROBE_SUCCESS); } /*ARGSUSED*/ static int ppb_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) { int instance; ppb_devstate_t *ppb; ddi_acc_handle_t config_handle; switch (cmd) { case DDI_ATTACH: /* * Make sure the "device_type" property exists. */ (void) ddi_prop_update_string(DDI_DEV_T_NONE, devi, "device_type", "pci"); /* * Allocate and get soft state structure. */ instance = ddi_get_instance(devi); if (ddi_soft_state_zalloc(ppb_state, instance) != DDI_SUCCESS) return (DDI_FAILURE); ppb = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, instance); ppb->dip = devi; mutex_init(&ppb->ppb_mutex, NULL, MUTEX_DRIVER, NULL); ppb->ppb_soft_state = PPB_SOFT_STATE_CLOSED; if (pci_config_setup(devi, &config_handle) != DDI_SUCCESS) { mutex_destroy(&ppb->ppb_mutex); ddi_soft_state_free(ppb_state, instance); return (DDI_FAILURE); } ppb_pwr_setup(ppb, devi); if (PM_CAPABLE(ppb->ppb_pwr_p)) { mutex_enter(&ppb->ppb_pwr_p->pwr_mutex); /* * Before reading config registers, make sure power is * on, and remains on. */ ppb->ppb_pwr_p->pwr_fp++; pci_pwr_change(ppb->ppb_pwr_p, ppb->ppb_pwr_p->current_lvl, pci_pwr_new_lvl(ppb->ppb_pwr_p)); } ppb->ppb_cache_line_size = pci_config_get8(config_handle, PCI_CONF_CACHE_LINESZ); ppb->ppb_latency_timer = pci_config_get8(config_handle, PCI_CONF_LATENCY_TIMER); /* * Check whether the "ranges" property is present. * Otherwise create the ranges property by reading * the configuration registers */ if (ddi_prop_exists(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, "ranges") == 0) { ppb_create_ranges_prop(devi, config_handle); } pci_config_teardown(&config_handle); if (PM_CAPABLE(ppb->ppb_pwr_p)) { ppb->ppb_pwr_p->pwr_fp--; pci_pwr_change(ppb->ppb_pwr_p, ppb->ppb_pwr_p->current_lvl, pci_pwr_new_lvl(ppb->ppb_pwr_p)); mutex_exit(&ppb->ppb_pwr_p->pwr_mutex); } /* * Initialize hotplug support on this bus. At minimum * (for non hotplug bus) this would create ":devctl" minor * node to support DEVCTL_DEVICE_* and DEVCTL_BUS_* ioctls * to this bus. This all takes place if this nexus has hot-plug * slots and successfully initializes Hot Plug Framework. */ ppb->hotplug_capable = B_FALSE; ppb_init_hotplug(ppb); if (ppb->hotplug_capable == B_FALSE) { /* * create minor node for devctl interfaces */ if (ddi_create_minor_node(devi, "devctl", S_IFCHR, PCIHP_AP_MINOR_NUM(instance, PCIHP_DEVCTL_MINOR), DDI_NT_NEXUS, 0) != DDI_SUCCESS) { if (ppb->ppb_pwr_p != NULL) { ppb_pwr_teardown(ppb, devi); } mutex_destroy(&ppb->ppb_mutex); ddi_soft_state_free(ppb_state, instance); return (DDI_FAILURE); } } DEBUG1(DBG_ATTACH, devi, "ppb_attach(): this nexus %s hotplug slots\n", ppb->hotplug_capable == B_TRUE ? "has":"has no"); ppb_fm_init(ppb); ddi_report_dev(devi); return (DDI_SUCCESS); case DDI_RESUME: /* * Get the soft state structure for the bridge. */ ppb = (ppb_devstate_t *) ddi_get_soft_state(ppb_state, ddi_get_instance(devi)); pci_pwr_resume(devi, ppb->ppb_pwr_p); return (DDI_SUCCESS); } return (DDI_FAILURE); } /*ARGSUSED*/ static int ppb_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) { ppb_devstate_t *ppb; switch (cmd) { case DDI_DETACH: /* * And finally free the per-pci soft state after * uninitializing hotplug support for this bus. */ ppb = (ppb_devstate_t *) ddi_get_soft_state(ppb_state, ddi_get_instance(devi)); ppb_fm_fini(ppb); if (ppb->hotplug_capable == B_TRUE) if (pcihp_uninit(devi) == DDI_FAILURE) return (DDI_FAILURE); else ddi_remove_minor_node(devi, "devctl"); (void) ddi_prop_remove(DDI_DEV_T_NONE, devi, "device_type"); if (ppb->ppb_pwr_p != NULL) { ppb_pwr_teardown(ppb, devi); } mutex_destroy(&ppb->ppb_mutex); ddi_soft_state_free(ppb_state, ddi_get_instance(devi)); return (DDI_SUCCESS); case DDI_SUSPEND: ppb = (ppb_devstate_t *) ddi_get_soft_state(ppb_state, ddi_get_instance(devi)); pci_pwr_suspend(devi, ppb->ppb_pwr_p); return (DDI_SUCCESS); } return (DDI_FAILURE); } /*ARGSUSED*/ static int ppb_bus_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset, off_t len, caddr_t *vaddrp) { register dev_info_t *pdip; pdip = (dev_info_t *)DEVI(dip)->devi_parent; return ((DEVI(pdip)->devi_ops->devo_bus_ops->bus_map) (pdip, rdip, mp, offset, len, vaddrp)); } /*ARGSUSED*/ static int ppb_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop, void *arg, void *result) { pci_regspec_t *drv_regp; int reglen; int rn; struct attachspec *as; struct detachspec *ds; int totreg; ppb_devstate_t *ppb_p; ppb_p = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, ddi_get_instance(dip)); switch (ctlop) { case DDI_CTLOPS_REPORTDEV: if (rdip == (dev_info_t *)0) return (DDI_FAILURE); cmn_err(CE_CONT, "?PCI-device: %s@%s, %s%d\n", ddi_node_name(rdip), ddi_get_name_addr(rdip), ddi_driver_name(rdip), ddi_get_instance(rdip)); return (DDI_SUCCESS); case DDI_CTLOPS_INITCHILD: return (ppb_initchild((dev_info_t *)arg)); case DDI_CTLOPS_UNINITCHILD: ppb_uninitchild((dev_info_t *)arg); return (DDI_SUCCESS); case DDI_CTLOPS_ATTACH: if (!pcie_is_child(dip, rdip)) return (DDI_SUCCESS); as = (struct attachspec *)arg; if ((ppb_p->parent_bus == PCIE_PCIECAP_DEV_TYPE_PCIE_DEV) && (as->when == DDI_POST) && (as->result == DDI_SUCCESS)) pf_init(rdip, ppb_p->fm_ibc, as->cmd); return (DDI_SUCCESS); case DDI_CTLOPS_DETACH: if (!pcie_is_child(dip, rdip)) return (DDI_SUCCESS); ds = (struct detachspec *)arg; if ((ppb_p->parent_bus == PCIE_PCIECAP_DEV_TYPE_PCIE_DEV) && (ds->when == DDI_PRE)) pf_fini(rdip, ds->cmd); return (DDI_SUCCESS); case DDI_CTLOPS_SIDDEV: return (DDI_SUCCESS); case DDI_CTLOPS_REGSIZE: case DDI_CTLOPS_NREGS: if (rdip == (dev_info_t *)0) return (DDI_FAILURE); break; default: return (ddi_ctlops(dip, rdip, ctlop, arg, result)); } *(int *)result = 0; if (ddi_getlongprop(DDI_DEV_T_ANY, rdip, DDI_PROP_DONTPASS | DDI_PROP_CANSLEEP, "reg", (caddr_t)&drv_regp, ®len) != DDI_SUCCESS) return (DDI_FAILURE); totreg = reglen / sizeof (pci_regspec_t); if (ctlop == DDI_CTLOPS_NREGS) *(int *)result = totreg; else if (ctlop == DDI_CTLOPS_REGSIZE) { rn = *(int *)arg; if (rn >= totreg) { kmem_free(drv_regp, reglen); return (DDI_FAILURE); } *(off_t *)result = drv_regp[rn].pci_size_low | ((uint64_t)drv_regp[rn].pci_size_hi << 32); } kmem_free(drv_regp, reglen); return (DDI_SUCCESS); } static dev_info_t * get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip) { dev_info_t *cdip = rdip; for (; ddi_get_parent(cdip) != dip; cdip = ddi_get_parent(cdip)) ; return (cdip); } static int ppb_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result) { dev_info_t *cdip = rdip; pci_regspec_t *pci_rp; int reglen, len; uint32_t d, intr; if (hdlp->ih_type != DDI_INTR_TYPE_FIXED) goto done; /* * If the interrupt-map property is defined at this * node, it will have performed the interrupt * translation as part of the property, so no * rotation needs to be done. */ if (ddi_getproplen(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "interrupt-map", &len) == DDI_PROP_SUCCESS) goto done; cdip = get_my_childs_dip(dip, rdip); /* * Use the devices reg property to determine its * PCI bus number and device number. */ if (ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, "reg", (caddr_t)&pci_rp, ®len) != DDI_SUCCESS) return (DDI_FAILURE); intr = hdlp->ih_vector; /* Spin the interrupt */ d = PCI_REG_DEV_G(pci_rp[0].pci_phys_hi); if ((intr >= PCI_INTA) && (intr <= PCI_INTD)) hdlp->ih_vector = ((intr - 1 + (d % 4)) % 4 + 1); else cmn_err(CE_WARN, "%s%d: %s: PCI intr=%x out of range", ddi_driver_name(rdip), ddi_get_instance(rdip), ddi_driver_name(dip), intr); kmem_free(pci_rp, reglen); done: /* Pass up the request to our parent. */ return (i_ddi_intr_ops(dip, rdip, intr_op, hdlp, result)); } static int ppb_bus_power(dev_info_t *dip, void *impl_arg, pm_bus_power_op_t op, void *arg, void *result) { ppb_devstate_t *ppb; ppb = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, ddi_get_instance(dip)); return (pci_pwr_ops(ppb->ppb_pwr_p, dip, impl_arg, op, arg, result)); } /* * name_child * * This function is called from init_child to name a node. It is * also passed as a callback for node merging functions. * * return value: DDI_SUCCESS, DDI_FAILURE */ static int ppb_name_child(dev_info_t *child, char *name, int namelen) { pci_regspec_t *pci_rp; uint_t slot, func; char **unit_addr; uint_t n; /* * Pseudo nodes indicate a prototype node with per-instance * properties to be merged into the real h/w device node. * The interpretation of the unit-address is DD[,F] * where DD is the device id and F is the function. */ if (ndi_dev_is_persistent_node(child) == 0) { if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, "unit-address", &unit_addr, &n) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "cannot name node from %s.conf", ddi_driver_name(child)); return (DDI_FAILURE); } if (n != 1 || *unit_addr == NULL || **unit_addr == 0) { cmn_err(CE_WARN, "unit-address property in %s.conf" " not well-formed", ddi_driver_name(child)); ddi_prop_free(unit_addr); return (DDI_FAILURE); } (void) snprintf(name, namelen, "%s", *unit_addr); ddi_prop_free(unit_addr); return (DDI_SUCCESS); } /* * Get the address portion of the node name based on * the function and device number. */ if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, "reg", (int **)&pci_rp, &n) != DDI_SUCCESS) { return (DDI_FAILURE); } slot = PCI_REG_DEV_G(pci_rp[0].pci_phys_hi); func = PCI_REG_FUNC_G(pci_rp[0].pci_phys_hi); if (func != 0) (void) snprintf(name, namelen, "%x,%x", slot, func); else (void) snprintf(name, namelen, "%x", slot); ddi_prop_free(pci_rp); return (DDI_SUCCESS); } static int ppb_initchild(dev_info_t *child) { char name[MAXNAMELEN]; ddi_acc_handle_t config_handle; ushort_t command_preserve, command; uint_t n; ushort_t bcr; uchar_t header_type; uchar_t min_gnt, latency_timer; ppb_devstate_t *ppb; /* * Name the child */ if (ppb_name_child(child, name, MAXNAMELEN) != DDI_SUCCESS) return (DDI_FAILURE); ddi_set_name_addr(child, name); ddi_set_parent_data(child, NULL); /* * Pseudo nodes indicate a prototype node with per-instance * properties to be merged into the real h/w device node. * The interpretation of the unit-address is DD[,F] * where DD is the device id and F is the function. */ if (ndi_dev_is_persistent_node(child) == 0) { extern int pci_allow_pseudo_children; /* * Try to merge the properties from this prototype * node into real h/w nodes. */ if (ndi_merge_node(child, ppb_name_child) == DDI_SUCCESS) { /* * Merged ok - return failure to remove the node. */ ppb_removechild(child); return (DDI_FAILURE); } /* workaround for ddivs to run under PCI */ if (pci_allow_pseudo_children) return (DDI_SUCCESS); /* * The child was not merged into a h/w node, * but there's not much we can do with it other * than return failure to cause the node to be removed. */ cmn_err(CE_WARN, "!%s@%s: %s.conf properties not merged", ddi_driver_name(child), ddi_get_name_addr(child), ddi_driver_name(child)); ppb_removechild(child); return (DDI_NOT_WELL_FORMED); } ppb = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, ddi_get_instance(ddi_get_parent(child))); ddi_set_parent_data(child, NULL); /* * If hardware is PM capable, set up the power info structure. * This also ensures the the bus will not be off (0MHz) otherwise * system panics during a bus access. */ if (PM_CAPABLE(ppb->ppb_pwr_p)) { /* * Create a pwr_info struct for child. Bus will be * at full speed after creating info. */ pci_pwr_create_info(ppb->ppb_pwr_p, child); #ifdef DEBUG ASSERT(ppb->ppb_pwr_p->current_lvl == PM_LEVEL_B0); #endif } /* * If configuration registers were previously saved by * child (before it entered D3), then let the child do the * restore to set up the config regs as it'll first need to * power the device out of D3. */ if (ddi_prop_exists(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, "config-regs-saved-by-child") == 1) { DEBUG2(DBG_PWR, ddi_get_parent(child), "INITCHILD: config regs to be restored by child" " for %s@%s\n", ddi_node_name(child), ddi_get_name_addr(child)); return (DDI_SUCCESS); } DEBUG2(DBG_PWR, ddi_get_parent(child), "INITCHILD: config regs setup for %s@%s\n", ddi_node_name(child), ddi_get_name_addr(child)); if (pci_config_setup(child, &config_handle) != DDI_SUCCESS) { if (PM_CAPABLE(ppb->ppb_pwr_p)) { pci_pwr_rm_info(ppb->ppb_pwr_p, child); } return (DDI_FAILURE); } /* * Determine the configuration header type. */ header_type = pci_config_get8(config_handle, PCI_CONF_HEADER); /* * Support for the "command-preserve" property. */ command_preserve = ddi_prop_get_int(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, "command-preserve", 0); command = pci_config_get16(config_handle, PCI_CONF_COMM); command &= (command_preserve | PCI_COMM_BACK2BACK_ENAB); command |= (ppb_command_default & ~command_preserve); pci_config_put16(config_handle, PCI_CONF_COMM, command); /* * If the device has a bus control register then program it * based on the settings in the command register. */ if ((header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE) { bcr = pci_config_get8(config_handle, PCI_BCNF_BCNTRL); if (ppb_command_default & PCI_COMM_PARITY_DETECT) bcr |= PCI_BCNF_BCNTRL_PARITY_ENABLE; if (ppb_command_default & PCI_COMM_SERR_ENABLE) bcr |= PCI_BCNF_BCNTRL_SERR_ENABLE; bcr |= PCI_BCNF_BCNTRL_MAST_AB_MODE; pci_config_put8(config_handle, PCI_BCNF_BCNTRL, bcr); } /* * Initialize cache-line-size configuration register if needed. */ if (ppb_set_cache_line_size_register && ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, "cache-line-size", 0) == 0) { pci_config_put8(config_handle, PCI_CONF_CACHE_LINESZ, ppb->ppb_cache_line_size); n = pci_config_get8(config_handle, PCI_CONF_CACHE_LINESZ); if (n != 0) { (void) ndi_prop_update_int(DDI_DEV_T_NONE, child, "cache-line-size", n); } } /* * Initialize latency timer configuration registers if needed. */ if (ppb_set_latency_timer_register && ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, "latency-timer", 0) == 0) { if ((header_type & PCI_HEADER_TYPE_M) == PCI_HEADER_ONE) { latency_timer = ppb->ppb_latency_timer; pci_config_put8(config_handle, PCI_BCNF_LATENCY_TIMER, ppb->ppb_latency_timer); } else { min_gnt = pci_config_get8(config_handle, PCI_CONF_MIN_G); latency_timer = min_gnt * 8; } pci_config_put8(config_handle, PCI_CONF_LATENCY_TIMER, latency_timer); n = pci_config_get8(config_handle, PCI_CONF_LATENCY_TIMER); if (n != 0) { (void) ndi_prop_update_int(DDI_DEV_T_NONE, child, "latency-timer", n); } } /* * SPARC PCIe FMA specific * * Note: parent_data for parent is created only if this is sparc PCI-E * platform, for which, SG take a different route to handle device * errors. */ if (ppb->parent_bus == PCIE_PCIECAP_DEV_TYPE_PCIE_DEV) { if (pcie_init_ppd(child) == NULL) { pci_config_teardown(&config_handle); return (DDI_FAILURE); } } /* * Check to see if the XMITS/PCI-X workaround applies. */ n = ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_NOTPROM, "pcix-update-cmd-reg", -1); if (n != -1) { extern void pcix_set_cmd_reg(dev_info_t *child, uint16_t value); DEBUG1(DBG_INIT_CLD, child, "Turning on XMITS NCPQ " "Workaround: value = %x\n", n); pcix_set_cmd_reg(child, n); } pci_config_teardown(&config_handle); return (DDI_SUCCESS); } static void ppb_uninitchild(dev_info_t *child) { ppb_devstate_t *ppb; ppb = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, ddi_get_instance(ddi_get_parent(child))); /* * SG OPL FMA specific */ if (ppb->parent_bus == PCIE_PCIECAP_DEV_TYPE_PCIE_DEV) pcie_uninit_ppd(child); ppb_removechild(child); } static void ppb_removechild(dev_info_t *dip) { ppb_devstate_t *ppb; ppb = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, ddi_get_instance(ddi_get_parent(dip))); if (PM_CAPABLE(ppb->ppb_pwr_p)) { DEBUG2(DBG_PWR, ddi_get_parent(dip), "UNINITCHILD: removing pwr_info for %s@%s\n", ddi_node_name(dip), ddi_get_name_addr(dip)); pci_pwr_rm_info(ppb->ppb_pwr_p, dip); } ddi_set_name_addr(dip, NULL); /* * Strip the node to properly convert it back to prototype form */ ddi_remove_minor_node(dip, NULL); impl_rem_dev_props(dip); } /* * If bridge is PM capable, set up PM state for nexus. */ static void ppb_pwr_setup(ppb_devstate_t *ppb, dev_info_t *pdip) { char *comp_array[5]; int i; ddi_acc_handle_t conf_hdl; uint8_t pmcsr_bse; uint16_t pmcap; /* * Determine if bridge is PM capable. If not, leave ppb_pwr_p NULL * and return. */ if (pci_config_setup(pdip, &ppb->ppb_conf_hdl) != DDI_SUCCESS) { return; } conf_hdl = ppb->ppb_conf_hdl; /* * Locate and store the power management cap_ptr for future references. */ if ((PCI_CAP_LOCATE(conf_hdl, PCI_CAP_ID_PM, &ppb->ppb_pm_cap_ptr)) == DDI_FAILURE) { DEBUG0(DBG_PWR, pdip, "bridge does not support PM. PCI" " PM data structure not found in config header\n"); pci_config_teardown(&conf_hdl); return; } /* * Allocate PM state structure for ppb. */ ppb->ppb_pwr_p = (pci_pwr_t *) kmem_zalloc(sizeof (pci_pwr_t), KM_SLEEP); ppb->ppb_pwr_p->pwr_fp = 0; pmcsr_bse = PCI_CAP_GET8(conf_hdl, NULL, ppb->ppb_pm_cap_ptr, PCI_PMCSR_BSE); pmcap = PCI_CAP_GET16(conf_hdl, NULL, ppb->ppb_pm_cap_ptr, PCI_PMCAP); if (pmcap == PCI_CAP_EINVAL16 || pmcsr_bse == PCI_CAP_EINVAL8) { pci_config_teardown(&conf_hdl); return; } if (pmcap & PCI_PMCAP_D1) { DEBUG0(DBG_PWR, pdip, "setup: B1 state supported\n"); ppb->ppb_pwr_p->pwr_flags |= PCI_PWR_B1_CAPABLE; } else { DEBUG0(DBG_PWR, pdip, "setup: B1 state NOT supported\n"); } if (pmcap & PCI_PMCAP_D2) { DEBUG0(DBG_PWR, pdip, "setup: B2 state supported\n"); ppb->ppb_pwr_p->pwr_flags |= PCI_PWR_B2_CAPABLE; } else { DEBUG0(DBG_PWR, pdip, "setup: B2 via D2 NOT supported\n"); } if (pmcsr_bse & PCI_PMCSR_BSE_BPCC_EN) { DEBUG0(DBG_PWR, pdip, "setup: bridge power/clock control enable\n"); } else { DEBUG0(DBG_PWR, pdip, "setup: bridge power/clock control disabled\n"); kmem_free(ppb->ppb_pwr_p, sizeof (pci_pwr_t)); ppb->ppb_pwr_p = NULL; pci_config_teardown(&conf_hdl); return; } /* * PCI states D0 and D3 always are supported for normal PCI * devices. D1 and D2 are optional which are checked for above. * Bridge function states D0-D3 correspond to secondary bus states * B0-B3, EXCEPT if PCI_PMCSR_BSE_B2_B3 is set. In this case, setting * the bridge function to D3 will set the bridge bus to state B2 instead * of B3. D2 will not correspond to B2 (and in fact, probably * won't be D2 capable). Implicitly, this means that if * PCI_PMCSR_BSE_B2_B3 is set, the bus will not be B3 capable. */ if (pmcsr_bse & PCI_PMCSR_BSE_B2_B3) { ppb->ppb_pwr_p->pwr_flags |= PCI_PWR_B2_CAPABLE; DEBUG0(DBG_PWR, pdip, "B2 supported via D3\n"); } else { ppb->ppb_pwr_p->pwr_flags |= PCI_PWR_B3_CAPABLE; DEBUG0(DBG_PWR, pdip, "B3 supported via D3\n"); } ppb->ppb_pwr_p->pwr_dip = pdip; mutex_init(&ppb->ppb_pwr_p->pwr_mutex, NULL, MUTEX_DRIVER, NULL); i = 0; comp_array[i++] = "NAME=PCI bridge PM"; if (ppb->ppb_pwr_p->pwr_flags & PCI_PWR_B3_CAPABLE) { comp_array[i++] = "0=Clock/Power Off (B3)"; } if (ppb->ppb_pwr_p->pwr_flags & PCI_PWR_B2_CAPABLE) { comp_array[i++] = "1=Clock Off (B2)"; } if (ppb->ppb_pwr_p->pwr_flags & PCI_PWR_B1_CAPABLE) { comp_array[i++] = "2=Bus Inactive (B1)"; } comp_array[i++] = "3=Full Power (B0)"; /* * Create pm-components property. It does not already exist. */ if (ddi_prop_update_string_array(DDI_DEV_T_NONE, pdip, "pm-components", comp_array, i) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "%s%d pm-components prop update failed", ddi_driver_name(pdip), ddi_get_instance(pdip)); pci_config_teardown(&conf_hdl); mutex_destroy(&ppb->ppb_pwr_p->pwr_mutex); kmem_free(ppb->ppb_pwr_p, sizeof (pci_pwr_t)); ppb->ppb_pwr_p = NULL; return; } if (ddi_prop_create(DDI_DEV_T_NONE, pdip, DDI_PROP_CANSLEEP, "pm-want-child-notification?", NULL, NULL) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "%s%d fail to create pm-want-child-notification? prop", ddi_driver_name(pdip), ddi_get_instance(pdip)); (void) ddi_prop_remove(DDI_DEV_T_NONE, pdip, "pm-components"); pci_config_teardown(&conf_hdl); mutex_destroy(&ppb->ppb_pwr_p->pwr_mutex); kmem_free(ppb->ppb_pwr_p, sizeof (pci_pwr_t)); ppb->ppb_pwr_p = NULL; return; } ppb->ppb_pwr_p->current_lvl = pci_pwr_current_lvl(ppb->ppb_pwr_p); } /* * Remove PM state for nexus. */ static void ppb_pwr_teardown(ppb_devstate_t *ppb, dev_info_t *dip) { int low_lvl; /* * Determine the lowest power level supported. */ if (ppb->ppb_pwr_p->pwr_flags & PCI_PWR_B3_CAPABLE) { low_lvl = PM_LEVEL_B3; } else { low_lvl = PM_LEVEL_B2; } if (pm_lower_power(dip, PCI_PM_COMP_0, low_lvl) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d failed to lower power", ddi_driver_name(dip), ddi_get_instance(dip)); } pci_config_teardown(&ppb->ppb_conf_hdl); mutex_destroy(&ppb->ppb_pwr_p->pwr_mutex); kmem_free(ppb->ppb_pwr_p, sizeof (pci_pwr_t)); if (ddi_prop_remove(DDI_DEV_T_NONE, dip, "pm-components") != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "%s%d unable to remove prop pm-components", ddi_driver_name(dip), ddi_get_instance(dip)); } if (ddi_prop_remove(DDI_DEV_T_NONE, dip, "pm-want-child-notification?") != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "%s%d unable to remove prop pm-want_child_notification?", ddi_driver_name(dip), ddi_get_instance(dip)); } } /* * Examine the pmcsr register and return the software defined * state (the difference being whether D3 means B2 or B3). */ int pci_pwr_current_lvl(pci_pwr_t *pwr_p) { ppb_devstate_t *ppb; uint16_t pmcsr; /* * Find out current power level */ ppb = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, ddi_get_instance(pwr_p->pwr_dip)); if ((pmcsr = PCI_CAP_GET16(ppb->ppb_conf_hdl, NULL, ppb->ppb_pm_cap_ptr, PCI_PMCSR)) == PCI_CAP_EINVAL16) return (DDI_FAILURE); switch (pmcsr & PCI_PMCSR_STATE_MASK) { case PCI_PMCSR_D0: return (PM_LEVEL_B0); case PCI_PMCSR_D1: return (PM_LEVEL_B1); case PCI_PMCSR_D2: return (PM_LEVEL_B2); case PCI_PMCSR_D3HOT: if ((ppb->ppb_pwr_p->pwr_flags & PCI_PWR_B3_CAPABLE) == 0) { return (PM_LEVEL_B2); } else { return (PM_LEVEL_B3); } } /*NOTREACHED*/ return (PM_LEVEL_B3); } /* * Power entry point. Called by the PM framework to change the * current power state of the bus. This function must first verify that * the requested power change is still valid. */ /*ARGSUSED*/ static int ppb_pwr(dev_info_t *dip, int component, int lvl) { ppb_devstate_t *ppb; uint16_t pmcsr; char *str; int lowest_lvl; int old_lvl; int new_lvl; ppb = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, ddi_get_instance(dip)); if (ppb == NULL) { cmn_err(CE_WARN, "%s%d ppb_pwr: can't get soft state", ddi_driver_name(dip), ddi_get_instance(dip)); return (DDI_FAILURE); } DEBUG1(DBG_PWR, dip, "ppb_pwr(): ENTER level = %d\n", lvl); mutex_enter(&ppb->ppb_pwr_p->pwr_mutex); /* * Find out if the power setting is possible. If it is not, * set component busy and return failure. If it is possible, * and it is the lowest pwr setting possible, set component * busy so that the framework does not try to lower any further. */ lowest_lvl = pci_pwr_new_lvl(ppb->ppb_pwr_p); if (lowest_lvl > lvl) { pci_pwr_component_busy(ppb->ppb_pwr_p); DEBUG2(DBG_PWR, dip, "ppb_pwr: failing power request " "lowest allowed is %d requested is %d\n", lowest_lvl, lvl); mutex_exit(&ppb->ppb_pwr_p->pwr_mutex); return (DDI_FAILURE); } else if (lowest_lvl == lvl) { pci_pwr_component_busy(ppb->ppb_pwr_p); } else { pci_pwr_component_idle(ppb->ppb_pwr_p); } if ((pmcsr = PCI_CAP_GET16(ppb->ppb_conf_hdl, NULL, ppb->ppb_pm_cap_ptr, PCI_PMCSR)) == PCI_CAP_EINVAL16) return (DDI_FAILURE); /* * Save the current power level. This is the actual function level, * not the translated bridge level stored in pwr_p->current_lvl */ old_lvl = pmcsr & PCI_PMCSR_STATE_MASK; pmcsr &= ~PCI_PMCSR_STATE_MASK; switch (lvl) { case PM_LEVEL_B0: str = "PM_LEVEL_B0 (full speed)"; pmcsr |= PCI_PMCSR_D0; break; case PM_LEVEL_B1: str = "PM_LEVEL_B1 (light sleep. No bus traffic allowed)"; if ((ppb->ppb_pwr_p->pwr_flags & PCI_PWR_B1_CAPABLE) == 0) { cmn_err(CE_WARN, "%s%d PCI PM state B1 not supported", ddi_driver_name(dip), ddi_get_instance(dip)); mutex_exit(&ppb->ppb_pwr_p->pwr_mutex); return (DDI_FAILURE); } pmcsr |= PCI_PMCSR_D1; break; case PM_LEVEL_B2: str = "PM_LEVEL_B2 (clock off)"; if ((ppb->ppb_pwr_p->pwr_flags & PCI_PWR_B2_CAPABLE) == 0) { cmn_err(CE_WARN, "%s%d PM state B2 not supported...", ddi_driver_name(dip), ddi_get_instance(dip)); mutex_exit(&ppb->ppb_pwr_p->pwr_mutex); return (DDI_FAILURE); } if ((ppb->ppb_pwr_p->pwr_flags & PCI_PWR_B3_CAPABLE) == 0) { /* * If B3 isn't supported, use D3 for B2 to avoid the * possible case that D2 for B2 isn't supported. * Saves and extra check and state flag.. */ pmcsr |= PCI_PMCSR_D3HOT; } else { pmcsr |= PCI_PMCSR_D2; } break; case PM_LEVEL_B3: str = "PM_LEVEL_B30 (clock and power off)"; if ((ppb->ppb_pwr_p->pwr_flags & PCI_PWR_B3_CAPABLE) == 0) { cmn_err(CE_WARN, "%s%d PM state B3 not supported...", ddi_driver_name(dip), ddi_get_instance(dip)); mutex_exit(&ppb->ppb_pwr_p->pwr_mutex); return (DDI_FAILURE); } pmcsr |= PCI_PMCSR_D3HOT; break; default: cmn_err(CE_WARN, "%s%d Unknown PM state %d", ddi_driver_name(dip), ddi_get_instance(dip), lvl); mutex_exit(&ppb->ppb_pwr_p->pwr_mutex); return (DDI_FAILURE); } new_lvl = pmcsr & PCI_PMCSR_STATE_MASK; /* * Save config regs if going into HW state D3 (B2 or B3) */ if ((old_lvl != PCI_PMCSR_D3HOT) && (new_lvl == PCI_PMCSR_D3HOT)) { DEBUG0(DBG_PWR, dip, "ppb_pwr(): SAVING CONFIG REGS\n"); if (pci_save_config_regs(dip) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s%d Save config regs failed", ddi_driver_name(dip), ddi_get_instance(dip)); mutex_exit(&ppb->ppb_pwr_p->pwr_mutex); return (DDI_FAILURE); } } PCI_CAP_PUT16(ppb->ppb_conf_hdl, NULL, ppb->ppb_pm_cap_ptr, PCI_PMCSR, pmcsr); /* * No bus transactions should occur without waiting for * settle time specified in PCI PM spec rev 2.1 sec 5.6.1 * To make things simple, just use the max time specified for * all state transitions. */ delay(drv_usectohz(PCI_CLK_SETTLE_TIME)); /* * Restore configuration registers if coming out of HW state D3 */ if ((old_lvl == PCI_PMCSR_D3HOT) && (new_lvl != PCI_PMCSR_D3HOT)) { DEBUG0(DBG_PWR, dip, "ppb_pwr(): RESTORING CONFIG REGS\n"); if (pci_restore_config_regs(dip) != DDI_SUCCESS) { panic("%s%d restore config regs failed", ddi_driver_name(dip), ddi_get_instance(dip)); } /*NOTREACHED*/ } ppb->ppb_pwr_p->current_lvl = lvl; mutex_exit(&ppb->ppb_pwr_p->pwr_mutex); DEBUG1(DBG_PWR, dip, "ppb_set_pwr: set PM state to %s\n\n", str); return (DDI_SUCCESS); } /* * Initialize hotplug framework if we are hotpluggable. * Sets flag in the soft state if Hot Plug is supported and initialized * properly. */ /*ARGSUSED*/ static void ppb_init_hotplug(ppb_devstate_t *ppb) { if (ddi_prop_exists(DDI_DEV_T_ANY, ppb->dip, DDI_PROP_DONTPASS, "hotplug-capable")) { (void) modload("misc", "pcihp"); if (pcihp_init(ppb->dip) != DDI_SUCCESS) { cmn_err(CE_WARN, "%s #%d: Failed setting hotplug framework", ddi_driver_name(ppb->dip), ddi_get_instance(ppb->dip)); } else ppb->hotplug_capable = B_TRUE; } } static void ppb_create_ranges_prop(dev_info_t *dip, ddi_acc_handle_t config_handle) { uint32_t base, limit; ppb_ranges_t ranges[PPB_RANGE_LEN]; uint8_t io_base_lo, io_limit_lo; uint16_t io_base_hi, io_limit_hi, mem_base, mem_limit; int i = 0, rangelen = sizeof (ppb_ranges_t)/sizeof (int); io_base_lo = pci_config_get8(config_handle, PCI_BCNF_IO_BASE_LOW); io_limit_lo = pci_config_get8(config_handle, PCI_BCNF_IO_LIMIT_LOW); io_base_hi = pci_config_get16(config_handle, PCI_BCNF_IO_BASE_HI); io_limit_hi = pci_config_get16(config_handle, PCI_BCNF_IO_LIMIT_HI); mem_base = pci_config_get16(config_handle, PCI_BCNF_MEM_BASE); mem_limit = pci_config_get16(config_handle, PCI_BCNF_MEM_LIMIT); /* * Create ranges for IO space */ ranges[i].size_low = ranges[i].size_high = 0; ranges[i].parent_mid = ranges[i].child_mid = ranges[i].parent_high = 0; ranges[i].child_high = ranges[i].parent_high |= (PCI_REG_REL_M | PCI_ADDR_IO); base = PPB_16bit_IOADDR(io_base_lo); limit = PPB_16bit_IOADDR(io_limit_lo); if ((io_base_lo & 0xf) == PPB_32BIT_IO) { base = PPB_LADDR(base, io_base_hi); } if ((io_limit_lo & 0xf) == PPB_32BIT_IO) { limit = PPB_LADDR(limit, io_limit_hi); } if ((io_base_lo & PPB_32BIT_IO) && (io_limit_hi > 0)) { base = PPB_LADDR(base, io_base_hi); limit = PPB_LADDR(limit, io_limit_hi); } /* * Create ranges for 32bit memory space */ base = PPB_32bit_MEMADDR(mem_base); limit = PPB_32bit_MEMADDR(mem_limit); ranges[i].size_low = ranges[i].size_high = 0; ranges[i].parent_mid = ranges[i].child_mid = ranges[i].parent_high = 0; ranges[i].child_high = ranges[i].parent_high |= (PCI_REG_REL_M | PCI_ADDR_MEM32); ranges[i].child_low = ranges[i].parent_low = base; if (limit >= base) { ranges[i].size_low = limit - base + PPB_MEMGRAIN; i++; } if (i) { (void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip, "ranges", (int *)ranges, i * rangelen); } } /* ARGSUSED */ static int ppb_open(dev_t *devp, int flags, int otyp, cred_t *credp) { ppb_devstate_t *ppb_p; minor_t minor = getminor(*devp); int instance = PCIHP_AP_MINOR_NUM_TO_INSTANCE(minor); /* * Make sure the open is for the right file type. */ if (otyp != OTYP_CHR) return (EINVAL); /* * Get the soft state structure for the device. */ ppb_p = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, instance); if (ppb_p == NULL) return (ENXIO); if (ppb_p->hotplug_capable == B_TRUE) return ((pcihp_get_cb_ops())->cb_open(devp, flags, otyp, credp)); /* * Handle the open by tracking the device state. */ mutex_enter(&ppb_p->ppb_mutex); if (flags & FEXCL) { if (ppb_p->ppb_soft_state != PPB_SOFT_STATE_CLOSED) { mutex_exit(&ppb_p->ppb_mutex); return (EBUSY); } ppb_p->ppb_soft_state = PPB_SOFT_STATE_OPEN_EXCL; } else { if (ppb_p->ppb_soft_state == PPB_SOFT_STATE_OPEN_EXCL) { mutex_exit(&ppb_p->ppb_mutex); return (EBUSY); } ppb_p->ppb_soft_state = PPB_SOFT_STATE_OPEN; } mutex_exit(&ppb_p->ppb_mutex); return (0); } /* ARGSUSED */ static int ppb_close(dev_t dev, int flags, int otyp, cred_t *credp) { ppb_devstate_t *ppb_p; minor_t minor = getminor(dev); int instance = PCIHP_AP_MINOR_NUM_TO_INSTANCE(minor); if (otyp != OTYP_CHR) return (EINVAL); ppb_p = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, instance); if (ppb_p == NULL) return (ENXIO); if (ppb_p->hotplug_capable == B_TRUE) return ((pcihp_get_cb_ops())->cb_close(dev, flags, otyp, credp)); mutex_enter(&ppb_p->ppb_mutex); ppb_p->ppb_soft_state = PPB_SOFT_STATE_CLOSED; mutex_exit(&ppb_p->ppb_mutex); return (0); } /* * ppb_ioctl: devctl hotplug controls */ /* ARGSUSED */ static int ppb_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp) { ppb_devstate_t *ppb_p; dev_info_t *self; struct devctl_iocdata *dcp; uint_t bus_state; int rv = 0; minor_t minor = getminor(dev); int instance = PCIHP_AP_MINOR_NUM_TO_INSTANCE(minor); ppb_p = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, instance); if (ppb_p == NULL) return (ENXIO); if (ppb_p->hotplug_capable == B_TRUE) return ((pcihp_get_cb_ops())->cb_ioctl(dev, cmd, arg, mode, credp, rvalp)); self = ppb_p->dip; /* * We can use the generic implementation for these ioctls */ switch (cmd) { case DEVCTL_DEVICE_GETSTATE: case DEVCTL_DEVICE_ONLINE: case DEVCTL_DEVICE_OFFLINE: case DEVCTL_BUS_GETSTATE: return (ndi_devctl_ioctl(self, cmd, arg, mode, 0)); } /* * read devctl ioctl data */ if (ndi_dc_allochdl((void *)arg, &dcp) != NDI_SUCCESS) return (EFAULT); switch (cmd) { case DEVCTL_DEVICE_RESET: rv = ENOTSUP; break; case DEVCTL_BUS_QUIESCE: if (ndi_get_bus_state(self, &bus_state) == NDI_SUCCESS) if (bus_state == BUS_QUIESCED) break; (void) ndi_set_bus_state(self, BUS_QUIESCED); break; case DEVCTL_BUS_UNQUIESCE: if (ndi_get_bus_state(self, &bus_state) == NDI_SUCCESS) if (bus_state == BUS_ACTIVE) break; (void) ndi_set_bus_state(self, BUS_ACTIVE); break; case DEVCTL_BUS_RESET: rv = ENOTSUP; break; case DEVCTL_BUS_RESETALL: rv = ENOTSUP; break; default: rv = ENOTTY; } ndi_dc_freehdl(dcp); return (rv); } static int ppb_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int flags, char *name, caddr_t valuep, int *lengthp) { ppb_devstate_t *ppb_p; minor_t minor = getminor(dev); int instance = PCIHP_AP_MINOR_NUM_TO_INSTANCE(minor); ppb_p = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, instance); if (ppb_p == NULL) return (ENXIO); if (ppb_p->hotplug_capable == B_TRUE) return ((pcihp_get_cb_ops())->cb_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp)); return (ddi_prop_op(dev, dip, prop_op, flags, name, valuep, lengthp)); } /* * Initialize our FMA resources */ static void ppb_fm_init(ppb_devstate_t *ppb_p) { dev_info_t *root = ddi_root_node(); dev_info_t *pdip; char *bus; ppb_p->fm_cap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE | DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE; /* * Request our capability level and get our parents capability * and ibc. */ ddi_fm_init(ppb_p->dip, &ppb_p->fm_cap, &ppb_p->fm_ibc); ASSERT((ppb_p->fm_cap & DDI_FM_EREPORT_CAPABLE) && (ppb_p->fm_cap & DDI_FM_ERRCB_CAPABLE)); pci_ereport_setup(ppb_p->dip); /* * Register error callback with our parent. */ ddi_fm_handler_register(ppb_p->dip, ppb_err_callback, NULL); ppb_p->parent_bus = PCIE_PCIECAP_DEV_TYPE_PCI_DEV; for (pdip = ddi_get_parent(ppb_p->dip); pdip && (pdip != root) && (ppb_p->parent_bus != PCIE_PCIECAP_DEV_TYPE_PCIE_DEV); pdip = ddi_get_parent(pdip)) { if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS, "device_type", &bus) != DDI_PROP_SUCCESS) break; if (strcmp(bus, "pciex") == 0) ppb_p->parent_bus = PCIE_PCIECAP_DEV_TYPE_PCIE_DEV; ddi_prop_free(bus); } } /* * Breakdown our FMA resources */ static void ppb_fm_fini(ppb_devstate_t *ppb_p) { /* * Clean up allocated fm structures */ ddi_fm_handler_unregister(ppb_p->dip); pci_ereport_teardown(ppb_p->dip); ddi_fm_fini(ppb_p->dip); } /* * Initialize FMA resources for children devices. Called when * child calls ddi_fm_init(). */ /*ARGSUSED*/ static int ppb_fm_init_child(dev_info_t *dip, dev_info_t *tdip, int cap, ddi_iblock_cookie_t *ibc) { ppb_devstate_t *ppb_p = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, ddi_get_instance(dip)); *ibc = ppb_p->fm_ibc; return (ppb_p->fm_cap); } /* * FMA registered error callback */ static int ppb_err_callback(dev_info_t *dip, ddi_fm_error_t *derr, const void *impl_data) { ppb_devstate_t *ppb_p = (ppb_devstate_t *)ddi_get_soft_state(ppb_state, ddi_get_instance(dip)); /* * errors handled by SPARC PCI-E framework for PCIe platforms */ if (ppb_p->parent_bus == PCIE_PCIECAP_DEV_TYPE_PCIE_DEV) return (DDI_FM_OK); /* * do the following for SPARC PCI platforms */ ASSERT(impl_data == NULL); pci_ereport_post(dip, derr, NULL); return (derr->fme_status); } static void ppb_bus_enter(dev_info_t *dip, ddi_acc_handle_t handle) { i_ndi_busop_access_enter(dip, handle); } /* ARGSUSED */ static void ppb_bus_exit(dev_info_t *dip, ddi_acc_handle_t handle) { i_ndi_busop_access_exit(dip, handle); }