/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright 2016 Joyent, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../../../common/pci/pci_strings.h" #include #include #include #include #include #include #include #include #define pci_getb (*pci_getb_func) #define pci_getw (*pci_getw_func) #define pci_getl (*pci_getl_func) #define pci_putb (*pci_putb_func) #define pci_putw (*pci_putw_func) #define pci_putl (*pci_putl_func) #define dcmn_err if (pci_boot_debug) cmn_err #define CONFIG_INFO 0 #define CONFIG_UPDATE 1 #define CONFIG_NEW 2 #define CONFIG_FIX 3 #define COMPAT_BUFSIZE 512 #define PPB_IO_ALIGNMENT 0x1000 /* 4K aligned */ #define PPB_MEM_ALIGNMENT 0x100000 /* 1M aligned */ /* round down to nearest power of two */ #define P2LE(align) \ { \ int i = 0; \ while (align >>= 1) \ i ++; \ align = 1 << i; \ } \ /* for is_vga and list_is_vga_only */ enum io_mem { IO, MEM }; /* See AMD-8111 Datasheet Rev 3.03, Page 149: */ #define LPC_IO_CONTROL_REG_1 0x40 #define AMD8111_ENABLENMI (uint8_t)0x80 #define DEVID_AMD8111_LPC 0x7468 struct pci_fixundo { uint8_t bus; uint8_t dev; uint8_t fn; void (*undofn)(uint8_t, uint8_t, uint8_t); struct pci_fixundo *next; }; struct pci_devfunc { struct pci_devfunc *next; dev_info_t *dip; uchar_t dev; uchar_t func; boolean_t reprogram; /* this device needs to be reprogrammed */ }; extern int apic_nvidia_io_max; extern int pseudo_isa; extern int pci_bios_maxbus; static uchar_t max_dev_pci = 32; /* PCI standard */ int pci_boot_debug = 0; extern struct memlist *find_bus_res(int, int); static struct pci_fixundo *undolist = NULL; static int num_root_bus = 0; /* count of root buses */ extern volatile int acpi_resource_discovery; extern uint64_t mcfg_mem_base; extern void pci_cfgacc_add_workaround(uint16_t, uchar_t, uchar_t); extern dev_info_t *pcie_get_rc_dip(dev_info_t *); /* * Module prototypes */ static void enumerate_bus_devs(uchar_t bus, int config_op); static void create_root_bus_dip(uchar_t bus); static void process_devfunc(uchar_t, uchar_t, uchar_t, uchar_t, ushort_t, int); static void add_compatible(dev_info_t *, ushort_t, ushort_t, ushort_t, ushort_t, uchar_t, uint_t, int); static int add_reg_props(dev_info_t *, uchar_t, uchar_t, uchar_t, int, int); static void add_ppb_props(dev_info_t *, uchar_t, uchar_t, uchar_t, int, ushort_t); static void add_model_prop(dev_info_t *, uint_t); static void add_bus_range_prop(int); static void add_bus_slot_names_prop(int); static void add_ranges_prop(int, int); static void add_bus_available_prop(int); static int get_pci_cap(uchar_t bus, uchar_t dev, uchar_t func, uint8_t cap_id); static void fix_ppb_res(uchar_t, boolean_t); static void alloc_res_array(); static void create_ioapic_node(int bus, int dev, int fn, ushort_t vendorid, ushort_t deviceid); static void pciex_slot_names_prop(dev_info_t *, ushort_t); static void populate_bus_res(uchar_t bus); static void memlist_remove_list(struct memlist **list, struct memlist *remove_list); static void ck804_fix_aer_ptr(dev_info_t *, pcie_req_id_t); static void pci_scan_bbn(void); static int pci_unitaddr_cache_valid(void); static int pci_bus_unitaddr(int); static void pci_unitaddr_cache_create(void); static int pci_cache_unpack_nvlist(nvf_handle_t, nvlist_t *, char *); static int pci_cache_pack_nvlist(nvf_handle_t, nvlist_t **); static void pci_cache_free_list(nvf_handle_t); extern int pci_slot_names_prop(int, char *, int); /* set non-zero to force PCI peer-bus renumbering */ int pci_bus_always_renumber = 0; /* * used to register ISA resource usage which must not be made * "available" from other PCI node' resource maps */ static struct { struct memlist *io_used; struct memlist *mem_used; } isa_res; /* * PCI unit-address cache management */ static nvf_ops_t pci_unitaddr_cache_ops = { "/etc/devices/pci_unitaddr_persistent", /* path to cache */ pci_cache_unpack_nvlist, /* read in nvlist form */ pci_cache_pack_nvlist, /* convert to nvlist form */ pci_cache_free_list, /* free data list */ NULL /* write complete callback */ }; typedef struct { list_node_t pua_nodes; int pua_index; int pua_addr; } pua_node_t; nvf_handle_t puafd_handle; int pua_cache_valid = 0; /*ARGSUSED*/ static ACPI_STATUS pci_process_acpi_device(ACPI_HANDLE hdl, UINT32 level, void *ctx, void **rv) { ACPI_BUFFER rb; ACPI_OBJECT ro; ACPI_DEVICE_INFO *adi; int busnum; /* * Use AcpiGetObjectInfo() to find the device _HID * If not a PCI root-bus, ignore this device and continue * the walk */ if (ACPI_FAILURE(AcpiGetObjectInfo(hdl, &adi))) return (AE_OK); if (!(adi->Valid & ACPI_VALID_HID)) { AcpiOsFree(adi); return (AE_OK); } if (strncmp(adi->HardwareId.String, PCI_ROOT_HID_STRING, sizeof (PCI_ROOT_HID_STRING)) && strncmp(adi->HardwareId.String, PCI_EXPRESS_ROOT_HID_STRING, sizeof (PCI_EXPRESS_ROOT_HID_STRING))) { AcpiOsFree(adi); return (AE_OK); } AcpiOsFree(adi); /* * XXX: ancient Big Bear broken _BBN will result in two * bus 0 _BBNs being found, so we need to handle duplicate * bus 0 gracefully. However, broken _BBN does not * hide a childless root-bridge so no need to work-around it * here */ rb.Pointer = &ro; rb.Length = sizeof (ro); if (ACPI_SUCCESS(AcpiEvaluateObjectTyped(hdl, "_BBN", NULL, &rb, ACPI_TYPE_INTEGER))) { busnum = ro.Integer.Value; /* * Ignore invalid _BBN return values here (rather * than panic) and emit a warning; something else * may suffer failure as a result of the broken BIOS. */ if ((busnum < 0) || (busnum > pci_bios_maxbus)) { dcmn_err(CE_NOTE, "pci_process_acpi_device: invalid _BBN 0x%x\n", busnum); return (AE_CTRL_DEPTH); } /* PCI with valid _BBN */ if (pci_bus_res[busnum].par_bus == (uchar_t)-1 && pci_bus_res[busnum].dip == NULL) create_root_bus_dip((uchar_t)busnum); return (AE_CTRL_DEPTH); } /* PCI and no _BBN, continue walk */ return (AE_OK); } /* * Scan the ACPI namespace for all top-level instances of _BBN * in order to discover childless root-bridges (which enumeration * may not find; root-bridges are inferred by the existence of * children). This scan should find all root-bridges that have * been enumerated, and any childless root-bridges not enumerated. * Root-bridge for bus 0 may not have a _BBN object. */ static void pci_scan_bbn() { void *rv; (void) AcpiGetDevices(NULL, pci_process_acpi_device, NULL, &rv); } static void pci_unitaddr_cache_init(void) { puafd_handle = nvf_register_file(&pci_unitaddr_cache_ops); ASSERT(puafd_handle); list_create(nvf_list(puafd_handle), sizeof (pua_node_t), offsetof(pua_node_t, pua_nodes)); rw_enter(nvf_lock(puafd_handle), RW_WRITER); (void) nvf_read_file(puafd_handle); rw_exit(nvf_lock(puafd_handle)); } /* * Format of /etc/devices/pci_unitaddr_persistent: * * The persistent record of unit-address assignments contains * a list of name/value pairs, where name is a string representation * of the "index value" of the PCI root-bus and the value is * the assigned unit-address. * * The "index value" is simply the zero-based index of the PCI * root-buses ordered by physical bus number; first PCI bus is 0, * second is 1, and so on. */ /*ARGSUSED*/ static int pci_cache_unpack_nvlist(nvf_handle_t hdl, nvlist_t *nvl, char *name) { long index; int32_t value; nvpair_t *np; pua_node_t *node; np = NULL; while ((np = nvlist_next_nvpair(nvl, np)) != NULL) { /* name of nvpair is index value */ if (ddi_strtol(nvpair_name(np), NULL, 10, &index) != 0) continue; if (nvpair_value_int32(np, &value) != 0) continue; node = kmem_zalloc(sizeof (pua_node_t), KM_SLEEP); node->pua_index = index; node->pua_addr = value; list_insert_tail(nvf_list(hdl), node); } pua_cache_valid = 1; return (DDI_SUCCESS); } static int pci_cache_pack_nvlist(nvf_handle_t hdl, nvlist_t **ret_nvl) { int rval; nvlist_t *nvl, *sub_nvl; list_t *listp; pua_node_t *pua; char buf[13]; ASSERT(RW_WRITE_HELD(nvf_lock(hdl))); rval = nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP); if (rval != DDI_SUCCESS) { nvf_error("%s: nvlist alloc error %d\n", nvf_cache_name(hdl), rval); return (DDI_FAILURE); } sub_nvl = NULL; rval = nvlist_alloc(&sub_nvl, NV_UNIQUE_NAME, KM_SLEEP); if (rval != DDI_SUCCESS) goto error; listp = nvf_list(hdl); for (pua = list_head(listp); pua != NULL; pua = list_next(listp, pua)) { (void) snprintf(buf, sizeof (buf), "%d", pua->pua_index); rval = nvlist_add_int32(sub_nvl, buf, pua->pua_addr); if (rval != DDI_SUCCESS) goto error; } rval = nvlist_add_nvlist(nvl, "table", sub_nvl); if (rval != DDI_SUCCESS) goto error; nvlist_free(sub_nvl); *ret_nvl = nvl; return (DDI_SUCCESS); error: nvlist_free(sub_nvl); ASSERT(nvl); nvlist_free(nvl); *ret_nvl = NULL; return (DDI_FAILURE); } static void pci_cache_free_list(nvf_handle_t hdl) { list_t *listp; pua_node_t *pua; ASSERT(RW_WRITE_HELD(nvf_lock(hdl))); listp = nvf_list(hdl); for (pua = list_head(listp); pua != NULL; pua = list_next(listp, pua)) { list_remove(listp, pua); kmem_free(pua, sizeof (pua_node_t)); } } static int pci_unitaddr_cache_valid(void) { /* read only, no need for rw lock */ return (pua_cache_valid); } static int pci_bus_unitaddr(int index) { pua_node_t *pua; list_t *listp; int addr; rw_enter(nvf_lock(puafd_handle), RW_READER); addr = -1; /* default return if no match */ listp = nvf_list(puafd_handle); for (pua = list_head(listp); pua != NULL; pua = list_next(listp, pua)) { if (pua->pua_index == index) { addr = pua->pua_addr; break; } } rw_exit(nvf_lock(puafd_handle)); return (addr); } static void pci_unitaddr_cache_create(void) { int i, index; pua_node_t *node; list_t *listp; rw_enter(nvf_lock(puafd_handle), RW_WRITER); index = 0; listp = nvf_list(puafd_handle); for (i = 0; i <= pci_bios_maxbus; i++) { /* skip non-root (peer) PCI busses */ if ((pci_bus_res[i].par_bus != (uchar_t)-1) || (pci_bus_res[i].dip == NULL)) continue; node = kmem_zalloc(sizeof (pua_node_t), KM_SLEEP); node->pua_index = index++; node->pua_addr = pci_bus_res[i].root_addr; list_insert_tail(listp, node); } (void) nvf_mark_dirty(puafd_handle); rw_exit(nvf_lock(puafd_handle)); nvf_wake_daemon(); } /* * Enumerate all PCI devices */ void pci_setup_tree(void) { uint_t i, root_bus_addr = 0; alloc_res_array(); for (i = 0; i <= pci_bios_maxbus; i++) { pci_bus_res[i].par_bus = (uchar_t)-1; pci_bus_res[i].root_addr = (uchar_t)-1; pci_bus_res[i].sub_bus = i; } pci_bus_res[0].root_addr = root_bus_addr++; create_root_bus_dip(0); enumerate_bus_devs(0, CONFIG_INFO); /* * Now enumerate peer busses * * We loop till pci_bios_maxbus. On most systems, there is * one more bus at the high end, which implements the ISA * compatibility bus. We don't care about that. * * Note: In the old (bootconf) enumeration, the peer bus * address did not use the bus number, and there were * too many peer busses created. The root_bus_addr is * used to maintain the old peer bus address assignment. * However, we stop enumerating phantom peers with no * device below. */ for (i = 1; i <= pci_bios_maxbus; i++) { if (pci_bus_res[i].dip == NULL) { pci_bus_res[i].root_addr = root_bus_addr++; } enumerate_bus_devs(i, CONFIG_INFO); /* add slot-names property for named pci hot-plug slots */ add_bus_slot_names_prop(i); } } /* * >0 = present, 0 = not present, <0 = error */ static int pci_bbn_present(int bus) { ACPI_HANDLE hdl; int rv; /* no dip means no _BBN */ if (pci_bus_res[bus].dip == NULL) return (0); rv = -1; /* default return value in case of error below */ if (ACPI_SUCCESS(acpica_get_handle(pci_bus_res[bus].dip, &hdl))) { switch (AcpiEvaluateObject(hdl, "_BBN", NULL, NULL)) { case AE_OK: rv = 1; break; case AE_NOT_FOUND: rv = 0; break; default: break; } } return (rv); } /* * Return non-zero if any PCI bus in the system has an associated * _BBN object, 0 otherwise. */ static int pci_roots_have_bbn(void) { int i; /* * Scan the PCI busses and look for at least 1 _BBN */ for (i = 0; i <= pci_bios_maxbus; i++) { /* skip non-root (peer) PCI busses */ if (pci_bus_res[i].par_bus != (uchar_t)-1) continue; if (pci_bbn_present(i) > 0) return (1); } return (0); } /* * return non-zero if the machine is one on which we renumber * the internal pci unit-addresses */ static int pci_bus_renumber() { ACPI_TABLE_HEADER *fadt; if (pci_bus_always_renumber) return (1); /* get the FADT */ if (AcpiGetTable(ACPI_SIG_FADT, 1, (ACPI_TABLE_HEADER **)&fadt) != AE_OK) return (0); /* compare OEM Table ID to "SUNm31" */ if (strncmp("SUNm31", fadt->OemId, 6)) return (0); else return (1); } /* * Initial enumeration of the physical PCI bus hierarchy can * leave 'gaps' in the order of peer PCI bus unit-addresses. * Systems with more than one peer PCI bus *must* have an ACPI * _BBN object associated with each peer bus; use the presence * of this object to remove gaps in the numbering of the peer * PCI bus unit-addresses - only peer busses with an associated * _BBN are counted. */ static void pci_renumber_root_busses(void) { int pci_regs[] = {0, 0, 0}; int i, root_addr = 0; /* * Currently, we only enable the re-numbering on specific * Sun machines; this is a work-around for the more complicated * issue of upgrade changing physical device paths */ if (!pci_bus_renumber()) return; /* * If we find no _BBN objects at all, we either don't need * to do anything or can't do anything anyway */ if (!pci_roots_have_bbn()) return; for (i = 0; i <= pci_bios_maxbus; i++) { /* skip non-root (peer) PCI busses */ if (pci_bus_res[i].par_bus != (uchar_t)-1) continue; if (pci_bbn_present(i) < 1) { pci_bus_res[i].root_addr = (uchar_t)-1; continue; } ASSERT(pci_bus_res[i].dip != NULL); if (pci_bus_res[i].root_addr != root_addr) { /* update reg property for node */ pci_bus_res[i].root_addr = root_addr; pci_regs[0] = pci_bus_res[i].root_addr; (void) ndi_prop_update_int_array(DDI_DEV_T_NONE, pci_bus_res[i].dip, "reg", (int *)pci_regs, 3); } root_addr++; } } void pci_register_isa_resources(int type, uint32_t base, uint32_t size) { (void) memlist_insert( (type == 1) ? &isa_res.io_used : &isa_res.mem_used, base, size); } /* * Remove the resources which are already used by devices under a subtractive * bridge from the bus's resources lists, because they're not available, and * shouldn't be allocated to other buses. This is necessary because tracking * resources for subtractive bridges is not complete. (Subtractive bridges only * track some of their claimed resources, not "the rest of the address space" as * they should, so that allocation to peer non-subtractive PPBs is easier. We * need a fully-capable global resource allocator). */ static void remove_subtractive_res() { int i, j; struct memlist *list; for (i = 0; i <= pci_bios_maxbus; i++) { if (pci_bus_res[i].subtractive) { /* remove used io ports */ list = pci_bus_res[i].io_used; while (list) { for (j = 0; j <= pci_bios_maxbus; j++) (void) memlist_remove( &pci_bus_res[j].io_avail, list->ml_address, list->ml_size); list = list->ml_next; } /* remove used mem resource */ list = pci_bus_res[i].mem_used; while (list) { for (j = 0; j <= pci_bios_maxbus; j++) { (void) memlist_remove( &pci_bus_res[j].mem_avail, list->ml_address, list->ml_size); (void) memlist_remove( &pci_bus_res[j].pmem_avail, list->ml_address, list->ml_size); } list = list->ml_next; } /* remove used prefetchable mem resource */ list = pci_bus_res[i].pmem_used; while (list) { for (j = 0; j <= pci_bios_maxbus; j++) { (void) memlist_remove( &pci_bus_res[j].pmem_avail, list->ml_address, list->ml_size); (void) memlist_remove( &pci_bus_res[j].mem_avail, list->ml_address, list->ml_size); } list = list->ml_next; } } } } /* * Set up (or complete the setup of) the bus_avail resource list */ static void setup_bus_res(int bus) { uchar_t par_bus; if (pci_bus_res[bus].dip == NULL) /* unused bus */ return; /* * Set up bus_avail if not already filled in by populate_bus_res() */ if (pci_bus_res[bus].bus_avail == NULL) { ASSERT(pci_bus_res[bus].sub_bus >= bus); memlist_insert(&pci_bus_res[bus].bus_avail, bus, pci_bus_res[bus].sub_bus - bus + 1); } ASSERT(pci_bus_res[bus].bus_avail != NULL); /* * Remove resources from parent bus node if this is not a * root bus. */ par_bus = pci_bus_res[bus].par_bus; if (par_bus != (uchar_t)-1) { ASSERT(pci_bus_res[par_bus].bus_avail != NULL); memlist_remove_list(&pci_bus_res[par_bus].bus_avail, pci_bus_res[bus].bus_avail); } /* remove self from bus_avail */; (void) memlist_remove(&pci_bus_res[bus].bus_avail, bus, 1); } static uint64_t get_parbus_io_res(uchar_t parbus, uchar_t bus, uint64_t size, uint64_t align) { uint64_t addr = 0; uchar_t res_bus; /* * Skip root(peer) buses in multiple-root-bus systems when * ACPI resource discovery was not successfully done. */ if ((pci_bus_res[parbus].par_bus == (uchar_t)-1) && (num_root_bus > 1) && (acpi_resource_discovery <= 0)) return (0); res_bus = parbus; while (pci_bus_res[res_bus].subtractive) { if (pci_bus_res[res_bus].io_avail) break; res_bus = pci_bus_res[res_bus].par_bus; if (res_bus == (uchar_t)-1) break; /* root bus already */ } if (pci_bus_res[res_bus].io_avail) { addr = memlist_find(&pci_bus_res[res_bus].io_avail, size, align); if (addr) { memlist_insert(&pci_bus_res[res_bus].io_used, addr, size); /* free the old resource */ memlist_free_all(&pci_bus_res[bus].io_avail); memlist_free_all(&pci_bus_res[bus].io_used); /* add the new resource */ memlist_insert(&pci_bus_res[bus].io_avail, addr, size); } } return (addr); } static uint64_t get_parbus_mem_res(uchar_t parbus, uchar_t bus, uint64_t size, uint64_t align) { uint64_t addr = 0; uchar_t res_bus; /* * Skip root(peer) buses in multiple-root-bus systems when * ACPI resource discovery was not successfully done. */ if ((pci_bus_res[parbus].par_bus == (uchar_t)-1) && (num_root_bus > 1) && (acpi_resource_discovery <= 0)) return (0); res_bus = parbus; while (pci_bus_res[res_bus].subtractive) { if (pci_bus_res[res_bus].mem_avail) break; res_bus = pci_bus_res[res_bus].par_bus; if (res_bus == (uchar_t)-1) break; /* root bus already */ } if (pci_bus_res[res_bus].mem_avail) { addr = memlist_find(&pci_bus_res[res_bus].mem_avail, size, align); if (addr) { memlist_insert(&pci_bus_res[res_bus].mem_used, addr, size); (void) memlist_remove(&pci_bus_res[res_bus].pmem_avail, addr, size); /* free the old resource */ memlist_free_all(&pci_bus_res[bus].mem_avail); memlist_free_all(&pci_bus_res[bus].mem_used); /* add the new resource */ memlist_insert(&pci_bus_res[bus].mem_avail, addr, size); } } return (addr); } /* * given a cap_id, return its cap_id location in config space */ static int get_pci_cap(uchar_t bus, uchar_t dev, uchar_t func, uint8_t cap_id) { uint8_t curcap, cap_id_loc; uint16_t status; int location = -1; /* * Need to check the Status register for ECP support first. * Also please note that for type 1 devices, the * offset could change. Should support type 1 next. */ status = pci_getw(bus, dev, func, PCI_CONF_STAT); if (!(status & PCI_STAT_CAP)) { return (-1); } cap_id_loc = pci_getb(bus, dev, func, PCI_CONF_CAP_PTR); /* Walk the list of capabilities */ while (cap_id_loc && cap_id_loc != (uint8_t)-1) { curcap = pci_getb(bus, dev, func, cap_id_loc); if (curcap == cap_id) { location = cap_id_loc; break; } cap_id_loc = pci_getb(bus, dev, func, cap_id_loc + 1); } return (location); } /* * Does this resource element live in the legacy VGA range? */ int is_vga(struct memlist *elem, enum io_mem io) { if (io == IO) { if ((elem->ml_address == 0x3b0 && elem->ml_size == 0xc) || (elem->ml_address == 0x3c0 && elem->ml_size == 0x20)) return (1); } else { if (elem->ml_address == 0xa0000 && elem->ml_size == 0x20000) return (1); } return (0); } /* * Does this entire resource list consist only of legacy VGA resources? */ int list_is_vga_only(struct memlist *l, enum io_mem io) { do { if (!is_vga(l, io)) return (0); } while ((l = l->ml_next) != NULL); return (1); } /* * Assign valid resources to unconfigured pci(e) bridges. We are trying * to reprogram the bridge when its * i) SECBUS == SUBBUS || * ii) IOBASE > IOLIM || * iii) MEMBASE > MEMLIM * This must be done after one full pass through the PCI tree to collect * all BIOS-configured resources, so that we know what resources are * free and available to assign to the unconfigured PPBs. */ static void fix_ppb_res(uchar_t secbus, boolean_t prog_sub) { uchar_t bus, dev, func; uchar_t parbus, subbus; uint_t io_base, io_limit, mem_base, mem_limit; uint_t io_size, mem_size, io_align, mem_align; uint64_t addr = 0; int *regp = NULL; uint_t reglen; int rv, cap_ptr, physhi; dev_info_t *dip; uint16_t cmd_reg; struct memlist *list, *scratch_list; /* skip root (peer) PCI busses */ if (pci_bus_res[secbus].par_bus == (uchar_t)-1) return; /* skip subtractive PPB when prog_sub is not TRUE */ if (pci_bus_res[secbus].subtractive && !prog_sub) return; /* some entries may be empty due to discontiguous bus numbering */ dip = pci_bus_res[secbus].dip; if (dip == NULL) return; rv = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg", ®p, ®len); if (rv != DDI_PROP_SUCCESS || reglen == 0) return; physhi = regp[0]; ddi_prop_free(regp); func = (uchar_t)PCI_REG_FUNC_G(physhi); dev = (uchar_t)PCI_REG_DEV_G(physhi); bus = (uchar_t)PCI_REG_BUS_G(physhi); /* * If pcie bridge, check to see if link is enabled */ cap_ptr = get_pci_cap(bus, dev, func, PCI_CAP_ID_PCI_E); if (cap_ptr != -1) { cmd_reg = pci_getw(bus, dev, func, (uint16_t)cap_ptr + PCIE_LINKCTL); if (cmd_reg & PCIE_LINKCTL_LINK_DISABLE) { dcmn_err(CE_NOTE, "!fix_ppb_res: ppb[%x/%x/%x] link is disabled.\n", bus, dev, func); return; } } subbus = pci_getb(bus, dev, func, PCI_BCNF_SUBBUS); parbus = pci_bus_res[secbus].par_bus; ASSERT(parbus == bus); cmd_reg = pci_getw(bus, dev, func, PCI_CONF_COMM); /* * If we have a Cardbus bridge, but no bus space */ if (pci_bus_res[secbus].num_cbb != 0 && pci_bus_res[secbus].bus_avail == NULL) { uchar_t range; /* normally there are 2 buses under a cardbus bridge */ range = pci_bus_res[secbus].num_cbb * 2; /* * Try to find and allocate a bus-range starting at subbus+1 * from the parent of the PPB. */ for (; range != 0; range--) { if (memlist_find_with_startaddr( &pci_bus_res[parbus].bus_avail, subbus + 1, range, 1) != NULL) break; /* find bus range resource at parent */ } if (range != 0) { memlist_insert(&pci_bus_res[secbus].bus_avail, subbus + 1, range); subbus = subbus + range; pci_bus_res[secbus].sub_bus = subbus; pci_putb(bus, dev, func, PCI_BCNF_SUBBUS, subbus); add_bus_range_prop(secbus); cmn_err(CE_NOTE, "!reprogram bus-range on ppb" "[%x/%x/%x]: %x ~ %x\n", bus, dev, func, secbus, subbus); } } /* * Calculate required IO size and alignment * If bus io_size is zero, we are going to assign 512 bytes per bus, * otherwise, we'll choose the maximum value of such calculation and * bus io_size. The size needs to be 4K aligned. * * We calculate alignment as the largest power of two less than the * the sum of all children's IO size requirements, because this will * align to the size of the largest child request within that size * (which is always a power of two). */ io_size = (subbus - secbus + 1) * 0x200; if (io_size < pci_bus_res[secbus].io_size) io_size = pci_bus_res[secbus].io_size; io_size = P2ROUNDUP(io_size, PPB_IO_ALIGNMENT); io_align = io_size; P2LE(io_align); /* * Calculate required MEM size and alignment * If bus mem_size is zero, we are going to assign 1M bytes per bus, * otherwise, we'll choose the maximum value of such calculation and * bus mem_size. The size needs to be 1M aligned. * * For the alignment, refer to the I/O comment above. */ mem_size = (subbus - secbus + 1) * PPB_MEM_ALIGNMENT; if (mem_size < pci_bus_res[secbus].mem_size) { mem_size = pci_bus_res[secbus].mem_size; mem_size = P2ROUNDUP(mem_size, PPB_MEM_ALIGNMENT); } mem_align = mem_size; P2LE(mem_align); /* Subtractive bridge */ if (pci_bus_res[secbus].subtractive && prog_sub) { /* * We program an arbitrary amount of I/O and memory resource * for the subtractive bridge so that child dynamic-resource- * allocating devices (such as Cardbus bridges) have a chance * of success. Until we have full-tree resource rebalancing, * dynamic resource allocation (thru busra) only looks at the * parent bridge, so all PPBs must have some allocatable * resource. For non-subtractive bridges, the resources come * from the base/limit register "windows", but subtractive * bridges often don't program those (since they don't need to). * If we put all the remaining resources on the subtractive * bridge, then peer non-subtractive bridges can't allocate * more space (even though this is probably most correct). * If we put the resources only on the parent, then allocations * from children of subtractive bridges will fail without * special-case code for bypassing the subtractive bridge. * This solution is the middle-ground temporary solution until * we have fully-capable resource allocation. */ /* * Add an arbitrary I/O resource to the subtractive PPB */ if (pci_bus_res[secbus].io_avail == NULL) { addr = get_parbus_io_res(parbus, secbus, io_size, io_align); if (addr) { add_ranges_prop(secbus, 1); pci_bus_res[secbus].io_reprogram = pci_bus_res[parbus].io_reprogram; cmn_err(CE_NOTE, "!add io-range on subtractive" " ppb[%x/%x/%x]: 0x%x ~ 0x%x\n", bus, dev, func, (uint32_t)addr, (uint32_t)addr + io_size - 1); } } /* * Add an arbitrary memory resource to the subtractive PPB */ if (pci_bus_res[secbus].mem_avail == NULL) { addr = get_parbus_mem_res(parbus, secbus, mem_size, mem_align); if (addr) { add_ranges_prop(secbus, 1); pci_bus_res[secbus].mem_reprogram = pci_bus_res[parbus].mem_reprogram; cmn_err(CE_NOTE, "!add mem-range on " "subtractive ppb[%x/%x/%x]: 0x%x ~ 0x%x\n", bus, dev, func, (uint32_t)addr, (uint32_t)addr + mem_size - 1); } } goto cmd_enable; } /* * Check to see if we need to reprogram I/O space, either because the * parent bus needed reprogramming and so do we, or because I/O space is * disabled in base/limit or command register. */ io_base = pci_getb(bus, dev, func, PCI_BCNF_IO_BASE_LOW); io_limit = pci_getb(bus, dev, func, PCI_BCNF_IO_LIMIT_LOW); io_base = (io_base & PCI_BCNF_IO_MASK) << PCI_BCNF_IO_SHIFT; io_limit = ((io_limit & PCI_BCNF_IO_MASK) << PCI_BCNF_IO_SHIFT) | 0xfff; if ((io_base & PCI_BCNF_ADDR_MASK) == PCI_BCNF_IO_32BIT) { uint16_t io_base_hi, io_limit_hi; io_base_hi = pci_getw(bus, dev, func, PCI_BCNF_IO_BASE_HI); io_limit_hi = pci_getw(bus, dev, func, PCI_BCNF_IO_LIMIT_HI); io_base |= (uint_t)io_base_hi << 16; io_limit |= (uint_t)io_limit_hi << 16; } /* Form list of all resources passed (avail + used) */ scratch_list = memlist_dup(pci_bus_res[secbus].io_avail); memlist_merge(&pci_bus_res[secbus].io_used, &scratch_list); if ((pci_bus_res[parbus].io_reprogram || (io_base > io_limit) || (!(cmd_reg & PCI_COMM_IO))) && !list_is_vga_only(scratch_list, IO)) { if (pci_bus_res[secbus].io_used) { memlist_subsume(&pci_bus_res[secbus].io_used, &pci_bus_res[secbus].io_avail); } if (pci_bus_res[secbus].io_avail && (!pci_bus_res[parbus].io_reprogram) && (!pci_bus_res[parbus].subtractive)) { /* rechoose old io ports info */ list = pci_bus_res[secbus].io_avail; io_base = 0; do { if (is_vga(list, IO)) continue; if (!io_base) { io_base = (uint_t)list->ml_address; io_limit = (uint_t)list->ml_address + list->ml_size - 1; io_base = P2ALIGN(io_base, PPB_IO_ALIGNMENT); } else { if (list->ml_address + list->ml_size > io_limit) { io_limit = (uint_t) (list->ml_address + list->ml_size - 1); } } } while ((list = list->ml_next) != NULL); /* 4K aligned */ io_limit = P2ROUNDUP(io_limit, PPB_IO_ALIGNMENT) - 1; io_size = io_limit - io_base + 1; ASSERT(io_base <= io_limit); memlist_free_all(&pci_bus_res[secbus].io_avail); memlist_insert(&pci_bus_res[secbus].io_avail, io_base, io_size); memlist_insert(&pci_bus_res[parbus].io_used, io_base, io_size); (void) memlist_remove(&pci_bus_res[parbus].io_avail, io_base, io_size); pci_bus_res[secbus].io_reprogram = B_TRUE; } else { /* get new io ports from parent bus */ addr = get_parbus_io_res(parbus, secbus, io_size, io_align); if (addr) { io_base = addr; io_limit = addr + io_size - 1; pci_bus_res[secbus].io_reprogram = B_TRUE; } } if (pci_bus_res[secbus].io_reprogram) { /* reprogram PPB regs */ pci_putb(bus, dev, func, PCI_BCNF_IO_BASE_LOW, (uchar_t)((io_base>>8) & 0xf0)); pci_putb(bus, dev, func, PCI_BCNF_IO_LIMIT_LOW, (uchar_t)((io_limit>>8) & 0xf0)); pci_putb(bus, dev, func, PCI_BCNF_IO_BASE_HI, 0); pci_putb(bus, dev, func, PCI_BCNF_IO_LIMIT_HI, 0); add_ranges_prop(secbus, 1); cmn_err(CE_NOTE, "!reprogram io-range on" " ppb[%x/%x/%x]: 0x%x ~ 0x%x\n", bus, dev, func, io_base, io_limit); } } memlist_free_all(&scratch_list); /* * Check memory space as we did I/O space. */ mem_base = (uint_t)pci_getw(bus, dev, func, PCI_BCNF_MEM_BASE); mem_base = (mem_base & 0xfff0) << 16; mem_limit = (uint_t)pci_getw(bus, dev, func, PCI_BCNF_MEM_LIMIT); mem_limit = ((mem_limit & 0xfff0) << 16) | 0xfffff; scratch_list = memlist_dup(pci_bus_res[secbus].mem_avail); memlist_merge(&pci_bus_res[secbus].mem_used, &scratch_list); if ((pci_bus_res[parbus].mem_reprogram || (mem_base > mem_limit) || (!(cmd_reg & PCI_COMM_MAE))) && !list_is_vga_only(scratch_list, MEM)) { if (pci_bus_res[secbus].mem_used) { memlist_subsume(&pci_bus_res[secbus].mem_used, &pci_bus_res[secbus].mem_avail); } if (pci_bus_res[secbus].mem_avail && (!pci_bus_res[parbus].mem_reprogram) && (!pci_bus_res[parbus].subtractive)) { /* rechoose old mem resource */ list = pci_bus_res[secbus].mem_avail; mem_base = 0; do { if (is_vga(list, MEM)) continue; if (mem_base == 0) { mem_base = (uint_t)list->ml_address; mem_base = P2ALIGN(mem_base, PPB_MEM_ALIGNMENT); mem_limit = (uint_t)(list->ml_address + list->ml_size - 1); } else { if ((list->ml_address + list->ml_size) > mem_limit) { mem_limit = (uint_t) (list->ml_address + list->ml_size - 1); } } } while ((list = list->ml_next) != NULL); mem_limit = P2ROUNDUP(mem_limit, PPB_MEM_ALIGNMENT) - 1; mem_size = mem_limit + 1 - mem_base; ASSERT(mem_base <= mem_limit); memlist_free_all(&pci_bus_res[secbus].mem_avail); memlist_insert(&pci_bus_res[secbus].mem_avail, mem_base, mem_size); memlist_insert(&pci_bus_res[parbus].mem_used, mem_base, mem_size); (void) memlist_remove(&pci_bus_res[parbus].mem_avail, mem_base, mem_size); pci_bus_res[secbus].mem_reprogram = B_TRUE; } else { /* get new mem resource from parent bus */ addr = get_parbus_mem_res(parbus, secbus, mem_size, mem_align); if (addr) { mem_base = addr; mem_limit = addr + mem_size - 1; pci_bus_res[secbus].mem_reprogram = B_TRUE; } } if (pci_bus_res[secbus].mem_reprogram) { /* reprogram PPB MEM regs */ pci_putw(bus, dev, func, PCI_BCNF_MEM_BASE, (uint16_t)((mem_base>>16) & 0xfff0)); pci_putw(bus, dev, func, PCI_BCNF_MEM_LIMIT, (uint16_t)((mem_limit>>16) & 0xfff0)); /* * Disable PMEM window by setting base > limit. * We currently don't reprogram the PMEM like we've * done for I/O and MEM. (Devices that support prefetch * can use non-prefetch MEM.) Anyway, if the MEM access * bit is initially disabled by BIOS, we disable the * PMEM window manually by setting PMEM base > PMEM * limit here, in case there are incorrect values in * them from BIOS, so that we won't get in trouble once * the MEM access bit is enabled at the end of this * function. */ if (!(cmd_reg & PCI_COMM_MAE)) { pci_putw(bus, dev, func, PCI_BCNF_PF_BASE_LOW, 0xfff0); pci_putw(bus, dev, func, PCI_BCNF_PF_LIMIT_LOW, 0x0); pci_putl(bus, dev, func, PCI_BCNF_PF_BASE_HIGH, 0xffffffff); pci_putl(bus, dev, func, PCI_BCNF_PF_LIMIT_HIGH, 0x0); } add_ranges_prop(secbus, 1); cmn_err(CE_NOTE, "!reprogram mem-range on" " ppb[%x/%x/%x]: 0x%x ~ 0x%x\n", bus, dev, func, mem_base, mem_limit); } } memlist_free_all(&scratch_list); cmd_enable: if (pci_bus_res[secbus].io_avail) cmd_reg |= PCI_COMM_IO | PCI_COMM_ME; if (pci_bus_res[secbus].mem_avail) cmd_reg |= PCI_COMM_MAE | PCI_COMM_ME; pci_putw(bus, dev, func, PCI_CONF_COMM, cmd_reg); } void pci_reprogram(void) { int i, pci_reconfig = 1; char *onoff; int bus; /* * Scan ACPI namespace for _BBN objects, make sure that * childless root-bridges appear in devinfo tree */ pci_scan_bbn(); pci_unitaddr_cache_init(); /* * Fix-up unit-address assignments if cache is available */ if (pci_unitaddr_cache_valid()) { int pci_regs[] = {0, 0, 0}; int new_addr; int index = 0; for (bus = 0; bus <= pci_bios_maxbus; bus++) { /* skip non-root (peer) PCI busses */ if ((pci_bus_res[bus].par_bus != (uchar_t)-1) || (pci_bus_res[bus].dip == NULL)) continue; new_addr = pci_bus_unitaddr(index); if (pci_bus_res[bus].root_addr != new_addr) { /* update reg property for node */ pci_regs[0] = pci_bus_res[bus].root_addr = new_addr; (void) ndi_prop_update_int_array( DDI_DEV_T_NONE, pci_bus_res[bus].dip, "reg", (int *)pci_regs, 3); } index++; } } else { /* perform legacy processing */ pci_renumber_root_busses(); pci_unitaddr_cache_create(); } /* * Do root-bus resource discovery */ for (bus = 0; bus <= pci_bios_maxbus; bus++) { /* skip non-root (peer) PCI busses */ if (pci_bus_res[bus].par_bus != (uchar_t)-1) continue; /* * 1. find resources associated with this root bus */ populate_bus_res(bus); /* * 2. Remove used PCI and ISA resources from bus resource map */ memlist_remove_list(&pci_bus_res[bus].io_avail, pci_bus_res[bus].io_used); memlist_remove_list(&pci_bus_res[bus].mem_avail, pci_bus_res[bus].mem_used); memlist_remove_list(&pci_bus_res[bus].pmem_avail, pci_bus_res[bus].pmem_used); memlist_remove_list(&pci_bus_res[bus].mem_avail, pci_bus_res[bus].pmem_used); memlist_remove_list(&pci_bus_res[bus].pmem_avail, pci_bus_res[bus].mem_used); memlist_remove_list(&pci_bus_res[bus].io_avail, isa_res.io_used); memlist_remove_list(&pci_bus_res[bus].mem_avail, isa_res.mem_used); /* * 3. Exclude <1M address range here in case below reserved * ranges for BIOS data area, ROM area etc are wrongly reported * in ACPI resource producer entries for PCI root bus. * 00000000 - 000003FF RAM * 00000400 - 000004FF BIOS data area * 00000500 - 0009FFFF RAM * 000A0000 - 000BFFFF VGA RAM * 000C0000 - 000FFFFF ROM area */ (void) memlist_remove(&pci_bus_res[bus].mem_avail, 0, 0x100000); (void) memlist_remove(&pci_bus_res[bus].pmem_avail, 0, 0x100000); } memlist_free_all(&isa_res.io_used); memlist_free_all(&isa_res.mem_used); /* add bus-range property for root/peer bus nodes */ for (i = 0; i <= pci_bios_maxbus; i++) { /* create bus-range property on root/peer buses */ if (pci_bus_res[i].par_bus == (uchar_t)-1) add_bus_range_prop(i); /* setup bus range resource on each bus */ setup_bus_res(i); } if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, "pci-reprog", &onoff) == DDI_SUCCESS) { if (strcmp(onoff, "off") == 0) { pci_reconfig = 0; cmn_err(CE_NOTE, "pci device reprogramming disabled"); } ddi_prop_free(onoff); } remove_subtractive_res(); /* reprogram the non-subtractive PPB */ if (pci_reconfig) for (i = 0; i <= pci_bios_maxbus; i++) fix_ppb_res(i, B_FALSE); for (i = 0; i <= pci_bios_maxbus; i++) { /* configure devices not configured by BIOS */ if (pci_reconfig) { /* * Reprogram the subtractive PPB. At this time, all its * siblings should have got their resources already. */ if (pci_bus_res[i].subtractive) fix_ppb_res(i, B_TRUE); enumerate_bus_devs(i, CONFIG_NEW); } } /* All dev programmed, so we can create available prop */ for (i = 0; i <= pci_bios_maxbus; i++) add_bus_available_prop(i); } /* * populate bus resources */ static void populate_bus_res(uchar_t bus) { /* scan BIOS structures */ pci_bus_res[bus].pmem_avail = find_bus_res(bus, PREFETCH_TYPE); pci_bus_res[bus].mem_avail = find_bus_res(bus, MEM_TYPE); pci_bus_res[bus].io_avail = find_bus_res(bus, IO_TYPE); pci_bus_res[bus].bus_avail = find_bus_res(bus, BUSRANGE_TYPE); /* * attempt to initialize sub_bus from the largest range-end * in the bus_avail list */ if (pci_bus_res[bus].bus_avail != NULL) { struct memlist *entry; int current; entry = pci_bus_res[bus].bus_avail; while (entry != NULL) { current = entry->ml_address + entry->ml_size - 1; if (current > pci_bus_res[bus].sub_bus) pci_bus_res[bus].sub_bus = current; entry = entry->ml_next; } } if (bus == 0) { /* * Special treatment of bus 0: * If no IO/MEM resource from ACPI/MPSPEC/HRT, copy * pcimem from boot and make I/O space the entire range * starting at 0x100. */ if (pci_bus_res[0].mem_avail == NULL) pci_bus_res[0].mem_avail = memlist_dup(bootops->boot_mem->pcimem); /* Exclude 0x00 to 0xff of the I/O space, used by all PCs */ if (pci_bus_res[0].io_avail == NULL) memlist_insert(&pci_bus_res[0].io_avail, 0x100, 0xffff); } /* * Create 'ranges' property here before any resources are * removed from the resource lists */ add_ranges_prop(bus, 0); } /* * Create top-level bus dips, i.e. /pci@0,0, /pci@1,0... */ static void create_root_bus_dip(uchar_t bus) { int pci_regs[] = {0, 0, 0}; dev_info_t *dip; ASSERT(pci_bus_res[bus].par_bus == (uchar_t)-1); num_root_bus++; ndi_devi_alloc_sleep(ddi_root_node(), "pci", (pnode_t)DEVI_SID_NODEID, &dip); (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "#address-cells", 3); (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "#size-cells", 2); pci_regs[0] = pci_bus_res[bus].root_addr; (void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip, "reg", (int *)pci_regs, 3); /* * If system has PCIe bus, then create different properties */ if (create_pcie_root_bus(bus, dip) == B_FALSE) (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, "device_type", "pci"); (void) ndi_devi_bind_driver(dip, 0); pci_bus_res[bus].dip = dip; } /* * For any fixed configuration (often compatability) pci devices * and those with their own expansion rom, create device nodes * to hold the already configured device details. */ void enumerate_bus_devs(uchar_t bus, int config_op) { uchar_t dev, func, nfunc, header; ushort_t venid; struct pci_devfunc *devlist = NULL, *entry; if (config_op == CONFIG_NEW) { dcmn_err(CE_NOTE, "configuring pci bus 0x%x", bus); } else if (config_op == CONFIG_FIX) { dcmn_err(CE_NOTE, "fixing devices on pci bus 0x%x", bus); } else dcmn_err(CE_NOTE, "enumerating pci bus 0x%x", bus); if (config_op == CONFIG_NEW) { devlist = (struct pci_devfunc *)pci_bus_res[bus].privdata; while (devlist) { entry = devlist; devlist = entry->next; if (entry->reprogram || pci_bus_res[bus].io_reprogram || pci_bus_res[bus].mem_reprogram) { /* reprogram device(s) */ (void) add_reg_props(entry->dip, bus, entry->dev, entry->func, CONFIG_NEW, 0); } kmem_free(entry, sizeof (*entry)); } pci_bus_res[bus].privdata = NULL; return; } for (dev = 0; dev < max_dev_pci; dev++) { nfunc = 1; for (func = 0; func < nfunc; func++) { dcmn_err(CE_NOTE, "probing dev 0x%x, func 0x%x", dev, func); venid = pci_getw(bus, dev, func, PCI_CONF_VENID); if ((venid == 0xffff) || (venid == 0)) { /* no function at this address */ continue; } header = pci_getb(bus, dev, func, PCI_CONF_HEADER); if (header == 0xff) { continue; /* illegal value */ } /* * according to some mail from Microsoft posted * to the pci-drivers alias, their only requirement * for a multifunction device is for the 1st * function to have to PCI_HEADER_MULTI bit set. */ if ((func == 0) && (header & PCI_HEADER_MULTI)) { nfunc = 8; } if (config_op == CONFIG_FIX || config_op == CONFIG_INFO) { /* * Create the node, unconditionally, on the * first pass only. It may still need * resource assignment, which will be * done on the second, CONFIG_NEW, pass. */ process_devfunc(bus, dev, func, header, venid, config_op); } } } /* percolate bus used resources up through parents to root */ if (config_op == CONFIG_INFO) { int par_bus; par_bus = pci_bus_res[bus].par_bus; while (par_bus != (uchar_t)-1) { pci_bus_res[par_bus].io_size += pci_bus_res[bus].io_size; pci_bus_res[par_bus].mem_size += pci_bus_res[bus].mem_size; if (pci_bus_res[bus].io_used) memlist_merge(&pci_bus_res[bus].io_used, &pci_bus_res[par_bus].io_used); if (pci_bus_res[bus].mem_used) memlist_merge(&pci_bus_res[bus].mem_used, &pci_bus_res[par_bus].mem_used); if (pci_bus_res[bus].pmem_used) memlist_merge(&pci_bus_res[bus].pmem_used, &pci_bus_res[par_bus].pmem_used); bus = par_bus; par_bus = pci_bus_res[par_bus].par_bus; } } } static int check_pciide_prop(uchar_t revid, ushort_t venid, ushort_t devid, ushort_t subvenid, ushort_t subdevid) { static int prop_exist = -1; static char *pciide_str; char compat[32]; if (prop_exist == -1) { prop_exist = (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, "pci-ide", &pciide_str) == DDI_SUCCESS); } if (!prop_exist) return (0); /* compare property value against various forms of compatible */ if (subvenid) { (void) snprintf(compat, sizeof (compat), "pci%x,%x.%x.%x.%x", venid, devid, subvenid, subdevid, revid); if (strcmp(pciide_str, compat) == 0) return (1); (void) snprintf(compat, sizeof (compat), "pci%x,%x.%x.%x", venid, devid, subvenid, subdevid); if (strcmp(pciide_str, compat) == 0) return (1); (void) snprintf(compat, sizeof (compat), "pci%x,%x", subvenid, subdevid); if (strcmp(pciide_str, compat) == 0) return (1); } (void) snprintf(compat, sizeof (compat), "pci%x,%x.%x", venid, devid, revid); if (strcmp(pciide_str, compat) == 0) return (1); (void) snprintf(compat, sizeof (compat), "pci%x,%x", venid, devid); if (strcmp(pciide_str, compat) == 0) return (1); return (0); } static int is_pciide(uchar_t basecl, uchar_t subcl, uchar_t revid, ushort_t venid, ushort_t devid, ushort_t subvenid, ushort_t subdevid) { struct ide_table { /* table for PCI_MASS_OTHER */ ushort_t venid; ushort_t devid; } *entry; /* XXX SATA and other devices: need a way to add dynamically */ static struct ide_table ide_other[] = { {0x1095, 0x3112}, {0x1095, 0x3114}, {0x1095, 0x3512}, {0x1095, 0x680}, /* Sil0680 */ {0x1283, 0x8211}, /* ITE 8211F is subcl PCI_MASS_OTHER */ {0, 0} }; if (basecl != PCI_CLASS_MASS) return (0); if (subcl == PCI_MASS_IDE) { return (1); } if (check_pciide_prop(revid, venid, devid, subvenid, subdevid)) return (1); if (subcl != PCI_MASS_OTHER && subcl != PCI_MASS_SATA) { return (0); } entry = &ide_other[0]; while (entry->venid) { if (entry->venid == venid && entry->devid == devid) return (1); entry++; } return (0); } static int is_display(uint_t classcode) { static uint_t disp_classes[] = { 0x000100, 0x030000, 0x030001 }; int i, nclasses = sizeof (disp_classes) / sizeof (uint_t); for (i = 0; i < nclasses; i++) { if (classcode == disp_classes[i]) return (1); } return (0); } static void add_undofix_entry(uint8_t bus, uint8_t dev, uint8_t fn, void (*undofn)(uint8_t, uint8_t, uint8_t)) { struct pci_fixundo *newundo; newundo = kmem_alloc(sizeof (struct pci_fixundo), KM_SLEEP); /* * Adding an item to this list means that we must turn its NMIENABLE * bit back on at a later time. */ newundo->bus = bus; newundo->dev = dev; newundo->fn = fn; newundo->undofn = undofn; newundo->next = undolist; /* add to the undo list in LIFO order */ undolist = newundo; } void add_pci_fixes(void) { int i; for (i = 0; i <= pci_bios_maxbus; i++) { /* * For each bus, apply needed fixes to the appropriate devices. * This must be done before the main enumeration loop because * some fixes must be applied to devices normally encountered * later in the pci scan (e.g. if a fix to device 7 must be * applied before scanning device 6, applying fixes in the * normal enumeration loop would obviously be too late). */ enumerate_bus_devs(i, CONFIG_FIX); } } void undo_pci_fixes(void) { struct pci_fixundo *nextundo; uint8_t bus, dev, fn; /* * All fixes in the undo list are performed unconditionally. Future * fixes may require selective undo. */ while (undolist != NULL) { bus = undolist->bus; dev = undolist->dev; fn = undolist->fn; (*(undolist->undofn))(bus, dev, fn); nextundo = undolist->next; kmem_free(undolist, sizeof (struct pci_fixundo)); undolist = nextundo; } } static void undo_amd8111_pci_fix(uint8_t bus, uint8_t dev, uint8_t fn) { uint8_t val8; val8 = pci_getb(bus, dev, fn, LPC_IO_CONTROL_REG_1); /* * The NMIONERR bit is turned back on to allow the SMM BIOS * to handle more critical PCI errors (e.g. PERR#). */ val8 |= AMD8111_ENABLENMI; pci_putb(bus, dev, fn, LPC_IO_CONTROL_REG_1, val8); } static void pci_fix_amd8111(uint8_t bus, uint8_t dev, uint8_t fn) { uint8_t val8; val8 = pci_getb(bus, dev, fn, LPC_IO_CONTROL_REG_1); if ((val8 & AMD8111_ENABLENMI) == 0) return; /* * We reset NMIONERR in the LPC because master-abort on the PCI * bridge side of the 8111 will cause NMI, which might cause SMI, * which sometimes prevents all devices from being enumerated. */ val8 &= ~AMD8111_ENABLENMI; pci_putb(bus, dev, fn, LPC_IO_CONTROL_REG_1, val8); add_undofix_entry(bus, dev, fn, undo_amd8111_pci_fix); } static void set_devpm_d0(uchar_t bus, uchar_t dev, uchar_t func) { uint16_t status; uint8_t header; uint8_t cap_ptr; uint8_t cap_id; uint16_t pmcsr; status = pci_getw(bus, dev, func, PCI_CONF_STAT); if (!(status & PCI_STAT_CAP)) return; /* No capabilities list */ header = pci_getb(bus, dev, func, PCI_CONF_HEADER) & PCI_HEADER_TYPE_M; if (header == PCI_HEADER_CARDBUS) cap_ptr = pci_getb(bus, dev, func, PCI_CBUS_CAP_PTR); else cap_ptr = pci_getb(bus, dev, func, PCI_CONF_CAP_PTR); /* * Walk the capabilities list searching for a PM entry. */ while (cap_ptr != PCI_CAP_NEXT_PTR_NULL && cap_ptr >= PCI_CAP_PTR_OFF) { cap_ptr &= PCI_CAP_PTR_MASK; cap_id = pci_getb(bus, dev, func, cap_ptr + PCI_CAP_ID); if (cap_id == PCI_CAP_ID_PM) { pmcsr = pci_getw(bus, dev, func, cap_ptr + PCI_PMCSR); pmcsr &= ~(PCI_PMCSR_STATE_MASK); pmcsr |= PCI_PMCSR_D0; /* D0 state */ pci_putw(bus, dev, func, cap_ptr + PCI_PMCSR, pmcsr); break; } cap_ptr = pci_getb(bus, dev, func, cap_ptr + PCI_CAP_NEXT_PTR); } } #define is_isa(bc, sc) \ (((bc) == PCI_CLASS_BRIDGE) && ((sc) == PCI_BRIDGE_ISA)) static void process_devfunc(uchar_t bus, uchar_t dev, uchar_t func, uchar_t header, ushort_t vendorid, int config_op) { char nodename[32], unitaddr[5]; dev_info_t *dip; uchar_t basecl, subcl, progcl, intr, revid; ushort_t subvenid, subdevid, status; ushort_t slot_num; uint_t classcode, revclass; int reprogram = 0, pciide = 0; int power[2] = {1, 1}; int pciex = 0; ushort_t is_pci_bridge = 0; struct pci_devfunc *devlist = NULL, *entry = NULL; boolean_t slot_valid; gfx_entry_t *gfxp; pcie_req_id_t bdf; ushort_t deviceid = pci_getw(bus, dev, func, PCI_CONF_DEVID); switch (header & PCI_HEADER_TYPE_M) { case PCI_HEADER_ZERO: subvenid = pci_getw(bus, dev, func, PCI_CONF_SUBVENID); subdevid = pci_getw(bus, dev, func, PCI_CONF_SUBSYSID); break; case PCI_HEADER_CARDBUS: subvenid = pci_getw(bus, dev, func, PCI_CBUS_SUBVENID); subdevid = pci_getw(bus, dev, func, PCI_CBUS_SUBSYSID); /* Record the # of cardbus bridges found on the bus */ if (config_op == CONFIG_INFO) pci_bus_res[bus].num_cbb++; break; default: subvenid = 0; subdevid = 0; break; } if (config_op == CONFIG_FIX) { if (vendorid == VENID_AMD && deviceid == DEVID_AMD8111_LPC) { pci_fix_amd8111(bus, dev, func); } return; } /* XXX should be use generic names? derive from class? */ revclass = pci_getl(bus, dev, func, PCI_CONF_REVID); classcode = revclass >> 8; revid = revclass & 0xff; /* figure out if this is pci-ide */ basecl = classcode >> 16; subcl = (classcode >> 8) & 0xff; progcl = classcode & 0xff; if (is_display(classcode)) (void) snprintf(nodename, sizeof (nodename), "display"); else if (!pseudo_isa && is_isa(basecl, subcl)) (void) snprintf(nodename, sizeof (nodename), "isa"); else if (subvenid != 0) (void) snprintf(nodename, sizeof (nodename), "pci%x,%x", subvenid, subdevid); else (void) snprintf(nodename, sizeof (nodename), "pci%x,%x", vendorid, deviceid); /* make sure parent bus dip has been created */ if (pci_bus_res[bus].dip == NULL) create_root_bus_dip(bus); ndi_devi_alloc_sleep(pci_bus_res[bus].dip, nodename, DEVI_SID_NODEID, &dip); if (check_if_device_is_pciex(dip, bus, dev, func, &slot_valid, &slot_num, &is_pci_bridge) == B_TRUE) pciex = 1; bdf = PCI_GETBDF(bus, dev, func); /* * Record BAD AMD bridges which don't support MMIO config access. */ if (IS_BAD_AMD_NTBRIDGE(vendorid, deviceid) || IS_AMD_8132_CHIP(vendorid, deviceid)) { uchar_t secbus = 0; uchar_t subbus = 0; if ((basecl == PCI_CLASS_BRIDGE) && (subcl == PCI_BRIDGE_PCI)) { secbus = pci_getb(bus, dev, func, PCI_BCNF_SECBUS); subbus = pci_getb(bus, dev, func, PCI_BCNF_SUBBUS); } pci_cfgacc_add_workaround(bdf, secbus, subbus); } /* * Only populate bus_t if this device is sitting under a PCIE root * complex. Some particular machines have both a PCIE root complex and * a PCI hostbridge, in which case only devices under the PCIE root * complex will have their bus_t populated. */ if (pcie_get_rc_dip(dip) != NULL) { ck804_fix_aer_ptr(dip, bdf); (void) pcie_init_bus(dip, bdf, PCIE_BUS_INITIAL); } /* add properties */ (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "device-id", deviceid); (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "vendor-id", vendorid); (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "revision-id", revid); (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "class-code", classcode); if (func == 0) (void) snprintf(unitaddr, sizeof (unitaddr), "%x", dev); else (void) snprintf(unitaddr, sizeof (unitaddr), "%x,%x", dev, func); (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, "unit-address", unitaddr); /* add device_type for display nodes */ if (is_display(classcode)) { (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, "device_type", "display"); } /* add special stuff for header type */ if ((header & PCI_HEADER_TYPE_M) == PCI_HEADER_ZERO) { uchar_t mingrant = pci_getb(bus, dev, func, PCI_CONF_MIN_G); uchar_t maxlatency = pci_getb(bus, dev, func, PCI_CONF_MAX_L); if (subvenid != 0) { (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "subsystem-id", subdevid); (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "subsystem-vendor-id", subvenid); } if (!pciex) (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "min-grant", mingrant); if (!pciex) (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "max-latency", maxlatency); } /* interrupt, record if not 0 */ intr = pci_getb(bus, dev, func, PCI_CONF_IPIN); if (intr != 0) (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "interrupts", intr); /* * Add support for 133 mhz pci eventually */ status = pci_getw(bus, dev, func, PCI_CONF_STAT); (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "devsel-speed", (status & PCI_STAT_DEVSELT) >> 9); if (!pciex && (status & PCI_STAT_FBBC)) (void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip, "fast-back-to-back"); if (!pciex && (status & PCI_STAT_66MHZ)) (void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip, "66mhz-capable"); if (status & PCI_STAT_UDF) (void) ndi_prop_create_boolean(DDI_DEV_T_NONE, dip, "udf-supported"); if (pciex && slot_valid) { (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "physical-slot#", slot_num); if (!is_pci_bridge) pciex_slot_names_prop(dip, slot_num); } (void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip, "power-consumption", power, 2); /* Set the device PM state to D0 */ set_devpm_d0(bus, dev, func); if ((basecl == PCI_CLASS_BRIDGE) && (subcl == PCI_BRIDGE_PCI)) add_ppb_props(dip, bus, dev, func, pciex, is_pci_bridge); else { /* * Record the non-PPB devices on the bus for possible * reprogramming at 2nd bus enumeration. * Note: PPB reprogramming is done in fix_ppb_res() */ devlist = (struct pci_devfunc *)pci_bus_res[bus].privdata; entry = kmem_zalloc(sizeof (*entry), KM_SLEEP); entry->dip = dip; entry->dev = dev; entry->func = func; entry->next = devlist; pci_bus_res[bus].privdata = entry; } if (IS_CLASS_IOAPIC(basecl, subcl, progcl)) { create_ioapic_node(bus, dev, func, vendorid, deviceid); } /* check for NVIDIA CK8-04/MCP55 based LPC bridge */ if (NVIDIA_IS_LPC_BRIDGE(vendorid, deviceid) && (dev == 1) && (func == 0)) { add_nvidia_isa_bridge_props(dip, bus, dev, func); /* each LPC bridge has an integrated IOAPIC */ apic_nvidia_io_max++; } if (pciex && is_pci_bridge) (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, "model", (char *)"PCIe-PCI bridge"); else add_model_prop(dip, classcode); add_compatible(dip, subvenid, subdevid, vendorid, deviceid, revid, classcode, pciex); /* * See if this device is a controller that advertises * itself to be a standard ATA task file controller, or one that * has been hard coded. * * If it is, check if any other higher precedence driver listed in * driver_aliases will claim the node by calling * ddi_compatibile_driver_major. If so, clear pciide and do not * create a pci-ide node or any other special handling. * * If another driver does not bind, set the node name to pci-ide * and then let the special pci-ide handling for registers and * child pci-ide nodes proceed below. */ if (is_pciide(basecl, subcl, revid, vendorid, deviceid, subvenid, subdevid) == 1) { if (ddi_compatible_driver_major(dip, NULL) == (major_t)-1) { (void) ndi_devi_set_nodename(dip, "pci-ide", 0); pciide = 1; } } DEVI_SET_PCI(dip); reprogram = add_reg_props(dip, bus, dev, func, config_op, pciide); (void) ndi_devi_bind_driver(dip, 0); /* special handling for pci-ide */ if (pciide) { dev_info_t *cdip; /* * Create properties specified by P1275 Working Group * Proposal #414 Version 1 */ (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, "device_type", "pci-ide"); (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "#address-cells", 1); (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "#size-cells", 0); /* allocate two child nodes */ ndi_devi_alloc_sleep(dip, "ide", (pnode_t)DEVI_SID_NODEID, &cdip); (void) ndi_prop_update_int(DDI_DEV_T_NONE, cdip, "reg", 0); (void) ndi_devi_bind_driver(cdip, 0); ndi_devi_alloc_sleep(dip, "ide", (pnode_t)DEVI_SID_NODEID, &cdip); (void) ndi_prop_update_int(DDI_DEV_T_NONE, cdip, "reg", 1); (void) ndi_devi_bind_driver(cdip, 0); reprogram = 0; /* don't reprogram pci-ide bridge */ } if (is_display(classcode)) { gfxp = kmem_zalloc(sizeof (*gfxp), KM_SLEEP); gfxp->g_dip = dip; gfxp->g_prev = NULL; gfxp->g_next = gfx_devinfo_list; gfx_devinfo_list = gfxp; if (gfxp->g_next) gfxp->g_next->g_prev = gfxp; } /* special handling for isa */ if (!pseudo_isa && is_isa(basecl, subcl)) { /* add device_type */ (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, "device_type", "isa"); } if (reprogram && (entry != NULL)) entry->reprogram = B_TRUE; } /* * Some vendors do not use unique subsystem IDs in their products, which * makes the use of form 2 compatible names (pciSSSS,ssss) inappropriate. * Allow for these compatible forms to be excluded on a per-device basis. */ /*ARGSUSED*/ static boolean_t subsys_compat_exclude(ushort_t venid, ushort_t devid, ushort_t subvenid, ushort_t subdevid, uchar_t revid, uint_t classcode) { /* Nvidia display adapters */ if ((venid == 0x10de) && (is_display(classcode))) return (B_TRUE); return (B_FALSE); } /* * Set the compatible property to a value compliant with * rev 2.1 of the IEEE1275 PCI binding. * (Also used for PCI-Express devices). * * pciVVVV,DDDD.SSSS.ssss.RR (0) * pciVVVV,DDDD.SSSS.ssss (1) * pciSSSS,ssss (2) * pciVVVV,DDDD.RR (3) * pciVVVV,DDDD (4) * pciclass,CCSSPP (5) * pciclass,CCSS (6) * * The Subsystem (SSSS) forms are not inserted if * subsystem-vendor-id is 0. * * NOTE: For PCI-Express devices "pci" is replaced with "pciex" in 0-6 above * property 2 is not created as per "1275 bindings for PCI Express Interconnect" * * Set with setprop and \x00 between each * to generate the encoded string array form. */ void add_compatible(dev_info_t *dip, ushort_t subvenid, ushort_t subdevid, ushort_t vendorid, ushort_t deviceid, uchar_t revid, uint_t classcode, int pciex) { int i = 0; int size = COMPAT_BUFSIZE; char *compat[13]; char *buf, *curr; curr = buf = kmem_alloc(size, KM_SLEEP); if (pciex) { if (subvenid) { compat[i++] = curr; /* form 0 */ (void) snprintf(curr, size, "pciex%x,%x.%x.%x.%x", vendorid, deviceid, subvenid, subdevid, revid); size -= strlen(curr) + 1; curr += strlen(curr) + 1; compat[i++] = curr; /* form 1 */ (void) snprintf(curr, size, "pciex%x,%x.%x.%x", vendorid, deviceid, subvenid, subdevid); size -= strlen(curr) + 1; curr += strlen(curr) + 1; } compat[i++] = curr; /* form 3 */ (void) snprintf(curr, size, "pciex%x,%x.%x", vendorid, deviceid, revid); size -= strlen(curr) + 1; curr += strlen(curr) + 1; compat[i++] = curr; /* form 4 */ (void) snprintf(curr, size, "pciex%x,%x", vendorid, deviceid); size -= strlen(curr) + 1; curr += strlen(curr) + 1; compat[i++] = curr; /* form 5 */ (void) snprintf(curr, size, "pciexclass,%06x", classcode); size -= strlen(curr) + 1; curr += strlen(curr) + 1; compat[i++] = curr; /* form 6 */ (void) snprintf(curr, size, "pciexclass,%04x", (classcode >> 8)); size -= strlen(curr) + 1; curr += strlen(curr) + 1; } if (subvenid) { compat[i++] = curr; /* form 0 */ (void) snprintf(curr, size, "pci%x,%x.%x.%x.%x", vendorid, deviceid, subvenid, subdevid, revid); size -= strlen(curr) + 1; curr += strlen(curr) + 1; compat[i++] = curr; /* form 1 */ (void) snprintf(curr, size, "pci%x,%x.%x.%x", vendorid, deviceid, subvenid, subdevid); size -= strlen(curr) + 1; curr += strlen(curr) + 1; if (subsys_compat_exclude(vendorid, deviceid, subvenid, subdevid, revid, classcode) == B_FALSE) { compat[i++] = curr; /* form 2 */ (void) snprintf(curr, size, "pci%x,%x", subvenid, subdevid); size -= strlen(curr) + 1; curr += strlen(curr) + 1; } } compat[i++] = curr; /* form 3 */ (void) snprintf(curr, size, "pci%x,%x.%x", vendorid, deviceid, revid); size -= strlen(curr) + 1; curr += strlen(curr) + 1; compat[i++] = curr; /* form 4 */ (void) snprintf(curr, size, "pci%x,%x", vendorid, deviceid); size -= strlen(curr) + 1; curr += strlen(curr) + 1; compat[i++] = curr; /* form 5 */ (void) snprintf(curr, size, "pciclass,%06x", classcode); size -= strlen(curr) + 1; curr += strlen(curr) + 1; compat[i++] = curr; /* form 6 */ (void) snprintf(curr, size, "pciclass,%04x", (classcode >> 8)); size -= strlen(curr) + 1; curr += strlen(curr) + 1; (void) ndi_prop_update_string_array(DDI_DEV_T_NONE, dip, "compatible", compat, i); kmem_free(buf, COMPAT_BUFSIZE); } /* * Adjust the reg properties for a dual channel PCI-IDE device. * * NOTE: don't do anything that changes the order of the hard-decodes * and programmed BARs. The kernel driver depends on these values * being in this order regardless of whether they're for a 'native' * mode BAR or not. */ /* * config info for pci-ide devices */ static struct { uchar_t native_mask; /* 0 == 'compatibility' mode, 1 == native */ uchar_t bar_offset; /* offset for alt status register */ ushort_t addr; /* compatibility mode base address */ ushort_t length; /* number of ports for this BAR */ } pciide_bar[] = { { 0x01, 0, 0x1f0, 8 }, /* primary lower BAR */ { 0x01, 2, 0x3f6, 1 }, /* primary upper BAR */ { 0x04, 0, 0x170, 8 }, /* secondary lower BAR */ { 0x04, 2, 0x376, 1 } /* secondary upper BAR */ }; static int pciIdeAdjustBAR(uchar_t progcl, int index, uint_t *basep, uint_t *lenp) { int hard_decode = 0; /* * Adjust the base and len for the BARs of the PCI-IDE * device's primary and secondary controllers. The first * two BARs are for the primary controller and the next * two BARs are for the secondary controller. The fifth * and sixth bars are never adjusted. */ if (index >= 0 && index <= 3) { *lenp = pciide_bar[index].length; if (progcl & pciide_bar[index].native_mask) { *basep += pciide_bar[index].bar_offset; } else { *basep = pciide_bar[index].addr; hard_decode = 1; } } /* * if either base or len is zero make certain both are zero */ if (*basep == 0 || *lenp == 0) { *basep = 0; *lenp = 0; hard_decode = 0; } return (hard_decode); } /* * Add the "reg" and "assigned-addresses" property */ static int add_reg_props(dev_info_t *dip, uchar_t bus, uchar_t dev, uchar_t func, int config_op, int pciide) { uchar_t baseclass, subclass, progclass, header; ushort_t bar_sz; uint_t value = 0, len, devloc; uint_t base, base_hi, type; ushort_t offset, end; int max_basereg, j, reprogram = 0; uint_t phys_hi; struct memlist **io_avail, **io_used; struct memlist **mem_avail, **mem_used; struct memlist **pmem_avail, **pmem_used; uchar_t res_bus; pci_regspec_t regs[16] = {{0}}; pci_regspec_t assigned[15] = {{0}}; int nreg, nasgn; io_avail = &pci_bus_res[bus].io_avail; io_used = &pci_bus_res[bus].io_used; mem_avail = &pci_bus_res[bus].mem_avail; mem_used = &pci_bus_res[bus].mem_used; pmem_avail = &pci_bus_res[bus].pmem_avail; pmem_used = &pci_bus_res[bus].pmem_used; devloc = (uint_t)bus << 16 | (uint_t)dev << 11 | (uint_t)func << 8; regs[0].pci_phys_hi = devloc; nreg = 1; /* rest of regs[0] is all zero */ nasgn = 0; baseclass = pci_getb(bus, dev, func, PCI_CONF_BASCLASS); subclass = pci_getb(bus, dev, func, PCI_CONF_SUBCLASS); progclass = pci_getb(bus, dev, func, PCI_CONF_PROGCLASS); header = pci_getb(bus, dev, func, PCI_CONF_HEADER) & PCI_HEADER_TYPE_M; switch (header) { case PCI_HEADER_ZERO: max_basereg = PCI_BASE_NUM; break; case PCI_HEADER_PPB: max_basereg = PCI_BCNF_BASE_NUM; break; case PCI_HEADER_CARDBUS: max_basereg = PCI_CBUS_BASE_NUM; reprogram = 1; break; default: max_basereg = 0; break; } /* * Create the register property by saving the current * value of the base register. Write 0xffffffff to the * base register. Read the value back to determine the * required size of the address space. Restore the base * register contents. * * Do not disable I/O and memory access for bridges; this * has the side-effect of making the bridge transparent to * secondary-bus activity (see sections 4.1-4.3 of the * PCI-PCI Bridge Spec V1.2). For non-bridges, disable * I/O and memory access to avoid difficulty with USB * emulation (see OHCI spec1.0a appendix B * "Host Controller Mapping") */ end = PCI_CONF_BASE0 + max_basereg * sizeof (uint_t); for (j = 0, offset = PCI_CONF_BASE0; offset < end; j++, offset += bar_sz) { uint_t command; /* determine the size of the address space */ base = pci_getl(bus, dev, func, offset); if (baseclass != PCI_CLASS_BRIDGE) { command = (uint_t)pci_getw(bus, dev, func, PCI_CONF_COMM); pci_putw(bus, dev, func, PCI_CONF_COMM, command & ~(PCI_COMM_MAE | PCI_COMM_IO)); } pci_putl(bus, dev, func, offset, 0xffffffff); value = pci_getl(bus, dev, func, offset); pci_putl(bus, dev, func, offset, base); if (baseclass != PCI_CLASS_BRIDGE) pci_putw(bus, dev, func, PCI_CONF_COMM, command); /* construct phys hi,med.lo, size hi, lo */ if ((pciide && j < 4) || (base & PCI_BASE_SPACE_IO)) { int hard_decode = 0; /* i/o space */ bar_sz = PCI_BAR_SZ_32; value &= PCI_BASE_IO_ADDR_M; len = ((value ^ (value-1)) + 1) >> 1; /* XXX Adjust first 4 IDE registers */ if (pciide) { if (subclass != PCI_MASS_IDE) progclass = (PCI_IDE_IF_NATIVE_PRI | PCI_IDE_IF_NATIVE_SEC); hard_decode = pciIdeAdjustBAR(progclass, j, &base, &len); } else if (value == 0) { /* skip base regs with size of 0 */ continue; } regs[nreg].pci_phys_hi = PCI_ADDR_IO | devloc | (hard_decode ? PCI_RELOCAT_B : offset); regs[nreg].pci_phys_low = hard_decode ? base & PCI_BASE_IO_ADDR_M : 0; assigned[nasgn].pci_phys_hi = PCI_RELOCAT_B | regs[nreg].pci_phys_hi; regs[nreg].pci_size_low = assigned[nasgn].pci_size_low = len; type = base & (~PCI_BASE_IO_ADDR_M); base &= PCI_BASE_IO_ADDR_M; /* * A device under a subtractive PPB can allocate * resources from its parent bus if there is no resource * available on its own bus. */ if ((config_op == CONFIG_NEW) && (*io_avail == NULL)) { res_bus = bus; while (pci_bus_res[res_bus].subtractive) { res_bus = pci_bus_res[res_bus].par_bus; if (res_bus == (uchar_t)-1) break; /* root bus already */ if (pci_bus_res[res_bus].io_avail) { io_avail = &pci_bus_res [res_bus].io_avail; break; } } } /* * first pass - gather what's there * update/second pass - adjust/allocate regions * config - allocate regions */ if (config_op == CONFIG_INFO) { /* first pass */ /* take out of the resource map of the bus */ if (base != 0) { (void) memlist_remove(io_avail, base, len); memlist_insert(io_used, base, len); } else { reprogram = 1; } pci_bus_res[bus].io_size += len; } else if ((*io_avail && base == 0) || pci_bus_res[bus].io_reprogram) { base = (uint_t)memlist_find(io_avail, len, len); if (base != 0) { memlist_insert(io_used, base, len); /* XXX need to worry about 64-bit? */ pci_putl(bus, dev, func, offset, base | type); base = pci_getl(bus, dev, func, offset); base &= PCI_BASE_IO_ADDR_M; } if (base == 0) { cmn_err(CE_WARN, "failed to program" " IO space [%d/%d/%d] BAR@0x%x" " length 0x%x", bus, dev, func, offset, len); } } assigned[nasgn].pci_phys_low = base; nreg++, nasgn++; } else { /* memory space */ if ((base & PCI_BASE_TYPE_M) == PCI_BASE_TYPE_ALL) { bar_sz = PCI_BAR_SZ_64; base_hi = pci_getl(bus, dev, func, offset + 4); phys_hi = PCI_ADDR_MEM64; } else { bar_sz = PCI_BAR_SZ_32; base_hi = 0; phys_hi = PCI_ADDR_MEM32; } /* skip base regs with size of 0 */ value &= PCI_BASE_M_ADDR_M; if (value == 0) continue; len = ((value ^ (value-1)) + 1) >> 1; regs[nreg].pci_size_low = assigned[nasgn].pci_size_low = len; phys_hi |= (devloc | offset); if (base & PCI_BASE_PREF_M) phys_hi |= PCI_PREFETCH_B; /* * A device under a subtractive PPB can allocate * resources from its parent bus if there is no resource * available on its own bus. */ if ((config_op == CONFIG_NEW) && (*mem_avail == NULL)) { res_bus = bus; while (pci_bus_res[res_bus].subtractive) { res_bus = pci_bus_res[res_bus].par_bus; if (res_bus == (uchar_t)-1) break; /* root bus already */ mem_avail = &pci_bus_res[res_bus].mem_avail; pmem_avail = &pci_bus_res [res_bus].pmem_avail; /* * Break out as long as at least * mem_avail is available */ if ((*pmem_avail && (phys_hi & PCI_PREFETCH_B)) || *mem_avail) break; } } regs[nreg].pci_phys_hi = assigned[nasgn].pci_phys_hi = phys_hi; assigned[nasgn].pci_phys_hi |= PCI_RELOCAT_B; assigned[nasgn].pci_phys_mid = base_hi; type = base & ~PCI_BASE_M_ADDR_M; base &= PCI_BASE_M_ADDR_M; if (config_op == CONFIG_INFO) { /* take out of the resource map of the bus */ if (base != NULL) { /* remove from PMEM and MEM space */ (void) memlist_remove(mem_avail, base, len); (void) memlist_remove(pmem_avail, base, len); /* only note as used in correct map */ if (phys_hi & PCI_PREFETCH_B) memlist_insert(pmem_used, base, len); else memlist_insert(mem_used, base, len); } else { reprogram = 1; } pci_bus_res[bus].mem_size += len; } else if ((*mem_avail && base == NULL) || pci_bus_res[bus].mem_reprogram) { /* * When desired, attempt a prefetchable * allocation first */ if (phys_hi & PCI_PREFETCH_B) { base = (uint_t)memlist_find(pmem_avail, len, len); if (base != NULL) { memlist_insert(pmem_used, base, len); (void) memlist_remove(mem_avail, base, len); } } /* * If prefetchable allocation was not * desired, or failed, attempt ordinary * memory allocation */ if (base == NULL) { base = (uint_t)memlist_find(mem_avail, len, len); if (base != NULL) { memlist_insert(mem_used, base, len); (void) memlist_remove( pmem_avail, base, len); } } if (base != NULL) { pci_putl(bus, dev, func, offset, base | type); base = pci_getl(bus, dev, func, offset); base &= PCI_BASE_M_ADDR_M; } else cmn_err(CE_WARN, "failed to program " "mem space [%d/%d/%d] BAR@0x%x" " length 0x%x", bus, dev, func, offset, len); } assigned[nasgn].pci_phys_low = base; nreg++, nasgn++; } } switch (header) { case PCI_HEADER_ZERO: offset = PCI_CONF_ROM; break; case PCI_HEADER_PPB: offset = PCI_BCNF_ROM; break; default: /* including PCI_HEADER_CARDBUS */ goto done; } /* * Add the expansion rom memory space * Determine the size of the ROM base reg; don't write reserved bits * ROM isn't in the PCI memory space. */ base = pci_getl(bus, dev, func, offset); pci_putl(bus, dev, func, offset, PCI_BASE_ROM_ADDR_M); value = pci_getl(bus, dev, func, offset); pci_putl(bus, dev, func, offset, base); if (value & PCI_BASE_ROM_ENABLE) value &= PCI_BASE_ROM_ADDR_M; else value = 0; if (value != 0) { regs[nreg].pci_phys_hi = (PCI_ADDR_MEM32 | devloc) + offset; assigned[nasgn].pci_phys_hi = (PCI_RELOCAT_B | PCI_ADDR_MEM32 | devloc) + offset; base &= PCI_BASE_ROM_ADDR_M; assigned[nasgn].pci_phys_low = base; len = ((value ^ (value-1)) + 1) >> 1; regs[nreg].pci_size_low = assigned[nasgn].pci_size_low = len; nreg++, nasgn++; /* take it out of the memory resource */ if (base != NULL) { (void) memlist_remove(mem_avail, base, len); memlist_insert(mem_used, base, len); pci_bus_res[bus].mem_size += len; } } /* * Account for "legacy" (alias) video adapter resources */ /* add the three hard-decode, aliased address spaces for VGA */ if ((baseclass == PCI_CLASS_DISPLAY && subclass == PCI_DISPLAY_VGA) || (baseclass == PCI_CLASS_NONE && subclass == PCI_NONE_VGA)) { /* VGA hard decode 0x3b0-0x3bb */ regs[nreg].pci_phys_hi = assigned[nasgn].pci_phys_hi = (PCI_RELOCAT_B | PCI_ALIAS_B | PCI_ADDR_IO | devloc); regs[nreg].pci_phys_low = assigned[nasgn].pci_phys_low = 0x3b0; regs[nreg].pci_size_low = assigned[nasgn].pci_size_low = 0xc; nreg++, nasgn++; (void) memlist_remove(io_avail, 0x3b0, 0xc); memlist_insert(io_used, 0x3b0, 0xc); pci_bus_res[bus].io_size += 0xc; /* VGA hard decode 0x3c0-0x3df */ regs[nreg].pci_phys_hi = assigned[nasgn].pci_phys_hi = (PCI_RELOCAT_B | PCI_ALIAS_B | PCI_ADDR_IO | devloc); regs[nreg].pci_phys_low = assigned[nasgn].pci_phys_low = 0x3c0; regs[nreg].pci_size_low = assigned[nasgn].pci_size_low = 0x20; nreg++, nasgn++; (void) memlist_remove(io_avail, 0x3c0, 0x20); memlist_insert(io_used, 0x3c0, 0x20); pci_bus_res[bus].io_size += 0x20; /* Video memory */ regs[nreg].pci_phys_hi = assigned[nasgn].pci_phys_hi = (PCI_RELOCAT_B | PCI_ALIAS_B | PCI_ADDR_MEM32 | devloc); regs[nreg].pci_phys_low = assigned[nasgn].pci_phys_low = 0xa0000; regs[nreg].pci_size_low = assigned[nasgn].pci_size_low = 0x20000; nreg++, nasgn++; /* remove from MEM and PMEM space */ (void) memlist_remove(mem_avail, 0xa0000, 0x20000); (void) memlist_remove(pmem_avail, 0xa0000, 0x20000); memlist_insert(mem_used, 0xa0000, 0x20000); pci_bus_res[bus].mem_size += 0x20000; } /* add the hard-decode, aliased address spaces for 8514 */ if ((baseclass == PCI_CLASS_DISPLAY) && (subclass == PCI_DISPLAY_VGA) && (progclass & PCI_DISPLAY_IF_8514)) { /* hard decode 0x2e8 */ regs[nreg].pci_phys_hi = assigned[nasgn].pci_phys_hi = (PCI_RELOCAT_B | PCI_ALIAS_B | PCI_ADDR_IO | devloc); regs[nreg].pci_phys_low = assigned[nasgn].pci_phys_low = 0x2e8; regs[nreg].pci_size_low = assigned[nasgn].pci_size_low = 0x1; nreg++, nasgn++; (void) memlist_remove(io_avail, 0x2e8, 0x1); memlist_insert(io_used, 0x2e8, 0x1); pci_bus_res[bus].io_size += 0x1; /* hard decode 0x2ea-0x2ef */ regs[nreg].pci_phys_hi = assigned[nasgn].pci_phys_hi = (PCI_RELOCAT_B | PCI_ALIAS_B | PCI_ADDR_IO | devloc); regs[nreg].pci_phys_low = assigned[nasgn].pci_phys_low = 0x2ea; regs[nreg].pci_size_low = assigned[nasgn].pci_size_low = 0x6; nreg++, nasgn++; (void) memlist_remove(io_avail, 0x2ea, 0x6); memlist_insert(io_used, 0x2ea, 0x6); pci_bus_res[bus].io_size += 0x6; } done: (void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip, "reg", (int *)regs, nreg * sizeof (pci_regspec_t) / sizeof (int)); (void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip, "assigned-addresses", (int *)assigned, nasgn * sizeof (pci_regspec_t) / sizeof (int)); return (reprogram); } static void add_ppb_props(dev_info_t *dip, uchar_t bus, uchar_t dev, uchar_t func, int pciex, ushort_t is_pci_bridge) { char *dev_type; int i; uint_t val; uint64_t io_range[2], mem_range[2], pmem_range[2]; uchar_t secbus = pci_getb(bus, dev, func, PCI_BCNF_SECBUS); uchar_t subbus = pci_getb(bus, dev, func, PCI_BCNF_SUBBUS); uchar_t progclass; ASSERT(secbus <= subbus); /* * Check if it's a subtractive PPB. */ progclass = pci_getb(bus, dev, func, PCI_CONF_PROGCLASS); if (progclass == PCI_BRIDGE_PCI_IF_SUBDECODE) pci_bus_res[secbus].subtractive = B_TRUE; /* * Some BIOSes lie about max pci busses, we allow for * such mistakes here */ if (subbus > pci_bios_maxbus) { pci_bios_maxbus = subbus; alloc_res_array(); } ASSERT(pci_bus_res[secbus].dip == NULL); pci_bus_res[secbus].dip = dip; pci_bus_res[secbus].par_bus = bus; dev_type = (pciex && !is_pci_bridge) ? "pciex" : "pci"; /* setup bus number hierarchy */ pci_bus_res[secbus].sub_bus = subbus; /* * Keep track of the largest subordinate bus number (this is essential * for peer busses because there is no other way of determining its * subordinate bus number). */ if (subbus > pci_bus_res[bus].sub_bus) pci_bus_res[bus].sub_bus = subbus; /* * Loop through subordinate busses, initializing their parent bus * field to this bridge's parent. The subordinate busses' parent * fields may very well be further refined later, as child bridges * are enumerated. (The value is to note that the subordinate busses * are not peer busses by changing their par_bus fields to anything * other than -1.) */ for (i = secbus + 1; i <= subbus; i++) pci_bus_res[i].par_bus = bus; (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, "device_type", dev_type); (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "#address-cells", 3); (void) ndi_prop_update_int(DDI_DEV_T_NONE, dip, "#size-cells", 2); /* * Collect bridge window specifications, and use them to populate * the "avail" resources for the bus. Not all of those resources will * end up being available; this is done top-down, and so the initial * collection of windows populates the 'ranges' property for the * bus node. Later, as children are found, resources are removed from * the 'avail' list, so that it becomes the freelist for * this point in the tree. ranges may be set again after bridge * reprogramming in fix_ppb_res(), in which case it's set from * used + avail. * * According to PPB spec, the base register should be programmed * with a value bigger than the limit register when there are * no resources available. This applies to io, memory, and * prefetchable memory. */ /* * io range * We determine i/o windows that are left unconfigured by BIOS * through its i/o enable bit as Microsoft recommends OEMs to do. * If it is unset, we disable i/o and mark it for reconfiguration in * later passes by setting the base > limit */ val = (uint_t)pci_getw(bus, dev, func, PCI_CONF_COMM); if (val & PCI_COMM_IO) { val = (uint_t)pci_getb(bus, dev, func, PCI_BCNF_IO_BASE_LOW); io_range[0] = ((val & PCI_BCNF_IO_MASK) << PCI_BCNF_IO_SHIFT); val = (uint_t)pci_getb(bus, dev, func, PCI_BCNF_IO_LIMIT_LOW); io_range[1] = ((val & PCI_BCNF_IO_MASK) << PCI_BCNF_IO_SHIFT) | 0xfff; if ((io_range[0] & PCI_BCNF_ADDR_MASK) == PCI_BCNF_IO_32BIT) { uint16_t io_base_hi, io_limit_hi; io_base_hi = pci_getw(bus, dev, func, PCI_BCNF_IO_BASE_HI); io_limit_hi = pci_getw(bus, dev, func, PCI_BCNF_IO_LIMIT_HI); io_range[0] |= (uint32_t)io_base_hi << 16; io_range[1] |= (uint32_t)io_limit_hi << 16; } } else { io_range[0] = 0x9fff; io_range[1] = 0x1000; pci_putb(bus, dev, func, PCI_BCNF_IO_BASE_LOW, (uint8_t)((io_range[0] >> 8) & 0xf0)); pci_putb(bus, dev, func, PCI_BCNF_IO_LIMIT_LOW, (uint8_t)((io_range[1] >> 8) & 0xf0)); pci_putw(bus, dev, func, PCI_BCNF_IO_BASE_HI, 0); pci_putw(bus, dev, func, PCI_BCNF_IO_LIMIT_HI, 0); } if (io_range[0] != 0 && io_range[0] < io_range[1]) { memlist_insert(&pci_bus_res[secbus].io_avail, io_range[0], (io_range[1] - io_range[0] + 1)); memlist_insert(&pci_bus_res[bus].io_used, io_range[0], (io_range[1] - io_range[0] + 1)); if (pci_bus_res[bus].io_avail != NULL) { (void) memlist_remove(&pci_bus_res[bus].io_avail, io_range[0], (io_range[1] - io_range[0] + 1)); } dcmn_err(CE_NOTE, "bus %d io-range: 0x%" PRIx64 "-%" PRIx64, secbus, io_range[0], io_range[1]); } /* mem range */ val = (uint_t)pci_getw(bus, dev, func, PCI_BCNF_MEM_BASE); mem_range[0] = ((val & PCI_BCNF_MEM_MASK) << PCI_BCNF_MEM_SHIFT); val = (uint_t)pci_getw(bus, dev, func, PCI_BCNF_MEM_LIMIT); mem_range[1] = ((val & PCI_BCNF_MEM_MASK) << PCI_BCNF_MEM_SHIFT) | 0xfffff; if (mem_range[0] != 0 && mem_range[0] < mem_range[1]) { memlist_insert(&pci_bus_res[secbus].mem_avail, (uint64_t)mem_range[0], (uint64_t)(mem_range[1] - mem_range[0] + 1)); memlist_insert(&pci_bus_res[bus].mem_used, (uint64_t)mem_range[0], (uint64_t)(mem_range[1] - mem_range[0] + 1)); /* remove from parent resource list */ (void) memlist_remove(&pci_bus_res[bus].mem_avail, (uint64_t)mem_range[0], (uint64_t)(mem_range[1] - mem_range[0] + 1)); (void) memlist_remove(&pci_bus_res[bus].pmem_avail, (uint64_t)mem_range[0], (uint64_t)(mem_range[1] - mem_range[0] + 1)); dcmn_err(CE_NOTE, "bus %d mem-range: 0x%" PRIx64 "-%" PRIx64, secbus, mem_range[0], mem_range[1]); } /* prefetchable memory range */ val = (uint_t)pci_getw(bus, dev, func, PCI_BCNF_PF_BASE_LOW); pmem_range[0] = ((val & PCI_BCNF_MEM_MASK) << PCI_BCNF_MEM_SHIFT); val = (uint_t)pci_getw(bus, dev, func, PCI_BCNF_PF_LIMIT_LOW); pmem_range[1] = ((val & PCI_BCNF_MEM_MASK) << PCI_BCNF_MEM_SHIFT) | 0xfffff; if ((pmem_range[0] & PCI_BCNF_ADDR_MASK) == PCI_BCNF_PF_MEM_64BIT) { uint32_t pf_addr_hi, pf_limit_hi; pf_addr_hi = pci_getl(bus, dev, func, PCI_BCNF_PF_BASE_HIGH); pf_limit_hi = pci_getl(bus, dev, func, PCI_BCNF_PF_LIMIT_HIGH); pmem_range[0] |= (uint64_t)pf_addr_hi << 32; pmem_range[1] |= (uint64_t)pf_limit_hi << 32; } if (pmem_range[0] != 0 && pmem_range[0] < pmem_range[1]) { memlist_insert(&pci_bus_res[secbus].pmem_avail, (uint64_t)pmem_range[0], (uint64_t)(pmem_range[1] - pmem_range[0] + 1)); memlist_insert(&pci_bus_res[bus].pmem_used, (uint64_t)pmem_range[0], (uint64_t)(pmem_range[1] - pmem_range[0] + 1)); /* remove from parent resource list */ (void) memlist_remove(&pci_bus_res[bus].pmem_avail, (uint64_t)pmem_range[0], (uint64_t)(pmem_range[1] - pmem_range[0] + 1)); (void) memlist_remove(&pci_bus_res[bus].mem_avail, (uint64_t)pmem_range[0], (uint64_t)(pmem_range[1] - pmem_range[0] + 1)); dcmn_err(CE_NOTE, "bus %d pmem-range: 0x%" PRIx64 "-%" PRIx64, secbus, pmem_range[0], pmem_range[1]); } /* * Add VGA legacy resources to the bridge's pci_bus_res if it * has VGA_ENABLE set. Note that we put them in 'avail', * because that's used to populate the ranges prop; they'll be * removed from there by the VGA device once it's found. Also, * remove them from the parent's available list and note them as * used in the parent. */ if (pci_getw(bus, dev, func, PCI_BCNF_BCNTRL) & PCI_BCNF_BCNTRL_VGA_ENABLE) { memlist_insert(&pci_bus_res[secbus].io_avail, 0x3b0, 0xc); memlist_insert(&pci_bus_res[bus].io_used, 0x3b0, 0xc); if (pci_bus_res[bus].io_avail != NULL) { (void) memlist_remove(&pci_bus_res[bus].io_avail, 0x3b0, 0xc); } memlist_insert(&pci_bus_res[secbus].io_avail, 0x3c0, 0x20); memlist_insert(&pci_bus_res[bus].io_used, 0x3c0, 0x20); if (pci_bus_res[bus].io_avail != NULL) { (void) memlist_remove(&pci_bus_res[bus].io_avail, 0x3c0, 0x20); } memlist_insert(&pci_bus_res[secbus].mem_avail, 0xa0000, 0x20000); memlist_insert(&pci_bus_res[bus].mem_used, 0xa0000, 0x20000); if (pci_bus_res[bus].mem_avail != NULL) { (void) memlist_remove(&pci_bus_res[bus].mem_avail, 0xa0000, 0x20000); } } add_bus_range_prop(secbus); add_ranges_prop(secbus, 1); } extern const struct pci_class_strings_s class_pci[]; extern int class_pci_items; static void add_model_prop(dev_info_t *dip, uint_t classcode) { const char *desc; int i; uchar_t baseclass = classcode >> 16; uchar_t subclass = (classcode >> 8) & 0xff; uchar_t progclass = classcode & 0xff; if ((baseclass == PCI_CLASS_MASS) && (subclass == PCI_MASS_IDE)) { desc = "IDE controller"; } else { for (desc = 0, i = 0; i < class_pci_items; i++) { if ((baseclass == class_pci[i].base_class) && (subclass == class_pci[i].sub_class) && (progclass == class_pci[i].prog_class)) { desc = class_pci[i].actual_desc; break; } } if (i == class_pci_items) desc = "Unknown class of pci/pnpbios device"; } (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, "model", (char *)desc); } static void add_bus_range_prop(int bus) { int bus_range[2]; if (pci_bus_res[bus].dip == NULL) return; bus_range[0] = bus; bus_range[1] = pci_bus_res[bus].sub_bus; (void) ndi_prop_update_int_array(DDI_DEV_T_NONE, pci_bus_res[bus].dip, "bus-range", (int *)bus_range, 2); } /* * Add slot-names property for any named pci hot-plug slots */ static void add_bus_slot_names_prop(int bus) { char slotprop[256]; int len; extern int pci_irq_nroutes; char *slotcap_name; /* * If no irq routing table, then go with the slot-names as set up * in pciex_slot_names_prop() from slot capability register (if any). */ if (pci_irq_nroutes == 0) return; /* * Otherise delete the slot-names we already have and use the irq * routing table values as returned by pci_slot_names_prop() instead, * but keep any property of value "pcie0" as that can't be represented * in the irq routing table. */ if (pci_bus_res[bus].dip != NULL) { if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pci_bus_res[bus].dip, DDI_PROP_DONTPASS, "slot-names", &slotcap_name) != DDI_SUCCESS || strcmp(slotcap_name, "pcie0") != 0) (void) ndi_prop_remove(DDI_DEV_T_NONE, pci_bus_res[bus].dip, "slot-names"); } len = pci_slot_names_prop(bus, slotprop, sizeof (slotprop)); if (len > 0) { /* * Only create a peer bus node if this bus may be a peer bus. * It may be a peer bus if the dip is NULL and if par_bus is * -1 (par_bus is -1 if this bus was not found to be * subordinate to any PCI-PCI bridge). * If it's not a peer bus, then the ACPI BBN-handling code * will remove it later. */ if (pci_bus_res[bus].par_bus == (uchar_t)-1 && pci_bus_res[bus].dip == NULL) { create_root_bus_dip(bus); } if (pci_bus_res[bus].dip != NULL) { ASSERT((len % sizeof (int)) == 0); (void) ndi_prop_update_int_array(DDI_DEV_T_NONE, pci_bus_res[bus].dip, "slot-names", (int *)slotprop, len / sizeof (int)); } else { cmn_err(CE_NOTE, "!BIOS BUG: Invalid bus number in PCI " "IRQ routing table; Not adding slot-names " "property for incorrect bus %d", bus); } } } /* * Handle both PCI root and PCI-PCI bridge range properties; * non-zero 'ppb' argument select PCI-PCI bridges versus root. */ static void memlist_to_ranges(void **rp, struct memlist *entry, uint_t type, int ppb) { ppb_ranges_t *ppb_rp = *rp; pci_ranges_t *pci_rp = *rp; while (entry != NULL) { uint_t atype = type; if ((type & PCI_REG_ADDR_M) == PCI_ADDR_MEM32 && (entry->ml_address >= UINT32_MAX || entry->ml_size >= UINT32_MAX)) { atype &= ~PCI_ADDR_MEM32; atype |= PCI_ADDR_MEM64; } if (ppb) { ppb_rp->child_high = ppb_rp->parent_high = atype; ppb_rp->child_mid = ppb_rp->parent_mid = (uint32_t)(entry->ml_address >> 32); ppb_rp->child_low = ppb_rp->parent_low = (uint32_t)entry->ml_address; ppb_rp->size_high = (uint32_t)(entry->ml_size >> 32); ppb_rp->size_low = (uint32_t)entry->ml_size; *rp = ++ppb_rp; } else { pci_rp->child_high = atype; pci_rp->child_mid = pci_rp->parent_high = (uint32_t)(entry->ml_address >> 32); pci_rp->child_low = pci_rp->parent_low = (uint32_t)entry->ml_address; pci_rp->size_high = (uint32_t)(entry->ml_size >> 32); pci_rp->size_low = (uint32_t)entry->ml_size; *rp = ++pci_rp; } entry = entry->ml_next; } } static void add_ranges_prop(int bus, int ppb) { int total, alloc_size; void *rp, *next_rp; struct memlist *iolist, *memlist, *pmemlist; /* no devinfo node - unused bus, return */ if (pci_bus_res[bus].dip == NULL) return; iolist = memlist = pmemlist = (struct memlist *)NULL; memlist_merge(&pci_bus_res[bus].io_avail, &iolist); memlist_merge(&pci_bus_res[bus].io_used, &iolist); memlist_merge(&pci_bus_res[bus].mem_avail, &memlist); memlist_merge(&pci_bus_res[bus].mem_used, &memlist); memlist_merge(&pci_bus_res[bus].pmem_avail, &pmemlist); memlist_merge(&pci_bus_res[bus].pmem_used, &pmemlist); total = memlist_count(iolist); total += memlist_count(memlist); total += memlist_count(pmemlist); /* no property is created if no ranges are present */ if (total == 0) return; alloc_size = total * (ppb ? sizeof (ppb_ranges_t) : sizeof (pci_ranges_t)); next_rp = rp = kmem_alloc(alloc_size, KM_SLEEP); memlist_to_ranges(&next_rp, iolist, PCI_ADDR_IO | PCI_REG_REL_M, ppb); memlist_to_ranges(&next_rp, memlist, PCI_ADDR_MEM32 | PCI_REG_REL_M, ppb); memlist_to_ranges(&next_rp, pmemlist, PCI_ADDR_MEM32 | PCI_REG_REL_M | PCI_REG_PF_M, ppb); (void) ndi_prop_update_int_array(DDI_DEV_T_NONE, pci_bus_res[bus].dip, "ranges", (int *)rp, alloc_size / sizeof (int)); kmem_free(rp, alloc_size); memlist_free_all(&iolist); memlist_free_all(&memlist); memlist_free_all(&pmemlist); } static void memlist_remove_list(struct memlist **list, struct memlist *remove_list) { while (list && *list && remove_list) { (void) memlist_remove(list, remove_list->ml_address, remove_list->ml_size); remove_list = remove_list->ml_next; } } static int memlist_to_spec(struct pci_phys_spec *sp, struct memlist *list, int type) { int i = 0; while (list) { /* assume 32-bit addresses */ sp->pci_phys_hi = type; sp->pci_phys_mid = 0; sp->pci_phys_low = (uint32_t)list->ml_address; sp->pci_size_hi = 0; sp->pci_size_low = (uint32_t)list->ml_size; list = list->ml_next; sp++, i++; } return (i); } static void add_bus_available_prop(int bus) { int i, count; struct pci_phys_spec *sp; /* no devinfo node - unused bus, return */ if (pci_bus_res[bus].dip == NULL) return; count = memlist_count(pci_bus_res[bus].io_avail) + memlist_count(pci_bus_res[bus].mem_avail) + memlist_count(pci_bus_res[bus].pmem_avail); if (count == 0) /* nothing available */ return; sp = kmem_alloc(count * sizeof (*sp), KM_SLEEP); i = memlist_to_spec(&sp[0], pci_bus_res[bus].io_avail, PCI_ADDR_IO | PCI_REG_REL_M); i += memlist_to_spec(&sp[i], pci_bus_res[bus].mem_avail, PCI_ADDR_MEM32 | PCI_REG_REL_M); i += memlist_to_spec(&sp[i], pci_bus_res[bus].pmem_avail, PCI_ADDR_MEM32 | PCI_REG_REL_M | PCI_REG_PF_M); ASSERT(i == count); (void) ndi_prop_update_int_array(DDI_DEV_T_NONE, pci_bus_res[bus].dip, "available", (int *)sp, i * sizeof (struct pci_phys_spec) / sizeof (int)); kmem_free(sp, count * sizeof (*sp)); } static void alloc_res_array(void) { static int array_size = 0; int old_size; void *old_res; if (array_size > pci_bios_maxbus + 1) return; /* array is big enough */ old_size = array_size; old_res = pci_bus_res; if (array_size == 0) array_size = 16; /* start with a reasonable number */ while (array_size <= pci_bios_maxbus + 1) array_size <<= 1; pci_bus_res = (struct pci_bus_resource *)kmem_zalloc( array_size * sizeof (struct pci_bus_resource), KM_SLEEP); if (old_res) { /* copy content and free old array */ bcopy(old_res, pci_bus_res, old_size * sizeof (struct pci_bus_resource)); kmem_free(old_res, old_size * sizeof (struct pci_bus_resource)); } } static void create_ioapic_node(int bus, int dev, int fn, ushort_t vendorid, ushort_t deviceid) { static dev_info_t *ioapicsnode = NULL; static int numioapics = 0; dev_info_t *ioapic_node; uint64_t physaddr; uint32_t lobase, hibase = 0; /* BAR 0 contains the IOAPIC's memory-mapped I/O address */ lobase = (*pci_getl_func)(bus, dev, fn, PCI_CONF_BASE0); /* We (and the rest of the world) only support memory-mapped IOAPICs */ if ((lobase & PCI_BASE_SPACE_M) != PCI_BASE_SPACE_MEM) return; if ((lobase & PCI_BASE_TYPE_M) == PCI_BASE_TYPE_ALL) hibase = (*pci_getl_func)(bus, dev, fn, PCI_CONF_BASE0 + 4); lobase &= PCI_BASE_M_ADDR_M; physaddr = (((uint64_t)hibase) << 32) | lobase; /* * Create a nexus node for all IOAPICs under the root node. */ if (ioapicsnode == NULL) { if (ndi_devi_alloc(ddi_root_node(), IOAPICS_NODE_NAME, (pnode_t)DEVI_SID_NODEID, &ioapicsnode) != NDI_SUCCESS) { return; } (void) ndi_devi_online(ioapicsnode, 0); } /* * Create a child node for this IOAPIC */ ioapic_node = ddi_add_child(ioapicsnode, IOAPICS_CHILD_NAME, DEVI_SID_NODEID, numioapics++); if (ioapic_node == NULL) { return; } /* Vendor and Device ID */ (void) ndi_prop_update_int(DDI_DEV_T_NONE, ioapic_node, IOAPICS_PROP_VENID, vendorid); (void) ndi_prop_update_int(DDI_DEV_T_NONE, ioapic_node, IOAPICS_PROP_DEVID, deviceid); /* device_type */ (void) ndi_prop_update_string(DDI_DEV_T_NONE, ioapic_node, "device_type", IOAPICS_DEV_TYPE); /* reg */ (void) ndi_prop_update_int64(DDI_DEV_T_NONE, ioapic_node, "reg", physaddr); } /* * NOTE: For PCIe slots, the name is generated from the slot number * information obtained from Slot Capabilities register. * For non-PCIe slots, it is generated based on the slot number * information in the PCI IRQ table. */ static void pciex_slot_names_prop(dev_info_t *dip, ushort_t slot_num) { char slotprop[256]; int len; bzero(slotprop, sizeof (slotprop)); /* set mask to 1 as there is only one slot (i.e dev 0) */ *(uint32_t *)slotprop = 1; len = 4; (void) snprintf(slotprop + len, sizeof (slotprop) - len, "pcie%d", slot_num); len += strlen(slotprop + len) + 1; len += len % 4; (void) ndi_prop_update_int_array(DDI_DEV_T_NONE, dip, "slot-names", (int *)slotprop, len / sizeof (int)); } /* * Enable reporting of AER capability next pointer. * This needs to be done only for CK8-04 devices * by setting NV_XVR_VEND_CYA1 (offset 0xf40) bit 13 * NOTE: BIOS is disabling this, it needs to be enabled temporarily * * This function is adapted from npe_ck804_fix_aer_ptr(), and is * called from pci_boot.c. */ static void ck804_fix_aer_ptr(dev_info_t *dip, pcie_req_id_t bdf) { dev_info_t *rcdip; ushort_t cya1; rcdip = pcie_get_rc_dip(dip); ASSERT(rcdip != NULL); if ((pci_cfgacc_get16(rcdip, bdf, PCI_CONF_VENID) == NVIDIA_VENDOR_ID) && (pci_cfgacc_get16(rcdip, bdf, PCI_CONF_DEVID) == NVIDIA_CK804_DEVICE_ID) && (pci_cfgacc_get8(rcdip, bdf, PCI_CONF_REVID) >= NVIDIA_CK804_AER_VALID_REVID)) { cya1 = pci_cfgacc_get16(rcdip, bdf, NVIDIA_CK804_VEND_CYA1_OFF); if (!(cya1 & ~NVIDIA_CK804_VEND_CYA1_ERPT_MASK)) (void) pci_cfgacc_put16(rcdip, bdf, NVIDIA_CK804_VEND_CYA1_OFF, cya1 | NVIDIA_CK804_VEND_CYA1_ERPT_VAL); } }