/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #define PSMI_1_5 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define OFFSETOF(s, m) (size_t)(&(((s *)0)->m)) /* * Local function prototypes */ static int mp_disable_intr(processorid_t cpun); static void mp_enable_intr(processorid_t cpun); static void mach_init(); static void mach_picinit(); static uint64_t mach_calchz(uint32_t pit_counter, uint64_t *processor_clks); static int machhztomhz(uint64_t cpu_freq_hz); static uint64_t mach_getcpufreq(void); static void mach_fixcpufreq(void); static int mach_clkinit(int, int *); static void mach_smpinit(void); static void mach_set_softintr(int ipl, struct av_softinfo *); static void mach_cpu_start(int cpun); static int mach_softlvl_to_vect(int ipl); static void mach_get_platform(int owner); static void mach_construct_info(); static int mach_translate_irq(dev_info_t *dip, int irqno); static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t, int *); static timestruc_t mach_tod_get(void); static void mach_tod_set(timestruc_t ts); static void mach_notify_error(int level, char *errmsg); static hrtime_t dummy_hrtime(void); static void dummy_scalehrtime(hrtime_t *); static void cpu_halt(void); static void cpu_wakeup(cpu_t *, int); /* * External reference functions */ extern void return_instr(); extern timestruc_t (*todgetf)(void); extern void (*todsetf)(timestruc_t); extern long gmt_lag; extern uint64_t freq_tsc(uint32_t *); #if defined(__i386) extern uint64_t freq_notsc(uint32_t *); #endif extern void pc_gethrestime(timestruc_t *); /* * PSM functions initialization */ void (*psm_shutdownf)(int, int) = return_instr; void (*psm_preshutdownf)(int, int) = return_instr; void (*psm_notifyf)(int) = return_instr; void (*psm_set_idle_cpuf)(int) = return_instr; void (*psm_unset_idle_cpuf)(int) = return_instr; void (*psminitf)() = mach_init; void (*picinitf)() = return_instr; int (*clkinitf)(int, int *) = (int (*)(int, int *))return_instr; void (*cpu_startf)() = return_instr; int (*ap_mlsetup)() = (int (*)(void))return_instr; void (*send_dirintf)() = return_instr; void (*setspl)(int) = return_instr; int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr; int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr; void (*setsoftint)(int, struct av_softinfo *)= (void (*)(int, struct av_softinfo *))return_instr; int (*slvltovect)(int) = (int (*)(int))return_instr; int (*setlvl)(int, int *) = (int (*)(int, int *))return_instr; void (*setlvlx)(int, int) = (void (*)(int, int))return_instr; int (*psm_disable_intr)(int) = mp_disable_intr; void (*psm_enable_intr)(int) = mp_enable_intr; hrtime_t (*gethrtimef)(void) = dummy_hrtime; hrtime_t (*gethrtimeunscaledf)(void) = dummy_hrtime; void (*scalehrtimef)(hrtime_t *) = dummy_scalehrtime; int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq; void (*gethrestimef)(timestruc_t *) = pc_gethrestime; int (*psm_todgetf)(todinfo_t *) = (int (*)(todinfo_t *))return_instr; int (*psm_todsetf)(todinfo_t *) = (int (*)(todinfo_t *))return_instr; void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL; int (*psm_get_clockirq)(int) = NULL; int (*psm_get_ipivect)(int, int) = NULL; int (*psm_clkinit)(int) = NULL; void (*psm_timer_reprogram)(hrtime_t) = NULL; void (*psm_timer_enable)(void) = NULL; void (*psm_timer_disable)(void) = NULL; void (*psm_post_cyclic_setup)(void *arg) = NULL; int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t, int *) = mach_intr_ops; void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr; void (*hrtime_tick)(void) = return_instr; int tsc_gethrtime_enable = 1; int tsc_gethrtime_initted = 0; /* * Local Static Data */ static struct psm_ops mach_ops; static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL}; static ushort_t mach_ver[4] = {0, 0, 0, 0}; /* * If non-zero, idle cpus will "halted" when there's * no work to do. */ int halt_idle_cpus = 1; #if defined(__amd64) /* * If non-zero, will use cr8 for interrupt priority masking * We declare this here since install_spl is called from here * (where this is checked). */ int intpri_use_cr8 = 0; #endif /* __amd64 */ #ifdef _SIMULATOR_SUPPORT int simulator_run = 0; /* patch to non-zero if running under simics */ #endif /* _SIMULATOR_SUPPORT */ /* ARGSUSED */ void chip_plat_define_chip(cpu_t *cp, chip_def_t *cd) { if (x86_feature & (X86_HTT|X86_CMP)) /* * Hyperthreading is SMT */ cd->chipd_type = CHIP_SMT; else cd->chipd_type = CHIP_DEFAULT; cd->chipd_rechoose_adj = 0; } /* * Routine to ensure initial callers to hrtime gets 0 as return */ static hrtime_t dummy_hrtime(void) { return (0); } /* ARGSUSED */ static void dummy_scalehrtime(hrtime_t *ticks) {} /* * Halt the present CPU until awoken via an interrupt */ static void cpu_halt(void) { cpu_t *cpup = CPU; processorid_t cpun = cpup->cpu_id; cpupart_t *cp = cpup->cpu_part; int hset_update = 1; /* * If this CPU is online, and there's multiple CPUs * in the system, then we should notate our halting * by adding ourselves to the partition's halted CPU * bitmap. This allows other CPUs to find/awaken us when * work becomes available. */ if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1) hset_update = 0; /* * Add ourselves to the partition's halted CPUs bitmask * and set our HALTED flag, if necessary. * * When a thread becomes runnable, it is placed on the queue * and then the halted cpuset is checked to determine who * (if anyone) should be awoken. We therefore need to first * add ourselves to the halted cpuset, and and then check if there * is any work available. * * Note that memory barriers after updating the HALTED flag * are not necessary since an atomic operation (updating the bitmap) * immediately follows. On x86 the atomic operation acts as a * memory barrier for the update of cpu_disp_flags. */ if (hset_update) { cpup->cpu_disp_flags |= CPU_DISP_HALTED; CPUSET_ATOMIC_ADD(cp->cp_haltset, cpun); } /* * Check to make sure there's really nothing to do. * Work destined for this CPU may become available after * this check. We'll be notified through the clearing of our * bit in the halted CPU bitmask, and a poke. */ if (disp_anywork()) { if (hset_update) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun); } return; } /* * We're on our way to being halted. * * Disable interrupts now, so that we'll awaken immediately * after halting if someone tries to poke us between now and * the time we actually halt. * * We check for the presence of our bit after disabling interrupts. * If it's cleared, we'll return. If the bit is cleared after * we check then the poke will pop us out of the halted state. * * This means that the ordering of the poke and the clearing * of the bit by cpu_wakeup is important. * cpu_wakeup() must clear, then poke. * cpu_halt() must disable interrupts, then check for the bit. */ cli(); if (hset_update && !CPU_IN_SET(cp->cp_haltset, cpun)) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; sti(); return; } /* * The check for anything locally runnable is here for performance * and isn't needed for correctness. disp_nrunnable ought to be * in our cache still, so it's inexpensive to check, and if there * is anything runnable we won't have to wait for the poke. */ if (cpup->cpu_disp->disp_nrunnable != 0) { if (hset_update) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun); } sti(); return; } /* * Call the halt sequence: * sti * hlt */ i86_halt(); /* * We're no longer halted */ if (hset_update) { cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; CPUSET_ATOMIC_DEL(cp->cp_haltset, cpun); } } /* * If "cpu" is halted, then wake it up clearing its halted bit in advance. * Otherwise, see if other CPUs in the cpu partition are halted and need to * be woken up so that they can steal the thread we placed on this CPU. * This function is only used on MP systems. */ static void cpu_wakeup(cpu_t *cpu, int bound) { uint_t cpu_found; int result; cpupart_t *cp; cp = cpu->cpu_part; if (CPU_IN_SET(cp->cp_haltset, cpu->cpu_id)) { /* * Clear the halted bit for that CPU since it will be * poked in a moment. */ CPUSET_ATOMIC_DEL(cp->cp_haltset, cpu->cpu_id); /* * We may find the current CPU present in the halted cpuset * if we're in the context of an interrupt that occurred * before we had a chance to clear our bit in cpu_halt(). * Poking ourself is obviously unnecessary, since if * we're here, we're not halted. */ if (cpu != CPU) poke_cpu(cpu->cpu_id); return; } else { /* * This cpu isn't halted, but it's idle or undergoing a * context switch. No need to awaken anyone else. */ if (cpu->cpu_thread == cpu->cpu_idle_thread || cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL) return; } /* * No need to wake up other CPUs if the thread we just enqueued * is bound. */ if (bound) return; /* * See if there's any other halted CPUs. If there are, then * select one, and awaken it. * It's possible that after we find a CPU, somebody else * will awaken it before we get the chance. * In that case, look again. */ do { CPUSET_FIND(cp->cp_haltset, cpu_found); if (cpu_found == CPUSET_NOTINSET) return; ASSERT(cpu_found >= 0 && cpu_found < NCPU); CPUSET_ATOMIC_XDEL(cp->cp_haltset, cpu_found, result); } while (result < 0); if (cpu_found != CPU->cpu_id) poke_cpu(cpu_found); } static int mp_disable_intr(int cpun) { /* * switch to the offline cpu */ affinity_set(cpun); /* * raise ipl to just below cross call */ splx(XC_MED_PIL-1); /* * set base spl to prevent the next swtch to idle from * lowering back to ipl 0 */ CPU->cpu_intr_actv |= (1 << (XC_MED_PIL-1)); set_base_spl(); affinity_clear(); return (DDI_SUCCESS); } static void mp_enable_intr(int cpun) { /* * switch to the online cpu */ affinity_set(cpun); /* * clear the interrupt active mask */ CPU->cpu_intr_actv &= ~(1 << (XC_MED_PIL-1)); set_base_spl(); (void) spl0(); affinity_clear(); } static void mach_get_platform(int owner) { void **srv_opsp; void **clt_opsp; int i; int total_ops; /* fix up psm ops */ srv_opsp = (void **)mach_set[0]; clt_opsp = (void **)mach_set[owner]; if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01) total_ops = sizeof (struct psm_ops_ver01) / sizeof (void (*)(void)); else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1) /* no psm_notify_func */ total_ops = OFFSETOF(struct psm_ops, psm_notify_func) / sizeof (void (*)(void)); else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2) /* no psm_timer funcs */ total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) / sizeof (void (*)(void)); else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3) /* no psm_preshutdown function */ total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) / sizeof (void (*)(void)); else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4) /* no psm_preshutdown function */ total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) / sizeof (void (*)(void)); else total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void)); /* * Save the version of the PSM module, in case we need to * bahave differently based on version. */ mach_ver[0] = mach_ver[owner]; for (i = 0; i < total_ops; i++) if (clt_opsp[i] != NULL) srv_opsp[i] = clt_opsp[i]; } static void mach_construct_info() { register struct psm_sw *swp; int mach_cnt[PSM_OWN_OVERRIDE+1] = {0}; int conflict_owner = 0; if (psmsw->psw_forw == psmsw) panic("No valid PSM modules found"); mutex_enter(&psmsw_lock); for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) { if (!(swp->psw_flag & PSM_MOD_IDENTIFY)) continue; mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops; mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version; mach_cnt[swp->psw_infop->p_owner]++; } mutex_exit(&psmsw_lock); mach_get_platform(PSM_OWN_SYS_DEFAULT); /* check to see are there any conflicts */ if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1) conflict_owner = PSM_OWN_EXCLUSIVE; if (mach_cnt[PSM_OWN_OVERRIDE] > 1) conflict_owner = PSM_OWN_OVERRIDE; if (conflict_owner) { /* remove all psm modules except uppc */ cmn_err(CE_WARN, "Conflicts detected on the following PSM modules:"); mutex_enter(&psmsw_lock); for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) { if (swp->psw_infop->p_owner == conflict_owner) cmn_err(CE_WARN, "%s ", swp->psw_infop->p_mach_idstring); } mutex_exit(&psmsw_lock); cmn_err(CE_WARN, "Setting the system back to SINGLE processor mode!"); cmn_err(CE_WARN, "Please edit /etc/mach to remove the invalid PSM module."); return; } if (mach_set[PSM_OWN_EXCLUSIVE]) mach_get_platform(PSM_OWN_EXCLUSIVE); if (mach_set[PSM_OWN_OVERRIDE]) mach_get_platform(PSM_OWN_OVERRIDE); } static void mach_init() { register struct psm_ops *pops; mach_construct_info(); pops = mach_set[0]; /* register the interrupt and clock initialization rotuines */ picinitf = mach_picinit; clkinitf = mach_clkinit; psm_get_clockirq = pops->psm_get_clockirq; /* register the interrupt setup code */ slvltovect = mach_softlvl_to_vect; addspl = pops->psm_addspl; delspl = pops->psm_delspl; if (pops->psm_translate_irq) psm_translate_irq = pops->psm_translate_irq; if (pops->psm_intr_ops) psm_intr_ops = pops->psm_intr_ops; if (pops->psm_tod_get) { todgetf = mach_tod_get; psm_todgetf = pops->psm_tod_get; } if (pops->psm_tod_set) { todsetf = mach_tod_set; psm_todsetf = pops->psm_tod_set; } if (pops->psm_notify_error) { psm_notify_error = mach_notify_error; notify_error = pops->psm_notify_error; } (*pops->psm_softinit)(); /* * Initialize the dispatcher's function hooks * to enable CPU halting when idle */ #if defined(_SIMULATOR_SUPPORT) if (halt_idle_cpus && !simulator_run) idle_cpu = cpu_halt; #else if (halt_idle_cpus) idle_cpu = cpu_halt; #endif /* _SIMULATOR_SUPPORT */ mach_smpinit(); } static void mach_smpinit(void) { register struct psm_ops *pops; register processorid_t cpu_id; int cnt; int cpumask; pops = mach_set[0]; cpu_id = -1; cpu_id = (*pops->psm_get_next_processorid)(cpu_id); for (cnt = 0, cpumask = 0; cpu_id != -1; cnt++) { cpumask |= 1 << cpu_id; cpu_id = (*pops->psm_get_next_processorid)(cpu_id); } mp_cpus = cpumask; /* MP related routines */ cpu_startf = mach_cpu_start; ap_mlsetup = pops->psm_post_cpu_start; send_dirintf = pops->psm_send_ipi; /* optional MP related routines */ if (pops->psm_shutdown) psm_shutdownf = pops->psm_shutdown; if (pops->psm_preshutdown) psm_preshutdownf = pops->psm_preshutdown; if (pops->psm_notify_func) psm_notifyf = pops->psm_notify_func; if (pops->psm_set_idlecpu) psm_set_idle_cpuf = pops->psm_set_idlecpu; if (pops->psm_unset_idlecpu) psm_unset_idle_cpuf = pops->psm_unset_idlecpu; psm_clkinit = pops->psm_clkinit; if (pops->psm_timer_reprogram) psm_timer_reprogram = pops->psm_timer_reprogram; if (pops->psm_timer_enable) psm_timer_enable = pops->psm_timer_enable; if (pops->psm_timer_disable) psm_timer_disable = pops->psm_timer_disable; if (pops->psm_post_cyclic_setup) psm_post_cyclic_setup = pops->psm_post_cyclic_setup; /* check for multiple cpu's */ if (cnt < 2) return; /* check for MP platforms */ if (pops->psm_cpu_start == NULL) return; /* * Set the dispatcher hook to enable cpu "wake up" * when a thread becomes runnable. */ #if defined(_SIMULATOR_SUPPORT) if (halt_idle_cpus && !simulator_run) { disp_enq_thread = cpu_wakeup; } #else if (halt_idle_cpus) { disp_enq_thread = cpu_wakeup; } #endif /* _SIMULATOR_SUPPORT */ if (pops->psm_disable_intr) psm_disable_intr = pops->psm_disable_intr; if (pops->psm_enable_intr) psm_enable_intr = pops->psm_enable_intr; psm_get_ipivect = pops->psm_get_ipivect; (void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_hi_intr", (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI), (caddr_t)X_CALL_HIPRI, NULL, NULL, NULL); (void) add_avintr((void *)NULL, XC_MED_PIL, xc_serv, "xc_med_intr", (*pops->psm_get_ipivect)(XC_MED_PIL, PSM_INTR_IPI_LO), (caddr_t)X_CALL_MEDPRI, NULL, NULL, NULL); (void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE); } static void mach_picinit() { register struct psm_ops *pops; extern void install_spl(void); /* XXX: belongs in a header file */ #if defined(__amd64) && defined(DEBUG) extern void *spl_patch, *slow_spl, *setsplhi_patch, *slow_setsplhi; #endif pops = mach_set[0]; /* register the interrupt handlers */ setlvl = pops->psm_intr_enter; setlvlx = pops->psm_intr_exit; /* initialize the interrupt hardware */ (*pops->psm_picinit)(); /* set interrupt mask for current ipl */ setspl = pops->psm_setspl; setspl(CPU->cpu_pri); /* Install proper spl routine now that we can Program the PIC */ #if defined(__amd64) /* * It would be better if we could check this at compile time */ ASSERT(((uintptr_t)&slow_setsplhi - (uintptr_t)&setsplhi_patch < 128) && ((uintptr_t)&slow_spl - (uintptr_t)&spl_patch < 128)); #endif install_spl(); } uint_t cpu_freq; /* MHz */ uint64_t cpu_freq_hz; /* measured (in hertz) */ #define MEGA_HZ 1000000 static uint64_t mach_calchz(uint32_t pit_counter, uint64_t *processor_clks) { uint64_t cpu_hz; if ((pit_counter == 0) || (*processor_clks == 0) || (*processor_clks > (((uint64_t)-1) / PIT_HZ))) return (0); cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter; return (cpu_hz); } static uint64_t mach_getcpufreq(void) { uint32_t pit_counter; uint64_t processor_clks; if (x86_feature & X86_TSC) { /* * We have a TSC. freq_tsc() knows how to measure the number * of clock cycles sampled against the PIT. */ processor_clks = freq_tsc(&pit_counter); return (mach_calchz(pit_counter, &processor_clks)); } else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) { #if defined(__amd64) panic("mach_getcpufreq: no TSC!"); #elif defined(__i386) /* * We are a Cyrix based on a 6x86 core or an Intel Pentium * for which freq_notsc() knows how to measure the number of * elapsed clock cycles sampled against the PIT */ processor_clks = freq_notsc(&pit_counter); return (mach_calchz(pit_counter, &processor_clks)); #endif /* __i386 */ } /* We do not know how to calculate cpu frequency for this cpu. */ return (0); } /* * If the clock speed of a cpu is found to be reported incorrectly, do not add * to this array, instead improve the accuracy of the algorithm that determines * the clock speed of the processor or extend the implementation to support the * vendor as appropriate. This is here only to support adjusting the speed on * older slower processors that mach_fixcpufreq() would not be able to account * for otherwise. */ static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 }; /* * On fast processors the clock frequency that is measured may be off by * a few MHz from the value printed on the part. This is a combination of * the factors that for such fast parts being off by this much is within * the tolerances for manufacture and because of the difficulties in the * measurement that can lead to small error. This function uses some * heuristics in order to tweak the value that was measured to match what * is most likely printed on the part. * * Some examples: * AMD Athlon 1000 mhz measured as 998 mhz * Intel Pentium III Xeon 733 mhz measured as 731 mhz * Intel Pentium IV 1500 mhz measured as 1495mhz * * If in the future this function is no longer sufficient to correct * for the error in the measurement, then the algorithm used to perform * the measurement will have to be improved in order to increase accuracy * rather than adding horrible and questionable kludges here. * * This is called after the cyclics subsystem because of the potential * that the heuristics within may give a worse estimate of the clock * frequency than the value that was measured. */ static void mach_fixcpufreq(void) { uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i; freq = (uint32_t)cpu_freq; /* * Find the nearest integer multiple of 200/3 (about 66) MHz to the * measured speed taking into account that the 667 MHz parts were * the first to round-up. */ mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200); near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3); delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66); /* Find the nearest integer multiple of 50 MHz to the measured speed */ mul = (freq + 25) / 50; near50 = mul * 50; delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50); /* Find the closer of the two */ if (delta66 < delta50) { fixed = near66; delta = delta66; } else { fixed = near50; delta = delta50; } if (fixed > INT_MAX) return; /* * Some older parts have a core clock frequency that is not an * integral multiple of 50 or 66 MHz. Check if one of the old * clock frequencies is closer to the measured value than any * of the integral multiples of 50 an 66, and if so set fixed * and delta appropriately to represent the closest value. */ i = sizeof (x86_cpu_freq) / sizeof (int); while (i > 0) { i--; if (x86_cpu_freq[i] <= freq) { mul = freq - x86_cpu_freq[i]; if (mul < delta) { fixed = x86_cpu_freq[i]; delta = mul; } break; } mul = x86_cpu_freq[i] - freq; if (mul < delta) { fixed = x86_cpu_freq[i]; delta = mul; } } /* * Set a reasonable maximum for how much to correct the measured * result by. This check is here to prevent the adjustment made * by this function from being more harm than good. It is entirely * possible that in the future parts will be made that are not * integral multiples of 66 or 50 in clock frequency or that * someone may overclock a part to some odd frequency. If the * measured value is farther from the corrected value than * allowed, then assume the corrected value is in error and use * the measured value. */ if (6 < delta) return; cpu_freq = (int)fixed; } static int machhztomhz(uint64_t cpu_freq_hz) { uint64_t cpu_mhz; /* Round to nearest MHZ */ cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ; if (cpu_mhz > INT_MAX) return (0); return ((int)cpu_mhz); } static int mach_clkinit(int preferred_mode, int *set_mode) { register struct psm_ops *pops; int resolution; pops = mach_set[0]; #ifdef _SIMULATOR_SUPPORT if (!simulator_run) cpu_freq_hz = mach_getcpufreq(); else cpu_freq_hz = 40000000; /* use 40 Mhz (hack for simulator) */ #else cpu_freq_hz = mach_getcpufreq(); #endif /* _SIMULATOR_SUPPORT */ cpu_freq = machhztomhz(cpu_freq_hz); if (!(x86_feature & X86_TSC) || (cpu_freq == 0)) tsc_gethrtime_enable = 0; if (tsc_gethrtime_enable) { tsc_hrtimeinit(cpu_freq_hz); gethrtimef = tsc_gethrtime; gethrtimeunscaledf = tsc_gethrtimeunscaled; scalehrtimef = tsc_scalehrtime; hrtime_tick = tsc_tick; tsc_gethrtime_initted = 1; } else { if (pops->psm_hrtimeinit) (*pops->psm_hrtimeinit)(); gethrtimef = pops->psm_gethrtime; gethrtimeunscaledf = gethrtimef; /* scalehrtimef will remain dummy */ } mach_fixcpufreq(); if (mach_ver[0] >= PSM_INFO_VER01_3) { if ((preferred_mode == TIMER_ONESHOT) && (tsc_gethrtime_enable)) { resolution = (*pops->psm_clkinit)(0); if (resolution != 0) { *set_mode = TIMER_ONESHOT; return (resolution); } } /* * either periodic mode was requested or could not set to * one-shot mode */ resolution = (*pops->psm_clkinit)(hz); /* * psm should be able to do periodic, so we do not check * for return value of psm_clkinit here. */ *set_mode = TIMER_PERIODIC; return (resolution); } else { /* * PSMI interface prior to PSMI_3 does not define a return * value for psm_clkinit, so the return value is ignored. */ (void) (*pops->psm_clkinit)(hz); *set_mode = TIMER_PERIODIC; return (nsec_per_tick); } } /*ARGSUSED*/ static void mach_psm_set_softintr(int ipl, struct av_softinfo *pending) { register struct psm_ops *pops; /* invoke hardware interrupt */ pops = mach_set[0]; (*pops->psm_set_softintr)(ipl); } static int mach_softlvl_to_vect(register int ipl) { register int softvect; register struct psm_ops *pops; pops = mach_set[0]; /* check for null handler for set soft interrupt call */ if (pops->psm_set_softintr == NULL) { setsoftint = av_set_softint_pending; return (PSM_SV_SOFTWARE); } softvect = (*pops->psm_softlvl_to_irq)(ipl); /* check for hardware scheme */ if (softvect > PSM_SV_SOFTWARE) { setsoftint = mach_psm_set_softintr; return (softvect); } if (softvect == PSM_SV_SOFTWARE) setsoftint = av_set_softint_pending; else /* hardware and software mixed scheme */ setsoftint = mach_set_softintr; return (PSM_SV_SOFTWARE); } static void mach_set_softintr(register int ipl, struct av_softinfo *pending) { register struct psm_ops *pops; /* set software pending bits */ av_set_softint_pending(ipl, pending); /* check if dosoftint will be called at the end of intr */ if (CPU_ON_INTR(CPU) || (curthread->t_intr)) return; /* invoke hardware interrupt */ pops = mach_set[0]; (*pops->psm_set_softintr)(ipl); } static void mach_cpu_start(register int cpun) { register struct psm_ops *pops; int i; pops = mach_set[0]; (*pops->psm_cpu_start)(cpun, rm_platter_va); /* wait for the auxillary cpu to be ready */ for (i = 20000; i; i--) { if (cpu[cpun]->cpu_flags & CPU_READY) return; drv_usecwait(100); } } /*ARGSUSED*/ static int mach_translate_irq(dev_info_t *dip, int irqno) { return (irqno); /* default to NO translation */ } static timestruc_t mach_tod_get(void) { timestruc_t ts; todinfo_t tod; static int mach_range_warn = 1; /* warn only once */ ASSERT(MUTEX_HELD(&tod_lock)); /* The year returned from is the last 2 digit only */ if ((*psm_todgetf)(&tod)) { ts.tv_sec = 0; ts.tv_nsec = 0; tod_fault_reset(); return (ts); } /* assume that we wrap the rtc year back to zero at 2000 */ if (tod.tod_year < 69) { if (mach_range_warn && tod.tod_year > 38) { cmn_err(CE_WARN, "hardware real-time clock is out " "of range -- time needs to be reset"); mach_range_warn = 0; } tod.tod_year += 100; } /* tod_to_utc uses 1900 as base for the year */ ts.tv_sec = tod_to_utc(tod) + gmt_lag; ts.tv_nsec = 0; return (ts); } static void mach_tod_set(timestruc_t ts) { todinfo_t tod = utc_to_tod(ts.tv_sec - gmt_lag); ASSERT(MUTEX_HELD(&tod_lock)); if (tod.tod_year >= 100) tod.tod_year -= 100; (*psm_todsetf)(&tod); } static void mach_notify_error(int level, char *errmsg) { /* * SL_FATAL is pass in once panicstr is set, deliver it * as CE_PANIC. Also, translate SL_ codes back to CE_ * codes for the psmi handler */ if (level & SL_FATAL) (*notify_error)(CE_PANIC, errmsg); else if (level & SL_WARN) (*notify_error)(CE_WARN, errmsg); else if (level & SL_NOTE) (*notify_error)(CE_NOTE, errmsg); else if (level & SL_CONSOLE) (*notify_error)(CE_CONT, errmsg); } /* * It provides the default basic intr_ops interface for the new DDI * interrupt framework if the PSM doesn't have one. * * Input: * dip - pointer to the dev_info structure of the requested device * hdlp - pointer to the internal interrupt handle structure for the * requested interrupt * intr_op - opcode for this call * result - pointer to the integer that will hold the result to be * passed back if return value is PSM_SUCCESS * * Output: * return value is either PSM_SUCCESS or PSM_FAILURE */ static int mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, psm_intr_op_t intr_op, int *result) { struct intrspec *ispec; switch (intr_op) { case PSM_INTR_OP_CHECK_MSI: *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX); break; case PSM_INTR_OP_ALLOC_VECTORS: if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) *result = 1; else *result = 0; break; case PSM_INTR_OP_FREE_VECTORS: break; case PSM_INTR_OP_NAVAIL_VECTORS: if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) *result = 1; else *result = 0; break; case PSM_INTR_OP_XLATE_VECTOR: ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; *result = psm_translate_irq(dip, ispec->intrspec_vec); break; case PSM_INTR_OP_GET_CAP: *result = 0; break; case PSM_INTR_OP_GET_PENDING: case PSM_INTR_OP_CLEAR_MASK: case PSM_INTR_OP_SET_MASK: case PSM_INTR_OP_GET_SHARED: case PSM_INTR_OP_SET_PRI: case PSM_INTR_OP_SET_CAP: case PSM_INTR_OP_SET_CPU: case PSM_INTR_OP_GET_INTR: default: return (PSM_FAILURE); } return (PSM_SUCCESS); }