/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * PSMI 1.1 extensions are supported only in 2.6 and later versions. * PSMI 1.2 extensions are supported only in 2.7 and later versions. * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. * PSMI 1.5 extensions are supported in Solaris Nevada. */ #define PSMI_1_5 #include #include #include #include #include #include #include #include #include "apic.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Local Function Prototypes */ static void apic_init_intr(); static void apic_ret(); static int apic_handle_defconf(); static int apic_parse_mpct(caddr_t mpct, int bypass); static struct apic_mpfps_hdr *apic_find_fps_sig(caddr_t fptr, int size); static int apic_checksum(caddr_t bptr, int len); static int get_apic_cmd1(); static int get_apic_pri(); static int apic_find_bus_type(char *bus); static int apic_find_bus(int busid); static int apic_find_bus_id(int bustype); static struct apic_io_intr *apic_find_io_intr(int irqno); int apic_allocate_irq(int irq); static int apic_find_free_irq(int start, int end); static uchar_t apic_allocate_vector(int ipl, int irq, int pri); static void apic_modify_vector(uchar_t vector, int irq); static void apic_mark_vector(uchar_t oldvector, uchar_t newvector); static uchar_t apic_xlate_vector(uchar_t oldvector); static void apic_xlate_vector_free_timeout_handler(void *arg); static void apic_free_vector(uchar_t vector); static void apic_reprogram_timeout_handler(void *arg); static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, int new_bind_cpu, volatile int32_t *ioapic, int intin_no, int which_irq); static int apic_setup_io_intr(apic_irq_t *irqptr, int irq); static int apic_setup_io_intr_deferred(apic_irq_t *irqptr, int irq); static void apic_record_rdt_entry(apic_irq_t *irqptr, int irq); static struct apic_io_intr *apic_find_io_intr_w_busid(int irqno, int busid); static int apic_find_intin(uchar_t ioapic, uchar_t intin); static int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, struct apic_io_intr **intrp); static int apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp, int type); static int apic_setup_sci_irq_table(int irqno, uchar_t ipl, iflag_t *intr_flagp); static void apic_nmi_intr(caddr_t arg); uchar_t apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin); static int apic_rebind(apic_irq_t *irq_ptr, int bind_cpu, int acquire_lock, int when); static int apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu, int safe); static void apic_intr_redistribute(); static void apic_cleanup_busy(); static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp); int apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type); /* ACPI support routines */ static int acpi_probe(void); static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, int *pci_irqp, iflag_t *intr_flagp); static int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, int ipin, int *pci_irqp, iflag_t *intr_flagp); static uchar_t acpi_find_ioapic(int irq); static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2); /* * standard MP entries */ static int apic_probe(); static int apic_clkinit(); static int apic_getclkirq(int ipl); static uint_t apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj); static hrtime_t apic_gettime(); static hrtime_t apic_gethrtime(); static void apic_init(); static void apic_picinit(void); static void apic_cpu_start(processorid_t cpun, caddr_t rm_code); static int apic_post_cpu_start(void); static void apic_send_ipi(int cpun, int ipl); static void apic_set_softintr(int softintr); static void apic_set_idlecpu(processorid_t cpun); static void apic_unset_idlecpu(processorid_t cpun); static int apic_softlvl_to_irq(int ipl); static int apic_intr_enter(int ipl, int *vect); static void apic_intr_exit(int ipl, int vect); static void apic_setspl(int ipl); static int apic_addspl(int ipl, int vector, int min_ipl, int max_ipl); static int apic_delspl(int ipl, int vector, int min_ipl, int max_ipl); static void apic_shutdown(int cmd, int fcn); static void apic_preshutdown(int cmd, int fcn); static int apic_disable_intr(processorid_t cpun); static void apic_enable_intr(processorid_t cpun); static processorid_t apic_get_next_processorid(processorid_t cpun); static int apic_get_ipivect(int ipl, int type); static void apic_timer_reprogram(hrtime_t time); static void apic_timer_enable(void); static void apic_timer_disable(void); static void apic_post_cyclic_setup(void *arg); extern int apic_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t, int *); static int apic_oneshot = 0; int apic_oneshot_enable = 1; /* to allow disabling one-shot capability */ /* * These variables are frequently accessed in apic_intr_enter(), * apic_intr_exit and apic_setspl, so group them together */ volatile uint32_t *apicadr = NULL; /* virtual addr of local APIC */ int apic_setspl_delay = 1; /* apic_setspl - delay enable */ int apic_clkvect; /* ACPI SCI interrupt configuration; -1 if SCI not used */ int apic_sci_vect = -1; iflag_t apic_sci_flags; /* vector at which error interrupts come in */ int apic_errvect; int apic_enable_error_intr = 1; int apic_error_display_delay = 100; /* vector at which performance counter overflow interrupts come in */ int apic_cpcovf_vect; int apic_enable_cpcovf_intr = 1; /* Max wait time (in microsecs) for flags to clear in an RDT entry. */ static int apic_max_usecs_clear_pending = 1000; /* Amt of usecs to wait before checking if RDT flags have reset. */ #define APIC_USECS_PER_WAIT_INTERVAL 100 /* Maximum number of times to retry reprogramming via the timeout */ #define APIC_REPROGRAM_MAX_TIMEOUTS 10 /* timeout delay for IOAPIC delayed reprogramming */ #define APIC_REPROGRAM_TIMEOUT_DELAY 5 /* microseconds */ /* Parameter to apic_rebind(): Should reprogramming be done now or later? */ #define DEFERRED 1 #define IMMEDIATE 0 /* * number of bits per byte, from */ #define UCHAR_MAX ((1 << NBBY) - 1) uchar_t apic_reserved_irqlist[MAX_ISA_IRQ]; /* * The following vector assignments influence the value of ipltopri and * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program * idle to 0 and IPL 0 to 0x10 to differentiate idle in case * we care to do so in future. Note some IPLs which are rarely used * will share the vector ranges and heavily used IPLs (5 and 6) have * a wide range. * IPL Vector range. as passed to intr_enter * 0 none. * 1,2,3 0x20-0x2f 0x0-0xf * 4 0x30-0x3f 0x10-0x1f * 5 0x40-0x5f 0x20-0x3f * 6 0x60-0x7f 0x40-0x5f * 7,8,9 0x80-0x8f 0x60-0x6f * 10 0x90-0x9f 0x70-0x7f * 11 0xa0-0xaf 0x80-0x8f * ... ... * 16 0xf0-0xff 0xd0-0xdf */ uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = { 3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 16 }; /* * The ipl of an ISR at vector X is apic_vectortoipl[X<<4] * NOTE that this is vector as passed into intr_enter which is * programmed vector - 0x20 (APIC_BASE_VECT) */ uchar_t apic_ipltopri[MAXIPL + 1]; /* unix ipl to apic pri */ /* The taskpri to be programmed into apic to mask given ipl */ #if defined(__amd64) uchar_t apic_cr8pri[MAXIPL + 1]; /* unix ipl to cr8 pri */ #endif /* * Patchable global variables. */ int apic_forceload = 0; #define INTR_ROUND_ROBIN_WITH_AFFINITY 0 #define INTR_ROUND_ROBIN 1 #define INTR_LOWEST_PRIORITY 2 int apic_intr_policy = INTR_ROUND_ROBIN_WITH_AFFINITY; static int apic_next_bind_cpu = 2; /* For round robin assignment */ /* start with cpu 1 */ int apic_coarse_hrtime = 1; /* 0 - use accurate slow gethrtime() */ /* 1 - use gettime() for performance */ int apic_flat_model = 0; /* 0 - clustered. 1 - flat */ int apic_enable_hwsoftint = 0; /* 0 - disable, 1 - enable */ int apic_enable_bind_log = 1; /* 1 - display interrupt binding log */ int apic_panic_on_nmi = 0; int apic_panic_on_apic_error = 0; int apic_verbose = 0; /* Flag definitions for apic_verbose */ #define APIC_VERBOSE_IOAPIC_FLAG 0x00000001 #define APIC_VERBOSE_IRQ_FLAG 0x00000002 #define APIC_VERBOSE_POWEROFF_FLAG 0x00000004 #define APIC_VERBOSE_POWEROFF_PAUSE_FLAG 0x00000008 #define APIC_VERBOSE_IOAPIC(fmt) \ if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) \ cmn_err fmt; #define APIC_VERBOSE_IRQ(fmt) \ if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) \ cmn_err fmt; #define APIC_VERBOSE_POWEROFF(fmt) \ if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) \ prom_printf fmt; /* Now the ones for Dynamic Interrupt distribution */ int apic_enable_dynamic_migration = 1; /* * If enabled, the distribution works as follows: * On every interrupt entry, the current ipl for the CPU is set in cpu_info * and the irq corresponding to the ipl is also set in the aci_current array. * interrupt exit and setspl (due to soft interrupts) will cause the current * ipl to be be changed. This is cache friendly as these frequently used * paths write into a per cpu structure. * * Sampling is done by checking the structures for all CPUs and incrementing * the busy field of the irq (if any) executing on each CPU and the busy field * of the corresponding CPU. * In periodic mode this is done on every clock interrupt. * In one-shot mode, this is done thru a cyclic with an interval of * apic_redistribute_sample_interval (default 10 milli sec). * * Every apic_sample_factor_redistribution times we sample, we do computations * to decide which interrupt needs to be migrated (see comments * before apic_intr_redistribute(). */ /* * Following 3 variables start as % and can be patched or set using an * API to be defined in future. They will be scaled to * sample_factor_redistribution which is in turn set to hertz+1 (in periodic * mode), or 101 in one-shot mode to stagger it away from one sec processing */ int apic_int_busy_mark = 60; int apic_int_free_mark = 20; int apic_diff_for_redistribution = 10; /* sampling interval for interrupt redistribution for dynamic migration */ int apic_redistribute_sample_interval = NANOSEC / 100; /* 10 millisec */ /* * number of times we sample before deciding to redistribute interrupts * for dynamic migration */ int apic_sample_factor_redistribution = 101; /* timeout for xlate_vector, mark_vector */ int apic_revector_timeout = 16 * 10000; /* 160 millisec */ int apic_redist_cpu_skip = 0; int apic_num_imbalance = 0; int apic_num_rebind = 0; int apic_nproc = 0; int apic_defconf = 0; int apic_irq_translate = 0; int apic_spec_rev = 0; int apic_imcrp = 0; int apic_use_acpi = 1; /* 1 = use ACPI, 0 = don't use ACPI */ int apic_use_acpi_madt_only = 0; /* 1=ONLY use MADT from ACPI */ /* * For interrupt link devices, if apic_unconditional_srs is set, an irq resource * will be assigned (via _SRS). If it is not set, use the current * irq setting (via _CRS), but only if that irq is in the set of possible * irqs (returned by _PRS) for the device. */ int apic_unconditional_srs = 1; /* * For interrupt link devices, if apic_prefer_crs is set when we are * assigning an IRQ resource to a device, prefer the current IRQ setting * over other possible irq settings under same conditions. */ int apic_prefer_crs = 1; /* minimum number of timer ticks to program to */ int apic_min_timer_ticks = 1; /* * Local static data */ static struct psm_ops apic_ops = { apic_probe, apic_init, apic_picinit, apic_intr_enter, apic_intr_exit, apic_setspl, apic_addspl, apic_delspl, apic_disable_intr, apic_enable_intr, apic_softlvl_to_irq, apic_set_softintr, apic_set_idlecpu, apic_unset_idlecpu, apic_clkinit, apic_getclkirq, (void (*)(void))NULL, /* psm_hrtimeinit */ apic_gethrtime, apic_get_next_processorid, apic_cpu_start, apic_post_cpu_start, apic_shutdown, apic_get_ipivect, apic_send_ipi, (int (*)(dev_info_t *, int))NULL, /* psm_translate_irq */ (int (*)(todinfo_t *))NULL, /* psm_tod_get */ (int (*)(todinfo_t *))NULL, /* psm_tod_set */ (void (*)(int, char *))NULL, /* psm_notify_error */ (void (*)(int))NULL, /* psm_notify_func */ apic_timer_reprogram, apic_timer_enable, apic_timer_disable, apic_post_cyclic_setup, apic_preshutdown, apic_intr_ops /* Advanced DDI Interrupt framework */ }; static struct psm_info apic_psm_info = { PSM_INFO_VER01_5, /* version */ PSM_OWN_EXCLUSIVE, /* ownership */ (struct psm_ops *)&apic_ops, /* operation */ "pcplusmp", /* machine name */ "pcplusmp v1.4 compatible %I%", }; static void *apic_hdlp; #ifdef DEBUG #define DENT 0x0001 int apic_debug = 0; /* * set apic_restrict_vector to the # of vectors we want to allow per range * useful in testing shared interrupt logic by setting it to 2 or 3 */ int apic_restrict_vector = 0; #define APIC_DEBUG_MSGBUFSIZE 2048 int apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE]; int apic_debug_msgbufindex = 0; /* * Put "int" info into debug buffer. No MP consistency, but light weight. * Good enough for most debugging. */ #define APIC_DEBUG_BUF_PUT(x) \ apic_debug_msgbuf[apic_debug_msgbufindex++] = x; \ if (apic_debug_msgbufindex >= (APIC_DEBUG_MSGBUFSIZE - NCPU)) \ apic_debug_msgbufindex = 0; #endif /* DEBUG */ apic_cpus_info_t *apic_cpus; static uint_t apic_cpumask = 0; static uint_t apic_flag; /* Flag to indicate that we need to shut down all processors */ static uint_t apic_shutdown_processors; uint_t apic_nsec_per_intr = 0; /* * apic_let_idle_redistribute can have the following values: * 0 - If clock decremented it from 1 to 0, clock has to call redistribute. * apic_redistribute_lock prevents multiple idle cpus from redistributing */ int apic_num_idle_redistributions = 0; static int apic_let_idle_redistribute = 0; static uint_t apic_nticks = 0; static uint_t apic_skipped_redistribute = 0; /* to gather intr data and redistribute */ static void apic_redistribute_compute(void); static uint_t last_count_read = 0; static lock_t apic_gethrtime_lock; volatile int apic_hrtime_stamp = 0; volatile hrtime_t apic_nsec_since_boot = 0; static uint_t apic_hertz_count, apic_nsec_per_tick; static hrtime_t apic_nsec_max; static hrtime_t apic_last_hrtime = 0; int apic_hrtime_error = 0; int apic_remote_hrterr = 0; int apic_num_nmis = 0; int apic_apic_error = 0; int apic_num_apic_errors = 0; int apic_num_cksum_errors = 0; static uchar_t apic_io_id[MAX_IO_APIC]; static uchar_t apic_io_ver[MAX_IO_APIC]; static uchar_t apic_io_vectbase[MAX_IO_APIC]; static uchar_t apic_io_vectend[MAX_IO_APIC]; volatile int32_t *apicioadr[MAX_IO_APIC]; /* * apic_ioapic_lock protects the ioapics (reg select), the status, temp_bound * and bound elements of cpus_info and the temp_cpu element of irq_struct */ lock_t apic_ioapic_lock; /* * apic_ioapic_reprogram_lock prevents a CPU from exiting * apic_intr_exit before IOAPIC reprogramming information * is collected. */ static lock_t apic_ioapic_reprogram_lock; static int apic_io_max = 0; /* no. of i/o apics enabled */ static struct apic_io_intr *apic_io_intrp = 0; static struct apic_bus *apic_busp; uchar_t apic_vector_to_irq[APIC_MAX_VECTOR+1]; static uchar_t apic_resv_vector[MAXIPL+1]; static char apic_level_intr[APIC_MAX_VECTOR+1]; static int apic_error = 0; /* values which apic_error can take. Not catastrophic, but may help debug */ #define APIC_ERR_BOOT_EOI 0x1 #define APIC_ERR_GET_IPIVECT_FAIL 0x2 #define APIC_ERR_INVALID_INDEX 0x4 #define APIC_ERR_MARK_VECTOR_FAIL 0x8 #define APIC_ERR_APIC_ERROR 0x40000000 #define APIC_ERR_NMI 0x80000000 static int apic_cmos_ssb_set = 0; static uint32_t eisa_level_intr_mask = 0; /* At least MSB will be set if EISA bus */ static int apic_pci_bus_total = 0; static uchar_t apic_single_pci_busid = 0; /* * airq_mutex protects additions to the apic_irq_table - the first * pointer and any airq_nexts off of that one. It also protects * apic_max_device_irq & apic_min_device_irq. It also guarantees * that share_id is unique as new ids are generated only when new * irq_t structs are linked in. Once linked in the structs are never * deleted. temp_cpu & mps_intr_index field indicate if it is programmed * or allocated. Note that there is a slight gap between allocating in * apic_introp_xlate and programming in addspl. */ kmutex_t airq_mutex; apic_irq_t *apic_irq_table[APIC_MAX_VECTOR+1]; int apic_max_device_irq = 0; int apic_min_device_irq = APIC_MAX_VECTOR; /* use to make sure only one cpu handles the nmi */ static lock_t apic_nmi_lock; /* use to make sure only one cpu handles the error interrupt */ static lock_t apic_error_lock; /* * Following declarations are for revectoring; used when ISRs at different * IPLs share an irq. */ static lock_t apic_revector_lock; static int apic_revector_pending = 0; static uchar_t *apic_oldvec_to_newvec; static uchar_t *apic_newvec_to_oldvec; /* Ensures that the IOAPIC-reprogramming timeout is not reentrant */ static kmutex_t apic_reprogram_timeout_mutex; static struct ioapic_reprogram_data { int valid; /* This entry is valid */ int bindcpu; /* The CPU to which the int will be bound */ unsigned timeouts; /* # times the reprogram timeout was called */ } apic_reprogram_info[APIC_MAX_VECTOR+1]; /* * APIC_MAX_VECTOR + 1 is the maximum # of IRQs as well. apic_reprogram_info * is indexed by IRQ number, NOT by vector number. */ /* * The following added to identify a software poweroff method if available. */ static struct { int poweroff_method; char oem_id[APIC_MPS_OEM_ID_LEN + 1]; /* MAX + 1 for NULL */ char prod_id[APIC_MPS_PROD_ID_LEN + 1]; /* MAX + 1 for NULL */ } apic_mps_ids[] = { { APIC_POWEROFF_VIA_RTC, "INTEL", "ALDER" }, /* 4300 */ { APIC_POWEROFF_VIA_RTC, "NCR", "AMC" }, /* 4300 */ { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "A450NX" }, /* 4400? */ { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AD450NX" }, /* 4400 */ { APIC_POWEROFF_VIA_ASPEN_BMC, "INTEL", "AC450NX" }, /* 4400R */ { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "S450NX" }, /* S50 */ { APIC_POWEROFF_VIA_SITKA_BMC, "INTEL", "SC450NX" } /* S50? */ }; int apic_poweroff_method = APIC_POWEROFF_NONE; static struct { uchar_t cntl; uchar_t data; } aspen_bmc[] = { { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ { CC_SMS_WR_NEXT, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ { CC_SMS_WR_NEXT, 0x84 }, /* DataByte 1: SMS/OS no log */ { CC_SMS_WR_NEXT, 0x2 }, /* DataByte 2: Power Down */ { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 3: no pre-timeout */ { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 4: timer expir. */ { CC_SMS_WR_NEXT, 0xa }, /* DataByte 5: init countdown */ { CC_SMS_WR_END, 0x0 }, /* DataByte 6: init countdown */ { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ { CC_SMS_WR_END, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ }; static struct { int port; uchar_t data; } sitka_bmc[] = { { SMS_COMMAND_REGISTER, SMS_WRITE_START }, { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ { SMS_DATA_REGISTER, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ { SMS_DATA_REGISTER, 0x84 }, /* DataByte 1: SMS/OS no log */ { SMS_DATA_REGISTER, 0x2 }, /* DataByte 2: Power Down */ { SMS_DATA_REGISTER, 0x0 }, /* DataByte 3: no pre-timeout */ { SMS_DATA_REGISTER, 0x0 }, /* DataByte 4: timer expir. */ { SMS_DATA_REGISTER, 0xa }, /* DataByte 5: init countdown */ { SMS_COMMAND_REGISTER, SMS_WRITE_END }, { SMS_DATA_REGISTER, 0x0 }, /* DataByte 6: init countdown */ { SMS_COMMAND_REGISTER, SMS_WRITE_START }, { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ { SMS_COMMAND_REGISTER, SMS_WRITE_END }, { SMS_DATA_REGISTER, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ }; /* Patchable global variables. */ int apic_kmdb_on_nmi = 0; /* 0 - no, 1 - yes enter kmdb */ int apic_debug_mps_id = 0; /* 1 - print MPS ID strings */ /* * ACPI definitions */ /* _PIC method arguments */ #define ACPI_PIC_MODE 0 #define ACPI_APIC_MODE 1 /* APIC error flags we care about */ #define APIC_SEND_CS_ERROR 0x01 #define APIC_RECV_CS_ERROR 0x02 #define APIC_CS_ERRORS (APIC_SEND_CS_ERROR|APIC_RECV_CS_ERROR) /* * ACPI variables */ /* 1 = acpi is enabled & working, 0 = acpi is not enabled or not there */ static int apic_enable_acpi = 0; /* ACPI Multiple APIC Description Table ptr */ static MULTIPLE_APIC_TABLE *acpi_mapic_dtp = NULL; /* ACPI Interrupt Source Override Structure ptr */ static MADT_INTERRUPT_OVERRIDE *acpi_isop = NULL; static int acpi_iso_cnt = 0; /* ACPI Non-maskable Interrupt Sources ptr */ static MADT_NMI_SOURCE *acpi_nmi_sp = NULL; static int acpi_nmi_scnt = 0; static MADT_LOCAL_APIC_NMI *acpi_nmi_cp = NULL; static int acpi_nmi_ccnt = 0; /* * extern declarations */ extern int intr_clear(void); extern void intr_restore(uint_t); #if defined(__amd64) extern int intpri_use_cr8; #endif /* __amd64 */ extern int apic_pci_msi_enable_vector(dev_info_t *, int, int, int, int, int); extern apic_irq_t *apic_find_irq(dev_info_t *, struct intrspec *, int); /* * This is the loadable module wrapper */ int _init(void) { if (apic_coarse_hrtime) apic_ops.psm_gethrtime = &apic_gettime; return (psm_mod_init(&apic_hdlp, &apic_psm_info)); } int _fini(void) { return (psm_mod_fini(&apic_hdlp, &apic_psm_info)); } int _info(struct modinfo *modinfop) { return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop)); } /* * Auto-configuration routines */ /* * Look at MPSpec 1.4 (Intel Order # 242016-005) for details of what we do here * May work with 1.1 - but not guaranteed. * According to the MP Spec, the MP floating pointer structure * will be searched in the order described below: * 1. In the first kilobyte of Extended BIOS Data Area (EBDA) * 2. Within the last kilobyte of system base memory * 3. In the BIOS ROM address space between 0F0000h and 0FFFFh * Once we find the right signature with proper checksum, we call * either handle_defconf or parse_mpct to get all info necessary for * subsequent operations. */ static int apic_probe() { uint32_t mpct_addr, ebda_start = 0, base_mem_end; caddr_t biosdatap; caddr_t mpct; caddr_t fptr; int i, mpct_size, mapsize, retval = PSM_FAILURE; ushort_t ebda_seg, base_mem_size; struct apic_mpfps_hdr *fpsp; struct apic_mp_cnf_hdr *hdrp; int bypass_cpu_and_ioapics_in_mptables; int acpi_user_options; if (apic_forceload < 0) return (retval); /* Allow override for MADT-only mode */ acpi_user_options = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 0, "acpi-user-options", 0); apic_use_acpi_madt_only = ((acpi_user_options & ACPI_OUSER_MADT) != 0); /* Allow apic_use_acpi to override MADT-only mode */ if (!apic_use_acpi) apic_use_acpi_madt_only = 0; retval = acpi_probe(); /* * mapin the bios data area 40:0 * 40:13h - two-byte location reports the base memory size * 40:0Eh - two-byte location for the exact starting address of * the EBDA segment for EISA */ biosdatap = psm_map_phys(0x400, 0x20, PROT_READ); if (!biosdatap) return (retval); fpsp = (struct apic_mpfps_hdr *)NULL; mapsize = MPFPS_RAM_WIN_LEN; /*LINTED: pointer cast may result in improper alignment */ ebda_seg = *((ushort_t *)(biosdatap+0xe)); /* check the 1k of EBDA */ if (ebda_seg) { ebda_start = ((uint32_t)ebda_seg) << 4; fptr = psm_map_phys(ebda_start, MPFPS_RAM_WIN_LEN, PROT_READ); if (fptr) { if (!(fpsp = apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); } } /* If not in EBDA, check the last k of system base memory */ if (!fpsp) { /*LINTED: pointer cast may result in improper alignment */ base_mem_size = *((ushort_t *)(biosdatap + 0x13)); if (base_mem_size > 512) base_mem_end = 639 * 1024; else base_mem_end = 511 * 1024; /* if ebda == last k of base mem, skip to check BIOS ROM */ if (base_mem_end != ebda_start) { fptr = psm_map_phys(base_mem_end, MPFPS_RAM_WIN_LEN, PROT_READ); if (fptr) { if (!(fpsp = apic_find_fps_sig(fptr, MPFPS_RAM_WIN_LEN))) psm_unmap_phys(fptr, MPFPS_RAM_WIN_LEN); } } } psm_unmap_phys(biosdatap, 0x20); /* If still cannot find it, check the BIOS ROM space */ if (!fpsp) { mapsize = MPFPS_ROM_WIN_LEN; fptr = psm_map_phys(MPFPS_ROM_WIN_START, MPFPS_ROM_WIN_LEN, PROT_READ); if (fptr) { if (!(fpsp = apic_find_fps_sig(fptr, MPFPS_ROM_WIN_LEN))) { psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); return (retval); } } } if (apic_checksum((caddr_t)fpsp, fpsp->mpfps_length * 16) != 0) { psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); return (retval); } apic_spec_rev = fpsp->mpfps_spec_rev; if ((apic_spec_rev != 04) && (apic_spec_rev != 01)) { psm_unmap_phys(fptr, MPFPS_ROM_WIN_LEN); return (retval); } /* check IMCR is present or not */ apic_imcrp = fpsp->mpfps_featinfo2 & MPFPS_FEATINFO2_IMCRP; /* check default configuration (dual CPUs) */ if ((apic_defconf = fpsp->mpfps_featinfo1) != 0) { psm_unmap_phys(fptr, mapsize); return (apic_handle_defconf()); } /* MP Configuration Table */ mpct_addr = (uint32_t)(fpsp->mpfps_mpct_paddr); psm_unmap_phys(fptr, mapsize); /* unmap floating ptr struct */ /* * Map in enough memory for the MP Configuration Table Header. * Use this table to read the total length of the BIOS data and * map in all the info */ /*LINTED: pointer cast may result in improper alignment */ hdrp = (struct apic_mp_cnf_hdr *)psm_map_phys(mpct_addr, sizeof (struct apic_mp_cnf_hdr), PROT_READ); if (!hdrp) return (retval); /* check mp configuration table signature PCMP */ if (hdrp->mpcnf_sig != 0x504d4350) { psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); return (retval); } mpct_size = (int)hdrp->mpcnf_tbl_length; apic_set_pwroff_method_from_mpcnfhdr(hdrp); psm_unmap_phys((caddr_t)hdrp, sizeof (struct apic_mp_cnf_hdr)); if ((retval == PSM_SUCCESS) && !apic_use_acpi_madt_only) { /* This is an ACPI machine No need for further checks */ return (retval); } /* * Map in the entries for this machine, ie. Processor * Entry Tables, Bus Entry Tables, etc. * They are in fixed order following one another */ mpct = psm_map_phys(mpct_addr, mpct_size, PROT_READ); if (!mpct) return (retval); if (apic_checksum(mpct, mpct_size) != 0) goto apic_fail1; /*LINTED: pointer cast may result in improper alignment */ hdrp = (struct apic_mp_cnf_hdr *)mpct; /*LINTED: pointer cast may result in improper alignment */ apicadr = (uint32_t *)psm_map_phys((uint32_t)hdrp->mpcnf_local_apic, APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); if (!apicadr) goto apic_fail1; /* Parse all information in the tables */ bypass_cpu_and_ioapics_in_mptables = (retval == PSM_SUCCESS); if (apic_parse_mpct(mpct, bypass_cpu_and_ioapics_in_mptables) == PSM_SUCCESS) return (PSM_SUCCESS); for (i = 0; i < apic_io_max; i++) psm_unmap_phys((caddr_t)apicioadr[i], APIC_IO_MEMLEN); if (apic_cpus) kmem_free(apic_cpus, sizeof (*apic_cpus) * apic_nproc); if (apicadr) psm_unmap_phys((caddr_t)apicadr, APIC_LOCAL_MEMLEN); apic_fail1: psm_unmap_phys(mpct, mpct_size); return (retval); } static void apic_set_pwroff_method_from_mpcnfhdr(struct apic_mp_cnf_hdr *hdrp) { int i; for (i = 0; i < (sizeof (apic_mps_ids) / sizeof (apic_mps_ids[0])); i++) { if ((strncmp(hdrp->mpcnf_oem_str, apic_mps_ids[i].oem_id, strlen(apic_mps_ids[i].oem_id)) == 0) && (strncmp(hdrp->mpcnf_prod_str, apic_mps_ids[i].prod_id, strlen(apic_mps_ids[i].prod_id)) == 0)) { apic_poweroff_method = apic_mps_ids[i].poweroff_method; break; } } if (apic_debug_mps_id != 0) { cmn_err(CE_CONT, "pcplusmp: MPS OEM ID = '%c%c%c%c%c%c%c%c'" "Product ID = '%c%c%c%c%c%c%c%c%c%c%c%c'\n", hdrp->mpcnf_oem_str[0], hdrp->mpcnf_oem_str[1], hdrp->mpcnf_oem_str[2], hdrp->mpcnf_oem_str[3], hdrp->mpcnf_oem_str[4], hdrp->mpcnf_oem_str[5], hdrp->mpcnf_oem_str[6], hdrp->mpcnf_oem_str[7], hdrp->mpcnf_prod_str[0], hdrp->mpcnf_prod_str[1], hdrp->mpcnf_prod_str[2], hdrp->mpcnf_prod_str[3], hdrp->mpcnf_prod_str[4], hdrp->mpcnf_prod_str[5], hdrp->mpcnf_prod_str[6], hdrp->mpcnf_prod_str[7], hdrp->mpcnf_prod_str[8], hdrp->mpcnf_prod_str[9], hdrp->mpcnf_prod_str[10], hdrp->mpcnf_prod_str[11]); } } static int acpi_probe(void) { int i, id, intmax, ver, index, rv; int acpi_verboseflags = 0; int madt_seen, madt_size; APIC_HEADER *ap; MADT_PROCESSOR_APIC *mpa; MADT_IO_APIC *mia; MADT_IO_SAPIC *misa; MADT_INTERRUPT_OVERRIDE *mio; MADT_NMI_SOURCE *mns; MADT_INTERRUPT_SOURCE *mis; MADT_LOCAL_APIC_NMI *mlan; MADT_ADDRESS_OVERRIDE *mao; ACPI_OBJECT_LIST arglist; ACPI_OBJECT arg; int sci; iflag_t sci_flags; volatile int32_t *ioapic; char local_ids[NCPU]; char proc_ids[NCPU]; uchar_t hid; if (!apic_use_acpi) return (PSM_FAILURE); if (AcpiGetFirmwareTable(APIC_SIG, 1, ACPI_LOGICAL_ADDRESSING, (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) return (PSM_FAILURE); apicadr = (uint32_t *)psm_map_phys( (uint32_t)acpi_mapic_dtp->LocalApicAddress, APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); if (!apicadr) return (PSM_FAILURE); id = apicadr[APIC_LID_REG]; local_ids[0] = (uchar_t)(((uint_t)id) >> 24); apic_nproc = index = 1; apic_io_max = 0; ap = (APIC_HEADER *) (acpi_mapic_dtp + 1); madt_size = acpi_mapic_dtp->Length; madt_seen = sizeof (*acpi_mapic_dtp); while (madt_seen < madt_size) { switch (ap->Type) { case APIC_PROCESSOR: mpa = (MADT_PROCESSOR_APIC *) ap; if (mpa->ProcessorEnabled) { if (mpa->LocalApicId == local_ids[0]) proc_ids[0] = mpa->ProcessorId; else if (apic_nproc < NCPU) { local_ids[index] = mpa->LocalApicId; proc_ids[index] = mpa->ProcessorId; index++; apic_nproc++; } else cmn_err(CE_WARN, "pcplusmp: exceeded " "maximum no. of CPUs (= %d)", NCPU); } break; case APIC_IO: mia = (MADT_IO_APIC *) ap; if (apic_io_max < MAX_IO_APIC) { apic_io_id[apic_io_max] = mia->IoApicId; apic_io_vectbase[apic_io_max] = mia->Interrupt; ioapic = apicioadr[apic_io_max] = (int32_t *)psm_map_phys( (uint32_t)mia->Address, APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); if (!ioapic) goto cleanup; apic_io_max++; } break; case APIC_XRUPT_OVERRIDE: mio = (MADT_INTERRUPT_OVERRIDE *) ap; if (acpi_isop == NULL) acpi_isop = mio; acpi_iso_cnt++; break; case APIC_NMI: /* UNIMPLEMENTED */ mns = (MADT_NMI_SOURCE *) ap; if (acpi_nmi_sp == NULL) acpi_nmi_sp = mns; acpi_nmi_scnt++; cmn_err(CE_NOTE, "!apic: nmi source: %d %d %d\n", mns->Interrupt, mns->Polarity, mns->TriggerMode); break; case APIC_LOCAL_NMI: /* UNIMPLEMENTED */ mlan = (MADT_LOCAL_APIC_NMI *) ap; if (acpi_nmi_cp == NULL) acpi_nmi_cp = mlan; acpi_nmi_ccnt++; cmn_err(CE_NOTE, "!apic: local nmi: %d %d %d %d\n", mlan->ProcessorId, mlan->Polarity, mlan->TriggerMode, mlan->Lint); break; case APIC_ADDRESS_OVERRIDE: /* UNIMPLEMENTED */ mao = (MADT_ADDRESS_OVERRIDE *) ap; cmn_err(CE_NOTE, "!apic: address override: %lx\n", (long)mao->Address); break; case APIC_IO_SAPIC: /* UNIMPLEMENTED */ misa = (MADT_IO_SAPIC *) ap; cmn_err(CE_NOTE, "!apic: io sapic: %d %d %lx\n", misa->IoSapicId, misa->InterruptBase, (long)misa->Address); break; case APIC_XRUPT_SOURCE: /* UNIMPLEMENTED */ mis = (MADT_INTERRUPT_SOURCE *) ap; cmn_err(CE_NOTE, "!apic: irq source: %d %d %d %d %d %d %d\n", mis->ProcessorId, mis->ProcessorEid, mis->Interrupt, mis->Polarity, mis->TriggerMode, mis->InterruptType, mis->IoSapicVector); break; case APIC_RESERVED: default: goto cleanup; } /* advance to next entry */ madt_seen += ap->Length; ap = (APIC_HEADER *)(((char *)ap) + ap->Length); } if ((apic_cpus = kmem_zalloc(sizeof (*apic_cpus) * apic_nproc, KM_NOSLEEP)) == NULL) goto cleanup; apic_cpumask = (1 << apic_nproc) - 1; /* * ACPI doesn't provide the local apic ver, get it directly from the * local apic */ ver = apicadr[APIC_VERS_REG]; for (i = 0; i < apic_nproc; i++) { apic_cpus[i].aci_local_id = local_ids[i]; apic_cpus[i].aci_local_ver = (uchar_t)(ver & 0xFF); } for (i = 0; i < apic_io_max; i++) { ioapic = apicioadr[i]; /* * need to check Sitka on the following acpi problem * On the Sitka, the ioapic's apic_id field isn't reporting * the actual io apic id. We have reported this problem * to Intel. Until they fix the problem, we will get the * actual id directly from the ioapic. */ ioapic[APIC_IO_REG] = APIC_ID_CMD; id = ioapic[APIC_IO_DATA]; hid = (uchar_t)(((uint_t)id) >> 24); if (hid != apic_io_id[i]) { if (apic_io_id[i] == 0) apic_io_id[i] = hid; else { /* set ioapic id to whatever reported by ACPI */ id = ((int32_t)apic_io_id[i]) << 24; ioapic[APIC_IO_REG] = APIC_ID_CMD; ioapic[APIC_IO_DATA] = id; } } ioapic[APIC_IO_REG] = APIC_VERS_CMD; ver = ioapic[APIC_IO_DATA]; apic_io_ver[i] = (uchar_t)(ver & 0xff); intmax = (ver >> 16) & 0xff; apic_io_vectend[i] = apic_io_vectbase[i] + intmax; } /* * Process SCI configuration here * An error may be returned here if * acpi-user-options specifies legacy mode * (no SCI, no ACPI mode) */ if (acpica_get_sci(&sci, &sci_flags) != AE_OK) sci = -1; /* * Now call acpi_init() to generate namespaces * If this fails, we don't attempt to use ACPI * even if we were able to get a MADT above */ if (acpica_init() != AE_OK) goto cleanup; /* * Squirrel away the SCI and flags for later on * in apic_picinit() when we're ready */ apic_sci_vect = sci; apic_sci_flags = sci_flags; if (apic_verbose & APIC_VERBOSE_IRQ_FLAG) acpi_verboseflags |= PSM_VERBOSE_IRQ_FLAG; if (apic_verbose & APIC_VERBOSE_POWEROFF_FLAG) acpi_verboseflags |= PSM_VERBOSE_POWEROFF_FLAG; if (apic_verbose & APIC_VERBOSE_POWEROFF_PAUSE_FLAG) acpi_verboseflags |= PSM_VERBOSE_POWEROFF_PAUSE_FLAG; if (acpi_psm_init(apic_psm_info.p_mach_idstring, acpi_verboseflags) == ACPI_PSM_FAILURE) goto cleanup; /* Enable ACPI APIC interrupt routing */ arglist.Count = 1; arglist.Pointer = &arg; arg.Type = ACPI_TYPE_INTEGER; arg.Integer.Value = ACPI_APIC_MODE; /* 1 */ rv = AcpiEvaluateObject(NULL, "\\_PIC", &arglist, NULL); if (rv == AE_OK) { build_reserved_irqlist((uchar_t *)apic_reserved_irqlist); apic_enable_acpi = 1; if (apic_use_acpi_madt_only) { cmn_err(CE_CONT, "?Using ACPI for CPU/IOAPIC information ONLY\n"); } return (PSM_SUCCESS); } /* if setting APIC mode failed above, we fall through to cleanup */ cleanup: if (apicadr != NULL) { psm_unmap_phys((caddr_t)apicadr, APIC_LOCAL_MEMLEN); apicadr = NULL; } apic_nproc = 0; for (i = 0; i < apic_io_max; i++) { psm_unmap_phys((caddr_t)apicioadr[i], APIC_IO_MEMLEN); apicioadr[i] = NULL; } apic_io_max = 0; acpi_isop = NULL; acpi_iso_cnt = 0; acpi_nmi_sp = NULL; acpi_nmi_scnt = 0; acpi_nmi_cp = NULL; acpi_nmi_ccnt = 0; return (PSM_FAILURE); } /* * Handle default configuration. Fill in reqd global variables & tables * Fill all details as MP table does not give any more info */ static int apic_handle_defconf() { uint_t lid; /*LINTED: pointer cast may result in improper alignment */ apicioadr[0] = (int32_t *)psm_map_phys(APIC_IO_ADDR, APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); /*LINTED: pointer cast may result in improper alignment */ apicadr = (uint32_t *)psm_map_phys(APIC_LOCAL_ADDR, APIC_LOCAL_MEMLEN, PROT_READ | PROT_WRITE); apic_cpus = (apic_cpus_info_t *) kmem_zalloc(sizeof (*apic_cpus) * 2, KM_NOSLEEP); if ((!apicadr) || (!apicioadr[0]) || (!apic_cpus)) goto apic_handle_defconf_fail; apic_cpumask = 3; apic_nproc = 2; lid = apicadr[APIC_LID_REG]; apic_cpus[0].aci_local_id = (uchar_t)(lid >> APIC_ID_BIT_OFFSET); /* * According to the PC+MP spec 1.1, the local ids * for the default configuration has to be 0 or 1 */ if (apic_cpus[0].aci_local_id == 1) apic_cpus[1].aci_local_id = 0; else if (apic_cpus[0].aci_local_id == 0) apic_cpus[1].aci_local_id = 1; else goto apic_handle_defconf_fail; apic_io_id[0] = 2; apic_io_max = 1; if (apic_defconf >= 5) { apic_cpus[0].aci_local_ver = APIC_INTEGRATED_VERS; apic_cpus[1].aci_local_ver = APIC_INTEGRATED_VERS; apic_io_ver[0] = APIC_INTEGRATED_VERS; } else { apic_cpus[0].aci_local_ver = 0; /* 82489 DX */ apic_cpus[1].aci_local_ver = 0; apic_io_ver[0] = 0; } if (apic_defconf == 2 || apic_defconf == 3 || apic_defconf == 6) eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); return (PSM_SUCCESS); apic_handle_defconf_fail: if (apic_cpus) kmem_free(apic_cpus, sizeof (*apic_cpus) * 2); if (apicadr) psm_unmap_phys((caddr_t)apicadr, APIC_LOCAL_MEMLEN); if (apicioadr[0]) psm_unmap_phys((caddr_t)apicioadr[0], APIC_IO_MEMLEN); return (PSM_FAILURE); } /* Parse the entries in MP configuration table and collect info that we need */ static int apic_parse_mpct(caddr_t mpct, int bypass_cpus_and_ioapics) { struct apic_procent *procp; struct apic_bus *busp; struct apic_io_entry *ioapicp; struct apic_io_intr *intrp; volatile int32_t *ioapic; uint_t lid; int id; uchar_t hid; /*LINTED: pointer cast may result in improper alignment */ procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); /* No need to count cpu entries if we won't use them */ if (!bypass_cpus_and_ioapics) { /* Find max # of CPUS and allocate structure accordingly */ apic_nproc = 0; while (procp->proc_entry == APIC_CPU_ENTRY) { if (procp->proc_cpuflags & CPUFLAGS_EN) { apic_nproc++; } procp++; } if (apic_nproc > NCPU) cmn_err(CE_WARN, "pcplusmp: exceeded " "maximum no. of CPUs (= %d)", NCPU); if (!apic_nproc || !(apic_cpus = (apic_cpus_info_t *) kmem_zalloc(sizeof (*apic_cpus)*apic_nproc, KM_NOSLEEP))) return (PSM_FAILURE); } /*LINTED: pointer cast may result in improper alignment */ procp = (struct apic_procent *)(mpct + sizeof (struct apic_mp_cnf_hdr)); /* * start with index 1 as 0 needs to be filled in with Boot CPU, but * if we're bypassing this information, it has already been filled * in by acpi_probe(), so don't overwrite it. */ if (!bypass_cpus_and_ioapics) apic_nproc = 1; while (procp->proc_entry == APIC_CPU_ENTRY) { /* check whether the cpu exists or not */ if (!bypass_cpus_and_ioapics && procp->proc_cpuflags & CPUFLAGS_EN) { if (procp->proc_cpuflags & CPUFLAGS_BP) { /* Boot CPU */ lid = apicadr[APIC_LID_REG]; apic_cpus[0].aci_local_id = procp->proc_apicid; if (apic_cpus[0].aci_local_id != (uchar_t)(lid >> APIC_ID_BIT_OFFSET)) { return (PSM_FAILURE); } apic_cpus[0].aci_local_ver = procp->proc_version; } else { apic_cpus[apic_nproc].aci_local_id = procp->proc_apicid; apic_cpus[apic_nproc].aci_local_ver = procp->proc_version; apic_nproc++; } } procp++; } if (!bypass_cpus_and_ioapics) { /* convert the number of processors into a cpumask */ apic_cpumask = (1 << apic_nproc) - 1; } /* * Save start of bus entries for later use. * Get EISA level cntrl if EISA bus is present. * Also get the CPI bus id for single CPI bus case */ apic_busp = busp = (struct apic_bus *)procp; while (busp->bus_entry == APIC_BUS_ENTRY) { lid = apic_find_bus_type((char *)&busp->bus_str1); if (lid == BUS_EISA) { eisa_level_intr_mask = (inb(EISA_LEVEL_CNTL + 1) << 8) | inb(EISA_LEVEL_CNTL) | ((uint_t)INT32_MAX + 1); } else if (lid == BUS_PCI) { /* * apic_single_pci_busid will be used only if * apic_pic_bus_total is equal to 1 */ apic_pci_bus_total++; apic_single_pci_busid = busp->bus_id; } busp++; } ioapicp = (struct apic_io_entry *)busp; if (!bypass_cpus_and_ioapics) apic_io_max = 0; do { if (!bypass_cpus_and_ioapics && apic_io_max < MAX_IO_APIC) { if (ioapicp->io_flags & IOAPIC_FLAGS_EN) { apic_io_id[apic_io_max] = ioapicp->io_apicid; apic_io_ver[apic_io_max] = ioapicp->io_version; /*LINTED: pointer cast may result in improper alignment */ apicioadr[apic_io_max] = (int32_t *)psm_map_phys( (uint32_t)ioapicp->io_apic_addr, APIC_IO_MEMLEN, PROT_READ | PROT_WRITE); if (!apicioadr[apic_io_max]) return (PSM_FAILURE); ioapic = apicioadr[apic_io_max]; ioapic[APIC_IO_REG] = APIC_ID_CMD; id = ioapic[APIC_IO_DATA]; hid = (uchar_t)(((uint_t)id) >> 24); if (hid != apic_io_id[apic_io_max]) { if (apic_io_id[apic_io_max] == 0) apic_io_id[apic_io_max] = hid; else { /* * set ioapic id to whatever * reported by MPS * * may not need to set index * again ??? * take it out and try */ id = ((int32_t) apic_io_id[apic_io_max]) << 24; ioapic[APIC_IO_REG] = APIC_ID_CMD; ioapic[APIC_IO_DATA] = id; } } apic_io_max++; } } ioapicp++; } while (ioapicp->io_entry == APIC_IO_ENTRY); apic_io_intrp = (struct apic_io_intr *)ioapicp; intrp = apic_io_intrp; while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { if ((intrp->intr_irq > APIC_MAX_ISA_IRQ) || (apic_find_bus(intrp->intr_busid) == BUS_PCI)) { apic_irq_translate = 1; break; } intrp++; } return (PSM_SUCCESS); } static struct apic_mpfps_hdr * apic_find_fps_sig(caddr_t cptr, int len) { int i; /* Look for the pattern "_MP_" */ for (i = 0; i < len; i += 16) { if ((*(cptr+i) == '_') && (*(cptr+i+1) == 'M') && (*(cptr+i+2) == 'P') && (*(cptr+i+3) == '_')) /*LINTED: pointer cast may result in improper alignment */ return ((struct apic_mpfps_hdr *)(cptr + i)); } return (NULL); } static int apic_checksum(caddr_t bptr, int len) { int i; uchar_t cksum; cksum = 0; for (i = 0; i < len; i++) cksum += *bptr++; return ((int)cksum); } /* * Initialise vector->ipl and ipl->pri arrays. level_intr and irqtable * are also set to NULL. vector->irq is set to a value which cannot map * to a real irq to show that it is free. */ void apic_init() { int i; int *iptr; int j = 1; apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */ for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) { if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) && (apic_vectortoipl[i + 1] == apic_vectortoipl[i])) /* get to highest vector at the same ipl */ continue; for (; j <= apic_vectortoipl[i]; j++) { apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT; } } for (; j < MAXIPL + 1; j++) /* fill up any empty ipltopri slots */ apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT; /* cpu 0 is always up */ apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; iptr = (int *)&apic_irq_table[0]; for (i = 0; i <= APIC_MAX_VECTOR; i++) { apic_level_intr[i] = 0; *iptr++ = NULL; apic_vector_to_irq[i] = APIC_RESV_IRQ; apic_reprogram_info[i].valid = 0; apic_reprogram_info[i].bindcpu = 0; apic_reprogram_info[i].timeouts = 0; } /* * Allocate a dummy irq table entry for the reserved entry. * This takes care of the race between removing an irq and * clock detecting a CPU in that irq during interrupt load * sampling. */ apic_irq_table[APIC_RESV_IRQ] = kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL); mutex_init(&apic_reprogram_timeout_mutex, NULL, MUTEX_DEFAULT, NULL); #if defined(__amd64) /* * Make cpu-specific interrupt info point to cr8pri vector */ for (i = 0; i <= MAXIPL; i++) apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT; CPU->cpu_pri_data = apic_cr8pri; intpri_use_cr8 = 1; #endif /* __amd64 */ } /* * handler for APIC Error interrupt. Just print a warning and continue */ static int apic_error_intr() { uint_t error0, error1, error; uint_t i; /* * We need to write before read as per 7.4.17 of system prog manual. * We do both and or the results to be safe */ error0 = apicadr[APIC_ERROR_STATUS]; apicadr[APIC_ERROR_STATUS] = 0; error1 = apicadr[APIC_ERROR_STATUS]; error = error0 | error1; /* * Clear the APIC error status (do this on all cpus that enter here) * (two writes are required due to the semantics of accessing the * error status register.) */ apicadr[APIC_ERROR_STATUS] = 0; apicadr[APIC_ERROR_STATUS] = 0; /* * Prevent more than 1 CPU from handling error interrupt causing * double printing (interleave of characters from multiple * CPU's when using prom_printf) */ if (lock_try(&apic_error_lock) == 0) return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); if (error) { #if DEBUG if (apic_debug) debug_enter("pcplusmp: APIC Error interrupt received"); #endif /* DEBUG */ if (apic_panic_on_apic_error) cmn_err(CE_PANIC, "APIC Error interrupt on CPU %d. Status = %x\n", psm_get_cpu_id(), error); else { if ((error & ~APIC_CS_ERRORS) == 0) { /* cksum error only */ apic_error |= APIC_ERR_APIC_ERROR; apic_apic_error |= error; apic_num_apic_errors++; apic_num_cksum_errors++; } else { /* * prom_printf is the best shot we have of * something which is problem free from * high level/NMI type of interrupts */ prom_printf("APIC Error interrupt on CPU %d. " "Status 0 = %x, Status 1 = %x\n", psm_get_cpu_id(), error0, error1); apic_error |= APIC_ERR_APIC_ERROR; apic_apic_error |= error; apic_num_apic_errors++; for (i = 0; i < apic_error_display_delay; i++) { tenmicrosec(); } /* * provide more delay next time limited to * roughly 1 clock tick time */ if (apic_error_display_delay < 500) apic_error_display_delay *= 2; } } lock_clear(&apic_error_lock); return (DDI_INTR_CLAIMED); } else { lock_clear(&apic_error_lock); return (DDI_INTR_UNCLAIMED); } /* NOTREACHED */ } /* * Turn off the mask bit in the performance counter Local Vector Table entry. */ static void apic_cpcovf_mask_clear(void) { apicadr[APIC_PCINT_VECT] &= ~APIC_LVT_MASK; } static void apic_init_intr() { processorid_t cpun = psm_get_cpu_id(); #if defined(__amd64) setcr8((ulong_t)(APIC_MASK_ALL >> APIC_IPL_SHIFT)); #else apicadr[APIC_TASK_REG] = APIC_MASK_ALL; #endif if (apic_flat_model) apicadr[APIC_FORMAT_REG] = APIC_FLAT_MODEL; else apicadr[APIC_FORMAT_REG] = APIC_CLUSTER_MODEL; apicadr[APIC_DEST_REG] = AV_HIGH_ORDER >> cpun; /* need to enable APIC before unmasking NMI */ apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR; apicadr[APIC_LOCAL_TIMER] = AV_MASK; apicadr[APIC_INT_VECT0] = AV_MASK; /* local intr reg 0 */ apicadr[APIC_INT_VECT1] = AV_NMI; /* enable NMI */ if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) return; /* Enable performance counter overflow interrupt */ if ((x86_feature & X86_MSR) != X86_MSR) apic_enable_cpcovf_intr = 0; if (apic_enable_cpcovf_intr) { if (apic_cpcovf_vect == 0) { int ipl = APIC_PCINT_IPL; int irq = apic_get_ipivect(ipl, -1); ASSERT(irq != -1); apic_cpcovf_vect = apic_irq_table[irq]->airq_vector; ASSERT(apic_cpcovf_vect); (void) add_avintr(NULL, ipl, (avfunc)kcpc_hw_overflow_intr, "apic pcint", irq, NULL, NULL, NULL); kcpc_hw_overflow_intr_installed = 1; kcpc_hw_enable_cpc_intr = apic_cpcovf_mask_clear; } apicadr[APIC_PCINT_VECT] = apic_cpcovf_vect; } /* Enable error interrupt */ if (apic_enable_error_intr) { if (apic_errvect == 0) { int ipl = 0xf; /* get highest priority intr */ int irq = apic_get_ipivect(ipl, -1); ASSERT(irq != -1); apic_errvect = apic_irq_table[irq]->airq_vector; ASSERT(apic_errvect); /* * Not PSMI compliant, but we are going to merge * with ON anyway */ (void) add_avintr((void *)NULL, ipl, (avfunc)apic_error_intr, "apic error intr", irq, NULL, NULL, NULL); } apicadr[APIC_ERR_VECT] = apic_errvect; apicadr[APIC_ERROR_STATUS] = 0; apicadr[APIC_ERROR_STATUS] = 0; } } static void apic_disable_local_apic() { apicadr[APIC_TASK_REG] = APIC_MASK_ALL; apicadr[APIC_LOCAL_TIMER] = AV_MASK; apicadr[APIC_INT_VECT0] = AV_MASK; /* local intr reg 0 */ apicadr[APIC_INT_VECT1] = AV_MASK; /* disable NMI */ apicadr[APIC_ERR_VECT] = AV_MASK; /* and error interrupt */ apicadr[APIC_PCINT_VECT] = AV_MASK; /* and perf counter intr */ apicadr[APIC_SPUR_INT_REG] = APIC_SPUR_INTR; } static void apic_picinit(void) { int i, j; uint_t isr; volatile int32_t *ioapic; apic_irq_t *irqptr; struct intrspec ispec; /* * On UniSys Model 6520, the BIOS leaves vector 0x20 isr * bit on without clearing it with EOI. Since softint * uses vector 0x20 to interrupt itself, so softint will * not work on this machine. In order to fix this problem * a check is made to verify all the isr bits are clear. * If not, EOIs are issued to clear the bits. */ for (i = 7; i >= 1; i--) { if ((isr = apicadr[APIC_ISR_REG + (i * 4)]) != 0) for (j = 0; ((j < 32) && (isr != 0)); j++) if (isr & (1 << j)) { apicadr[APIC_EOI_REG] = 0; isr &= ~(1 << j); apic_error |= APIC_ERR_BOOT_EOI; } } /* set a flag so we know we have run apic_picinit() */ apic_flag = 1; LOCK_INIT_CLEAR(&apic_gethrtime_lock); LOCK_INIT_CLEAR(&apic_ioapic_lock); LOCK_INIT_CLEAR(&apic_revector_lock); LOCK_INIT_CLEAR(&apic_ioapic_reprogram_lock); LOCK_INIT_CLEAR(&apic_error_lock); picsetup(); /* initialise the 8259 */ /* add nmi handler - least priority nmi handler */ LOCK_INIT_CLEAR(&apic_nmi_lock); if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr, "pcplusmp NMI handler", (caddr_t)NULL)) cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler"); apic_init_intr(); /* enable apic mode if imcr present */ if (apic_imcrp) { outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC); } /* mask interrupt vectors */ for (j = 0; j < apic_io_max; j++) { int intin_max; ioapic = apicioadr[j]; ioapic[APIC_IO_REG] = APIC_VERS_CMD; /* Bits 23-16 define the maximum redirection entries */ intin_max = (ioapic[APIC_IO_DATA] >> 16) & 0xff; for (i = 0; i < intin_max; i++) { ioapic[APIC_IO_REG] = APIC_RDT_CMD + 2 * i; ioapic[APIC_IO_DATA] = AV_MASK; } } /* * Hack alert: deal with ACPI SCI interrupt chicken/egg here */ if (apic_sci_vect > 0) { /* * acpica has already done add_avintr(); we just * to finish the job by mimicing translate_irq() * * Fake up an intrspec and setup the tables */ ispec.intrspec_vec = apic_sci_vect; ispec.intrspec_pri = SCI_IPL; if (apic_setup_irq_table(NULL, apic_sci_vect, NULL, &ispec, &apic_sci_flags, DDI_INTR_TYPE_FIXED) < 0) { cmn_err(CE_WARN, "!apic: SCI setup failed"); return; } irqptr = apic_irq_table[apic_sci_vect]; /* Program I/O APIC */ (void) apic_setup_io_intr(irqptr, apic_sci_vect); } } static void apic_cpu_start(processorid_t cpun, caddr_t rm_code) { int loop_count; uint32_t vector; uint_t cpu_id, iflag; cpu_id = apic_cpus[cpun].aci_local_id; apic_cmos_ssb_set = 1; /* * Interrupts on BSP cpu will be disabled during these startup * steps in order to avoid unwanted side effects from * executing interrupt handlers on a problematic BIOS. */ iflag = intr_clear(); outb(CMOS_ADDR, SSB); outb(CMOS_DATA, BIOS_SHUTDOWN); while (get_apic_cmd1() & AV_PENDING) apic_ret(); /* for integrated - make sure there is one INIT IPI in buffer */ /* for external - it will wake up the cpu */ apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET; apicadr[APIC_INT_CMD1] = AV_ASSERT | AV_RESET; /* If only 1 CPU is installed, PENDING bit will not go low */ for (loop_count = 0x1000; loop_count; loop_count--) if (get_apic_cmd1() & AV_PENDING) apic_ret(); else break; apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET; apicadr[APIC_INT_CMD1] = AV_DEASSERT | AV_RESET; drv_usecwait(20000); /* 20 milli sec */ if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) { /* integrated apic */ rm_code = (caddr_t)(uintptr_t)rm_platter_pa; vector = (rm_platter_pa >> MMU_PAGESHIFT) & (APIC_VECTOR_MASK | APIC_IPL_MASK); /* to offset the INIT IPI queue up in the buffer */ apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET; apicadr[APIC_INT_CMD1] = vector | AV_STARTUP; drv_usecwait(200); /* 20 micro sec */ apicadr[APIC_INT_CMD2] = cpu_id << APIC_ICR_ID_BIT_OFFSET; apicadr[APIC_INT_CMD1] = vector | AV_STARTUP; drv_usecwait(200); /* 20 micro sec */ } intr_restore(iflag); } #ifdef DEBUG int apic_break_on_cpu = 9; int apic_stretch_interrupts = 0; int apic_stretch_ISR = 1 << 3; /* IPL of 3 matches nothing now */ void apic_break() { } #endif /* DEBUG */ /* * platform_intr_enter * * Called at the beginning of the interrupt service routine to * mask all level equal to and below the interrupt priority * of the interrupting vector. An EOI should be given to * the interrupt controller to enable other HW interrupts. * * Return -1 for spurious interrupts * */ /*ARGSUSED*/ static int apic_intr_enter(int ipl, int *vectorp) { uchar_t vector; int nipl; int irq, iflag; apic_cpus_info_t *cpu_infop; /* * The real vector programmed in APIC is *vectorp + 0x20 * But, cmnint code subtracts 0x20 before pushing it. * Hence APIC_BASE_VECT is 0x20. */ vector = (uchar_t)*vectorp; /* if interrupted by the clock, increment apic_nsec_since_boot */ if (vector == apic_clkvect) { if (!apic_oneshot) { /* NOTE: this is not MT aware */ apic_hrtime_stamp++; apic_nsec_since_boot += apic_nsec_per_intr; apic_hrtime_stamp++; last_count_read = apic_hertz_count; apic_redistribute_compute(); } /* We will avoid all the book keeping overhead for clock */ nipl = apic_vectortoipl[vector >> APIC_IPL_SHIFT]; #if defined(__amd64) setcr8((ulong_t)apic_cr8pri[nipl]); #else apicadr[APIC_TASK_REG] = apic_ipltopri[nipl]; #endif *vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT]; apicadr[APIC_EOI_REG] = 0; return (nipl); } cpu_infop = &apic_cpus[psm_get_cpu_id()]; if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) { cpu_infop->aci_spur_cnt++; return (APIC_INT_SPURIOUS); } /* Check if the vector we got is really what we need */ if (apic_revector_pending) { /* * Disable interrupts for the duration of * the vector translation to prevent a self-race for * the apic_revector_lock. This cannot be done * in apic_xlate_vector because it is recursive and * we want the vector translation to be atomic with * respect to other (higher-priority) interrupts. */ iflag = intr_clear(); vector = apic_xlate_vector(vector + APIC_BASE_VECT) - APIC_BASE_VECT; intr_restore(iflag); } nipl = apic_vectortoipl[vector >> APIC_IPL_SHIFT]; *vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT]; #if defined(__amd64) setcr8((ulong_t)apic_cr8pri[nipl]); #else apicadr[APIC_TASK_REG] = apic_ipltopri[nipl]; #endif cpu_infop->aci_current[nipl] = (uchar_t)irq; cpu_infop->aci_curipl = (uchar_t)nipl; cpu_infop->aci_ISR_in_progress |= 1 << nipl; /* * apic_level_intr could have been assimilated into the irq struct. * but, having it as a character array is more efficient in terms of * cache usage. So, we leave it as is. */ if (!apic_level_intr[irq]) apicadr[APIC_EOI_REG] = 0; #ifdef DEBUG APIC_DEBUG_BUF_PUT(vector); APIC_DEBUG_BUF_PUT(irq); APIC_DEBUG_BUF_PUT(nipl); APIC_DEBUG_BUF_PUT(psm_get_cpu_id()); if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl))) drv_usecwait(apic_stretch_interrupts); if (apic_break_on_cpu == psm_get_cpu_id()) apic_break(); #endif /* DEBUG */ return (nipl); } static void apic_intr_exit(int prev_ipl, int irq) { apic_cpus_info_t *cpu_infop; #if defined(__amd64) setcr8((ulong_t)apic_cr8pri[prev_ipl]); #else apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl]; #endif cpu_infop = &apic_cpus[psm_get_cpu_id()]; if (apic_level_intr[irq]) apicadr[APIC_EOI_REG] = 0; cpu_infop->aci_curipl = (uchar_t)prev_ipl; /* ISR above current pri could not be in progress */ cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; } /* * Mask all interrupts below or equal to the given IPL */ static void apic_setspl(int ipl) { #if defined(__amd64) setcr8((ulong_t)apic_cr8pri[ipl]); #else apicadr[APIC_TASK_REG] = apic_ipltopri[ipl]; #endif /* interrupts at ipl above this cannot be in progress */ apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1; /* * this is a patch fix for the ALR QSMP P5 machine, so that interrupts * have enough time to come in before the priority is raised again * during the idle() loop. */ if (apic_setspl_delay) (void) get_apic_pri(); } /* * trigger a software interrupt at the given IPL */ static void apic_set_softintr(int ipl) { int vector; uint_t flag; vector = apic_resv_vector[ipl]; flag = intr_clear(); while (get_apic_cmd1() & AV_PENDING) apic_ret(); /* generate interrupt at vector on itself only */ apicadr[APIC_INT_CMD1] = AV_SH_SELF | vector; intr_restore(flag); } /* * generates an interprocessor interrupt to another CPU */ static void apic_send_ipi(int cpun, int ipl) { int vector; uint_t flag; vector = apic_resv_vector[ipl]; flag = intr_clear(); while (get_apic_cmd1() & AV_PENDING) apic_ret(); apicadr[APIC_INT_CMD2] = apic_cpus[cpun].aci_local_id << APIC_ICR_ID_BIT_OFFSET; apicadr[APIC_INT_CMD1] = vector; intr_restore(flag); } /*ARGSUSED*/ static void apic_set_idlecpu(processorid_t cpun) { } /*ARGSUSED*/ static void apic_unset_idlecpu(processorid_t cpun) { } static void apic_ret() { } static int get_apic_cmd1() { return (apicadr[APIC_INT_CMD1]); } static int get_apic_pri() { #if defined(__amd64) return ((int)getcr8()); #else return (apicadr[APIC_TASK_REG]); #endif } /* * If apic_coarse_time == 1, then apic_gettime() is used instead of * apic_gethrtime(). This is used for performance instead of accuracy. */ static hrtime_t apic_gettime() { int old_hrtime_stamp; hrtime_t temp; /* * In one-shot mode, we do not keep time, so if anyone * calls psm_gettime() directly, we vector over to * gethrtime(). * one-shot mode MUST NOT be enabled if this psm is the source of * hrtime. */ if (apic_oneshot) return (gethrtime()); gettime_again: while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) apic_ret(); temp = apic_nsec_since_boot; if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ goto gettime_again; } return (temp); } /* * Here we return the number of nanoseconds since booting. Note every * clock interrupt increments apic_nsec_since_boot by the appropriate * amount. */ static hrtime_t apic_gethrtime() { int curr_timeval, countval, elapsed_ticks, oflags; int old_hrtime_stamp, status; hrtime_t temp; uchar_t cpun; /* * In one-shot mode, we do not keep time, so if anyone * calls psm_gethrtime() directly, we vector over to * gethrtime(). * one-shot mode MUST NOT be enabled if this psm is the source of * hrtime. */ if (apic_oneshot) return (gethrtime()); oflags = intr_clear(); /* prevent migration */ cpun = (uchar_t)((uint_t)apicadr[APIC_LID_REG] >> APIC_ID_BIT_OFFSET); lock_set(&apic_gethrtime_lock); gethrtime_again: while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) apic_ret(); /* * Check to see which CPU we are on. Note the time is kept on * the local APIC of CPU 0. If on CPU 0, simply read the current * counter. If on another CPU, issue a remote read command to CPU 0. */ if (cpun == apic_cpus[0].aci_local_id) { countval = apicadr[APIC_CURR_COUNT]; } else { while (get_apic_cmd1() & AV_PENDING) apic_ret(); apicadr[APIC_INT_CMD2] = apic_cpus[0].aci_local_id << APIC_ICR_ID_BIT_OFFSET; apicadr[APIC_INT_CMD1] = APIC_CURR_ADD|AV_REMOTE; while ((status = get_apic_cmd1()) & AV_READ_PENDING) apic_ret(); if (status & AV_REMOTE_STATUS) /* 1 = valid */ countval = apicadr[APIC_REMOTE_READ]; else { /* 0 = invalid */ apic_remote_hrterr++; /* * return last hrtime right now, will need more * testing if change to retry */ temp = apic_last_hrtime; lock_clear(&apic_gethrtime_lock); intr_restore(oflags); return (temp); } } if (countval > last_count_read) countval = 0; else last_count_read = countval; elapsed_ticks = apic_hertz_count - countval; curr_timeval = elapsed_ticks * apic_nsec_per_tick; temp = apic_nsec_since_boot + curr_timeval; if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ /* we might have clobbered last_count_read. Restore it */ last_count_read = apic_hertz_count; goto gethrtime_again; } if (temp < apic_last_hrtime) { /* return last hrtime if error occurs */ apic_hrtime_error++; temp = apic_last_hrtime; } else apic_last_hrtime = temp; lock_clear(&apic_gethrtime_lock); intr_restore(oflags); return (temp); } /* apic NMI handler */ /*ARGSUSED*/ static void apic_nmi_intr(caddr_t arg) { if (apic_shutdown_processors) { apic_disable_local_apic(); return; } if (lock_try(&apic_nmi_lock)) { if (apic_kmdb_on_nmi) { if (psm_debugger() == 0) { cmn_err(CE_PANIC, "NMI detected, kmdb is not available."); } else { debug_enter("\nNMI detected, entering kmdb.\n"); } } else { if (apic_panic_on_nmi) { /* Keep panic from entering kmdb. */ nopanicdebug = 1; cmn_err(CE_PANIC, "pcplusmp: NMI received"); } else { /* * prom_printf is the best shot we have * of something which is problem free from * high level/NMI type of interrupts */ prom_printf("pcplusmp: NMI received\n"); apic_error |= APIC_ERR_NMI; apic_num_nmis++; } } lock_clear(&apic_nmi_lock); } } /* * Add mask bits to disable interrupt vector from happening * at or above IPL. In addition, it should remove mask bits * to enable interrupt vectors below the given IPL. * * Both add and delspl are complicated by the fact that different interrupts * may share IRQs. This can happen in two ways. * 1. The same H/W line is shared by more than 1 device * 1a. with interrupts at different IPLs * 1b. with interrupts at same IPL * 2. We ran out of vectors at a given IPL and started sharing vectors. * 1b and 2 should be handled gracefully, except for the fact some ISRs * will get called often when no interrupt is pending for the device. * For 1a, we just hope that the machine blows up with the person who * set it up that way!. In the meantime, we handle it at the higher IPL. */ /*ARGSUSED*/ static int apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl) { uchar_t vector; int iflag; apic_irq_t *irqptr, *irqheadptr; int irqindex; ASSERT(max_ipl <= UCHAR_MAX); irqindex = IRQINDEX(irqno); if ((irqindex == -1) || (!apic_irq_table[irqindex])) return (PSM_FAILURE); irqptr = irqheadptr = apic_irq_table[irqindex]; DDI_INTR_IMPLDBG((CE_CONT, "apic_addspl: dip=0x%p type=%d irqno=0x%x " "vector=0x%x\n", (void *)irqptr->airq_dip, irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); while (irqptr) { if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) break; irqptr = irqptr->airq_next; } irqptr->airq_share++; /* return if it is not hardware interrupt */ if (irqptr->airq_mps_intr_index == RESERVE_INDEX) return (PSM_SUCCESS); /* Or if there are more interupts at a higher IPL */ if (ipl != max_ipl) return (PSM_SUCCESS); /* * if apic_picinit() has not been called yet, just return. * At the end of apic_picinit(), we will call setup_io_intr(). */ if (!apic_flag) return (PSM_SUCCESS); iflag = intr_clear(); /* * Upgrade vector if max_ipl is not earlier ipl. If we cannot allocate, * return failure. Not very elegant, but then we hope the * machine will blow up with ... */ if (irqptr->airq_ipl != max_ipl) { vector = apic_allocate_vector(max_ipl, irqindex, 1); if (vector == 0) { intr_restore(iflag); irqptr->airq_share--; return (PSM_FAILURE); } irqptr = irqheadptr; apic_mark_vector(irqptr->airq_vector, vector); while (irqptr) { irqptr->airq_vector = vector; irqptr->airq_ipl = (uchar_t)max_ipl; /* * reprogram irq being added and every one else * who is not in the UNINIT state */ if ((VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) || (irqptr->airq_temp_cpu != IRQ_UNINIT)) { apic_record_rdt_entry(irqptr, irqindex); (void) apic_setup_io_intr(irqptr, irqindex); } irqptr = irqptr->airq_next; } intr_restore(iflag); return (PSM_SUCCESS); } ASSERT(irqptr); (void) apic_setup_io_intr(irqptr, irqindex); intr_restore(iflag); return (PSM_SUCCESS); } /* * Recompute mask bits for the given interrupt vector. * If there is no interrupt servicing routine for this * vector, this function should disable interrupt vector * from happening at all IPLs. If there are still * handlers using the given vector, this function should * disable the given vector from happening below the lowest * IPL of the remaining hadlers. */ /*ARGSUSED*/ static int apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl) { uchar_t vector, bind_cpu; int iflag, intin, irqindex; volatile int32_t *ioapic; apic_irq_t *irqptr, *irqheadptr; irqindex = IRQINDEX(irqno); irqptr = irqheadptr = apic_irq_table[irqindex]; DDI_INTR_IMPLDBG((CE_CONT, "apic_delspl: dip=0x%p type=%d irqno=0x%x " "vector=0x%x\n", (void *)irqptr->airq_dip, irqptr->airq_mps_intr_index, irqno, irqptr->airq_vector)); while (irqptr) { if (VIRTIRQ(irqindex, irqptr->airq_share_id) == irqno) break; irqptr = irqptr->airq_next; } ASSERT(irqptr); irqptr->airq_share--; if (ipl < max_ipl) return (PSM_SUCCESS); /* return if it is not hardware interrupt */ if (irqptr->airq_mps_intr_index == RESERVE_INDEX) return (PSM_SUCCESS); if (!apic_flag) { /* * Clear irq_struct. If two devices shared an intpt * line & 1 unloaded before picinit, we are hosed. But, then * we hope the machine will ... */ irqptr->airq_mps_intr_index = FREE_INDEX; irqptr->airq_temp_cpu = IRQ_UNINIT; apic_free_vector(irqptr->airq_vector); return (PSM_SUCCESS); } /* * Downgrade vector to new max_ipl if needed.If we cannot allocate, * use old IPL. Not very elegant, but then we hope ... */ if ((irqptr->airq_ipl != max_ipl) && (max_ipl != PSM_INVALID_IPL)) { apic_irq_t *irqp; if (vector = apic_allocate_vector(max_ipl, irqno, 1)) { apic_mark_vector(irqheadptr->airq_vector, vector); irqp = irqheadptr; while (irqp) { irqp->airq_vector = vector; irqp->airq_ipl = (uchar_t)max_ipl; if (irqp->airq_temp_cpu != IRQ_UNINIT) { apic_record_rdt_entry(irqp, irqindex); (void) apic_setup_io_intr(irqp, irqindex); } irqp = irqp->airq_next; } } } if (irqptr->airq_share) return (PSM_SUCCESS); ioapic = apicioadr[irqptr->airq_ioapicindex]; intin = irqptr->airq_intin_no; iflag = intr_clear(); lock_set(&apic_ioapic_lock); ioapic[APIC_IO_REG] = APIC_RDT_CMD + 2 * intin; ioapic[APIC_IO_DATA] = AV_MASK; /* Disable the MSI/X vector */ if (APIC_IS_MSI_OR_MSIX_INDEX(irqptr->airq_mps_intr_index)) { int type = (irqptr->airq_mps_intr_index == MSI_INDEX) ? DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX; /* * Make sure we only disable on the last * of the multi-MSI support */ if (i_ddi_intr_get_current_nintrs(irqptr->airq_dip) == 1) { (void) pci_msi_unconfigure(irqptr->airq_dip, type, irqptr->airq_ioapicindex); (void) pci_msi_disable_mode(irqptr->airq_dip, type, irqptr->airq_ioapicindex); } } if (max_ipl == PSM_INVALID_IPL) { ASSERT(irqheadptr == irqptr); bind_cpu = irqptr->airq_temp_cpu; if (((uchar_t)bind_cpu != IRQ_UNBOUND) && ((uchar_t)bind_cpu != IRQ_UNINIT)) { ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc); if (bind_cpu & IRQ_USER_BOUND) { /* If hardbound, temp_cpu == cpu */ bind_cpu &= ~IRQ_USER_BOUND; apic_cpus[bind_cpu].aci_bound--; } else apic_cpus[bind_cpu].aci_temp_bound--; } lock_clear(&apic_ioapic_lock); intr_restore(iflag); irqptr->airq_temp_cpu = IRQ_UNINIT; irqptr->airq_mps_intr_index = FREE_INDEX; apic_free_vector(irqptr->airq_vector); return (PSM_SUCCESS); } lock_clear(&apic_ioapic_lock); intr_restore(iflag); mutex_enter(&airq_mutex); if ((irqptr == apic_irq_table[irqindex])) { apic_irq_t *oldirqptr; /* Move valid irq entry to the head */ irqheadptr = oldirqptr = irqptr; irqptr = irqptr->airq_next; ASSERT(irqptr); while (irqptr) { if (irqptr->airq_mps_intr_index != FREE_INDEX) break; oldirqptr = irqptr; irqptr = irqptr->airq_next; } /* remove all invalid ones from the beginning */ apic_irq_table[irqindex] = irqptr; /* * and link them back after the head. The invalid ones * begin with irqheadptr and end at oldirqptr */ oldirqptr->airq_next = irqptr->airq_next; irqptr->airq_next = irqheadptr; } mutex_exit(&airq_mutex); irqptr->airq_temp_cpu = IRQ_UNINIT; irqptr->airq_mps_intr_index = FREE_INDEX; return (PSM_SUCCESS); } /* * Return HW interrupt number corresponding to the given IPL */ /*ARGSUSED*/ static int apic_softlvl_to_irq(int ipl) { /* * Do not use apic to trigger soft interrupt. * It will cause the system to hang when 2 hardware interrupts * at the same priority with the softint are already accepted * by the apic. Cause the AV_PENDING bit will not be cleared * until one of the hardware interrupt is eoi'ed. If we need * to send an ipi at this time, we will end up looping forever * to wait for the AV_PENDING bit to clear. */ return (PSM_SV_SOFTWARE); } static int apic_post_cpu_start() { int i, cpun; apic_irq_t *irq_ptr; apic_init_intr(); /* * since some systems don't enable the internal cache on the non-boot * cpus, so we have to enable them here */ setcr0(getcr0() & ~(0x60000000)); while (get_apic_cmd1() & AV_PENDING) apic_ret(); cpun = psm_get_cpu_id(); apic_cpus[cpun].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE; for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { irq_ptr = apic_irq_table[i]; if ((irq_ptr == NULL) || ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) != cpun)) continue; while (irq_ptr) { if (irq_ptr->airq_temp_cpu != IRQ_UNINIT) (void) apic_rebind(irq_ptr, cpun, 1, IMMEDIATE); irq_ptr = irq_ptr->airq_next; } } return (PSM_SUCCESS); } processorid_t apic_get_next_processorid(processorid_t cpu_id) { int i; if (cpu_id == -1) return ((processorid_t)0); for (i = cpu_id + 1; i < NCPU; i++) { if (apic_cpumask & (1 << i)) return (i); } return ((processorid_t)-1); } /* * type == -1 indicates it is an internal request. Do not change * resv_vector for these requests */ static int apic_get_ipivect(int ipl, int type) { uchar_t vector; int irq; if (irq = apic_allocate_irq(APIC_VECTOR(ipl))) { if (vector = apic_allocate_vector(ipl, irq, 1)) { apic_irq_table[irq]->airq_mps_intr_index = RESERVE_INDEX; apic_irq_table[irq]->airq_vector = vector; if (type != -1) { apic_resv_vector[ipl] = vector; } return (irq); } } apic_error |= APIC_ERR_GET_IPIVECT_FAIL; return (-1); /* shouldn't happen */ } static int apic_getclkirq(int ipl) { int irq; if ((irq = apic_get_ipivect(ipl, -1)) == -1) return (-1); /* * Note the vector in apic_clkvect for per clock handling. */ apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT; APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n", apic_clkvect)); return (irq); } /* * Return the number of APIC clock ticks elapsed for 8245 to decrement * (APIC_TIME_COUNT + pit_ticks_adj) ticks. */ static uint_t apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj) { uint8_t pit_tick_lo; uint16_t pit_tick, target_pit_tick; uint32_t start_apic_tick, end_apic_tick; int iflag; addr += APIC_CURR_COUNT; iflag = intr_clear(); do { pit_tick_lo = inb(PITCTR0_PORT); pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; } while (pit_tick < APIC_TIME_MIN || pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX); /* * Wait for the 8254 to decrement by 5 ticks to ensure * we didn't start in the middle of a tick. * Compare with 0x10 for the wrap around case. */ target_pit_tick = pit_tick - 5; do { pit_tick_lo = inb(PITCTR0_PORT); pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); start_apic_tick = *addr; /* * Wait for the 8254 to decrement by * (APIC_TIME_COUNT + pit_ticks_adj) ticks */ target_pit_tick = pit_tick - APIC_TIME_COUNT; do { pit_tick_lo = inb(PITCTR0_PORT); pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); end_apic_tick = *addr; *pit_ticks_adj = target_pit_tick - pit_tick; intr_restore(iflag); return (start_apic_tick - end_apic_tick); } /* * Initialise the APIC timer on the local APIC of CPU 0 to the desired * frequency. Note at this stage in the boot sequence, the boot processor * is the only active processor. * hertz value of 0 indicates a one-shot mode request. In this case * the function returns the resolution (in nanoseconds) for the hardware * timer interrupt. If one-shot mode capability is not available, * the return value will be 0. apic_enable_oneshot is a global switch * for disabling the functionality. * A non-zero positive value for hertz indicates a periodic mode request. * In this case the hardware will be programmed to generate clock interrupts * at hertz frequency and returns the resolution of interrupts in * nanosecond. */ static int apic_clkinit(int hertz) { uint_t apic_ticks = 0; uint_t pit_time; int ret; uint16_t pit_ticks_adj; static int firsttime = 1; if (firsttime) { /* first time calibrate */ apicadr[APIC_DIVIDE_REG] = 0x0; apicadr[APIC_INIT_COUNT] = APIC_MAXVAL; /* set periodic interrupt based on CLKIN */ apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT) | AV_TIME; tenmicrosec(); apic_ticks = apic_calibrate(apicadr, &pit_ticks_adj); apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT) | AV_MASK; /* * pit time is the amount of real time (in nanoseconds ) it took * the 8254 to decrement (APIC_TIME_COUNT + pit_ticks_adj) ticks */ pit_time = ((longlong_t)(APIC_TIME_COUNT + pit_ticks_adj) * NANOSEC) / PIT_HZ; /* * Determine the number of nanoseconds per APIC clock tick * and then determine how many APIC ticks to interrupt at the * desired frequency */ apic_nsec_per_tick = pit_time / apic_ticks; if (apic_nsec_per_tick == 0) apic_nsec_per_tick = 1; /* the interval timer initial count is 32 bit max */ apic_nsec_max = (hrtime_t)apic_nsec_per_tick * APIC_MAXVAL; firsttime = 0; } if (hertz != 0) { /* periodic */ apic_nsec_per_intr = NANOSEC / hertz; apic_hertz_count = (longlong_t)apic_nsec_per_intr / apic_nsec_per_tick; apic_sample_factor_redistribution = hertz + 1; } apic_int_busy_mark = (apic_int_busy_mark * apic_sample_factor_redistribution) / 100; apic_int_free_mark = (apic_int_free_mark * apic_sample_factor_redistribution) / 100; apic_diff_for_redistribution = (apic_diff_for_redistribution * apic_sample_factor_redistribution) / 100; if (hertz == 0) { /* requested one_shot */ if (!apic_oneshot_enable) return (0); apic_oneshot = 1; ret = (int)apic_nsec_per_tick; } else { /* program the local APIC to interrupt at the given frequency */ apicadr[APIC_INIT_COUNT] = apic_hertz_count; apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT) | AV_TIME; apic_oneshot = 0; ret = NANOSEC / hertz; } return (ret); } /* * apic_preshutdown: * Called early in shutdown whilst we can still access filesystems to do * things like loading modules which will be required to complete shutdown * after filesystems are all unmounted. */ static void apic_preshutdown(int cmd, int fcn) { APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n", cmd, fcn, apic_poweroff_method, apic_enable_acpi)); if ((cmd != A_SHUTDOWN) || (fcn != AD_POWEROFF)) { return; } } static void apic_shutdown(int cmd, int fcn) { int iflag, restarts, attempts; int i, j; volatile int32_t *ioapic; uchar_t byte; /* Send NMI to all CPUs except self to do per processor shutdown */ iflag = intr_clear(); while (get_apic_cmd1() & AV_PENDING) apic_ret(); apic_shutdown_processors = 1; apicadr[APIC_INT_CMD1] = AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF; /* restore cmos shutdown byte before reboot */ if (apic_cmos_ssb_set) { outb(CMOS_ADDR, SSB); outb(CMOS_DATA, 0); } /* Disable the I/O APIC redirection entries */ for (j = 0; j < apic_io_max; j++) { int intin_max; ioapic = apicioadr[j]; ioapic[APIC_IO_REG] = APIC_VERS_CMD; /* Bits 23-16 define the maximum redirection entries */ intin_max = (ioapic[APIC_IO_DATA] >> 16) & 0xff; for (i = 0; i < intin_max; i++) { ioapic[APIC_IO_REG] = APIC_RDT_CMD + 2 * i; ioapic[APIC_IO_DATA] = AV_MASK; } } /* disable apic mode if imcr present */ if (apic_imcrp) { outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC); } apic_disable_local_apic(); intr_restore(iflag); if ((cmd != A_SHUTDOWN) || (fcn != AD_POWEROFF)) { return; } switch (apic_poweroff_method) { case APIC_POWEROFF_VIA_RTC: /* select the extended NVRAM bank in the RTC */ outb(CMOS_ADDR, RTC_REGA); byte = inb(CMOS_DATA); outb(CMOS_DATA, (byte | EXT_BANK)); outb(CMOS_ADDR, PFR_REG); /* for Predator must toggle the PAB bit */ byte = inb(CMOS_DATA); /* * clear power active bar, wakeup alarm and * kickstart */ byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG); outb(CMOS_DATA, byte); /* delay before next write */ drv_usecwait(1000); /* for S40 the following would suffice */ byte = inb(CMOS_DATA); /* power active bar control bit */ byte |= PAB_CBIT; outb(CMOS_DATA, byte); break; case APIC_POWEROFF_VIA_ASPEN_BMC: restarts = 0; restart_aspen_bmc: if (++restarts == 3) break; attempts = 0; do { byte = inb(MISMIC_FLAG_REGISTER); byte &= MISMIC_BUSY_MASK; if (byte != 0) { drv_usecwait(1000); if (attempts >= 3) goto restart_aspen_bmc; ++attempts; } } while (byte != 0); outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS); byte = inb(MISMIC_FLAG_REGISTER); byte |= 0x1; outb(MISMIC_FLAG_REGISTER, byte); i = 0; for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0])); i++) { attempts = 0; do { byte = inb(MISMIC_FLAG_REGISTER); byte &= MISMIC_BUSY_MASK; if (byte != 0) { drv_usecwait(1000); if (attempts >= 3) goto restart_aspen_bmc; ++attempts; } } while (byte != 0); outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl); outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data); byte = inb(MISMIC_FLAG_REGISTER); byte |= 0x1; outb(MISMIC_FLAG_REGISTER, byte); } break; case APIC_POWEROFF_VIA_SITKA_BMC: restarts = 0; restart_sitka_bmc: if (++restarts == 3) break; attempts = 0; do { byte = inb(SMS_STATUS_REGISTER); byte &= SMS_STATE_MASK; if ((byte == SMS_READ_STATE) || (byte == SMS_WRITE_STATE)) { drv_usecwait(1000); if (attempts >= 3) goto restart_sitka_bmc; ++attempts; } } while ((byte == SMS_READ_STATE) || (byte == SMS_WRITE_STATE)); outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS); i = 0; for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0])); i++) { attempts = 0; do { byte = inb(SMS_STATUS_REGISTER); byte &= SMS_IBF_MASK; if (byte != 0) { drv_usecwait(1000); if (attempts >= 3) goto restart_sitka_bmc; ++attempts; } } while (byte != 0); outb(sitka_bmc[i].port, sitka_bmc[i].data); } break; case APIC_POWEROFF_NONE: /* If no APIC direct method, we will try using ACPI */ if (apic_enable_acpi) { if (acpi_poweroff() == 1) return; } else return; break; } /* * Wait a limited time here for power to go off. * If the power does not go off, then there was a * problem and we should continue to the halt which * prints a message for the user to press a key to * reboot. */ drv_usecwait(7000000); /* wait seven seconds */ } /* * Try and disable all interrupts. We just assign interrupts to other * processors based on policy. If any were bound by user request, we * let them continue and return failure. We do not bother to check * for cache affinity while rebinding. */ static int apic_disable_intr(processorid_t cpun) { int bind_cpu = 0, i, hardbound = 0, iflag; apic_irq_t *irq_ptr; if (cpun == 0) return (PSM_FAILURE); iflag = intr_clear(); lock_set(&apic_ioapic_lock); apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE; lock_clear(&apic_ioapic_lock); intr_restore(iflag); apic_cpus[cpun].aci_curipl = 0; i = apic_min_device_irq; for (; i <= apic_max_device_irq; i++) { /* * If there are bound interrupts on this cpu, then * rebind them to other processors. */ if ((irq_ptr = apic_irq_table[i]) != NULL) { ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) || (irq_ptr->airq_temp_cpu == IRQ_UNINIT) || ((irq_ptr->airq_temp_cpu & ~IRQ_USER_BOUND) < apic_nproc)); if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) { hardbound = 1; continue; } if (irq_ptr->airq_temp_cpu == cpun) { do { apic_next_bind_cpu += 2; bind_cpu = apic_next_bind_cpu / 2; if (bind_cpu >= apic_nproc) { apic_next_bind_cpu = 1; bind_cpu = 0; } } while (apic_rebind_all(irq_ptr, bind_cpu, 1)); } } } if (hardbound) { cmn_err(CE_WARN, "Could not disable interrupts on %d" "due to user bound interrupts", cpun); return (PSM_FAILURE); } else return (PSM_SUCCESS); } static void apic_enable_intr(processorid_t cpun) { int i, iflag; apic_irq_t *irq_ptr; iflag = intr_clear(); lock_set(&apic_ioapic_lock); apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE; lock_clear(&apic_ioapic_lock); intr_restore(iflag); i = apic_min_device_irq; for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { if ((irq_ptr = apic_irq_table[i]) != NULL) { if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) { (void) apic_rebind_all(irq_ptr, irq_ptr->airq_cpu, 1); } } } } /* * apic_introp_xlate() replaces apic_translate_irq() and is * called only from apic_intr_ops(). With the new ADII framework, * the priority can no longer be retrived through i_ddi_get_intrspec(). * It has to be passed in from the caller. */ int apic_introp_xlate(dev_info_t *dip, struct intrspec *ispec, int type) { char dev_type[16]; int dev_len, pci_irq, newirq, bustype, devid, busid, i; int irqno = ispec->intrspec_vec; ddi_acc_handle_t cfg_handle; uchar_t ipin; struct apic_io_intr *intrp; iflag_t intr_flag; APIC_HEADER *hp; MADT_INTERRUPT_OVERRIDE *isop; apic_irq_t *airqp; DDI_INTR_IMPLDBG((CE_CONT, "apic_introp_xlate: dip=0x%p name=%s " "type=%d irqno=0x%x\n", (void *)dip, ddi_get_name(dip), type, irqno)); if (DDI_INTR_IS_MSI_OR_MSIX(type)) { if ((airqp = apic_find_irq(dip, ispec, type)) != NULL) return (apic_vector_to_irq[airqp->airq_vector]); return (apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type)); } bustype = 0; /* check if we have already translated this irq */ mutex_enter(&airq_mutex); newirq = apic_min_device_irq; for (; newirq <= apic_max_device_irq; newirq++) { airqp = apic_irq_table[newirq]; while (airqp) { if ((airqp->airq_dip == dip) && (airqp->airq_origirq == irqno) && (airqp->airq_mps_intr_index != FREE_INDEX)) { mutex_exit(&airq_mutex); return (VIRTIRQ(newirq, airqp->airq_share_id)); } airqp = airqp->airq_next; } } mutex_exit(&airq_mutex); if (apic_defconf) goto defconf; if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) goto nonpci; dev_len = sizeof (dev_type); if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip), DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type, &dev_len) != DDI_PROP_SUCCESS) { goto nonpci; } if (strcmp(dev_type, "pci") == 0) { /* pci device */ if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0) goto nonpci; if (busid == 0 && apic_pci_bus_total == 1) busid = (int)apic_single_pci_busid; if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS) goto nonpci; ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA; pci_config_teardown(&cfg_handle); if (apic_enable_acpi && !apic_use_acpi_madt_only) { if (apic_acpi_translate_pci_irq(dip, busid, devid, ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS) goto nonpci; intr_flag.bustype = BUS_PCI; if ((newirq = apic_setup_irq_table(dip, pci_irq, NULL, ispec, &intr_flag, type)) == -1) goto nonpci; return (newirq); } else { pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3); if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) { if ((pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp)) == -1) goto nonpci; } if ((newirq = apic_setup_irq_table(dip, pci_irq, intrp, ispec, NULL, type)) == -1) goto nonpci; return (newirq); } } else if (strcmp(dev_type, "isa") == 0) bustype = BUS_ISA; else if (strcmp(dev_type, "eisa") == 0) bustype = BUS_EISA; nonpci: if (apic_enable_acpi && !apic_use_acpi_madt_only) { /* search iso entries first */ if (acpi_iso_cnt != 0) { hp = (APIC_HEADER *)acpi_isop; i = 0; while (i < acpi_iso_cnt) { if (hp->Type == APIC_XRUPT_OVERRIDE) { isop = (MADT_INTERRUPT_OVERRIDE *)hp; if (isop->Bus == 0 && isop->Source == irqno) { newirq = isop->Interrupt; intr_flag.intr_po = isop->Polarity; intr_flag.intr_el = isop->TriggerMode; intr_flag.bustype = BUS_ISA; return (apic_setup_irq_table( dip, newirq, NULL, ispec, &intr_flag, type)); } i++; } hp = (APIC_HEADER *)(((char *)hp) + hp->Length); } } intr_flag.intr_po = INTR_PO_ACTIVE_HIGH; intr_flag.intr_el = INTR_EL_EDGE; intr_flag.bustype = BUS_ISA; return (apic_setup_irq_table(dip, irqno, NULL, ispec, &intr_flag, type)); } else { if (bustype == 0) bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA; for (i = 0; i < 2; i++) { if (((busid = apic_find_bus_id(bustype)) != -1) && ((intrp = apic_find_io_intr_w_busid(irqno, busid)) != NULL)) { if ((newirq = apic_setup_irq_table(dip, irqno, intrp, ispec, NULL, type)) != -1) { return (newirq); } goto defconf; } bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA; } } /* MPS default configuration */ defconf: newirq = apic_setup_irq_table(dip, irqno, NULL, ispec, NULL, type); if (newirq == -1) return (newirq); ASSERT(IRQINDEX(newirq) == irqno); ASSERT(apic_irq_table[irqno]); return (newirq); } /* * On machines with PCI-PCI bridges, a device behind a PCI-PCI bridge * needs special handling. We may need to chase up the device tree, * using the PCI-PCI Bridge specification's "rotating IPIN assumptions", * to find the IPIN at the root bus that relates to the IPIN on the * subsidiary bus (for ACPI or MP). We may, however, have an entry * in the MP table or the ACPI namespace for this device itself. * We handle both cases in the search below. */ /* this is the non-acpi version */ static int apic_handle_pci_pci_bridge(dev_info_t *idip, int child_devno, int child_ipin, struct apic_io_intr **intrp) { dev_info_t *dipp, *dip; int pci_irq; ddi_acc_handle_t cfg_handle; int bridge_devno, bridge_bus; int ipin; dip = idip; /*CONSTCOND*/ while (1) { if ((dipp = ddi_get_parent(dip)) == (dev_info_t *)NULL) return (-1); if ((pci_config_setup(dipp, &cfg_handle) == DDI_SUCCESS) && (pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) == PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle, PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)) { pci_config_teardown(&cfg_handle); if (acpica_get_bdf(dipp, &bridge_bus, &bridge_devno, NULL) != 0) return (-1); /* * This is the rotating scheme that Compaq is using * and documented in the pci to pci spec. Also, if * the pci to pci bridge is behind another pci to * pci bridge, then it need to keep transversing * up until an interrupt entry is found or reach * the top of the tree */ ipin = (child_devno + child_ipin) % PCI_INTD; if (bridge_bus == 0 && apic_pci_bus_total == 1) bridge_bus = (int)apic_single_pci_busid; pci_irq = ((bridge_devno & 0x1f) << 2) | (ipin & 0x3); if ((*intrp = apic_find_io_intr_w_busid(pci_irq, bridge_bus)) != NULL) { return (pci_irq); } dip = dipp; child_devno = bridge_devno; child_ipin = ipin; } else return (-1); } /*LINTED: function will not fall off the bottom */ } static uchar_t acpi_find_ioapic(int irq) { int i; for (i = 0; i < apic_io_max; i++) { if (irq >= apic_io_vectbase[i] && irq <= apic_io_vectend[i]) return (i); } return (0xFF); /* shouldn't happen */ } /* * See if two irqs are compatible for sharing a vector. * Currently we only support sharing of PCI devices. */ static int acpi_intr_compatible(iflag_t iflag1, iflag_t iflag2) { uint_t level1, po1; uint_t level2, po2; /* Assume active high by default */ po1 = 0; po2 = 0; if (iflag1.bustype != iflag2.bustype || iflag1.bustype != BUS_PCI) return (0); if (iflag1.intr_el == INTR_EL_CONFORM) level1 = AV_LEVEL; else level1 = (iflag1.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; if (level1 && ((iflag1.intr_po == INTR_PO_ACTIVE_LOW) || (iflag1.intr_po == INTR_PO_CONFORM))) po1 = AV_ACTIVE_LOW; if (iflag2.intr_el == INTR_EL_CONFORM) level2 = AV_LEVEL; else level2 = (iflag2.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; if (level2 && ((iflag2.intr_po == INTR_PO_ACTIVE_LOW) || (iflag2.intr_po == INTR_PO_CONFORM))) po2 = AV_ACTIVE_LOW; if ((level1 == level2) && (po1 == po2)) return (1); return (0); } /* * Attempt to share vector with someone else */ static int apic_share_vector(int irqno, iflag_t *intr_flagp, short intr_index, int ipl, uchar_t ioapicindex, uchar_t ipin, apic_irq_t **irqptrp) { #ifdef DEBUG apic_irq_t *tmpirqp = NULL; #endif /* DEBUG */ apic_irq_t *irqptr, dummyirq; int newirq, chosen_irq = -1, share = 127; int lowest, highest, i; uchar_t share_id; DDI_INTR_IMPLDBG((CE_CONT, "apic_share_vector: irqno=0x%x " "intr_index=0x%x ipl=0x%x\n", irqno, intr_index, ipl)); highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; lowest = apic_ipltopri[ipl-1] + APIC_VECTOR_PER_IPL; if (highest < lowest) /* Both ipl and ipl-1 map to same pri */ lowest -= APIC_VECTOR_PER_IPL; dummyirq.airq_mps_intr_index = intr_index; dummyirq.airq_ioapicindex = ioapicindex; dummyirq.airq_intin_no = ipin; if (intr_flagp) dummyirq.airq_iflag = *intr_flagp; apic_record_rdt_entry(&dummyirq, irqno); for (i = lowest; i <= highest; i++) { newirq = apic_vector_to_irq[i]; if (newirq == APIC_RESV_IRQ) continue; irqptr = apic_irq_table[newirq]; if ((dummyirq.airq_rdt_entry & 0xFF00) != (irqptr->airq_rdt_entry & 0xFF00)) /* not compatible */ continue; if (irqptr->airq_share < share) { share = irqptr->airq_share; chosen_irq = newirq; } } if (chosen_irq != -1) { /* * Assign a share id which is free or which is larger * than the largest one. */ share_id = 1; mutex_enter(&airq_mutex); irqptr = apic_irq_table[chosen_irq]; while (irqptr) { if (irqptr->airq_mps_intr_index == FREE_INDEX) { share_id = irqptr->airq_share_id; break; } if (share_id <= irqptr->airq_share_id) share_id = irqptr->airq_share_id + 1; #ifdef DEBUG tmpirqp = irqptr; #endif /* DEBUG */ irqptr = irqptr->airq_next; } if (!irqptr) { irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); irqptr->airq_temp_cpu = IRQ_UNINIT; irqptr->airq_next = apic_irq_table[chosen_irq]->airq_next; apic_irq_table[chosen_irq]->airq_next = irqptr; #ifdef DEBUG tmpirqp = apic_irq_table[chosen_irq]; #endif /* DEBUG */ } irqptr->airq_mps_intr_index = intr_index; irqptr->airq_ioapicindex = ioapicindex; irqptr->airq_intin_no = ipin; if (intr_flagp) irqptr->airq_iflag = *intr_flagp; irqptr->airq_vector = apic_irq_table[chosen_irq]->airq_vector; irqptr->airq_share_id = share_id; apic_record_rdt_entry(irqptr, irqno); *irqptrp = irqptr; #ifdef DEBUG /* shuffle the pointers to test apic_delspl path */ if (tmpirqp) { tmpirqp->airq_next = irqptr->airq_next; irqptr->airq_next = apic_irq_table[chosen_irq]; apic_irq_table[chosen_irq] = irqptr; } #endif /* DEBUG */ mutex_exit(&airq_mutex); return (VIRTIRQ(chosen_irq, share_id)); } return (-1); } /* * */ static int apic_setup_irq_table(dev_info_t *dip, int irqno, struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *intr_flagp, int type) { int origirq = ispec->intrspec_vec; uchar_t ipl = ispec->intrspec_pri; int newirq, intr_index; uchar_t ipin, ioapic, ioapicindex, vector; apic_irq_t *irqptr; major_t major; dev_info_t *sdip; DDI_INTR_IMPLDBG((CE_CONT, "apic_setup_irq_table: dip=0x%p type=%d " "irqno=0x%x origirq=0x%x\n", (void *)dip, type, irqno, origirq)); ASSERT(ispec != NULL); major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0; if (DDI_INTR_IS_MSI_OR_MSIX(type)) { /* MSI/X doesn't need to setup ioapic stuffs */ ioapicindex = 0xff; ioapic = 0xff; ipin = (uchar_t)0xff; intr_index = (type == DDI_INTR_TYPE_MSI) ? MSI_INDEX : MSIX_INDEX; mutex_enter(&airq_mutex); if ((irqno = apic_allocate_irq(APIC_FIRST_FREE_IRQ)) == -1) { mutex_exit(&airq_mutex); /* need an irq for MSI/X to index into autovect[] */ cmn_err(CE_WARN, "No interrupt irq: %s instance %d", ddi_get_name(dip), ddi_get_instance(dip)); return (-1); } mutex_exit(&airq_mutex); } else if (intrp != NULL) { intr_index = (int)(intrp - apic_io_intrp); ioapic = intrp->intr_destid; ipin = intrp->intr_destintin; /* Find ioapicindex. If destid was ALL, we will exit with 0. */ for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--) if (apic_io_id[ioapicindex] == ioapic) break; ASSERT((ioapic == apic_io_id[ioapicindex]) || (ioapic == INTR_ALL_APIC)); /* check whether this intin# has been used by another irqno */ if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1) { return (newirq); } } else if (intr_flagp != NULL) { /* ACPI case */ intr_index = ACPI_INDEX; ioapicindex = acpi_find_ioapic(irqno); ASSERT(ioapicindex != 0xFF); ioapic = apic_io_id[ioapicindex]; ipin = irqno - apic_io_vectbase[ioapicindex]; if (apic_irq_table[irqno] && apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) { ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin && apic_irq_table[irqno]->airq_ioapicindex == ioapicindex); return (irqno); } } else { /* default configuration */ ioapicindex = 0; ioapic = apic_io_id[ioapicindex]; ipin = (uchar_t)irqno; intr_index = DEFAULT_INDEX; } if (ispec == NULL) { APIC_VERBOSE_IOAPIC((CE_WARN, "No intrspec for irqno = %x\n", irqno)); } else if ((vector = apic_allocate_vector(ipl, irqno, 0)) == 0) { if ((newirq = apic_share_vector(irqno, intr_flagp, intr_index, ipl, ioapicindex, ipin, &irqptr)) != -1) { irqptr->airq_ipl = ipl; irqptr->airq_origirq = (uchar_t)origirq; irqptr->airq_dip = dip; irqptr->airq_major = major; sdip = apic_irq_table[IRQINDEX(newirq)]->airq_dip; /* This is OK to do really */ if (sdip == NULL) { cmn_err(CE_WARN, "Sharing vectors: %s" " instance %d and SCI", ddi_get_name(dip), ddi_get_instance(dip)); } else { cmn_err(CE_WARN, "Sharing vectors: %s" " instance %d and %s instance %d", ddi_get_name(sdip), ddi_get_instance(sdip), ddi_get_name(dip), ddi_get_instance(dip)); } return (newirq); } /* try high priority allocation now that share has failed */ if ((vector = apic_allocate_vector(ipl, irqno, 1)) == 0) { cmn_err(CE_WARN, "No interrupt vector: %s instance %d", ddi_get_name(dip), ddi_get_instance(dip)); return (-1); } } mutex_enter(&airq_mutex); if (apic_irq_table[irqno] == NULL) { irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); irqptr->airq_temp_cpu = IRQ_UNINIT; apic_irq_table[irqno] = irqptr; } else { irqptr = apic_irq_table[irqno]; if (irqptr->airq_mps_intr_index != FREE_INDEX) { /* * The slot is used by another irqno, so allocate * a free irqno for this interrupt */ newirq = apic_allocate_irq(APIC_FIRST_FREE_IRQ); if (newirq == -1) { mutex_exit(&airq_mutex); return (-1); } irqno = newirq; irqptr = apic_irq_table[irqno]; if (irqptr == NULL) { irqptr = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP); irqptr->airq_temp_cpu = IRQ_UNINIT; apic_irq_table[irqno] = irqptr; } apic_modify_vector(vector, newirq); } } apic_max_device_irq = max(irqno, apic_max_device_irq); apic_min_device_irq = min(irqno, apic_min_device_irq); mutex_exit(&airq_mutex); irqptr->airq_ioapicindex = ioapicindex; irqptr->airq_intin_no = ipin; irqptr->airq_ipl = ipl; irqptr->airq_vector = vector; irqptr->airq_origirq = (uchar_t)origirq; irqptr->airq_share_id = 0; irqptr->airq_mps_intr_index = (short)intr_index; irqptr->airq_dip = dip; irqptr->airq_major = major; irqptr->airq_cpu = apic_bind_intr(dip, irqno, ioapic, ipin); if (intr_flagp) irqptr->airq_iflag = *intr_flagp; if (!DDI_INTR_IS_MSI_OR_MSIX(type)) { /* setup I/O APIC entry for non-MSI/X interrupts */ apic_record_rdt_entry(irqptr, irqno); } return (irqno); } /* * return the cpu to which this intr should be bound. * Check properties or any other mechanism to see if user wants it * bound to a specific CPU. If so, return the cpu id with high bit set. * If not, use the policy to choose a cpu and return the id. */ uchar_t apic_bind_intr(dev_info_t *dip, int irq, uchar_t ioapicid, uchar_t intin) { int instance, instno, prop_len, bind_cpu, count; uint_t i, rc; uchar_t cpu; major_t major; char *name, *drv_name, *prop_val, *cptr; char prop_name[32]; if (apic_intr_policy == INTR_LOWEST_PRIORITY) return (IRQ_UNBOUND); drv_name = NULL; rc = DDI_PROP_NOT_FOUND; major = (major_t)-1; if (dip != NULL) { name = ddi_get_name(dip); major = ddi_name_to_major(name); drv_name = ddi_major_to_name(major); instance = ddi_get_instance(dip); if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) { i = apic_min_device_irq; for (; i <= apic_max_device_irq; i++) { if ((i == irq) || (apic_irq_table[i] == NULL) || (apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX)) continue; if ((apic_irq_table[i]->airq_major == major) && (!(apic_irq_table[i]->airq_cpu & IRQ_USER_BOUND))) { cpu = apic_irq_table[i]->airq_cpu; cmn_err(CE_CONT, "!pcplusmp: %s (%s) instance #%d " "vector 0x%x ioapic 0x%x " "intin 0x%x is bound to cpu %d\n", name, drv_name, instance, irq, ioapicid, intin, cpu); return (cpu); } } } /* * search for "drvname"_intpt_bind_cpus property first, the * syntax of the property should be "a[,b,c,...]" where * instance 0 binds to cpu a, instance 1 binds to cpu b, * instance 3 binds to cpu c... * ddi_getlongprop() will search /option first, then / * if "drvname"_intpt_bind_cpus doesn't exist, then find * intpt_bind_cpus property. The syntax is the same, and * it applies to all the devices if its "drvname" specific * property doesn't exist */ (void) strcpy(prop_name, drv_name); (void) strcat(prop_name, "_intpt_bind_cpus"); rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, prop_name, (caddr_t)&prop_val, &prop_len); if (rc != DDI_PROP_SUCCESS) { rc = ddi_getlongprop(DDI_DEV_T_ANY, dip, 0, "intpt_bind_cpus", (caddr_t)&prop_val, &prop_len); } } if (rc == DDI_PROP_SUCCESS) { for (i = count = 0; i < (prop_len - 1); i++) if (prop_val[i] == ',') count++; if (prop_val[i-1] != ',') count++; /* * if somehow the binding instances defined in the * property are not enough for this instno., then * reuse the pattern for the next instance until * it reaches the requested instno */ instno = instance % count; i = 0; cptr = prop_val; while (i < instno) if (*cptr++ == ',') i++; bind_cpu = stoi(&cptr); kmem_free(prop_val, prop_len); /* if specific cpu is bogus, then default to cpu 0 */ if (bind_cpu >= apic_nproc) { cmn_err(CE_WARN, "pcplusmp: %s=%s: CPU %d not present", prop_name, prop_val, bind_cpu); bind_cpu = 0; } else { /* indicate that we are bound at user request */ bind_cpu |= IRQ_USER_BOUND; } /* * no need to check apic_cpus[].aci_status, if specific cpu is * not up, then post_cpu_start will handle it. */ } else { /* * We change bind_cpu only for every two calls * as most drivers still do 2 add_intrs for every * interrupt */ bind_cpu = (apic_next_bind_cpu++) / 2; if (bind_cpu >= apic_nproc) { apic_next_bind_cpu = 1; bind_cpu = 0; } } if (drv_name != NULL) cmn_err(CE_CONT, "!pcplusmp: %s (%s) instance %d " "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", name, drv_name, instance, irq, ioapicid, intin, bind_cpu & ~IRQ_USER_BOUND); else cmn_err(CE_CONT, "!pcplusmp: " "vector 0x%x ioapic 0x%x intin 0x%x is bound to cpu %d\n", irq, ioapicid, intin, bind_cpu & ~IRQ_USER_BOUND); return ((uchar_t)bind_cpu); } static struct apic_io_intr * apic_find_io_intr_w_busid(int irqno, int busid) { struct apic_io_intr *intrp; /* * It can have more than 1 entry with same source bus IRQ, * but unique with the source bus id */ intrp = apic_io_intrp; if (intrp != NULL) { while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { if (intrp->intr_irq == irqno && intrp->intr_busid == busid && intrp->intr_type == IO_INTR_INT) return (intrp); intrp++; } } APIC_VERBOSE_IOAPIC((CE_NOTE, "Did not find io intr for irqno:" "busid %x:%x\n", irqno, busid)); return ((struct apic_io_intr *)NULL); } struct mps_bus_info { char *bus_name; int bus_id; } bus_info_array[] = { "ISA ", BUS_ISA, "PCI ", BUS_PCI, "EISA ", BUS_EISA, "XPRESS", BUS_XPRESS, "PCMCIA", BUS_PCMCIA, "VL ", BUS_VL, "CBUS ", BUS_CBUS, "CBUSII", BUS_CBUSII, "FUTURE", BUS_FUTURE, "INTERN", BUS_INTERN, "MBI ", BUS_MBI, "MBII ", BUS_MBII, "MPI ", BUS_MPI, "MPSA ", BUS_MPSA, "NUBUS ", BUS_NUBUS, "TC ", BUS_TC, "VME ", BUS_VME }; static int apic_find_bus_type(char *bus) { int i = 0; for (; i < sizeof (bus_info_array)/sizeof (struct mps_bus_info); i++) if (strncmp(bus, bus_info_array[i].bus_name, strlen(bus_info_array[i].bus_name)) == 0) return (bus_info_array[i].bus_id); APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus type for bus %s", bus)); return (0); } static int apic_find_bus(int busid) { struct apic_bus *busp; busp = apic_busp; while (busp->bus_entry == APIC_BUS_ENTRY) { if (busp->bus_id == busid) return (apic_find_bus_type((char *)&busp->bus_str1)); busp++; } APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus for bus id %x", busid)); return (0); } static int apic_find_bus_id(int bustype) { struct apic_bus *busp; busp = apic_busp; while (busp->bus_entry == APIC_BUS_ENTRY) { if (apic_find_bus_type((char *)&busp->bus_str1) == bustype) return (busp->bus_id); busp++; } APIC_VERBOSE_IOAPIC((CE_WARN, "Did not find bus id for bustype %x", bustype)); return (-1); } /* * Check if a particular irq need to be reserved for any io_intr */ static struct apic_io_intr * apic_find_io_intr(int irqno) { struct apic_io_intr *intrp; intrp = apic_io_intrp; if (intrp != NULL) { while (intrp->intr_entry == APIC_IO_INTR_ENTRY) { if (intrp->intr_irq == irqno && intrp->intr_type == IO_INTR_INT) return (intrp); intrp++; } } return ((struct apic_io_intr *)NULL); } /* * Check if the given ioapicindex intin combination has already been assigned * an irq. If so return irqno. Else -1 */ static int apic_find_intin(uchar_t ioapic, uchar_t intin) { apic_irq_t *irqptr; int i; /* find ioapic and intin in the apic_irq_table[] and return the index */ for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) { irqptr = apic_irq_table[i]; while (irqptr) { if ((irqptr->airq_mps_intr_index >= 0) && (irqptr->airq_intin_no == intin) && (irqptr->airq_ioapicindex == ioapic)) { APIC_VERBOSE_IOAPIC((CE_NOTE, "!Found irq " "entry for ioapic:intin %x:%x " "shared interrupts ?", ioapic, intin)); return (i); } irqptr = irqptr->airq_next; } } return (-1); } int apic_allocate_irq(int irq) { int freeirq, i; if ((freeirq = apic_find_free_irq(irq, (APIC_RESV_IRQ - 1))) == -1) if ((freeirq = apic_find_free_irq(APIC_FIRST_FREE_IRQ, (irq - 1))) == -1) { /* * if BIOS really defines every single irq in the mps * table, then don't worry about conflicting with * them, just use any free slot in apic_irq_table */ for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) { if ((apic_irq_table[i] == NULL) || apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) { freeirq = i; break; } } if (freeirq == -1) { /* This shouldn't happen, but just in case */ cmn_err(CE_WARN, "pcplusmp: NO available IRQ"); return (-1); } } if (apic_irq_table[freeirq] == NULL) { apic_irq_table[freeirq] = kmem_zalloc(sizeof (apic_irq_t), KM_NOSLEEP); if (apic_irq_table[freeirq] == NULL) { cmn_err(CE_WARN, "pcplusmp: NO memory to allocate IRQ"); return (-1); } apic_irq_table[freeirq]->airq_mps_intr_index = FREE_INDEX; } return (freeirq); } static int apic_find_free_irq(int start, int end) { int i; for (i = start; i <= end; i++) /* Check if any I/O entry needs this IRQ */ if (apic_find_io_intr(i) == NULL) { /* Then see if it is free */ if ((apic_irq_table[i] == NULL) || (apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX)) { return (i); } } return (-1); } /* * Allocate a free vector for irq at ipl. Takes care of merging of multiple * IPLs into a single APIC level as well as stretching some IPLs onto multiple * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority * requests and allocated only when pri is set. */ static uchar_t apic_allocate_vector(int ipl, int irq, int pri) { int lowest, highest, i; highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK; lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL; if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */ lowest -= APIC_VECTOR_PER_IPL; #ifdef DEBUG if (apic_restrict_vector) /* for testing shared interrupt logic */ highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS; #endif /* DEBUG */ if (pri == 0) highest -= APIC_HI_PRI_VECTS; for (i = lowest; i < highest; i++) { if ((i == T_FASTTRAP) || (i == APIC_SPUR_INTR) || (i == T_SYSCALLINT) || (i == T_DTRACE_PROBE) || (i == T_DTRACE_RET)) continue; if (apic_vector_to_irq[i] == APIC_RESV_IRQ) { apic_vector_to_irq[i] = (uchar_t)irq; return (i); } } return (0); } static void apic_modify_vector(uchar_t vector, int irq) { apic_vector_to_irq[vector] = (uchar_t)irq; } /* * Mark vector as being in the process of being deleted. Interrupts * may still come in on some CPU. The moment an interrupt comes with * the new vector, we know we can free the old one. Called only from * addspl and delspl with interrupts disabled. Because an interrupt * can be shared, but no interrupt from either device may come in, * we also use a timeout mechanism, which we arbitrarily set to * apic_revector_timeout microseconds. */ static void apic_mark_vector(uchar_t oldvector, uchar_t newvector) { int iflag = intr_clear(); lock_set(&apic_revector_lock); if (!apic_oldvec_to_newvec) { apic_oldvec_to_newvec = kmem_zalloc(sizeof (newvector) * APIC_MAX_VECTOR * 2, KM_NOSLEEP); if (!apic_oldvec_to_newvec) { /* * This failure is not catastrophic. * But, the oldvec will never be freed. */ apic_error |= APIC_ERR_MARK_VECTOR_FAIL; lock_clear(&apic_revector_lock); intr_restore(iflag); return; } apic_newvec_to_oldvec = &apic_oldvec_to_newvec[APIC_MAX_VECTOR]; } /* See if we already did this for drivers which do double addintrs */ if (apic_oldvec_to_newvec[oldvector] != newvector) { apic_oldvec_to_newvec[oldvector] = newvector; apic_newvec_to_oldvec[newvector] = oldvector; apic_revector_pending++; } lock_clear(&apic_revector_lock); intr_restore(iflag); (void) timeout(apic_xlate_vector_free_timeout_handler, (void *)(uintptr_t)oldvector, drv_usectohz(apic_revector_timeout)); } /* * xlate_vector is called from intr_enter if revector_pending is set. * It will xlate it if needed and mark the old vector as free. */ static uchar_t apic_xlate_vector(uchar_t vector) { uchar_t newvector, oldvector = 0; lock_set(&apic_revector_lock); /* Do we really need to do this ? */ if (!apic_revector_pending) { lock_clear(&apic_revector_lock); return (vector); } if ((newvector = apic_oldvec_to_newvec[vector]) != 0) oldvector = vector; else { /* * The incoming vector is new . See if a stale entry is * remaining */ if ((oldvector = apic_newvec_to_oldvec[vector]) != 0) newvector = vector; } if (oldvector) { apic_revector_pending--; apic_oldvec_to_newvec[oldvector] = 0; apic_newvec_to_oldvec[newvector] = 0; apic_free_vector(oldvector); lock_clear(&apic_revector_lock); /* There could have been more than one reprogramming! */ return (apic_xlate_vector(newvector)); } lock_clear(&apic_revector_lock); return (vector); } void apic_xlate_vector_free_timeout_handler(void *arg) { int iflag; uchar_t oldvector, newvector; oldvector = (uchar_t)(uintptr_t)arg; iflag = intr_clear(); lock_set(&apic_revector_lock); if ((newvector = apic_oldvec_to_newvec[oldvector]) != 0) { apic_free_vector(oldvector); apic_oldvec_to_newvec[oldvector] = 0; apic_newvec_to_oldvec[newvector] = 0; apic_revector_pending--; } lock_clear(&apic_revector_lock); intr_restore(iflag); } /* Mark vector as not being used by any irq */ static void apic_free_vector(uchar_t vector) { apic_vector_to_irq[vector] = APIC_RESV_IRQ; } /* * compute the polarity, trigger mode and vector for programming into * the I/O apic and record in airq_rdt_entry. */ static void apic_record_rdt_entry(apic_irq_t *irqptr, int irq) { int ioapicindex, bus_type, vector; short intr_index; uint_t level, po, io_po; struct apic_io_intr *iointrp; intr_index = irqptr->airq_mps_intr_index; DDI_INTR_IMPLDBG((CE_CONT, "apic_record_rdt_entry: intr_index=%d " "irq = 0x%x dip = 0x%p vector = 0x%x\n", intr_index, irq, (void *)irqptr->airq_dip, irqptr->airq_vector)); if (intr_index == RESERVE_INDEX) { apic_error |= APIC_ERR_INVALID_INDEX; return; } else if (APIC_IS_MSI_OR_MSIX_INDEX(intr_index)) { return; } vector = irqptr->airq_vector; ioapicindex = irqptr->airq_ioapicindex; /* Assume edge triggered by default */ level = 0; /* Assume active high by default */ po = 0; if (intr_index == DEFAULT_INDEX || intr_index == FREE_INDEX) { ASSERT(irq < 16); if (eisa_level_intr_mask & (1 << irq)) level = AV_LEVEL; if (intr_index == FREE_INDEX && apic_defconf == 0) apic_error |= APIC_ERR_INVALID_INDEX; } else if (intr_index == ACPI_INDEX) { bus_type = irqptr->airq_iflag.bustype; if (irqptr->airq_iflag.intr_el == INTR_EL_CONFORM) { if (bus_type == BUS_PCI) level = AV_LEVEL; } else level = (irqptr->airq_iflag.intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; if (level && ((irqptr->airq_iflag.intr_po == INTR_PO_ACTIVE_LOW) || (irqptr->airq_iflag.intr_po == INTR_PO_CONFORM && bus_type == BUS_PCI))) po = AV_ACTIVE_LOW; } else { iointrp = apic_io_intrp + intr_index; bus_type = apic_find_bus(iointrp->intr_busid); if (iointrp->intr_el == INTR_EL_CONFORM) { if ((irq < 16) && (eisa_level_intr_mask & (1 << irq))) level = AV_LEVEL; else if (bus_type == BUS_PCI) level = AV_LEVEL; } else level = (iointrp->intr_el == INTR_EL_LEVEL) ? AV_LEVEL : 0; if (level && ((iointrp->intr_po == INTR_PO_ACTIVE_LOW) || (iointrp->intr_po == INTR_PO_CONFORM && bus_type == BUS_PCI))) po = AV_ACTIVE_LOW; } if (level) apic_level_intr[irq] = 1; /* * The 82489DX External APIC cannot do active low polarity interrupts. */ if (po && (apic_io_ver[ioapicindex] != IOAPIC_VER_82489DX)) io_po = po; else io_po = 0; if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) printf("setio: ioapic=%x intin=%x level=%x po=%x vector=%x\n", ioapicindex, irqptr->airq_intin_no, level, io_po, vector); irqptr->airq_rdt_entry = level|io_po|vector; } /* * Call rebind to do the actual programming. */ static int apic_setup_io_intr(apic_irq_t *irqptr, int irq) { int rv; if (rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, 1, IMMEDIATE)) /* CPU is not up or interrupt is disabled. Fall back to 0 */ rv = apic_rebind(irqptr, 0, 1, IMMEDIATE); return (rv); } /* * Deferred reprogramming: Call apic_rebind to do the real work. */ static int apic_setup_io_intr_deferred(apic_irq_t *irqptr, int irq) { int rv; if (rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, 1, DEFERRED)) /* CPU is not up or interrupt is disabled. Fall back to 0 */ rv = apic_rebind(irqptr, 0, 1, DEFERRED); return (rv); } /* * Bind interrupt corresponding to irq_ptr to bind_cpu. acquire_lock * if false (0) means lock is already held (e.g: in rebind_all). */ static int apic_rebind(apic_irq_t *irq_ptr, int bind_cpu, int acquire_lock, int when) { int intin_no; volatile int32_t *ioapic; uchar_t airq_temp_cpu; apic_cpus_info_t *cpu_infop; int iflag; int which_irq = apic_vector_to_irq[irq_ptr->airq_vector]; intin_no = irq_ptr->airq_intin_no; ioapic = apicioadr[irq_ptr->airq_ioapicindex]; airq_temp_cpu = irq_ptr->airq_temp_cpu; if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) { if (airq_temp_cpu & IRQ_USER_BOUND) /* Mask off high bit so it can be used as array index */ airq_temp_cpu &= ~IRQ_USER_BOUND; ASSERT(airq_temp_cpu < apic_nproc); } iflag = intr_clear(); if (acquire_lock) lock_set(&apic_ioapic_lock); /* * Can't bind to a CPU that's not online: */ cpu_infop = &apic_cpus[bind_cpu & ~IRQ_USER_BOUND]; if (!(cpu_infop->aci_status & APIC_CPU_INTR_ENABLE)) { if (acquire_lock) lock_clear(&apic_ioapic_lock); intr_restore(iflag); return (1); } /* * If this is a deferred reprogramming attempt, ensure we have * not been passed stale data: */ if ((when == DEFERRED) && (apic_reprogram_info[which_irq].valid == 0)) { /* stale info, so just return */ if (acquire_lock) lock_clear(&apic_ioapic_lock); intr_restore(iflag); return (0); } /* * If this interrupt has been delivered to a CPU and that CPU * has not handled it yet, we cannot reprogram the IOAPIC now: */ if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index) && apic_check_stuck_interrupt(irq_ptr, airq_temp_cpu, bind_cpu, ioapic, intin_no, which_irq) != 0) { if (acquire_lock) lock_clear(&apic_ioapic_lock); intr_restore(iflag); return (0); } /* * NOTE: We do not unmask the RDT here, as an interrupt MAY still * come in before we have a chance to reprogram it below. The * reprogramming below will simultaneously change and unmask the * RDT entry. */ if ((uchar_t)bind_cpu == IRQ_UNBOUND) { /* Write the RDT entry -- no specific CPU binding */ WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapic, intin_no, AV_TOALL); if (airq_temp_cpu != IRQ_UNINIT && airq_temp_cpu != IRQ_UNBOUND) apic_cpus[airq_temp_cpu].aci_temp_bound--; /* Write the vector, trigger, and polarity portion of the RDT */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no, AV_LDEST | AV_LOPRI | irq_ptr->airq_rdt_entry); if (acquire_lock) lock_clear(&apic_ioapic_lock); irq_ptr->airq_temp_cpu = IRQ_UNBOUND; intr_restore(iflag); return (0); } if (bind_cpu & IRQ_USER_BOUND) { cpu_infop->aci_bound++; } else { cpu_infop->aci_temp_bound++; } ASSERT((bind_cpu & ~IRQ_USER_BOUND) < apic_nproc); if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { /* Write the RDT entry -- bind to a specific CPU: */ WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapic, intin_no, cpu_infop->aci_local_id << APIC_ID_BIT_OFFSET); } if ((airq_temp_cpu != IRQ_UNBOUND) && (airq_temp_cpu != IRQ_UNINIT)) { apic_cpus[airq_temp_cpu].aci_temp_bound--; } if (!APIC_IS_MSI_OR_MSIX_INDEX(irq_ptr->airq_mps_intr_index)) { /* Write the vector, trigger, and polarity portion of the RDT */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no, AV_PDEST | AV_FIXED | irq_ptr->airq_rdt_entry); } else { if (irq_ptr->airq_ioapicindex == irq_ptr->airq_origirq) { /* first one */ DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " "apic_pci_msi_enable_vector\n")); if (apic_pci_msi_enable_vector(irq_ptr->airq_dip, (irq_ptr->airq_mps_intr_index == MSI_INDEX) ? DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX, which_irq, irq_ptr->airq_vector, irq_ptr->airq_intin_no, cpu_infop->aci_local_id) != PSM_SUCCESS) { cmn_err(CE_WARN, "pcplusmp: " "apic_pci_msi_enable_vector " "returned PSM_FAILURE"); } } if ((irq_ptr->airq_ioapicindex + irq_ptr->airq_intin_no - 1) == irq_ptr->airq_origirq) { /* last one */ DDI_INTR_IMPLDBG((CE_CONT, "apic_rebind: call " "pci_msi_enable_mode\n")); if (pci_msi_enable_mode(irq_ptr->airq_dip, (irq_ptr->airq_mps_intr_index == MSI_INDEX) ? DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX, which_irq) != DDI_SUCCESS) { DDI_INTR_IMPLDBG((CE_CONT, "pcplusmp: " "pci_msi_enable failed\n")); (void) pci_msi_unconfigure(irq_ptr->airq_dip, (irq_ptr->airq_mps_intr_index == MSI_INDEX) ? DDI_INTR_TYPE_MSI : DDI_INTR_TYPE_MSIX, which_irq); } } } if (acquire_lock) lock_clear(&apic_ioapic_lock); irq_ptr->airq_temp_cpu = (uchar_t)bind_cpu; apic_redist_cpu_skip &= ~(1 << (bind_cpu & ~IRQ_USER_BOUND)); intr_restore(iflag); return (0); } /* * Checks to see if the IOAPIC interrupt entry specified has its Remote IRR * bit set. Sets up a timeout to perform the reprogramming at a later time * if it cannot wait for the Remote IRR bit to clear (or if waiting did not * result in the bit's clearing). * * This function will mask the RDT entry if the Remote IRR bit is set. * * Returns non-zero if the caller should defer IOAPIC reprogramming. */ static int apic_check_stuck_interrupt(apic_irq_t *irq_ptr, int old_bind_cpu, int new_bind_cpu, volatile int32_t *ioapic, int intin_no, int which_irq) { int32_t rdt_entry; int waited; /* Mask the RDT entry, but only if it's a level-triggered interrupt */ rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no); if ((rdt_entry & (AV_LEVEL|AV_MASK)) == AV_LEVEL) { /* Mask it */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no, AV_MASK | rdt_entry); } /* * Wait for the delivery pending bit to clear. */ if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) & (AV_LEVEL|AV_PENDING)) == (AV_LEVEL|AV_PENDING)) { /* * If we're still waiting on the delivery of this interrupt, * continue to wait here until it is delivered (this should be * a very small amount of time, but include a timeout just in * case). */ for (waited = 0; waited < apic_max_usecs_clear_pending; waited += APIC_USECS_PER_WAIT_INTERVAL) { if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) & AV_PENDING) == 0) { break; } drv_usecwait(APIC_USECS_PER_WAIT_INTERVAL); } if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) & AV_PENDING) != 0) { cmn_err(CE_WARN, "!IOAPIC %d intin %d: Could not " "deliver interrupt to local APIC within " "%d usecs.", irq_ptr->airq_ioapicindex, irq_ptr->airq_intin_no, apic_max_usecs_clear_pending); } } /* * If the remote IRR bit is set, then the interrupt has been sent * to a CPU for processing. We have no choice but to wait for * that CPU to process the interrupt, at which point the remote IRR * bit will be cleared. */ if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) & (AV_LEVEL|AV_REMOTE_IRR)) == (AV_LEVEL|AV_REMOTE_IRR)) { /* * If the CPU that this RDT is bound to is NOT the current * CPU, wait until that CPU handles the interrupt and ACKs * it. If this interrupt is not bound to any CPU (that is, * if it's bound to the logical destination of "anyone"), it * may have been delivered to the current CPU so handle that * case by deferring the reprogramming (below). */ kpreempt_disable(); if ((old_bind_cpu != IRQ_UNBOUND) && (old_bind_cpu != IRQ_UNINIT) && (old_bind_cpu != psm_get_cpu_id())) { for (waited = 0; waited < apic_max_usecs_clear_pending; waited += APIC_USECS_PER_WAIT_INTERVAL) { if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) & AV_REMOTE_IRR) == 0) { /* Clear the reprogramming state: */ lock_set(&apic_ioapic_reprogram_lock); apic_reprogram_info[which_irq].valid = 0; apic_reprogram_info[which_irq].bindcpu = 0; apic_reprogram_info[which_irq].timeouts = 0; lock_clear(&apic_ioapic_reprogram_lock); /* Remote IRR has cleared! */ kpreempt_enable(); return (0); } drv_usecwait(APIC_USECS_PER_WAIT_INTERVAL); } } kpreempt_enable(); /* * If we waited and the Remote IRR bit is still not cleared, * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS * times for this interrupt, try the last-ditch workarounds: */ if (apic_reprogram_info[which_irq].timeouts >= APIC_REPROGRAM_MAX_TIMEOUTS) { if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) & AV_REMOTE_IRR) != 0) { /* * Trying to clear the bit through normal * channels has failed. So as a last-ditch * effort, try to set the trigger mode to * edge, then to level. This has been * observed to work on many systems. */ WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no, READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) & ~AV_LEVEL); WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no, READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) | AV_LEVEL); /* * If the bit's STILL set, declare total and * utter failure */ if ((READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) & AV_REMOTE_IRR) != 0) { cmn_err(CE_WARN, "!IOAPIC %d intin %d: " "Remote IRR failed to reset " "within %d usecs. Interrupts to " "this pin may cease to function.", irq_ptr->airq_ioapicindex, irq_ptr->airq_intin_no, apic_max_usecs_clear_pending); } } /* Clear the reprogramming state: */ lock_set(&apic_ioapic_reprogram_lock); apic_reprogram_info[which_irq].valid = 0; apic_reprogram_info[which_irq].bindcpu = 0; apic_reprogram_info[which_irq].timeouts = 0; lock_clear(&apic_ioapic_reprogram_lock); } else { #ifdef DEBUG cmn_err(CE_WARN, "Deferring reprogramming of irq %d", which_irq); #endif /* DEBUG */ /* * If waiting for the Remote IRR bit (above) didn't * allow it to clear, defer the reprogramming: */ lock_set(&apic_ioapic_reprogram_lock); apic_reprogram_info[which_irq].valid = 1; apic_reprogram_info[which_irq].bindcpu = new_bind_cpu; apic_reprogram_info[which_irq].timeouts++; lock_clear(&apic_ioapic_reprogram_lock); /* Fire up a timeout to handle this later */ (void) timeout(apic_reprogram_timeout_handler, (void *) 0, drv_usectohz(APIC_REPROGRAM_TIMEOUT_DELAY)); /* Inform caller to defer IOAPIC programming: */ return (1); } } return (0); } /* * Timeout handler that performs the APIC reprogramming */ /*ARGSUSED*/ static void apic_reprogram_timeout_handler(void *arg) { /*LINTED: set but not used in function*/ int i, result; /* Serialize access to this function */ mutex_enter(&apic_reprogram_timeout_mutex); /* * For each entry in the reprogramming state that's valid, * try the reprogramming again: */ for (i = 0; i < APIC_MAX_VECTOR; i++) { if (apic_reprogram_info[i].valid == 0) continue; /* * Though we can't really do anything about errors * at this point, keep track of them for reporting. * Note that it is very possible for apic_setup_io_intr * to re-register this very timeout if the Remote IRR bit * has not yet cleared. */ result = apic_setup_io_intr_deferred(apic_irq_table[i], i); #ifdef DEBUG if (result) cmn_err(CE_WARN, "apic_reprogram_timeout: " "apic_setup_io_intr returned nonzero for " "irq=%d!", i); #endif /* DEBUG */ } mutex_exit(&apic_reprogram_timeout_mutex); } /* * Called to migrate all interrupts at an irq to another cpu. safe * if true means we are not being called from an interrupt * context and hence it is safe to do a lock_set. If false * do only a lock_try and return failure ( non 0 ) if we cannot get it */ static int apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu, int safe) { apic_irq_t *irqptr = irq_ptr; int retval = 0; int iflag; iflag = intr_clear(); if (!safe) { if (lock_try(&apic_ioapic_lock) == 0) { intr_restore(iflag); return (1); } } else lock_set(&apic_ioapic_lock); while (irqptr) { if (irqptr->airq_temp_cpu != IRQ_UNINIT) retval |= apic_rebind(irqptr, bind_cpu, 0, IMMEDIATE); irqptr = irqptr->airq_next; } lock_clear(&apic_ioapic_lock); intr_restore(iflag); return (retval); } /* * apic_intr_redistribute does all the messy computations for identifying * which interrupt to move to which CPU. Currently we do just one interrupt * at a time. This reduces the time we spent doing all this within clock * interrupt. When it is done in idle, we could do more than 1. * First we find the most busy and the most free CPU (time in ISR only) * skipping those CPUs that has been identified as being ineligible (cpu_skip) * Then we look for IRQs which are closest to the difference between the * most busy CPU and the average ISR load. We try to find one whose load * is less than difference.If none exists, then we chose one larger than the * difference, provided it does not make the most idle CPU worse than the * most busy one. In the end, we clear all the busy fields for CPUs. For * IRQs, they are cleared as they are scanned. */ static void apic_intr_redistribute() { int busiest_cpu, most_free_cpu; int cpu_free, cpu_busy, max_busy, min_busy; int min_free, diff; int average_busy, cpus_online; int i, busy; apic_cpus_info_t *cpu_infop; apic_irq_t *min_busy_irq = NULL; apic_irq_t *max_busy_irq = NULL; busiest_cpu = most_free_cpu = -1; cpu_free = cpu_busy = max_busy = average_busy = 0; min_free = apic_sample_factor_redistribution; cpus_online = 0; /* * Below we will check for CPU_INTR_ENABLE, bound, temp_bound, temp_cpu * without ioapic_lock. That is OK as we are just doing statistical * sampling anyway and any inaccuracy now will get corrected next time * The call to rebind which actually changes things will make sure * we are consistent. */ for (i = 0; i < apic_nproc; i++) { if (!(apic_redist_cpu_skip & (1 << i)) && (apic_cpus[i].aci_status & APIC_CPU_INTR_ENABLE)) { cpu_infop = &apic_cpus[i]; /* * If no unbound interrupts or only 1 total on this * CPU, skip */ if (!cpu_infop->aci_temp_bound || (cpu_infop->aci_bound + cpu_infop->aci_temp_bound) == 1) { apic_redist_cpu_skip |= 1 << i; continue; } busy = cpu_infop->aci_busy; average_busy += busy; cpus_online++; if (max_busy < busy) { max_busy = busy; busiest_cpu = i; } if (min_free > busy) { min_free = busy; most_free_cpu = i; } if (busy > apic_int_busy_mark) { cpu_busy |= 1 << i; } else { if (busy < apic_int_free_mark) cpu_free |= 1 << i; } } } if ((cpu_busy && cpu_free) || (max_busy >= (min_free + apic_diff_for_redistribution))) { apic_num_imbalance++; #ifdef DEBUG if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { prom_printf( "redistribute busy=%x free=%x max=%x min=%x", cpu_busy, cpu_free, max_busy, min_free); } #endif /* DEBUG */ average_busy /= cpus_online; diff = max_busy - average_busy; min_busy = max_busy; /* start with the max possible value */ max_busy = 0; min_busy_irq = max_busy_irq = NULL; i = apic_min_device_irq; for (; i < apic_max_device_irq; i++) { apic_irq_t *irq_ptr; /* Change to linked list per CPU ? */ if ((irq_ptr = apic_irq_table[i]) == NULL) continue; /* Check for irq_busy & decide which one to move */ /* Also zero them for next round */ if ((irq_ptr->airq_temp_cpu == busiest_cpu) && irq_ptr->airq_busy) { if (irq_ptr->airq_busy < diff) { /* * Check for least busy CPU, * best fit or what ? */ if (max_busy < irq_ptr->airq_busy) { /* * Most busy within the * required differential */ max_busy = irq_ptr->airq_busy; max_busy_irq = irq_ptr; } } else { if (min_busy > irq_ptr->airq_busy) { /* * least busy, but more than * the reqd diff */ if (min_busy < (diff + average_busy - min_free)) { /* * Making sure new cpu * will not end up * worse */ min_busy = irq_ptr->airq_busy; min_busy_irq = irq_ptr; } } } } irq_ptr->airq_busy = 0; } if (max_busy_irq != NULL) { #ifdef DEBUG if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { prom_printf("rebinding %x to %x", max_busy_irq->airq_vector, most_free_cpu); } #endif /* DEBUG */ if (apic_rebind_all(max_busy_irq, most_free_cpu, 0) == 0) /* Make change permenant */ max_busy_irq->airq_cpu = (uchar_t)most_free_cpu; } else if (min_busy_irq != NULL) { #ifdef DEBUG if (apic_verbose & APIC_VERBOSE_IOAPIC_FLAG) { prom_printf("rebinding %x to %x", min_busy_irq->airq_vector, most_free_cpu); } #endif /* DEBUG */ if (apic_rebind_all(min_busy_irq, most_free_cpu, 0) == 0) /* Make change permenant */ min_busy_irq->airq_cpu = (uchar_t)most_free_cpu; } else { if (cpu_busy != (1 << busiest_cpu)) { apic_redist_cpu_skip |= 1 << busiest_cpu; /* * We leave cpu_skip set so that next time we * can choose another cpu */ } } apic_num_rebind++; } else { /* * found nothing. Could be that we skipped over valid CPUs * or we have balanced everything. If we had a variable * ticks_for_redistribution, it could be increased here. * apic_int_busy, int_free etc would also need to be * changed. */ if (apic_redist_cpu_skip) apic_redist_cpu_skip = 0; } for (i = 0; i < apic_nproc; i++) { apic_cpus[i].aci_busy = 0; } } static void apic_cleanup_busy() { int i; apic_irq_t *irq_ptr; for (i = 0; i < apic_nproc; i++) { apic_cpus[i].aci_busy = 0; } for (i = apic_min_device_irq; i < apic_max_device_irq; i++) { if ((irq_ptr = apic_irq_table[i]) != NULL) irq_ptr->airq_busy = 0; } apic_skipped_redistribute = 0; } /* * This function will reprogram the timer. * * When in oneshot mode the argument is the absolute time in future to * generate the interrupt at. * * When in periodic mode, the argument is the interval at which the * interrupts should be generated. There is no need to support the periodic * mode timer change at this time. */ static void apic_timer_reprogram(hrtime_t time) { hrtime_t now; uint_t ticks; /* * We should be called from high PIL context (CBE_HIGH_PIL), * so kpreempt is disabled. */ if (!apic_oneshot) { /* time is the interval for periodic mode */ ticks = (uint_t)((time) / apic_nsec_per_tick); } else { /* one shot mode */ now = gethrtime(); if (time <= now) { /* * requested to generate an interrupt in the past * generate an interrupt as soon as possible */ ticks = apic_min_timer_ticks; } else if ((time - now) > apic_nsec_max) { /* * requested to generate an interrupt at a time * further than what we are capable of. Set to max * the hardware can handle */ ticks = APIC_MAXVAL; #ifdef DEBUG cmn_err(CE_CONT, "apic_timer_reprogram, request at" " %lld too far in future, current time" " %lld \n", time, now); #endif /* DEBUG */ } else ticks = (uint_t)((time - now) / apic_nsec_per_tick); } if (ticks < apic_min_timer_ticks) ticks = apic_min_timer_ticks; apicadr[APIC_INIT_COUNT] = ticks; } /* * This function will enable timer interrupts. */ static void apic_timer_enable(void) { /* * We should be Called from high PIL context (CBE_HIGH_PIL), * so kpreempt is disabled. */ if (!apic_oneshot) apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT) | AV_TIME; else { /* one shot */ apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT); } } /* * This function will disable timer interrupts. */ static void apic_timer_disable(void) { /* * We should be Called from high PIL context (CBE_HIGH_PIL), * so kpreempt is disabled. */ apicadr[APIC_LOCAL_TIMER] = (apic_clkvect + APIC_BASE_VECT) | AV_MASK; } cyclic_id_t apic_cyclic_id; /* * If this module needs to be a consumer of cyclic subsystem, they * can be added here, since at this time kernel cyclic subsystem is initialized * argument is not currently used, and is reserved for future. */ static void apic_post_cyclic_setup(void *arg) { _NOTE(ARGUNUSED(arg)) cyc_handler_t hdlr; cyc_time_t when; /* cpu_lock is held */ /* set up cyclics for intr redistribution */ /* * In peridoc mode intr redistribution processing is done in * apic_intr_enter during clk intr processing */ if (!apic_oneshot) return; hdlr.cyh_level = CY_LOW_LEVEL; hdlr.cyh_func = (cyc_func_t)apic_redistribute_compute; hdlr.cyh_arg = NULL; when.cyt_when = 0; when.cyt_interval = apic_redistribute_sample_interval; apic_cyclic_id = cyclic_add(&hdlr, &when); } static void apic_redistribute_compute(void) { int i, j, max_busy; if (apic_enable_dynamic_migration) { if (++apic_nticks == apic_sample_factor_redistribution) { /* * Time to call apic_intr_redistribute(). * reset apic_nticks. This will cause max_busy * to be calculated below and if it is more than * apic_int_busy, we will do the whole thing */ apic_nticks = 0; } max_busy = 0; for (i = 0; i < apic_nproc; i++) { /* * Check if curipl is non zero & if ISR is in * progress */ if (((j = apic_cpus[i].aci_curipl) != 0) && (apic_cpus[i].aci_ISR_in_progress & (1 << j))) { int irq; apic_cpus[i].aci_busy++; irq = apic_cpus[i].aci_current[j]; apic_irq_table[irq]->airq_busy++; } if (!apic_nticks && (apic_cpus[i].aci_busy > max_busy)) max_busy = apic_cpus[i].aci_busy; } if (!apic_nticks) { if (max_busy > apic_int_busy_mark) { /* * We could make the following check be * skipped > 1 in which case, we get a * redistribution at half the busy mark (due to * double interval). Need to be able to collect * more empirical data to decide if that is a * good strategy. Punt for now. */ if (apic_skipped_redistribute) apic_cleanup_busy(); else apic_intr_redistribute(); } else apic_skipped_redistribute++; } } } static int apic_acpi_translate_pci_irq(dev_info_t *dip, int busid, int devid, int ipin, int *pci_irqp, iflag_t *intr_flagp) { int status; acpi_psm_lnk_t acpipsmlnk; if ((status = acpi_get_irq_cache_ent(busid, devid, ipin, pci_irqp, intr_flagp)) == ACPI_PSM_SUCCESS) { APIC_VERBOSE_IRQ((CE_CONT, "!pcplusmp: Found irqno %d " "from cache for device %s, instance #%d\n", *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); return (status); } bzero(&acpipsmlnk, sizeof (acpi_psm_lnk_t)); if ((status = acpi_translate_pci_irq(dip, ipin, pci_irqp, intr_flagp, &acpipsmlnk)) == ACPI_PSM_FAILURE) { APIC_VERBOSE_IRQ((CE_WARN, "pcplusmp: " " acpi_translate_pci_irq failed for device %s, instance" " #%d", ddi_get_name(dip), ddi_get_instance(dip))); return (status); } if (status == ACPI_PSM_PARTIAL && acpipsmlnk.lnkobj != NULL) { status = apic_acpi_irq_configure(&acpipsmlnk, dip, pci_irqp, intr_flagp); if (status != ACPI_PSM_SUCCESS) { status = acpi_get_current_irq_resource(&acpipsmlnk, pci_irqp, intr_flagp); } } if (status == ACPI_PSM_SUCCESS) { acpi_new_irq_cache_ent(busid, devid, ipin, *pci_irqp, intr_flagp, &acpipsmlnk); APIC_VERBOSE_IRQ((CE_CONT, "pcplusmp: [ACPI] " "new irq %d for device %s, instance #%d\n", *pci_irqp, ddi_get_name(dip), ddi_get_instance(dip))); } return (status); } /* * Configures the irq for the interrupt link device identified by * acpipsmlnkp. * * Gets the current and the list of possible irq settings for the * device. If apic_unconditional_srs is not set, and the current * resource setting is in the list of possible irq settings, * current irq resource setting is passed to the caller. * * Otherwise, picks an irq number from the list of possible irq * settings, and sets the irq of the device to this value. * If prefer_crs is set, among a set of irq numbers in the list that have * the least number of devices sharing the interrupt, we pick current irq * resource setting if it is a member of this set. * * Passes the irq number in the value pointed to by pci_irqp, and * polarity and sensitivity in the structure pointed to by dipintrflagp * to the caller. * * Note that if setting the irq resource failed, but successfuly obtained * the current irq resource settings, passes the current irq resources * and considers it a success. * * Returns: * ACPI_PSM_SUCCESS on success. * * ACPI_PSM_FAILURE if an error occured during the configuration or * if a suitable irq was not found for this device, or if setting the * irq resource and obtaining the current resource fails. * */ static int apic_acpi_irq_configure(acpi_psm_lnk_t *acpipsmlnkp, dev_info_t *dip, int *pci_irqp, iflag_t *dipintr_flagp) { int i, min_share, foundnow, done = 0; int32_t irq; int32_t share_irq = -1; int32_t chosen_irq = -1; int cur_irq = -1; acpi_irqlist_t *irqlistp; acpi_irqlist_t *irqlistent; if ((acpi_get_possible_irq_resources(acpipsmlnkp, &irqlistp)) == ACPI_PSM_FAILURE) { APIC_VERBOSE_IRQ((CE_WARN, "!pcplusmp: Unable to determine " "or assign IRQ for device %s, instance #%d: The system was " "unable to get the list of potential IRQs from ACPI.", ddi_get_name(dip), ddi_get_instance(dip))); return (ACPI_PSM_FAILURE); } if ((acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, dipintr_flagp) == ACPI_PSM_SUCCESS) && (!apic_unconditional_srs) && (cur_irq > 0)) { /* * If an IRQ is set in CRS and that IRQ exists in the set * returned from _PRS, return that IRQ, otherwise print * a warning */ if (acpi_irqlist_find_irq(irqlistp, cur_irq, NULL) == ACPI_PSM_SUCCESS) { acpi_free_irqlist(irqlistp); ASSERT(pci_irqp != NULL); *pci_irqp = cur_irq; return (ACPI_PSM_SUCCESS); } APIC_VERBOSE_IRQ((CE_WARN, "!pcplusmp: Could not find the " "current irq %d for device %s, instance #%d in ACPI's " "list of possible irqs for this device. Picking one from " " the latter list.", cur_irq, ddi_get_name(dip), ddi_get_instance(dip))); } irqlistent = irqlistp; min_share = 255; while (irqlistent != NULL) { irqlistent->intr_flags.bustype = BUS_PCI; for (foundnow = 0, i = 0; i < irqlistent->num_irqs; i++) { irq = irqlistent->irqs[i]; if ((irq < 16) && (apic_reserved_irqlist[irq])) continue; if (irq == 0) { /* invalid irq number */ continue; } if ((apic_irq_table[irq] == NULL) || (apic_irq_table[irq]->airq_dip == dip)) { chosen_irq = irq; foundnow = 1; /* * If we do not prefer current irq from crs * or if we do and this irq is the same as * current irq from crs, this is the one * to pick. */ if (!(apic_prefer_crs) || (irq == cur_irq)) { done = 1; break; } continue; } if (irqlistent->intr_flags.intr_el == INTR_EL_EDGE) continue; if (!acpi_intr_compatible(irqlistent->intr_flags, apic_irq_table[irq]->airq_iflag)) continue; if ((apic_irq_table[irq]->airq_share < min_share) || ((apic_irq_table[irq]->airq_share == min_share) && (cur_irq == irq) && (apic_prefer_crs))) { min_share = apic_irq_table[irq]->airq_share; share_irq = irq; foundnow = 1; } } /* * If we found an IRQ in the inner loop this time, save the * details from the irqlist for later use. */ if (foundnow && ((chosen_irq != -1) || (share_irq != -1))) { /* * Copy the acpi_prs_private_t and flags from this * irq list entry, since we found an irq from this * entry. */ acpipsmlnkp->acpi_prs_prv = irqlistent->acpi_prs_prv; *dipintr_flagp = irqlistent->intr_flags; } if (done) break; /* Go to the next irqlist entry */ irqlistent = irqlistent->next; } acpi_free_irqlist(irqlistp); if (chosen_irq != -1) irq = chosen_irq; else if (share_irq != -1) irq = share_irq; else { APIC_VERBOSE_IRQ((CE_WARN, "!pcplusmp: Could not find a " "suitable irq from the list of possible irqs for device " "%s, instance #%d in ACPI's list of possible irqs", ddi_get_name(dip), ddi_get_instance(dip))); return (ACPI_PSM_FAILURE); } APIC_VERBOSE_IRQ((CE_CONT, "!pcplusmp: Setting irq %d for device %s " "instance #%d\n", irq, ddi_get_name(dip), ddi_get_instance(dip))); if ((acpi_set_irq_resource(acpipsmlnkp, irq)) == ACPI_PSM_SUCCESS) { /* * setting irq was successful, check to make sure CRS * reflects that. If CRS does not agree with what we * set, return the irq that was set. */ if (acpi_get_current_irq_resource(acpipsmlnkp, &cur_irq, dipintr_flagp) == ACPI_PSM_SUCCESS) { if (cur_irq != irq) APIC_VERBOSE_IRQ((CE_WARN, "!pcplusmp: " "IRQ resource set (irqno %d) for device %s " "instance #%d, differs from current " "setting irqno %d", irq, ddi_get_name(dip), ddi_get_instance(dip), cur_irq)); } /* * return the irq that was set, and not what CRS reports, * since CRS has been seen to be bogus on some systems */ cur_irq = irq; } else { APIC_VERBOSE_IRQ((CE_WARN, "!pcplusmp: set resource irq %d " "failed for device %s instance #%d", irq, ddi_get_name(dip), ddi_get_instance(dip))); if (cur_irq == -1) return (ACPI_PSM_FAILURE); } ASSERT(pci_irqp != NULL); *pci_irqp = cur_irq; return (ACPI_PSM_SUCCESS); }