/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ /* * University Copyright- Copyright (c) 1982, 1986, 1988 * The Regents of the University of California * All Rights Reserved * * University Acknowledgment- Portions of this document are derived from * software developed by the University of California, Berkeley, and its * contributors. */ #include <sys/types.h> #include <sys/sysmacros.h> #include <sys/param.h> #include <sys/systm.h> #include <sys/cred_impl.h> #include <sys/policy.h> #include <sys/vnode.h> #include <sys/errno.h> #include <sys/kmem.h> #include <sys/user.h> #include <sys/proc.h> #include <sys/syscall.h> #include <sys/debug.h> #include <sys/atomic.h> #include <sys/ucred.h> #include <sys/prsystm.h> #include <sys/modctl.h> #include <sys/avl.h> #include <sys/door.h> #include <c2/audit.h> #include <sys/zone.h> #include <sys/tsol/label.h> #include <sys/sid.h> #include <sys/idmap.h> #include <sys/klpd.h> #include <sys/varargs.h> #include <sys/sysconf.h> #include <util/qsort.h> /* Ephemeral IDs Zones specific data */ typedef struct ephemeral_zsd { uid_t min_uid; uid_t last_uid; gid_t min_gid; gid_t last_gid; kmutex_t eph_lock; cred_t *eph_nobody; } ephemeral_zsd_t; /* Supplemental groups list. */ typedef struct credgrp { uint_t crg_ref; uint_t crg_ngroups; gid_t crg_groups[1]; } credgrp_t; static void crgrphold(credgrp_t *); #define CREDGRPSZ(ngrp) (sizeof (credgrp_t) + ((ngrp - 1) * sizeof (gid_t))) static kmutex_t ephemeral_zone_mutex; static zone_key_t ephemeral_zone_key; static struct kmem_cache *cred_cache; static size_t crsize = 0; static int audoff = 0; uint32_t ucredsize; cred_t *kcred; static cred_t *dummycr; int rstlink; /* link(2) restricted to files owned by user? */ static int get_c2audit_load(void); #define CR_AUINFO(c) (auditinfo_addr_t *)((audoff == 0) ? NULL : \ ((char *)(c)) + audoff) #define REMOTE_PEER_CRED(c) ((c)->cr_gid == -1) #define BIN_GROUP_SEARCH_CUTOFF 16 static boolean_t hasephids = B_FALSE; static ephemeral_zsd_t * get_ephemeral_zsd(zone_t *zone) { ephemeral_zsd_t *eph_zsd; eph_zsd = zone_getspecific(ephemeral_zone_key, zone); if (eph_zsd != NULL) { return (eph_zsd); } mutex_enter(&ephemeral_zone_mutex); eph_zsd = zone_getspecific(ephemeral_zone_key, zone); if (eph_zsd == NULL) { eph_zsd = kmem_zalloc(sizeof (ephemeral_zsd_t), KM_SLEEP); eph_zsd->min_uid = MAXUID; eph_zsd->last_uid = IDMAP_WK__MAX_UID; eph_zsd->min_gid = MAXUID; eph_zsd->last_gid = IDMAP_WK__MAX_GID; mutex_init(&eph_zsd->eph_lock, NULL, MUTEX_DEFAULT, NULL); /* * nobody is used to map SID containing CRs. */ eph_zsd->eph_nobody = crdup(zone->zone_kcred); (void) crsetugid(eph_zsd->eph_nobody, UID_NOBODY, GID_NOBODY); CR_FLAGS(eph_zsd->eph_nobody) = 0; eph_zsd->eph_nobody->cr_zone = zone; (void) zone_setspecific(ephemeral_zone_key, zone, eph_zsd); } mutex_exit(&ephemeral_zone_mutex); return (eph_zsd); } static cred_t *crdup_flags(const cred_t *, int); static cred_t *cralloc_flags(int); /* * This function is called when a zone is destroyed */ static void /* ARGSUSED */ destroy_ephemeral_zsd(zoneid_t zone_id, void *arg) { ephemeral_zsd_t *eph_zsd = arg; if (eph_zsd != NULL) { mutex_destroy(&eph_zsd->eph_lock); crfree(eph_zsd->eph_nobody); kmem_free(eph_zsd, sizeof (ephemeral_zsd_t)); } } /* * Initialize credentials data structures. */ void cred_init(void) { priv_init(); crsize = sizeof (cred_t); if (get_c2audit_load() > 0) { #ifdef _LP64 /* assure audit context is 64-bit aligned */ audoff = (crsize + sizeof (int64_t) - 1) & ~(sizeof (int64_t) - 1); #else /* _LP64 */ audoff = crsize; #endif /* _LP64 */ crsize = audoff + sizeof (auditinfo_addr_t); crsize = (crsize + sizeof (int) - 1) & ~(sizeof (int) - 1); } cred_cache = kmem_cache_create("cred_cache", crsize, 0, NULL, NULL, NULL, NULL, NULL, 0); /* * dummycr is used to copy initial state for creds. */ dummycr = cralloc(); bzero(dummycr, crsize); dummycr->cr_ref = 1; dummycr->cr_uid = (uid_t)-1; dummycr->cr_gid = (gid_t)-1; dummycr->cr_ruid = (uid_t)-1; dummycr->cr_rgid = (gid_t)-1; dummycr->cr_suid = (uid_t)-1; dummycr->cr_sgid = (gid_t)-1; /* * kcred is used by anything that needs all privileges; it's * also the template used for crget as it has all the compatible * sets filled in. */ kcred = cralloc(); bzero(kcred, crsize); kcred->cr_ref = 1; /* kcred is never freed, so we don't need zone_cred_hold here */ kcred->cr_zone = &zone0; priv_fillset(&CR_LPRIV(kcred)); CR_IPRIV(kcred) = *priv_basic; /* Not a basic privilege, if chown is not restricted add it to I0 */ if (!rstchown) priv_addset(&CR_IPRIV(kcred), PRIV_FILE_CHOWN_SELF); /* Basic privilege, if link is restricted remove it from I0 */ if (rstlink) priv_delset(&CR_IPRIV(kcred), PRIV_FILE_LINK_ANY); CR_EPRIV(kcred) = CR_PPRIV(kcred) = CR_IPRIV(kcred); CR_FLAGS(kcred) = NET_MAC_AWARE; /* * Set up credentials of p0. */ ttoproc(curthread)->p_cred = kcred; curthread->t_cred = kcred; ucredsize = UCRED_SIZE; mutex_init(&ephemeral_zone_mutex, NULL, MUTEX_DEFAULT, NULL); zone_key_create(&ephemeral_zone_key, NULL, NULL, destroy_ephemeral_zsd); } /* * Allocate (nearly) uninitialized cred_t. */ static cred_t * cralloc_flags(int flgs) { cred_t *cr = kmem_cache_alloc(cred_cache, flgs); if (cr == NULL) return (NULL); cr->cr_ref = 1; /* So we can crfree() */ cr->cr_zone = NULL; cr->cr_label = NULL; cr->cr_ksid = NULL; cr->cr_klpd = NULL; cr->cr_grps = NULL; return (cr); } cred_t * cralloc(void) { return (cralloc_flags(KM_SLEEP)); } /* * As cralloc but prepared for ksid change (if appropriate). */ cred_t * cralloc_ksid(void) { cred_t *cr = cralloc(); if (hasephids) cr->cr_ksid = kcrsid_alloc(); return (cr); } /* * Allocate a initialized cred structure and crhold() it. * Initialized means: all ids 0, group count 0, L=Full, E=P=I=I0 */ cred_t * crget(void) { cred_t *cr = kmem_cache_alloc(cred_cache, KM_SLEEP); bcopy(kcred, cr, crsize); cr->cr_ref = 1; zone_cred_hold(cr->cr_zone); if (cr->cr_label) label_hold(cr->cr_label); ASSERT(cr->cr_klpd == NULL); ASSERT(cr->cr_grps == NULL); return (cr); } /* * Broadcast the cred to all the threads in the process. * The current thread's credentials can be set right away, but other * threads must wait until the start of the next system call or trap. * This avoids changing the cred in the middle of a system call. * * The cred has already been held for the process and the thread (2 holds), * and p->p_cred set. * * p->p_crlock shouldn't be held here, since p_lock must be acquired. */ void crset(proc_t *p, cred_t *cr) { kthread_id_t t; kthread_id_t first; cred_t *oldcr; ASSERT(p == curproc); /* assumes p_lwpcnt can't change */ /* * DTrace accesses t_cred in probe context. t_cred must always be * either NULL, or point to a valid, allocated cred structure. */ t = curthread; oldcr = t->t_cred; t->t_cred = cr; /* the cred is held by caller for this thread */ crfree(oldcr); /* free the old cred for the thread */ /* * Broadcast to other threads, if any. */ if (p->p_lwpcnt > 1) { mutex_enter(&p->p_lock); /* to keep thread list safe */ first = curthread; for (t = first->t_forw; t != first; t = t->t_forw) t->t_pre_sys = 1; /* so syscall will get new cred */ mutex_exit(&p->p_lock); } } /* * Put a hold on a cred structure. */ void crhold(cred_t *cr) { ASSERT(cr->cr_ref != 0xdeadbeef && cr->cr_ref != 0); atomic_add_32(&cr->cr_ref, 1); } /* * Release previous hold on a cred structure. Free it if refcnt == 0. * If cred uses label different from zone label, free it. */ void crfree(cred_t *cr) { ASSERT(cr->cr_ref != 0xdeadbeef && cr->cr_ref != 0); if (atomic_add_32_nv(&cr->cr_ref, -1) == 0) { ASSERT(cr != kcred); if (cr->cr_label) label_rele(cr->cr_label); if (cr->cr_klpd) crklpd_rele(cr->cr_klpd); if (cr->cr_zone) zone_cred_rele(cr->cr_zone); if (cr->cr_ksid) kcrsid_rele(cr->cr_ksid); if (cr->cr_grps) crgrprele(cr->cr_grps); kmem_cache_free(cred_cache, cr); } } /* * Copy a cred structure to a new one and free the old one. * The new cred will have two references. One for the calling process, * and one for the thread. */ cred_t * crcopy(cred_t *cr) { cred_t *newcr; newcr = cralloc(); bcopy(cr, newcr, crsize); if (newcr->cr_zone) zone_cred_hold(newcr->cr_zone); if (newcr->cr_label) label_hold(newcr->cr_label); if (newcr->cr_ksid) kcrsid_hold(newcr->cr_ksid); if (newcr->cr_klpd) crklpd_hold(newcr->cr_klpd); if (newcr->cr_grps) crgrphold(newcr->cr_grps); crfree(cr); newcr->cr_ref = 2; /* caller gets two references */ return (newcr); } /* * Copy a cred structure to a new one and free the old one. * The new cred will have two references. One for the calling process, * and one for the thread. * This variation on crcopy uses a pre-allocated structure for the * "new" cred. */ void crcopy_to(cred_t *oldcr, cred_t *newcr) { credsid_t *nkcr = newcr->cr_ksid; bcopy(oldcr, newcr, crsize); if (newcr->cr_zone) zone_cred_hold(newcr->cr_zone); if (newcr->cr_label) label_hold(newcr->cr_label); if (newcr->cr_klpd) crklpd_hold(newcr->cr_klpd); if (newcr->cr_grps) crgrphold(newcr->cr_grps); if (nkcr) { newcr->cr_ksid = nkcr; kcrsidcopy_to(oldcr->cr_ksid, newcr->cr_ksid); } else if (newcr->cr_ksid) kcrsid_hold(newcr->cr_ksid); crfree(oldcr); newcr->cr_ref = 2; /* caller gets two references */ } /* * Dup a cred struct to a new held one. * The old cred is not freed. */ static cred_t * crdup_flags(const cred_t *cr, int flgs) { cred_t *newcr; newcr = cralloc_flags(flgs); if (newcr == NULL) return (NULL); bcopy(cr, newcr, crsize); if (newcr->cr_zone) zone_cred_hold(newcr->cr_zone); if (newcr->cr_label) label_hold(newcr->cr_label); if (newcr->cr_klpd) crklpd_hold(newcr->cr_klpd); if (newcr->cr_ksid) kcrsid_hold(newcr->cr_ksid); if (newcr->cr_grps) crgrphold(newcr->cr_grps); newcr->cr_ref = 1; return (newcr); } cred_t * crdup(cred_t *cr) { return (crdup_flags(cr, KM_SLEEP)); } /* * Dup a cred struct to a new held one. * The old cred is not freed. * This variation on crdup uses a pre-allocated structure for the * "new" cred. */ void crdup_to(cred_t *oldcr, cred_t *newcr) { credsid_t *nkcr = newcr->cr_ksid; bcopy(oldcr, newcr, crsize); if (newcr->cr_zone) zone_cred_hold(newcr->cr_zone); if (newcr->cr_label) label_hold(newcr->cr_label); if (newcr->cr_klpd) crklpd_hold(newcr->cr_klpd); if (newcr->cr_grps) crgrphold(newcr->cr_grps); if (nkcr) { newcr->cr_ksid = nkcr; kcrsidcopy_to(oldcr->cr_ksid, newcr->cr_ksid); } else if (newcr->cr_ksid) kcrsid_hold(newcr->cr_ksid); newcr->cr_ref = 1; } /* * Return the (held) credentials for the current running process. */ cred_t * crgetcred(void) { cred_t *cr; proc_t *p; p = ttoproc(curthread); mutex_enter(&p->p_crlock); crhold(cr = p->p_cred); mutex_exit(&p->p_crlock); return (cr); } /* * Backward compatibility check for suser(). * Accounting flag is now set in the policy functions; auditing is * done through use of privilege in the audit trail. */ int suser(cred_t *cr) { return (PRIV_POLICY(cr, PRIV_SYS_SUSER_COMPAT, B_FALSE, EPERM, NULL) == 0); } /* * Determine whether the supplied group id is a member of the group * described by the supplied credentials. */ int groupmember(gid_t gid, const cred_t *cr) { if (gid == cr->cr_gid) return (1); return (supgroupmember(gid, cr)); } /* * As groupmember but only check against the supplemental groups. */ int supgroupmember(gid_t gid, const cred_t *cr) { int hi, lo; credgrp_t *grps = cr->cr_grps; const gid_t *gp, *endgp; if (grps == NULL) return (0); /* For a small number of groups, use sequentials search. */ if (grps->crg_ngroups <= BIN_GROUP_SEARCH_CUTOFF) { endgp = &grps->crg_groups[grps->crg_ngroups]; for (gp = grps->crg_groups; gp < endgp; gp++) if (*gp == gid) return (1); return (0); } /* We use binary search when we have many groups. */ lo = 0; hi = grps->crg_ngroups - 1; gp = grps->crg_groups; do { int m = (lo + hi) / 2; if (gid > gp[m]) lo = m + 1; else if (gid < gp[m]) hi = m - 1; else return (1); } while (lo <= hi); return (0); } /* * This function is called to check whether the credentials set * "scrp" has permission to act on credentials set "tcrp". It enforces the * permission requirements needed to send a signal to a process. * The same requirements are imposed by other system calls, however. * * The rules are: * (1) if the credentials are the same, the check succeeds * (2) if the zone ids don't match, and scrp is not in the global zone or * does not have the PRIV_PROC_ZONE privilege, the check fails * (3) if the real or effective user id of scrp matches the real or saved * user id of tcrp or scrp has the PRIV_PROC_OWNER privilege, the check * succeeds * (4) otherwise, the check fails */ int hasprocperm(const cred_t *tcrp, const cred_t *scrp) { if (scrp == tcrp) return (1); if (scrp->cr_zone != tcrp->cr_zone && (scrp->cr_zone != global_zone || secpolicy_proc_zone(scrp) != 0)) return (0); if (scrp->cr_uid == tcrp->cr_ruid || scrp->cr_ruid == tcrp->cr_ruid || scrp->cr_uid == tcrp->cr_suid || scrp->cr_ruid == tcrp->cr_suid || !PRIV_POLICY(scrp, PRIV_PROC_OWNER, B_FALSE, EPERM, "hasprocperm")) return (1); return (0); } /* * This interface replaces hasprocperm; it works like hasprocperm but * additionally returns success if the proc_t's match * It is the preferred interface for most uses. * And it will acquire p_crlock itself, so it assert's that it shouldn't * be held. */ int prochasprocperm(proc_t *tp, proc_t *sp, const cred_t *scrp) { int rets; cred_t *tcrp; ASSERT(MUTEX_NOT_HELD(&tp->p_crlock)); if (tp == sp) return (1); if (tp->p_sessp != sp->p_sessp && secpolicy_basic_proc(scrp) != 0) return (0); mutex_enter(&tp->p_crlock); crhold(tcrp = tp->p_cred); mutex_exit(&tp->p_crlock); rets = hasprocperm(tcrp, scrp); crfree(tcrp); return (rets); } /* * This routine is used to compare two credentials to determine if * they refer to the same "user". If the pointers are equal, then * they must refer to the same user. Otherwise, the contents of * the credentials are compared to see whether they are equivalent. * * This routine returns 0 if the credentials refer to the same user, * 1 if they do not. */ int crcmp(const cred_t *cr1, const cred_t *cr2) { credgrp_t *grp1, *grp2; if (cr1 == cr2) return (0); if (cr1->cr_uid == cr2->cr_uid && cr1->cr_gid == cr2->cr_gid && cr1->cr_ruid == cr2->cr_ruid && cr1->cr_rgid == cr2->cr_rgid && cr1->cr_zone == cr2->cr_zone && ((grp1 = cr1->cr_grps) == (grp2 = cr2->cr_grps) || (grp1 != NULL && grp2 != NULL && grp1->crg_ngroups == grp2->crg_ngroups && bcmp(grp1->crg_groups, grp2->crg_groups, grp1->crg_ngroups * sizeof (gid_t)) == 0))) { return (!priv_isequalset(&CR_OEPRIV(cr1), &CR_OEPRIV(cr2))); } return (1); } /* * Read access functions to cred_t. */ uid_t crgetuid(const cred_t *cr) { return (cr->cr_uid); } uid_t crgetruid(const cred_t *cr) { return (cr->cr_ruid); } uid_t crgetsuid(const cred_t *cr) { return (cr->cr_suid); } gid_t crgetgid(const cred_t *cr) { return (cr->cr_gid); } gid_t crgetrgid(const cred_t *cr) { return (cr->cr_rgid); } gid_t crgetsgid(const cred_t *cr) { return (cr->cr_sgid); } const auditinfo_addr_t * crgetauinfo(const cred_t *cr) { return ((const auditinfo_addr_t *)CR_AUINFO(cr)); } auditinfo_addr_t * crgetauinfo_modifiable(cred_t *cr) { return (CR_AUINFO(cr)); } zoneid_t crgetzoneid(const cred_t *cr) { return (cr->cr_zone == NULL ? (cr->cr_uid == -1 ? (zoneid_t)-1 : GLOBAL_ZONEID) : cr->cr_zone->zone_id); } projid_t crgetprojid(const cred_t *cr) { return (cr->cr_projid); } zone_t * crgetzone(const cred_t *cr) { return (cr->cr_zone); } struct ts_label_s * crgetlabel(const cred_t *cr) { return (cr->cr_label ? cr->cr_label : (cr->cr_zone ? cr->cr_zone->zone_slabel : NULL)); } boolean_t crisremote(const cred_t *cr) { return (REMOTE_PEER_CRED(cr)); } #define BADUID(x, zn) ((x) != -1 && !VALID_UID((x), (zn))) #define BADGID(x, zn) ((x) != -1 && !VALID_GID((x), (zn))) int crsetresuid(cred_t *cr, uid_t r, uid_t e, uid_t s) { zone_t *zone = crgetzone(cr); ASSERT(cr->cr_ref <= 2); if (BADUID(r, zone) || BADUID(e, zone) || BADUID(s, zone)) return (-1); if (r != -1) cr->cr_ruid = r; if (e != -1) cr->cr_uid = e; if (s != -1) cr->cr_suid = s; return (0); } int crsetresgid(cred_t *cr, gid_t r, gid_t e, gid_t s) { zone_t *zone = crgetzone(cr); ASSERT(cr->cr_ref <= 2); if (BADGID(r, zone) || BADGID(e, zone) || BADGID(s, zone)) return (-1); if (r != -1) cr->cr_rgid = r; if (e != -1) cr->cr_gid = e; if (s != -1) cr->cr_sgid = s; return (0); } int crsetugid(cred_t *cr, uid_t uid, gid_t gid) { zone_t *zone = crgetzone(cr); ASSERT(cr->cr_ref <= 2); if (!VALID_UID(uid, zone) || !VALID_GID(gid, zone)) return (-1); cr->cr_uid = cr->cr_ruid = cr->cr_suid = uid; cr->cr_gid = cr->cr_rgid = cr->cr_sgid = gid; return (0); } static int gidcmp(const void *v1, const void *v2) { gid_t g1 = *(gid_t *)v1; gid_t g2 = *(gid_t *)v2; if (g1 < g2) return (-1); else if (g1 > g2) return (1); else return (0); } int crsetgroups(cred_t *cr, int n, gid_t *grp) { ASSERT(cr->cr_ref <= 2); if (n > ngroups_max || n < 0) return (-1); if (cr->cr_grps != NULL) crgrprele(cr->cr_grps); if (n > 0) { cr->cr_grps = kmem_alloc(CREDGRPSZ(n), KM_SLEEP); bcopy(grp, cr->cr_grps->crg_groups, n * sizeof (gid_t)); cr->cr_grps->crg_ref = 1; cr->cr_grps->crg_ngroups = n; qsort(cr->cr_grps->crg_groups, n, sizeof (gid_t), gidcmp); } else { cr->cr_grps = NULL; } return (0); } void crsetprojid(cred_t *cr, projid_t projid) { ASSERT(projid >= 0 && projid <= MAXPROJID); cr->cr_projid = projid; } /* * This routine returns the pointer to the first element of the crg_groups * array. It can move around in an implementation defined way. * Note that when we have no grouplist, we return one element but the * caller should never reference it. */ const gid_t * crgetgroups(const cred_t *cr) { return (cr->cr_grps == NULL ? &cr->cr_gid : cr->cr_grps->crg_groups); } int crgetngroups(const cred_t *cr) { return (cr->cr_grps == NULL ? 0 : cr->cr_grps->crg_ngroups); } void cred2prcred(const cred_t *cr, prcred_t *pcrp) { pcrp->pr_euid = cr->cr_uid; pcrp->pr_ruid = cr->cr_ruid; pcrp->pr_suid = cr->cr_suid; pcrp->pr_egid = cr->cr_gid; pcrp->pr_rgid = cr->cr_rgid; pcrp->pr_sgid = cr->cr_sgid; pcrp->pr_groups[0] = 0; /* in case ngroups == 0 */ pcrp->pr_ngroups = cr->cr_grps == NULL ? 0 : cr->cr_grps->crg_ngroups; if (pcrp->pr_ngroups != 0) bcopy(cr->cr_grps->crg_groups, pcrp->pr_groups, sizeof (gid_t) * pcrp->pr_ngroups); } static int cred2ucaud(const cred_t *cr, auditinfo64_addr_t *ainfo, const cred_t *rcr) { auditinfo_addr_t *ai; au_tid_addr_t tid; if (secpolicy_audit_getattr(rcr, B_TRUE) != 0) return (-1); ai = CR_AUINFO(cr); /* caller makes sure this is non-NULL */ tid = ai->ai_termid; ainfo->ai_auid = ai->ai_auid; ainfo->ai_mask = ai->ai_mask; ainfo->ai_asid = ai->ai_asid; ainfo->ai_termid.at_type = tid.at_type; bcopy(&tid.at_addr, &ainfo->ai_termid.at_addr, 4 * sizeof (uint_t)); ainfo->ai_termid.at_port.at_major = (uint32_t)getmajor(tid.at_port); ainfo->ai_termid.at_port.at_minor = (uint32_t)getminor(tid.at_port); return (0); } void cred2uclabel(const cred_t *cr, bslabel_t *labelp) { ts_label_t *tslp; if ((tslp = crgetlabel(cr)) != NULL) bcopy(&tslp->tsl_label, labelp, sizeof (bslabel_t)); } /* * Convert a credential into a "ucred". Allow the caller to specify * and aligned buffer, e.g., in an mblk, so we don't have to allocate * memory and copy it twice. * * This function may call cred2ucaud(), which calls CRED(). Since this * can be called from an interrupt thread, receiver's cred (rcr) is needed * to determine whether audit info should be included. */ struct ucred_s * cred2ucred(const cred_t *cr, pid_t pid, void *buf, const cred_t *rcr) { struct ucred_s *uc; uint32_t realsz = ucredminsize(cr); ts_label_t *tslp = is_system_labeled() ? crgetlabel(cr) : NULL; /* The structure isn't always completely filled in, so zero it */ if (buf == NULL) { uc = kmem_zalloc(realsz, KM_SLEEP); } else { bzero(buf, realsz); uc = buf; } uc->uc_size = realsz; uc->uc_pid = pid; uc->uc_projid = cr->cr_projid; uc->uc_zoneid = crgetzoneid(cr); if (REMOTE_PEER_CRED(cr)) { /* * Other than label, the rest of cred info about a * remote peer isn't available. Copy the label directly * after the header where we generally copy the prcred. * That's why we use sizeof (struct ucred_s). The other * offset fields are initialized to 0. */ uc->uc_labeloff = tslp == NULL ? 0 : sizeof (struct ucred_s); } else { uc->uc_credoff = UCRED_CRED_OFF; uc->uc_privoff = UCRED_PRIV_OFF; uc->uc_audoff = UCRED_AUD_OFF; uc->uc_labeloff = tslp == NULL ? 0 : UCRED_LABEL_OFF; cred2prcred(cr, UCCRED(uc)); cred2prpriv(cr, UCPRIV(uc)); if (audoff == 0 || cred2ucaud(cr, UCAUD(uc), rcr) != 0) uc->uc_audoff = 0; } if (tslp != NULL) bcopy(&tslp->tsl_label, UCLABEL(uc), sizeof (bslabel_t)); return (uc); } /* * Don't allocate the non-needed group entries. Note: this function * must match the code in cred2ucred; they must agree about the * minimal size of the ucred. */ uint32_t ucredminsize(const cred_t *cr) { int ndiff; if (cr == NULL) return (ucredsize); if (REMOTE_PEER_CRED(cr)) { if (is_system_labeled()) return (sizeof (struct ucred_s) + sizeof (bslabel_t)); else return (sizeof (struct ucred_s)); } if (cr->cr_grps == NULL) ndiff = ngroups_max - 1; /* Needs one for prcred_t */ else ndiff = ngroups_max - cr->cr_grps->crg_ngroups; return (ucredsize - ndiff * sizeof (gid_t)); } /* * Get the "ucred" of a process. */ struct ucred_s * pgetucred(proc_t *p) { cred_t *cr; struct ucred_s *uc; mutex_enter(&p->p_crlock); cr = p->p_cred; crhold(cr); mutex_exit(&p->p_crlock); uc = cred2ucred(cr, p->p_pid, NULL, CRED()); crfree(cr); return (uc); } /* * If the reply status is NFSERR_EACCES, it may be because we are * root (no root net access). Check the real uid, if it isn't root * make that the uid instead and retry the call. * Private interface for NFS. */ cred_t * crnetadjust(cred_t *cr) { if (cr->cr_uid == 0 && cr->cr_ruid != 0) { cr = crdup(cr); cr->cr_uid = cr->cr_ruid; return (cr); } return (NULL); } /* * The reference count is of interest when you want to check * whether it is ok to modify the credential in place. */ uint_t crgetref(const cred_t *cr) { return (cr->cr_ref); } static int get_c2audit_load(void) { static int gotit = 0; static int c2audit_load; if (gotit) return (c2audit_load); c2audit_load = 1; /* set default value once */ if (mod_sysctl(SYS_CHECK_EXCLUDE, "c2audit") != 0) c2audit_load = 0; gotit++; return (c2audit_load); } int get_audit_ucrsize(void) { return (get_c2audit_load() ? sizeof (auditinfo64_addr_t) : 0); } /* * Set zone pointer in credential to indicated value. First adds a * hold for the new zone, then drops the hold on previous zone (if any). * This is done in this order in case the old and new zones are the * same. */ void crsetzone(cred_t *cr, zone_t *zptr) { zone_t *oldzptr = cr->cr_zone; ASSERT(cr != kcred); ASSERT(cr->cr_ref <= 2); cr->cr_zone = zptr; zone_cred_hold(zptr); if (oldzptr) zone_cred_rele(oldzptr); } /* * Create a new cred based on the supplied label */ cred_t * newcred_from_bslabel(bslabel_t *blabel, uint32_t doi, int flags) { ts_label_t *lbl = labelalloc(blabel, doi, flags); cred_t *cr = NULL; if (lbl != NULL) { if ((cr = crdup_flags(dummycr, flags)) != NULL) { cr->cr_label = lbl; } else { label_rele(lbl); } } return (cr); } /* * Derive a new cred from the existing cred, but with a different label. * To be used when a cred is being shared, but the label needs to be changed * by a caller without affecting other users */ cred_t * copycred_from_tslabel(const cred_t *cr, ts_label_t *label, int flags) { cred_t *newcr = NULL; if ((newcr = crdup_flags(cr, flags)) != NULL) { if (newcr->cr_label != NULL) label_rele(newcr->cr_label); label_hold(label); newcr->cr_label = label; } return (newcr); } /* * Derive a new cred from the existing cred, but with a different label. */ cred_t * copycred_from_bslabel(const cred_t *cr, bslabel_t *blabel, uint32_t doi, int flags) { ts_label_t *lbl = labelalloc(blabel, doi, flags); cred_t *newcr = NULL; if (lbl != NULL) { newcr = copycred_from_tslabel(cr, lbl, flags); label_rele(lbl); } return (newcr); } /* * This function returns a pointer to the kcred-equivalent in the current zone. */ cred_t * zone_kcred(void) { zone_t *zone; if ((zone = CRED()->cr_zone) != NULL) return (zone->zone_kcred); else return (kcred); } boolean_t valid_ephemeral_uid(zone_t *zone, uid_t id) { ephemeral_zsd_t *eph_zsd; if (id <= IDMAP_WK__MAX_UID) return (B_TRUE); eph_zsd = get_ephemeral_zsd(zone); ASSERT(eph_zsd != NULL); membar_consumer(); return (id > eph_zsd->min_uid && id <= eph_zsd->last_uid); } boolean_t valid_ephemeral_gid(zone_t *zone, gid_t id) { ephemeral_zsd_t *eph_zsd; if (id <= IDMAP_WK__MAX_GID) return (B_TRUE); eph_zsd = get_ephemeral_zsd(zone); ASSERT(eph_zsd != NULL); membar_consumer(); return (id > eph_zsd->min_gid && id <= eph_zsd->last_gid); } int eph_uid_alloc(zone_t *zone, int flags, uid_t *start, int count) { ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone); ASSERT(eph_zsd != NULL); mutex_enter(&eph_zsd->eph_lock); /* Test for unsigned integer wrap around */ if (eph_zsd->last_uid + count < eph_zsd->last_uid) { mutex_exit(&eph_zsd->eph_lock); return (-1); } /* first call or idmap crashed and state corrupted */ if (flags != 0) eph_zsd->min_uid = eph_zsd->last_uid; hasephids = B_TRUE; *start = eph_zsd->last_uid + 1; atomic_add_32(&eph_zsd->last_uid, count); mutex_exit(&eph_zsd->eph_lock); return (0); } int eph_gid_alloc(zone_t *zone, int flags, gid_t *start, int count) { ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone); ASSERT(eph_zsd != NULL); mutex_enter(&eph_zsd->eph_lock); /* Test for unsigned integer wrap around */ if (eph_zsd->last_gid + count < eph_zsd->last_gid) { mutex_exit(&eph_zsd->eph_lock); return (-1); } /* first call or idmap crashed and state corrupted */ if (flags != 0) eph_zsd->min_gid = eph_zsd->last_gid; hasephids = B_TRUE; *start = eph_zsd->last_gid + 1; atomic_add_32(&eph_zsd->last_gid, count); mutex_exit(&eph_zsd->eph_lock); return (0); } /* * IMPORTANT.The two functions get_ephemeral_data() and set_ephemeral_data() * are project private functions that are for use of the test system only and * are not to be used for other purposes. */ void get_ephemeral_data(zone_t *zone, uid_t *min_uid, uid_t *last_uid, gid_t *min_gid, gid_t *last_gid) { ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone); ASSERT(eph_zsd != NULL); mutex_enter(&eph_zsd->eph_lock); *min_uid = eph_zsd->min_uid; *last_uid = eph_zsd->last_uid; *min_gid = eph_zsd->min_gid; *last_gid = eph_zsd->last_gid; mutex_exit(&eph_zsd->eph_lock); } void set_ephemeral_data(zone_t *zone, uid_t min_uid, uid_t last_uid, gid_t min_gid, gid_t last_gid) { ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone); ASSERT(eph_zsd != NULL); mutex_enter(&eph_zsd->eph_lock); if (min_uid != 0) eph_zsd->min_uid = min_uid; if (last_uid != 0) eph_zsd->last_uid = last_uid; if (min_gid != 0) eph_zsd->min_gid = min_gid; if (last_gid != 0) eph_zsd->last_gid = last_gid; mutex_exit(&eph_zsd->eph_lock); } /* * If the credential user SID or group SID is mapped to an ephemeral * ID, map the credential to nobody. */ cred_t * crgetmapped(const cred_t *cr) { ephemeral_zsd_t *eph_zsd; /* * Someone incorrectly passed a NULL cred to a vnode operation * either on purpose or by calling CRED() in interrupt context. */ if (cr == NULL) return (NULL); if (cr->cr_ksid != NULL) { if (cr->cr_ksid->kr_sidx[KSID_USER].ks_id > MAXUID) { eph_zsd = get_ephemeral_zsd(crgetzone(cr)); return (eph_zsd->eph_nobody); } if (cr->cr_ksid->kr_sidx[KSID_GROUP].ks_id > MAXUID) { eph_zsd = get_ephemeral_zsd(crgetzone(cr)); return (eph_zsd->eph_nobody); } } return ((cred_t *)cr); } /* index should be in range for a ksidindex_t */ void crsetsid(cred_t *cr, ksid_t *ksp, int index) { ASSERT(cr->cr_ref <= 2); ASSERT(index >= 0 && index < KSID_COUNT); if (cr->cr_ksid == NULL && ksp == NULL) return; cr->cr_ksid = kcrsid_setsid(cr->cr_ksid, ksp, index); } void crsetsidlist(cred_t *cr, ksidlist_t *ksl) { ASSERT(cr->cr_ref <= 2); if (cr->cr_ksid == NULL && ksl == NULL) return; cr->cr_ksid = kcrsid_setsidlist(cr->cr_ksid, ksl); } ksid_t * crgetsid(const cred_t *cr, int i) { ASSERT(i >= 0 && i < KSID_COUNT); if (cr->cr_ksid != NULL && cr->cr_ksid->kr_sidx[i].ks_domain) return ((ksid_t *)&cr->cr_ksid->kr_sidx[i]); return (NULL); } ksidlist_t * crgetsidlist(const cred_t *cr) { if (cr->cr_ksid != NULL) return (cr->cr_ksid->kr_sidlist); return (NULL); } /* * Interface to set the effective and permitted privileges for * a credential; this interface does no security checks and is * intended for kernel (file)servers creating credentials with * specific privileges. */ int crsetpriv(cred_t *cr, ...) { va_list ap; const char *privnm; ASSERT(cr->cr_ref <= 2); priv_set_PA(cr); va_start(ap, cr); while ((privnm = va_arg(ap, const char *)) != NULL) { int priv = priv_getbyname(privnm, 0); if (priv < 0) return (-1); priv_addset(&CR_PPRIV(cr), priv); priv_addset(&CR_EPRIV(cr), priv); } priv_adjust_PA(cr); va_end(ap); return (0); } /* * Interface to effectively set the PRIV_ALL for * a credential; this interface does no security checks and is * intended for kernel (file)servers to extend the user credentials * to be ALL, like either kcred or zcred. */ void crset_zone_privall(cred_t *cr) { zone_t *zone = crgetzone(cr); priv_fillset(&CR_LPRIV(cr)); CR_EPRIV(cr) = CR_PPRIV(cr) = CR_IPRIV(cr) = CR_LPRIV(cr); priv_intersect(zone->zone_privset, &CR_LPRIV(cr)); priv_intersect(zone->zone_privset, &CR_EPRIV(cr)); priv_intersect(zone->zone_privset, &CR_IPRIV(cr)); priv_intersect(zone->zone_privset, &CR_PPRIV(cr)); } struct credklpd * crgetcrklpd(const cred_t *cr) { return (cr->cr_klpd); } void crsetcrklpd(cred_t *cr, struct credklpd *crklpd) { ASSERT(cr->cr_ref <= 2); if (cr->cr_klpd != NULL) crklpd_rele(cr->cr_klpd); cr->cr_klpd = crklpd; } credgrp_t * crgrpcopyin(int n, gid_t *gidset) { credgrp_t *mem; size_t sz = CREDGRPSZ(n); ASSERT(n > 0); mem = kmem_alloc(sz, KM_SLEEP); if (copyin(gidset, mem->crg_groups, sizeof (gid_t) * n)) { kmem_free(mem, sz); return (NULL); } mem->crg_ref = 1; mem->crg_ngroups = n; return (mem); } const gid_t * crgetggroups(const credgrp_t *grps) { return (grps->crg_groups); } void crsetcredgrp(cred_t *cr, credgrp_t *grps) { ASSERT(cr->cr_ref <= 2); if (cr->cr_grps != NULL) crgrprele(cr->cr_grps); cr->cr_grps = grps; } void crgrprele(credgrp_t *grps) { if (atomic_add_32_nv(&grps->crg_ref, -1) == 0) kmem_free(grps, CREDGRPSZ(grps->crg_ngroups)); } static void crgrphold(credgrp_t *grps) { atomic_add_32(&grps->crg_ref, 1); }