/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* FIONBIO */ #include #include #include #include #define IN_PROGRESS_DELAY 1 /* * in6addr_any is currently all zeroes, but use the macro in case this * ever changes. */ static const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT; static void idm_sorx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status); static void idm_sorx_addl_pdu_cb(idm_pdu_t *pdu, idm_status_t status); static void idm_sotx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status); static idm_status_t idm_so_conn_create_common(idm_conn_t *ic, ksocket_t new_so); static void idm_so_conn_destroy_common(idm_conn_t *ic); static void idm_so_conn_connect_common(idm_conn_t *ic); static void idm_set_ini_preconnect_options(idm_so_conn_t *sc, boolean_t boot_conn); static void idm_set_ini_postconnect_options(idm_so_conn_t *sc); static void idm_set_tgt_connect_options(ksocket_t so); static idm_status_t idm_i_so_tx(idm_pdu_t *pdu); static idm_status_t idm_sorecvdata(idm_conn_t *ic, idm_pdu_t *pdu); static void idm_so_send_rtt_data(idm_conn_t *ic, idm_task_t *idt, idm_buf_t *idb, uint32_t offset, uint32_t length); static void idm_so_send_rtt_data_done(idm_task_t *idt, idm_buf_t *idb); static idm_status_t idm_so_send_buf_region(idm_task_t *idt, idm_buf_t *idb, uint32_t buf_region_offset, uint32_t buf_region_length); static uint32_t idm_fill_iov(idm_pdu_t *pdu, idm_buf_t *idb, uint32_t ro, uint32_t dlength); static idm_status_t idm_so_handle_digest(idm_conn_t *it, nvpair_t *digest_choice, const idm_kv_xlate_t *ikvx); static void idm_so_socket_set_nonblock(struct sonode *node); static void idm_so_socket_set_block(struct sonode *node); /* * Transport ops prototypes */ static void idm_so_tx(idm_conn_t *ic, idm_pdu_t *pdu); static idm_status_t idm_so_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb); static idm_status_t idm_so_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb); static void idm_so_rx_datain(idm_conn_t *ic, idm_pdu_t *pdu); static void idm_so_rx_rtt(idm_conn_t *ic, idm_pdu_t *pdu); static void idm_so_rx_dataout(idm_conn_t *ic, idm_pdu_t *pdu); static idm_status_t idm_so_free_task_rsrc(idm_task_t *idt); static kv_status_t idm_so_negotiate_key_values(idm_conn_t *it, nvlist_t *request_nvl, nvlist_t *response_nvl, nvlist_t *negotiated_nvl); static void idm_so_notice_key_values(idm_conn_t *it, nvlist_t *negotiated_nvl); static kv_status_t idm_so_declare_key_values(idm_conn_t *it, nvlist_t *config_nvl, nvlist_t *outgoing_nvl); static boolean_t idm_so_conn_is_capable(idm_conn_req_t *ic, idm_transport_caps_t *caps); static idm_status_t idm_so_buf_alloc(idm_buf_t *idb, uint64_t buflen); static void idm_so_buf_free(idm_buf_t *idb); static idm_status_t idm_so_buf_setup(idm_buf_t *idb); static void idm_so_buf_teardown(idm_buf_t *idb); static idm_status_t idm_so_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t *is); static void idm_so_tgt_svc_destroy(idm_svc_t *is); static idm_status_t idm_so_tgt_svc_online(idm_svc_t *is); static void idm_so_tgt_svc_offline(idm_svc_t *is); static void idm_so_tgt_conn_destroy(idm_conn_t *ic); static idm_status_t idm_so_tgt_conn_connect(idm_conn_t *ic); static void idm_so_conn_disconnect(idm_conn_t *ic); static idm_status_t idm_so_ini_conn_create(idm_conn_req_t *cr, idm_conn_t *ic); static void idm_so_ini_conn_destroy(idm_conn_t *ic); static idm_status_t idm_so_ini_conn_connect(idm_conn_t *ic); /* * IDM Native Sockets transport operations */ static idm_transport_ops_t idm_so_transport_ops = { idm_so_tx, /* it_tx_pdu */ idm_so_buf_tx_to_ini, /* it_buf_tx_to_ini */ idm_so_buf_rx_from_ini, /* it_buf_rx_from_ini */ idm_so_rx_datain, /* it_rx_datain */ idm_so_rx_rtt, /* it_rx_rtt */ idm_so_rx_dataout, /* it_rx_dataout */ NULL, /* it_alloc_conn_rsrc */ NULL, /* it_free_conn_rsrc */ NULL, /* it_tgt_enable_datamover */ NULL, /* it_ini_enable_datamover */ NULL, /* it_conn_terminate */ idm_so_free_task_rsrc, /* it_free_task_rsrc */ idm_so_negotiate_key_values, /* it_negotiate_key_values */ idm_so_notice_key_values, /* it_notice_key_values */ idm_so_conn_is_capable, /* it_conn_is_capable */ idm_so_buf_alloc, /* it_buf_alloc */ idm_so_buf_free, /* it_buf_free */ idm_so_buf_setup, /* it_buf_setup */ idm_so_buf_teardown, /* it_buf_teardown */ idm_so_tgt_svc_create, /* it_tgt_svc_create */ idm_so_tgt_svc_destroy, /* it_tgt_svc_destroy */ idm_so_tgt_svc_online, /* it_tgt_svc_online */ idm_so_tgt_svc_offline, /* it_tgt_svc_offline */ idm_so_tgt_conn_destroy, /* it_tgt_conn_destroy */ idm_so_tgt_conn_connect, /* it_tgt_conn_connect */ idm_so_conn_disconnect, /* it_tgt_conn_disconnect */ idm_so_ini_conn_create, /* it_ini_conn_create */ idm_so_ini_conn_destroy, /* it_ini_conn_destroy */ idm_so_ini_conn_connect, /* it_ini_conn_connect */ idm_so_conn_disconnect, /* it_ini_conn_disconnect */ idm_so_declare_key_values /* it_declare_key_values */ }; kmutex_t idm_so_timed_socket_mutex; /* * idm_so_init() * Sockets transport initialization */ void idm_so_init(idm_transport_t *it) { /* Cache for IDM Data and R2T Transmit PDU's */ idm.idm_sotx_pdu_cache = kmem_cache_create("idm_tx_pdu_cache", sizeof (idm_pdu_t) + sizeof (iscsi_hdr_t), 8, &idm_sotx_pdu_constructor, NULL, NULL, NULL, NULL, KM_SLEEP); /* Cache for IDM Receive PDU's */ idm.idm_sorx_pdu_cache = kmem_cache_create("idm_rx_pdu_cache", sizeof (idm_pdu_t) + IDM_SORX_CACHE_HDRLEN, 8, &idm_sorx_pdu_constructor, NULL, NULL, NULL, NULL, KM_SLEEP); /* 128k buffer cache */ idm.idm_so_128k_buf_cache = kmem_cache_create("idm_128k_buf_cache", IDM_SO_BUF_CACHE_UB, 8, NULL, NULL, NULL, NULL, NULL, KM_SLEEP); /* Set the sockets transport ops */ it->it_ops = &idm_so_transport_ops; mutex_init(&idm_so_timed_socket_mutex, NULL, MUTEX_DEFAULT, NULL); } /* * idm_so_fini() * Sockets transport teardown */ void idm_so_fini(void) { kmem_cache_destroy(idm.idm_so_128k_buf_cache); kmem_cache_destroy(idm.idm_sotx_pdu_cache); kmem_cache_destroy(idm.idm_sorx_pdu_cache); mutex_destroy(&idm_so_timed_socket_mutex); } ksocket_t idm_socreate(int domain, int type, int protocol) { ksocket_t ks; if (!ksocket_socket(&ks, domain, type, protocol, KSOCKET_NOSLEEP, CRED())) { return (ks); } else { return (NULL); } } /* * idm_soshutdown will disconnect the socket and prevent subsequent PDU * reception and transmission. The sonode still exists but its state * gets modified to indicate it is no longer connected. Calls to * idm_sorecv/idm_iov_sorecv will return so idm_soshutdown can be used * regain control of a thread stuck in idm_sorecv. */ void idm_soshutdown(ksocket_t so) { (void) ksocket_shutdown(so, SHUT_RDWR, CRED()); } /* * idm_sodestroy releases all resources associated with a socket previously * created with idm_socreate. The socket must be shutdown using * idm_soshutdown before the socket is destroyed with idm_sodestroy, * otherwise undefined behavior will result. */ void idm_sodestroy(ksocket_t ks) { (void) ksocket_close(ks, CRED()); } /* * Function to compare two addresses in sockaddr_storage format */ int idm_ss_compare(const struct sockaddr_storage *cmp_ss1, const struct sockaddr_storage *cmp_ss2, boolean_t v4_mapped_as_v4, boolean_t compare_ports) { struct sockaddr_storage mapped_v4_ss1, mapped_v4_ss2; const struct sockaddr_storage *ss1, *ss2; struct in_addr *in1, *in2; struct in6_addr *in61, *in62; int i; /* * Normalize V4-mapped IPv6 addresses into V4 format if * v4_mapped_as_v4 is B_TRUE. */ ss1 = cmp_ss1; ss2 = cmp_ss2; if (v4_mapped_as_v4 && (ss1->ss_family == AF_INET6)) { in61 = &((struct sockaddr_in6 *)ss1)->sin6_addr; if (IN6_IS_ADDR_V4MAPPED(in61)) { bzero(&mapped_v4_ss1, sizeof (mapped_v4_ss1)); mapped_v4_ss1.ss_family = AF_INET; ((struct sockaddr_in *)&mapped_v4_ss1)->sin_port = ((struct sockaddr_in *)ss1)->sin_port; IN6_V4MAPPED_TO_INADDR(in61, &((struct sockaddr_in *)&mapped_v4_ss1)->sin_addr); ss1 = &mapped_v4_ss1; } } ss2 = cmp_ss2; if (v4_mapped_as_v4 && (ss2->ss_family == AF_INET6)) { in62 = &((struct sockaddr_in6 *)ss2)->sin6_addr; if (IN6_IS_ADDR_V4MAPPED(in62)) { bzero(&mapped_v4_ss2, sizeof (mapped_v4_ss2)); mapped_v4_ss2.ss_family = AF_INET; ((struct sockaddr_in *)&mapped_v4_ss2)->sin_port = ((struct sockaddr_in *)ss2)->sin_port; IN6_V4MAPPED_TO_INADDR(in62, &((struct sockaddr_in *)&mapped_v4_ss2)->sin_addr); ss2 = &mapped_v4_ss2; } } /* * Compare ports, then address family, then ip address */ if (compare_ports && (((struct sockaddr_in *)ss1)->sin_port != ((struct sockaddr_in *)ss2)->sin_port)) { if (((struct sockaddr_in *)ss1)->sin_port > ((struct sockaddr_in *)ss2)->sin_port) return (1); else return (-1); } /* * ports are the same */ if (ss1->ss_family != ss2->ss_family) { if (ss1->ss_family == AF_INET) return (1); else return (-1); } /* * address families are the same */ if (ss1->ss_family == AF_INET) { in1 = &((struct sockaddr_in *)ss1)->sin_addr; in2 = &((struct sockaddr_in *)ss2)->sin_addr; if (in1->s_addr > in2->s_addr) return (1); else if (in1->s_addr < in2->s_addr) return (-1); else return (0); } else if (ss1->ss_family == AF_INET6) { in61 = &((struct sockaddr_in6 *)ss1)->sin6_addr; in62 = &((struct sockaddr_in6 *)ss2)->sin6_addr; for (i = 0; i < 4; i++) { if (in61->s6_addr32[i] > in62->s6_addr32[i]) return (1); else if (in61->s6_addr32[i] < in62->s6_addr32[i]) return (-1); } return (0); } return (1); } /* * IP address filter functions to flag addresses that should not * go out to initiators through discovery. */ static boolean_t idm_v4_addr_okay(struct in_addr *in_addr) { in_addr_t addr = ntohl(in_addr->s_addr); if ((INADDR_NONE == addr) || (IN_MULTICAST(addr)) || ((addr >> IN_CLASSA_NSHIFT) == 0) || ((addr >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) { return (B_FALSE); } return (B_TRUE); } static boolean_t idm_v6_addr_okay(struct in6_addr *addr6) { if ((IN6_IS_ADDR_UNSPECIFIED(addr6)) || (IN6_IS_ADDR_LOOPBACK(addr6)) || (IN6_IS_ADDR_MULTICAST(addr6)) || (IN6_IS_ADDR_V4MAPPED(addr6)) || (IN6_IS_ADDR_V4COMPAT(addr6)) || (IN6_IS_ADDR_LINKLOCAL(addr6))) { return (B_FALSE); } return (B_TRUE); } /* * idm_get_ipaddr will retrieve a list of IP Addresses which the host is * configured with by sending down a sequence of kernel ioctl to IP STREAMS. */ int idm_get_ipaddr(idm_addr_list_t **ipaddr_p) { ksocket_t so4, so6; struct lifnum lifn; struct lifconf lifc; struct lifreq *lp; int rval; int numifs; int bufsize; void *buf; int i, j, n, rc; struct sockaddr_storage ss; struct sockaddr_in *sin; struct sockaddr_in6 *sin6; idm_addr_t *ip; idm_addr_list_t *ipaddr = NULL; int size_ipaddr; *ipaddr_p = NULL; size_ipaddr = 0; buf = NULL; /* create an ipv4 and ipv6 UDP socket */ if ((so6 = idm_socreate(PF_INET6, SOCK_DGRAM, 0)) == NULL) return (0); if ((so4 = idm_socreate(PF_INET, SOCK_DGRAM, 0)) == NULL) { idm_sodestroy(so6); return (0); } retry_count: /* snapshot the current number of interfaces */ lifn.lifn_family = PF_UNSPEC; lifn.lifn_flags = LIFC_NOXMIT | LIFC_TEMPORARY | LIFC_ALLZONES; lifn.lifn_count = 0; /* use vp6 for ioctls with unspecified families by default */ if (ksocket_ioctl(so6, SIOCGLIFNUM, (intptr_t)&lifn, &rval, CRED()) != 0) { goto cleanup; } numifs = lifn.lifn_count; if (numifs <= 0) { goto cleanup; } /* allocate extra room in case more interfaces appear */ numifs += 10; /* get the interface names and ip addresses */ bufsize = numifs * sizeof (struct lifreq); buf = kmem_alloc(bufsize, KM_SLEEP); lifc.lifc_family = AF_UNSPEC; lifc.lifc_flags = LIFC_NOXMIT | LIFC_TEMPORARY | LIFC_ALLZONES; lifc.lifc_len = bufsize; lifc.lifc_buf = buf; rc = ksocket_ioctl(so6, SIOCGLIFCONF, (intptr_t)&lifc, &rval, CRED()); if (rc != 0) { goto cleanup; } /* if our extra room is used up, try again */ if (bufsize <= lifc.lifc_len) { kmem_free(buf, bufsize); buf = NULL; goto retry_count; } /* calc actual number of ifconfs */ n = lifc.lifc_len / sizeof (struct lifreq); /* get ip address */ if (n > 0) { size_ipaddr = sizeof (idm_addr_list_t) + (n - 1) * sizeof (idm_addr_t); ipaddr = kmem_zalloc(size_ipaddr, KM_SLEEP); } else { goto cleanup; } /* * Examine the array of interfaces and filter uninteresting ones */ for (i = 0, j = 0, lp = lifc.lifc_req; i < n; i++, lp++) { /* * Copy the address as the SIOCGLIFFLAGS ioctl is destructive */ ss = lp->lifr_addr; /* * fetch the flags using the socket of the correct family */ switch (ss.ss_family) { case AF_INET: rc = ksocket_ioctl(so4, SIOCGLIFFLAGS, (intptr_t)lp, &rval, CRED()); break; case AF_INET6: rc = ksocket_ioctl(so6, SIOCGLIFFLAGS, (intptr_t)lp, &rval, CRED()); break; default: continue; } if (rc == 0) { /* * If we got the flags, skip uninteresting * interfaces based on flags */ if ((lp->lifr_flags & IFF_UP) != IFF_UP) continue; if (lp->lifr_flags & (IFF_ANYCAST|IFF_NOLOCAL|IFF_DEPRECATED)) continue; } /* save ip address */ ip = &ipaddr->al_addrs[j]; switch (ss.ss_family) { case AF_INET: sin = (struct sockaddr_in *)&ss; if (!idm_v4_addr_okay(&sin->sin_addr)) continue; ip->a_addr.i_addr.in4 = sin->sin_addr; ip->a_addr.i_insize = sizeof (struct in_addr); break; case AF_INET6: sin6 = (struct sockaddr_in6 *)&ss; if (!idm_v6_addr_okay(&sin6->sin6_addr)) continue; ip->a_addr.i_addr.in6 = sin6->sin6_addr; ip->a_addr.i_insize = sizeof (struct in6_addr); break; default: continue; } j++; } if (j == 0) { /* no valid ifaddr */ kmem_free(ipaddr, size_ipaddr); size_ipaddr = 0; ipaddr = NULL; } else { ipaddr->al_out_cnt = j; } cleanup: idm_sodestroy(so6); idm_sodestroy(so4); if (buf != NULL) kmem_free(buf, bufsize); *ipaddr_p = ipaddr; return (size_ipaddr); } int idm_sorecv(ksocket_t so, void *msg, size_t len) { iovec_t iov; ASSERT(so != NULL); ASSERT(len != 0); /* * Fill in iovec and receive data */ iov.iov_base = msg; iov.iov_len = len; return (idm_iov_sorecv(so, &iov, 1, len)); } /* * idm_sosendto - Sends a buffered data on a non-connected socket. * * This function puts the data provided on the wire by calling sosendmsg. * It will return only when all the data has been sent or if an error * occurs. * * Returns 0 for success, the socket errno value if sosendmsg fails, and * -1 if sosendmsg returns success but uio_resid != 0 */ int idm_sosendto(ksocket_t so, void *buff, size_t len, struct sockaddr *name, socklen_t namelen) { struct msghdr msg; struct iovec iov[1]; int error; size_t sent = 0; iov[0].iov_base = buff; iov[0].iov_len = len; /* Initialization of the message header. */ bzero(&msg, sizeof (msg)); msg.msg_iov = iov; msg.msg_iovlen = 1; msg.msg_name = name; msg.msg_namelen = namelen; if ((error = ksocket_sendmsg(so, &msg, 0, &sent, CRED())) == 0) { /* Data sent */ if (sent == len) { /* All data sent. Success. */ return (0); } else { /* Not all data was sent. Failure */ return (-1); } } /* Send failed */ return (error); } /* * idm_iov_sosend - Sends an iovec on a connection. * * This function puts the data provided on the wire by calling sosendmsg. * It will return only when all the data has been sent or if an error * occurs. * * Returns 0 for success, the socket errno value if sosendmsg fails, and * -1 if sosendmsg returns success but uio_resid != 0 */ int idm_iov_sosend(ksocket_t so, iovec_t *iop, int iovlen, size_t total_len) { struct msghdr msg; int error; size_t sent = 0; ASSERT(iop != NULL); /* Initialization of the message header. */ bzero(&msg, sizeof (msg)); msg.msg_iov = iop; msg.msg_iovlen = iovlen; if ((error = ksocket_sendmsg(so, &msg, 0, &sent, CRED())) == 0) { /* Data sent */ if (sent == total_len) { /* All data sent. Success. */ return (0); } else { /* Not all data was sent. Failure */ return (-1); } } /* Send failed */ return (error); } /* * idm_iov_sorecv - Receives an iovec from a connection * * This function gets the data asked for from the socket. It will return * only when all the requested data has been retrieved or if an error * occurs. * * Returns 0 for success, the socket errno value if sorecvmsg fails, and * -1 if sorecvmsg returns success but uio_resid != 0 */ int idm_iov_sorecv(ksocket_t so, iovec_t *iop, int iovlen, size_t total_len) { struct msghdr msg; int error; size_t recv; int flags; ASSERT(iop != NULL); /* Initialization of the message header. */ bzero(&msg, sizeof (msg)); msg.msg_iov = iop; msg.msg_iovlen = iovlen; flags = MSG_WAITALL; if ((error = ksocket_recvmsg(so, &msg, flags, &recv, CRED())) == 0) { /* Received data */ if (recv == total_len) { /* All requested data received. Success */ return (0); } else { /* * Not all data was received. The connection has * probably failed. */ return (-1); } } /* Receive failed */ return (error); } static void idm_set_ini_preconnect_options(idm_so_conn_t *sc, boolean_t boot_conn) { int conn_abort = 10000; int conn_notify = 2000; int abort = 30000; /* Pre-connect socket options */ (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP, TCP_CONN_NOTIFY_THRESHOLD, (char *)&conn_notify, sizeof (int), CRED()); if (boot_conn == B_FALSE) { (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP, TCP_CONN_ABORT_THRESHOLD, (char *)&conn_abort, sizeof (int), CRED()); (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP, TCP_ABORT_THRESHOLD, (char *)&abort, sizeof (int), CRED()); } } static void idm_set_ini_postconnect_options(idm_so_conn_t *sc) { int32_t rcvbuf = IDM_RCVBUF_SIZE; int32_t sndbuf = IDM_SNDBUF_SIZE; const int on = 1; /* Set postconnect options */ (void) ksocket_setsockopt(sc->ic_so, IPPROTO_TCP, TCP_NODELAY, (char *)&on, sizeof (int), CRED()); (void) ksocket_setsockopt(sc->ic_so, SOL_SOCKET, SO_RCVBUF, (char *)&rcvbuf, sizeof (int), CRED()); (void) ksocket_setsockopt(sc->ic_so, SOL_SOCKET, SO_SNDBUF, (char *)&sndbuf, sizeof (int), CRED()); } static void idm_set_tgt_connect_options(ksocket_t ks) { int32_t rcvbuf = IDM_RCVBUF_SIZE; int32_t sndbuf = IDM_SNDBUF_SIZE; const int on = 1; /* Set connect options */ (void) ksocket_setsockopt(ks, SOL_SOCKET, SO_RCVBUF, (char *)&rcvbuf, sizeof (int), CRED()); (void) ksocket_setsockopt(ks, SOL_SOCKET, SO_SNDBUF, (char *)&sndbuf, sizeof (int), CRED()); (void) ksocket_setsockopt(ks, IPPROTO_TCP, TCP_NODELAY, (char *)&on, sizeof (on), CRED()); } static uint32_t n2h24(const uchar_t *ptr) { return ((ptr[0] << 16) | (ptr[1] << 8) | ptr[2]); } static idm_status_t idm_sorecvhdr(idm_conn_t *ic, idm_pdu_t *pdu) { iscsi_hdr_t *bhs; uint32_t hdr_digest_crc; uint32_t crc_calculated; void *new_hdr; int ahslen = 0; int total_len = 0; int iovlen = 0; struct iovec iov[2]; idm_so_conn_t *so_conn; int rc; so_conn = ic->ic_transport_private; /* * Read BHS */ bhs = pdu->isp_hdr; rc = idm_sorecv(so_conn->ic_so, pdu->isp_hdr, sizeof (iscsi_hdr_t)); if (rc != IDM_STATUS_SUCCESS) { return (IDM_STATUS_FAIL); } /* * Check actual AHS length against the amount available in the buffer */ pdu->isp_hdrlen = sizeof (iscsi_hdr_t) + (bhs->hlength * sizeof (uint32_t)); pdu->isp_datalen = n2h24(bhs->dlength); if (ic->ic_conn_type == CONN_TYPE_TGT && pdu->isp_datalen > ic->ic_conn_params.max_recv_dataseglen) { IDM_CONN_LOG(CE_WARN, "idm_sorecvhdr: exceeded the max data segment length"); return (IDM_STATUS_FAIL); } if (bhs->hlength > IDM_SORX_CACHE_AHSLEN) { /* Allocate a new header segment and change the callback */ new_hdr = kmem_alloc(pdu->isp_hdrlen, KM_SLEEP); bcopy(pdu->isp_hdr, new_hdr, sizeof (iscsi_hdr_t)); pdu->isp_hdr = new_hdr; pdu->isp_flags |= IDM_PDU_ADDL_HDR; /* * This callback will restore the expected values after * the RX PDU has been processed. */ pdu->isp_callback = idm_sorx_addl_pdu_cb; } /* * Setup receipt of additional header and header digest (if enabled). */ if (bhs->hlength > 0) { iov[iovlen].iov_base = (caddr_t)(pdu->isp_hdr + 1); ahslen = pdu->isp_hdrlen - sizeof (iscsi_hdr_t); iov[iovlen].iov_len = ahslen; total_len += iov[iovlen].iov_len; iovlen++; } if (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST) { iov[iovlen].iov_base = (caddr_t)&hdr_digest_crc; iov[iovlen].iov_len = sizeof (hdr_digest_crc); total_len += iov[iovlen].iov_len; iovlen++; } if ((iovlen != 0) && (idm_iov_sorecv(so_conn->ic_so, &iov[0], iovlen, total_len) != 0)) { return (IDM_STATUS_FAIL); } /* * Validate header digest if enabled */ if (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST) { crc_calculated = idm_crc32c(pdu->isp_hdr, sizeof (iscsi_hdr_t) + ahslen); if (crc_calculated != hdr_digest_crc) { /* Invalid Header Digest */ return (IDM_STATUS_HEADER_DIGEST); } } return (0); } /* * idm_so_ini_conn_create() * Allocate the sockets transport connection resources. */ static idm_status_t idm_so_ini_conn_create(idm_conn_req_t *cr, idm_conn_t *ic) { ksocket_t so; idm_so_conn_t *so_conn; idm_status_t idmrc; so = idm_socreate(cr->cr_domain, cr->cr_type, cr->cr_protocol); if (so == NULL) { return (IDM_STATUS_FAIL); } /* Bind the socket if configured to do so */ if (cr->cr_bound) { if (ksocket_bind(so, &cr->cr_bound_addr.sin, SIZEOF_SOCKADDR(&cr->cr_bound_addr.sin), CRED()) != 0) { idm_sodestroy(so); return (IDM_STATUS_FAIL); } } idmrc = idm_so_conn_create_common(ic, so); if (idmrc != IDM_STATUS_SUCCESS) { idm_soshutdown(so); idm_sodestroy(so); return (IDM_STATUS_FAIL); } so_conn = ic->ic_transport_private; /* Set up socket options */ idm_set_ini_preconnect_options(so_conn, cr->cr_boot_conn); return (IDM_STATUS_SUCCESS); } /* * idm_so_ini_conn_destroy() * Tear down the sockets transport connection resources. */ static void idm_so_ini_conn_destroy(idm_conn_t *ic) { idm_so_conn_destroy_common(ic); } /* * idm_so_ini_conn_connect() * Establish the connection referred to by the handle previously allocated via * idm_so_ini_conn_create(). */ static idm_status_t idm_so_ini_conn_connect(idm_conn_t *ic) { idm_so_conn_t *so_conn; struct sonode *node = NULL; int rc; clock_t lbolt, conn_login_max, conn_login_interval; boolean_t nonblock; so_conn = ic->ic_transport_private; nonblock = ic->ic_conn_params.nonblock_socket; conn_login_max = ic->ic_conn_params.conn_login_max; conn_login_interval = ddi_get_lbolt() + SEC_TO_TICK(ic->ic_conn_params.conn_login_interval); if (nonblock == B_TRUE) { node = ((struct sonode *)(so_conn->ic_so)); /* Set to none block socket mode */ idm_so_socket_set_nonblock(node); do { rc = ksocket_connect(so_conn->ic_so, &ic->ic_ini_dst_addr.sin, (SIZEOF_SOCKADDR(&ic->ic_ini_dst_addr.sin)), CRED()); if (rc == 0 || rc == EISCONN) { /* socket success or already success */ rc = IDM_STATUS_SUCCESS; break; } if ((rc == ETIMEDOUT) || (rc == ECONNREFUSED) || (rc == ECONNRESET)) { /* socket connection timeout or refuse */ break; } lbolt = ddi_get_lbolt(); if (lbolt > conn_login_max) { /* * Connection retry timeout, * failed connect to target. */ break; } if (lbolt < conn_login_interval) { if ((rc == EINPROGRESS) || (rc == EALREADY)) { /* TCP connect still in progress */ delay(SEC_TO_TICK(IN_PROGRESS_DELAY)); continue; } else { delay(conn_login_interval - lbolt); } } conn_login_interval = ddi_get_lbolt() + SEC_TO_TICK(ic->ic_conn_params.conn_login_interval); } while (rc != 0); /* resume to nonblock mode */ if (rc == IDM_STATUS_SUCCESS) { idm_so_socket_set_block(node); } } else { rc = ksocket_connect(so_conn->ic_so, &ic->ic_ini_dst_addr.sin, (SIZEOF_SOCKADDR(&ic->ic_ini_dst_addr.sin)), CRED()); } if (rc != 0) { idm_soshutdown(so_conn->ic_so); return (IDM_STATUS_FAIL); } idm_so_conn_connect_common(ic); idm_set_ini_postconnect_options(so_conn); return (IDM_STATUS_SUCCESS); } idm_status_t idm_so_tgt_conn_create(idm_conn_t *ic, ksocket_t new_so) { idm_status_t idmrc; idmrc = idm_so_conn_create_common(ic, new_so); return (idmrc); } static void idm_so_tgt_conn_destroy(idm_conn_t *ic) { idm_so_conn_destroy_common(ic); } /* * idm_so_tgt_conn_connect() * Establish the connection in ic, passed from idm_tgt_conn_finish(), which * is invoked from the SM as a result of an inbound connection request. */ static idm_status_t idm_so_tgt_conn_connect(idm_conn_t *ic) { idm_so_conn_connect_common(ic); return (IDM_STATUS_SUCCESS); } static idm_status_t idm_so_conn_create_common(idm_conn_t *ic, ksocket_t new_so) { idm_so_conn_t *so_conn; so_conn = kmem_zalloc(sizeof (idm_so_conn_t), KM_SLEEP); so_conn->ic_so = new_so; ic->ic_transport_private = so_conn; ic->ic_transport_hdrlen = 0; /* Set the scoreboarding flag on this connection */ ic->ic_conn_flags |= IDM_CONN_USE_SCOREBOARD; ic->ic_conn_params.max_recv_dataseglen = ISCSI_DEFAULT_MAX_RECV_SEG_LEN; ic->ic_conn_params.max_xmit_dataseglen = ISCSI_DEFAULT_MAX_XMIT_SEG_LEN; /* * Initialize tx thread mutex and list */ mutex_init(&so_conn->ic_tx_mutex, NULL, MUTEX_DEFAULT, NULL); cv_init(&so_conn->ic_tx_cv, NULL, CV_DEFAULT, NULL); list_create(&so_conn->ic_tx_list, sizeof (idm_pdu_t), offsetof(idm_pdu_t, idm_tx_link)); return (IDM_STATUS_SUCCESS); } static void idm_so_conn_destroy_common(idm_conn_t *ic) { idm_so_conn_t *so_conn = ic->ic_transport_private; ic->ic_transport_private = NULL; idm_sodestroy(so_conn->ic_so); list_destroy(&so_conn->ic_tx_list); mutex_destroy(&so_conn->ic_tx_mutex); cv_destroy(&so_conn->ic_tx_cv); kmem_free(so_conn, sizeof (idm_so_conn_t)); } static void idm_so_conn_connect_common(idm_conn_t *ic) { idm_so_conn_t *so_conn; struct sockaddr_in6 t_addr; socklen_t t_addrlen = 0; so_conn = ic->ic_transport_private; bzero(&t_addr, sizeof (struct sockaddr_in6)); t_addrlen = sizeof (struct sockaddr_in6); /* Set the local and remote addresses in the idm conn handle */ (void) ksocket_getsockname(so_conn->ic_so, (struct sockaddr *)&t_addr, &t_addrlen, CRED()); bcopy(&t_addr, &ic->ic_laddr, t_addrlen); (void) ksocket_getpeername(so_conn->ic_so, (struct sockaddr *)&t_addr, &t_addrlen, CRED()); bcopy(&t_addr, &ic->ic_raddr, t_addrlen); mutex_enter(&ic->ic_mutex); so_conn->ic_tx_thread = thread_create(NULL, 0, idm_sotx_thread, ic, 0, &p0, TS_RUN, minclsyspri); so_conn->ic_rx_thread = thread_create(NULL, 0, idm_sorx_thread, ic, 0, &p0, TS_RUN, minclsyspri); while (so_conn->ic_rx_thread_did == 0 || so_conn->ic_tx_thread_did == 0) cv_wait(&ic->ic_cv, &ic->ic_mutex); mutex_exit(&ic->ic_mutex); } /* * idm_so_conn_disconnect() * Shutdown the socket connection and stop the thread */ static void idm_so_conn_disconnect(idm_conn_t *ic) { idm_so_conn_t *so_conn; so_conn = ic->ic_transport_private; mutex_enter(&ic->ic_mutex); so_conn->ic_rx_thread_running = B_FALSE; so_conn->ic_tx_thread_running = B_FALSE; /* We need to wakeup the TX thread */ mutex_enter(&so_conn->ic_tx_mutex); cv_signal(&so_conn->ic_tx_cv); mutex_exit(&so_conn->ic_tx_mutex); mutex_exit(&ic->ic_mutex); /* This should wakeup the RX thread if it is sleeping */ idm_soshutdown(so_conn->ic_so); thread_join(so_conn->ic_tx_thread_did); thread_join(so_conn->ic_rx_thread_did); } /* * idm_so_tgt_svc_create() * Establish a service on an IP address and port. idm_svc_req_t contains * the service parameters. */ /*ARGSUSED*/ static idm_status_t idm_so_tgt_svc_create(idm_svc_req_t *sr, idm_svc_t *is) { idm_so_svc_t *so_svc; so_svc = kmem_zalloc(sizeof (idm_so_svc_t), KM_SLEEP); /* Set the new sockets service in svc handle */ is->is_so_svc = (void *)so_svc; return (IDM_STATUS_SUCCESS); } /* * idm_so_tgt_svc_destroy() * Teardown sockets resources allocated in idm_so_tgt_svc_create() */ static void idm_so_tgt_svc_destroy(idm_svc_t *is) { /* the socket will have been torn down; free the service */ kmem_free(is->is_so_svc, sizeof (idm_so_svc_t)); } /* * idm_so_tgt_svc_online() * Launch a watch thread on the svc allocated in idm_so_tgt_svc_create() */ static idm_status_t idm_so_tgt_svc_online(idm_svc_t *is) { idm_so_svc_t *so_svc; idm_svc_req_t *sr = &is->is_svc_req; struct sockaddr_in6 sin6_ip; const uint32_t on = 1; const uint32_t off = 0; mutex_enter(&is->is_mutex); so_svc = (idm_so_svc_t *)is->is_so_svc; /* * Try creating an IPv6 socket first */ if ((so_svc->is_so = idm_socreate(PF_INET6, SOCK_STREAM, 0)) == NULL) { mutex_exit(&is->is_mutex); return (IDM_STATUS_FAIL); } else { bzero(&sin6_ip, sizeof (sin6_ip)); sin6_ip.sin6_family = AF_INET6; sin6_ip.sin6_port = htons(sr->sr_port); sin6_ip.sin6_addr = in6addr_any; (void) ksocket_setsockopt(so_svc->is_so, SOL_SOCKET, SO_REUSEADDR, (char *)&on, sizeof (on), CRED()); /* * Turn off SO_MAC_EXEMPT so future sobinds succeed */ (void) ksocket_setsockopt(so_svc->is_so, SOL_SOCKET, SO_MAC_EXEMPT, (char *)&off, sizeof (off), CRED()); if (ksocket_bind(so_svc->is_so, (struct sockaddr *)&sin6_ip, sizeof (sin6_ip), CRED()) != 0) { mutex_exit(&is->is_mutex); idm_sodestroy(so_svc->is_so); return (IDM_STATUS_FAIL); } } idm_set_tgt_connect_options(so_svc->is_so); if (ksocket_listen(so_svc->is_so, 5, CRED()) != 0) { mutex_exit(&is->is_mutex); idm_soshutdown(so_svc->is_so); idm_sodestroy(so_svc->is_so); return (IDM_STATUS_FAIL); } /* Launch a watch thread */ so_svc->is_thread = thread_create(NULL, 0, idm_so_svc_port_watcher, is, 0, &p0, TS_RUN, minclsyspri); if (so_svc->is_thread == NULL) { /* Failure to launch; teardown the socket */ mutex_exit(&is->is_mutex); idm_soshutdown(so_svc->is_so); idm_sodestroy(so_svc->is_so); return (IDM_STATUS_FAIL); } ksocket_hold(so_svc->is_so); /* Wait for the port watcher thread to start */ while (!so_svc->is_thread_running) cv_wait(&is->is_cv, &is->is_mutex); mutex_exit(&is->is_mutex); return (IDM_STATUS_SUCCESS); } /* * idm_so_tgt_svc_offline * * Stop listening on the IP address and port identified by idm_svc_t. */ static void idm_so_tgt_svc_offline(idm_svc_t *is) { idm_so_svc_t *so_svc; mutex_enter(&is->is_mutex); so_svc = (idm_so_svc_t *)is->is_so_svc; so_svc->is_thread_running = B_FALSE; mutex_exit(&is->is_mutex); /* * Teardown socket */ idm_sodestroy(so_svc->is_so); /* * Now we expect the port watcher thread to terminate */ thread_join(so_svc->is_thread_did); } /* * Watch thread for target service connection establishment. */ void idm_so_svc_port_watcher(void *arg) { idm_svc_t *svc = arg; ksocket_t new_so; idm_conn_t *ic; idm_status_t idmrc; idm_so_svc_t *so_svc; int rc; const uint32_t off = 0; struct sockaddr_in6 t_addr; socklen_t t_addrlen; bzero(&t_addr, sizeof (struct sockaddr_in6)); t_addrlen = sizeof (struct sockaddr_in6); mutex_enter(&svc->is_mutex); so_svc = svc->is_so_svc; so_svc->is_thread_running = B_TRUE; so_svc->is_thread_did = so_svc->is_thread->t_did; cv_signal(&svc->is_cv); IDM_SVC_LOG(CE_NOTE, "iSCSI service (%p/%d) online", (void *)svc, svc->is_svc_req.sr_port); while (so_svc->is_thread_running) { mutex_exit(&svc->is_mutex); if ((rc = ksocket_accept(so_svc->is_so, (struct sockaddr *)&t_addr, &t_addrlen, &new_so, CRED())) != 0) { mutex_enter(&svc->is_mutex); if (rc == ECONNABORTED) continue; /* Connection problem */ break; } /* * Turn off SO_MAC_EXEMPT so future sobinds succeed */ (void) ksocket_setsockopt(new_so, SOL_SOCKET, SO_MAC_EXEMPT, (char *)&off, sizeof (off), CRED()); idmrc = idm_svc_conn_create(svc, IDM_TRANSPORT_TYPE_SOCKETS, &ic); if (idmrc != IDM_STATUS_SUCCESS) { /* Drop connection */ idm_soshutdown(new_so); idm_sodestroy(new_so); mutex_enter(&svc->is_mutex); continue; } idmrc = idm_so_tgt_conn_create(ic, new_so); if (idmrc != IDM_STATUS_SUCCESS) { idm_svc_conn_destroy(ic); idm_soshutdown(new_so); idm_sodestroy(new_so); mutex_enter(&svc->is_mutex); continue; } /* * Kick the state machine. At CS_S3_XPT_UP the state machine * will notify the client (target) about the new connection. */ idm_conn_event(ic, CE_CONNECT_ACCEPT, NULL); mutex_enter(&svc->is_mutex); } ksocket_rele(so_svc->is_so); so_svc->is_thread_running = B_FALSE; mutex_exit(&svc->is_mutex); IDM_SVC_LOG(CE_NOTE, "iSCSI service (%p/%d) offline", (void *)svc, svc->is_svc_req.sr_port); thread_exit(); } /* * idm_so_free_task_rsrc() stops any ongoing processing of the task and * frees resources associated with the task. * * It's not clear that this should return idm_status_t. What do we do * if it fails? */ static idm_status_t idm_so_free_task_rsrc(idm_task_t *idt) { idm_buf_t *idb, *next_idb; /* * There is nothing to cleanup on initiator connections */ if (IDM_CONN_ISINI(idt->idt_ic)) return (IDM_STATUS_SUCCESS); /* * If this is a target connection, call idm_buf_rx_from_ini_done for * any buffer on the "outbufv" list with idb->idb_in_transport==B_TRUE. * * In addition, remove any buffers associated with this task from * the ic_tx_list. We'll do this by walking the idt_inbufv list, but * items don't actually get removed from that list (and completion * routines called) until idm_task_cleanup. */ mutex_enter(&idt->idt_mutex); for (idb = list_head(&idt->idt_outbufv); idb != NULL; idb = next_idb) { next_idb = list_next(&idt->idt_outbufv, idb); if (idb->idb_in_transport) { /* * idm_buf_rx_from_ini_done releases idt->idt_mutex */ DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, uint64_t, 0, uint32_t, 0, uint32_t, 0, uint32_t, idb->idb_xfer_len, int, XFER_BUF_RX_FROM_INI); idm_buf_rx_from_ini_done(idt, idb, IDM_STATUS_ABORTED); mutex_enter(&idt->idt_mutex); } } for (idb = list_head(&idt->idt_inbufv); idb != NULL; idb = next_idb) { next_idb = list_next(&idt->idt_inbufv, idb); /* * We want to remove these items from the tx_list as well, * but knowing it's in the idt_inbufv list is not a guarantee * that it's in the tx_list. If it's on the tx list then * let idm_sotx_thread() clean it up. */ if (idb->idb_in_transport && !idb->idb_tx_thread) { /* * idm_buf_tx_to_ini_done releases idt->idt_mutex */ DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, uint64_t, 0, uint32_t, 0, uint32_t, 0, uint32_t, idb->idb_xfer_len, int, XFER_BUF_TX_TO_INI); idm_buf_tx_to_ini_done(idt, idb, IDM_STATUS_ABORTED); mutex_enter(&idt->idt_mutex); } } mutex_exit(&idt->idt_mutex); return (IDM_STATUS_SUCCESS); } /* * idm_so_negotiate_key_values() validates the key values for this connection */ /* ARGSUSED */ static kv_status_t idm_so_negotiate_key_values(idm_conn_t *it, nvlist_t *request_nvl, nvlist_t *response_nvl, nvlist_t *negotiated_nvl) { /* All parameters are negotiated at the iscsit level */ return (KV_HANDLED); } /* * idm_so_notice_key_values() activates the negotiated key values for * this connection. */ static void idm_so_notice_key_values(idm_conn_t *it, nvlist_t *negotiated_nvl) { char *nvp_name; nvpair_t *nvp; nvpair_t *next_nvp; int nvrc; idm_status_t idm_status; const idm_kv_xlate_t *ikvx; uint64_t num_val; for (nvp = nvlist_next_nvpair(negotiated_nvl, NULL); nvp != NULL; nvp = next_nvp) { next_nvp = nvlist_next_nvpair(negotiated_nvl, nvp); nvp_name = nvpair_name(nvp); ikvx = idm_lookup_kv_xlate(nvp_name, strlen(nvp_name)); switch (ikvx->ik_key_id) { case KI_HEADER_DIGEST: case KI_DATA_DIGEST: idm_status = idm_so_handle_digest(it, nvp, ikvx); ASSERT(idm_status == 0); /* Remove processed item from negotiated_nvl list */ nvrc = nvlist_remove_all( negotiated_nvl, ikvx->ik_key_name); ASSERT(nvrc == 0); break; case KI_MAX_RECV_DATA_SEGMENT_LENGTH: /* * Just pass the value down to idm layer. * No need to remove it from negotiated_nvl list here. */ nvrc = nvpair_value_uint64(nvp, &num_val); ASSERT(nvrc == 0); it->ic_conn_params.max_xmit_dataseglen = (uint32_t)num_val; break; default: break; } } } /* * idm_so_declare_key_values() declares the key values for this connection */ /* ARGSUSED */ static kv_status_t idm_so_declare_key_values(idm_conn_t *it, nvlist_t *config_nvl, nvlist_t *outgoing_nvl) { char *nvp_name; nvpair_t *nvp; nvpair_t *next_nvp; kv_status_t kvrc; int nvrc = 0; const idm_kv_xlate_t *ikvx; uint64_t num_val; for (nvp = nvlist_next_nvpair(config_nvl, NULL); nvp != NULL && nvrc == 0; nvp = next_nvp) { next_nvp = nvlist_next_nvpair(config_nvl, nvp); nvp_name = nvpair_name(nvp); ikvx = idm_lookup_kv_xlate(nvp_name, strlen(nvp_name)); switch (ikvx->ik_key_id) { case KI_MAX_RECV_DATA_SEGMENT_LENGTH: if ((nvrc = nvpair_value_uint64(nvp, &num_val)) != 0) { break; } if (outgoing_nvl && (nvrc = nvlist_add_uint64(outgoing_nvl, nvp_name, num_val)) != 0) { break; } it->ic_conn_params.max_recv_dataseglen = (uint32_t)num_val; break; default: break; } } kvrc = idm_nvstat_to_kvstat(nvrc); return (kvrc); } static idm_status_t idm_so_handle_digest(idm_conn_t *it, nvpair_t *digest_choice, const idm_kv_xlate_t *ikvx) { int nvrc; char *digest_choice_string; nvrc = nvpair_value_string(digest_choice, &digest_choice_string); ASSERT(nvrc == 0); if (strcasecmp(digest_choice_string, "crc32c") == 0) { switch (ikvx->ik_key_id) { case KI_HEADER_DIGEST: it->ic_conn_flags |= IDM_CONN_HEADER_DIGEST; break; case KI_DATA_DIGEST: it->ic_conn_flags |= IDM_CONN_DATA_DIGEST; break; default: ASSERT(0); break; } } else if (strcasecmp(digest_choice_string, "none") == 0) { switch (ikvx->ik_key_id) { case KI_HEADER_DIGEST: it->ic_conn_flags &= ~IDM_CONN_HEADER_DIGEST; break; case KI_DATA_DIGEST: it->ic_conn_flags &= ~IDM_CONN_DATA_DIGEST; break; default: ASSERT(0); break; } } else { ASSERT(0); } return (IDM_STATUS_SUCCESS); } /* * idm_so_conn_is_capable() verifies that the passed connection is provided * for by the sockets interface. */ /* ARGSUSED */ static boolean_t idm_so_conn_is_capable(idm_conn_req_t *ic, idm_transport_caps_t *caps) { return (B_TRUE); } /* * idm_so_rx_datain() validates the Data Sequence number of the PDU. The * idm_sorecv_scsidata() function invoked earlier actually reads the data * off the socket into the appropriate buffers. */ static void idm_so_rx_datain(idm_conn_t *ic, idm_pdu_t *pdu) { iscsi_data_hdr_t *bhs; idm_task_t *idt; idm_buf_t *idb; uint32_t datasn; size_t offset; iscsi_hdr_t *ihp = (iscsi_hdr_t *)pdu->isp_hdr; iscsi_data_rsp_hdr_t *idrhp = (iscsi_data_rsp_hdr_t *)ihp; ASSERT(ic != NULL); ASSERT(pdu != NULL); bhs = (iscsi_data_hdr_t *)pdu->isp_hdr; datasn = ntohl(bhs->datasn); offset = ntohl(bhs->offset); ASSERT(bhs->opcode == ISCSI_OP_SCSI_DATA_RSP); /* * Look up the task corresponding to the initiator task tag * to get the buffers affiliated with the task. */ idt = idm_task_find(ic, bhs->itt, bhs->ttt); if (idt == NULL) { IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: failed to find task"); idm_pdu_rx_protocol_error(ic, pdu); return; } idb = pdu->isp_sorx_buf; if (idb == NULL) { IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: failed to find buffer"); idm_task_rele(idt); idm_pdu_rx_protocol_error(ic, pdu); return; } /* * DataSN values should be sequential and should not have any gaps or * repetitions. Check the DataSN with the one stored in the task. */ if (datasn == idt->idt_exp_datasn) { idt->idt_exp_datasn++; /* keep track of DataSN received */ } else { IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: datasn out of order"); idm_task_rele(idt); idm_pdu_rx_protocol_error(ic, pdu); return; } /* * PDUs in a sequence should be in continuously increasing * address offset */ if (offset != idb->idb_exp_offset) { IDM_CONN_LOG(CE_WARN, "idm_so_rx_datain: unexpected offset"); idm_task_rele(idt); idm_pdu_rx_protocol_error(ic, pdu); return; } /* Expected next relative buffer offset */ idb->idb_exp_offset += n2h24(bhs->dlength); idt->idt_rx_bytes += n2h24(bhs->dlength); idm_task_rele(idt); /* * For now call scsi_rsp which will process the data rsp * Revisit, need to provide an explicit client entry point for * phase collapse completions. */ if (((ihp->opcode & ISCSI_OPCODE_MASK) == ISCSI_OP_SCSI_DATA_RSP) && (idrhp->flags & ISCSI_FLAG_DATA_STATUS)) { (*ic->ic_conn_ops.icb_rx_scsi_rsp)(ic, pdu); } idm_pdu_complete(pdu, IDM_STATUS_SUCCESS); } /* * The idm_so_rx_dataout() function is used by the iSCSI target to read * data from the Data-Out PDU sent by the iSCSI initiator. * * This function gets the Initiator Task Tag from the PDU BHS and looks up the * task to get the buffers associated with the PDU. A PDU might span buffers. * The data is then read into the respective buffer. */ static void idm_so_rx_dataout(idm_conn_t *ic, idm_pdu_t *pdu) { iscsi_data_hdr_t *bhs; idm_task_t *idt; idm_buf_t *idb; size_t offset; ASSERT(ic != NULL); ASSERT(pdu != NULL); bhs = (iscsi_data_hdr_t *)pdu->isp_hdr; offset = ntohl(bhs->offset); ASSERT(bhs->opcode == ISCSI_OP_SCSI_DATA); /* * Look up the task corresponding to the initiator task tag * to get the buffers affiliated with the task. */ idt = idm_task_find(ic, bhs->itt, bhs->ttt); if (idt == NULL) { IDM_CONN_LOG(CE_WARN, "idm_so_rx_dataout: failed to find task"); idm_pdu_rx_protocol_error(ic, pdu); return; } idb = pdu->isp_sorx_buf; if (idb == NULL) { IDM_CONN_LOG(CE_WARN, "idm_so_rx_dataout: failed to find buffer"); idm_task_rele(idt); idm_pdu_rx_protocol_error(ic, pdu); return; } /* Keep track of data transferred - check data offsets */ if (offset != idb->idb_exp_offset) { IDM_CONN_LOG(CE_NOTE, "idm_so_rx_dataout: offset out of seq: " "%ld, %d", offset, idb->idb_exp_offset); idm_task_rele(idt); idm_pdu_rx_protocol_error(ic, pdu); return; } /* Expected next relative offset */ idb->idb_exp_offset += ntoh24(bhs->dlength); idt->idt_rx_bytes += n2h24(bhs->dlength); /* * Call the buffer callback when the transfer is complete * * The connection state machine should only abort tasks after * shutting down the connection so we are assured that there * won't be a simultaneous attempt to abort this task at the * same time as we are processing this PDU (due to a connection * state change). */ if (bhs->flags & ISCSI_FLAG_FINAL) { /* * We only want to call idm_buf_rx_from_ini_done once * per transfer. It's possible that this task has * already been aborted in which case * idm_so_free_task_rsrc will call idm_buf_rx_from_ini_done * for each buffer with idb_in_transport==B_TRUE. To * close this window and ensure that this doesn't happen, * we'll clear idb->idb_in_transport now while holding * the task mutex. This is only really an issue for * SCSI task abort -- if tasks were being aborted because * of a connection state change the state machine would * have already stopped the receive thread. */ mutex_enter(&idt->idt_mutex); /* * Release the task hold here (obtained in idm_task_find) * because the task may complete synchronously during * idm_buf_rx_from_ini_done. Since we still have an active * buffer we know there is at least one additional hold on idt. */ idm_task_rele(idt); /* * idm_buf_rx_from_ini_done releases idt->idt_mutex */ DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, uint64_t, 0, uint32_t, 0, uint32_t, 0, uint32_t, idb->idb_xfer_len, int, XFER_BUF_RX_FROM_INI); idm_buf_rx_from_ini_done(idt, idb, IDM_STATUS_SUCCESS); idm_pdu_complete(pdu, IDM_STATUS_SUCCESS); return; } idm_task_rele(idt); idm_pdu_complete(pdu, IDM_STATUS_SUCCESS); } /* * The idm_so_rx_rtt() function is used by the iSCSI initiator to handle * the R2T PDU sent by the iSCSI target indicating that it is ready to * accept data. This gets the Initiator Task Tag (itt) from the PDU BHS * and looks up the task in the task tree using the itt to get the output * buffers associated the task. The R2T PDU contains the offset of the * requested data and the data length. This function then constructs a * sequence of iSCSI PDUs and outputs the requested data. Each Data-Out * PDU is associated with the R2T by the Target Transfer Tag (ttt). */ static void idm_so_rx_rtt(idm_conn_t *ic, idm_pdu_t *pdu) { idm_task_t *idt; idm_buf_t *idb; iscsi_rtt_hdr_t *rtt_hdr; uint32_t data_offset; uint32_t data_length; ASSERT(ic != NULL); ASSERT(pdu != NULL); rtt_hdr = (iscsi_rtt_hdr_t *)pdu->isp_hdr; data_offset = ntohl(rtt_hdr->data_offset); data_length = ntohl(rtt_hdr->data_length); idt = idm_task_find(ic, rtt_hdr->itt, rtt_hdr->ttt); if (idt == NULL) { IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: could not find task"); idm_pdu_rx_protocol_error(ic, pdu); return; } /* Find the buffer bound to the task by the iSCSI initiator */ mutex_enter(&idt->idt_mutex); idb = idm_buf_find(&idt->idt_outbufv, data_offset); if (idb == NULL) { mutex_exit(&idt->idt_mutex); idm_task_rele(idt); IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: could not find buffer"); idm_pdu_rx_protocol_error(ic, pdu); return; } /* return buffer contains this data */ if (data_offset + data_length > idb->idb_buflen) { /* Overflow */ mutex_exit(&idt->idt_mutex); idm_task_rele(idt); IDM_CONN_LOG(CE_WARN, "idm_so_rx_rtt: read from outside " "buffer"); idm_pdu_rx_protocol_error(ic, pdu); return; } idt->idt_r2t_ttt = rtt_hdr->ttt; idt->idt_exp_datasn = 0; idm_so_send_rtt_data(ic, idt, idb, data_offset, ntohl(rtt_hdr->data_length)); /* * the idt_mutex is released in idm_so_send_rtt_data */ idm_pdu_complete(pdu, IDM_STATUS_SUCCESS); idm_task_rele(idt); } idm_status_t idm_sorecvdata(idm_conn_t *ic, idm_pdu_t *pdu) { uint8_t pad[ISCSI_PAD_WORD_LEN]; int pad_len; uint32_t data_digest_crc; uint32_t crc_calculated; int total_len; idm_so_conn_t *so_conn; so_conn = ic->ic_transport_private; pad_len = ((ISCSI_PAD_WORD_LEN - (pdu->isp_datalen & (ISCSI_PAD_WORD_LEN - 1))) & (ISCSI_PAD_WORD_LEN - 1)); ASSERT(pdu->isp_iovlen < (PDU_MAX_IOVLEN - 2)); /* pad + data digest */ total_len = pdu->isp_datalen; if (pad_len) { pdu->isp_iov[pdu->isp_iovlen].iov_base = (char *)&pad; pdu->isp_iov[pdu->isp_iovlen].iov_len = pad_len; total_len += pad_len; pdu->isp_iovlen++; } /* setup data digest */ if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) != 0) { pdu->isp_iov[pdu->isp_iovlen].iov_base = (char *)&data_digest_crc; pdu->isp_iov[pdu->isp_iovlen].iov_len = sizeof (data_digest_crc); total_len += sizeof (data_digest_crc); pdu->isp_iovlen++; } pdu->isp_data = (uint8_t *)(uintptr_t)pdu->isp_iov[0].iov_base; if (idm_iov_sorecv(so_conn->ic_so, &pdu->isp_iov[0], pdu->isp_iovlen, total_len) != 0) { return (IDM_STATUS_IO); } if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) != 0) { crc_calculated = idm_crc32c(pdu->isp_data, pdu->isp_datalen); if (pad_len) { crc_calculated = idm_crc32c_continued((char *)&pad, pad_len, crc_calculated); } if (crc_calculated != data_digest_crc) { IDM_CONN_LOG(CE_WARN, "idm_sorecvdata: " "CRC error: actual 0x%x, calc 0x%x", data_digest_crc, crc_calculated); /* Invalid Data Digest */ return (IDM_STATUS_DATA_DIGEST); } } return (IDM_STATUS_SUCCESS); } /* * idm_sorecv_scsidata() is used to receive scsi data from the socket. The * Data-type PDU header must be read into the idm_pdu_t structure prior to * calling this function. */ idm_status_t idm_sorecv_scsidata(idm_conn_t *ic, idm_pdu_t *pdu) { iscsi_data_hdr_t *bhs; idm_task_t *task; uint32_t offset; uint8_t opcode; uint32_t dlength; list_t *buflst; uint32_t xfer_bytes; idm_status_t status; ASSERT(ic != NULL); ASSERT(pdu != NULL); bhs = (iscsi_data_hdr_t *)pdu->isp_hdr; offset = ntohl(bhs->offset); opcode = bhs->opcode; dlength = n2h24(bhs->dlength); ASSERT((opcode == ISCSI_OP_SCSI_DATA_RSP) || (opcode == ISCSI_OP_SCSI_DATA)); /* * Successful lookup implicitly gets a "hold" on the task. This * hold must be released before leaving this function. At one * point we were caching this task context and retaining the hold * but it turned out to be very difficult to release the hold properly. * The task can be aborted and the connection shutdown between this * call and the subsequent expected call to idm_so_rx_datain/ * idm_so_rx_dataout (in which case those functions are not called). * Releasing the hold in the PDU callback doesn't work well either * because the whole task may be completed by then at which point * it is too late to release the hold -- for better or worse this * code doesn't wait on the refcnts during normal operation. * idm_task_find() is very fast and it is not a huge burden if we * have to do it twice. */ task = idm_task_find(ic, bhs->itt, bhs->ttt); if (task == NULL) { IDM_CONN_LOG(CE_WARN, "idm_sorecv_scsidata: could not find task"); return (IDM_STATUS_FAIL); } mutex_enter(&task->idt_mutex); buflst = (opcode == ISCSI_OP_SCSI_DATA_RSP) ? &task->idt_inbufv : &task->idt_outbufv; pdu->isp_sorx_buf = idm_buf_find(buflst, offset); mutex_exit(&task->idt_mutex); if (pdu->isp_sorx_buf == NULL) { idm_task_rele(task); IDM_CONN_LOG(CE_WARN, "idm_sorecv_scsidata: could not find " "buffer for offset %x opcode=%x", offset, opcode); return (IDM_STATUS_FAIL); } xfer_bytes = idm_fill_iov(pdu, pdu->isp_sorx_buf, offset, dlength); ASSERT(xfer_bytes != 0); if (xfer_bytes != dlength) { idm_task_rele(task); /* * Buffer overflow, connection error. The PDU data is still * sitting in the socket so we can't use the connection * again until that data is drained. */ return (IDM_STATUS_FAIL); } status = idm_sorecvdata(ic, pdu); idm_task_rele(task); return (status); } static uint32_t idm_fill_iov(idm_pdu_t *pdu, idm_buf_t *idb, uint32_t ro, uint32_t dlength) { uint32_t buf_ro = ro - idb->idb_bufoffset; uint32_t xfer_len = min(dlength, idb->idb_buflen - buf_ro); ASSERT(ro >= idb->idb_bufoffset); pdu->isp_iov[pdu->isp_iovlen].iov_base = (caddr_t)idb->idb_buf + buf_ro; pdu->isp_iov[pdu->isp_iovlen].iov_len = xfer_len; pdu->isp_iovlen++; return (xfer_len); } int idm_sorecv_nonscsidata(idm_conn_t *ic, idm_pdu_t *pdu) { pdu->isp_data = kmem_alloc(pdu->isp_datalen, KM_SLEEP); ASSERT(pdu->isp_data != NULL); pdu->isp_databuflen = pdu->isp_datalen; pdu->isp_iov[0].iov_base = (caddr_t)pdu->isp_data; pdu->isp_iov[0].iov_len = pdu->isp_datalen; pdu->isp_iovlen = 1; /* * Since we are associating a new data buffer with this received * PDU we need to set a specific callback to free the data * after the PDU is processed. */ pdu->isp_flags |= IDM_PDU_ADDL_DATA; pdu->isp_callback = idm_sorx_addl_pdu_cb; return (idm_sorecvdata(ic, pdu)); } void idm_sorx_thread(void *arg) { boolean_t conn_failure = B_FALSE; idm_conn_t *ic = (idm_conn_t *)arg; idm_so_conn_t *so_conn; idm_pdu_t *pdu; idm_status_t rc; idm_conn_hold(ic); mutex_enter(&ic->ic_mutex); so_conn = ic->ic_transport_private; so_conn->ic_rx_thread_running = B_TRUE; so_conn->ic_rx_thread_did = so_conn->ic_rx_thread->t_did; cv_signal(&ic->ic_cv); while (so_conn->ic_rx_thread_running) { mutex_exit(&ic->ic_mutex); /* * Get PDU with default header size (large enough for * BHS plus any anticipated AHS). PDU from * the cache will have all values set correctly * for sockets RX including callback. */ pdu = kmem_cache_alloc(idm.idm_sorx_pdu_cache, KM_SLEEP); pdu->isp_ic = ic; pdu->isp_flags = 0; pdu->isp_transport_hdrlen = 0; if ((rc = idm_sorecvhdr(ic, pdu)) != 0) { /* * Call idm_pdu_complete so that we call the callback * and ensure any memory allocated in idm_sorecvhdr * gets freed up. */ idm_pdu_complete(pdu, IDM_STATUS_FAIL); /* * If ic_rx_thread_running is still set then * this is some kind of connection problem * on the socket. In this case we want to * generate an event. Otherwise some other * thread closed the socket due to another * issue in which case we don't need to * generate an event. */ mutex_enter(&ic->ic_mutex); if (so_conn->ic_rx_thread_running) { conn_failure = B_TRUE; so_conn->ic_rx_thread_running = B_FALSE; } continue; } /* * Header has been read and validated. Now we need * to read the PDU data payload (if present). SCSI data * need to be transferred from the socket directly into * the associated transfer buffer for the SCSI task. */ if (pdu->isp_datalen != 0) { if ((IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA) || (IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA_RSP)) { rc = idm_sorecv_scsidata(ic, pdu); /* * All SCSI errors are fatal to the * connection right now since we have no * place to put the data. What we need * is some kind of sink to dispose of unwanted * SCSI data. For example an invalid task tag * should not kill the connection (although * we may want to drop the connection). */ } else { /* * Not data PDUs so allocate a buffer for the * data segment and read the remaining data. */ rc = idm_sorecv_nonscsidata(ic, pdu); } if (rc != 0) { /* * Call idm_pdu_complete so that we call the * callback and ensure any memory allocated * in idm_sorecvhdr gets freed up. */ idm_pdu_complete(pdu, IDM_STATUS_FAIL); /* * If ic_rx_thread_running is still set then * this is some kind of connection problem * on the socket. In this case we want to * generate an event. Otherwise some other * thread closed the socket due to another * issue in which case we don't need to * generate an event. */ mutex_enter(&ic->ic_mutex); if (so_conn->ic_rx_thread_running) { conn_failure = B_TRUE; so_conn->ic_rx_thread_running = B_FALSE; } continue; } } /* * Process RX PDU */ idm_pdu_rx(ic, pdu); mutex_enter(&ic->ic_mutex); } mutex_exit(&ic->ic_mutex); /* * If we dropped out of the RX processing loop because of * a socket problem or other connection failure (including * digest errors) then we need to generate a state machine * event to shut the connection down. * If the state machine is already in, for example, INIT_ERROR, this * event will get dropped, and the TX thread will never be notified * to shut down. To be safe, we'll just notify it here. */ if (conn_failure) { if (so_conn->ic_tx_thread_running) { so_conn->ic_tx_thread_running = B_FALSE; mutex_enter(&so_conn->ic_tx_mutex); cv_signal(&so_conn->ic_tx_cv); mutex_exit(&so_conn->ic_tx_mutex); } idm_conn_event(ic, CE_TRANSPORT_FAIL, rc); } idm_conn_rele(ic); thread_exit(); } /* * idm_so_tx * * This is the implementation of idm_transport_ops_t's it_tx_pdu entry * point. By definition, it is supposed to be fast. So, simply queue * the entry and return. The real work is done by idm_i_so_tx() via * idm_sotx_thread(). */ static void idm_so_tx(idm_conn_t *ic, idm_pdu_t *pdu) { idm_so_conn_t *so_conn = ic->ic_transport_private; ASSERT(pdu->isp_ic == ic); mutex_enter(&so_conn->ic_tx_mutex); if (!so_conn->ic_tx_thread_running) { mutex_exit(&so_conn->ic_tx_mutex); idm_pdu_complete(pdu, IDM_STATUS_ABORTED); return; } list_insert_tail(&so_conn->ic_tx_list, (void *)pdu); cv_signal(&so_conn->ic_tx_cv); mutex_exit(&so_conn->ic_tx_mutex); } static idm_status_t idm_i_so_tx(idm_pdu_t *pdu) { idm_conn_t *ic = pdu->isp_ic; idm_status_t status = IDM_STATUS_SUCCESS; uint8_t pad[ISCSI_PAD_WORD_LEN]; int pad_len; uint32_t hdr_digest_crc; uint32_t data_digest_crc = 0; int total_len = 0; int iovlen = 0; struct iovec iov[6]; idm_so_conn_t *so_conn; so_conn = ic->ic_transport_private; /* Setup BHS */ iov[iovlen].iov_base = (caddr_t)pdu->isp_hdr; iov[iovlen].iov_len = pdu->isp_hdrlen; total_len += iov[iovlen].iov_len; iovlen++; /* Setup header digest */ if (((pdu->isp_flags & IDM_PDU_LOGIN_TX) == 0) && (ic->ic_conn_flags & IDM_CONN_HEADER_DIGEST)) { hdr_digest_crc = idm_crc32c(pdu->isp_hdr, pdu->isp_hdrlen); iov[iovlen].iov_base = (caddr_t)&hdr_digest_crc; iov[iovlen].iov_len = sizeof (hdr_digest_crc); total_len += iov[iovlen].iov_len; iovlen++; } /* Setup the data */ if (pdu->isp_datalen) { idm_task_t *idt; idm_buf_t *idb; iscsi_data_hdr_t *ihp; ihp = (iscsi_data_hdr_t *)pdu->isp_hdr; /* Write of immediate data */ if (ic->ic_ffp && (ihp->opcode == ISCSI_OP_SCSI_CMD || ihp->opcode == ISCSI_OP_SCSI_DATA)) { idt = idm_task_find(ic, ihp->itt, ihp->ttt); if (idt) { mutex_enter(&idt->idt_mutex); idb = idm_buf_find(&idt->idt_outbufv, 0); mutex_exit(&idt->idt_mutex); /* * If the initiator call to idm_buf_alloc * failed then we can get to this point * without a bound buffer. The associated * connection failure will clean things up * later. It would be nice to come up with * a cleaner way to handle this. In * particular it seems absurd to look up * the task and the buffer just to update * this counter. */ if (idb) idb->idb_xfer_len += pdu->isp_datalen; idm_task_rele(idt); } } iov[iovlen].iov_base = (caddr_t)pdu->isp_data; iov[iovlen].iov_len = pdu->isp_datalen; total_len += iov[iovlen].iov_len; iovlen++; } /* Setup the data pad if necessary */ pad_len = ((ISCSI_PAD_WORD_LEN - (pdu->isp_datalen & (ISCSI_PAD_WORD_LEN - 1))) & (ISCSI_PAD_WORD_LEN - 1)); if (pad_len) { bzero(pad, sizeof (pad)); iov[iovlen].iov_base = (void *)&pad; iov[iovlen].iov_len = pad_len; total_len += iov[iovlen].iov_len; iovlen++; } /* * Setup the data digest if enabled. Data-digest is not sent * for login-phase PDUs. */ if ((ic->ic_conn_flags & IDM_CONN_DATA_DIGEST) && ((pdu->isp_flags & IDM_PDU_LOGIN_TX) == 0) && (pdu->isp_datalen || pad_len)) { /* * RFC3720/10.2.3: A zero-length Data Segment also * implies a zero-length data digest. */ if (pdu->isp_datalen) { data_digest_crc = idm_crc32c(pdu->isp_data, pdu->isp_datalen); } if (pad_len) { data_digest_crc = idm_crc32c_continued(&pad, pad_len, data_digest_crc); } iov[iovlen].iov_base = (caddr_t)&data_digest_crc; iov[iovlen].iov_len = sizeof (data_digest_crc); total_len += iov[iovlen].iov_len; iovlen++; } /* Transmit the PDU */ if (idm_iov_sosend(so_conn->ic_so, &iov[0], iovlen, total_len) != 0) { /* Set error status */ IDM_CONN_LOG(CE_WARN, "idm_so_tx: failed to transmit the PDU, so: %p ic: %p " "data: %p", (void *) so_conn->ic_so, (void *) ic, (void *) pdu->isp_data); status = IDM_STATUS_IO; } /* * Success does not mean that the PDU actually reached the * remote node since it could get dropped along the way. */ idm_pdu_complete(pdu, status); return (status); } /* * The idm_so_buf_tx_to_ini() is used by the target iSCSI layer to transmit the * Data-In PDUs using sockets. Based on the negotiated MaxRecvDataSegmentLength, * the buffer is segmented into a sequence of Data-In PDUs, ordered by DataSN. * A target can invoke this function multiple times for a single read command * (identified by the same ITT) to split the input into several sequences. * * DataSN starts with 0 for the first data PDU of an input command and advances * by 1 for each subsequent data PDU. Each sequence will have its own F bit, * which is set to 1 for the last data PDU of a sequence. * If the initiator supports phase collapse, the status bit must be set along * with the F bit to indicate that the status is shipped together with the last * Data-In PDU. * * The data PDUs within a sequence will be sent in order with the buffer offset * in increasing order. i.e. initiator and target must have negotiated the * "DataPDUInOrder" to "Yes". The order between sequences is not enforced. * * Caller holds idt->idt_mutex */ static idm_status_t idm_so_buf_tx_to_ini(idm_task_t *idt, idm_buf_t *idb) { idm_so_conn_t *so_conn = idb->idb_ic->ic_transport_private; idm_pdu_t tmppdu; ASSERT(mutex_owned(&idt->idt_mutex)); /* * Put the idm_buf_t on the tx queue. It will be transmitted by * idm_sotx_thread. */ mutex_enter(&so_conn->ic_tx_mutex); DTRACE_ISCSI_8(xfer__start, idm_conn_t *, idt->idt_ic, uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, uint64_t, 0, uint32_t, 0, uint32_t, 0, uint32_t, idb->idb_xfer_len, int, XFER_BUF_TX_TO_INI); if (!so_conn->ic_tx_thread_running) { mutex_exit(&so_conn->ic_tx_mutex); /* * Don't release idt->idt_mutex since we're supposed to hold * in when calling idm_buf_tx_to_ini_done */ DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, uint64_t, 0, uint32_t, 0, uint32_t, 0, uint32_t, idb->idb_xfer_len, int, XFER_BUF_TX_TO_INI); idm_buf_tx_to_ini_done(idt, idb, IDM_STATUS_ABORTED); return (IDM_STATUS_FAIL); } /* * Build a template for the data PDU headers we will use so that * the SN values will stay consistent with other PDU's we are * transmitting like R2T and SCSI status. */ bzero(&idb->idb_data_hdr_tmpl, sizeof (iscsi_hdr_t)); tmppdu.isp_hdr = &idb->idb_data_hdr_tmpl; (*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, &tmppdu, ISCSI_OP_SCSI_DATA_RSP); idb->idb_tx_thread = B_TRUE; list_insert_tail(&so_conn->ic_tx_list, (void *)idb); cv_signal(&so_conn->ic_tx_cv); mutex_exit(&so_conn->ic_tx_mutex); mutex_exit(&idt->idt_mutex); /* * Returning success here indicates the transfer was successfully * dispatched -- it does not mean that the transfer completed * successfully. */ return (IDM_STATUS_SUCCESS); } /* * The idm_so_buf_rx_from_ini() is used by the target iSCSI layer to specify the * data blocks it is ready to receive from the initiator in response to a WRITE * SCSI command. The target iSCSI layer passes the information about the desired * data blocks to the initiator in one R2T PDU. The receiving buffer, the buffer * offset and datalen are passed via the 'idb' argument. * * Scope for Prototype build: * R2Ts are required for any Data-Out PDU, i.e. initiator and target must have * negotiated the "InitialR2T" to "Yes". * * Caller holds idt->idt_mutex */ static idm_status_t idm_so_buf_rx_from_ini(idm_task_t *idt, idm_buf_t *idb) { idm_pdu_t *pdu; iscsi_rtt_hdr_t *rtt; ASSERT(mutex_owned(&idt->idt_mutex)); DTRACE_ISCSI_8(xfer__start, idm_conn_t *, idt->idt_ic, uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, uint64_t, 0, uint32_t, 0, uint32_t, 0, uint32_t, idb->idb_xfer_len, int, XFER_BUF_RX_FROM_INI); pdu = kmem_cache_alloc(idm.idm_sotx_pdu_cache, KM_SLEEP); pdu->isp_ic = idt->idt_ic; pdu->isp_flags = IDM_PDU_SET_STATSN; bzero(pdu->isp_hdr, sizeof (iscsi_rtt_hdr_t)); /* iSCSI layer fills the TTT, ITT, ExpCmdSN, MaxCmdSN */ (*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, pdu, ISCSI_OP_RTT_RSP); /* set the rttsn, rtt.flags, rtt.data_offset and rtt.data_length */ rtt = (iscsi_rtt_hdr_t *)(pdu->isp_hdr); rtt->opcode = ISCSI_OP_RTT_RSP; rtt->flags = ISCSI_FLAG_FINAL; rtt->data_offset = htonl(idb->idb_bufoffset); rtt->data_length = htonl(idb->idb_xfer_len); rtt->rttsn = htonl(idt->idt_exp_rttsn++); /* Keep track of buffer offsets */ idb->idb_exp_offset = idb->idb_bufoffset; mutex_exit(&idt->idt_mutex); /* * Transmit the PDU. */ idm_pdu_tx(pdu); return (IDM_STATUS_SUCCESS); } static idm_status_t idm_so_buf_alloc(idm_buf_t *idb, uint64_t buflen) { if ((buflen > IDM_SO_BUF_CACHE_LB) && (buflen <= IDM_SO_BUF_CACHE_UB)) { idb->idb_buf = kmem_cache_alloc(idm.idm_so_128k_buf_cache, KM_NOSLEEP); idb->idb_buf_private = idm.idm_so_128k_buf_cache; } else { idb->idb_buf = kmem_alloc(buflen, KM_NOSLEEP); idb->idb_buf_private = NULL; } if (idb->idb_buf == NULL) { IDM_CONN_LOG(CE_NOTE, "idm_so_buf_alloc: failed buffer allocation"); return (IDM_STATUS_FAIL); } return (IDM_STATUS_SUCCESS); } /* ARGSUSED */ static idm_status_t idm_so_buf_setup(idm_buf_t *idb) { /* Ensure bufalloc'd flag is unset */ idb->idb_bufalloc = B_FALSE; return (IDM_STATUS_SUCCESS); } /* ARGSUSED */ static void idm_so_buf_teardown(idm_buf_t *idb) { /* nothing to do here */ } static void idm_so_buf_free(idm_buf_t *idb) { if (idb->idb_buf_private == NULL) { kmem_free(idb->idb_buf, idb->idb_buflen); } else { kmem_cache_free(idb->idb_buf_private, idb->idb_buf); } } static void idm_so_send_rtt_data(idm_conn_t *ic, idm_task_t *idt, idm_buf_t *idb, uint32_t offset, uint32_t length) { idm_so_conn_t *so_conn = ic->ic_transport_private; idm_pdu_t tmppdu; idm_buf_t *rtt_buf; ASSERT(mutex_owned(&idt->idt_mutex)); /* * Allocate a buffer to represent the RTT transfer. We could further * optimize this by allocating the buffers internally from an rtt * specific buffer cache since this is socket-specific code but for * now we will keep it simple. */ rtt_buf = idm_buf_alloc(ic, (uint8_t *)idb->idb_buf + offset, length); if (rtt_buf == NULL) { /* * If we're in FFP then the failure was likely a resource * allocation issue and we should close the connection by * sending a CE_TRANSPORT_FAIL event. * * If we're not in FFP then idm_buf_alloc will always * fail and the state is transitioning to "complete" anyway * so we won't bother to send an event. */ mutex_enter(&ic->ic_state_mutex); if (ic->ic_ffp) idm_conn_event_locked(ic, CE_TRANSPORT_FAIL, NULL, CT_NONE); mutex_exit(&ic->ic_state_mutex); mutex_exit(&idt->idt_mutex); return; } rtt_buf->idb_buf_cb = NULL; rtt_buf->idb_cb_arg = NULL; rtt_buf->idb_bufoffset = offset; rtt_buf->idb_xfer_len = length; rtt_buf->idb_ic = idt->idt_ic; rtt_buf->idb_task_binding = idt; /* * The new buffer (if any) represents an additional * reference on the task */ idm_task_hold(idt); mutex_exit(&idt->idt_mutex); /* * Put the idm_buf_t on the tx queue. It will be transmitted by * idm_sotx_thread. */ mutex_enter(&so_conn->ic_tx_mutex); if (!so_conn->ic_tx_thread_running) { idm_buf_free(rtt_buf); mutex_exit(&so_conn->ic_tx_mutex); idm_task_rele(idt); return; } /* * Build a template for the data PDU headers we will use so that * the SN values will stay consistent with other PDU's we are * transmitting like R2T and SCSI status. */ bzero(&rtt_buf->idb_data_hdr_tmpl, sizeof (iscsi_hdr_t)); tmppdu.isp_hdr = &rtt_buf->idb_data_hdr_tmpl; (*idt->idt_ic->ic_conn_ops.icb_build_hdr)(idt, &tmppdu, ISCSI_OP_SCSI_DATA); rtt_buf->idb_tx_thread = B_TRUE; rtt_buf->idb_in_transport = B_TRUE; list_insert_tail(&so_conn->ic_tx_list, (void *)rtt_buf); cv_signal(&so_conn->ic_tx_cv); mutex_exit(&so_conn->ic_tx_mutex); } static void idm_so_send_rtt_data_done(idm_task_t *idt, idm_buf_t *idb) { /* * Don't worry about status -- we assume any error handling * is performed by the caller (idm_sotx_thread). */ idb->idb_in_transport = B_FALSE; idm_task_rele(idt); idm_buf_free(idb); } static idm_status_t idm_so_send_buf_region(idm_task_t *idt, idm_buf_t *idb, uint32_t buf_region_offset, uint32_t buf_region_length) { idm_conn_t *ic; uint32_t max_dataseglen; size_t remainder, chunk; uint32_t data_offset = buf_region_offset; iscsi_data_hdr_t *bhs; idm_pdu_t *pdu; idm_status_t tx_status; ASSERT(mutex_owned(&idt->idt_mutex)); ic = idt->idt_ic; max_dataseglen = ic->ic_conn_params.max_xmit_dataseglen; remainder = buf_region_length; while (remainder) { if (idt->idt_state != TASK_ACTIVE) { ASSERT((idt->idt_state != TASK_IDLE) && (idt->idt_state != TASK_COMPLETE)); return (IDM_STATUS_ABORTED); } /* check to see if we need to chunk the data */ if (remainder > max_dataseglen) { chunk = max_dataseglen; } else { chunk = remainder; } /* Data PDU headers will always be sizeof (iscsi_hdr_t) */ pdu = kmem_cache_alloc(idm.idm_sotx_pdu_cache, KM_SLEEP); pdu->isp_ic = ic; pdu->isp_flags = 0; /* initialize isp_flags */ /* * We've already built a build a header template * to use during the transfer. Use this template so that * the SN values stay consistent with any unrelated PDU's * being transmitted. */ bcopy(&idb->idb_data_hdr_tmpl, pdu->isp_hdr, sizeof (iscsi_hdr_t)); /* * Set DataSN, data offset, and flags in BHS * For the prototype build, A = 0, S = 0, U = 0 */ bhs = (iscsi_data_hdr_t *)(pdu->isp_hdr); bhs->datasn = htonl(idt->idt_exp_datasn++); hton24(bhs->dlength, chunk); bhs->offset = htonl(idb->idb_bufoffset + data_offset); /* setup data */ pdu->isp_data = (uint8_t *)idb->idb_buf + data_offset; pdu->isp_datalen = (uint_t)chunk; if (chunk == remainder) { bhs->flags = ISCSI_FLAG_FINAL; /* F bit set to 1 */ /* Piggyback the status with the last data PDU */ if (idt->idt_flags & IDM_TASK_PHASECOLLAPSE_REQ) { pdu->isp_flags |= IDM_PDU_SET_STATSN | IDM_PDU_ADVANCE_STATSN; (*idt->idt_ic->ic_conn_ops.icb_update_statsn) (idt, pdu); idt->idt_flags |= IDM_TASK_PHASECOLLAPSE_SUCCESS; } } remainder -= chunk; data_offset += chunk; /* Instrument the data-send DTrace probe. */ if (IDM_PDU_OPCODE(pdu) == ISCSI_OP_SCSI_DATA_RSP) { DTRACE_ISCSI_2(data__send, idm_conn_t *, idt->idt_ic, iscsi_data_rsp_hdr_t *, (iscsi_data_rsp_hdr_t *)pdu->isp_hdr); } /* * Now that we're done working with idt_exp_datasn, * idt->idt_state and idb->idb_bufoffset we can release * the task lock -- don't want to hold it across the * call to idm_i_so_tx since we could block. */ mutex_exit(&idt->idt_mutex); /* * Transmit the PDU. Call the internal routine directly * as there is already implicit ordering. */ if ((tx_status = idm_i_so_tx(pdu)) != IDM_STATUS_SUCCESS) { mutex_enter(&idt->idt_mutex); return (tx_status); } mutex_enter(&idt->idt_mutex); idt->idt_tx_bytes += chunk; } return (IDM_STATUS_SUCCESS); } /* * TX PDU cache */ /* ARGSUSED */ int idm_sotx_pdu_constructor(void *hdl, void *arg, int flags) { idm_pdu_t *pdu = hdl; bzero(pdu, sizeof (idm_pdu_t)); pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1); /* Ptr arithmetic */ pdu->isp_hdrlen = sizeof (iscsi_hdr_t); pdu->isp_callback = idm_sotx_cache_pdu_cb; pdu->isp_magic = IDM_PDU_MAGIC; bzero(pdu->isp_hdr, sizeof (iscsi_hdr_t)); return (0); } /* ARGSUSED */ void idm_sotx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status) { /* reset values between use */ pdu->isp_datalen = 0; kmem_cache_free(idm.idm_sotx_pdu_cache, pdu); } /* * RX PDU cache */ /* ARGSUSED */ int idm_sorx_pdu_constructor(void *hdl, void *arg, int flags) { idm_pdu_t *pdu = hdl; bzero(pdu, sizeof (idm_pdu_t)); pdu->isp_magic = IDM_PDU_MAGIC; pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1); /* Ptr arithmetic */ pdu->isp_callback = idm_sorx_cache_pdu_cb; return (0); } /* ARGSUSED */ static void idm_sorx_cache_pdu_cb(idm_pdu_t *pdu, idm_status_t status) { pdu->isp_iovlen = 0; pdu->isp_sorx_buf = 0; kmem_cache_free(idm.idm_sorx_pdu_cache, pdu); } static void idm_sorx_addl_pdu_cb(idm_pdu_t *pdu, idm_status_t status) { /* * We had to modify our cached RX PDU with a longer header buffer * and/or a longer data buffer. Release the new buffers and fix * the fields back to what we would expect for a cached RX PDU. */ if (pdu->isp_flags & IDM_PDU_ADDL_HDR) { kmem_free(pdu->isp_hdr, pdu->isp_hdrlen); } if (pdu->isp_flags & IDM_PDU_ADDL_DATA) { kmem_free(pdu->isp_data, pdu->isp_datalen); } pdu->isp_hdr = (iscsi_hdr_t *)(pdu + 1); pdu->isp_hdrlen = sizeof (iscsi_hdr_t); pdu->isp_data = NULL; pdu->isp_datalen = 0; pdu->isp_sorx_buf = 0; pdu->isp_callback = idm_sorx_cache_pdu_cb; idm_sorx_cache_pdu_cb(pdu, status); } /* * This thread is only active when I/O is queued for transmit * because the socket is busy. */ void idm_sotx_thread(void *arg) { idm_conn_t *ic = arg; idm_tx_obj_t *object, *next; idm_so_conn_t *so_conn; idm_status_t status = IDM_STATUS_SUCCESS; idm_conn_hold(ic); mutex_enter(&ic->ic_mutex); so_conn = ic->ic_transport_private; so_conn->ic_tx_thread_running = B_TRUE; so_conn->ic_tx_thread_did = so_conn->ic_tx_thread->t_did; cv_signal(&ic->ic_cv); mutex_exit(&ic->ic_mutex); mutex_enter(&so_conn->ic_tx_mutex); while (so_conn->ic_tx_thread_running) { while (list_is_empty(&so_conn->ic_tx_list)) { DTRACE_PROBE1(soconn__tx__sleep, idm_conn_t *, ic); cv_wait(&so_conn->ic_tx_cv, &so_conn->ic_tx_mutex); DTRACE_PROBE1(soconn__tx__wakeup, idm_conn_t *, ic); if (!so_conn->ic_tx_thread_running) { goto tx_bail; } } object = (idm_tx_obj_t *)list_head(&so_conn->ic_tx_list); list_remove(&so_conn->ic_tx_list, object); mutex_exit(&so_conn->ic_tx_mutex); switch (object->idm_tx_obj_magic) { case IDM_PDU_MAGIC: { idm_pdu_t *pdu = (idm_pdu_t *)object; DTRACE_PROBE2(soconn__tx__pdu, idm_conn_t *, ic, idm_pdu_t *, (idm_pdu_t *)object); if (pdu->isp_flags & IDM_PDU_SET_STATSN) { /* No IDM task */ (ic->ic_conn_ops.icb_update_statsn)(NULL, pdu); } status = idm_i_so_tx((idm_pdu_t *)object); break; } case IDM_BUF_MAGIC: { idm_buf_t *idb = (idm_buf_t *)object; idm_task_t *idt = idb->idb_task_binding; DTRACE_PROBE2(soconn__tx__buf, idm_conn_t *, ic, idm_buf_t *, idb); mutex_enter(&idt->idt_mutex); status = idm_so_send_buf_region(idt, idb, 0, idb->idb_xfer_len); /* * TX thread owns the buffer so we expect it to * be "in transport" */ ASSERT(idb->idb_in_transport); if (IDM_CONN_ISTGT(ic)) { /* * idm_buf_tx_to_ini_done releases * idt->idt_mutex */ DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, uint64_t, 0, uint32_t, 0, uint32_t, 0, uint32_t, idb->idb_xfer_len, int, XFER_BUF_TX_TO_INI); idm_buf_tx_to_ini_done(idt, idb, status); } else { idm_so_send_rtt_data_done(idt, idb); mutex_exit(&idt->idt_mutex); } break; } default: IDM_CONN_LOG(CE_WARN, "idm_sotx_thread: Unknown magic " "(0x%08x)", object->idm_tx_obj_magic); status = IDM_STATUS_FAIL; } mutex_enter(&so_conn->ic_tx_mutex); if (status != IDM_STATUS_SUCCESS) { so_conn->ic_tx_thread_running = B_FALSE; idm_conn_event(ic, CE_TRANSPORT_FAIL, status); } } /* * Before we leave, we need to abort every item remaining in the * TX list. */ tx_bail: object = (idm_tx_obj_t *)list_head(&so_conn->ic_tx_list); while (object != NULL) { next = list_next(&so_conn->ic_tx_list, object); list_remove(&so_conn->ic_tx_list, object); switch (object->idm_tx_obj_magic) { case IDM_PDU_MAGIC: idm_pdu_complete((idm_pdu_t *)object, IDM_STATUS_ABORTED); break; case IDM_BUF_MAGIC: { idm_buf_t *idb = (idm_buf_t *)object; idm_task_t *idt = idb->idb_task_binding; mutex_exit(&so_conn->ic_tx_mutex); mutex_enter(&idt->idt_mutex); /* * TX thread owns the buffer so we expect it to * be "in transport" */ ASSERT(idb->idb_in_transport); if (IDM_CONN_ISTGT(ic)) { /* * idm_buf_tx_to_ini_done releases * idt->idt_mutex */ DTRACE_ISCSI_8(xfer__done, idm_conn_t *, idt->idt_ic, uintptr_t, idb->idb_buf, uint32_t, idb->idb_bufoffset, uint64_t, 0, uint32_t, 0, uint32_t, 0, uint32_t, idb->idb_xfer_len, int, XFER_BUF_TX_TO_INI); idm_buf_tx_to_ini_done(idt, idb, IDM_STATUS_ABORTED); } else { idm_so_send_rtt_data_done(idt, idb); mutex_exit(&idt->idt_mutex); } mutex_enter(&so_conn->ic_tx_mutex); break; } default: IDM_CONN_LOG(CE_WARN, "idm_sotx_thread: Unexpected magic " "(0x%08x)", object->idm_tx_obj_magic); } object = next; } mutex_exit(&so_conn->ic_tx_mutex); idm_conn_rele(ic); thread_exit(); /*NOTREACHED*/ } static void idm_so_socket_set_nonblock(struct sonode *node) { (void) VOP_SETFL(node->so_vnode, node->so_flag, (node->so_state | FNONBLOCK), CRED(), NULL); } static void idm_so_socket_set_block(struct sonode *node) { (void) VOP_SETFL(node->so_vnode, node->so_flag, (node->so_state & (~FNONBLOCK)), CRED(), NULL); } /* * Called by kernel sockets when the connection has been accepted or * rejected. In early volo, a "disconnect" callback was sent instead of * "connectfailed", so we check for both. */ /* ARGSUSED */ void idm_so_timed_socket_connect_cb(ksocket_t ks, ksocket_callback_event_t ev, void *arg, uintptr_t info) { idm_so_timed_socket_t *itp = arg; ASSERT(itp != NULL); ASSERT(ev == KSOCKET_EV_CONNECTED || ev == KSOCKET_EV_CONNECTFAILED || ev == KSOCKET_EV_DISCONNECTED); mutex_enter(&idm_so_timed_socket_mutex); itp->it_callback_called = B_TRUE; if (ev == KSOCKET_EV_CONNECTED) { itp->it_socket_error_code = 0; } else { /* Make sure the error code is non-zero on error */ if (info == 0) info = ECONNRESET; itp->it_socket_error_code = (int)info; } cv_signal(&itp->it_cv); mutex_exit(&idm_so_timed_socket_mutex); } int idm_so_timed_socket_connect(ksocket_t ks, struct sockaddr_storage *sa, int sa_sz, int login_max_usec) { clock_t conn_login_max; int rc, nonblocking, rval; idm_so_timed_socket_t it; ksocket_callbacks_t ks_cb; conn_login_max = ddi_get_lbolt() + drv_usectohz(login_max_usec); /* * Set to non-block socket mode, with callback on connect * Early volo used "disconnected" instead of "connectfailed", * so set callback to look for both. */ bzero(&it, sizeof (it)); ks_cb.ksock_cb_flags = KSOCKET_CB_CONNECTED | KSOCKET_CB_CONNECTFAILED | KSOCKET_CB_DISCONNECTED; ks_cb.ksock_cb_connected = idm_so_timed_socket_connect_cb; ks_cb.ksock_cb_connectfailed = idm_so_timed_socket_connect_cb; ks_cb.ksock_cb_disconnected = idm_so_timed_socket_connect_cb; cv_init(&it.it_cv, NULL, CV_DEFAULT, NULL); rc = ksocket_setcallbacks(ks, &ks_cb, &it, CRED()); if (rc != 0) return (rc); /* Set to non-blocking mode */ nonblocking = 1; rc = ksocket_ioctl(ks, FIONBIO, (intptr_t)&nonblocking, &rval, CRED()); if (rc != 0) goto cleanup; bzero(&it, sizeof (it)); for (;;) { /* * Warning -- in a loopback scenario, the call to * the connect_cb can occur inside the call to * ksocket_connect. Do not hold the mutex around the * call to ksocket_connect. */ rc = ksocket_connect(ks, (struct sockaddr *)sa, sa_sz, CRED()); if (rc == 0 || rc == EISCONN) { /* socket success or already success */ rc = 0; break; } if ((rc != EINPROGRESS) && (rc != EALREADY)) { break; } /* TCP connect still in progress. See if out of time. */ if (ddi_get_lbolt() > conn_login_max) { /* * Connection retry timeout, * failed connect to target. */ rc = ETIMEDOUT; break; } /* * TCP connect still in progress. Sleep until callback. * Do NOT go to sleep if the callback already occurred! */ mutex_enter(&idm_so_timed_socket_mutex); if (!it.it_callback_called) { (void) cv_timedwait(&it.it_cv, &idm_so_timed_socket_mutex, conn_login_max); } if (it.it_callback_called) { rc = it.it_socket_error_code; mutex_exit(&idm_so_timed_socket_mutex); break; } /* If timer expires, go call ksocket_connect one last time. */ mutex_exit(&idm_so_timed_socket_mutex); } /* resume blocking mode */ nonblocking = 0; (void) ksocket_ioctl(ks, FIONBIO, (intptr_t)&nonblocking, &rval, CRED()); cleanup: (void) ksocket_setcallbacks(ks, NULL, NULL, CRED()); cv_destroy(&it.it_cv); if (rc != 0) { idm_soshutdown(ks); } return (rc); } void idm_addr_to_sa(idm_addr_t *dportal, struct sockaddr_storage *sa) { int dp_addr_size; struct sockaddr_in *sin; struct sockaddr_in6 *sin6; /* Build sockaddr_storage for this portal (idm_addr_t) */ bzero(sa, sizeof (*sa)); dp_addr_size = dportal->a_addr.i_insize; if (dp_addr_size == sizeof (struct in_addr)) { /* IPv4 */ sa->ss_family = AF_INET; sin = (struct sockaddr_in *)sa; sin->sin_port = htons(dportal->a_port); bcopy(&dportal->a_addr.i_addr.in4, &sin->sin_addr, sizeof (struct in_addr)); } else if (dp_addr_size == sizeof (struct in6_addr)) { /* IPv6 */ sa->ss_family = AF_INET6; sin6 = (struct sockaddr_in6 *)sa; sin6->sin6_port = htons(dportal->a_port); bcopy(&dportal->a_addr.i_addr.in6, &sin6->sin6_addr, sizeof (struct in6_addr)); } else { ASSERT(0); } } /* * return a human-readable form of a sockaddr_storage, in the form * [ip-address]:port. This is used in calls to logging functions. * If several calls to idm_sa_ntop are made within the same invocation * of a logging function, then each one needs its own buf. */ const char * idm_sa_ntop(const struct sockaddr_storage *sa, char *buf, size_t size) { static const char bogus_ip[] = "[0].-1"; char tmp[INET6_ADDRSTRLEN]; switch (sa->ss_family) { case AF_INET6: { const struct sockaddr_in6 *in6 = (const struct sockaddr_in6 *) sa; if (inet_ntop(in6->sin6_family, &in6->sin6_addr, tmp, sizeof (tmp)) == NULL) { goto err; } if (strlen(tmp) + sizeof ("[].65535") > size) { goto err; } /* struct sockaddr_storage gets port info from v4 loc */ (void) snprintf(buf, size, "[%s].%u", tmp, ntohs(in6->sin6_port)); return (buf); } case AF_INET: { const struct sockaddr_in *in = (const struct sockaddr_in *) sa; if (inet_ntop(in->sin_family, &in->sin_addr, tmp, sizeof (tmp)) == NULL) { goto err; } if (strlen(tmp) + sizeof ("[].65535") > size) { goto err; } (void) snprintf(buf, size, "[%s].%u", tmp, ntohs(in->sin_port)); return (buf); } default: break; } err: (void) snprintf(buf, size, "%s", bogus_ip); return (buf); }