/* * This file is provided under a CDDLv1 license. When using or * redistributing this file, you may do so under this license. * In redistributing this file this license must be included * and no other modification of this header file is permitted. * * CDDL LICENSE SUMMARY * * Copyright(c) 1999 - 2008 Intel Corporation. All rights reserved. * * The contents of this file are subject to the terms of Version * 1.0 of the Common Development and Distribution License (the "License"). * * You should have received a copy of the License with this software. * You can obtain a copy of the License at * http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms of the CDDLv1. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * ********************************************************************** * * * Module Name: * * e1000g_debug.c * * * * Abstract: * * This module includes the debug routines * * * * ********************************************************************** */ #ifdef GCC #ifdef __STDC__ #include #else #include #endif #define _SYS_VARARGS_H #endif #include "e1000g_debug.h" #include "e1000g_sw.h" #ifdef E1000G_DEBUG #include #endif #ifdef E1000G_DEBUG #define WPL 8 /* 8 16-bit words per line */ #define NUM_REGS 155 /* must match the array initializer */ typedef struct { char name[10]; uint32_t offset; } Regi_t; int e1000g_debug = E1000G_WARN_LEVEL; #endif int e1000g_log_mode = E1000G_LOG_PRINT; void e1000g_log(void *instance, int level, char *fmt, ...) { struct e1000g *Adapter = (struct e1000g *)instance; auto char name[NAMELEN]; auto char buf[BUFSZ]; va_list ap; switch (level) { #ifdef E1000G_DEBUG case E1000G_VERBOSE_LEVEL: /* 16 or 0x010 */ if (e1000g_debug < E1000G_VERBOSE_LEVEL) return; level = CE_CONT; break; case E1000G_TRACE_LEVEL: /* 8 or 0x008 */ if (e1000g_debug < E1000G_TRACE_LEVEL) return; level = CE_CONT; break; case E1000G_INFO_LEVEL: /* 4 or 0x004 */ if (e1000g_debug < E1000G_INFO_LEVEL) return; level = CE_CONT; break; case E1000G_WARN_LEVEL: /* 2 or 0x002 */ if (e1000g_debug < E1000G_WARN_LEVEL) return; level = CE_CONT; break; case E1000G_ERRS_LEVEL: /* 1 or 0x001 */ level = CE_CONT; break; #else case CE_CONT: case CE_NOTE: case CE_WARN: case CE_PANIC: break; #endif default: level = CE_CONT; break; } if (Adapter != NULL) { (void) sprintf(name, "%s - e1000g[%d] ", ddi_get_name(Adapter->dip), ddi_get_instance(Adapter->dip)); } else { (void) sprintf(name, "e1000g"); } /* * va_start uses built in macro __builtin_va_alist from the * compiler libs which requires compiler system to have * __BUILTIN_VA_ARG_INCR defined. */ /* * Many compilation systems depend upon the use of special functions * built into the the compilation system to handle variable argument * lists and stack allocations. The method to obtain this in SunOS * is to define the feature test macro "__BUILTIN_VA_ARG_INCR" which * enables the following special built-in functions: * __builtin_alloca * __builtin_va_alist * __builtin_va_arg_incr * It is intended that the compilation system define this feature test * macro, not the user of the system. * * The tests on the processor type are to provide a transitional period * for existing compilation systems, and may be removed in a future * release. */ /* * Using GNU gcc compiler it doesn't expand to va_start.... */ va_start(ap, fmt); (void) vsprintf(buf, fmt, ap); va_end(ap); if ((e1000g_log_mode & E1000G_LOG_ALL) == E1000G_LOG_ALL) cmn_err(level, "%s: %s", name, buf); else if (e1000g_log_mode & E1000G_LOG_DISPLAY) cmn_err(level, "^%s: %s", name, buf); else if (e1000g_log_mode & E1000G_LOG_PRINT) cmn_err(level, "!%s: %s", name, buf); else /* if they are not set properly then do both */ cmn_err(level, "%s: %s", name, buf); } #ifdef E1000G_DEBUG extern kmutex_t e1000g_nvm_lock; void eeprom_dump(void *instance) { struct e1000g *Adapter = (struct e1000g *)instance; struct e1000_hw *hw = &Adapter->shared; uint16_t eeprom[WPL], size_field; int i, ret, sign, size, lines, offset = 0; int ee_size[] = {128, 256, 512, 1024, 2048, 4096, 16 * 1024, 32 * 1024, 64 * 1024}; mutex_enter(&e1000g_nvm_lock); if (ret = e1000_read_nvm(hw, 0x12, 1, &size_field)) { e1000g_log(Adapter, CE_WARN, "e1000_read_nvm failed to read size: %d", ret); goto eeprom_dump_end; } sign = (size_field & 0xc000) >> 14; if (sign != 1) { e1000g_log(Adapter, CE_WARN, "eeprom_dump invalid signature: %d", sign); } size = (size_field & 0x3c00) >> 10; if (size < 0 || size > 11) { e1000g_log(Adapter, CE_WARN, "eeprom_dump invalid size: %d", size); } e1000g_log(Adapter, CE_CONT, "eeprom_dump size field: %d eeprom bytes: %d\n", size, ee_size[size]); e1000g_log(Adapter, CE_CONT, "e1000_read_nvm hebs: %d\n", ((size_field & 0x000f) >> 10)); lines = ee_size[size] / WPL / 2; e1000g_log(Adapter, CE_CONT, "dump eeprom %d lines of %d words per line\n", lines, WPL); for (i = 0; i < lines; i++) { if (ret = e1000_read_nvm(hw, offset, WPL, eeprom)) { e1000g_log(Adapter, CE_WARN, "e1000_read_nvm failed: %d", ret); goto eeprom_dump_end; } e1000g_log(Adapter, CE_CONT, "0x%04x %04x %04x %04x %04x %04x %04x %04x %04x\n", offset, eeprom[0], eeprom[1], eeprom[2], eeprom[3], eeprom[4], eeprom[5], eeprom[6], eeprom[7]); offset += WPL; } eeprom_dump_end: mutex_exit(&e1000g_nvm_lock); } /* * phy_dump - dump important phy registers */ void phy_dump(void *instance) { struct e1000g *Adapter = (struct e1000g *)instance; struct e1000_hw *hw = &Adapter->shared; /* offset to each phy register */ int32_t offset[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0x1796, 0x187A, 0x1895, 0x1F30, 0x1F35, 0x1F3E, 0x1F54, 0x1F55, 0x1F56, 0x1F72, 0x1F76, 0x1F77, 0x1F78, 0x1F79, 0x1F98, 0x2010, 0x2011, 0x20DC, 0x20DD, 0x20DE, 0x28B4, 0x2F52, 0x2F5B, 0x2F70, 0x2F90, 0x2FB1, 0x2FB2 }; uint16_t value; /* register value */ uint32_t stat; /* status from e1000_read_phy_reg */ int i; e1000g_log(Adapter, CE_CONT, "Begin PHY dump\n"); for (i = 0; i < ((sizeof (offset)) / sizeof (offset[0])); i++) { stat = e1000_read_phy_reg(hw, offset[i], &value); if (stat == 0) { e1000g_log(Adapter, CE_CONT, "phyreg offset: %d value: 0x%x\n", offset[i], value); } else { e1000g_log(Adapter, CE_WARN, "phyreg offset: %d ERROR: 0x%x\n", offset[i], stat); } } } uint32_t e1000_read_reg(struct e1000_hw *hw, uint32_t offset) { return (ddi_get32(((struct e1000g_osdep *)(hw)->back)->reg_handle, (uint32_t *)((hw)->hw_addr + offset))); } /* * mac_dump - dump important mac registers */ void mac_dump(void *instance) { struct e1000g *Adapter = (struct e1000g *)instance; struct e1000_hw *hw = &Adapter->shared; int i; /* {name, offset} for each mac register */ Regi_t macreg[NUM_REGS] = { {"CTRL", E1000_CTRL}, {"STATUS", E1000_STATUS}, {"EECD", E1000_EECD}, {"EERD", E1000_EERD}, {"CTRL_EXT", E1000_CTRL_EXT}, {"FLA", E1000_FLA}, {"MDIC", E1000_MDIC}, {"SCTL", E1000_SCTL}, {"FCAL", E1000_FCAL}, {"FCAH", E1000_FCAH}, {"FCT", E1000_FCT}, {"VET", E1000_VET}, {"ICR", E1000_ICR}, {"ITR", E1000_ITR}, {"ICS", E1000_ICS}, {"IMS", E1000_IMS}, {"IMC", E1000_IMC}, {"IAM", E1000_IAM}, {"RCTL", E1000_RCTL}, {"FCTTV", E1000_FCTTV}, {"TXCW", E1000_TXCW}, {"RXCW", E1000_RXCW}, {"TCTL", E1000_TCTL}, {"TIPG", E1000_TIPG}, {"AIT", E1000_AIT}, {"LEDCTL", E1000_LEDCTL}, {"PBA", E1000_PBA}, {"PBS", E1000_PBS}, {"EEMNGCTL", E1000_EEMNGCTL}, {"ERT", E1000_ERT}, {"FCRTL", E1000_FCRTL}, {"FCRTH", E1000_FCRTH}, {"PSRCTL", E1000_PSRCTL}, {"RDBAL(0)", E1000_RDBAL(0)}, {"RDBAH(0)", E1000_RDBAH(0)}, {"RDLEN(0)", E1000_RDLEN(0)}, {"RDH(0)", E1000_RDH(0)}, {"RDT(0)", E1000_RDT(0)}, {"RDTR", E1000_RDTR}, {"RXDCTL(0)", E1000_RXDCTL(0)}, {"RADV", E1000_RADV}, {"RDBAL(1)", E1000_RDBAL(1)}, {"RDBAH(1)", E1000_RDBAH(1)}, {"RDLEN(1)", E1000_RDLEN(1)}, {"RDH(1)", E1000_RDH(1)}, {"RDT(1)", E1000_RDT(1)}, {"RXDCTL(1)", E1000_RXDCTL(1)}, {"RSRPD", E1000_RSRPD}, {"RAID", E1000_RAID}, {"CPUVEC", E1000_CPUVEC}, {"TDFH", E1000_TDFH}, {"TDFT", E1000_TDFT}, {"TDFHS", E1000_TDFHS}, {"TDFTS", E1000_TDFTS}, {"TDFPC", E1000_TDFPC}, {"TDBAL(0)", E1000_TDBAL(0)}, {"TDBAH(0)", E1000_TDBAH(0)}, {"TDLEN(0)", E1000_TDLEN(0)}, {"TDH(0)", E1000_TDH(0)}, {"TDT(0)", E1000_TDT(0)}, {"TIDV", E1000_TIDV}, {"TXDCTL(0)", E1000_TXDCTL(0)}, {"TADV", E1000_TADV}, {"TARC(0)", E1000_TARC(0)}, {"TDBAL(1)", E1000_TDBAL(1)}, {"TDBAH(1)", E1000_TDBAH(1)}, {"TDLEN(1)", E1000_TDLEN(1)}, {"TDH(1)", E1000_TDH(1)}, {"TDT(1)", E1000_TDT(1)}, {"TXDCTL(1)", E1000_TXDCTL(1)}, {"TARC(1)", E1000_TARC(1)}, {"ALGNERRC", E1000_ALGNERRC}, {"RXERRC", E1000_RXERRC}, {"MPC", E1000_MPC}, {"SCC", E1000_SCC}, {"ECOL", E1000_ECOL}, {"MCC", E1000_MCC}, {"LATECOL", E1000_LATECOL}, {"COLC", E1000_COLC}, {"DC", E1000_DC}, {"TNCRS", E1000_TNCRS}, {"SEC", E1000_SEC}, {"CEXTERR", E1000_CEXTERR}, {"RLEC", E1000_RLEC}, {"XONRXC", E1000_XONRXC}, {"XONTXC", E1000_XONTXC}, {"XOFFRXC", E1000_XOFFRXC}, {"XOFFTXC", E1000_XOFFTXC}, {"FCRUC", E1000_FCRUC}, {"PRC64", E1000_PRC64}, {"PRC127", E1000_PRC127}, {"PRC255", E1000_PRC255}, {"PRC511", E1000_PRC511}, {"PRC1023", E1000_PRC1023}, {"PRC1522", E1000_PRC1522}, {"GPRC", E1000_GPRC}, {"BPRC", E1000_BPRC}, {"MPRC", E1000_MPRC}, {"GPTC", E1000_GPTC}, {"GORCL", E1000_GORCL}, {"GORCH", E1000_GORCH}, {"GOTCL", E1000_GOTCL}, {"GOTCH", E1000_GOTCH}, {"RNBC", E1000_RNBC}, {"RUC", E1000_RUC}, {"RFC", E1000_RFC}, {"ROC", E1000_ROC}, {"RJC", E1000_RJC}, {"MGTPRC", E1000_MGTPRC}, {"MGTPDC", E1000_MGTPDC}, {"MGTPTC", E1000_MGTPTC}, {"TORL", E1000_TORL}, {"TORH", E1000_TORH}, {"TOTL", E1000_TOTL}, {"TOTH", E1000_TOTH}, {"TPR", E1000_TPR}, {"TPT", E1000_TPT}, {"PTC64", E1000_PTC64}, {"PTC127", E1000_PTC127}, {"PTC255", E1000_PTC255}, {"PTC511", E1000_PTC511}, {"PTC1023", E1000_PTC1023}, {"PTC1522", E1000_PTC1522}, {"MPTC", E1000_MPTC}, {"BPTC", E1000_BPTC}, {"TSCTC", E1000_TSCTC}, {"TSCTFC", E1000_TSCTFC}, {"IAC", E1000_IAC}, {"ICRXPTC", E1000_ICRXPTC}, {"ICRXATC", E1000_ICRXATC}, {"ICTXPTC", E1000_ICTXPTC}, {"ICTXATC", E1000_ICTXATC}, {"ICTXQEC", E1000_ICTXQEC}, {"ICTXQMTC", E1000_ICTXQMTC}, {"ICRXDMTC", E1000_ICRXDMTC}, {"ICRXOC", E1000_ICRXOC}, {"RXCSUM", E1000_RXCSUM}, {"RFCTL", E1000_RFCTL}, {"WUC", E1000_WUC}, {"WUFC", E1000_WUFC}, {"WUS", E1000_WUS}, {"MRQC", E1000_MRQC}, {"MANC", E1000_MANC}, {"IPAV", E1000_IPAV}, {"MANC2H", E1000_MANC2H}, {"RSSIM", E1000_RSSIM}, {"RSSIR", E1000_RSSIR}, {"WUPL", E1000_WUPL}, {"GCR", E1000_GCR}, {"GSCL_1", E1000_GSCL_1}, {"GSCL_2", E1000_GSCL_2}, {"GSCL_3", E1000_GSCL_3}, {"GSCL_4", E1000_GSCL_4}, {"FACTPS", E1000_FACTPS}, {"FWSM", E1000_FWSM}, }; e1000g_log(Adapter, CE_CONT, "Begin MAC dump\n"); for (i = 0; i < NUM_REGS; i++) { e1000g_log(Adapter, CE_CONT, "macreg %10s offset: 0x%x value: 0x%x\n", macreg[i].name, macreg[i].offset, e1000_read_reg(hw, macreg[i].offset)); } } void pciconfig_dump(void *instance) { struct e1000g *Adapter = (struct e1000g *)instance; ddi_acc_handle_t handle; uint8_t cap_ptr; uint8_t next_ptr; off_t offset; handle = Adapter->osdep.cfg_handle; e1000g_log(Adapter, CE_CONT, "Begin dump PCI config space\n"); e1000g_log(Adapter, CE_CONT, "PCI_CONF_VENID:\t0x%x\n", pci_config_get16(handle, PCI_CONF_VENID)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_DEVID:\t0x%x\n", pci_config_get16(handle, PCI_CONF_DEVID)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_COMMAND:\t0x%x\n", pci_config_get16(handle, PCI_CONF_COMM)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_STATUS:\t0x%x\n", pci_config_get16(handle, PCI_CONF_STAT)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_REVID:\t0x%x\n", pci_config_get8(handle, PCI_CONF_REVID)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_PROG_CLASS:\t0x%x\n", pci_config_get8(handle, PCI_CONF_PROGCLASS)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_SUB_CLASS:\t0x%x\n", pci_config_get8(handle, PCI_CONF_SUBCLASS)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_BAS_CLASS:\t0x%x\n", pci_config_get8(handle, PCI_CONF_BASCLASS)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_CACHE_LINESZ:\t0x%x\n", pci_config_get8(handle, PCI_CONF_CACHE_LINESZ)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_LATENCY_TIMER:\t0x%x\n", pci_config_get8(handle, PCI_CONF_LATENCY_TIMER)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_HEADER_TYPE:\t0x%x\n", pci_config_get8(handle, PCI_CONF_HEADER)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_BIST:\t0x%x\n", pci_config_get8(handle, PCI_CONF_BIST)); pciconfig_bar(Adapter, PCI_CONF_BASE0, "PCI_CONF_BASE0"); pciconfig_bar(Adapter, PCI_CONF_BASE1, "PCI_CONF_BASE1"); pciconfig_bar(Adapter, PCI_CONF_BASE2, "PCI_CONF_BASE2"); pciconfig_bar(Adapter, PCI_CONF_BASE3, "PCI_CONF_BASE3"); pciconfig_bar(Adapter, PCI_CONF_BASE4, "PCI_CONF_BASE4"); pciconfig_bar(Adapter, PCI_CONF_BASE5, "PCI_CONF_BASE5"); e1000g_log(Adapter, CE_CONT, "PCI_CONF_CIS:\t0x%x\n", pci_config_get32(handle, PCI_CONF_CIS)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_SUBVENID:\t0x%x\n", pci_config_get16(handle, PCI_CONF_SUBVENID)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_SUBSYSID:\t0x%x\n", pci_config_get16(handle, PCI_CONF_SUBSYSID)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_ROM:\t0x%x\n", pci_config_get32(handle, PCI_CONF_ROM)); cap_ptr = pci_config_get8(handle, PCI_CONF_CAP_PTR); e1000g_log(Adapter, CE_CONT, "PCI_CONF_CAP_PTR:\t0x%x\n", cap_ptr); e1000g_log(Adapter, CE_CONT, "PCI_CONF_ILINE:\t0x%x\n", pci_config_get8(handle, PCI_CONF_ILINE)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_IPIN:\t0x%x\n", pci_config_get8(handle, PCI_CONF_IPIN)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_MIN_G:\t0x%x\n", pci_config_get8(handle, PCI_CONF_MIN_G)); e1000g_log(Adapter, CE_CONT, "PCI_CONF_MAX_L:\t0x%x\n", pci_config_get8(handle, PCI_CONF_MAX_L)); /* Power Management */ offset = cap_ptr; e1000g_log(Adapter, CE_CONT, "PCI_PM_CAP_ID:\t0x%x\n", pci_config_get8(handle, offset)); next_ptr = pci_config_get8(handle, offset + 1); e1000g_log(Adapter, CE_CONT, "PCI_PM_NEXT_PTR:\t0x%x\n", next_ptr); e1000g_log(Adapter, CE_CONT, "PCI_PM_CAP:\t0x%x\n", pci_config_get16(handle, offset + PCI_PMCAP)); e1000g_log(Adapter, CE_CONT, "PCI_PM_CSR:\t0x%x\n", pci_config_get16(handle, offset + PCI_PMCSR)); e1000g_log(Adapter, CE_CONT, "PCI_PM_CSR_BSE:\t0x%x\n", pci_config_get8(handle, offset + PCI_PMCSR_BSE)); e1000g_log(Adapter, CE_CONT, "PCI_PM_DATA:\t0x%x\n", pci_config_get8(handle, offset + PCI_PMDATA)); /* MSI Configuration */ offset = next_ptr; e1000g_log(Adapter, CE_CONT, "PCI_MSI_CAP_ID:\t0x%x\n", pci_config_get8(handle, offset)); next_ptr = pci_config_get8(handle, offset + 1); e1000g_log(Adapter, CE_CONT, "PCI_MSI_NEXT_PTR:\t0x%x\n", next_ptr); e1000g_log(Adapter, CE_CONT, "PCI_MSI_CTRL:\t0x%x\n", pci_config_get16(handle, offset + PCI_MSI_CTRL)); e1000g_log(Adapter, CE_CONT, "PCI_MSI_ADDR:\t0x%x\n", pci_config_get32(handle, offset + PCI_MSI_ADDR_OFFSET)); e1000g_log(Adapter, CE_CONT, "PCI_MSI_ADDR_HI:\t0x%x\n", pci_config_get32(handle, offset + 0x8)); e1000g_log(Adapter, CE_CONT, "PCI_MSI_DATA:\t0x%x\n", pci_config_get16(handle, offset + 0xC)); /* PCI Express Configuration */ offset = next_ptr; e1000g_log(Adapter, CE_CONT, "PCIE_CAP_ID:\t0x%x\n", pci_config_get8(handle, offset + PCIE_CAP_ID)); next_ptr = pci_config_get8(handle, offset + PCIE_CAP_NEXT_PTR); e1000g_log(Adapter, CE_CONT, "PCIE_CAP_NEXT_PTR:\t0x%x\n", next_ptr); e1000g_log(Adapter, CE_CONT, "PCIE_PCIECAP:\t0x%x\n", pci_config_get16(handle, offset + PCIE_PCIECAP)); e1000g_log(Adapter, CE_CONT, "PCIE_DEVCAP:\t0x%x\n", pci_config_get32(handle, offset + PCIE_DEVCAP)); e1000g_log(Adapter, CE_CONT, "PCIE_DEVCTL:\t0x%x\n", pci_config_get16(handle, offset + PCIE_DEVCTL)); e1000g_log(Adapter, CE_CONT, "PCIE_DEVSTS:\t0x%x\n", pci_config_get16(handle, offset + PCIE_DEVSTS)); e1000g_log(Adapter, CE_CONT, "PCIE_LINKCAP:\t0x%x\n", pci_config_get32(handle, offset + PCIE_LINKCAP)); e1000g_log(Adapter, CE_CONT, "PCIE_LINKCTL:\t0x%x\n", pci_config_get16(handle, offset + PCIE_LINKCTL)); e1000g_log(Adapter, CE_CONT, "PCIE_LINKSTS:\t0x%x\n", pci_config_get16(handle, offset + PCIE_LINKSTS)); } void pciconfig_bar(void *instance, uint32_t offset, char *name) { struct e1000g *Adapter = (struct e1000g *)instance; ddi_acc_handle_t handle = Adapter->osdep.cfg_handle; uint32_t base = pci_config_get32(handle, offset); uint16_t comm = pci_config_get16(handle, PCI_CONF_COMM); uint32_t size; /* derived size of the region */ uint32_t bits_comm; /* command word bits to disable */ uint32_t size_mask; /* mask for size extraction */ char tag_type[32]; /* tag to show memory vs. i/o */ char tag_mem[32]; /* tag to show memory characteristiccs */ /* base address zero, simple print */ if (base == 0) { e1000g_log(Adapter, CE_CONT, "%s:\t0x%x\n", name, base); /* base address non-zero, get size */ } else { /* i/o factors that decode from the base address */ if (base & PCI_BASE_SPACE_IO) { bits_comm = PCI_COMM_IO; size_mask = PCI_BASE_IO_ADDR_M; strcpy(tag_type, "i/o port size:"); strcpy(tag_mem, ""); /* memory factors that decode from the base address */ } else { bits_comm = PCI_COMM_MAE; size_mask = PCI_BASE_M_ADDR_M; strcpy(tag_type, "memory size:"); if (base & PCI_BASE_TYPE_ALL) strcpy(tag_mem, "64bit "); else strcpy(tag_mem, "32bit "); if (base & PCI_BASE_PREF_M) strcat(tag_mem, "prefetchable"); else strcat(tag_mem, "non-prefetchable"); } /* disable memory decode */ pci_config_put16(handle, PCI_CONF_COMM, (comm & ~bits_comm)); /* write to base register */ pci_config_put32(handle, offset, 0xffffffff); /* read back & compute size */ size = pci_config_get32(handle, offset); size &= size_mask; size = (~size) + 1; /* restore base register */ pci_config_put32(handle, offset, base); /* re-enable memory decode */ pci_config_put16(handle, PCI_CONF_COMM, comm); /* print results */ e1000g_log(Adapter, CE_CONT, "%s:\t0x%x %s 0x%x %s\n", name, base, tag_type, size, tag_mem); } } #endif