/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Data-Link Services Module */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static kmem_cache_t *i_dls_link_cachep; static mod_hash_t *i_dls_link_hash; static uint_t i_dls_link_count; static krwlock_t i_dls_link_lock; #define LINK_HASHSZ 67 /* prime */ #define IMPL_HASHSZ 67 /* prime */ /* * Construct a hash key encompassing both DLSAP value and VLAN idenitifier. */ #define MAKE_KEY(_sap, _vid) \ ((mod_hash_key_t)(uintptr_t) \ (((_sap) << VLAN_ID_SIZE) | (_vid) & VLAN_ID_MASK)) /* * Extract the DLSAP value from the hash key. */ #define KEY_SAP(_key) \ (((uint32_t)(uintptr_t)(_key)) >> VLAN_ID_SIZE) /* * Private functions. */ /*ARGSUSED*/ static int i_dls_link_constructor(void *buf, void *arg, int kmflag) { dls_link_t *dlp = buf; char name[MAXNAMELEN]; bzero(buf, sizeof (dls_link_t)); (void) sprintf(name, "dls_link_t_%p_hash", buf); dlp->dl_impl_hash = mod_hash_create_idhash(name, IMPL_HASHSZ, mod_hash_null_valdtor); mutex_init(&dlp->dl_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&dlp->dl_promisc_lock, NULL, MUTEX_DEFAULT, NULL); rw_init(&dlp->dl_impl_lock, NULL, RW_DEFAULT, NULL); return (0); } /*ARGSUSED*/ static void i_dls_link_destructor(void *buf, void *arg) { dls_link_t *dlp = buf; ASSERT(dlp->dl_ref == 0); ASSERT(dlp->dl_mh == NULL); ASSERT(dlp->dl_unknowns == 0); mod_hash_destroy_idhash(dlp->dl_impl_hash); dlp->dl_impl_hash = NULL; mutex_destroy(&dlp->dl_lock); mutex_destroy(&dlp->dl_promisc_lock); rw_destroy(&dlp->dl_impl_lock); } #define ETHER_MATCH(_pkt_a, _pkt_b) \ ((((uint16_t *)(_pkt_a))[0] == ((uint16_t *)(_pkt_b))[0]) && \ (((uint16_t *)(_pkt_a))[1] == ((uint16_t *)(_pkt_b))[1]) && \ (((uint16_t *)(_pkt_a))[2] == ((uint16_t *)(_pkt_b))[2]) && \ (((uint16_t *)(_pkt_a))[6] == ((uint16_t *)(_pkt_b))[6])) #define ETHER_VLAN_MATCH(_pkt_a, _pkt_b) \ ((((uint16_t *)(_pkt_a))[0] == ((uint16_t *)(_pkt_b))[0]) && \ (((uint16_t *)(_pkt_a))[1] == ((uint16_t *)(_pkt_b))[1]) && \ (((uint16_t *)(_pkt_a))[2] == ((uint16_t *)(_pkt_b))[2]) && \ (((uint16_t *)(_pkt_a))[6] == ((uint16_t *)(_pkt_b))[6]) && \ (((uint16_t *)(_pkt_a))[7] == ((uint16_t *)(_pkt_b))[7]) && \ (((uint16_t *)(_pkt_a))[8] == ((uint16_t *)(_pkt_b))[8])) static mblk_t * i_dls_link_ether_subchain(mblk_t *mp, uint_t *header_lengthp, uint8_t **daddrp, uint16_t *type_lengthp, uint16_t *vidp, uint_t *countp) { struct ether_header *ehp; struct ether_vlan_header *evhp; mblk_t **pp; mblk_t *p; uint_t npacket; /* * Packets should always be at least 16 bit aligned. */ ASSERT(IS_P2ALIGNED(mp->b_rptr, sizeof (uint16_t))); /* * Determine whether this is a VLAN or non-VLAN packet. */ ASSERT(MBLKL(mp) >= sizeof (struct ether_header)); ehp = (struct ether_header *)mp->b_rptr; if ((*type_lengthp = ntohs(ehp->ether_type)) == VLAN_TPID) goto vlan; /* * It is a non-VLAN header. */ *header_lengthp = sizeof (struct ether_header); /* * Parse the rest of the header information that we need. */ *daddrp = (uint8_t *)&(ehp->ether_dhost); *vidp = VLAN_ID_NONE; /* * Compare with subsequent headers until we find one that has * differing header information. After checking each packet skip over * the header. */ npacket = 1; for (pp = &(mp->b_next); (p = *pp) != NULL; pp = &(p->b_next)) { if (!ETHER_MATCH(p->b_rptr, mp->b_rptr) != 0) break; p->b_rptr += sizeof (struct ether_header); npacket++; } /* * Skip over the initial packet's header. */ mp->b_rptr += sizeof (struct ether_header); goto done; vlan: /* * It is a VLAN header. */ evhp = (struct ether_vlan_header *)mp->b_rptr; *header_lengthp = sizeof (struct ether_vlan_header); /* * Parse the header information. */ *daddrp = (uint8_t *)&(evhp->ether_dhost); *vidp = VLAN_ID(ntohs(evhp->ether_tci)); *type_lengthp = ntohs(evhp->ether_type); /* * Compare with subsequent headers until we find one that has * differing header information. After checking each packet skip over * the header. */ npacket = 1; for (pp = &(mp->b_next); (p = *pp) != NULL; pp = &(p->b_next)) { if (!ETHER_VLAN_MATCH(p->b_rptr, mp->b_rptr) != 0) break; p->b_rptr += sizeof (struct ether_vlan_header); npacket++; } /* * Skip over the initial packet's header. */ mp->b_rptr += sizeof (struct ether_vlan_header); done: /* * Break the chain at this point and return a pointer to the next * sub-chain. */ *pp = NULL; *countp = npacket; return (p); } static void i_dls_head_hold(dls_head_t *dhp) { atomic_inc_32(&dhp->dh_ref); } static void i_dls_head_rele(dls_head_t *dhp) { atomic_dec_32(&dhp->dh_ref); } static dls_head_t * i_dls_head_alloc(mod_hash_key_t key) { dls_head_t *dhp; dhp = kmem_zalloc(sizeof (dls_head_t), KM_SLEEP); dhp->dh_key = key; return (dhp); } static void i_dls_head_free(dls_head_t *dhp) { ASSERT(dhp->dh_ref == 0); kmem_free(dhp, sizeof (dls_head_t)); } static void i_dls_link_ether_rx(void *arg, mac_resource_handle_t mrh, mblk_t *mp) { dls_link_t *dlp = arg; mod_hash_t *hash = dlp->dl_impl_hash; mblk_t *nextp; uint_t header_length; uint8_t *daddr; uint16_t type_length; uint16_t vid; uint16_t sap; dls_head_t *dhp; dls_impl_t *dip; dls_impl_t *ndip; mblk_t *nmp; mod_hash_key_t key; uint_t npacket; boolean_t accepted; /* * Walk the packet chain. */ while (mp != NULL) { /* * Wipe the accepted state. */ accepted = B_FALSE; /* * Grab the longest sub-chain we can process as a single * unit. */ nextp = i_dls_link_ether_subchain(mp, &header_length, &daddr, &type_length, &vid, &npacket); /* * Calculate the DLSAP: LLC (0) if the type/length field is * interpreted as a length, otherwise it is the value of the * type/length field. */ sap = (type_length <= ETHERMTU) ? DLS_SAP_LLC : type_length; /* * Construct a hash key from the VLAN identifier and the * DLSAP. */ key = MAKE_KEY(sap, vid); /* * Search the has table for dls_impl_t eligible to receive * a packet chain for this DLSAP/VLAN combination. */ rw_enter(&dlp->dl_impl_lock, RW_READER); if (mod_hash_find(hash, key, (mod_hash_val_t *)&dhp) != 0) { rw_exit(&dlp->dl_impl_lock); freemsgchain(mp); goto loop; } i_dls_head_hold(dhp); rw_exit(&dlp->dl_impl_lock); /* * Find the first dls_impl_t that will accept the sub-chain. */ for (dip = dhp->dh_list; dip != NULL; dip = dip->di_nextp) if (dls_accept(dip, daddr)) break; /* * If we did not find any dls_impl_t willing to accept the * sub-chain then throw it away. */ if (dip == NULL) { i_dls_head_rele(dhp); freemsgchain(mp); goto loop; } /* * We have at least one acceptor. */ accepted = B_TRUE; for (;;) { /* * Find the next dls_impl_t that will accept the * sub-chain. */ for (ndip = dip->di_nextp; ndip != NULL; ndip = ndip->di_nextp) if (dls_accept(ndip, daddr)) break; /* * If there are no more dls_impl_t that are willing * to accept the sub-chain then we don't need to dup * it before handing it to the current one. */ if (ndip == NULL) { dip->di_rx(dip->di_rx_arg, mrh, mp, header_length); /* * Since there are no more dls_impl_t, we're * done. */ break; } /* * There are more dls_impl_t so dup the sub-chain. */ if ((nmp = copymsgchain(mp)) != NULL) dip->di_rx(dip->di_rx_arg, mrh, nmp, header_length); dip = ndip; } /* * Release the hold on the dls_impl_t chain now that we have * finished walking it. */ i_dls_head_rele(dhp); loop: /* * If there were no acceptors then add the packet count to the * 'unknown' count. */ if (!accepted) atomic_add_32(&(dlp->dl_unknowns), npacket); /* * Move onto the next sub-chain. */ mp = nextp; } } static void i_dls_link_ether_rx_promisc(void *arg, mac_resource_handle_t mrh, mblk_t *mp) { dls_link_t *dlp = arg; mod_hash_t *hash = dlp->dl_impl_hash; mblk_t *nextp; uint_t header_length; uint8_t *daddr; uint16_t type_length; uint16_t vid; uint16_t sap; dls_head_t *dhp; dls_impl_t *dip; dls_impl_t *ndip; mblk_t *nmp; mod_hash_key_t key; uint_t npacket; boolean_t accepted; /* * Walk the packet chain. */ while (mp != NULL) { /* * Wipe the accepted state. */ accepted = B_FALSE; /* * Grab the longest sub-chain we can process as a single * unit. */ nextp = i_dls_link_ether_subchain(mp, &header_length, &daddr, &type_length, &vid, &npacket); /* * Construct a hash key from the VLAN identifier and the * DLSAP that represents dls_impl_t in promiscuous mode. */ key = MAKE_KEY(DLS_SAP_PROMISC, vid); /* * Search the has table for dls_impl_t eligible to receive * a packet chain for this DLSAP/VLAN combination. */ rw_enter(&dlp->dl_impl_lock, RW_READER); if (mod_hash_find(hash, key, (mod_hash_val_t *)&dhp) != 0) { rw_exit(&dlp->dl_impl_lock); goto non_promisc; } i_dls_head_hold(dhp); rw_exit(&dlp->dl_impl_lock); /* * Find dls_impl_t that will accept the sub-chain. */ for (dip = dhp->dh_list; dip != NULL; dip = dip->di_nextp) { if (!dls_accept(dip, daddr)) continue; /* * We have at least one acceptor. */ accepted = B_TRUE; /* * There will normally be at least more dls_impl_t * (since we've yet to check for non-promiscuous * dls_impl_t) so dup the sub-chain. */ if ((nmp = copymsgchain(mp)) != NULL) dip->di_rx(dip->di_rx_arg, mrh, nmp, header_length); } /* * Release the hold on the dls_impl_t chain now that we have * finished walking it. */ i_dls_head_rele(dhp); non_promisc: /* * Calculate the DLSAP: LLC (0) if the type/length field is * interpreted as a length, otherwise it is the value of the * type/length field. */ sap = (type_length <= ETHERMTU) ? DLS_SAP_LLC : type_length; /* * Construct a hash key from the VLAN identifier and the * DLSAP. */ key = MAKE_KEY(sap, vid); /* * Search the has table for dls_impl_t eligible to receive * a packet chain for this DLSAP/VLAN combination. */ rw_enter(&dlp->dl_impl_lock, RW_READER); if (mod_hash_find(hash, key, (mod_hash_val_t *)&dhp) != 0) { rw_exit(&dlp->dl_impl_lock); freemsgchain(mp); goto loop; } i_dls_head_hold(dhp); rw_exit(&dlp->dl_impl_lock); /* * Find the first dls_impl_t that will accept the sub-chain. */ for (dip = dhp->dh_list; dip != NULL; dip = dip->di_nextp) if (dls_accept(dip, daddr)) break; /* * If we did not find any dls_impl_t willing to accept the * sub-chain then throw it away. */ if (dip == NULL) { i_dls_head_rele(dhp); freemsgchain(mp); goto loop; } /* * We have at least one acceptor. */ accepted = B_TRUE; for (;;) { /* * Find the next dls_impl_t that will accept the * sub-chain. */ for (ndip = dip->di_nextp; ndip != NULL; ndip = ndip->di_nextp) if (dls_accept(ndip, daddr)) break; /* * If there are no more dls_impl_t that are willing * to accept the sub-chain then we don't need to dup * it before handing it to the current one. */ if (ndip == NULL) { dip->di_rx(dip->di_rx_arg, mrh, mp, header_length); /* * Since there are no more dls_impl_t, we're * done. */ break; } /* * There are more dls_impl_t so dup the sub-chain. */ if ((nmp = copymsgchain(mp)) != NULL) dip->di_rx(dip->di_rx_arg, mrh, nmp, header_length); dip = ndip; } /* * Release the hold on the dls_impl_t chain now that we have * finished walking it. */ i_dls_head_rele(dhp); loop: /* * If there were no acceptors then add the packet count to the * 'unknown' count. */ if (!accepted) atomic_add_32(&(dlp->dl_unknowns), npacket); /* * Move onto the next sub-chain. */ mp = nextp; } } static void i_dls_link_ether_loopback(void *arg, mblk_t *mp) { dls_link_t *dlp = arg; mod_hash_t *hash = dlp->dl_impl_hash; mblk_t *nextp; uint_t header_length; uint8_t *daddr; uint16_t type_length; uint16_t vid; uint16_t sap; dls_head_t *dhp; dls_impl_t *dip; dls_impl_t *ndip; mblk_t *nmp; mod_hash_key_t key; uint_t npacket; /* * Walk the packet chain. */ while (mp != NULL) { /* * Grab the longest sub-chain we can process as a single * unit. */ nextp = i_dls_link_ether_subchain(mp, &header_length, &daddr, &type_length, &vid, &npacket); /* * Calculate the DLSAP: LLC (0) if the type/length field is * interpreted as a length, otherwise it is the value of the * type/length field. */ sap = (type_length <= ETHERMTU) ? DLS_SAP_LLC : type_length; /* * Construct a hash key from the VLAN identifier and the * DLSAP. */ key = MAKE_KEY(sap, vid); /* * Search the has table for dls_impl_t eligible to receive * a packet chain for this DLSAP/VLAN combination. */ rw_enter(&dlp->dl_impl_lock, RW_READER); if (mod_hash_find(hash, key, (mod_hash_val_t *)&dhp) != 0) { rw_exit(&dlp->dl_impl_lock); goto promisc; } i_dls_head_hold(dhp); rw_exit(&dlp->dl_impl_lock); /* * Find dls_impl_t that will accept the sub-chain. */ for (dip = dhp->dh_list; dip != NULL; dip = dip->di_nextp) { if (!dls_accept_loopback(dip, daddr)) continue; /* * There should be at least more dls_impl_t (since * we've yet to check for dls_impl_t in promiscuous * mode) so dup the sub-chain. */ if ((nmp = copymsgchain(mp)) != NULL) dip->di_rx(dip->di_rx_arg, NULL, nmp, header_length); } /* * Release the hold on the dls_impl_t chain now that we have * finished walking it. */ i_dls_head_rele(dhp); promisc: /* * Construct a hash key from the VLAN identifier and the * DLSAP that represents dls_impl_t in promiscuous mode. */ key = MAKE_KEY(DLS_SAP_PROMISC, vid); /* * Search the has table for dls_impl_t eligible to receive * a packet chain for this DLSAP/VLAN combination. */ rw_enter(&dlp->dl_impl_lock, RW_READER); if (mod_hash_find(hash, key, (mod_hash_val_t *)&dhp) != 0) { rw_exit(&dlp->dl_impl_lock); freemsgchain(mp); goto loop; } i_dls_head_hold(dhp); rw_exit(&dlp->dl_impl_lock); /* * Find the first dls_impl_t that will accept the sub-chain. */ for (dip = dhp->dh_list; dip != NULL; dip = dip->di_nextp) if (dls_accept_loopback(dip, daddr)) break; /* * If we did not find any dls_impl_t willing to accept the * sub-chain then throw it away. */ if (dip == NULL) { i_dls_head_rele(dhp); freemsgchain(mp); goto loop; } for (;;) { /* * Find the next dls_impl_t that will accept the * sub-chain. */ for (ndip = dip->di_nextp; ndip != NULL; ndip = ndip->di_nextp) if (dls_accept_loopback(ndip, daddr)) break; /* * If there are no more dls_impl_t that are willing * to accept the sub-chain then we don't need to dup * it before handing it to the current one. */ if (ndip == NULL) { dip->di_rx(dip->di_rx_arg, NULL, mp, header_length); /* * Since there are no more dls_impl_t, we're * done. */ break; } /* * There are more dls_impl_t so dup the sub-chain. */ if ((nmp = copymsgchain(mp)) != NULL) dip->di_rx(dip->di_rx_arg, NULL, nmp, header_length); dip = ndip; } /* * Release the hold on the dls_impl_t chain now that we have * finished walking it. */ i_dls_head_rele(dhp); loop: /* * Move onto the next sub-chain. */ mp = nextp; } } /*ARGSUSED*/ static uint_t i_dls_link_walk(mod_hash_key_t key, mod_hash_val_t *val, void *arg) { boolean_t *promiscp = arg; uint32_t sap = KEY_SAP(key); if (sap == DLS_SAP_PROMISC) { *promiscp = B_TRUE; return (MH_WALK_TERMINATE); } return (MH_WALK_CONTINUE); } static int i_dls_link_create(const char *dev, uint_t port, dls_link_t **dlpp) { dls_link_t *dlp; /* * Allocate a new dls_link_t structure. */ dlp = kmem_cache_alloc(i_dls_link_cachep, KM_SLEEP); /* * Name the dls_link_t after the MAC interface it represents. */ MAC_NAME(dlp->dl_name, dev, port); (void) strlcpy(dlp->dl_dev, dev, MAXNAMELEN); dlp->dl_port = port; /* * Set the packet loopback function for use when the MAC is in * promiscuous mode, and initialize promiscuous bookeeping fields. */ dlp->dl_loopback = i_dls_link_ether_loopback; dlp->dl_npromisc = 0; dlp->dl_mth = NULL; *dlpp = dlp; return (0); } static void i_dls_link_destroy(dls_link_t *dlp) { ASSERT(dlp->dl_npromisc == 0); ASSERT(dlp->dl_nactive == 0); ASSERT(dlp->dl_mth == NULL); ASSERT(dlp->dl_macref == 0); ASSERT(dlp->dl_mh == NULL); ASSERT(dlp->dl_mip == NULL); ASSERT(dlp->dl_impl_count == 0); ASSERT(dlp->dl_mrh == NULL); /* * Free the structure back to the cache. */ dlp->dl_unknowns = 0; kmem_cache_free(i_dls_link_cachep, dlp); } /* * Module initialization functions. */ void dls_link_init(void) { /* * Create a kmem_cache of dls_link_t structures. */ i_dls_link_cachep = kmem_cache_create("dls_link_cache", sizeof (dls_link_t), 0, i_dls_link_constructor, i_dls_link_destructor, NULL, NULL, NULL, 0); ASSERT(i_dls_link_cachep != NULL); /* * Create a dls_link_t hash table and associated lock. */ i_dls_link_hash = mod_hash_create_extended("dls_link_hash", IMPL_HASHSZ, mod_hash_null_keydtor, mod_hash_null_valdtor, mod_hash_bystr, NULL, mod_hash_strkey_cmp, KM_SLEEP); rw_init(&i_dls_link_lock, NULL, RW_DEFAULT, NULL); i_dls_link_count = 0; } int dls_link_fini(void) { if (i_dls_link_count > 0) return (EBUSY); /* * Destroy the kmem_cache. */ kmem_cache_destroy(i_dls_link_cachep); /* * Destroy the hash table and associated lock. */ mod_hash_destroy_hash(i_dls_link_hash); rw_destroy(&i_dls_link_lock); return (0); } /* * Exported functions. */ int dls_link_hold(const char *dev, uint_t port, dls_link_t **dlpp) { char name[MAXNAMELEN]; dls_link_t *dlp; int err; /* * Construct a copy of the name used to identify any existing * dls_link_t. */ MAC_NAME(name, dev, port); /* * Look up a dls_link_t corresponding to the given mac_handle_t * in the global hash table. We need to hold i_dls_link_lock in * order to atomically find and insert a dls_link_t into the * hash table. */ rw_enter(&i_dls_link_lock, RW_WRITER); if ((err = mod_hash_find(i_dls_link_hash, (mod_hash_key_t)name, (mod_hash_val_t *)&dlp)) == 0) goto done; ASSERT(err == MH_ERR_NOTFOUND); /* * We didn't find anything so we need to create one. */ if ((err = i_dls_link_create(dev, port, &dlp)) != 0) { rw_exit(&i_dls_link_lock); return (err); } /* * Insert the dls_link_t. */ err = mod_hash_insert(i_dls_link_hash, (mod_hash_key_t)dlp->dl_name, (mod_hash_val_t)dlp); ASSERT(err == 0); i_dls_link_count++; ASSERT(i_dls_link_count != 0); done: /* * Bump the reference count and hand back the reference. */ dlp->dl_ref++; *dlpp = dlp; rw_exit(&i_dls_link_lock); return (0); } void dls_link_rele(dls_link_t *dlp) { mod_hash_val_t val; rw_enter(&i_dls_link_lock, RW_WRITER); /* * Check if there are any more references. */ if (--dlp->dl_ref != 0) { /* * There are more references so there's nothing more to do. */ goto done; } (void) mod_hash_remove(i_dls_link_hash, (mod_hash_key_t)dlp->dl_name, &val); ASSERT(dlp == (dls_link_t *)val); /* * Destroy the dls_link_t. */ i_dls_link_destroy(dlp); ASSERT(i_dls_link_count > 0); i_dls_link_count--; done: rw_exit(&i_dls_link_lock); } int dls_mac_hold(dls_link_t *dlp) { int err = 0; mutex_enter(&dlp->dl_lock); ASSERT(IMPLY(dlp->dl_macref != 0, dlp->dl_mh != NULL)); ASSERT(IMPLY(dlp->dl_macref == 0, dlp->dl_mh == NULL)); if (dlp->dl_macref == 0) { /* * First reference; hold open the MAC interface. */ err = mac_open(dlp->dl_dev, dlp->dl_port, &dlp->dl_mh); if (err != 0) goto done; dlp->dl_mip = mac_info(dlp->dl_mh); } dlp->dl_macref++; done: mutex_exit(&dlp->dl_lock); return (err); } void dls_mac_rele(dls_link_t *dlp) { mutex_enter(&dlp->dl_lock); ASSERT(dlp->dl_mh != NULL); if (--dlp->dl_macref == 0) { mac_close(dlp->dl_mh); dlp->dl_mh = NULL; dlp->dl_mip = NULL; } mutex_exit(&dlp->dl_lock); } void dls_link_add(dls_link_t *dlp, uint32_t sap, dls_impl_t *dip) { dls_vlan_t *dvp = dip->di_dvp; mod_hash_t *hash = dlp->dl_impl_hash; mod_hash_key_t key; dls_head_t *dhp; dls_impl_t *p; mac_rx_t rx; int err; boolean_t promisc = B_FALSE; /* * For ethernet media, sap values less than or equal to * ETHERMTU (1500) represent LLC channels. (See PSARC 2003/150). * We strictly use 0 to represent LLC channels. */ sap = (sap <= ETHERMTU) ? 0 : sap; /* * Make the appropriate key value depending on whether the * dls_impl_t is in promiscuous mode or not. */ key = MAKE_KEY(sap, dvp->dv_id); /* * We need dl_lock here because we want to be able to walk * the hash table *and* set the mac rx func atomically. if * these two operations are separate, someone else could * insert/remove dls_impl_t from the hash table after we * drop the hash lock and this could cause our chosen rx * func to be incorrect. note that we cannot call mac_rx_add * when holding the hash lock because this can cause deadlock. */ mutex_enter(&dlp->dl_lock); /* * Search the table for a list head with this key. */ rw_enter(&dlp->dl_impl_lock, RW_WRITER); if ((err = mod_hash_find(hash, key, (mod_hash_val_t *)&dhp)) != 0) { ASSERT(err == MH_ERR_NOTFOUND); dhp = i_dls_head_alloc(key); err = mod_hash_insert(hash, key, (mod_hash_val_t)dhp); ASSERT(err == 0); } /* * Add the dls_impl_t to the head of the list. */ ASSERT(dip->di_nextp == NULL); p = dhp->dh_list; dip->di_nextp = p; dhp->dh_list = dip; /* * Save a pointer to the list head. */ dip->di_headp = dhp; dlp->dl_impl_count++; /* * Walk the bound dls_impl_t to see if there are any * in promiscuous 'all sap' mode. */ mod_hash_walk(hash, i_dls_link_walk, (void *)&promisc); rw_exit(&dlp->dl_impl_lock); /* * If there are then we need to use a receive routine * which will route packets to those dls_impl_t as well * as ones bound to the DLSAP of the packet. */ if (promisc) rx = i_dls_link_ether_rx_promisc; else rx = i_dls_link_ether_rx; /* Replace the existing receive function if there is one. */ if (dlp->dl_mrh != NULL) mac_rx_remove(dlp->dl_mh, dlp->dl_mrh); dlp->dl_mrh = mac_rx_add(dlp->dl_mh, rx, (void *)dlp); mutex_exit(&dlp->dl_lock); } void dls_link_remove(dls_link_t *dlp, dls_impl_t *dip) { mod_hash_t *hash = dlp->dl_impl_hash; dls_impl_t **pp; dls_impl_t *p; dls_head_t *dhp; mac_rx_t rx; /* * We need dl_lock here because we want to be able to walk * the hash table *and* set the mac rx func atomically. if * these two operations are separate, someone else could * insert/remove dls_impl_t from the hash table after we * drop the hash lock and this could cause our chosen rx * func to be incorrect. note that we cannot call mac_rx_add * when holding the hash lock because this can cause deadlock. */ mutex_enter(&dlp->dl_lock); rw_enter(&dlp->dl_impl_lock, RW_WRITER); /* * Poll the hash table entry until all references have been dropped. * We need to drop all locks before sleeping because we don't want * the interrupt handler to block. We set di_removing here to * tell the receive callbacks not to pass up packets anymore. * This is only a hint to quicken the decrease of the refcnt so * the assignment need not be protected by any lock. */ dhp = dip->di_headp; dip->di_removing = B_TRUE; while (dhp->dh_ref != 0) { rw_exit(&dlp->dl_impl_lock); mutex_exit(&dlp->dl_lock); delay(drv_usectohz(1000)); /* 1ms delay */ mutex_enter(&dlp->dl_lock); rw_enter(&dlp->dl_impl_lock, RW_WRITER); } /* * Walk the list and remove the dls_impl_t. */ for (pp = &dhp->dh_list; (p = *pp) != NULL; pp = &(p->di_nextp)) { if (p == dip) break; } ASSERT(p != NULL); *pp = p->di_nextp; p->di_nextp = NULL; ASSERT(dlp->dl_impl_count > 0); dlp->dl_impl_count--; if (dhp->dh_list == NULL) { mod_hash_val_t val = NULL; /* * The list is empty so remove the hash table entry. */ (void) mod_hash_remove(hash, dhp->dh_key, &val); ASSERT(dhp == (dls_head_t *)val); i_dls_head_free(dhp); } dip->di_removing = B_FALSE; /* * If there are no dls_impl_t then there's no need to register a * receive function with the mac. */ if (dlp->dl_impl_count == 0) { rw_exit(&dlp->dl_impl_lock); mac_rx_remove(dlp->dl_mh, dlp->dl_mrh); dlp->dl_mrh = NULL; } else { boolean_t promisc = B_FALSE; /* * Walk the bound dls_impl_t to see if there are any * in promiscuous 'all sap' mode. */ mod_hash_walk(hash, i_dls_link_walk, (void *)&promisc); rw_exit(&dlp->dl_impl_lock); /* * If there are then we need to use a receive routine * which will route packets to those dls_impl_t as well * as ones bound to the DLSAP of the packet. */ if (promisc) rx = i_dls_link_ether_rx_promisc; else rx = i_dls_link_ether_rx; mac_rx_remove(dlp->dl_mh, dlp->dl_mrh); dlp->dl_mrh = mac_rx_add(dlp->dl_mh, rx, (void *)dlp); } mutex_exit(&dlp->dl_lock); }