/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ /* All Rights Reserved */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Serial I/O driver for 8250/16450/16550A/16650/16750 chips. */ #include <sys/param.h> #include <sys/types.h> #include <sys/signal.h> #include <sys/stream.h> #include <sys/termio.h> #include <sys/errno.h> #include <sys/file.h> #include <sys/cmn_err.h> #include <sys/stropts.h> #include <sys/strsubr.h> #include <sys/strtty.h> #include <sys/debug.h> #include <sys/kbio.h> #include <sys/cred.h> #include <sys/stat.h> #include <sys/consdev.h> #include <sys/mkdev.h> #include <sys/kmem.h> #include <sys/cred.h> #include <sys/strsun.h> #ifdef DEBUG #include <sys/promif.h> #endif #include <sys/modctl.h> #include <sys/ddi.h> #include <sys/sunddi.h> #include <sys/pci.h> #include <sys/asy.h> #include <sys/policy.h> /* * set the RX FIFO trigger_level to half the RX FIFO size for now * we may want to make this configurable later. */ static int asy_trig_level = FIFO_TRIG_8; int asy_drain_check = 15000000; /* tunable: exit drain check time */ int asy_min_dtr_low = 500000; /* tunable: minimum DTR down time */ int asy_min_utbrk = 100000; /* tunable: minumum untimed brk time */ int asymaxchip = ASY16750; /* tunable: limit chip support we look for */ /* * Just in case someone has a chip with broken loopback mode, we provide a * means to disable the loopback test. By default, we only loopback test * UARTs which look like they have FIFOs bigger than 16 bytes. * Set to 0 to suppress test, or to 2 to enable test on any size FIFO. */ int asy_fifo_test = 1; /* tunable: set to 0, 1, or 2 */ /* * Allow ability to switch off testing of the scratch register. * Some UART emulators might not have it. This will also disable the test * for Exar/Startech ST16C650, as that requires use of the SCR register. */ int asy_scr_test = 1; /* tunable: set to 0 to disable SCR reg test */ /* * As we don't yet support on-chip flow control, it's a bad idea to put a * large number of characters in the TX FIFO, since if other end tells us * to stop transmitting, we can only stop filling the TX FIFO, but it will * still carry on draining by itself, so remote end still gets what's left * in the FIFO. */ int asy_max_tx_fifo = 16; /* tunable: max fill of TX FIFO */ #define async_stopc async_ttycommon.t_stopc #define async_startc async_ttycommon.t_startc #define ASY_INIT 1 #define ASY_NOINIT 0 /* enum value for sw and hw flow control action */ typedef enum { FLOW_CHECK, FLOW_STOP, FLOW_START } async_flowc_action; #ifdef DEBUG #define ASY_DEBUG_INIT 0x0001 /* Output msgs during driver initialization. */ #define ASY_DEBUG_INPUT 0x0002 /* Report characters received during int. */ #define ASY_DEBUG_EOT 0x0004 /* Output msgs when wait for xmit to finish. */ #define ASY_DEBUG_CLOSE 0x0008 /* Output msgs when driver open/close called */ #define ASY_DEBUG_HFLOW 0x0010 /* Output msgs when H/W flowcontrol is active */ #define ASY_DEBUG_PROCS 0x0020 /* Output each proc name as it is entered. */ #define ASY_DEBUG_STATE 0x0040 /* Output value of Interrupt Service Reg. */ #define ASY_DEBUG_INTR 0x0080 /* Output value of Interrupt Service Reg. */ #define ASY_DEBUG_OUT 0x0100 /* Output msgs about output events. */ #define ASY_DEBUG_BUSY 0x0200 /* Output msgs when xmit is enabled/disabled */ #define ASY_DEBUG_MODEM 0x0400 /* Output msgs about modem status & control. */ #define ASY_DEBUG_MODM2 0x0800 /* Output msgs about modem status & control. */ #define ASY_DEBUG_IOCTL 0x1000 /* Output msgs about ioctl messages. */ #define ASY_DEBUG_CHIP 0x2000 /* Output msgs about chip identification. */ #define ASY_DEBUG_SFLOW 0x4000 /* Output msgs when S/W flowcontrol is active */ #define ASY_DEBUG(x) (debug & (x)) static int debug = 0; #else #define ASY_DEBUG(x) B_FALSE #endif /* pnpISA compressed device ids */ #define pnpMTS0219 0xb6930219 /* Multitech MT5634ZTX modem */ /* * PPS (Pulse Per Second) support. */ void ddi_hardpps(); /* * This is protected by the asy_excl_hi of the port on which PPS event * handling is enabled. Note that only one port should have this enabled at * any one time. Enabling PPS handling on multiple ports will result in * unpredictable (but benign) results. */ static struct ppsclockev asy_ppsev; #ifdef PPSCLOCKLED /* XXX Use these to observe PPS latencies and jitter on a scope */ #define LED_ON #define LED_OFF #else #define LED_ON #define LED_OFF #endif static int max_asy_instance = -1; static uint_t asysoftintr(caddr_t intarg); static uint_t asyintr(caddr_t argasy); static boolean_t abort_charseq_recognize(uchar_t ch); /* The async interrupt entry points */ static void async_txint(struct asycom *asy); static void async_rxint(struct asycom *asy, uchar_t lsr); static void async_msint(struct asycom *asy); static void async_softint(struct asycom *asy); static void async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp); static void async_reioctl(void *unit); static void async_iocdata(queue_t *q, mblk_t *mp); static void async_restart(void *arg); static void async_start(struct asyncline *async); static void async_nstart(struct asyncline *async, int mode); static void async_resume(struct asyncline *async); static void asy_program(struct asycom *asy, int mode); static void asyinit(struct asycom *asy); static void asy_waiteot(struct asycom *asy); static void asyputchar(cons_polledio_arg_t, uchar_t c); static int asygetchar(cons_polledio_arg_t); static boolean_t asyischar(cons_polledio_arg_t); static int asymctl(struct asycom *, int, int); static int asytodm(int, int); static int dmtoasy(int); /*PRINTFLIKE2*/ static void asyerror(int level, const char *fmt, ...) __KPRINTFLIKE(2); static void asy_parse_mode(dev_info_t *devi, struct asycom *asy); static void asy_soft_state_free(struct asycom *); static char *asy_hw_name(struct asycom *asy); static void async_hold_utbrk(void *arg); static void async_resume_utbrk(struct asyncline *async); static void async_dtr_free(struct asyncline *async); static int asy_identify_chip(dev_info_t *devi, struct asycom *asy); static void asy_reset_fifo(struct asycom *asy, uchar_t flags); static int asy_getproperty(dev_info_t *devi, struct asycom *asy, const char *property); static boolean_t async_flowcontrol_sw_input(struct asycom *asy, async_flowc_action onoff, int type); static void async_flowcontrol_sw_output(struct asycom *asy, async_flowc_action onoff); static void async_flowcontrol_hw_input(struct asycom *asy, async_flowc_action onoff, int type); static void async_flowcontrol_hw_output(struct asycom *asy, async_flowc_action onoff); #define GET_PROP(devi, pname, pflag, pval, plen) \ (ddi_prop_op(DDI_DEV_T_ANY, (devi), PROP_LEN_AND_VAL_BUF, \ (pflag), (pname), (caddr_t)(pval), (plen))) static ddi_iblock_cookie_t asy_soft_iblock; ddi_softintr_t asy_softintr_id; static int asy_addedsoft = 0; int asysoftpend; /* soft interrupt pending */ kmutex_t asy_soft_lock; /* lock protecting asysoftpend */ kmutex_t asy_glob_lock; /* lock protecting global data manipulation */ void *asy_soft_state; /* Standard COM port I/O addresses */ static const int standard_com_ports[] = { COM1_IOADDR, COM2_IOADDR, COM3_IOADDR, COM4_IOADDR }; static int *com_ports; static uint_t num_com_ports; #ifdef DEBUG /* * Set this to true to make the driver pretend to do a suspend. Useful * for debugging suspend/resume code with a serial debugger. */ boolean_t asy_nosuspend = B_FALSE; #endif /* * Baud rate table. Indexed by #defines found in sys/termios.h */ ushort_t asyspdtab[] = { 0, /* 0 baud rate */ 0x900, /* 50 baud rate */ 0x600, /* 75 baud rate */ 0x417, /* 110 baud rate (%0.026) */ 0x359, /* 134 baud rate (%0.058) */ 0x300, /* 150 baud rate */ 0x240, /* 200 baud rate */ 0x180, /* 300 baud rate */ 0x0c0, /* 600 baud rate */ 0x060, /* 1200 baud rate */ 0x040, /* 1800 baud rate */ 0x030, /* 2400 baud rate */ 0x018, /* 4800 baud rate */ 0x00c, /* 9600 baud rate */ 0x006, /* 19200 baud rate */ 0x003, /* 38400 baud rate */ 0x002, /* 57600 baud rate */ 0x0, /* 76800 baud rate not supported */ 0x001, /* 115200 baud rate */ 0x0, /* 153600 baud rate not supported */ 0x0, /* 0x8002 (SMC chip) 230400 baud rate not supported */ 0x0, /* 307200 baud rate not supported */ 0x0, /* 0x8001 (SMC chip) 460800 baud rate not supported */ 0x0, /* unused */ 0x0, /* unused */ 0x0, /* unused */ 0x0, /* unused */ 0x0, /* unused */ 0x0, /* unused */ 0x0, /* unused */ 0x0, /* unused */ 0x0, /* unused */ }; static int asyrsrv(queue_t *q); static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr); static int asyclose(queue_t *q, int flag, cred_t *credp); static int asywputdo(queue_t *q, mblk_t *mp, boolean_t); static int asywput(queue_t *q, mblk_t *mp); struct module_info asy_info = { 0, "asy", 0, INFPSZ, 4096, 128 }; static struct qinit asy_rint = { putq, asyrsrv, asyopen, asyclose, NULL, &asy_info, NULL }; static struct qinit asy_wint = { asywput, NULL, NULL, NULL, NULL, &asy_info, NULL }; struct streamtab asy_str_info = { &asy_rint, &asy_wint, NULL, NULL }; static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result); static int asyprobe(dev_info_t *); static int asyattach(dev_info_t *, ddi_attach_cmd_t); static int asydetach(dev_info_t *, ddi_detach_cmd_t); static struct cb_ops cb_asy_ops = { nodev, /* cb_open */ nodev, /* cb_close */ nodev, /* cb_strategy */ nodev, /* cb_print */ nodev, /* cb_dump */ nodev, /* cb_read */ nodev, /* cb_write */ nodev, /* cb_ioctl */ nodev, /* cb_devmap */ nodev, /* cb_mmap */ nodev, /* cb_segmap */ nochpoll, /* cb_chpoll */ ddi_prop_op, /* cb_prop_op */ &asy_str_info, /* cb_stream */ D_MP /* cb_flag */ }; struct dev_ops asy_ops = { DEVO_REV, /* devo_rev */ 0, /* devo_refcnt */ asyinfo, /* devo_getinfo */ nulldev, /* devo_identify */ asyprobe, /* devo_probe */ asyattach, /* devo_attach */ asydetach, /* devo_detach */ nodev, /* devo_reset */ &cb_asy_ops, /* devo_cb_ops */ }; static struct modldrv modldrv = { &mod_driverops, /* Type of module. This one is a driver */ "ASY driver %I%", &asy_ops, /* driver ops */ }; static struct modlinkage modlinkage = { MODREV_1, (void *)&modldrv, NULL }; int _init(void) { int i; i = ddi_soft_state_init(&asy_soft_state, sizeof (struct asycom), 2); if (i == 0) { mutex_init(&asy_glob_lock, NULL, MUTEX_DRIVER, NULL); if ((i = mod_install(&modlinkage)) != 0) { mutex_destroy(&asy_glob_lock); ddi_soft_state_fini(&asy_soft_state); } else { DEBUGCONT2(ASY_DEBUG_INIT, "%s, debug = %x\n", modldrv.drv_linkinfo, debug); } } return (i); } int _fini(void) { int i; if ((i = mod_remove(&modlinkage)) == 0) { DEBUGCONT1(ASY_DEBUG_INIT, "%s unloading\n", modldrv.drv_linkinfo); ASSERT(max_asy_instance == -1); mutex_destroy(&asy_glob_lock); if (asy_addedsoft) ddi_remove_softintr(asy_softintr_id); asy_addedsoft = 0; /* free "motherboard-serial-ports" property if allocated */ if (com_ports != NULL && com_ports != (int *)standard_com_ports) ddi_prop_free(com_ports); com_ports = NULL; mutex_destroy(&asy_soft_lock); ddi_soft_state_fini(&asy_soft_state); } return (i); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } void async_put_suspq(struct asycom *asy, mblk_t *mp) { struct asyncline *async = asy->asy_priv; ASSERT(mutex_owned(&asy->asy_excl)); if (async->async_suspqf == NULL) async->async_suspqf = mp; else async->async_suspqb->b_next = mp; async->async_suspqb = mp; } static mblk_t * async_get_suspq(struct asycom *asy) { struct asyncline *async = asy->asy_priv; mblk_t *mp; ASSERT(mutex_owned(&asy->asy_excl)); if ((mp = async->async_suspqf) != NULL) { async->async_suspqf = mp->b_next; mp->b_next = NULL; } else { async->async_suspqb = NULL; } return (mp); } static void async_process_suspq(struct asycom *asy) { struct asyncline *async = asy->asy_priv; mblk_t *mp; ASSERT(mutex_owned(&asy->asy_excl)); while ((mp = async_get_suspq(asy)) != NULL) { queue_t *q; q = async->async_ttycommon.t_writeq; ASSERT(q != NULL); mutex_exit(&asy->asy_excl); (void) asywputdo(q, mp, B_FALSE); mutex_enter(&asy->asy_excl); } async->async_flags &= ~ASYNC_DDI_SUSPENDED; cv_broadcast(&async->async_flags_cv); } static int asy_get_bus_type(dev_info_t *devinfo) { char parent_type[16]; int parentlen; parentlen = sizeof (parent_type); if (ddi_prop_op(DDI_DEV_T_ANY, devinfo, PROP_LEN_AND_VAL_BUF, 0, "device_type", (caddr_t)parent_type, &parentlen) != DDI_PROP_SUCCESS && ddi_prop_op(DDI_DEV_T_ANY, devinfo, PROP_LEN_AND_VAL_BUF, 0, "bus-type", (caddr_t)parent_type, &parentlen) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "asy: can't figure out device type for" " parent \"%s\"", ddi_get_name(ddi_get_parent(devinfo))); return (ASY_BUS_UNKNOWN); } if (strcmp(parent_type, "isa") == 0) return (ASY_BUS_ISA); else if (strcmp(parent_type, "pci") == 0) return (ASY_BUS_PCI); else return (ASY_BUS_UNKNOWN); } static int asy_get_io_regnum_pci(dev_info_t *devi, struct asycom *asy) { int reglen, nregs; int regnum, i; uint64_t size; struct pci_phys_spec *reglist; if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, "reg", (caddr_t)®list, ®len) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "asy_get_io_regnum_pci: reg property" " not found in devices property list"); return (-1); } /* * PCI devices are assumed to not have broken FIFOs; * Agere/Lucent Venus PCI modem chipsets are an example */ if (asy) asy->asy_flags2 |= ASY2_NO_LOOPBACK; regnum = -1; nregs = reglen / sizeof (*reglist); for (i = 0; i < nregs; i++) { switch (reglist[i].pci_phys_hi & PCI_ADDR_MASK) { case PCI_ADDR_IO: /* I/O bus reg property */ if (regnum == -1) /* use only the first one */ regnum = i; break; default: break; } } /* check for valid count of registers */ if (regnum >= 0) { size = ((uint64_t)reglist[regnum].pci_size_low) | ((uint64_t)reglist[regnum].pci_size_hi) << 32; if (size < 8) regnum = -1; } kmem_free(reglist, reglen); return (regnum); } static int asy_get_io_regnum_isa(dev_info_t *devi, struct asycom *asy) { int reglen, nregs; int regnum, i; struct { uint_t bustype; int base; int size; } *reglist; if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, "reg", (caddr_t)®list, ®len) != DDI_PROP_SUCCESS) { cmn_err(CE_WARN, "asy_get_io_regnum: reg property not found " "in devices property list"); return (-1); } regnum = -1; nregs = reglen / sizeof (*reglist); for (i = 0; i < nregs; i++) { switch (reglist[i].bustype) { case 1: /* I/O bus reg property */ if (regnum == -1) /* only use the first one */ regnum = i; break; case pnpMTS0219: /* Multitech MT5634ZTX modem */ /* Venus chipset can't do loopback test */ if (asy) asy->asy_flags2 |= ASY2_NO_LOOPBACK; break; default: break; } } /* check for valid count of registers */ if ((regnum < 0) || (reglist[regnum].size < 8)) regnum = -1; kmem_free(reglist, reglen); return (regnum); } static int asy_get_io_regnum(dev_info_t *devinfo, struct asycom *asy) { switch (asy_get_bus_type(devinfo)) { case ASY_BUS_ISA: return (asy_get_io_regnum_isa(devinfo, asy)); case ASY_BUS_PCI: return (asy_get_io_regnum_pci(devinfo, asy)); default: return (-1); } } static int asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd) { int instance; struct asycom *asy; struct asyncline *async; instance = ddi_get_instance(devi); /* find out which unit */ asy = ddi_get_soft_state(asy_soft_state, instance); if (asy == NULL) return (DDI_FAILURE); async = asy->asy_priv; switch (cmd) { case DDI_DETACH: DEBUGNOTE2(ASY_DEBUG_INIT, "asy%d: %s shutdown.", instance, asy_hw_name(asy)); /* cancel DTR hold timeout */ if (async->async_dtrtid != 0) { (void) untimeout(async->async_dtrtid); async->async_dtrtid = 0; } /* remove all minor device node(s) for this device */ ddi_remove_minor_node(devi, NULL); mutex_destroy(&asy->asy_excl); mutex_destroy(&asy->asy_excl_hi); cv_destroy(&async->async_flags_cv); ddi_remove_intr(devi, 0, asy->asy_iblock); ddi_regs_map_free(&asy->asy_iohandle); asy_soft_state_free(asy); DEBUGNOTE1(ASY_DEBUG_INIT, "asy%d: shutdown complete", instance); break; case DDI_SUSPEND: { unsigned i; uchar_t lsr; #ifdef DEBUG if (asy_nosuspend) return (DDI_SUCCESS); #endif mutex_enter(&asy->asy_excl); ASSERT(async->async_ops >= 0); while (async->async_ops > 0) cv_wait(&async->async_ops_cv, &asy->asy_excl); async->async_flags |= ASYNC_DDI_SUSPENDED; /* Wait for timed break and delay to complete */ while ((async->async_flags & (ASYNC_BREAK|ASYNC_DELAY))) { if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == 0) { async_process_suspq(asy); mutex_exit(&asy->asy_excl); return (DDI_FAILURE); } } /* Clear untimed break */ if (async->async_flags & ASYNC_OUT_SUSPEND) async_resume_utbrk(async); mutex_exit(&asy->asy_excl); mutex_enter(&asy->asy_soft_sr); mutex_enter(&asy->asy_excl); if (async->async_wbufcid != 0) { bufcall_id_t bcid = async->async_wbufcid; async->async_wbufcid = 0; async->async_flags |= ASYNC_RESUME_BUFCALL; mutex_exit(&asy->asy_excl); unbufcall(bcid); mutex_enter(&asy->asy_excl); } mutex_enter(&asy->asy_excl_hi); /* Disable interrupts from chip */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0); asy->asy_flags |= ASY_DDI_SUSPENDED; /* Process remaining RX characters and RX errors, if any */ lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR); async_rxint(asy, lsr); /* Wait for TX to drain */ for (i = 1000; i > 0; i--) { lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR); if ((lsr & (XSRE | XHRE)) == (XSRE | XHRE)) break; delay(drv_usectohz(10000)); } if (i == 0) cmn_err(CE_WARN, "asy: transmitter wasn't drained before " "driver was suspended"); mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); mutex_exit(&asy->asy_soft_sr); break; } default: return (DDI_FAILURE); } return (DDI_SUCCESS); } /* * asyprobe * We don't bother probing for the hardware, as since Solaris 2.6, device * nodes are only created for auto-detected hardware or nodes explicitly * created by the user, e.g. via the DCA. However, we should check the * device node is at least vaguely usable, i.e. we have a block of 8 i/o * ports. This prevents attempting to attach to bogus serial ports which * some BIOSs still partially report when they are disabled in the BIOS. */ static int asyprobe(dev_info_t *devi) { return ((asy_get_io_regnum(devi, NULL) < 0) ? DDI_PROBE_FAILURE : DDI_PROBE_DONTCARE); } static int asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd) { int instance; int mcr; int ret; int regnum = 0; int i; struct asycom *asy; char name[ASY_MINOR_LEN]; int status; static ddi_device_acc_attr_t ioattr = { DDI_DEVICE_ATTR_V0, DDI_NEVERSWAP_ACC, DDI_STRICTORDER_ACC, }; instance = ddi_get_instance(devi); /* find out which unit */ switch (cmd) { case DDI_ATTACH: break; case DDI_RESUME: { struct asyncline *async; #ifdef DEBUG if (asy_nosuspend) return (DDI_SUCCESS); #endif asy = ddi_get_soft_state(asy_soft_state, instance); if (asy == NULL) return (DDI_FAILURE); mutex_enter(&asy->asy_soft_sr); mutex_enter(&asy->asy_excl); mutex_enter(&asy->asy_excl_hi); async = asy->asy_priv; /* Disable interrupts */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0); if (asy_identify_chip(devi, asy) != DDI_SUCCESS) { mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); mutex_exit(&asy->asy_soft_sr); cmn_err(CE_WARN, "Cannot identify UART chip at %p\n", (void *)asy->asy_ioaddr); return (DDI_FAILURE); } asy->asy_flags &= ~ASY_DDI_SUSPENDED; if (async->async_flags & ASYNC_ISOPEN) { asy_program(asy, ASY_INIT); /* Kick off output */ if (async->async_ocnt > 0) { async_resume(async); } else { mutex_exit(&asy->asy_excl_hi); if (async->async_xmitblk) freeb(async->async_xmitblk); async->async_xmitblk = NULL; async_start(async); mutex_enter(&asy->asy_excl_hi); } ASYSETSOFT(asy); } mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); mutex_exit(&asy->asy_soft_sr); mutex_enter(&asy->asy_excl); if (async->async_flags & ASYNC_RESUME_BUFCALL) { async->async_wbufcid = bufcall(async->async_wbufcds, BPRI_HI, (void (*)(void *)) async_reioctl, (void *)(intptr_t)async->async_common->asy_unit); async->async_flags &= ~ASYNC_RESUME_BUFCALL; } async_process_suspq(asy); mutex_exit(&asy->asy_excl); return (DDI_SUCCESS); } default: return (DDI_FAILURE); } ret = ddi_soft_state_zalloc(asy_soft_state, instance); if (ret != DDI_SUCCESS) return (DDI_FAILURE); asy = ddi_get_soft_state(asy_soft_state, instance); ASSERT(asy != NULL); /* can't fail - we only just allocated it */ asy->asy_unit = instance; mutex_enter(&asy_glob_lock); if (instance > max_asy_instance) max_asy_instance = instance; mutex_exit(&asy_glob_lock); regnum = asy_get_io_regnum(devi, asy); if (regnum < 0 || ddi_regs_map_setup(devi, regnum, (caddr_t *)&asy->asy_ioaddr, (offset_t)0, (offset_t)0, &ioattr, &asy->asy_iohandle) != DDI_SUCCESS) { cmn_err(CE_WARN, "asy%d: could not map UART registers @ %p", instance, (void *)asy->asy_ioaddr); asy_soft_state_free(asy); return (DDI_FAILURE); } DEBUGCONT2(ASY_DEBUG_INIT, "asy%dattach: UART @ %p\n", instance, (void *)asy->asy_ioaddr); mutex_enter(&asy_glob_lock); if (com_ports == NULL) { /* need to initialize com_ports */ if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, devi, 0, "motherboard-serial-ports", &com_ports, &num_com_ports) != DDI_PROP_SUCCESS) { /* Use our built-in COM[1234] values */ com_ports = (int *)standard_com_ports; num_com_ports = sizeof (standard_com_ports) / sizeof (standard_com_ports[0]); } if (num_com_ports > 10) { /* We run out of single digits for device properties */ num_com_ports = 10; cmn_err(CE_WARN, "More than %d motherboard-serial-ports", num_com_ports); } } mutex_exit(&asy_glob_lock); /* * Lookup the i/o address to see if this is a standard COM port * in which case we assign it the correct tty[a-d] to match the * COM port number, or some other i/o address in which case it * will be assigned /dev/term/[0123...] in some rather arbitrary * fashion. */ for (i = 0; i < num_com_ports; i++) { if (asy->asy_ioaddr == (uint8_t *)(uintptr_t)com_ports[i]) { asy->asy_com_port = i + 1; break; } } /* * It appears that there was async hardware that on reset * did not clear ICR. Hence when we get to * ddi_get_iblock_cookie below, this hardware would cause * the system to hang if there was input available. */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0x00); /* establish default usage */ asy->asy_mcr |= RTS|DTR; /* do use RTS/DTR after open */ asy->asy_lcr = STOP1|BITS8; /* default to 1 stop 8 bits */ asy->asy_bidx = B9600; /* default to 9600 */ #ifdef DEBUG asy->asy_msint_cnt = 0; /* # of times in async_msint */ #endif mcr = 0; /* don't enable until open */ if (asy->asy_com_port != 0) { /* * For motherboard ports, emulate tty eeprom properties. * Actually, we can't tell if a port is motherboard or not, * so for "motherboard ports", read standard DOS COM ports. */ switch (asy_getproperty(devi, asy, "ignore-cd")) { case 0: /* *-ignore-cd=False */ DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dattach: clear ASY_IGNORE_CD\n", instance); asy->asy_flags &= ~ASY_IGNORE_CD; /* wait for cd */ break; case 1: /* *-ignore-cd=True */ /*FALLTHRU*/ default: /* *-ignore-cd not defined */ /* * We set rather silly defaults of soft carrier on * and DTR/RTS raised here because it might be that * one of the motherboard ports is the system console. */ DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dattach: set ASY_IGNORE_CD, set RTS & DTR\n", instance); mcr = asy->asy_mcr; /* rts/dtr on */ asy->asy_flags |= ASY_IGNORE_CD; /* ignore cd */ break; } /* Property for not raising DTR/RTS */ switch (asy_getproperty(devi, asy, "rts-dtr-off")) { case 0: /* *-rts-dtr-off=False */ asy->asy_flags |= ASY_RTS_DTR_OFF; /* OFF */ mcr = asy->asy_mcr; /* rts/dtr on */ DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dattach: " "ASY_RTS_DTR_OFF set and DTR & RTS set\n", instance); break; case 1: /* *-rts-dtr-off=True */ /*FALLTHRU*/ default: /* *-rts-dtr-off undefined */ break; } /* Parse property for tty modes */ asy_parse_mode(devi, asy); } else { DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dattach: clear ASY_IGNORE_CD, clear RTS & DTR\n", instance); asy->asy_flags &= ~ASY_IGNORE_CD; /* wait for cd */ } /* * Initialize the port with default settings. */ asy->asy_fifo_buf = 1; asy->asy_use_fifo = FIFO_OFF; /* * Get icookie for mutexes initialization */ if ((ddi_get_iblock_cookie(devi, 0, &asy->asy_iblock) != DDI_SUCCESS) || (ddi_get_soft_iblock_cookie(devi, DDI_SOFTINT_MED, &asy_soft_iblock) != DDI_SUCCESS)) { ddi_regs_map_free(&asy->asy_iohandle); cmn_err(CE_CONT, "asy%d: could not hook interrupt for UART @ %p\n", instance, (void *)asy->asy_ioaddr); asy_soft_state_free(asy); return (DDI_FAILURE); } /* * Initialize mutexes before accessing the hardware */ mutex_init(&asy->asy_excl, NULL, MUTEX_DRIVER, asy_soft_iblock); mutex_init(&asy->asy_excl_hi, NULL, MUTEX_DRIVER, (void *)asy->asy_iblock); mutex_init(&asy->asy_soft_sr, NULL, MUTEX_DRIVER, asy_soft_iblock); mutex_enter(&asy->asy_excl); mutex_enter(&asy->asy_excl_hi); if (asy_identify_chip(devi, asy) != DDI_SUCCESS) { mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); mutex_destroy(&asy->asy_excl); mutex_destroy(&asy->asy_excl_hi); mutex_destroy(&asy->asy_soft_sr); ddi_regs_map_free(&asy->asy_iohandle); cmn_err(CE_CONT, "Cannot identify UART chip at %p\n", (void *)asy->asy_ioaddr); asy_soft_state_free(asy); return (DDI_FAILURE); } /* disable all interrupts */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0); /* select baud rate generator */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB); /* Set the baud rate to 9600 */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLL), asyspdtab[asy->asy_bidx] & 0xff); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLH), (asyspdtab[asy->asy_bidx] >> 8) & 0xff); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, asy->asy_lcr); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr); mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); /* * Set up the other components of the asycom structure for this port. */ asy->asy_dip = devi; mutex_enter(&asy_glob_lock); if (asy_addedsoft == 0) { /* install the soft interrupt handler */ if (ddi_add_softintr(devi, DDI_SOFTINT_MED, &asy_softintr_id, NULL, 0, asysoftintr, (caddr_t)0) != DDI_SUCCESS) { mutex_destroy(&asy->asy_excl); mutex_destroy(&asy->asy_excl_hi); ddi_regs_map_free(&asy->asy_iohandle); mutex_exit(&asy_glob_lock); cmn_err(CE_CONT, "Can not set soft interrupt for ASY driver\n"); asy_soft_state_free(asy); return (DDI_FAILURE); } mutex_init(&asy_soft_lock, NULL, MUTEX_DRIVER, (void *)asy->asy_iblock); asy_addedsoft++; } mutex_exit(&asy_glob_lock); mutex_enter(&asy->asy_excl); mutex_enter(&asy->asy_excl_hi); /* * Install interrupt handler for this device. */ if (ddi_add_intr(devi, 0, NULL, 0, asyintr, (caddr_t)asy) != DDI_SUCCESS) { mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); mutex_destroy(&asy->asy_excl); mutex_destroy(&asy->asy_excl_hi); ddi_regs_map_free(&asy->asy_iohandle); cmn_err(CE_CONT, "Can not set device interrupt for ASY driver\n"); asy_soft_state_free(asy); return (DDI_FAILURE); } mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); asyinit(asy); /* initialize the asyncline structure */ /* create minor device nodes for this device */ if (asy->asy_com_port != 0) { /* * For DOS COM ports, add letter suffix so * devfsadm can create correct link names. */ name[0] = asy->asy_com_port + 'a' - 1; name[1] = '\0'; } else { /* * asy port which isn't a standard DOS COM * port gets a numeric name based on instance */ (void) snprintf(name, ASY_MINOR_LEN, "%d", instance); } status = ddi_create_minor_node(devi, name, S_IFCHR, instance, asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB : DDI_NT_SERIAL, NULL); if (status == DDI_SUCCESS) { (void) strcat(name, ",cu"); status = ddi_create_minor_node(devi, name, S_IFCHR, OUTLINE | instance, asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB_DO : DDI_NT_SERIAL_DO, NULL); } if (status != DDI_SUCCESS) { struct asyncline *async = asy->asy_priv; ddi_remove_minor_node(devi, NULL); ddi_remove_intr(devi, 0, asy->asy_iblock); mutex_destroy(&asy->asy_excl); mutex_destroy(&asy->asy_excl_hi); cv_destroy(&async->async_flags_cv); ddi_regs_map_free(&asy->asy_iohandle); asy_soft_state_free(asy); return (DDI_FAILURE); } /* * Fill in the polled I/O structure. */ asy->polledio.cons_polledio_version = CONSPOLLEDIO_V0; asy->polledio.cons_polledio_argument = (cons_polledio_arg_t)asy; asy->polledio.cons_polledio_putchar = asyputchar; asy->polledio.cons_polledio_getchar = asygetchar; asy->polledio.cons_polledio_ischar = asyischar; asy->polledio.cons_polledio_enter = NULL; asy->polledio.cons_polledio_exit = NULL; ddi_report_dev(devi); DEBUGCONT1(ASY_DEBUG_INIT, "asy%dattach: done\n", instance); return (DDI_SUCCESS); } /*ARGSUSED*/ static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { dev_t dev = (dev_t)arg; int instance, error; struct asycom *asy; instance = UNIT(dev); switch (infocmd) { case DDI_INFO_DEVT2DEVINFO: asy = ddi_get_soft_state(asy_soft_state, instance); if ((asy == NULL) || (asy->asy_dip == NULL)) error = DDI_FAILURE; else { *result = (void *) asy->asy_dip; error = DDI_SUCCESS; } break; case DDI_INFO_DEVT2INSTANCE: *result = (void *)(intptr_t)instance; error = DDI_SUCCESS; break; default: error = DDI_FAILURE; } return (error); } /* asy_getproperty -- walk through all name variants until we find a match */ static int asy_getproperty(dev_info_t *devi, struct asycom *asy, const char *property) { int len; int ret; char letter = asy->asy_com_port + 'a' - 1; /* for ttya */ char number = asy->asy_com_port + '0'; /* for COM1 */ char val[40]; char name[40]; /* Property for ignoring DCD */ (void) sprintf(name, "tty%c-%s", letter, property); len = sizeof (val); ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len); if (ret != DDI_PROP_SUCCESS) { (void) sprintf(name, "com%c-%s", number, property); len = sizeof (val); ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len); } if (ret != DDI_PROP_SUCCESS) { (void) sprintf(name, "tty0%c-%s", number, property); len = sizeof (val); ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len); } if (ret != DDI_PROP_SUCCESS) { (void) sprintf(name, "port-%c-%s", letter, property); len = sizeof (val); ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len); } if (ret != DDI_PROP_SUCCESS) return (-1); /* property non-existant */ if (val[0] == 'f' || val[0] == 'F' || val[0] == '0') return (0); /* property false/0 */ return (1); /* property true/!0 */ } /* asy_soft_state_free - local wrapper for ddi_soft_state_free(9F) */ static void asy_soft_state_free(struct asycom *asy) { mutex_enter(&asy_glob_lock); /* If we were the max_asy_instance, work out new value */ if (asy->asy_unit == max_asy_instance) { while (--max_asy_instance >= 0) { if (ddi_get_soft_state(asy_soft_state, max_asy_instance) != NULL) break; } } mutex_exit(&asy_glob_lock); if (asy->asy_priv != NULL) { kmem_free(asy->asy_priv, sizeof (struct asyncline)); asy->asy_priv = NULL; } ddi_soft_state_free(asy_soft_state, asy->asy_unit); } static char * asy_hw_name(struct asycom *asy) { switch (asy->asy_hwtype) { case ASY8250A: return ("8250A/16450"); case ASY16550: return ("16550"); case ASY16550A: return ("16550A"); case ASY16650: return ("16650"); case ASY16750: return ("16750"); default: DEBUGNOTE2(ASY_DEBUG_INIT, "asy%d: asy_hw_name: unknown asy_hwtype: %d", asy->asy_unit, asy->asy_hwtype); return ("?"); } } static int asy_identify_chip(dev_info_t *devi, struct asycom *asy) { int ret; int mcr; dev_t dev; uint_t hwtype; if (asy_scr_test) { /* Check scratch register works. */ /* write to scratch register */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, SCRTEST); /* make sure that pattern doesn't just linger on the bus */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR, 0x00); /* read data back from scratch register */ ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR); if (ret != SCRTEST) { /* * Scratch register not working. * Probably not an async chip. * 8250 and 8250B don't have scratch registers, * but only worked in ancient PC XT's anyway. */ cmn_err(CE_CONT, "asy%d: UART @ %p " "scratch register: expected 0x5a, got 0x%02x\n", asy->asy_unit, (void *)asy->asy_ioaddr, ret); return (DDI_FAILURE); } } /* * Use 16550 fifo reset sequence specified in NS application * note. Disable fifos until chip is initialized. */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR, 0x00); /* clear */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR, FIFO_ON); /* enable */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR, FIFO_ON | FIFORXFLSH); /* reset */ if (asymaxchip >= ASY16650 && asy_scr_test) { /* * Reset 16650 enhanced regs also, in case we have one of these */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, EFRACCESS); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR, 0); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, STOP1|BITS8); } /* * See what sort of FIFO we have. * Try enabling it and see what chip makes of this. */ asy->asy_fifor = 0; asy->asy_hwtype = asymaxchip; /* just for asy_reset_fifo() */ if (asymaxchip >= ASY16550A) asy->asy_fifor |= FIFO_ON | FIFODMA | (asy_trig_level & 0xff); if (asymaxchip >= ASY16650) asy->asy_fifor |= FIFOEXTRA1 | FIFOEXTRA2; asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH); mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR); ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR); DEBUGCONT4(ASY_DEBUG_CHIP, "asy%d: probe fifo FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n", asy->asy_unit, asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH, ret, mcr); switch (ret & 0xf0) { case 0x40: hwtype = ASY16550; /* 16550 with broken FIFO */ asy->asy_fifor = 0; break; case 0xc0: hwtype = ASY16550A; asy->asy_fifo_buf = 16; asy->asy_use_fifo = FIFO_ON; asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2); break; case 0xe0: hwtype = ASY16650; asy->asy_fifo_buf = 32; asy->asy_use_fifo = FIFO_ON; asy->asy_fifor &= ~(FIFOEXTRA1); break; case 0xf0: /* * Note we get 0xff if chip didn't return us anything, * e.g. if there's no chip there. */ if (ret == 0xff) { cmn_err(CE_CONT, "asy%d: UART @ %p " "interrupt register: got 0xff\n", asy->asy_unit, (void *)asy->asy_ioaddr); return (DDI_FAILURE); } /*FALLTHRU*/ case 0xd0: hwtype = ASY16750; asy->asy_fifo_buf = 64; asy->asy_use_fifo = FIFO_ON; break; default: hwtype = ASY8250A; /* No FIFO */ asy->asy_fifor = 0; } if (hwtype > asymaxchip) { cmn_err(CE_CONT, "asy%d: UART @ %p " "unexpected probe result: " "FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n", asy->asy_unit, (void *)asy->asy_ioaddr, asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH, ret, mcr); return (DDI_FAILURE); } /* * Now reset the FIFO operation appropriate for the chip type. * Note we must call asy_reset_fifo() before any possible * downgrade of the asy->asy_hwtype, or it may not disable * the more advanced features we specifically want downgraded. */ asy_reset_fifo(asy, 0); asy->asy_hwtype = hwtype; /* * Check for Exar/Startech ST16C650, which will still look like a * 16550A until we enable its enhanced mode. */ if (asy->asy_hwtype == ASY16550A && asymaxchip >= ASY16650 && asy_scr_test) { /* Enable enhanced mode register access */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, EFRACCESS); /* zero scratch register (not scratch register if enhanced) */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, 0); /* Disable enhanced mode register access */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, STOP1|BITS8); /* read back scratch register */ ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR); if (ret == SCRTEST) { /* looks like we have an ST16650 -- enable it */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, EFRACCESS); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR, ENHENABLE); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, STOP1|BITS8); asy->asy_hwtype = ASY16650; asy->asy_fifo_buf = 32; asy->asy_fifor |= 0x10; /* 24 byte txfifo trigger */ asy_reset_fifo(asy, 0); } } /* * If we think we might have a FIFO larger than 16 characters, * measure FIFO size and check it against expected. */ if (asy_fifo_test > 0 && !(asy->asy_flags2 & ASY2_NO_LOOPBACK) && (asy->asy_fifo_buf > 16 || (asy_fifo_test > 1 && asy->asy_use_fifo == FIFO_ON) || ASY_DEBUG(ASY_DEBUG_CHIP))) { int i; /* Set baud rate to 57600 (fairly arbitrary choice) */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, asyspdtab[B57600] & 0xff); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, (asyspdtab[B57600] >> 8) & 0xff); /* Set 8 bits, 1 stop bit */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, STOP1|BITS8); /* Set loopback mode */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, DTR | RTS | ASY_LOOP | OUT1 | OUT2); /* Overfill fifo */ for (i = 0; i < asy->asy_fifo_buf * 2; i++) { ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, i); } /* * Now there's an interesting question here about which * FIFO we're testing the size of, RX or TX. We just * filled the TX FIFO much faster than it can empty, * although it is possible one or two characters may * have gone from it to the TX shift register. * We wait for enough time for all the characters to * move into the RX FIFO and any excess characters to * have been lost, and then read all the RX FIFO. So * the answer we finally get will be the size which is * the MIN(RX FIFO,(TX FIFO + 1 or 2)). The critical * one is actually the TX FIFO, because if we overfill * it in normal operation, the excess characters are * lost with no warning. */ /* * Wait for characters to move into RX FIFO. * In theory, 200 * asy->asy_fifo_buf * 2 should be * enough. However, in practice it isn't always, so we * increase to 400 so some slow 16550A's finish, and we * increase to 3 so we spot more characters coming back * than we sent, in case that should ever happen. */ delay(drv_usectohz(400 * asy->asy_fifo_buf * 3)); /* Now see how many characters we can read back */ for (i = 0; i < asy->asy_fifo_buf * 3; i++) { ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR); if (!(ret & RCA)) break; /* FIFO emptied */ (void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + DAT); /* lose another */ } DEBUGCONT3(ASY_DEBUG_CHIP, "asy%d FIFO size: expected=%d, measured=%d\n", asy->asy_unit, asy->asy_fifo_buf, i); hwtype = asy->asy_hwtype; if (i < asy->asy_fifo_buf) { /* * FIFO is somewhat smaller than we anticipated. * If we have 16 characters usable, then this * UART will probably work well enough in * 16550A mode. If less than 16 characters, * then we'd better not use it at all. * UARTs with busted FIFOs do crop up. */ if (i >= 16 && asy->asy_fifo_buf >= 16) { /* fall back to a 16550A */ hwtype = ASY16550A; asy->asy_fifo_buf = 16; asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2); } else { /* fall back to no FIFO at all */ hwtype = ASY16550; asy->asy_fifo_buf = 1; asy->asy_use_fifo = FIFO_OFF; asy->asy_fifor &= ~(FIFO_ON | FIFOEXTRA1 | FIFOEXTRA2); } } /* * We will need to reprogram the FIFO if we changed * our mind about how to drive it above, and in any * case, it would be a good idea to flush any garbage * out incase the loopback test left anything behind. * Again as earlier above, we must call asy_reset_fifo() * before any possible downgrade of asy->asy_hwtype. */ if (asy->asy_hwtype >= ASY16650 && hwtype < ASY16650) { /* Disable 16650 enhanced mode */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, EFRACCESS); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR, 0); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, STOP1|BITS8); } asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH); asy->asy_hwtype = hwtype; /* Clear loopback mode and restore DTR/RTS */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr); } DEBUGNOTE3(ASY_DEBUG_CHIP, "asy%d %s @ %p", asy->asy_unit, asy_hw_name(asy), (void *)asy->asy_ioaddr); /* Make UART type visible in device tree for prtconf, etc */ dev = makedevice(DDI_MAJOR_T_UNKNOWN, asy->asy_unit); (void) ddi_prop_update_string(dev, devi, "uart", asy_hw_name(asy)); if (asy->asy_hwtype == ASY16550) /* for broken 16550's, */ asy->asy_hwtype = ASY8250A; /* drive them as 8250A */ return (DDI_SUCCESS); } /* * asyinit() initializes the TTY protocol-private data for this channel * before enabling the interrupts. */ static void asyinit(struct asycom *asy) { struct asyncline *async; asy->asy_priv = kmem_zalloc(sizeof (struct asyncline), KM_SLEEP); async = asy->asy_priv; mutex_enter(&asy->asy_excl); async->async_common = asy; cv_init(&async->async_flags_cv, NULL, CV_DRIVER, NULL); mutex_exit(&asy->asy_excl); } /*ARGSUSED3*/ static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr) { struct asycom *asy; struct asyncline *async; int mcr; int unit; int len; struct termios *termiosp; unit = UNIT(*dev); DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dopen\n", unit); asy = ddi_get_soft_state(asy_soft_state, unit); if (asy == NULL) return (ENXIO); /* unit not configured */ async = asy->asy_priv; mutex_enter(&asy->asy_excl); again: mutex_enter(&asy->asy_excl_hi); /* * Block waiting for carrier to come up, unless this is a no-delay open. */ if (!(async->async_flags & ASYNC_ISOPEN)) { /* * Set the default termios settings (cflag). * Others are set in ldterm. */ mutex_exit(&asy->asy_excl_hi); if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(), 0, "ttymodes", (caddr_t)&termiosp, &len) == DDI_PROP_SUCCESS && len == sizeof (struct termios)) { async->async_ttycommon.t_cflag = termiosp->c_cflag; kmem_free(termiosp, len); } else cmn_err(CE_WARN, "asy: couldn't get ttymodes property!"); mutex_enter(&asy->asy_excl_hi); /* eeprom mode support - respect properties */ if (asy->asy_cflag) async->async_ttycommon.t_cflag = asy->asy_cflag; async->async_ttycommon.t_iflag = 0; async->async_ttycommon.t_iocpending = NULL; async->async_ttycommon.t_size.ws_row = 0; async->async_ttycommon.t_size.ws_col = 0; async->async_ttycommon.t_size.ws_xpixel = 0; async->async_ttycommon.t_size.ws_ypixel = 0; async->async_dev = *dev; async->async_wbufcid = 0; async->async_startc = CSTART; async->async_stopc = CSTOP; asy_program(asy, ASY_INIT); } else if ((async->async_ttycommon.t_flags & TS_XCLUDE) && secpolicy_excl_open(cr) != 0) { mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); return (EBUSY); } else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) { mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); return (EBUSY); } if (*dev & OUTLINE) async->async_flags |= ASYNC_OUT; /* Raise DTR on every open, but delay if it was just lowered. */ while (async->async_flags & ASYNC_DTR_DELAY) { DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dopen: waiting for the ASYNC_DTR_DELAY to be clear\n", unit); mutex_exit(&asy->asy_excl_hi); if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == 0) { DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dopen: interrupted by signal, exiting\n", unit); mutex_exit(&asy->asy_excl); return (EINTR); } mutex_enter(&asy->asy_excl_hi); } mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr|(asy->asy_mcr&DTR)); DEBUGCONT3(ASY_DEBUG_INIT, "asy%dopen: \"Raise DTR on every open\": make mcr = %x, " "make TS_SOFTCAR = %s\n", unit, mcr|(asy->asy_mcr&DTR), (asy->asy_flags & ASY_IGNORE_CD) ? "ON" : "OFF"); if (asy->asy_flags & ASY_IGNORE_CD) { DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dopen: ASY_IGNORE_CD set, set TS_SOFTCAR\n", unit); async->async_ttycommon.t_flags |= TS_SOFTCAR; } else async->async_ttycommon.t_flags &= ~TS_SOFTCAR; /* * Check carrier. */ asy->asy_msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR); DEBUGCONT3(ASY_DEBUG_INIT, "asy%dopen: TS_SOFTCAR is %s, " "MSR & DCD is %s\n", unit, (async->async_ttycommon.t_flags & TS_SOFTCAR) ? "set" : "clear", (asy->asy_msr & DCD) ? "set" : "clear"); if (asy->asy_msr & DCD) async->async_flags |= ASYNC_CARR_ON; else async->async_flags &= ~ASYNC_CARR_ON; mutex_exit(&asy->asy_excl_hi); /* * If FNDELAY and FNONBLOCK are clear, block until carrier up. * Quit on interrupt. */ if (!(flag & (FNDELAY|FNONBLOCK)) && !(async->async_ttycommon.t_cflag & CLOCAL)) { if ((!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) && !(async->async_ttycommon.t_flags & TS_SOFTCAR)) || ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE))) { async->async_flags |= ASYNC_WOPEN; if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == B_FALSE) { async->async_flags &= ~ASYNC_WOPEN; mutex_exit(&asy->asy_excl); return (EINTR); } async->async_flags &= ~ASYNC_WOPEN; goto again; } } else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) { mutex_exit(&asy->asy_excl); return (EBUSY); } async->async_ttycommon.t_readq = rq; async->async_ttycommon.t_writeq = WR(rq); rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async; mutex_exit(&asy->asy_excl); /* * Caution here -- qprocson sets the pointers that are used by canput * called by async_softint. ASYNC_ISOPEN must *not* be set until those * pointers are valid. */ qprocson(rq); async->async_flags |= ASYNC_ISOPEN; async->async_polltid = 0; DEBUGCONT1(ASY_DEBUG_INIT, "asy%dopen: done\n", unit); return (0); } static void async_progress_check(void *arg) { struct asyncline *async = arg; struct asycom *asy = async->async_common; mblk_t *bp; /* * We define "progress" as either waiting on a timed break or delay, or * having had at least one transmitter interrupt. If none of these are * true, then just terminate the output and wake up that close thread. */ mutex_enter(&asy->asy_excl); mutex_enter(&asy->asy_excl_hi); if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) { async->async_ocnt = 0; async->async_flags &= ~ASYNC_BUSY; async->async_timer = 0; bp = async->async_xmitblk; async->async_xmitblk = NULL; mutex_exit(&asy->asy_excl_hi); if (bp != NULL) freeb(bp); /* * Since this timer is running, we know that we're in exit(2). * That means that the user can't possibly be waiting on any * valid ioctl(2) completion anymore, and we should just flush * everything. */ flushq(async->async_ttycommon.t_writeq, FLUSHALL); cv_broadcast(&async->async_flags_cv); } else { async->async_flags &= ~ASYNC_PROGRESS; async->async_timer = timeout(async_progress_check, async, drv_usectohz(asy_drain_check)); mutex_exit(&asy->asy_excl_hi); } mutex_exit(&asy->asy_excl); } /* * Release DTR so that asyopen() can raise it. */ static void async_dtr_free(struct asyncline *async) { struct asycom *asy = async->async_common; DEBUGCONT0(ASY_DEBUG_MODEM, "async_dtr_free, clearing ASYNC_DTR_DELAY\n"); mutex_enter(&asy->asy_excl); async->async_flags &= ~ASYNC_DTR_DELAY; async->async_dtrtid = 0; cv_broadcast(&async->async_flags_cv); mutex_exit(&asy->asy_excl); } /* * Close routine. */ /*ARGSUSED2*/ static int asyclose(queue_t *q, int flag, cred_t *credp) { struct asyncline *async; struct asycom *asy; int icr, lcr; #ifdef DEBUG int instance; #endif async = (struct asyncline *)q->q_ptr; ASSERT(async != NULL); #ifdef DEBUG instance = UNIT(async->async_dev); DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose\n", instance); #endif asy = async->async_common; mutex_enter(&asy->asy_excl); async->async_flags |= ASYNC_CLOSING; /* * Turn off PPS handling early to avoid events occuring during * close. Also reset the DCD edge monitoring bit. */ mutex_enter(&asy->asy_excl_hi); asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE); mutex_exit(&asy->asy_excl_hi); /* * There are two flavors of break -- timed (M_BREAK or TCSBRK) and * untimed (TIOCSBRK). For the timed case, these are enqueued on our * write queue and there's a timer running, so we don't have to worry * about them. For the untimed case, though, the user obviously made a * mistake, because these are handled immediately. We'll terminate the * break now and honor his implicit request by discarding the rest of * the data. */ if (async->async_flags & ASYNC_OUT_SUSPEND) { if (async->async_utbrktid != 0) { (void) untimeout(async->async_utbrktid); async->async_utbrktid = 0; } mutex_enter(&asy->asy_excl_hi); lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, (lcr & ~SETBREAK)); mutex_exit(&asy->asy_excl_hi); async->async_flags &= ~ASYNC_OUT_SUSPEND; goto nodrain; } /* * If the user told us not to delay the close ("non-blocking"), then * don't bother trying to drain. * * If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever * getting an M_START (since these messages aren't enqueued), and the * only other way to clear the stop condition is by loss of DCD, which * would discard the queue data. Thus, we drop the output data if * ASYNC_STOPPED is set. */ if ((flag & (FNDELAY|FNONBLOCK)) || (async->async_flags & ASYNC_STOPPED)) { goto nodrain; } /* * If there's any pending output, then we have to try to drain it. * There are two main cases to be handled: * - called by close(2): need to drain until done or until * a signal is received. No timeout. * - called by exit(2): need to drain while making progress * or until a timeout occurs. No signals. * * If we can't rely on receiving a signal to get us out of a hung * session, then we have to use a timer. In this case, we set a timer * to check for progress in sending the output data -- all that we ask * (at each interval) is that there's been some progress made. Since * the interrupt routine grabs buffers from the write queue, we can't * trust changes in async_ocnt. Instead, we use a progress flag. * * Note that loss of carrier will cause the output queue to be flushed, * and we'll wake up again and finish normally. */ if (!ddi_can_receive_sig() && asy_drain_check != 0) { async->async_flags &= ~ASYNC_PROGRESS; async->async_timer = timeout(async_progress_check, async, drv_usectohz(asy_drain_check)); } while (async->async_ocnt > 0 || async->async_ttycommon.t_writeq->q_first != NULL || (async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) { if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == 0) break; } if (async->async_timer != 0) { (void) untimeout(async->async_timer); async->async_timer = 0; } nodrain: async->async_ocnt = 0; if (async->async_xmitblk != NULL) freeb(async->async_xmitblk); async->async_xmitblk = NULL; /* * If line has HUPCL set or is incompletely opened fix up the modem * lines. */ DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dclose: next check HUPCL flag\n", instance); mutex_enter(&asy->asy_excl_hi); if ((async->async_ttycommon.t_cflag & HUPCL) || (async->async_flags & ASYNC_WOPEN)) { DEBUGCONT3(ASY_DEBUG_MODEM, "asy%dclose: HUPCL flag = %x, ASYNC_WOPEN flag = %x\n", instance, async->async_ttycommon.t_cflag & HUPCL, async->async_ttycommon.t_cflag & ASYNC_WOPEN); async->async_flags |= ASYNC_DTR_DELAY; /* turn off DTR, RTS but NOT interrupt to 386 */ if (asy->asy_flags & (ASY_IGNORE_CD|ASY_RTS_DTR_OFF)) { DEBUGCONT3(ASY_DEBUG_MODEM, "asy%dclose: ASY_IGNORE_CD flag = %x, " "ASY_RTS_DTR_OFF flag = %x\n", instance, asy->asy_flags & ASY_IGNORE_CD, asy->asy_flags & ASY_RTS_DTR_OFF); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, asy->asy_mcr|OUT2); } else { DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dclose: Dropping DTR and RTS\n", instance); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, OUT2); } async->async_dtrtid = timeout((void (*)())async_dtr_free, (caddr_t)async, drv_usectohz(asy_min_dtr_low)); } /* * If nobody's using it now, turn off receiver interrupts. */ if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0) { icr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ICR); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, (icr & ~RIEN)); } mutex_exit(&asy->asy_excl_hi); out: ttycommon_close(&async->async_ttycommon); /* * Cancel outstanding "bufcall" request. */ if (async->async_wbufcid != 0) { unbufcall(async->async_wbufcid); async->async_wbufcid = 0; } /* Note that qprocsoff can't be done until after interrupts are off */ qprocsoff(q); q->q_ptr = WR(q)->q_ptr = NULL; async->async_ttycommon.t_readq = NULL; async->async_ttycommon.t_writeq = NULL; /* * Clear out device state, except persistant device property flags. */ async->async_flags &= (ASYNC_DTR_DELAY|ASY_RTS_DTR_OFF); cv_broadcast(&async->async_flags_cv); mutex_exit(&asy->asy_excl); DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose: done\n", instance); return (0); } static boolean_t asy_isbusy(struct asycom *asy) { struct asyncline *async; DEBUGCONT0(ASY_DEBUG_EOT, "asy_isbusy\n"); async = asy->asy_priv; ASSERT(mutex_owned(&asy->asy_excl)); ASSERT(mutex_owned(&asy->asy_excl_hi)); /* * XXXX this should be recoded */ return ((async->async_ocnt > 0) || ((ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & (XSRE|XHRE)) == 0)); } static void asy_waiteot(struct asycom *asy) { /* * Wait for the current transmission block and the * current fifo data to transmit. Once this is done * we may go on. */ DEBUGCONT0(ASY_DEBUG_EOT, "asy_waiteot\n"); ASSERT(mutex_owned(&asy->asy_excl)); ASSERT(mutex_owned(&asy->asy_excl_hi)); while (asy_isbusy(asy)) { mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); drv_usecwait(10000); /* wait .01 */ mutex_enter(&asy->asy_excl); mutex_enter(&asy->asy_excl_hi); } } /* asy_reset_fifo -- flush fifos and [re]program fifo control register */ static void asy_reset_fifo(struct asycom *asy, uchar_t flush) { uchar_t lcr; /* On a 16750, we have to set DLAB in order to set FIFOEXTRA. */ if (asy->asy_hwtype >= ASY16750) { lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr | DLAB); } ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR, asy->asy_fifor | flush); /* Clear DLAB */ if (asy->asy_hwtype >= ASY16750) { ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr); } } /* * Program the ASY port. Most of the async operation is based on the values * of 'c_iflag' and 'c_cflag'. */ #define BAUDINDEX(cflg) (((cflg) & CBAUDEXT) ? \ (((cflg) & CBAUD) + CBAUD + 1) : ((cflg) & CBAUD)) static void asy_program(struct asycom *asy, int mode) { struct asyncline *async; int baudrate, c_flag; int icr, lcr; int flush_reg; int ocflags; #ifdef DEBUG int instance; #endif ASSERT(mutex_owned(&asy->asy_excl)); ASSERT(mutex_owned(&asy->asy_excl_hi)); async = asy->asy_priv; #ifdef DEBUG instance = UNIT(async->async_dev); DEBUGCONT2(ASY_DEBUG_PROCS, "asy%d_program: mode = 0x%08X, enter\n", instance, mode); #endif baudrate = BAUDINDEX(async->async_ttycommon.t_cflag); async->async_ttycommon.t_cflag &= ~(CIBAUD); if (baudrate > CBAUD) { async->async_ttycommon.t_cflag |= CIBAUDEXT; async->async_ttycommon.t_cflag |= (((baudrate - CBAUD - 1) << IBSHIFT) & CIBAUD); } else { async->async_ttycommon.t_cflag &= ~CIBAUDEXT; async->async_ttycommon.t_cflag |= ((baudrate << IBSHIFT) & CIBAUD); } c_flag = async->async_ttycommon.t_cflag & (CLOCAL|CREAD|CSTOPB|CSIZE|PARENB|PARODD|CBAUD|CBAUDEXT); /* disable interrupts */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0); ocflags = asy->asy_ocflag; /* flush/reset the status registers */ (void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR); (void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR); asy->asy_msr = flush_reg = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR); /* * The device is programmed in the open sequence, if we * have to hardware handshake, then this is a good time * to check if the device can receive any data. */ if ((CRTSCTS & async->async_ttycommon.t_cflag) && !(flush_reg & CTS)) { async_flowcontrol_hw_output(asy, FLOW_STOP); } else { /* * We can not use async_flowcontrol_hw_output(asy, FLOW_START) * here, because if CRTSCTS is clear, we need clear * ASYNC_HW_OUT_FLW bit. */ async->async_flags &= ~ASYNC_HW_OUT_FLW; } /* * If IXON is not set, clear ASYNC_SW_OUT_FLW; * If IXON is set, no matter what IXON flag is before this * function call to asy_program, * we will use the old ASYNC_SW_OUT_FLW status. * Because of handling IXON in the driver, we also should re-calculate * the value of ASYNC_OUT_FLW_RESUME bit, but in fact, * the TCSET* commands which call asy_program * are put into the write queue, so there is no output needed to * be resumed at this point. */ if (!(IXON & async->async_ttycommon.t_iflag)) async->async_flags &= ~ASYNC_SW_OUT_FLW; /* manually flush receive buffer or fifo (workaround for buggy fifos) */ if (mode == ASY_INIT) if (asy->asy_use_fifo == FIFO_ON) { for (flush_reg = asy->asy_fifo_buf; flush_reg-- > 0; ) { (void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + DAT); } } else { flush_reg = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + DAT); } if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) { /* Set line control */ lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR); lcr &= ~(WLS0|WLS1|STB|PEN|EPS); if (c_flag & CSTOPB) lcr |= STB; /* 2 stop bits */ if (c_flag & PARENB) lcr |= PEN; if ((c_flag & PARODD) == 0) lcr |= EPS; switch (c_flag & CSIZE) { case CS5: lcr |= BITS5; break; case CS6: lcr |= BITS6; break; case CS7: lcr |= BITS7; break; case CS8: lcr |= BITS8; break; } /* set the baud rate, unless it is "0" */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB); if (baudrate != 0) { ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, asyspdtab[baudrate] & 0xff); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, (asyspdtab[baudrate] >> 8) & 0xff); } /* set the line control modes */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr); /* * If we have a FIFO buffer, enable/flush * at intialize time, flush if transitioning from * CREAD off to CREAD on. */ if ((ocflags & CREAD) == 0 && (c_flag & CREAD) || mode == ASY_INIT) if (asy->asy_use_fifo == FIFO_ON) asy_reset_fifo(asy, FIFORXFLSH); /* remember the new cflags */ asy->asy_ocflag = c_flag & ~CLOCAL; } if (baudrate == 0) ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, (asy->asy_mcr & RTS) | OUT2); else ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, asy->asy_mcr | OUT2); /* * Call the modem status interrupt handler to check for the carrier * in case CLOCAL was turned off after the carrier came on. * (Note: Modem status interrupt is not enabled if CLOCAL is ON.) */ async_msint(asy); /* Set interrupt control */ DEBUGCONT3(ASY_DEBUG_MODM2, "asy%d_program: c_flag & CLOCAL = %x t_cflag & CRTSCTS = %x\n", instance, c_flag & CLOCAL, async->async_ttycommon.t_cflag & CRTSCTS); if ((c_flag & CLOCAL) && !(async->async_ttycommon.t_cflag & CRTSCTS)) /* * direct-wired line ignores DCD, so we don't enable modem * status interrupts. */ icr = (TIEN | SIEN); else icr = (TIEN | SIEN | MIEN); if (c_flag & CREAD) icr |= RIEN; ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, icr); DEBUGCONT1(ASY_DEBUG_PROCS, "asy%d_program: done\n", instance); } static boolean_t asy_baudok(struct asycom *asy) { struct asyncline *async = asy->asy_priv; int baudrate; baudrate = BAUDINDEX(async->async_ttycommon.t_cflag); if (baudrate >= sizeof (asyspdtab)/sizeof (*asyspdtab)) return (0); return (baudrate == 0 || asyspdtab[baudrate]); } /* * asyintr() is the High Level Interrupt Handler. * * There are four different interrupt types indexed by ISR register values: * 0: modem * 1: Tx holding register is empty, ready for next char * 2: Rx register now holds a char to be picked up * 3: error or break on line * This routine checks the Bit 0 (interrupt-not-pending) to determine if * the interrupt is from this port. */ uint_t asyintr(caddr_t argasy) { struct asycom *asy = (struct asycom *)argasy; struct asyncline *async; int ret_status = DDI_INTR_UNCLAIMED; uchar_t interrupt_id, lsr; interrupt_id = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR) & 0x0F; async = asy->asy_priv; if ((async == NULL) || asy_addedsoft == 0 || !(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) { if (interrupt_id & NOINTERRUPT) return (DDI_INTR_UNCLAIMED); else { /* * reset the device by: * reading line status * reading any data from data status register * reading modem status */ (void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR); (void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + DAT); asy->asy_msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR); return (DDI_INTR_CLAIMED); } } mutex_enter(&asy->asy_excl_hi); /* * We will loop until the interrupt line is pulled low. asy * interrupt is edge triggered. */ /* CSTYLED */ for (;; interrupt_id = (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR) & 0x0F)) { if (interrupt_id & NOINTERRUPT) break; ret_status = DDI_INTR_CLAIMED; DEBUGCONT1(ASY_DEBUG_INTR, "asyintr: interrupt_id = 0x%d\n", interrupt_id); lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR); switch (interrupt_id) { case RxRDY: case RSTATUS: case FFTMOUT: /* receiver interrupt or receiver errors */ async_rxint(asy, lsr); break; case TxRDY: /* transmit interrupt */ async_txint(asy); continue; case MSTATUS: /* modem status interrupt */ async_msint(asy); break; } if ((lsr & XHRE) && (async->async_flags & ASYNC_BUSY) && (async->async_ocnt > 0)) async_txint(asy); } mutex_exit(&asy->asy_excl_hi); return (ret_status); } /* * Transmitter interrupt service routine. * If there is more data to transmit in the current pseudo-DMA block, * send the next character if output is not stopped or draining. * Otherwise, queue up a soft interrupt. * * XXX - Needs review for HW FIFOs. */ static void async_txint(struct asycom *asy) { struct asyncline *async = asy->asy_priv; int fifo_len; /* * If ASYNC_BREAK or ASYNC_OUT_SUSPEND has been set, return to * asyintr()'s context to claim the interrupt without performing * any action. No character will be loaded into FIFO/THR until * timed or untimed break is removed */ if (async->async_flags & (ASYNC_BREAK|ASYNC_OUT_SUSPEND)) return; fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */ if (fifo_len > asy_max_tx_fifo) fifo_len = asy_max_tx_fifo; if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL)) fifo_len--; if (async->async_ocnt > 0 && fifo_len > 0 && !(async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_STOPPED))) { while (fifo_len-- > 0 && async->async_ocnt-- > 0) { ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, *async->async_optr++); } async->async_flags |= ASYNC_PROGRESS; } if (fifo_len <= 0) return; ASYSETSOFT(asy); } /* * Interrupt on port: handle PPS event. This function is only called * for a port on which PPS event handling has been enabled. */ static void asy_ppsevent(struct asycom *asy, int msr) { if (asy->asy_flags & ASY_PPS_EDGE) { /* Have seen leading edge, now look for and record drop */ if ((msr & DCD) == 0) asy->asy_flags &= ~ASY_PPS_EDGE; /* * Waiting for leading edge, look for rise; stamp event and * calibrate kernel clock. */ } else if (msr & DCD) { /* * This code captures a timestamp at the designated * transition of the PPS signal (DCD asserted). The * code provides a pointer to the timestamp, as well * as the hardware counter value at the capture. * * Note: the kernel has nano based time values while * NTP requires micro based, an in-line fast algorithm * to convert nsec to usec is used here -- see hrt2ts() * in common/os/timers.c for a full description. */ struct timeval *tvp = &asy_ppsev.tv; timestruc_t ts; long nsec, usec; asy->asy_flags |= ASY_PPS_EDGE; LED_OFF; gethrestime(&ts); LED_ON; nsec = ts.tv_nsec; usec = nsec + (nsec >> 2); usec = nsec + (usec >> 1); usec = nsec + (usec >> 2); usec = nsec + (usec >> 4); usec = nsec - (usec >> 3); usec = nsec + (usec >> 2); usec = nsec + (usec >> 3); usec = nsec + (usec >> 4); usec = nsec + (usec >> 1); usec = nsec + (usec >> 6); tvp->tv_usec = usec >> 10; tvp->tv_sec = ts.tv_sec; ++asy_ppsev.serial; /* * Because the kernel keeps a high-resolution time, * pass the current highres timestamp in tvp and zero * in usec. */ ddi_hardpps(tvp, 0); } } /* * Receiver interrupt: RxRDY interrupt, FIFO timeout interrupt or receive * error interrupt. * Try to put the character into the circular buffer for this line; if it * overflows, indicate a circular buffer overrun. If this port is always * to be serviced immediately, or the character is a STOP character, or * more than 15 characters have arrived, queue up a soft interrupt to * drain the circular buffer. * XXX - needs review for hw FIFOs support. */ static void async_rxint(struct asycom *asy, uchar_t lsr) { struct asyncline *async = asy->asy_priv; uchar_t c; uint_t s, needsoft = 0; tty_common_t *tp; int looplim = asy->asy_fifo_buf * 2; tp = &async->async_ttycommon; if (!(tp->t_cflag & CREAD)) { while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) { (void) (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + DAT) & 0xff); lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR); if (looplim-- < 0) /* limit loop */ break; } return; /* line is not open for read? */ } while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) { c = 0; s = 0; /* reset error status */ if (lsr & RCA) { c = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + DAT) & 0xff; /* * We handle XON/XOFF char if IXON is set, * but if received char is _POSIX_VDISABLE, * we left it to the up level module. */ if (tp->t_iflag & IXON) { if ((c == async->async_stopc) && (c != _POSIX_VDISABLE)) { async_flowcontrol_sw_output(asy, FLOW_STOP); goto check_looplim; } else if ((c == async->async_startc) && (c != _POSIX_VDISABLE)) { async_flowcontrol_sw_output(asy, FLOW_START); needsoft = 1; goto check_looplim; } if ((tp->t_iflag & IXANY) && (async->async_flags & ASYNC_SW_OUT_FLW)) { async_flowcontrol_sw_output(asy, FLOW_START); needsoft = 1; } } } /* * Check for character break sequence */ if ((abort_enable == KIOCABORTALTERNATE) && (asy->asy_flags & ASY_CONSOLE)) { if (abort_charseq_recognize(c)) abort_sequence_enter((char *)NULL); } /* Handle framing errors */ if (lsr & (PARERR|FRMERR|BRKDET|OVRRUN)) { if (lsr & PARERR) { if (tp->t_iflag & INPCK) /* parity enabled */ s |= PERROR; } if (lsr & (FRMERR|BRKDET)) s |= FRERROR; if (lsr & OVRRUN) { async->async_hw_overrun = 1; s |= OVERRUN; } } if (s == 0) if ((tp->t_iflag & PARMRK) && !(tp->t_iflag & (IGNPAR|ISTRIP)) && (c == 0377)) if (RING_POK(async, 2)) { RING_PUT(async, 0377); RING_PUT(async, c); } else async->async_sw_overrun = 1; else if (RING_POK(async, 1)) RING_PUT(async, c); else async->async_sw_overrun = 1; else if (s & FRERROR) /* Handle framing errors */ if (c == 0) if ((asy->asy_flags & ASY_CONSOLE) && (abort_enable != KIOCABORTALTERNATE)) abort_sequence_enter((char *)0); else async->async_break++; else if (RING_POK(async, 1)) RING_MARK(async, c, s); else async->async_sw_overrun = 1; else /* Parity errors are handled by ldterm */ if (RING_POK(async, 1)) RING_MARK(async, c, s); else async->async_sw_overrun = 1; check_looplim: lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR); if (looplim-- < 0) /* limit loop */ break; } if ((RING_CNT(async) > (RINGSIZE * 3)/4) && !(async->async_inflow_source & IN_FLOW_RINGBUFF)) { async_flowcontrol_hw_input(asy, FLOW_STOP, IN_FLOW_RINGBUFF); (void) async_flowcontrol_sw_input(asy, FLOW_STOP, IN_FLOW_RINGBUFF); } if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft || (RING_FRAC(async)) || (async->async_polltid == 0)) ASYSETSOFT(asy); /* need a soft interrupt */ } /* * Modem status interrupt. * * (Note: It is assumed that the MSR hasn't been read by asyintr().) */ static void async_msint(struct asycom *asy) { struct asyncline *async = asy->asy_priv; int msr, t_cflag = async->async_ttycommon.t_cflag; #ifdef DEBUG int instance = UNIT(async->async_dev); #endif async_msint_retry: /* this resets the interrupt */ msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR); DEBUGCONT10(ASY_DEBUG_STATE, "async%d_msint call #%d:\n" " transition: %3s %3s %3s %3s\n" "current state: %3s %3s %3s %3s\n", instance, ++(asy->asy_msint_cnt), (msr & DCTS) ? "DCTS" : " ", (msr & DDSR) ? "DDSR" : " ", (msr & DRI) ? "DRI " : " ", (msr & DDCD) ? "DDCD" : " ", (msr & CTS) ? "CTS " : " ", (msr & DSR) ? "DSR " : " ", (msr & RI) ? "RI " : " ", (msr & DCD) ? "DCD " : " "); /* If CTS status is changed, do H/W output flow control */ if ((t_cflag & CRTSCTS) && (((asy->asy_msr ^ msr) & CTS) != 0)) async_flowcontrol_hw_output(asy, msr & CTS ? FLOW_START : FLOW_STOP); /* * Reading MSR resets the interrupt, we save the * value of msr so that other functions could examine MSR by * looking at asy_msr. */ asy->asy_msr = (uchar_t)msr; /* Handle PPS event */ if (asy->asy_flags & ASY_PPS) asy_ppsevent(asy, msr); async->async_ext++; ASYSETSOFT(asy); /* * We will make sure that the modem status presented to us * during the previous read has not changed. If the chip samples * the modem status on the falling edge of the interrupt line, * and uses this state as the base for detecting change of modem * status, we would miss a change of modem status event that occured * after we initiated a read MSR operation. */ msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR); if (STATES(msr) != STATES(asy->asy_msr)) goto async_msint_retry; } /* * Handle a second-stage interrupt. */ /*ARGSUSED*/ uint_t asysoftintr(caddr_t intarg) { struct asycom *asy; int rv; int instance; /* * Test and clear soft interrupt. */ mutex_enter(&asy_soft_lock); DEBUGCONT0(ASY_DEBUG_PROCS, "asysoftintr: enter\n"); rv = asysoftpend; if (rv != 0) asysoftpend = 0; mutex_exit(&asy_soft_lock); if (rv) { /* * Note - we can optimize the loop by remembering the last * device that requested soft interrupt */ for (instance = 0; instance <= max_asy_instance; instance++) { asy = ddi_get_soft_state(asy_soft_state, instance); if (asy == NULL || asy->asy_priv == NULL) continue; mutex_enter(&asy_soft_lock); if (asy->asy_flags & ASY_NEEDSOFT) { asy->asy_flags &= ~ASY_NEEDSOFT; mutex_exit(&asy_soft_lock); async_softint(asy); } else mutex_exit(&asy_soft_lock); } } return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); } /* * Handle a software interrupt. */ static void async_softint(struct asycom *asy) { struct asyncline *async = asy->asy_priv; short cc; mblk_t *bp; queue_t *q; uchar_t val; uchar_t c; tty_common_t *tp; int nb; int instance = UNIT(async->async_dev); DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint\n", instance); mutex_enter(&asy_soft_lock); if (asy->asy_flags & ASY_DOINGSOFT) { asy->asy_flags |= ASY_DOINGSOFT_RETRY; mutex_exit(&asy_soft_lock); return; } asy->asy_flags |= ASY_DOINGSOFT; begin: asy->asy_flags &= ~ASY_DOINGSOFT_RETRY; mutex_exit(&asy_soft_lock); mutex_enter(&asy->asy_excl); tp = &async->async_ttycommon; q = tp->t_readq; if (async->async_flags & ASYNC_OUT_FLW_RESUME) { if (async->async_ocnt > 0) { mutex_enter(&asy->asy_excl_hi); async_resume(async); mutex_exit(&asy->asy_excl_hi); } else { if (async->async_xmitblk) freeb(async->async_xmitblk); async->async_xmitblk = NULL; async_start(async); } async->async_flags &= ~ASYNC_OUT_FLW_RESUME; } mutex_enter(&asy->asy_excl_hi); if (async->async_ext) { async->async_ext = 0; /* check for carrier up */ DEBUGCONT3(ASY_DEBUG_MODM2, "async%d_softint: asy_msr & DCD = %x, " "tp->t_flags & TS_SOFTCAR = %x\n", instance, asy->asy_msr & DCD, tp->t_flags & TS_SOFTCAR); if (asy->asy_msr & DCD) { /* carrier present */ if ((async->async_flags & ASYNC_CARR_ON) == 0) { DEBUGCONT1(ASY_DEBUG_MODM2, "async%d_softint: set ASYNC_CARR_ON\n", instance); async->async_flags |= ASYNC_CARR_ON; if (async->async_flags & ASYNC_ISOPEN) { mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); (void) putctl(q, M_UNHANGUP); mutex_enter(&asy->asy_excl); mutex_enter(&asy->asy_excl_hi); } cv_broadcast(&async->async_flags_cv); } } else { if ((async->async_flags & ASYNC_CARR_ON) && !(tp->t_cflag & CLOCAL) && !(tp->t_flags & TS_SOFTCAR)) { int flushflag; DEBUGCONT1(ASY_DEBUG_MODEM, "async%d_softint: carrier dropped, " "so drop DTR\n", instance); /* * Carrier went away. * Drop DTR, abort any output in * progress, indicate that output is * not stopped, and send a hangup * notification upstream. */ val = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, (val & ~DTR)); if (async->async_flags & ASYNC_BUSY) { DEBUGCONT0(ASY_DEBUG_BUSY, "async_softint: " "Carrier dropped. " "Clearing async_ocnt\n"); async->async_ocnt = 0; } /* if */ async->async_flags &= ~ASYNC_STOPPED; if (async->async_flags & ASYNC_ISOPEN) { mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); (void) putctl(q, M_HANGUP); mutex_enter(&asy->asy_excl); DEBUGCONT1(ASY_DEBUG_MODEM, "async%d_softint: " "putctl(q, M_HANGUP)\n", instance); /* * Flush FIFO buffers * Any data left in there is invalid now */ if (asy->asy_use_fifo == FIFO_ON) asy_reset_fifo(asy, FIFOTXFLSH); /* * Flush our write queue if we have one. * If we're in the midst of close, then * flush everything. Don't leave stale * ioctls lying about. */ flushflag = (async->async_flags & ASYNC_CLOSING) ? FLUSHALL : FLUSHDATA; flushq(tp->t_writeq, flushflag); /* active msg */ bp = async->async_xmitblk; if (bp != NULL) { freeb(bp); async->async_xmitblk = NULL; } mutex_enter(&asy->asy_excl_hi); async->async_flags &= ~ASYNC_BUSY; /* * This message warns of Carrier loss * with data left to transmit can hang * the system. */ DEBUGCONT0(ASY_DEBUG_MODEM, "async_softint: Flushing to " "prevent HUPCL hanging\n"); } /* if (ASYNC_ISOPEN) */ } /* if (ASYNC_CARR_ON && CLOCAL) */ async->async_flags &= ~ASYNC_CARR_ON; cv_broadcast(&async->async_flags_cv); } /* else */ } /* if (async->async_ext) */ mutex_exit(&asy->asy_excl_hi); /* * If data has been added to the circular buffer, remove * it from the buffer, and send it up the stream if there's * somebody listening. Try to do it 16 bytes at a time. If we * have more than 16 bytes to move, move 16 byte chunks and * leave the rest for next time around (maybe it will grow). */ mutex_enter(&asy->asy_excl_hi); if (!(async->async_flags & ASYNC_ISOPEN)) { RING_INIT(async); goto rv; } if ((cc = RING_CNT(async)) <= 0) goto rv; mutex_exit(&asy->asy_excl_hi); if (!canput(q)) { mutex_enter(&asy->asy_excl_hi); if (!(async->async_inflow_source & IN_FLOW_STREAMS)) { async_flowcontrol_hw_input(asy, FLOW_STOP, IN_FLOW_STREAMS); (void) async_flowcontrol_sw_input(asy, FLOW_STOP, IN_FLOW_STREAMS); } goto rv; } if (async->async_inflow_source & IN_FLOW_STREAMS) { mutex_enter(&asy->asy_excl_hi); async_flowcontrol_hw_input(asy, FLOW_START, IN_FLOW_STREAMS); (void) async_flowcontrol_sw_input(asy, FLOW_START, IN_FLOW_STREAMS); mutex_exit(&asy->asy_excl_hi); } DEBUGCONT2(ASY_DEBUG_INPUT, "async%d_softint: %d char(s) in queue.\n", instance, cc); if (!(bp = allocb(cc, BPRI_MED))) { mutex_exit(&asy->asy_excl); ttycommon_qfull(&async->async_ttycommon, q); mutex_enter(&asy->asy_excl); mutex_enter(&asy->asy_excl_hi); goto rv; } mutex_enter(&asy->asy_excl_hi); do { if (RING_ERR(async, S_ERRORS)) { RING_UNMARK(async); c = RING_GET(async); break; } else *bp->b_wptr++ = RING_GET(async); } while (--cc); mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); if (bp->b_wptr > bp->b_rptr) { if (!canput(q)) { asyerror(CE_NOTE, "asy%d: local queue full", instance); freemsg(bp); } else (void) putq(q, bp); } else freemsg(bp); /* * If we have a parity error, then send * up an M_BREAK with the "bad" * character as an argument. Let ldterm * figure out what to do with the error. */ if (cc) { (void) putctl1(q, M_BREAK, c); ASYSETSOFT(async->async_common); /* finish cc chars */ } mutex_enter(&asy->asy_excl); mutex_enter(&asy->asy_excl_hi); rv: if ((RING_CNT(async) < (RINGSIZE/4)) && (async->async_inflow_source & IN_FLOW_RINGBUFF)) { async_flowcontrol_hw_input(asy, FLOW_START, IN_FLOW_RINGBUFF); (void) async_flowcontrol_sw_input(asy, FLOW_START, IN_FLOW_RINGBUFF); } /* * If a transmission has finished, indicate that it's finished, * and start that line up again. */ if (async->async_break > 0) { nb = async->async_break; async->async_break = 0; if (async->async_flags & ASYNC_ISOPEN) { mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); for (; nb > 0; nb--) (void) putctl(q, M_BREAK); mutex_enter(&asy->asy_excl); mutex_enter(&asy->asy_excl_hi); } } if (async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) { DEBUGCONT2(ASY_DEBUG_BUSY, "async%d_softint: Clearing ASYNC_BUSY. async_ocnt=%d\n", instance, async->async_ocnt); async->async_flags &= ~ASYNC_BUSY; mutex_exit(&asy->asy_excl_hi); if (async->async_xmitblk) freeb(async->async_xmitblk); async->async_xmitblk = NULL; async_start(async); /* * If the flag isn't set after doing the async_start above, we * may have finished all the queued output. Signal any thread * stuck in close. */ if (!(async->async_flags & ASYNC_BUSY)) cv_broadcast(&async->async_flags_cv); mutex_enter(&asy->asy_excl_hi); } /* * A note about these overrun bits: all they do is *tell* someone * about an error- They do not track multiple errors. In fact, * you could consider them latched register bits if you like. * We are only interested in printing the error message once for * any cluster of overrun errrors. */ if (async->async_hw_overrun) { if (async->async_flags & ASYNC_ISOPEN) { mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); asyerror(CE_NOTE, "asy%d: silo overflow", instance); mutex_enter(&asy->asy_excl); mutex_enter(&asy->asy_excl_hi); } async->async_hw_overrun = 0; } if (async->async_sw_overrun) { if (async->async_flags & ASYNC_ISOPEN) { mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); asyerror(CE_NOTE, "asy%d: ring buffer overflow", instance); mutex_enter(&asy->asy_excl); mutex_enter(&asy->asy_excl_hi); } async->async_sw_overrun = 0; } mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); mutex_enter(&asy_soft_lock); if (asy->asy_flags & ASY_DOINGSOFT_RETRY) { goto begin; } asy->asy_flags &= ~ASY_DOINGSOFT; mutex_exit(&asy_soft_lock); DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint: done\n", instance); } /* * Restart output on a line after a delay or break timer expired. */ static void async_restart(void *arg) { struct asyncline *async = (struct asyncline *)arg; struct asycom *asy = async->async_common; uchar_t lcr; /* * If break timer expired, turn off the break bit. */ #ifdef DEBUG int instance = UNIT(async->async_dev); DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_restart\n", instance); #endif mutex_enter(&asy->asy_excl); /* * If ASYNC_OUT_SUSPEND is also set, we don't really * clean the HW break, TIOCCBRK is responsible for this. */ if ((async->async_flags & ASYNC_BREAK) && !(async->async_flags & ASYNC_OUT_SUSPEND)) { mutex_enter(&asy->asy_excl_hi); lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, (lcr & ~SETBREAK)); mutex_exit(&asy->asy_excl_hi); } async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK); cv_broadcast(&async->async_flags_cv); async_start(async); mutex_exit(&asy->asy_excl); } static void async_start(struct asyncline *async) { async_nstart(async, 0); } /* * Start output on a line, unless it's busy, frozen, or otherwise. */ /*ARGSUSED*/ static void async_nstart(struct asyncline *async, int mode) { struct asycom *asy = async->async_common; int cc; queue_t *q; mblk_t *bp; uchar_t *xmit_addr; uchar_t val; int fifo_len = 1; boolean_t didsome; mblk_t *nbp; #ifdef DEBUG int instance = UNIT(async->async_dev); DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_nstart\n", instance); #endif if (asy->asy_use_fifo == FIFO_ON) { fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */ if (fifo_len > asy_max_tx_fifo) fifo_len = asy_max_tx_fifo; } ASSERT(mutex_owned(&asy->asy_excl)); /* * If the chip is busy (i.e., we're waiting for a break timeout * to expire, or for the current transmission to finish, or for * output to finish draining from chip), don't grab anything new. */ if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY)) { DEBUGCONT2((mode? ASY_DEBUG_OUT : 0), "async%d_nstart: start %s.\n", instance, async->async_flags & ASYNC_BREAK ? "break" : "busy"); return; } /* * Check only pended sw input flow control. */ mutex_enter(&asy->asy_excl_hi); if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL)) fifo_len--; mutex_exit(&asy->asy_excl_hi); /* * If we're waiting for a delay timeout to expire, don't grab * anything new. */ if (async->async_flags & ASYNC_DELAY) { DEBUGCONT1((mode? ASY_DEBUG_OUT : 0), "async%d_nstart: start ASYNC_DELAY.\n", instance); return; } if ((q = async->async_ttycommon.t_writeq) == NULL) { DEBUGCONT1((mode? ASY_DEBUG_OUT : 0), "async%d_nstart: start writeq is null.\n", instance); return; /* not attached to a stream */ } for (;;) { if ((bp = getq(q)) == NULL) return; /* no data to transmit */ /* * We have a message block to work on. * Check whether it's a break, a delay, or an ioctl (the latter * occurs if the ioctl in question was waiting for the output * to drain). If it's one of those, process it immediately. */ switch (bp->b_datap->db_type) { case M_BREAK: /* * Set the break bit, and arrange for "async_restart" * to be called in 1/4 second; it will turn the * break bit off, and call "async_start" to grab * the next message. */ mutex_enter(&asy->asy_excl_hi); val = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, (val | SETBREAK)); mutex_exit(&asy->asy_excl_hi); async->async_flags |= ASYNC_BREAK; (void) timeout(async_restart, (caddr_t)async, drv_usectohz(1000000)/4); freemsg(bp); return; /* wait for this to finish */ case M_DELAY: /* * Arrange for "async_restart" to be called when the * delay expires; it will turn ASYNC_DELAY off, * and call "async_start" to grab the next message. */ (void) timeout(async_restart, (caddr_t)async, (int)(*(unsigned char *)bp->b_rptr + 6)); async->async_flags |= ASYNC_DELAY; freemsg(bp); return; /* wait for this to finish */ case M_IOCTL: /* * This ioctl was waiting for the output ahead of * it to drain; obviously, it has. Do it, and * then grab the next message after it. */ mutex_exit(&asy->asy_excl); async_ioctl(async, q, bp); mutex_enter(&asy->asy_excl); continue; } while (bp != NULL && ((cc = MBLKL(bp)) == 0)) { nbp = bp->b_cont; freeb(bp); bp = nbp; } if (bp != NULL) break; } /* * We have data to transmit. If output is stopped, put * it back and try again later. */ if (async->async_flags & (ASYNC_HW_OUT_FLW | ASYNC_SW_OUT_FLW | ASYNC_STOPPED | ASYNC_OUT_SUSPEND)) { (void) putbq(q, bp); return; } async->async_xmitblk = bp; xmit_addr = bp->b_rptr; bp = bp->b_cont; if (bp != NULL) (void) putbq(q, bp); /* not done with this message yet */ /* * In 5-bit mode, the high order bits are used * to indicate character sizes less than five, * so we need to explicitly mask before transmitting */ if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) { unsigned char *p = xmit_addr; int cnt = cc; while (cnt--) *p++ &= (unsigned char) 0x1f; } /* * Set up this block for pseudo-DMA. */ mutex_enter(&asy->asy_excl_hi); /* * If the transmitter is ready, shove the first * character out. */ didsome = B_FALSE; while (--fifo_len >= 0 && cc > 0) { if (!(ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE)) break; ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, *xmit_addr++); cc--; didsome = B_TRUE; } async->async_optr = xmit_addr; async->async_ocnt = cc; if (didsome) async->async_flags |= ASYNC_PROGRESS; DEBUGCONT2(ASY_DEBUG_BUSY, "async%d_nstart: Set ASYNC_BUSY. async_ocnt=%d\n", instance, async->async_ocnt); async->async_flags |= ASYNC_BUSY; mutex_exit(&asy->asy_excl_hi); } /* * Resume output by poking the transmitter. */ static void async_resume(struct asyncline *async) { struct asycom *asy = async->async_common; #ifdef DEBUG int instance; #endif ASSERT(mutex_owned(&asy->asy_excl_hi)); #ifdef DEBUG instance = UNIT(async->async_dev); DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_resume\n", instance); #endif if (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE) { if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL)) return; if (async->async_ocnt > 0 && !(async->async_flags & (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_OUT_SUSPEND))) { ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, *async->async_optr++); async->async_ocnt--; async->async_flags |= ASYNC_PROGRESS; } } } /* * Hold the untimed break to last the minimum time. */ static void async_hold_utbrk(void *arg) { struct asyncline *async = arg; struct asycom *asy = async->async_common; mutex_enter(&asy->asy_excl); async->async_flags &= ~ASYNC_HOLD_UTBRK; cv_broadcast(&async->async_flags_cv); async->async_utbrktid = 0; mutex_exit(&asy->asy_excl); } /* * Resume the untimed break. */ static void async_resume_utbrk(struct asyncline *async) { uchar_t val; struct asycom *asy = async->async_common; ASSERT(mutex_owned(&asy->asy_excl)); /* * Because the wait time is very short, * so we use uninterruptably wait. */ while (async->async_flags & ASYNC_HOLD_UTBRK) { cv_wait(&async->async_flags_cv, &asy->asy_excl); } mutex_enter(&asy->asy_excl_hi); /* * Timed break and untimed break can exist simultaneously, * if ASYNC_BREAK is also set at here, we don't * really clean the HW break. */ if (!(async->async_flags & ASYNC_BREAK)) { val = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, (val & ~SETBREAK)); } async->async_flags &= ~ASYNC_OUT_SUSPEND; cv_broadcast(&async->async_flags_cv); if (async->async_ocnt > 0) { async_resume(async); mutex_exit(&asy->asy_excl_hi); } else { async->async_flags &= ~ASYNC_BUSY; mutex_exit(&asy->asy_excl_hi); if (async->async_xmitblk != NULL) { freeb(async->async_xmitblk); async->async_xmitblk = NULL; } async_start(async); } } /* * Process an "ioctl" message sent down to us. * Note that we don't need to get any locks until we are ready to access * the hardware. Nothing we access until then is going to be altered * outside of the STREAMS framework, so we should be safe. */ int asydelay = 10000; static void async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp) { struct asycom *asy = async->async_common; tty_common_t *tp = &async->async_ttycommon; struct iocblk *iocp; unsigned datasize; int error = 0; uchar_t val; mblk_t *datamp; unsigned int index; #ifdef DEBUG int instance = UNIT(async->async_dev); DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl\n", instance); #endif if (tp->t_iocpending != NULL) { /* * We were holding an "ioctl" response pending the * availability of an "mblk" to hold data to be passed up; * another "ioctl" came through, which means that "ioctl" * must have timed out or been aborted. */ freemsg(async->async_ttycommon.t_iocpending); async->async_ttycommon.t_iocpending = NULL; } iocp = (struct iocblk *)mp->b_rptr; /* * For TIOCMGET and the PPS ioctls, do NOT call ttycommon_ioctl() * because this function frees up the message block (mp->b_cont) that * contains the user location where we pass back the results. * * Similarly, CONSOPENPOLLEDIO needs ioc_count, which ttycommon_ioctl * zaps. We know that ttycommon_ioctl doesn't know any CONS* * ioctls, so keep the others safe too. */ DEBUGCONT2(ASY_DEBUG_IOCTL, "async%d_ioctl: %s\n", instance, iocp->ioc_cmd == TIOCMGET ? "TIOCMGET" : iocp->ioc_cmd == TIOCMSET ? "TIOCMSET" : iocp->ioc_cmd == TIOCMBIS ? "TIOCMBIS" : iocp->ioc_cmd == TIOCMBIC ? "TIOCMBIC" : "other"); switch (iocp->ioc_cmd) { case TIOCMGET: case TIOCGPPS: case TIOCSPPS: case TIOCGPPSEV: case CONSOPENPOLLEDIO: case CONSCLOSEPOLLEDIO: case CONSSETABORTENABLE: case CONSGETABORTENABLE: error = -1; /* Do Nothing */ break; default: /* * The only way in which "ttycommon_ioctl" can fail is if the * "ioctl" requires a response containing data to be returned * to the user, and no mblk could be allocated for the data. * No such "ioctl" alters our state. Thus, we always go ahead * and do any state-changes the "ioctl" calls for. If we * couldn't allocate the data, "ttycommon_ioctl" has stashed * the "ioctl" away safely, so we just call "bufcall" to * request that we be called back when we stand a better * chance of allocating the data. */ if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) { if (async->async_wbufcid) unbufcall(async->async_wbufcid); async->async_wbufcid = bufcall(datasize, BPRI_HI, (void (*)(void *)) async_reioctl, (void *)(intptr_t)async->async_common->asy_unit); return; } } mutex_enter(&asy->asy_excl); if (error == 0) { /* * "ttycommon_ioctl" did most of the work; we just use the * data it set up. */ switch (iocp->ioc_cmd) { case TCSETS: mutex_enter(&asy->asy_excl_hi); if (asy_baudok(asy)) asy_program(asy, ASY_NOINIT); else error = EINVAL; mutex_exit(&asy->asy_excl_hi); break; case TCSETSF: case TCSETSW: case TCSETA: case TCSETAW: case TCSETAF: mutex_enter(&asy->asy_excl_hi); if (!asy_baudok(asy)) error = EINVAL; else { if (asy_isbusy(asy)) asy_waiteot(asy); asy_program(asy, ASY_NOINIT); } mutex_exit(&asy->asy_excl_hi); break; } } else if (error < 0) { /* * "ttycommon_ioctl" didn't do anything; we process it here. */ error = 0; switch (iocp->ioc_cmd) { case TIOCGPPS: /* * Get PPS on/off. */ if (mp->b_cont != NULL) freemsg(mp->b_cont); mp->b_cont = allocb(sizeof (int), BPRI_HI); if (mp->b_cont == NULL) { error = ENOMEM; break; } if (asy->asy_flags & ASY_PPS) *(int *)mp->b_cont->b_wptr = 1; else *(int *)mp->b_cont->b_wptr = 0; mp->b_cont->b_wptr += sizeof (int); mp->b_datap->db_type = M_IOCACK; iocp->ioc_count = sizeof (int); break; case TIOCSPPS: /* * Set PPS on/off. */ error = miocpullup(mp, sizeof (int)); if (error != 0) break; mutex_enter(&asy->asy_excl_hi); if (*(int *)mp->b_cont->b_rptr) asy->asy_flags |= ASY_PPS; else asy->asy_flags &= ~ASY_PPS; /* Reset edge sense */ asy->asy_flags &= ~ASY_PPS_EDGE; mutex_exit(&asy->asy_excl_hi); mp->b_datap->db_type = M_IOCACK; break; case TIOCGPPSEV: { /* * Get PPS event data. */ mblk_t *bp; void *buf; #ifdef _SYSCALL32_IMPL struct ppsclockev32 p32; #endif struct ppsclockev ppsclockev; if (mp->b_cont != NULL) { freemsg(mp->b_cont); mp->b_cont = NULL; } if ((asy->asy_flags & ASY_PPS) == 0) { error = ENXIO; break; } /* Protect from incomplete asy_ppsev */ mutex_enter(&asy->asy_excl_hi); ppsclockev = asy_ppsev; mutex_exit(&asy->asy_excl_hi); #ifdef _SYSCALL32_IMPL if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) { TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv); p32.serial = ppsclockev.serial; buf = &p32; iocp->ioc_count = sizeof (struct ppsclockev32); } else #endif { buf = &ppsclockev; iocp->ioc_count = sizeof (struct ppsclockev); } if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) { error = ENOMEM; break; } mp->b_cont = bp; bcopy(buf, bp->b_wptr, iocp->ioc_count); bp->b_wptr += iocp->ioc_count; mp->b_datap->db_type = M_IOCACK; break; } case TCSBRK: error = miocpullup(mp, sizeof (int)); if (error != 0) break; if (*(int *)mp->b_cont->b_rptr == 0) { /* * XXX Arrangements to ensure that a break * isn't in progress should be sufficient. * This ugly delay() is the only thing * that seems to work on the NCR Worldmark. * It should be replaced. Note that an * asy_waiteot() also does not work. */ if (asydelay) delay(drv_usectohz(asydelay)); while (async->async_flags & ASYNC_BREAK) { cv_wait(&async->async_flags_cv, &asy->asy_excl); } mutex_enter(&asy->asy_excl_hi); /* * We loop until the TSR is empty and then * set the break. ASYNC_BREAK has been set * to ensure that no characters are * transmitted while the TSR is being * flushed and SOUT is being used for the * break signal. * * The wait period is equal to * clock / (baud * 16) * 16 * 2. */ index = BAUDINDEX( async->async_ttycommon.t_cflag); async->async_flags |= ASYNC_BREAK; while ((ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XSRE) == 0) { mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); drv_usecwait( 32*asyspdtab[index] & 0xfff); mutex_enter(&asy->asy_excl); mutex_enter(&asy->asy_excl_hi); } /* * Arrange for "async_restart" * to be called in 1/4 second; * it will turn the break bit off, and call * "async_start" to grab the next message. */ val = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, (val | SETBREAK)); mutex_exit(&asy->asy_excl_hi); (void) timeout(async_restart, (caddr_t)async, drv_usectohz(1000000)/4); } else { DEBUGCONT1(ASY_DEBUG_OUT, "async%d_ioctl: wait for flush.\n", instance); mutex_enter(&asy->asy_excl_hi); asy_waiteot(asy); mutex_exit(&asy->asy_excl_hi); DEBUGCONT1(ASY_DEBUG_OUT, "async%d_ioctl: ldterm satisfied.\n", instance); } break; case TIOCSBRK: if (!(async->async_flags & ASYNC_OUT_SUSPEND)) { mutex_enter(&asy->asy_excl_hi); async->async_flags |= ASYNC_OUT_SUSPEND; async->async_flags |= ASYNC_HOLD_UTBRK; index = BAUDINDEX( async->async_ttycommon.t_cflag); while ((ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XSRE) == 0) { mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); drv_usecwait( 32*asyspdtab[index] & 0xfff); mutex_enter(&asy->asy_excl); mutex_enter(&asy->asy_excl_hi); } val = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR); ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, (val | SETBREAK)); mutex_exit(&asy->asy_excl_hi); /* wait for 100ms to hold BREAK */ async->async_utbrktid = timeout((void (*)())async_hold_utbrk, (caddr_t)async, drv_usectohz(asy_min_utbrk)); } mioc2ack(mp, NULL, 0, 0); break; case TIOCCBRK: if (async->async_flags & ASYNC_OUT_SUSPEND) async_resume_utbrk(async); mioc2ack(mp, NULL, 0, 0); break; case TIOCMSET: case TIOCMBIS: case TIOCMBIC: if (iocp->ioc_count != TRANSPARENT) { DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: " "non-transparent\n", instance); error = miocpullup(mp, sizeof (int)); if (error != 0) break; mutex_enter(&asy->asy_excl_hi); (void) asymctl(asy, dmtoasy(*(int *)mp->b_cont->b_rptr), iocp->ioc_cmd); mutex_exit(&asy->asy_excl_hi); iocp->ioc_error = 0; mp->b_datap->db_type = M_IOCACK; } else { DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: " "transparent\n", instance); mcopyin(mp, NULL, sizeof (int), NULL); } break; case TIOCMGET: datamp = allocb(sizeof (int), BPRI_MED); if (datamp == NULL) { error = EAGAIN; break; } mutex_enter(&asy->asy_excl_hi); *(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET); mutex_exit(&asy->asy_excl_hi); if (iocp->ioc_count == TRANSPARENT) { DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: " "transparent\n", instance); mcopyout(mp, NULL, sizeof (int), NULL, datamp); } else { DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: " "non-transparent\n", instance); mioc2ack(mp, datamp, sizeof (int), 0); } break; case CONSOPENPOLLEDIO: error = miocpullup(mp, sizeof (struct cons_polledio *)); if (error != 0) break; *(struct cons_polledio **)mp->b_cont->b_rptr = &asy->polledio; mp->b_datap->db_type = M_IOCACK; break; case CONSCLOSEPOLLEDIO: mp->b_datap->db_type = M_IOCACK; iocp->ioc_error = 0; iocp->ioc_rval = 0; break; case CONSSETABORTENABLE: error = secpolicy_console(iocp->ioc_cr); if (error != 0) break; if (iocp->ioc_count != TRANSPARENT) { error = EINVAL; break; } if (*(intptr_t *)mp->b_cont->b_rptr) asy->asy_flags |= ASY_CONSOLE; else asy->asy_flags &= ~ASY_CONSOLE; mp->b_datap->db_type = M_IOCACK; iocp->ioc_error = 0; iocp->ioc_rval = 0; break; case CONSGETABORTENABLE: /*CONSTANTCONDITION*/ ASSERT(sizeof (boolean_t) <= sizeof (boolean_t *)); /* * Store the return value right in the payload * we were passed. Crude. */ mcopyout(mp, NULL, sizeof (boolean_t), NULL, NULL); *(boolean_t *)mp->b_cont->b_rptr = (asy->asy_flags & ASY_CONSOLE) != 0; break; default: /* * If we don't understand it, it's an error. NAK it. */ error = EINVAL; break; } } if (error != 0) { iocp->ioc_error = error; mp->b_datap->db_type = M_IOCNAK; } mutex_exit(&asy->asy_excl); qreply(wq, mp); DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl: done\n", instance); } static int asyrsrv(queue_t *q) { mblk_t *bp; struct asyncline *async; async = (struct asyncline *)q->q_ptr; while (canputnext(q) && (bp = getq(q))) putnext(q, bp); ASYSETSOFT(async->async_common); async->async_polltid = 0; return (0); } /* * The ASYWPUTDO_NOT_SUSP macro indicates to asywputdo() whether it should * handle messages as though the driver is operating normally or is * suspended. In the suspended case, some or all of the processing may have * to be delayed until the driver is resumed. */ #define ASYWPUTDO_NOT_SUSP(async, wput) \ !((wput) && ((async)->async_flags & ASYNC_DDI_SUSPENDED)) /* * Processing for write queue put procedure. * Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here; * set the flow control character for M_STOPI and M_STARTI messages; * queue up M_BREAK, M_DELAY, and M_DATA messages for processing * by the start routine, and then call the start routine; discard * everything else. Note that this driver does not incorporate any * mechanism to negotiate to handle the canonicalization process. * It expects that these functions are handled in upper module(s), * as we do in ldterm. */ static int asywputdo(queue_t *q, mblk_t *mp, boolean_t wput) { struct asyncline *async; struct asycom *asy; #ifdef DEBUG int instance; #endif int error; async = (struct asyncline *)q->q_ptr; #ifdef DEBUG instance = UNIT(async->async_dev); #endif asy = async->async_common; switch (mp->b_datap->db_type) { case M_STOP: /* * Since we don't do real DMA, we can just let the * chip coast to a stop after applying the brakes. */ mutex_enter(&asy->asy_excl); async->async_flags |= ASYNC_STOPPED; mutex_exit(&asy->asy_excl); freemsg(mp); break; case M_START: mutex_enter(&asy->asy_excl); if (async->async_flags & ASYNC_STOPPED) { async->async_flags &= ~ASYNC_STOPPED; if (ASYWPUTDO_NOT_SUSP(async, wput)) { /* * If an output operation is in progress, * resume it. Otherwise, prod the start * routine. */ if (async->async_ocnt > 0) { mutex_enter(&asy->asy_excl_hi); async_resume(async); mutex_exit(&asy->asy_excl_hi); } else { async_start(async); } } } mutex_exit(&asy->asy_excl); freemsg(mp); break; case M_IOCTL: switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { case TCSBRK: error = miocpullup(mp, sizeof (int)); if (error != 0) { miocnak(q, mp, 0, error); return (0); } if (*(int *)mp->b_cont->b_rptr != 0) { DEBUGCONT1(ASY_DEBUG_OUT, "async%d_ioctl: flush request.\n", instance); (void) putq(q, mp); mutex_enter(&asy->asy_excl); if (ASYWPUTDO_NOT_SUSP(async, wput)) { /* * If an TIOCSBRK is in progress, * clean it as TIOCCBRK does, * then kick off output. * If TIOCSBRK is not in progress, * just kick off output. */ async_resume_utbrk(async); } mutex_exit(&asy->asy_excl); break; } /*FALLTHROUGH*/ case TCSETSW: case TCSETSF: case TCSETAW: case TCSETAF: /* * The changes do not take effect until all * output queued before them is drained. * Put this message on the queue, so that * "async_start" will see it when it's done * with the output before it. Poke the * start routine, just in case. */ (void) putq(q, mp); mutex_enter(&asy->asy_excl); if (ASYWPUTDO_NOT_SUSP(async, wput)) { /* * If an TIOCSBRK is in progress, * clean it as TIOCCBRK does. * then kick off output. * If TIOCSBRK is not in progress, * just kick off output. */ async_resume_utbrk(async); } mutex_exit(&asy->asy_excl); break; default: /* * Do it now. */ mutex_enter(&asy->asy_excl); if (ASYWPUTDO_NOT_SUSP(async, wput)) { mutex_exit(&asy->asy_excl); async_ioctl(async, q, mp); break; } async_put_suspq(asy, mp); mutex_exit(&asy->asy_excl); break; } break; case M_FLUSH: if (*mp->b_rptr & FLUSHW) { mutex_enter(&asy->asy_excl); /* * Abort any output in progress. */ mutex_enter(&asy->asy_excl_hi); if (async->async_flags & ASYNC_BUSY) { DEBUGCONT1(ASY_DEBUG_BUSY, "asy%dwput: " "Clearing async_ocnt, " "leaving ASYNC_BUSY set\n", instance); async->async_ocnt = 0; async->async_flags &= ~ASYNC_BUSY; } /* if */ if (ASYWPUTDO_NOT_SUSP(async, wput)) { /* Flush FIFO buffers */ if (asy->asy_use_fifo == FIFO_ON) { asy_reset_fifo(asy, FIFOTXFLSH); } } mutex_exit(&asy->asy_excl_hi); /* Flush FIFO buffers */ if (asy->asy_use_fifo == FIFO_ON) { asy_reset_fifo(asy, FIFOTXFLSH); } /* * Flush our write queue. */ flushq(q, FLUSHDATA); /* XXX doesn't flush M_DELAY */ if (async->async_xmitblk != NULL) { freeb(async->async_xmitblk); async->async_xmitblk = NULL; } mutex_exit(&asy->asy_excl); *mp->b_rptr &= ~FLUSHW; /* it has been flushed */ } if (*mp->b_rptr & FLUSHR) { if (ASYWPUTDO_NOT_SUSP(async, wput)) { /* Flush FIFO buffers */ if (asy->asy_use_fifo == FIFO_ON) { asy_reset_fifo(asy, FIFORXFLSH); } } flushq(RD(q), FLUSHDATA); qreply(q, mp); /* give the read queues a crack at it */ } else { freemsg(mp); } /* * We must make sure we process messages that survive the * write-side flush. */ if (ASYWPUTDO_NOT_SUSP(async, wput)) { mutex_enter(&asy->asy_excl); async_start(async); mutex_exit(&asy->asy_excl); } break; case M_BREAK: case M_DELAY: case M_DATA: /* * Queue the message up to be transmitted, * and poke the start routine. */ (void) putq(q, mp); if (ASYWPUTDO_NOT_SUSP(async, wput)) { mutex_enter(&asy->asy_excl); async_start(async); mutex_exit(&asy->asy_excl); } break; case M_STOPI: mutex_enter(&asy->asy_excl); if (ASYWPUTDO_NOT_SUSP(async, wput)) { mutex_enter(&asy->asy_excl_hi); if (!(async->async_inflow_source & IN_FLOW_USER)) { async_flowcontrol_hw_input(asy, FLOW_STOP, IN_FLOW_USER); (void) async_flowcontrol_sw_input(asy, FLOW_STOP, IN_FLOW_USER); } mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); freemsg(mp); break; } async_put_suspq(asy, mp); mutex_exit(&asy->asy_excl); break; case M_STARTI: mutex_enter(&asy->asy_excl); if (ASYWPUTDO_NOT_SUSP(async, wput)) { mutex_enter(&asy->asy_excl_hi); if (async->async_inflow_source & IN_FLOW_USER) { async_flowcontrol_hw_input(asy, FLOW_START, IN_FLOW_USER); (void) async_flowcontrol_sw_input(asy, FLOW_START, IN_FLOW_USER); } mutex_exit(&asy->asy_excl_hi); mutex_exit(&asy->asy_excl); freemsg(mp); break; } async_put_suspq(asy, mp); mutex_exit(&asy->asy_excl); break; case M_CTL: if (MBLKL(mp) >= sizeof (struct iocblk) && ((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) { mutex_enter(&asy->asy_excl); if (ASYWPUTDO_NOT_SUSP(async, wput)) { ((struct iocblk *)mp->b_rptr)->ioc_cmd = MC_HAS_POSIX; mutex_exit(&asy->asy_excl); qreply(q, mp); break; } else { async_put_suspq(asy, mp); } } else { /* * These MC_SERVICE type messages are used by upper * modules to tell this driver to send input up * immediately, or that it can wait for normal * processing that may or may not be done. Sun * requires these for the mouse module. * (XXX - for x86?) */ mutex_enter(&asy->asy_excl); switch (*mp->b_rptr) { case MC_SERVICEIMM: async->async_flags |= ASYNC_SERVICEIMM; break; case MC_SERVICEDEF: async->async_flags &= ~ASYNC_SERVICEIMM; break; } mutex_exit(&asy->asy_excl); freemsg(mp); } break; case M_IOCDATA: mutex_enter(&asy->asy_excl); if (ASYWPUTDO_NOT_SUSP(async, wput)) { mutex_exit(&asy->asy_excl); async_iocdata(q, mp); break; } async_put_suspq(asy, mp); mutex_exit(&asy->asy_excl); break; default: freemsg(mp); break; } return (0); } static int asywput(queue_t *q, mblk_t *mp) { return (asywputdo(q, mp, B_TRUE)); } /* * Retry an "ioctl", now that "bufcall" claims we may be able to allocate * the buffer we need. */ static void async_reioctl(void *unit) { int instance = (uintptr_t)unit; struct asyncline *async; struct asycom *asy; queue_t *q; mblk_t *mp; asy = ddi_get_soft_state(asy_soft_state, instance); ASSERT(asy != NULL); async = asy->asy_priv; /* * The bufcall is no longer pending. */ mutex_enter(&asy->asy_excl); async->async_wbufcid = 0; if ((q = async->async_ttycommon.t_writeq) == NULL) { mutex_exit(&asy->asy_excl); return; } if ((mp = async->async_ttycommon.t_iocpending) != NULL) { /* not pending any more */ async->async_ttycommon.t_iocpending = NULL; mutex_exit(&asy->asy_excl); async_ioctl(async, q, mp); } else mutex_exit(&asy->asy_excl); } static void async_iocdata(queue_t *q, mblk_t *mp) { struct asyncline *async = (struct asyncline *)q->q_ptr; struct asycom *asy; struct iocblk *ip; struct copyresp *csp; #ifdef DEBUG int instance = UNIT(async->async_dev); #endif asy = async->async_common; ip = (struct iocblk *)mp->b_rptr; csp = (struct copyresp *)mp->b_rptr; if (csp->cp_rval != 0) { if (csp->cp_private) freemsg(csp->cp_private); freemsg(mp); return; } mutex_enter(&asy->asy_excl); DEBUGCONT2(ASY_DEBUG_MODEM, "async%d_iocdata: case %s\n", instance, csp->cp_cmd == TIOCMGET ? "TIOCMGET" : csp->cp_cmd == TIOCMSET ? "TIOCMSET" : csp->cp_cmd == TIOCMBIS ? "TIOCMBIS" : "TIOCMBIC"); switch (csp->cp_cmd) { case TIOCMGET: if (mp->b_cont) { freemsg(mp->b_cont); mp->b_cont = NULL; } mp->b_datap->db_type = M_IOCACK; ip->ioc_error = 0; ip->ioc_count = 0; ip->ioc_rval = 0; mp->b_wptr = mp->b_rptr + sizeof (struct iocblk); break; case TIOCMSET: case TIOCMBIS: case TIOCMBIC: mutex_enter(&asy->asy_excl_hi); (void) asymctl(asy, dmtoasy(*(int *)mp->b_cont->b_rptr), csp->cp_cmd); mutex_exit(&asy->asy_excl_hi); mioc2ack(mp, NULL, 0, 0); break; default: mp->b_datap->db_type = M_IOCNAK; ip->ioc_error = EINVAL; break; } qreply(q, mp); mutex_exit(&asy->asy_excl); } /* * debugger/console support routines. */ /* * put a character out * Do not use interrupts. If char is LF, put out CR, LF. */ static void asyputchar(cons_polledio_arg_t arg, uchar_t c) { struct asycom *asy = (struct asycom *)arg; if (c == '\n') asyputchar(arg, '\r'); while ((ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE) == 0) { /* wait for xmit to finish */ drv_usecwait(10); } /* put the character out */ ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, c); } /* * See if there's a character available. If no character is * available, return 0. Run in polled mode, no interrupts. */ static boolean_t asyischar(cons_polledio_arg_t arg) { struct asycom *asy = (struct asycom *)arg; return ((ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & RCA) != 0); } /* * Get a character. Run in polled mode, no interrupts. */ static int asygetchar(cons_polledio_arg_t arg) { struct asycom *asy = (struct asycom *)arg; while (!asyischar(arg)) drv_usecwait(10); return (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + DAT)); } /* * Set or get the modem control status. */ static int asymctl(struct asycom *asy, int bits, int how) { int mcr_r, msr_r; int instance = asy->asy_unit; ASSERT(mutex_owned(&asy->asy_excl_hi)); ASSERT(mutex_owned(&asy->asy_excl)); /* Read Modem Control Registers */ mcr_r = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR); switch (how) { case TIOCMSET: DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMSET, bits = %x\n", instance, bits); mcr_r = bits; /* Set bits */ break; case TIOCMBIS: DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIS, bits = %x\n", instance, bits); mcr_r |= bits; /* Mask in bits */ break; case TIOCMBIC: DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIC, bits = %x\n", instance, bits); mcr_r &= ~bits; /* Mask out bits */ break; case TIOCMGET: /* Read Modem Status Registers */ /* * If modem interrupts are enabled, we return the * saved value of msr. We read MSR only in async_msint() */ if (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ICR) & MIEN) { msr_r = asy->asy_msr; DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMGET, read msr_r = %x\n", instance, msr_r); } else { msr_r = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR); DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMGET, read MSR = %x\n", instance, msr_r); } DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dtodm: modem_lines = %x\n", instance, asytodm(mcr_r, msr_r)); return (asytodm(mcr_r, msr_r)); } ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr_r); return (mcr_r); } static int asytodm(int mcr_r, int msr_r) { int b = 0; /* MCR registers */ if (mcr_r & RTS) b |= TIOCM_RTS; if (mcr_r & DTR) b |= TIOCM_DTR; /* MSR registers */ if (msr_r & DCD) b |= TIOCM_CAR; if (msr_r & CTS) b |= TIOCM_CTS; if (msr_r & DSR) b |= TIOCM_DSR; if (msr_r & RI) b |= TIOCM_RNG; return (b); } static int dmtoasy(int bits) { int b = 0; DEBUGCONT1(ASY_DEBUG_MODEM, "dmtoasy: bits = %x\n", bits); #ifdef CAN_NOT_SET /* only DTR and RTS can be set */ if (bits & TIOCM_CAR) b |= DCD; if (bits & TIOCM_CTS) b |= CTS; if (bits & TIOCM_DSR) b |= DSR; if (bits & TIOCM_RNG) b |= RI; #endif if (bits & TIOCM_RTS) { DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & RTS\n"); b |= RTS; } if (bits & TIOCM_DTR) { DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & DTR\n"); b |= DTR; } return (b); } static void asyerror(int level, const char *fmt, ...) { va_list adx; static time_t last; static const char *lastfmt; time_t now; /* * Don't print the same error message too often. * Print the message only if we have not printed the * message within the last second. * Note: that fmt cannot be a pointer to a string * stored on the stack. The fmt pointer * must be in the data segment otherwise lastfmt would point * to non-sense. */ now = gethrestime_sec(); if (last == now && lastfmt == fmt) return; last = now; lastfmt = fmt; va_start(adx, fmt); vcmn_err(level, fmt, adx); va_end(adx); } /* * asy_parse_mode(dev_info_t *devi, struct asycom *asy) * The value of this property is in the form of "9600,8,n,1,-" * 1) speed: 9600, 4800, ... * 2) data bits * 3) parity: n(none), e(even), o(odd) * 4) stop bits * 5) handshake: -(none), h(hardware: rts/cts), s(software: xon/off) * * This parsing came from a SPARCstation eeprom. */ static void asy_parse_mode(dev_info_t *devi, struct asycom *asy) { char name[40]; char val[40]; int len; int ret; char *p; char *p1; ASSERT(asy->asy_com_port != 0); /* * Parse the ttyx-mode property */ (void) sprintf(name, "tty%c-mode", asy->asy_com_port + 'a' - 1); len = sizeof (val); ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len); if (ret != DDI_PROP_SUCCESS) { (void) sprintf(name, "com%c-mode", asy->asy_com_port + '0'); len = sizeof (val); ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len); } /* no property to parse */ asy->asy_cflag = 0; if (ret != DDI_PROP_SUCCESS) return; p = val; /* ---- baud rate ---- */ asy->asy_cflag = CREAD|B9600; /* initial default */ if (p && (p1 = strchr(p, ',')) != 0) { *p1++ = '\0'; } else { asy->asy_cflag |= BITS8; /* add default bits */ return; } if (strcmp(p, "110") == 0) asy->asy_bidx = B110; else if (strcmp(p, "150") == 0) asy->asy_bidx = B150; else if (strcmp(p, "300") == 0) asy->asy_bidx = B300; else if (strcmp(p, "600") == 0) asy->asy_bidx = B600; else if (strcmp(p, "1200") == 0) asy->asy_bidx = B1200; else if (strcmp(p, "2400") == 0) asy->asy_bidx = B2400; else if (strcmp(p, "4800") == 0) asy->asy_bidx = B4800; else if (strcmp(p, "9600") == 0) asy->asy_bidx = B9600; else if (strcmp(p, "19200") == 0) asy->asy_bidx = B19200; else if (strcmp(p, "38400") == 0) asy->asy_bidx = B38400; else if (strcmp(p, "57600") == 0) asy->asy_bidx = B57600; else if (strcmp(p, "115200") == 0) asy->asy_bidx = B115200; else asy->asy_bidx = B9600; asy->asy_cflag &= ~CBAUD; if (asy->asy_bidx > CBAUD) { /* > 38400 uses the CBAUDEXT bit */ asy->asy_cflag |= CBAUDEXT; asy->asy_cflag |= asy->asy_bidx - CBAUD - 1; } else { asy->asy_cflag |= asy->asy_bidx; } ASSERT(asy->asy_bidx == BAUDINDEX(asy->asy_cflag)); /* ---- Next item is data bits ---- */ p = p1; if (p && (p1 = strchr(p, ',')) != 0) { *p1++ = '\0'; } else { asy->asy_cflag |= BITS8; /* add default bits */ return; } switch (*p) { default: case '8': asy->asy_cflag |= CS8; asy->asy_lcr = BITS8; break; case '7': asy->asy_cflag |= CS7; asy->asy_lcr = BITS7; break; case '6': asy->asy_cflag |= CS6; asy->asy_lcr = BITS6; break; case '5': /* LINTED: CS5 is currently zero (but might change) */ asy->asy_cflag |= CS5; asy->asy_lcr = BITS5; break; } /* ---- Parity info ---- */ p = p1; if (p && (p1 = strchr(p, ',')) != 0) { *p1++ = '\0'; } else { return; } switch (*p) { default: case 'n': break; case 'e': asy->asy_cflag |= PARENB; asy->asy_lcr |= PEN; break; case 'o': asy->asy_cflag |= PARENB|PARODD; asy->asy_lcr |= PEN|EPS; break; } /* ---- Find stop bits ---- */ p = p1; if (p && (p1 = strchr(p, ',')) != 0) { *p1++ = '\0'; } else { return; } if (*p == '2') { asy->asy_cflag |= CSTOPB; asy->asy_lcr |= STB; } /* ---- handshake is next ---- */ p = p1; if (p) { if ((p1 = strchr(p, ',')) != 0) *p1++ = '\0'; if (*p == 'h') asy->asy_cflag |= CRTSCTS; else if (*p == 's') asy->asy_cflag |= CRTSXOFF; } } /* * Check for abort character sequence */ static boolean_t abort_charseq_recognize(uchar_t ch) { static int state = 0; #define CNTRL(c) ((c)&037) static char sequence[] = { '\r', '~', CNTRL('b') }; if (ch == sequence[state]) { if (++state >= sizeof (sequence)) { state = 0; return (B_TRUE); } } else { state = (ch == sequence[0]) ? 1 : 0; } return (B_FALSE); } /* * Flow control functions */ /* * Software input flow control * This function can execute software input flow control sucessfully * at most of situations except that the line is in BREAK status * (timed and untimed break). * INPUT VALUE of onoff: * FLOW_START means to send out a XON char * and clear SW input flow control flag. * FLOW_STOP means to send out a XOFF char * and set SW input flow control flag. * FLOW_CHECK means to check whether there is pending XON/XOFF * if it is true, send it out. * INPUT VALUE of type: * IN_FLOW_RINGBUFF means flow control is due to RING BUFFER * IN_FLOW_STREAMS means flow control is due to STREAMS * IN_FLOW_USER means flow control is due to user's commands * RETURN VALUE: B_FALSE means no flow control char is sent * B_TRUE means one flow control char is sent */ static boolean_t async_flowcontrol_sw_input(struct asycom *asy, async_flowc_action onoff, int type) { struct asyncline *async = asy->asy_priv; int instance = UNIT(async->async_dev); int rval = B_FALSE; ASSERT(mutex_owned(&asy->asy_excl_hi)); if (!(async->async_ttycommon.t_iflag & IXOFF)) return (rval); /* * If we get this far, then we know IXOFF is set. */ switch (onoff) { case FLOW_STOP: async->async_inflow_source |= type; /* * We'll send an XOFF character for each of up to * three different input flow control attempts to stop input. * If we already send out one XOFF, but FLOW_STOP comes again, * it seems that input flow control becomes more serious, * then send XOFF again. */ if (async->async_inflow_source & (IN_FLOW_RINGBUFF | IN_FLOW_STREAMS | IN_FLOW_USER)) async->async_flags |= ASYNC_SW_IN_FLOW | ASYNC_SW_IN_NEEDED; DEBUGCONT2(ASY_DEBUG_SFLOW, "async%d: input sflow stop, " "type = %x\n", instance, async->async_inflow_source); break; case FLOW_START: async->async_inflow_source &= ~type; if (async->async_inflow_source == 0) { async->async_flags = (async->async_flags & ~ASYNC_SW_IN_FLOW) | ASYNC_SW_IN_NEEDED; DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: " "input sflow start\n", instance); } break; default: break; } if (((async->async_flags & (ASYNC_SW_IN_NEEDED | ASYNC_BREAK | ASYNC_OUT_SUSPEND)) == ASYNC_SW_IN_NEEDED) && (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE)) { /* * If we get this far, then we know we need to send out * XON or XOFF char. */ async->async_flags = (async->async_flags & ~ASYNC_SW_IN_NEEDED) | ASYNC_BUSY; ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, async->async_flags & ASYNC_SW_IN_FLOW ? async->async_stopc : async->async_startc); rval = B_TRUE; } return (rval); } /* * Software output flow control * This function can be executed sucessfully at any situation. * It does not handle HW, and just change the SW output flow control flag. * INPUT VALUE of onoff: * FLOW_START means to clear SW output flow control flag, * also combine with HW output flow control status to * determine if we need to set ASYNC_OUT_FLW_RESUME. * FLOW_STOP means to set SW output flow control flag, * also clear ASYNC_OUT_FLW_RESUME. */ static void async_flowcontrol_sw_output(struct asycom *asy, async_flowc_action onoff) { struct asyncline *async = asy->asy_priv; int instance = UNIT(async->async_dev); ASSERT(mutex_owned(&asy->asy_excl_hi)); if (!(async->async_ttycommon.t_iflag & IXON)) return; switch (onoff) { case FLOW_STOP: async->async_flags |= ASYNC_SW_OUT_FLW; async->async_flags &= ~ASYNC_OUT_FLW_RESUME; DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow stop\n", instance); break; case FLOW_START: async->async_flags &= ~ASYNC_SW_OUT_FLW; if (!(async->async_flags & ASYNC_HW_OUT_FLW)) async->async_flags |= ASYNC_OUT_FLW_RESUME; DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow start\n", instance); break; default: break; } } /* * Hardware input flow control * This function can be executed sucessfully at any situation. * It directly changes RTS depending on input parameter onoff. * INPUT VALUE of onoff: * FLOW_START means to clear HW input flow control flag, * and pull up RTS if it is low. * FLOW_STOP means to set HW input flow control flag, * and low RTS if it is high. * INPUT VALUE of type: * IN_FLOW_RINGBUFF means flow control is due to RING BUFFER * IN_FLOW_STREAMS means flow control is due to STREAMS * IN_FLOW_USER means flow control is due to user's commands */ static void async_flowcontrol_hw_input(struct asycom *asy, async_flowc_action onoff, int type) { uchar_t mcr; uchar_t flag; struct asyncline *async = asy->asy_priv; int instance = UNIT(async->async_dev); ASSERT(mutex_owned(&asy->asy_excl_hi)); if (!(async->async_ttycommon.t_cflag & CRTSXOFF)) return; switch (onoff) { case FLOW_STOP: async->async_inflow_source |= type; if (async->async_inflow_source & (IN_FLOW_RINGBUFF | IN_FLOW_STREAMS | IN_FLOW_USER)) async->async_flags |= ASYNC_HW_IN_FLOW; DEBUGCONT2(ASY_DEBUG_HFLOW, "async%d: input hflow stop, " "type = %x\n", instance, async->async_inflow_source); break; case FLOW_START: async->async_inflow_source &= ~type; if (async->async_inflow_source == 0) { async->async_flags &= ~ASYNC_HW_IN_FLOW; DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: " "input hflow start\n", instance); } break; default: break; } mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR); flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : RTS; if (((mcr ^ flag) & RTS) != 0) { ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, (mcr ^ RTS)); } } /* * Hardware output flow control * This function can execute HW output flow control sucessfully * at any situation. * It doesn't really change RTS, and just change * HW output flow control flag depending on CTS status. * INPUT VALUE of onoff: * FLOW_START means to clear HW output flow control flag. * also combine with SW output flow control status to * determine if we need to set ASYNC_OUT_FLW_RESUME. * FLOW_STOP means to set HW output flow control flag. * also clear ASYNC_OUT_FLW_RESUME. */ static void async_flowcontrol_hw_output(struct asycom *asy, async_flowc_action onoff) { struct asyncline *async = asy->asy_priv; int instance = UNIT(async->async_dev); ASSERT(mutex_owned(&asy->asy_excl_hi)); if (!(async->async_ttycommon.t_cflag & CRTSCTS)) return; switch (onoff) { case FLOW_STOP: async->async_flags |= ASYNC_HW_OUT_FLW; async->async_flags &= ~ASYNC_OUT_FLW_RESUME; DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow stop\n", instance); break; case FLOW_START: async->async_flags &= ~ASYNC_HW_OUT_FLW; if (!(async->async_flags & ASYNC_SW_OUT_FLW)) async->async_flags |= ASYNC_OUT_FLW_RESUME; DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow start\n", instance); break; default: break; } }